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Abstract. Magnetic properties of sediments from two different environmental 

settings in Indonesia have been studied using rock magnetic methods and 

scanning electron microscopy (SEM). In the first setting, magnetic 

measurements were conducted on core sediments from two maar lakes in East 

Java (Lakes Lading and Bedali) that represent very confined environments where 

sediments are derived mainly from rocks and soils within the craters. In the 

second setting, similar measurements were obtained on core sediment from Lake 

Matano, a cryptodepression lake in tectonically active South Sulawesi where the 

area around the lake is dominated by highly magnetic lateritic soils. The results 

show that the predominant magnetic mineralogy in sediments from Lakes 

Lading, Bedali, as well as Matano is pseudo-single domain (PSD) magnetite 

(Fe3O4). Compared to that of Lake Matano, the maar lake sediments of Lakes 

Lading and Bedali have higher magnetic susceptibility as well as high intensity 

of ARM and SIRM. Variations in magnetic susceptibility in all core sediments 

are controlled mainly by the concentration of magnetic minerals. The 

homogeneity of magnetic minerals in these three lakes sediment provides an 

excellent setting for interpreting paleoclimatic signals as they will be recorded as 

anomalies of magnetic susceptibility. 

Keywords: lake sediment; maar lakes; tectonic lakes; magnetic minerals; paleoclimate. 

1 Introduction 

Lake sediments are valuable natural archives of paleoenvironmental 

information, as each layer of the sediment can provide information about the 

environmental conditions at the time of deposition. This information can be 

stored as variations in the composition of pollen, organic matter, as well as 

magnetic minerals in each layer of sediment. Paleolimnological reconstructions 

of environmental change have expanded rapidly in recent years [1]; for instance, 

the history of human activity in Erhai valley, China has been studied through 
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changes in pollen in lake sediment [2]. Correlation between the abundance of 

heavy metals, such as Pb, in sediments of Lake Ziegelsee, Germany, with the 

use of fossil fuels in the region has been demonstrated earlier [3]. Several 

studies also relate compositional changes in lake sediments to paleoclimatic 

variations [4], paleomagnetic field changes [5], as well as paleoecological [6], 

and environmental problems [7]. 

Indonesia has a high potential for paleolimnologic research as it has about 521 

lakes with various origins, ranging from tectonic lakes, volcanic/ caldera lakes, 

maar lakes, to artificial lakes [8]. This variability in lakes in Indonesia is unique 

compared to that of other countries at high latitudes, whose many lakes were 

predominantly formed from glacial erosion or depositional processes [1].         

A number of studies have been carried out in Indonesian lakes, ranging from 

investigations of general chemical and hydrobiological properties of lakes [8], 

to paleoclimatic studies. For examples, the morphometry, limnology, 

hydrology, sedimentology, and lithology of some maar lakes in East Java, 

Indonesia have been studied earlier [9,10]. Lakes in East Java were often 

selected for the study of paleoclimate because this region was the western 

boundary of area affected by the El Niño-Southern Oscillation (ENSO).   

Despite having many lakes, lake-related research in Indonesia is still in its 

infancy. This is particularly true for research related to the magnetic properties 

of lake sediments and their applications. In many environments, the existence of 

magnetic minerals and their abundance in rock and sediment can reflect the 

environmental condition. The use of magnetic measurements (rock magnetic 

methods) in lake sediment studies is promising because they are simple, rapid, 

relatively inexpensive, and nondestructive [11,12] and have been proven to 

provide important paleoenvironmental information [13]. 

In this study, magnetic measurements were carried out on the sediments of maar 

lakes (Lakes Lading and Bedali, East Java) and a tectonic lake (Lake Matano) to 

obtain fundamental rock magnetic parameters, such as magnetic mineralogy, 

concentration, composition, distribution of grain size, and magnetic domain. 

