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Abstract. We introduce an integral operator on the class A  of analytic 

functions in the unit disk involving k th Hadamard product (convolution) 

corresponding to the differential operator defined recently by Al-Shaqsi and 

Darus. New classes containing this operator are studied. Characterization and 

other properties of these classes are studied. Moreover, subordination and 

superordination results involving this operator are obtained. 
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1 Introduction 

Let H  be the class of functions analytic in the unit disk U  and ],[ naH  be the 

subclass of H  consisting of functions of the form 
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The following differential operator is defined in [1] and studied in [2] 
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Remark 1.1. When 0=1,=   we get S a


l a


gean differential operator [3], 

0=k  gives Ruscheweyh operator [4], 0=  implies Al-Oboudi differential 

operator of order (k) [5] and when 1=  operator (2) reduces to Al-shaqsi and 

Darus differential operator of order (k) [6]. 
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Analogous to Uzzfk ),(,D  we define an integral operator AAJ :,
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kF  be defined such that  
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Remark 1.2. When 0=1,=   we get the integral operator [3], also 0=k  

gives Noor integral operator [7,8]. 

Some of relations for this integral operator are discussed in the next lemma. 

Lemma 1.1. Let .Af  Then  
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In the following definitions, we introduce new classes of analytic functions 

containing the integral operator (3): 

Definition 1.1. Let .)( Azf  Then )()( , 
kzf S  if and only if  
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Definition 1.2. Let .)( Azf  Then )()( , 
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Let F  and G  be analytic functions in the unit disk .U  The function F  is 

esubordinat  to ,G  written ,GF   if G  is univalent, (0)=(0) GF  and 

).()( UGUF   In general, given two functions )(zF  and ),(zG  which are 

analytic in ,U  the function )(zF  is said to be subordination to )(zG  in U  if 

there exists a function ),(zh  analytic in U  with  

 Uzallforzhandh 1|<)(|0=(0)  

such that  

 .))((=)( UzallforzhGzF   

Let CC 2:  and let h  be univalent in .U  If p  is analytic in U  and 

satisfies the differential subordination )())()),(( zhzpzzp   then p  is 

called a solution of the differential subordination. The univalent function q  is 

called a dominant of the solutions of the differential subordination, if .qp   If 

p  and ))()),(( zpzzp   are univalent in U  and satisfy the differential 

superordination ))()),(()( zpzzpzh   then p  is called a solution of the 

differential superordination. An analytic function q  is called subordinant of the 

solution of the differential superordination if .pq   Let   be an analytic 

function in a domain containing ),(Uf  0=(0)  and 0.>(0)  

 The function Af  is called  like if  
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This concept was introduced by Brickman [9] and established that a function 

Af  is univalent if and only if f  is  like for some .  

Definition 1.3. Let   be analytic function in a domain containing 

1=(0)0,=(0)),( Uf  and 0)(    for 0.)(  Uf  Let )(zq  be a 

fixed analytic function in ,U  1.=(0)q  The function Af  is called  like 

with respect to q  if  
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The paper is organized as follows: Section 2 discuses the characterization 

properties for functions belonging to the classes )(),(  kk CS  and Section 3, 

gives the subordination and superordination results involving the integral 

operator ).(, zfk

J  For this purpose we need to the following lemmas in the 

sequel. 
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then  

 )()( zqzp   

and )(zq  is the best dominant. 

Lemma 1.3. [12] Let )(zq  be convex univalent in the unit disk U  and   and 

  be analytic in a domain D  containing ).(Uq  Suppose that 

 1. ))(()( zqzqz   is starlike univalent in ,U  and 

 2. 0>}
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univalent in U  and  
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then )()( zpzq   and )(zq  is the best subordinant. 

2 General Properties of 
k
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 In this section we study the characterization properties for the function 

A)(zf  to belong to the classes )(, 
kS  and )(, 

kC  by obtaining the 

coefficient bounds. 
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kzf S  The result (4) is sharp. 

