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Abstract. Jakarta is located on a thick sedimentary layer that potentially has a 

very high seismic wave amplification. However, the available information 

concerning the subsurface model and bedrock depth is insufficient for a seismic 

hazard analysis. In this study, a microtremor array method was applied to 

estimate the geometry and S-wave velocity of the sedimentary layer. The spatial 

autocorrelation (SPAC) method was applied to estimate the dispersion curve, 

while the S-wave velocity was estimated using a genetic algorithm approach. 

The analysis of the 1D and 2D S-wave velocity profiles shows that along a 

north-south line, the sedimentary layer is thicker towards the north. It has a 

positive correlation with a geological cross section derived from a borehole 

down to a depth of about 300 m. The SPT data from the BMKG site were used 

to verify the 1D S-wave velocity profile. They show a good agreement. The 

microtremor analysis reached the engineering bedrock in a range from 359 to 

608 m as depicted by a cross section in the north-south direction. The site class 

was also estimated at each site, based on the average S-wave velocity until 30 m 

depth. The sites UI to ISTN belong to class D (medium soil), while BMKG and 

ANCL belong to class E (soft soil). 

 

Keywords: engineering bedrock; microtremor array; S-wave velocity; site class; 

Jakarta. 

1 Introduction 

Jakarta is one of the major cities of Indonesia for which the government has 

prioritized the preparation of seismic microzonation maps. This was done under 

consideration of various aspects, such as seismicity, infrastructure, population, 

etc., in which Jakarta has a high risk. Site response analysis is part of the 
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microzonation studies that consider the effects of ground shaking. This is to be 

calculated by using the results of a complete geotechnical investigation. 

Subsurface information, such as bedrock depths and soil dynamic properties, are 

important parameters in the dynamic response analysis of the ground related to 

a hazard analysis for the surface. 

Previous studies concerning the subsurface geology of Jakarta have been 

conducted by Padmosukismo and Yahya [1] and showed the configuration of 

the Northwest Java basin and the Ciputat sub-basin in which Jakarta is located. 

Turkandi, et al. [2] have conducted a regional geological mapping and Fachri, et 

al. [3] studied the hydrostratigraphy of the groundwater basins. The results of 

these studies provide very important information, but further studies for 

earthquake engineering purposes are still required to obtain more physical 

parameters and the position of bedrock. 

In this study, a microtremor array method was applied to investigate the 

subsurface underneath Jakarta and to construct a stratigraphic model based on 

S-wave velocity parameters. The advantage of this method is that it simplifies 

the field operation because it does not require active vibration sources or 

boreholes. Microtremor array observation was first developed by Aki [4] to 

obtain the dispersion curve by using a circular array employing the SPAC 

method. Then Okada [5 and 6] expanded this method for subsurface exploration 

and modified the array configuration into a triangular shape using only 4 

sensors. Furthermore, Morikawa, et al. [7] developed 2sSPAC by employing 

only 2 sensors in an effort to reduce difficulties in the field work. 

Microtremor array measurements were conducted in Jakarta at 10 sites along a 

north-south line, from ANCL to UI (Figure 1), in order to determine bedrock 

depth and site class. To achieve the objective above, we used small and large 

arrays for shallow and deep surveys, respectively. Borehole data to a depth of 

150 m at the BMKG site were available, so they could be used to verify the 1D 

S-wave velocity model derived from the analysis of the microtremor data along 

with the standard penetration test (SPT) data. 

2 Geological Setting 

Jakarta is located in the Ciputat sub-basin of the Northwest Java basin. The 

Ciputat sub-basin is filled by Tertiary and Quarter sediments and controlled by 

geological structures with a dominant north-south direction that form heights 

and depression zones [1]. 

Referring to the regional geological maps [2 and 3], the stratigraphy sequence 

from old to young is as follows: first, the Rengganis formation (Early Miocene), 
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then the Bojongmanik formation in the western part, which is inter-fingered 

with the Jatiluhur formations in the eastern part lying on top of it (Middle 

Miocene), while above the two formations there are the Klapanunggal 

formation (Late Miocene), the Genteng formation (Early Pliocene), and the 

Serpong formation (Late Pliocene). The Quarter sedimentary rocks covering the 

whole Jakarta area are: Banten tuff (Plio-Pleistocene), young volcanic rocks 

(Pleistocene), alluvium fan, coastal sediment and alluvium. 