Those measurements were supplemented by microscopic analyses to confirm 

the morphology and composition of extracted magnetic grains. These data allow 

us to determine the main sources of magnetic minerals to these lakes and also 

the predominant processes that might affect these properties. Moreover, we will 

discuss how the magnetic properties of maar lakes and tectonic might serve as 

proxy recorder of paleoclimatic changes.    
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2 Site Descriptions 

Sediment samples in this research were taken at three lakes. The two lakes, 

Lakes Lading and Bedali, are situated southeast of Probolinggo in East Java, 

while Lake Matano is located near Malili in South Sulawesi (Figure 1). Lake 

Lading is located 4.5 km from the Lamongan crater while Lake Bedali is 8.4 

km. The mean diameter of Lake Lading was 210 m while the lakes’ maximum 

depth was 8.6 m depth. The crater’s diameter was about 410 m with a depth to 

surface of the water about 75 m. The age of the lake is estimated to be at least 

some thousand years old [9]. Meanwhile, Lake Bedali has a mean diameter of 

399 m and a maximum depth of 11 m. It has a crater diameter of about 1,060 m 

and a total depth of 162 m. Water level fluctuations are more than 2 m in both 

of these lakes [9]. In general, the Lamongan volcanic rocks are consist mainly 

of lava, ash to lappili tuff, lahars, and volcanic breccias [14,15]. 

 

Figure 1 Map of sampling site in Indonesia showing the location of Lakes 

Lading, Bedali, and Matano. 

Lake Matano is a part of the Malili Lakes System in South Sulawesi, Indonesia. 

This system consist of five lakes, with three larger lakes (Matano-Mahalona-

Towuti) directly connected by rivers and two smaller satellite lakes, Lake 

Lontoa and Lake Masapi, isolated from the main chain of lakes. Matano has a 

surface area of 164 km
2
 with maximum depth of 590 m. It is the deepest lake in 

Southeast Asia and the 8
th
 deepest lake in the world [16] with about 208 m 

existing in a cryptodepression (the deepest part is below sea level) [8]. 
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Geologically, the nearby Matano Fault Zone is still active with tectonic 

movement of approximate 2 cm per year. Lake Matano is considered to be 1–4 

million years old (i.e., formed in the late Pliocene). All Malili lakes are 

surrounded by moderately steep to steep hills rising 200–700 m above the level 

of the lakes. Bathymetrically, Lake Matano resembles a near-to-perfect example 

of a graben lake, with very steep sides along the mid-northern and mid-southern 

sides reaching from an average 15° to 30° resulting in extensive almost vertical 

drop-off zones. Precipitation during the year is intense with almost 3 m of 

rainfall [17]. 

3 Sampling 

The sediment core from Lake Matano was taken in 2007, while the sediment 

cores from Lakes Lading and Bedali were collected in 2008. See Table 1 for 

core information. The samples for this study were prepared by vertically 

extruding the cores in the field in 2 cm intervals for Lake Lading’s core (LLS) 

and Lake Bedali’s core (LBS) and in 1 cm intervals on Lake Matano’s core 

(LMS). Extruded samples were sealed into polyethylene bags for transport to 

Institut Teknologi Bandung. In the laboratory, a sub-sample of each slice was 

packed into a standard oriented 10 ml cylindrical plastic holder. The sliced 

samples and the samples in plastic holders were stored in the refrigerator at a 

temperature of 4C. 

4 Methods 

In this study, all samples were initially measured for the mass-specific magnetic 

susceptibility () of the whole collection at two different frequencies, 0.47 kHz 

for low frequency magnetic susceptibility (LF) and 4.7 kHz for high frequency 

magnetic susceptibility (HF).  Analyses were conducted with a Bartington MS2 

susceptibility meter with MS2B dual frequency sensor. Each sample was 

measured five times to get the average value, with an air reading before and 

after each series for correction of drift. Percentage ratio of LF - HF to LF gives 

the frequency-dependent susceptibility (FD). This parameter can be used to 

detect superparamagnetic grains.  

