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Abstract. Oxygen plays an important role in the metabolism of cells inside the 

human body. The transfer of oxygen from blood to tissue takes place in 

capillaries through a diffusion process. The capillary-tissue region is usually 

represented by the so-called Krogh cylinder model, in which the distribution of 

the oxygen concentration in a tissue region leads to a diffusion equation with 
oxygen consumption rates following the Michaelis-Menten kinetics. In this 

paper, we restrict ourselves to the steady state case and solve the equation 

analytically by means of asymptotic expansion for a particular limit of the 

oxygen consumption rate. Results show that there exists a critical ratio between 

supply and consumption of oxygen in the tissue region in order to fulfill the 

cell’s oxygen requirements. Above from this critical ratio, we also found a 

critical distance in the tissue region above which the oxygen concentration 

vanishes. We compared our asymptotic results with numerical simulations, 

which turned out to be quite in agreement. 

Keywords: asymptotic expansions; diffusion process; Krogh cylinder. 

1 Introduction 

In the circulatory system, arteries and veins are responsible for the transport of 

blood to and from the heart. An artery carries oxygen-rich blood until it 
encounters a capillary bed. In the capillaries, the oxygen diffuses into the 

surrounding tissue where it is absorbed. The deoxygenated blood goes back to 

the heart through a vein (see in detail in Middleman [1]). If the supply of 

oxygen to the tissue is insufficient then bodily functions will be impaired and 
damage can result; for example, if the brain is involved, fainting may occur. 

The first attempt to describe the phenomenon of oxygen supply to living tissue 

through microcirculation of blood in mathematical terms is the classical Krogh 
model [2]. This model deals with an idealized geometrical arrangement, 

consisting of a circular cross section of one capillary concentric with a circular 
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cross section of muscle tissue. The derivation of the model can also be found in 

Middleman [1], in the form of a diffusion equation. To some extent, the role of 

oxygen transport to tissue has attracted much attention from some authors. 

Among them, Salathe and Xu [3] studied the nonlinear model describing the 
role hemoglobin and myoglobin play in facilitating oxygen transport to tissue, 

using multiple scale techniques and similarity transformation. Titkombe and 

Ward [4] investigated an asymptotic solution for the diffusion problem in two 
dimensions, which describes oxygen transport from multiple capillaries to 

skeletal muscle tissue. They demonstrated that for N capillaries with a small but 

arbitrary cross-sectional shape, the problem leads to a singular perturbation 

problem that involves an infinite expansion of logarithmic terms of the small 
parameter, which characterizes the capillary cross sections. Salathe investigated 

the analysis of the oxygen concentration in a two-dimensional array of 

capillaries in the form of a system of ordinary differential equations for the 
oxygen concentration, coupled with a system of algebraic equations for the 

fluxes [5]. She calculated the oxygen concentration within an array of 

capillaries for the case when each capillary has a different initial concentration 
and for the case when each capillary has a different flow rate. The existence of a 

global, unique and smooth solution for the nonlinear diffusion of oxygen in 

living tissue in presence of consumption due to metabolism, was discussed by 

Mikelic and Primicerio [6]. 
 

The aim of the present study is to investigate the solution of the steady state 

case by the perturbation technique, i.e. an asymptotic expansion, which is not 
discussed by Middleman [1]. Here, a parameter arising from the Michaelis-

Menten kinetics that represents the Michaelis constant is considered to be small 

compared to the oxygen concentration in the tissue region. We also predict the 

bound of the ratio of the oxygen consumption rate to the oxygen supply, in 
which this parameter measures the availability of oxygen concentration in the 

tissue. 

 
This paper is organized as follows: in Section 2 we present an oxygen diffusion 

model taken from Middleman [1]; this section is devoted in order to be self-

contained during our discussion. In Section 3 the steady state case is discussed; 
the equation is solved analytically by asymptotic expansion. Here, the interior 

boundary layer problem is proposed and solved by the match asymptotic 

expansion technique. Also, a numerical simulation is worked out to confirm our 

asymptotic solution. Conclusions are written in the last section. 

