Expanding Super Edge-Magic Graphs*

E. T. Baskoro ${ }^{1}$ \& Y. M. Cholily ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, Institut Teknologi Bandung
Jl. Ganesa 10 Bandung 40132, Indonesia
Emails: \{ebaskoro,yus\}@dns.math.itb.ac.id
${ }^{2}$ Department of Mathematics, Universitas Muhammadiyah Malang
Jl. Tlogomas 246 Malang 65144, Indonesia Email : yus@umm.ac.id

Abstract

For a graph G, with the vertex set $V(G)$ and the edge set $E(G)$ an edgemagic total labeling is a bijection f from $V(G) \cup E(G)$ to the set of integers $\{1,2, \cdots,|V(G)|+|E(G)|\}$ with the property that $f(u)+f(v)+f(u v)=k$ for each $u v \in E(G)$ and for a fixed integer k. An edge-magic total labeling f is called super edge-magic total labeling if $f(V(G))=\{1,2, \cdots,|V(G)|\}$ and $f(E(G))=\{|V(G)|+1,|V(G)|+2, \cdots,|V(G)|+|E(G)|\}$. In this paper we construct the expanded super edge-magic total graphs from cycles C_{n}, generalized Petersen graphs and generalized prisms.

Keywords: Edge-magic; super edge-magic; magic-sum.

1 Introduction

All graphs considered here are finite, undirected and simple. As usual, the vertex set and edge set will be denoted $V(G)$ and $E(G)$, respectively. The symbol $|A|$ will be denote the cardinality of the set A. Other terminologies or notations not defined here can be found in [2,7,15].

Edge-magic total labelings were introduced by Kotzig and Rosa [8] as follow. An edge-magic total labeling on G is a bijection f from $V(G) \cup E(G)$ onto $\{1,2, \cdots,|V(G)|+|E(G)|\}$ with the property that, given any edge $u v$,

$$
f(u)+f(v)+f(u v)=k
$$

for some constan k. It will be convenient to call $f(u)+f(v)+f(u v)$ the edge sum of $u v$ and k the magic sum of f. A graph is called edge-magic total if it admits any edge-magic total labeling.

[^0]Kotzig and Rosa [9] showed that no complete graph K_{n} with $n>6$ is edgemagic total and neither is K_{4}, and edge-magic total labelings for K_{3}, K_{5} and K_{6} for all feasible values of k, are described in [14].

In [8] it is proved that every cycle C_{n}, every caterpillar (a graph derived from a path by hanging any number of pendant vertices from vertices of the path) and every complete bipartite graph $K_{m, n}$ (for any m and n) are edge-magic total.

Wallis et.al. [14] showed that all paths P_{n} and all n-suns (a cycle C_{n} with an additional edge terminating in a vertex of degree 1 attached to each vertex of the cycle) are edge-magic total. It was shown in [16] that the Cartesian product $C_{n} \times P_{m}$ admits an edge-magic total labeling for odd n.

It is conjectured that all trees are edge-magic total [8] and all wheels W_{n} are edge-magic total whenever $n 3(\bmod 4)$ [4]. Enomoto et.al. [4] showed that the conjectures are true for all trees with less than 16 vertices and wheels W_{n} for $n \leq 30$. Philips et.al. [12] solved the conjecture partially by showing that a wheel $W_{n}, n \equiv 0$ or $1(\bmod 4)$, is edge-magic total. Slamin et.al [13] showed that for $n \equiv 6(\bmod 8)$ every wheel W_{n} has an edge-magic total labeling.

An edge-magic total labeling f is called super edge-magic total if $f(V(G))=\{1,2, \cdots,|V(G)|\}$ and $f(E(G))=\{|V(G)|+1,|V(G)|+2, \cdots,|V(G)|+$ $|E(G)|\}$. Enomoto et.al. [4] proved that the complete bipartite graphs $K_{m, n}$ is super edge-magic total if and only if $m=1$ or $n=1$. They also proved the complete graphs K_{n} is super edge-magic if and only if $n=1,2$ or 3 .

In this paper we will construct the super edge-magic total graphs by hanging any number of pendant vertices from vertices of the cycles, generalized prisms and generalized Petersen graphs.

