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Abstract. The governing equations describing methane oxidation in a reverse 
flow reactor are given by a set of convective-diffusion equations with a nonlinear 

reaction term, where temperature and methane conversion are dependent 

variables. In this study, the process is assumed to be a one-dimensional pseudo-

homogeneous model and takes place with a certain reaction rate in which 

thewhole process ofthereactor is still workable. Thus, the reaction rate can 

proceed at a fixed temperature. Under these conditions, we can restrict ourselves 

to solving the equations for the conversion only. From the available data, it turns 

out that the ratio of the diffusion term to the reaction term is small. Hence, this 

ratio is considered as a small parameter in our model and this leads to a singular 

perturbation problem. Numerical difficulties will be found in the vicinity of a 

small parameter in front of a higher order term. Here, we present an analytical 
solutionby means of matched asymptotic expansions. The result shows that, up 

to and including the first order of approximation, the solution is in agreement 

with the exact and numerical solutions of the boundary value problem. 

Keywords: asymptotic analysis; boundary layer; methane oxidation process; pseudo 

homogeneous; reverse flow reactor; steady state conversion. 

1 Introduction 

Methane as a greenhouse gas has a warming potential twenty three times greater 
than that of carbon dioxide, so removing it is important for environmental 

reasons. Furthermore, methane is a valuable energy source, so that an efficient 

conversion of methane to carbon dioxide would be doubly advantageous. This 
can be achieved by feeding oxygen and methane into a reactor. A catalyst is 
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required to accelerate the conversion and normally preheating would be 

required to achieve optimal conversion conditions, however, by using the heat 

output from the reaction and appropriate cooling, preheating can be avoided and 

optimal chemical conversion conditions can be realized. 

A concept successfully used in methane combustion is the catalytic reverse flow 

reactor (RFR). This concept was first discussed by Frank-Kamenetski [1] and 

was reviewed by Matros and Bunimovich [2]. An RFR is a packed-bed reactor 
in which the flow direction is periodically reversed totrap a hot zone within the 

reactor. 

The common features of the combustion process in an RFR are usually the 

reaction-convection-diffusion equations with time-periodic coefficients and 
time-periodic boundary conditions. Garg, et al. [3] have observed that an 

adiabatic operation leads to periodic, period-1 symmetric states at which the 

temperature and concentrationprofiles at the beginning and end of a flow-
reversal period are mirror images. 

Earlier studies [4-10] mostly focused on the determination of the steady state 

temperature profile within the reactor. The simulation of Gosiewski and 
Warmuzinsky [5] showed that the heat recovery by hot gas withdrawal from the 

reactor guaranteed more favorable symmetry of the half-cycle-temperature 

profile. For a cooled RFR, Khinast and Luss [8] observed that if reactor cooling 

was increased, the symmetric temperature profile became unstable and either a 
periodic asymmetric, a quasi-periodic or a chaotic state was obtained. Salomon, 

et al. [11] pointed out that the radial temperature gradient exists in both the inert 

and catalytic sections.  

In this paper, we will discuss the steady state solution of the conversionof 

methane oxidation in an RFR in only one direction, from the left to the right 

end. We assume that the model is one-dimensional pseudo-homogeneous with 

small temperature variations and no heat loss. This leads to an equation in terms 
of the conversion variable only with an isothermal non linear reaction rate. For 

this case, the reaction can be considered to take place at a fixed temperature. 

Rescaling the variables, we obtain a dimensionless equation in which a small 
parameter is contained in the highest order of the equation,which leads to a 

singular perturbation problem. We solve the derived equation by using the 

matched asymptotic expansion method (see Holmes [12] orVerhulst [13]). 

This paper is organized as follows. In Section 2, a mathematical model for 

steady state conversion of methane is described. The full equations are written 

in the Appendix. In Section 3, the asymptotic analysis using the singular 
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perturbation techniqueis presented to find the solution of steady state 

conversion. The conclusions are written in the last section. 