2 The Model 

The most common geometrical representation of the capillary-tissue region is 
the Krogh cylinder arrangement as shown in Figure 1. This model introduces 
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the concept of a repetitive unit structure. With such a unit structure one implies 

that each section of capillaries is responsible for the supply of oxygen to a 

corresponding cylindrical section of the surrounding tissue. This is a great 

oversimplification of the real situation. Each section of tissue is actually 
supplied to some extent by many surrounding capillaries, although the supply 

must surely be provided mostly by the closest capillaries. 

 

 

 

 

Figure 1 Krogh cylinder arrangement. 

In order to yield a model amenable to solution, assumptions have to be made.  
Following Middleman [1], the limits of the model are summarized as follows: 

1. The Krogh cylinder is assumed to be an appropriate model for the 

geometry. The chemical reactions taking place in the tissue surrounding the 
capillary are continuously distributed. 

2. Symmetry about the axis of the capillary-tissue cylinder is allowed. This 

model suggests that there is a cylindrical surface about a capillary across 

which transport from surrounding capillaries just balances transport toward 
these capillaries. Hence, net transport rates vanish along this surface, which 

can be called a “no-flux” cylinder. 

Basically, there are two transport regions for blood circulation: within the 
capillary and outside of the capillary (the tissue region). Within the capillary, 

the material is transported through the blood by both convection and diffusion. 

In the tissue region the material moves only by molecular diffusion (see Figure 

2). In our paper, we will restrict ourselves to the tissue region. 

Based on the assumptions above, Middleman [1] obtained a diffusion equation 

in the tissue region given by 
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where 0~ c  is the oxygen concentration, r~ is radial direction, t
~

 is mean time, 

D is the diffusion coefficient, and )~(cg is oxygen consumption rate. In (1), 

axial diffusion of oxygen was neglected since it is beyond our interest, and D
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was assumed to be constant. It is often observed that oxygen consumption rate

)~(cg  follows the Michaelis-Menten kinetics, which may be expressed as 

 
cB

cHcA
cg ~

)~(~
)~(


 , (2) 

where A is the maximal reaction rate constant, and B, the so-called Michaelis 

constant, is the oxygen concentration that yields the half-maximal reaction rate 

[7]. In (2), )~(cH  denotes the Heaviside function. The presence of this function 

is naturally understood since the reaction only takes place when )~(~ rc  is still 

available. We note that the rate of oxygen conversion is cBA ~)/( for small 

concentration levels compared to B, and saturates at a rate of A which is 

independent of c~  for large concentration levels. It is usually the case that 

concentration levels are large compared to B and this is the case we will 

examine here. 

 

Figure 2 Capillary-Tissue Region. Our domain of interest is the tissue region. 

Eq. (1) must be supplemented by boundary conditions. We propose the 

boundary conditions as follows. For 0
~
t  we assume that the concentration of 

oxygen in all tissue regions is ac , 

 acrc )0,~(~ , (3) 

For t
~

>0, the capillary supplies a flow of blood having a constant concentration

ic , where 
ai cc  . This inequality allows the diffusion process to occur. 

Furthermore, during time  , where   is a fixed time, i.e.  t
~

0 , we 

propose that the concentration of oxygen in the capillary wall increases linearly 

from ac  to ic , and we assume that for t
~

the continuity of the oxygen 

concentration at ar ~
 is achieved. Therefore, the boundary conditions in the 

capillary wall, ar ~
, are chosen to be 

r = a 
(Capillarywall) 

r = b 
(Tissue wall) 

Tissue  Capillary  
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At br ~ , the no-flux condition is satisfied, 
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c
. (5)     

The model is now described by (1)-(5). Note that c~  is the mean concentration 

of oxygen. Therefore, it has to be positive.  

In the next section, we will solve the steady state equation analytically by means 

of asymptotic expansion. 

3 Steady State Case: Asymptotic Solution and Numerical 

Simulations 

For this condition, the concentration is in stationary equilibrium. Therefore, the 
model is reduced to 
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For convenience, we transform the model into dimensionless form, as follows. 