2 Results

For $n \geq 3$ and $p \geq 1$ we denote by $C_{n}+A_{p}$ a graph which is obtained by adding p vertices and p edges to one vertex of cycles C_{n} (say v_{1}). The vertex set and the edge set of $C_{n}+A_{p}$ are $V\left(C_{n}+A_{p}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{j}: 1 \leq j \leq p\right\}$ and $E\left(C_{n}+A_{p}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \cup\left\{v_{1} u_{j}: 1 \leq j \leq p\right\}$.

Let $(n, p)-$ sun be a graph derived from a cycle $C_{n}, n \geq 3$, by hanging p pendant vertices from all vertices of the cycle. Let us denote the vertex set of (n, p) -sun by $V((n, p)-s u n)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i, j}: 1 \leq i \leq n, 1 \leq j \leq p\right\}$ and the edge set by $E((n, p)-s u n)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \cup\left\{v_{i} u_{i, j}: 1 \leq i \leq n\right.$, $1 \leq j \leq p\}$. Observe that $\mid V((n, p)-$ sun $)|=| E((n, p)-$ sun $) \mid=n(p+1)$. The cycle $C_{n}, n \geq 3$, is super edge-magic total if and only if n is odd (see [4]). Now, we shall investigate super edge-magic total labelings for graphs of $C_{n}+A_{p}$ and $(n, p)-$ sun which are expanded from a cycle C_{n}.

Define a vertex labeling f_{1} and an edge labeling f_{2} of $C_{n}+A_{p}$ as follows,

$$
\begin{aligned}
& f_{1}\left(v_{i}\right)= \begin{cases}\frac{n+i}{2} & \text { if } i \text { is odd, } \\
\frac{i}{2} & \text { if } i \text { is even, },\end{cases} \\
& f_{1}\left(u_{j}\right)=n+j \text { for } 1 \leq j \leq p, \\
& f_{2}\left(v_{i} v_{i+1}\right)=2(n+p)+1-i \text { for } 1 \leq i \leq n-1, \\
& f_{2}\left(v_{n} v_{1}\right)=n+2 p+1, \\
& f_{2}\left(v_{1} u_{j}\right)=n+2 p+1-j \text { for } 1 \leq j \leq p .
\end{aligned}
$$

Theorem 1. If n is odd, $n \geq 3$ and $p \geq 1$, then graph $C_{n}+A_{p}$ is super edgemagic total.

Proof. It is easy to verify that the values of f_{1} are $1,2, \cdots, n+p$ and the values of f_{2} are $n+p+1, n+p+2, \cdots, 2 n+2 p$ and furthermore the common edge sum is $k=2 p+\frac{5 n+3}{2}$.

Theorem 2. If n is odd, $n \geq 3$ and $p \geq 1$, then graph (n, p) - sun is super edgemagic total.

Proof. Label the vertices and the edges of $(n, p)-$ sun in the following way.

$$
\begin{aligned}
& f_{3}\left(v_{i}\right)=f_{1}\left(v_{i}\right) \text { for } 1 \leq i \leq n, \\
& f_{3}\left(u_{1, j}\right)=n j+1 \text { for } 1 \leq j \leq p, \\
& f_{3}\left(u_{i, j}\right)=n(j+1)+2-i \text { for } 2 \leq i \leq n \text { and } 1 \leq j \leq p, \\
& f_{4}\left(v_{i} v_{i+1}\right)=2 n(p+1)+1-i \text { for } 1 \leq i \leq n,
\end{aligned}
$$

$$
\begin{aligned}
f_{4}\left(v_{n} v_{1}\right) & =2 n p+n+1, \\
f_{4}\left(v_{i} u_{i, j}\right) & = \begin{cases}2 n(p+1)-n j & \text { if } i=1 \text { and } 1 \leq j \leq p, \\
2 n p+n(1-j)+\frac{i-1}{2} & \text { if } i \text { is odd, } 3 \leq i \leq n \text { and } 1 \leq j \leq p, \\
2 n(p+1)-n j+\frac{i-n-1}{2} & \text { if } i \text { is even, } 2 \leq i \leq n-1 \text { and } 1 \leq j \leq p .\end{cases}
\end{aligned}
$$

We can see that the vertices of $(n, p)-$ sun are labeled by values $1,2, \cdots$, $n(p+1)$ and the edges are labeled by $n(p+1)+1, n(p+1)+2, \cdots, 2 n(p+1)$. Furthermore, all edges have the same magic number $k=2 n(p+1)+\frac{n+3}{2}$.