Anhysteretic remanent magnetization (ARM) on selected samples was acquired 

by exposing the samples to a peak alternating magnetic field of 80 mT with a 

constant field of 0.05 mT. ARM measurement started with sample 

demagnetization using an AF (alternating field) demagnetizer, then the ARM 

intensity was measured using a spinner magnetometer. The susceptibility of 

ARM (ARM) was determined by dividing the ARM intensity by the size of the 

steady biasing field.  
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The acquisition of Isothermal Remanent Magnetization (IRM) was done by 

placing the selected samples in increasing magnetic fields of 100 mT, 300 mT, 

and 2.5 T using a pulse magnetizer 2G model 660. The IRM acquired at 2.5 T is 

referred to as the saturation isothermal remanent magnetization (SIRM). The 

IRM intensity was then measured using a spinner magnetometer.  

To better constrain magnetic mineralogy and grain characteristics, selected 

samples were examined using a Scanning Electron Microscope (SEM) equipped 

with Backscattering Electron (BSE) mode to visually analyze iron-oxide grains 

as well as Energy Dispersive X-Ray (EDX) analysis to obtain their chemical 

composition. SEM measurements were carried out using Jeol JSM-6360LA at 

the Laboratory of Quaternary Geology of the Center for Geological Survey in 

Bandung. The SEM samples were magnetic grains extracted from representative 

samples from the upper section and the lower section of the cores from Lakes 

Bedali and Matano. The grains were extracted by mixing 5 grams of lake 

sediment with 200 ml of ethanol, then extracting the grains using a hand 

magnet. This process was repeated numerous times to ensure that the extracted 

grains are magnetic. 

5 Results and Discussion 

5.1 Variations of Magnetic Mineral Properties along the Cores 

Figure 2 shows the profile of magnetic susceptibility in low frequency (LF), 

ARM, and SIRM along the sediment core of Lakes Lading (LLS), Bedali 

(LBS), and Matano (LMS). The LF, ARM, and SIRM share a similar pattern. 

The values of LF on LLS increase from 112.8 to 309.0 × 10
-8

 m
3
kg

-1
 with 

increasing depth in the sediment, with peaks at 12 cm and 30 cm depth. The 

ARM and SIRM (IRM on 2.5 Tesla) range from 79.38 to 121.81 × 10
-6

 Am
2
kg

-1
 

and 13.67 to 20.75 × 10
-3

 Am
2
kg

-1
, respectively, and show more subtle increases 

with depth with peaks in both ARM and SIRM at 12 cm depth. 

The LF profile from LBS can be divided into two magnetically distinct zones. 

The upper sections of the sediment core, from the surface to 18 cm depth, are 

characterized by increasing LF, while the lower section from 18 to 30 cm has a 

relative steady value. LF values in LBS range from 80 to 223.7 × 10
-8

 m
3
kg

-1
. 

ARM intensity range between 46.54 and 132.04 × 10
-6

Am
2
kg

-1
 and also shows 

generally increasing values with depth, while SIRM ranges from 6.57 to 20.06 × 

10
-3

 Am
2
kg

-1
 and increases strongly with depth. 

Similar to LBS, the LMS profile of LF also show two magnetically distinct 

zones with low LF values of 78.8 × 10
-8

 m
3
kg

-1
 at the surface rising to 247.1 × 
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10
-8

 m
3
kg

-1 
toward the base of the core. Small declines in susceptibility were 

recorded at 22 cm, 27 cm, and 52 cm depth. The ARM as well as SIRM also has 

a similar profile to LF, although the down-core increases are smaller. The ARM 

intensity varies from 50.75 to 87.81 × 10
-6

 Am
2
kg

-1
 while SIRM varies from 

4.65 to 9.52 × 10
-3

 Am
2
kg

-1
. 

 

Figure 2 Variation of LF, ARM, and SIRM versus depth for cores from Lakes 

Lading, Bedali, and Matano.  