3 Data and Method 

3.1 Data Acquisition 

Microtremor array measurements were performed at 10 sites in Jakarta along 

the ANCL-UI line (Figure 1) using triangular arrays with 4 sensors, where one 

sensor was placed at the center and 3 sensors were deployed on a circular array. 

(See Figures 2a). Figure 2b shows an example of the array configuration for 

microtremor measurements carried out at the BMKG site.  

Figure 1 Locations of microtremor array measurements along the UI-ANCL 

line and deep borehole. 
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Figure 2 a) Array shape and location of 4 sensors, b) example of microtremor 

array measurements at the BMKG site, and c) example of microtremor data 

record.  

The array size was designed in consideration of the target layer depth. Array 

sizes of 600 m, 300 m and 150 m were used for deep layer surveys, while for 

shallow layers the array sizes were 30 m and 15 m. Microtremor data recording 

was conducted in 1-1.5 hours for the large arrays, while for the small arrays it 

was approximately 30-45 minutes [5 and 6]. The data records were digitized 

with a sampling interval of 0.01 seconds and then divided into several blocks 

consisting of 16,384 samples for each block to be used in the data processing. 

Figure 2c shows an example of the data recorded at the BMKG site for a time 

block with a duration of 163.84 seconds.  

The instruments used in the field work were: four units of microtremor 

equipment (McSEIS Neo-MT) produced by OYO Corporation completed with 

GPS for time synchronization. For the data processing, SeisImager and 

Yamanaka software was used.  
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3.2 SPAC Method 

Following, Okada [6] and Morikawa, et al. [7], phase velocity calculations were 

performed using the SPAC method for the vertical component of microtremors. 

For the triangular array configuration, the coherence function between two 

stations within a distance r was calculated. SPAC coefficient ρ(ω,r) is the 

average of the coherence function for all pairs of stations on the circular array, 

which can be directly calculated by the following equation: 
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where Sc (ω,0,0) and Sx (ω,r,θ) are the power spectrum of the microtremors at 

stations C and X, while Scx (ω,r,θ) is the cross spectrum between stations C and 

X. 

Since the array configuration is circular, the SPAC coefficient can be expressed 

as a Bessel function with variables r and k, as follows: 

ρ (ω, r) = J0(r,k), where k = ω/c(ω) ; c(ω) = phase velocity, therefore:  
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Jo = Bessel function of the first kind zero order, c(ω) = phase velocity as a 

function of frequency ω, r = distance between two stations. 

3.3 Inversion of Dispersion Curves Using Genetic Algorithm 

The S-wave velocity structures were estimated from the dispersion curves 

through an inversion technique using a genetic algorithm. This technique was 

introduced in seismology by Yamanaka and Ishida [8] as a global optimizing 

method. The inversion process is conducted on the searched area as the 

population by minimizing the misfit function (ϕ), which can be defined by the 

difference between observed phase velocity Uo(Ti) and calculated phase velocity 

Uc(Ti,), and can be expressed as follows: 
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where N is the number of observed data and σ(Ti) is the standard deviation of 

the observed phase velocity over a period of Ti. 
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A genetic algorithm was applied to the phase velocities of the fundamental 

modes of the Rayleigh waves, assuming the layer models are horizontal, 

isotropic, and homogenous. In the inversion, the model parameters of S-wave 

velocities and thicknesses are the unknown parameters to be estimated, while 

the density is fixed. 

In this study, the inversion was conducted by performing 20 populations with 

10 iterations of the genetic algorithm and the parameters of genetic operation 

following Yamanaka and Ishida [8]. The inversion was conducted on the initial 

population by all genetic operations, where the model that had the smallest 

misfit survived in the next generation, while bad models were replaced.  