A generalized Petersen graph $P(n, m), n \geq 3$ and $1 \leq m \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, consists of an outer n-cycle $v_{1}, v_{2}, \cdots, v_{n}$ a set of n spokes $v_{i} z_{i}, 1 \leq i \leq n$, and inner edges $z_{i} z_{i+m}, 1 \leq i \leq n$, with indices taken modulo n.

For $n \geq 5, m=2$ and $p \geq 1$, we denote by $P(n, 2)+A_{p}$ for a graph which is obtained by adding p vertices and p edges to one vertex of $P(n, 2)$, say v_{1}. Hence, $V\left(P(n, 2)+A_{p}\right)=V(P(n, 2)) \cup\left\{u_{j}: 1 \leq j \leq p\right\}$ and $E\left(P(n, 2)+A_{p}\right)=$ $E(P(n, 2)) \cup\left\{v_{1} u_{j}: 1 \leq j \leq p\right\}$.

Let $P(n, 2, p)$ be a graph derived from $P(n, 2), n \geq 5$, by hanging p pendant vertices from all vertices $v_{i}, 1 \leq i \leq n$ of $P(n, 2)$. Then the vertex set of $P(n, 2, p)$ is $V(P(n, 2, p))=V(P(n, 2)) \cup\left\{u_{i, j}: 1 \leq i \leq n, 1 \leq j \leq p\right\}$ and the edge set is $E(P(n, 2, p))=E(P(n, 2)) \cup\left\{v_{i} u_{i, j}: 1 \leq i \leq n, 1 \leq j \leq p\right\}$.

In [11] it is proved that generalized Petersen graphs $P(n, 2)$ are edge-magic total. Fukuchi [6] showed that $P(n, 2)$ are super edge-magic total.

Theorem 3. If n is odd, $n \geq 5$ and $p \geq 1$, then the graph $P(n, 2)+A_{p}$ has a super edge-magic total labeling.

Proof. Consider a bijection, $f_{5}: V\left(P(n, 2)+A_{p}\right) \rightarrow\{1,2, \cdots, 2 n+p\}$ where,

$$
f_{5}\left(v_{i}\right)= \begin{cases}n+\frac{i}{2} & \text { if } i \text { is even, } 2 \leq i \leq n-1, \\ \frac{3 n+i}{2} & \text { if } i \text { is odd, } 1 \leq i \leq n,\end{cases}
$$

$$
\begin{aligned}
& f_{5}\left(z_{i}\right)= \begin{cases}\frac{n-i+4}{4} & \text { if } i \equiv 1(\bmod 4), \\
\frac{2 n-i+4}{4} & \text { if } i \equiv 2(\bmod 4), \\
\frac{3 n-i+4}{4} & \text { if } i \equiv 3(\bmod 4), \\
\frac{4 n-i+4}{4} & \text { if } i \equiv 0(\bmod 4),\end{cases} \\
& f_{5}\left(u_{j}\right)=2 n+j \text { for } 1 \leq j \leq p .
\end{aligned}
$$

We can observe that under the labeling $f_{5},\left\{f_{5}\left(v_{i}\right)+f_{5}\left(v_{i+1}\right): 1 \leq i \leq n\right\}=$ $\left\{\frac{5 n+1}{2}+i: 1 \leq i \leq n\right\}$ and $\left\{f_{5}\left(z_{i}\right)+f_{5}\left(z_{i+2}\right): 1 \leq i \leq n\right\}=\left\{\frac{n+1}{2}+i: 1 \leq i \leq n\right\}$ with indices taken modulo n. Moreover, $\left\{f_{5}\left(v_{i}\right)+f_{5}\left(z_{i}\right): 1 \leq i \leq n\right\}=\left\{\frac{3 n+1}{2}+i: 1 \leq i \leq n\right\}$ and $\left\{f_{5}\left(v_{1}\right)+f_{5}\left(u_{j}\right): 1 \leq j \leq p\right\}=\left\{\frac{7 n+1}{2}+j: 1 \leq j \leq p\right\}$. The elements of the set $\left\{f_{5}\left(v_{i}\right)+f_{5}\left(v_{i+1}\right): 1 \leq i \leq n\right\} \cup\left\{f_{5}\left(z_{i}\right)+f_{5}\left(z_{i+2}\right): 1 \leq i \leq n\right\} \cup\left\{f_{5}\left(v_{i}\right)+f_{5}\left(z_{i}\right):\right.$ $1 \leq i \leq n\} \cup\left\{f_{5}\left(v_{1}\right)+f_{5}\left(u_{j}\right): 1 \leq j \leq p\right\}$ form an arithmetic sequence $\frac{n+1}{2}+1$, $\frac{n+1}{2}+2, \cdots, \frac{7 n+1}{2}, \frac{7 n+1}{2}+1, \cdots, \frac{7 n+1}{2}+p$. We are able to arrange the values $2 n+p+1,2 n+p+2, \cdots, 5 n+2 p$ to the edges of $P(n, 2)+A_{p}$ in such way that the resulting labeling is total and every edge $x y \in E\left(P(n, 2)+A_{p}\right), f_{5}(x)+$ $f_{5}(y)+f_{5}(x y)=\frac{11 n+3}{2}+2 p$. Thus we arrive at the desired result.