Isothermal remanent magnetization (IRM) measured on selected samples at 100 

mT, 300 mT, and 2500 mT also shows interesting variations. The ratio of 

IRM300mT to IRM2500mT (SIRM), termed the S-ratio [18], can be used to infer the 

dominant magnetic mineral present and, in particular, to distinguish between 

magnetite and hematite. This differentiation is possible because the 

ferrimagnetic mineral (i.e. magnetite) will saturate at a lower field (around 300 

mT) than the canted antiferromagnetic mineral (i.e. hematite). In our samples, 

the S-ratio of LLS, LBS, as well as LMS was more than 95%, indicating a 

dominant mineralogy of magnetite throughout the sediments (Figure 3). 
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The level of magnetic stability associated with magnetic domains can be 

approximated by an ARM acquisition curve or ARM intensity decay curve. 

Figure 4 shows the ARM intensity decay curves for sediments from all cores 

(LLS, LBS, and LMS). The normalized ARM decay curves for the three cores 

are very similar, suggesting similar domain state. The prediction of the domain 

state could also be inferred from the values of the median destructive field 

(MDF) in the normalized ARM decay curves, where MDF is the value of 

demagnetizing field needed to reduce the initial ARM by half.  In this study, we 

estimated the MDF value by determining a sixth order polynomial equation for 

the ARM decay curve and solving for the MDF. The MDF for the 

representative LLS sample is 21.76 mT, while that for LBS and LMS are 

respectively 20.21 mT and 22.64 mT, indicating broadly similar magnetic 

stabilities. 

 

Figure 3 Scattergram of S-ratio showing that magnetite is the predominant 

magnetic mineral in LLS, LBS and LMS. 

Plots of FD values for each lake are given in Figure 5. Variations in FD in LLS 

are within the range of 3.1 to 4.7%, while the range for LBS and LMS are 4.3 to 

7.5% and 6.8 to 9.2%, respectively. In general, the LMS has a relatively higher 

value of FD, followed by LBS, while that of LLS is the smaller of the cores.  

The mean value of FD at LBS is 5.47%, significantly higher than that of a soil 

sample (STB-1) taken near the lake, with FD of only 1.38%. Meanwhile, the 

mean value of FD at LMS (8.09%) is very similar to that of the nearby soil 
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(7.12% for soil sample STM-2 and 9.63 for soil sample STM-1). The mean 

values of SIRM, ARM, and FD in this study are given in Table 1. 

 

Figure 4 ARM decay curves for cores of LLS, LBS, and LMS. 

 

Figure 5 The scattergram of χFD -vs- χLF showing that different clusters for 

sediment and soil samples. 
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Table 1 Core Information and Selected Magnetic Parameters. 

Sites Position 

Water  

Depth 

(m) 

Length of 

Core 

(cm) 

Mean ARM 

(10-3Am2kg-1) 

Mean SIRM 

(10-3Am2kg-1) 
Mean FD 

(%) 

Lading S 8 deg 2.514' 

E 113 deg 18.751' 
8.6 36 101.38 17.67  4.17 

Bedali S 7 deg 57.047' 

 E 113 deg 16.242' 
10.3 30 100.16 15.21 5.47 

Matano S 2 deg 31.478' 
E 121 deg 24.853' 

500.0 53 74.17 7.84 8.09 

5.2 Survey by Scanning Electron Microscopy 

Additional information about magnetic mineralogy and grain size were obtained 

from scanning electron microscopy (SEM) analyses of selected samples. There 

are four investigated samples: two from Lakes Bedali and another two from 

Lake Matano. The two samples from Bedali represent the upper section (8-10 

cm) and the lower section (24-26 cm) of the core sediments. Similarly, the 

samples from Lake Matano also represent the upper section (10-12 cm) and the 

lower section (46-48 cm) of the core sediments. SEM images of these selected 

samples are shown in Figures 6. 