4 Results 

4.1 Dispersion Curves 

The results of the estimated dispersion curves using the SPAC method for deep 

layers is shown in Figure 3a. The dispersion curves of microtremors were 

obtained in a frequency range of 0.2-5.0 Hz and have various phase velocities. 

Figure 3b shows the dispersion curves for the shallow layers, which have a 

higher frequency range (3-16 Hz). The variation of phase velocities is due to 

local geological conditions.  

 

Figure 3 Dispersion curves of microtremors for: a) deep layers, and b) shallow 

layers. 
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inverted by using a genetic algorithm to generate close fits of dispersion 

curves between observed and calculated ones, as shown in Figures 4 and 5.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Comparison between observed (circles) and calculated (solid lines) 

dispersion curves for deep layers. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5 Comparison between observed (circles) and calculated (solid lines) 

dispersion curves for shallow layers. 

4.2 One-dimensional S-Wave Velocity Profiles 

The 1D S-wave velocity profiles resulting from the individual inversion of each 

dispersion curve are illustrated in Figure 6 for deep layers and in Figure 7 for 

shallow depths. The bedrock depth with S-wave velocity value > 750 ms
-1

 [9] 

can be estimated from each 1D S-wave velocity profile. Generally, the bedrock 

depth increases toward northern Jakarta. In southern Jakarta (UI) the bedrock 

depth is about 378 m for Vs = 875 ms
-1

 and in the north (BMKG) the bedrock 

depth is about 651 m for Vs = 965 ms
-1
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Figure 6 1D S-wave velocity profiles at the 10 surveyed sites for deep layers. 

 

The estimated 1D S-wave velocity profiles for shallow depths were also 

modeled into four layers down to 40 m depth. The site class determination was 

based on Vs30, where sites UI to ISTN belong to class D (medium soil), while 

BMKG and ANCL belong to class E (soft soil).  

 

Figure 7 Same as Figure 6, but for shallow depths. 
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4.3 Comparison with Borehole Data 

S-wave velocity parameters can also be calculated from standard penetration 

test (SPT) data using an empirical formula, as shown in Table 1. All these 

empirical formulas can be used for Vs calculation by taking the average of the 

results. 

At the BMKG site, SPT was conducted down to a depth of 100 m in a borehole 

near the microtremor measurement site. Comparison of the S-wave velocity 

profiles derived from SPT and microtremor array measurements demonstrates a 

strong similarity (Figure 8) and has a positive correlation with the lithological 

condition. 

Table 1 Empirical correlation between N-SPT and S-wave velocity [10]. 

References 
Vs (m/sec)  

Correlation 
Soil Type 

Imai and Tonouchi [11] Vs = 96.9 N
0.314

 Clay and sand (Japan) 

Imai [12] Vs = 91 N
0.337

 Clay and sand (Japan) 

Ohta and Goto [13] Vs = 85.3 N
0.341

 Clay and sand (Japan) 

Sykora and Stokoe [14] Vs = 101 N
0.29

 Clay (USA) 

 

Figure 8 Comparison of 1D S-wave velocity profiles derived from microtremor 

array measurements (dash lines) and SPT (solid lines) at BMKG. a) and b) are 

for deep layers, c) lithology, and d) for shallow layers. 
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show a lateral variation in the S-wave velocity. The 1D S-wave velocity profiles 
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four-layer model over the engineering bedrock, while in the southern part there 

is a three-layer model. Basically, it is difficult to conduct a stratigraphic 

correlation based on such S-wave velocity structures. Hence, the second 

inversion was applied to the dispersion curve with a constant velocity as the 

initial model (cf. Yamanaka and Yamada [15]).  

According to the 1D S-wave velocity profiles (Figure 6), the four-layer model 

was assumed for the initial model with the S-wave velocity of the second, the 

third and the fourth layers being 500, 700 and 900 ms
-1

, respectively, 

determined by averaging the S-wave velocity of each layer. This initial model 

was inverted again for each dispersion curve to obtain the depth of each fixed 

velocity. The results are shown in Figure 9.  

 

Figure 9 1D S-wave velocity profiles of the 10 surveyed sites derived by 

second inversion using the initial model, in which the S-wave velocity for each 

layer is fixed. 