Theorem 4. If n is odd, $n \geq 5$ and $p \geq 1$, then the graph $P(n, 2, p)$ has a super edge-magic total labeling.

Proof. Define a bijection, $f_{6}: V(P(n, 2, p)) \rightarrow\{1,2, \cdots, n(p+2)\}$ as follows,

$$
\begin{aligned}
& f_{6}\left(v_{i}\right)=f_{5}\left(v_{i}\right) \text { and } f_{6}\left(z_{i}\right)=f_{5}\left(z_{i}\right) \text { for } 1 \leq i \leq n, \\
& f_{6}\left(u_{1, j}\right)=n(j+1)+1 \text { for } 1 \leq j \leq p, \\
& f_{6}\left(u_{i, j}\right)=n(j+2)+2-i \text { for } 2 \leq i \leq n \text { and } 1 \leq j \leq p .
\end{aligned}
$$

We can see that under the vertex labeling f_{6} the values $f_{6}(x)+f_{6}(y)$ of all edges $x y \in E(P(n, 2, p))$ constitute an arithmetic sequence $\frac{n+1}{2}+1, \frac{n+1}{2}+2, \cdots$, $\frac{7 n+1}{2}, \frac{7 n+1}{2}+1, \cdots, \frac{7 n+1}{2}+n p$. If we complete the edge labeling with the consecutive values in the set $\{n(p+2)+1, n(p+2)+2, n(p+2)+3, \cdots, 5 n+$ $2 n p\}$ then we can obtain total labeling where $f_{6}(x)+f_{6}(y)+f_{6}(x y)=$ $\frac{11 n+3}{2}+2 n p$ for every edge $x y \in E(P(n, 2, p))$.

In the sequel we shall consider a graph of a generalized prism which can be defined as the Cartesian product $C_{n} \times P_{m}$ of a cycle on n vertices with a path on m vertices.

Let $V\left(C_{n} \times P_{m}\right)=\left\{v_{i, k}: 1 \leq i \leq n\right.$ and $\left.1 \leq k \leq m\right\}$ be the vertex set and $E\left(C_{n} \times P_{m}\right)=\left\{v_{i, k} v_{i+1, k}: 1 \leq i \leq n\right.$ and $\left.1 \leq k \leq m\right\} \cup\left\{v_{i, k} v_{i, k+1}: 1 \leq i \leq n\right.$ and $1 \leq k \leq m-1\}$ be the edge set, where i is taken modulo n. For $n \geq 3, m \geq 2$ and $p \geq 1$, we will consider a graph $\left(C_{n} \times P_{m}\right)+A_{p}$ (respectively a graph $\left.\left(C_{n} \times P_{m}\right)+\sum_{i=1}^{n} A_{p}^{i}\right)$ which is obtained by adding p vertices and p edges to one vertex of $C_{n} \times P_{m}$, say $v_{1, m}$ (respectively to all vertices $v_{i, m}, 1 \leq i \leq n$ of $\left.C_{n} \times P_{m}\right)$. Thus $V\left(\left(C_{n} \times P_{m}\right)+A_{p}\right)=V\left(C_{n} \times P_{m}\right) \cup\left\{u_{j}: 1 \leq j \leq p\right\}$,

$$
\begin{aligned}
& V\left(\left(C_{n} \times P_{m}\right)+\sum_{i=1}^{n} A_{p}^{i}\right)=V\left(C_{n} \times P_{m}\right) \cup\left\{u_{i, j}: 1 \leq i \leq n, 1 \leq j \leq p\right\}, \\
& E\left(\left(C_{n} \times P_{m}\right)+A_{p}\right)=E\left(C_{n} \times P_{m}\right) \cup\left\{v_{1, m} u_{j}: 1 \leq j \leq p\right\}, \text { and } \\
& E\left(\left(C_{n} \times P_{m}\right)+\sum_{i=1}^{n} A_{p}^{i}\right)=E\left(C_{n} \times P_{m}\right) \cup\left\{v_{i, m} u_{i, j}: 1 \leq i \leq n, 1 \leq j \leq p\right\} .
\end{aligned}
$$

Figueroa-Centeno et.al. [5] showe that the generalized prism $C_{n} \times P_{m}$ is super edge-magic if n is odd and $m \geq 2$.