 

Figure 6 Typical magnetic mineral grains from Lake Bedali (a & b) and Lake 

Matano (c & d). (a) Detrital magnetic grains with sharp edges, originated from 

weathered igneous rocks in the volcanic area. (b) Octahedral magnetite with 

cracks in all parts of the surface (c) BSE image showing the domination of 

rounded grains; brighter grains indicate higher Fe content (d) A grain with quite 

significant concentrations of FeO and Chromite (Cr2O3). 



40 Gerald Tamuntuan, et al.  
 

In almost all samples, the morphology of magnetic grains is predominantly 

tetrahedral dipyramids or octahedral crystals, which has been recognized as 

titanomagnetite [19], or magnetite [20].  EDX analyses of selected magnetic 

grain show high content of FeO and small but variable concentrations of TiO, 

suggesting largely magnetite or Ti-poor titanomagnetite (Figure 7). The results 

show that some of the magnetic mineral grains are partially clay-coated, as 

indicated by the presence of Al, Si, Mg, and other elements in or on the 

magnetic grains.  

 

Figure 7 EDX analyses of selected magnetic grain on Lake Matano show high 

content of FeO and small concentrations of TiO, suggesting largely magnetite or 

Ti-poor titanomagnetite. 

In upper section of core sediment of Lake Bedali, the magnetic grains have 

sharp edges indicating short pathways of transport, compatible with the small 

crater rim of this lake. These grains are very likely to be magnetite or Ti-poor 

titanomagnetite that originated from detrital particles around the crater. Similar 

to the upper section, the lower section of core sediment of Lake Bedali is also 

dominated by magnetite grains. However, the magnetic grains seem to be 
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cracked or even destroyed in certain parts. In this section, a pure carbon particle 

(C 100%) that almost certainly charred terrestrial material (i.e. charcoal) was 

also identified. 

The morphology of magnetic minerals from the upper section of Lake Matano is 

dominated by grains with rounded edges, indicating fluvial transport, but 

similar to Lake Bedali, octahedral crystals were also found quite a lot in this 

sequence. Based on EDX analysis, most of the magnetic grains in the lower 

section have high FeO content and low TiO content. In the lower section, a 

grain with quite significant concentrations of Chromite (Cr2O3) was also 

identified. This corresponds to the soils around Lake Matano that contain quite 

a lot of Cr. On the hand, the presences of Cr in lake sediment mineral could also 

possibly occur from authigenic or endogenic processes [21].  

5.3 Discussion 

Rock magnetic investigations of Indonesian lakes sediment using the S-ratio 

demonstrates that the mineralogy of sediment from Lakes Lading, Bedali, and 

Matano is relatively dominated by similar magnetic minerals, i.e., magnetite 

(Fe3O4). This finding is confirmed by the range of LF values of whole samples. 

The LF values of more than 10 x 10
-8

 m
3
 kg

-1
 indicate the predominance of 

ferrimagnetic minerals [22]. LF values of our measured sediment equal or 

greatly exceed these, indicating that the magnetic properties of these lakes’ 

sediments are dominated by ferrimagnetic minerals such as magnetite or 

maghemite. This interpretation is also in accord with SEM observations and 

EDX analyses showing the abundance of octahedral grains enriched in FeO.  

However, the results of EDX analysis on the selected magnetic grains also 

showed that magnetite in the maar lake (Lake Bedali) tend to contain Ti while 

in Matano grains are almost free of Ti. This suggests that the magnetic minerals 

in Lake Bedali originate primarily from detrital titanomagnetite derived from 

the catchment area (surrounding crater), which is dominated by volcanic rock 

and tephra. The morphology of the grains confirms their transport pathway, in 

that the grains with sharp edges from Lake Bedali indicate the short transport 

distance from their source while the rounded grains on Lake Matano indicate 

longer alluvial transport pathway in this much larger lake and catchment area. 