Let us take 

 .~,~ arrccc i   (9) 

Eqs. (6)-(8) now become 
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where .,
2

ii c

B

cD

Aa
   

Note that  is the scaled maximal reaction rate constant and   is the scaled 

Michaelis constant. Eq. (10) supplemented by (11) and (12) will be solved, both 

analytically and numerically. Numerical simulations will be carried out in order 
to confirm our analytical results. For the analytical part, we will apply 

asymptotic expansions (see Holmes [8]); for the numeric part, we will use the 

finite difference method (see Matthews [9]). 

3.1 Asymptotic Analysis 

The solution of (10)-(12) is unique and non-negative (see Logan [10]). Here, we 

consider the behavior of the solution for the particular limit of )1(O and

0 . Physically, )1(O may represent the condition where the magnitude 

of the reaction rate is of the same order as the diffusion rate, and 0 may 

represent the condition for which the Michaelis constant is very small compared 
to the oxygen concentration in the tissue region. This is an interesting limit 

because, as we will see, there is a critical value of  , above which a 

deoxygenation region exists. The line to solve the present case is similar to that 
of Mattheij, et al. [11], but applied to a different case and different domain of 

interest. Mattheij, et al. [11] studied a catalytic reaction problem in pellets. The 

equation was written in spherical coordinates for Rr0  with no-flux 

condition at 0r . Here, the equation is derived to describe the diffusion 

process in tissue regions and is presented in cylindrical coordinates, where the 

domain of the problem is 
a

b
r 1 with no-flux condition at 

a

b
r  . 

From boundary condition (11), we observe )1()1( Oc  , at least in the 

neighborhood of 1r . Then, we may estimate )1(Oc  . So, we expand c as  

 )()()();( 2

10  Orcrcrc  . (13) 

Substitution of (13) in (10) yields 
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11 2

0

2

10 






 O

cc

c
Ocr

r
cr

r
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
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
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In (14), the prime denotes the derivative with respect to r . Note that when 

);( rc  is getting closer to zero, i.e. )(Oc , the neglected term (to the first 

order) on the last expression in (14) is larger than the retained term, i.e. for a 
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small 0c  the term 0/c will not be small and will contribute to the first term. 

Thus, expansion (13) is not valid anymore. For that situation we have to do 

more, which will be explained later on. 

To leading order, from (14) we get 

   



0

1
cr

r
, (15) 

and obtain 
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whereK1and K2 are constants to be determined. Applying ,1)1(0 c we find
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If c0 is a valid approximation everywhere, we can directly apply the boundary 

condition   0/0  abc  and obtain 
2

2

1
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 . Thus, (17) becomes 
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From (18), 0c  will be positive if 
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The graph of F(r) is given in Figure 3, for 11
a

b
. The dashed line represents a 

critical value cr =F(b/a)  below which  0c  will be positive. From this figure we 

note that above cr  there will be a point where 0c is zero; this case will be 

considered in the following. 
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Figure 3 Graph of F(r). The dashed line represents critical value 
cr =F(b/a). 

Now, let us consider when );( rc is getting closer to zero, )(0 Oc .  

Suppose 0c  is zero at 1r . Here, 00 c  for
11 rr   and 00 c  for 

a

b
rr 1 . Above 1r , the (negative) solution is certainly not valid. We scale c  

as 1,  ncc n . Then, Eq. (10) becomes: 
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Since 0  and 1n , each term in the following asymptotic expansion 

 10 ,. . .)();( rrrcrc   (21) 

has to be zero. So, the solution for 
a

b
rr 1  is asymptotically equivalent to 

zero. What remains to be determined are the position and neighborhood of the 

transition point 1r . As noted before, this point is still unknown since we do not 

know the constant 1K  yet. Now we shall deal with the interior layer problem, 

that will be worked out by the matched asymptotic expansion technique. Let us 

write the following expression 

 ., 1  mn rrc   (22) 

Substituting (22) into (10), we find 
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Since 0, nm , from the distinguished limit we obtain 1n and 
2

1
m . Thus, 
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Now, we have to apply the matching condition. At the right side of 1r ,   has to 

connect to 0)( rc ,so 0 , if  . At the left side of 1r ,   has to 

connect to )(0 rc , the behavior of which near 1r  (  ) is described by: 
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The )( O -term has to be equal to zero. So, 0)( 10  rc . Physically, this result 

makes sense: if there is no source at the border of the region where the 

concentration vanishes, then the flux there cannot be anything else but zero. 
Hence, we have 
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where 1r  is the root of )(0 rc . 