The next two theorems show super edge-magic total labelings of graphs $\left(C_{n} \times P_{m}\right)+A_{p}$ and $\left(C_{n} \times P_{m}\right)+\sum_{i=1}^{n} A_{p}^{i}$.

Theorem 5. If n is odd, $n \geq 3, m \geq 2$ and $p \geq 1$, then the graph $\left(C_{n} \times P_{m}\right)+A_{p}$ has a super edge-magic total labeling.

Proof. If m is even, $m \geq 2,1 \leq k \leq m, 1 \leq i \leq n$, then we construct a vertex labeling f_{7} in the following way,

$$
\begin{aligned}
& f_{7}\left(v_{i, k}\right)= \begin{cases}n(k-1)+\frac{i+1}{2} & \text { if } i \text { is odd and } k \text { is odd, } \\
n k+\frac{i-n+1}{2} & \text { if } i \text { is even and } k \text { is odd, } \\
n k+\frac{i-n}{2} & \text { if } i \text { is odd and } k \text { is even, } \\
n(k-1)+\frac{i}{2} & \text { if } i \text { is even and } k \text { is even, }\end{cases} \\
& f_{7}\left(u_{j}\right)=m n+j \text { for } 1 \leq j \leq p .
\end{aligned}
$$

If m is odd, $m \geq 3,1 \leq k \leq m, 1 \leq i \leq n$, then we define a vertex labeling f_{8} as follows,

$$
\begin{aligned}
& f_{8}\left(v_{i, k}\right)= \begin{cases}\frac{n+i}{2}+n(k-1) & \text { if } i \text { is odd and } k \text { is odd, } \\
\frac{i}{2}+n(k-1) & \text { if } i \text { is even and } k \text { is odd, } \\
n k & \text { if } i=1 \text { and } k \text { is even, } \\
n(k-1)+\frac{i-1}{2} & \text { if } i \text { is odd and } k \text { is even, } \\
n(k-1)+\frac{n+i-1}{2} & \text { if } i \text { is even and } k \text { is even, }\end{cases} \\
& f_{8}\left(u_{j}\right)=m n+j \text { for } 1 \leq j \leq p .
\end{aligned}
$$

It is easy to verify that for each edge $x y \in E\left(\left(C_{n} \times P_{m}\right)+A_{p}\right)$ the values $f_{7}(x)+f_{7}(y)$ and $f_{8}(x)+f_{8}(y)$ form an arithmetic sequence $\frac{n+1}{2}+1, \frac{n+1}{2}+2$, $\cdots, 2 m n-\frac{n-1}{2}, 2 m n-\frac{n-3}{2}, \cdots, 2 m n-\frac{n-1}{p}+p$.

Let f_{9} be a bijection from $E\left(\left(C_{n} \times P_{m}\right)+A_{p}\right)$ onto $\{1,2, \cdots, 2 n m-n+p\}$. We can combine the vertex labeling f_{7} (or f_{8}) and the edge labeling $f_{9}+m n+p$ such that the resulting labeling is total and the edge sum for each edge $x y \in E\left(\left(C_{n} \times P_{m}\right)+A_{p}\right)$ is equal to $3 m n+\frac{3-n}{2}+2 p$.

Theorem 6. If n is odd, $n \geq 3, m \geq 2$, and $p \geq 1$, then the graph $\left(C_{n} \times P_{m}\right)+$ $\sum_{i=1}^{n} A_{p}^{i}$ has a super edge-magic total labeling.