To estimate the magnetic grain size for grain size distributions dominated by 

magnetite, a scatter plot of volume specific ARM susceptibility versus low 

frequency susceptibility, often referred to informally as King’s plot [11], 

estimates a grain size distribution of the mineral within the sediments [23]. The 

King’s plot of LLS, LBS, and LMS is shown in Figure 8. Changes in slope in 

this plot indicate changes in magnetic grain size, while changes along a line of 
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constant slope indicate changes in the concentration of magnetic minerals. It 

seems that the magnetic grains in all cores show small variations in grain-size, 

ranging from around 1 m to about 5 m. The graph also shows that magnetic 

grains from LMS are larger than that from LLS, and the grains from LLS are 

larger than that from LBS. 

 

Figure 8 Estimation of magnetite grains size using King’s plot ( : LLS, O: 

LBS, : LMS). 

In contrast, the mean value of FD shows that magnetic grains from Lake 

Matano also have higher superparamagnetic (SP) content compared to Lakes 

Lading and Bedali. The value of FD of 2% to 10% shows that the magnetic 

mineral grains are a mixture between the fine, SP grains and coarser grains [22]. 

The similar value of FD in sediment of Lake Matano and in adjacent soils 

(STM-1, STM-2) suggests that the SP grains in this lake originated from soils 

around the lake (Figure 5). Furthermore, FD can also reflect the SP mineral 

grain size. Assuming, based on our results, that the dominant magnetic mineral 

is magnetite, the SP grain size can be estimated at 0.025 – 0.035 m [22, 23]. 

The value of 7.5% < FD < 9.2 can also be associated with very-fine grain 

particles, 0.0125 – 0.015 m.  
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As the predominant magnetic mineral is magnetite, the magnetic domain can be 

inferred from a plot developed earlier [24]. Based on the MDF value for each 

lakes’ sediments, it is clear that the magnetic domain of these grains is pseudo-

single domain (PSD). Magnetic domain can also be identified based on the 

grain size distribution, because domain state depends on magnetic mineral grain 

size. The size distribution of magnetite grains shown in Figure 7 can be 

classified as PSD [13], confirming the results of our MDF analysis.  

Conversely, the MDF value can be used to estimate the magnetite grain size. As 

the effects of AF demagnetization for ARM play a similar role to effect of 

temperature for TRM [24], we can use ARM as an analogue to TRM. Based on 

the ARM decay curves (Figure 4), the value of MDF of LLS, LBS, and LMS is 

associated with grain size around to 1 m. This result in agreement with the 

results obtained using the King plot.  

Based on evidence that there are no major variations in either magnetic 

mineralogy or grain size, it is very likely that the susceptibility variations in 

Lakes Lading, Bedali, and Matano are basically controlled by concentration or 

abundance of magnetic minerals. This is also supported by a good correlation 

between the concentration dependent parameters such as LF, ARM, and SIRM. 

This correlation is expected in samples with high concentration of 

ferrimagnetic. While increasing values of magnetic susceptibility with depth in 

the upper sections of the sediments in each lake, followed by a rather stable 

value at greater depth, suggests that the variation of magnetic susceptibility in 

surficial sediments in each core is related to sediment compaction, smaller scale 

variations as well as variations in deeper sediment cores could be interpreted to 

reflect environmental changes. 

The SIRM value can also be used as an estimate of the concentration of 

magnetic minerals in the sample [18]. Higher intensity of SIRM means higher 

concentration of magnetic minerals, and vice versa. SIRM values are correlated 

well with LF, and indicate that the concentration of magnetic minerals in maar 

lakes (Lakes Bedali and Lading) is generally higher than in the tectonic lake 

(Lake Matano).  

Homogeneity of magnetic minerals in the three sites could support the 

utilization of rock magnetic parameters as proxy indicators of paleoclimate. 