2 Mathematical Model 

In our study, we consider a cooled RFR described by a one-dimensionalpseudo-
homogeneous model that is taken from van Noorden [14], (see the detailed 

explanation in the Appendix). In the steady state, namely 0t , the resulting 

conversion equation is given by 

   10       ,01
~

''' 765  xKKK   (1) 

and boundary conditionsare 

       01'       ,00' 65   KK , (2) 

where
2

2

''
dx

d 
   and 

dx

d
 ' . The values of the parameters are given in the 

Appendix. 

Dividing both hand sides in (1) and (2) by 7

~
K , we obtain 

   10       ,01'''3  x  (3) 

       01'       ,00'2    (4) 

where
3

5 7/K K   , and  1O  . In the next section, we present an 

asymptotic solution for the system (3)-(4). 

3 Asymptotic Solution 

For 0 , (3) has two linearly independent solutions.However for 0 , (3) 

becomes a singular perturbation problem since we have a reduced order of the 

equation. To find the (outer) solution, we replace  x by     ...10  xyxy  , 

and get for  1O  of (3)-(4) the following equations 

     01',00       ,01 000  yyy  (5) 

with the general solution 

   10  xyouter . (6) 
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It is clear that (6) cannot fulfill the left boundary condition in (4). Thus, we end 

up with a boundary layer problem. To find the inner solution, we assume that 

there is a boundary layer at 0x . Let 

 



x

 . (7) 

Applying the chain rule, we have 

 



















 d

d

dx

d

d

d

dx

d

d

d

dx

d
22

2 1
   ,

1
 . (8) 

Subtitution of (7) and (8) in (3), yields 

    011

2

2
23   









 

d

d

d

d
. (9) 

Let a solution    of (9) be     ...10  xyxy   

       0      , ...10   YY . (10) 

Substituting the expansion in (10) into (9) we obtain 

           0 ...1...-... 00

1

02

2
23   





  YY

d

d
Y

d

d
. (11) 

The correct balancing in (11) occurs if   123 or 01  , which 

implies that 2 or 1 . In case 2  we can write the  1O  boundary-

layer equation 

 00

2

0

2





 d

dY

d

Yd
for 0 and    00 0

'

0 YY   (12) 

The general solution of this problem is 

   DCeY  0
, (13) 

where C and D are arbitrary constants. The boundary condition in (12) gives

0D , thus (13) becomes 

    CeY 0 . (14) 

From (14), we recognize that for  ,  the solution tends to be unbounded, 

except for 0C . Thus for 2 , the inner solution  0Y  is trivial and it is 

not an asymptotic solution we need. 
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In the second case, 1 , the boundary-layer Eq. (11) becomes 

           0 ...1...-... 0002

2

 





 YY
d

d
Y

d

d
, (15) 

and the boundary condition leads to 

      ...0...0 0

'

0  YY  . (16) 

The  1O  equation is given by 

    0,0 ;  1 00
0  YY

d

dY


  (17) 

and the solution is 

     /

0 11 xeeY   . (18) 

Note that from the  1O  equation for case 1 the matching process between 

the outer and the inner solutionsis automatically satisfied, i.e.    000 yY  . 

Hence, the composite solution for  1O  is 

           /

000 11 xeyYxyx  . (19) 

For  O , from (3)-(4) we get the outer solution is   01 xy and from (15)-

(16) the boundary layer equation is 

      ,00 ;  
1 '

01

/

21
1 YYeY

d

dY
  


    

where the solution is given by 

   





   eeY

231

11
. (20) 

Again, the matching process for  O is automatically satisfied and then the 

composite solution is the inner solution  1Y , as in (20). So the asymptotic 

solution for our problem up to and including  O  is 

     ...
11

1
23

/ 







  





 eeex x .  

or 

         ...
1

1 /

2

/

3

/   






 xxx exeex . (21) 
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In comparison, the exact general solution of (3) is 

   xrxr
BeAex 211  . (22) 

with 

   
2

4
2

2

1


 
r and 

2

2

2
2

4



 
r .  