Proof. Define vertex labeling f_{10} and f_{11} such that:

$$
\begin{aligned}
& f_{10}\left(v_{i, k}\right)=f_{7}\left(v_{i, k}\right) \text { if } m \text { is even, } 1 \leq k \leq m, 1 \leq i \leq n, \\
& f_{11}\left(v_{i, k}\right)=f_{8}\left(v_{i, k}\right) \text { if } m \text { is odd, } 1 \leq k \leq m, 1 \leq i \leq n, \\
& f_{10}\left(u_{1, j}\right)=f_{11}\left(u_{1, j}\right)=n(m+j-1)+1 \text { for } 1 \leq j \leq p,
\end{aligned}
$$

$$
f_{10}\left(u_{i, j}\right)=f_{11}\left(u_{i, j}\right)=n(m+j)-i+2 \text { for } 2 \leq i \leq n \text { and } 1 \leq j \leq p .
$$

We can see that vertices of $\left(C_{n} \times P_{m}\right)+\sum_{i=1}^{n} A_{p}^{i}$ are labeled by values $1,2,3$, $\cdots, n(m+p)$ and $f_{t}(x)+f_{t}(y)$ for all edges $x y \in\left(C_{n} \times P_{m}\right)+\sum_{i=1}^{n} A_{p}^{i}$ and $t \in\{10,11\}$ constitute an arithmetic sequence $\frac{n+1}{2}+1, \frac{n+1}{2}+2, \cdots, 2 m n-$ $\frac{n-1}{2}+n p$.

We can complete the edge labeling of $\left(C_{n} \times P_{m}\right)+\sum_{i=1}^{n} A_{p}^{i}$ with values in the set $\{n(m+p)+1, n(m+p)+2, \cdots, n(3 m+2 p-1)\}$ consecutively such that the common edge sum is $k=3 m n+2 p n-\frac{n-3}{2}$. Thus the total labeling of $\left(C_{n} \times P_{m}\right)+\sum_{i=1}^{n} A_{p}^{i}$ is super edge-magic and the theorem is proved.

References

1. Bača, M., Consecutive-magic labeling of generalized Petersen graphs, Utilitas Math. 58 (2000), pp. 237-241.
2. Bača, M., MacDogall, J. A., Miller, M., Slamin \& Wallis, W. D., Survey of certain valuations of graphs, Discussiones Math. Graph Theory 20 (2000), pp. 219-229.
3. Bača, M., Lin, Y., Miler, M. \& Simanjuntak, R., New constructions of magic and antimagic graphs labelings, Utilitas Math. 60 (2001), pp. 229239.
4. Enomoto, H., Lladó, A. S., Nakamigawa, T. \& Ringel, G., Super edgemagic graphs, SUT J. Math. Vol. 34 (1998), pp. 105-109.
5. Figueroa-Centeno, R. M., Ichishima, R. \& Muntaner-Batle, F. A., The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001), pp. 153-168.
6. Fukuchi, Y., Edge-magic labelings of generalized Petersen graphs $P(n, 2)$, Ars Combin. 59 (2001), pp. 253-257.
7. Hartsfield, N. \& Ringel, G., Pearls in Graph Theory, Academic Press, New York, $2^{\text {nd }}$ Edition, 2001.
8. Kotzig, A. \& Rosa, A., Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), pp. 451-461.
9. Kotzig, A. \& Rosa, A, Magic valuations of complete graphs, Publ. CRM 175 (1972).
10. Miller, M. \& Bača, M., Antimagic valuations of generalized Petersen graphs, Australasian J. Combin. 22 (2000), pp. 135-139.
11. Ngurah, A. A. G. \& Baskoro, E. T., On magic and antimagic total labeling of generalized Petersen graphs, Utilitas Math. 63 (2003), pp. 97107.
12. Phillips, N. C. K., Rees, R. S. \& Wallis, W. D., Edge-magic total labeling of wheels, Bull. ICA 31 (2001), pp. 21-30.
13. Slamin, Bača, M., Lin, Y., Miller, M. \& Simanjuntak, R., Edge-magic total labelings of wheels, fans and frienship graphs, Bull. ICA 35 (2002), pp. 89-98.
14. Wallis, W.D., Baskoro, E. T., Miller, M. \& Slamin, Edge-magic total labelings, Australasian J. Combin. 22 (2000), pp. 177-190.
15. Wallis, W. D., Magic Graphs, Birkhäuser, Boston-Basel-Berlin, 2001.
16. Wijaya, K. \& Baskoro, E. T., Edge-magic labelings of a product of two graphs, Proc. Seminar MIPA, ITB Bandung (2000), pp. 140-144.

[^0]: * This work was supported by Hibah Bersaing XII DP3M-DIKTI, DIP Number : 004/XXIII/1/--/2004.