 An Asymptotic Study of Steady State Model  173   

 

 

Figure 4 1r as a function of  . 

Figure 4 shows the graph of 1r   as a function of  . 

Remarks. Eq. (25) can be rewritten as 
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1rr . This 

shows that to the first order the results are consistent. 

To recapitulate, for 
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and for 
cr  the solution is 
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Next, we will compare our asymptotic solutions with numerical simulations. 
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3.2 Numerical Solution 

We will apply the finite difference method. Interval 








a

b
,1 is divided into n grid, 

with size 
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h
1

 . So we have grid points
a

b
rrr n  ...1 10 , with

jhrj 1 . For simplicity, concentration )( jrc  is denoted by jc . For 

approximation of the 
dr

dc
 and 

2

2

dr

cd
at

jr , we use the Taylor expansion. 

Therefore, the schemes for (10)-(12) are: 
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where
j

j
hrh 2

11
2
  and 

j

j
hrh 2

11
2
 . 

Finally, we use Newton Raphson Method to solve the nonlinear system (27)-

(29). Figures 5 and 6 show the curves of the asymptotic (solid line) and 

numerical solutions (dotted line) for .11/ ab This size ratio is taken from the 

data given by Middleman [1]. For this size ratio we find .009.0cr  

In Figure 5,the solutions are plotted for 1 and for various values of  . We 

observe that the smaller the value of  , the better the approximation; for

001.0  the asymptotic and the numerical solutions hardly differ from that 

of 5.0 .Since 
cr 1  there exists a deoxygenation region. Here, we find 

23.21 r . 

Figure 6 shows the curves of the solutions, for 001.0  and for various values 

of . Both solutions are perfectly in agreement. We also note that the smaller 

the value of  , the narrower the deoxygenation region. 
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Figure 5 Comparison between numerical solution and leading order 

approximation for 1 and for various values of  . 

1 2 3 4 5 6 7 8 9 10 11
-0.5

0

0.5

1

1.5

r

c

lambda=1,alpha=0.5

1 2 3 4 5 6 7 8 9 10 11
-0.5

0

0.5

1

1.5

r

c

lambda=1,alpha=0.1

1 2 3 4 5 6 7 8 9 10 11
-0.5

0

0.5

1

1.5

r

c

lambda=1,alpha=0.01



176 Kartika Yulianti & Agus Y. Gunawan 

 

 

Figure 5 continued. Comparison between numerical solution and leading order 

approximation for 1 and for various values of . 

 

 

Figure 6 Comparison between numerical solution and leading order 

approximation for  = 0.001 and for various values of  .  
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4 Conclusions 

We solved the equation for oxygen distribution in the tissue region for the 

steady state case, analytically and numerically. We studied the case when the 
Michaelis constant is very small compared to the oxygen concentration in the 

tissue region. The bound of the value of  , representing the ratio of the oxygen 

reaction rate in the tissue to the concentration of oxygen in the capillary region, 
was determined. This parameter is important for distributing the oxygen in the 

tissue region; if the availability of oxygen in the tissue region is much larger 

than the oxygen reaction rate, then the concentration of oxygen in the tissue will 
never reach zero; there exists a critical distance above which the region suffers 

from oxygen deficiency. The other way around, when the availability is smaller 

than the oxygen rate, the oxygen concentration only asymptotically tends to 
zero. 
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Nomenclature  

A = Reaction rate constant 
B = Equilibrium rate constant 

a = Inner capillary radius 

b = Outer capillary radius 

c~  = Concentration of oxygen. 

ac  = Concentration of oxygen at 0
~
t . 

ic  = Concentration of oxygen for t
~

 

D  = Diffusion coefficient 

)~(cg  = Oxygen consumption rate 

r~  = Radial position 

t
~

 = Time 
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