If we expand  42  at 0  until three terms and apply the boundary 

conditions (4), we get 

   
32

2

22

3

222

3

2

2

3

2


























































































ee

e

A  

and 

   
32

3

22

3

222

3

2

2

3

2














































































ee

e

B  

The three term expansion of  42  is considered since the roots 1r and 2r  in 

(22) contain a factor 
22/1  . For a small  , we note that 











2

2






e is smaller 

than any power of   as 0 . Thus, for 0  we get A tends to zero and B 

tends to –1.  Hence, we can rewrite (22) as 

   ESTex

x


















2

3

5

2

3

2

...
422

1 










 .  

          ESTee
x

x















 ...

21
53

1



. (23) 

where EST stands for exponentially small terms. In deriving the expansion (21), 

we expand 
x

e













 ...

21
53



for x near the origin, so we get (23), as follows 

   

























......
21

11
53

xex

x




  .  
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  ...
2

1
53











xxx

ee
x

e . (24) 

which is in agreement with (22), except for factor 
5/2   in the fourth term. 

Plots of the asymptotic solution and the exact and the numerical solution of (3)-

(4)  for 05.0 and 005.0  and 2 are shown in Figure 1 and Figure 2. 

The numerical solutions of (3)-(4) are obtained by using the toolbox for 

boundary value problems in MATLAB. 

 

Figure 1 Left: Plot  of methane conversion as a function of position x, for

05.0 where the dashed line represents the exact solution and the solid line 

represents the asymptotic solution. The dotted symbol represents the numerical 

solution. Right: the zoom of  for a small window of x. 

 

Figure 2 Left: Plot  of methane conversion as a function of position x, for 

005.0 where the dashed line represents the exact solution and the solid line 

represents the asymptotic solution. The dotted symbol represents the numerical 

solution. Right: the zoom of  for a small window of x. 
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We observe that the results of the asymptotic solution and the numerical 

simulations hardly differ. The effect of reducing the magnitude of   is to 

shorten the window of the rapid changes of the solution. 

4 Conclusion 

Based on available data,  we constructed a singular perturbation problem for the 
steady state conversion of the methane oxidation process in a reverse flow 

reactor. The small parameter in our problem occurred both in front of the 

convective and diffusive terms in which the order of the diffusive term is higher 

than the convective one. Also, one of the boundary conditions had an order 
between the orderof those terms. Using the matched asymptotic expansion 

method and assuming that the boundary layer occurs at 0x ,  we solved the 

equation up to and including the first-order approximation. The present 

asymptotic solution was quite in agreement with the numerical solution and the 

exact solution. 
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Appendix 

In the RFR, a 1-D pseudo-homogeneous model is governed by a set of the 

following equations 

       1 2 3 41 1 0,        0,1t xx xK K K g K x              (25) 

   5 6 7 1 0,        0t xx xK K K g t          ,     (26) 

  
  

 

5

5

1.6656 10 exp 25.785 1 /

1.6656 10 exp 25.785 /
g

 








 


  
, 

where  tx,  ,  tx,   are dimensionless variables for temperature and 

conversion, respectively, jK  are dimensionless parameters, for 7,...,2,1j , 

whose values are given by Table 1. In (25)-(26),  g  is a non-linear function 

corresponding to the reaction rate. Via material balances over a small region 
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containing the entry point, the boundary conditions for flow in the right 

direction are 

     1 20, 0, 1 ,xK t K t      5 60, 0,xK t K t       (27) 

    1, 1, 0x xt t        (28) 

These two boundary conditions are known as Danckwert’s boundary conditions. 

Table 1 The dimensionless parameter values of RFR. 

No Parameter Values 

1 K1 6.9393 × 10-4 

2 K2 0.1749 
3 K3 1.5577 × 10-6 

4 K4 0.0174 
5 K5 2.4038 × 10-3 

6 K6 174.06 

7 K7 0.01 

Under assumptions steady state condition and  g  was evaluated at certain 

temperature *  in which the processs can still be handled by the reactor, the 

value of temperature state in this condition may be considered as constant. 
Hence, we can eliminate the energy transfer equation from the process. To see 

the behavior of  *

77

~
gKK  , we plot  g  as a function of  , as shown in 

Figure 3. Based on this plot, we approximate
4

7 105.2
~

K . 

 

Figure 3 Plot   vs  g 
.
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