The 1D S-wave velocity profiles resulting from the second inversion were then 

utilized to perform a stratigraphic correlation. The result of S-wave velocity 

correlation along the ANCL-UI line forms a cross section depicting a 

subsurface model for Jakarta (Figure 10). This model consists of four layers 

with the S-wave velocity from the second to the fourth layers being 500, 700, 

and 900 ms
-1

, respectively, while the S-wave velocity varies laterally in the first 

layer. A subsurface model for a similar north-south line derived from borehole 

data down to 350 m depth was conducted by Fachri, et al. [3]. The comparison 

of the stratigraphic model from the microtremor measurements and their 

geological cross section derived from the borehole data [3] indicates a good 

correlation (see Figure 11).  
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Figure 10  Cross section of the S-wave velocity structure along the ANCL-UI 

line. The solid line depicts the estimated bedrock depth. 

 

Figure 11 Comparison of microtremor analysis (solid and dash lines) and 

geological cross section derived from borehole data (modified from Fachri, et al. 

[3]). 
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Referring to SNI-1726-2012 [9], in which for engineering purposes the bedrock 

is defined by Vs > 750 ms
-1

, the top of the fourth layer on the cross section, 

which has an S-wave velocity of about 900 ms
-1

, represents the engineering 

bedrock depth. In most cases, the subsurface model along the north-south line 

shows a bedrock morphology that is slanting towards the northern part of 

Jakarta with a depth range of 359-608 m.  

5 Discussion 

The results of the microtremor array analysis of each site show various 

dispersion curves that have been influenced by the geological conditions, as 

expressed by the variation in S-wave velocities. The section along the north-

south line across Jakarta (Figure 10) depicts the subsurface model consisting of 

four layers, in which the first layer has S-wave velocities in the range of 218-

443 ms
-1

, associated with Quarter sediments. The second and third layers have 

S-wave velocities of about 500 and 700 ms
-1

, respectively, associated with 

Tertiary sediments. The fourth layer, which has an S-wave velocity of about 900 

ms
-1

, is estimated as the bedrock for earthquake engineering purposes and has a 

depth range from 359-608 m. 

Comparison with the previous geological cross section from Fachri, et al. [3], 

depicted in Figure 11, shows that the results of the microtremors analysis are in 

good agreement, whereby the sediment thickness increases northward. 

Nevertheless, the presence of faults around the Babakan site at a depth of 100-

300 m, as suggested by Fachri, et al. [3], cannot be identified well by the 

microtremor data. Therefore, future work is needed to add more measurement 

data from sites around the envisaged fault area. 

In brief, the available limited data derived from other methods cause difficulties 

in verifying the results of our microtremor data analysis for each site. However, 

the borehole data down to a depth of 150 m at the BMKG site, which has SPT 

data until 100 m depth, could be used to verify the microtremor data analysis 

results. The comparison of the S-wave velocity profiles derived from both 

microtremor and borehole data shows that these profiles agree well (see Figure 

8). All in all we note that more information about subsurface conditions in 

Jakarta is essential for further studies.  

6 Conclusions 

This study obtained a subsurface model for Jakarta by using microtremor array 

measurements. Based on the results of measurements at 10 surveyed sites, the 

stratigraphic model for Jakarta consists of 4 layers, with S-wave velocity values  

ranging from 218 ms
-1

 to 443 ms
-1

 in the uppermost layer, and increasing from 
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the second to the forth layers, i.e. 500 ms
-1

, 700 ms
-1

, and 900 ms
-1

, respectively. 

In general, the thickness of each layer increases northward, particularly the 

second layer. This result is in good agreement with the geological conditions in 

Jakarta, where sediments are very thick in the northern part. 

From the cross section (Figure 10), this study identifies the bedrock position in 

the fourth layer. The depth of the bedrock is diverse, within a range of 359-608 

m. The deepest position of the bedrock is in the northern Jakarta area (ANCL), 

which reaches 608 m. Therefore it is expected that seismic wave amplification 

will be higher in the north than in the south, due to the very thick sediments. 
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