Proof. Suppose that (4) holds. Since  
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Theorem 2.2. Let .)( Azf  If  
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Corollary 2.3. Let the assumption of Theorem 2.2. Then  
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Also we have the following inclusion results 
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This complete the proof. 

In the same way we can get the following results. 
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Theorem 2.8. Let A)(zf  and satisfies (5). Then for Uz  and 1<0    

 
2

, ||
)2(2

)(1
|||)(| zzzfk









J  

and  

 .||
)2(2

)(1
|||)(| 2

, zzzfk









J  

Also, we have the following distortion results 
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This completes the proof. 

In the same way we can get the following results. 

Theorem 2.10. Let A)(zf  and and satisfies (5). Then for Uz  and 
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3 Sandwich Result.  

 By making use of lemmas 1.2 and 1.3, we prove the following subordination 

and superordination results involving the integral operator (3). 
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Theorem 3.1. Let 0q  be univalent in U  such that 
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and q  is the best dominant. 

Proof. Our aim is to apply Lemma 1.2. Setting  
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Then the relation (7) follows by an application of Lemma 1.2. 

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then the 
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and q  is the best dominant. 

Proof. By letting .:=)(1,=0,=    

Corollary 3.2. If Af  and assume that (7) holds then  



148 Maslina Darus & Rabha W. Ibrahim 

 
))(1(1

)(

)]([

])([

])([

])([
1

,

,

,

,

BzAz

zBA

zf

zfz

zf

zfz
k

k

k

k









 









J

J

J

J
 

implies  

 1<1,
1

1

)]([

])([

,

,





AB

Bz

Az

zf

zfz
k

k






J

J
 

and 
Bz

Az





1

1
 is the best dominant. 

Proof. By setting 0=1,=,:=)(   and 
Bz

Az
zq





1

1
:=)(  where 

1.<1  AB  

Corollary 3.3. If Af  and assume that (7) holds then  

 
2

,

,

,

,

1

2

)]([

])([

])([

])([
1

z

z

zf

zfz

zf

zfz
k

k

k

k









 









J

J

J

J
 

implies  

 ,
1

1

)(

])([

,

,

z

z

zf

zfz
k

k










J

J
 

and 
z

z





1

1
 is the best dominant. 

Proof. By setting 1,=0,=,:=)(   and .
1

1
:=)(

z

z
zq




 

Corollary 3.4. If Af  and assume that (7) holds then  

 Az
zf

zfz

zf

zfz
k

k

k

k


)]([

])([

])([

])([
1

,

,

,

,









J

J

J

J 





  



 Integral Operator Defined by k−th Hadamard Product 149 
 

implies  

 ,
)(

])([

,

, Az

k

k

e
zf

zfz






J

J 
 

and 
Aze  is the best dominant. 

Proof. By setting 1,=0,=,:=)(   and .|<|,:=)( Aezq Az
 

Theorem 3.2. Let 0)( zq  be convex univalent in the unit disk .U  Suppose 

that  

 

Uzfor
zq

zq
zq 


 C







,,0,>}

)(

)(
)({

 (9) 

 and 
)(

)(

zq

zqz 
 is starlike univalent in .U  If Qq

zf

zfz
k

k





(0),1][

)]([

])([

,

,
H

J

J




 where 

,Af   

 }
)]([

)]([

])([

])([1
){(

,

,

,

,

zf

zf

zf

zf

z
z

k

k

k

k








J

J

J

J









  

is univalent is U  and the subordination  

 },
)]([

)]([

])([

])([1
){(

)(

)(
)(

,

,

,

,

zf

zf

zf

zf

z
z

zq

zq
z

k

k

k

k








J

J

J

J












   

holds, then  

 
)]([

])([
)(

,

,

zf

zfz
zq

k

k





J

J






 (10) 
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Proof. Our aim is to apply Lemma 1.3. Setting  
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