Thus, below the zone of sediment compaction, paleoclimatic variation should be 

reflected by the variation of magnetic mineral abundance in these lakes’ 

sediments. Magnetic susceptibility could be used as the easiest, cheapest, and 

most non-destructive methods for this purpose. The process of erosion usually 

occurs in the rainy season, producing more eroded materials that are transported 

to the lakes [11]. Thus a period with predominantly longer rainy seasons will 



44 Gerald Tamuntuan, et al.  
 

have higher susceptibility values compared to a period of prolonged drought. 

For the existing cores, due to the effects of compaction possible climatic 

variations could be distinguished only as small peaks at depth of 12 cm and 30 

cm at Lake Lading. It has been shown that variations in magnetic susceptibility 

in the maar lake Klindungan in Eastern Java correspond to the SOI (Southern 

Oscillation Index) [25], with higher susceptibility during wet, La Niña years. 

Therefore, the peaks on magnetic susceptibility profile of Lake Lading might be 

associated to climatic event during period of higher erosion on the catchments 

area or longer rainy season. More broadly, our findings confirm the process 

underlying this correlation, and show that these magnetic tools should be more 

broadly applicable to lake sediments in other maars and in large tectonic basins.  

Assuming that the peaks in magnetic susceptibility in Lake Lading represent 

precipitation anomalies, it is curious that these events did not cause magnetic 

susceptibility changes in Lake Bedali sediments, as the two lakes are located 

quite close to each other. However, radiocarbon dating of sediment cores from 

Lakes Lading and Bedali have shown that sediments accumulate nearly 5 times 

more quickly in Lake Bedali than in Lake Lading [26].  It seems likely that our 

cores from Lake Bedali do not extend back far enough in time to record the 

precipitation changes indicated by the susceptibility variations in Lading.  

On the other hand, there are several limitations to deriving clear interpretations 

about climatic events on these sites. Firstly, the sediments in these lakes are 

very magnetic. Any climatic signals could therefore be masked by the high 

background concentrations of magnetic signals. More detailed magnetic studies 

are required to delineate the climatic influences on magnetic signals from the 

natural ones. Secondly, the sediment cores examined in this study are relatively 

short (36 cm for Lake Lading, 30 cm for Lake Bedali, and 53 cm for Lake 

Matano), so the amplitude of climatic events recorded by these cores is small 

relative to the long-term climate changes in the region. Thirdly, there is a need 

to determine the absolute ages of these cores so that the presence or the absence 

of climatic events could be verified.  Lastly, although there are no clear ash 

layers in these sediment cores, inputs of volcanic ash from air fall could 

increase sediment magnetic susceptibility and mimic the signals of positive 

rainfall events. Future work will address these issues through sediment dating, 

analysis of the magnetic properties of ash, and analysis of longer cores. 

6 Conclusion  

After magnetic measurement and analyses of sediment cores from Lakes 

Lading, Bedali, and Matano, complimented by SEM survey, the following 

conclusions can be drawn: 
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The predominant magnetic mineral in sediment from Lakes Lading, Bedali, and 

Matano is pseudo-single domain magnetite (Fe3O4). EDX analysis on selected 

grains shows that generally the magnetite both from maar lakes and from 

tectonic lakes has little TiO, although titanomagnetite is more abundant in Lake 

Bedali than Matano. 

The main source of magnetic minerals to Lakes Lading, Bedali, and Matano is 

erosion of rocks and soils around the lakes. This is shown by the shape of 

magnetic grains, the similarity of FD value between the sediment and adjacent 

soils of Lake Matano, and the correspondence between grain shape and length 

of transport path (euhedral in Lake Bedali, rounded grains in Lake Matano) in 

these lakes. 

The sediment from maar lakes is more magnetic than the sediment from the 

tectonic lake. The values of magnetic susceptibility and artificial magnetic 

remanence on sediment of Lakes Lading and Bedali are relatively higher than 

that of Lake Matano. This likely reflects the proximity of these lakes to sources 

of highly magnetic volcanic rock and tephra relative to Matano. 

Variations of susceptibility in Lakes Lading, Bedali, and Matano are controlled 

by the concentration of magnetic minerals. The magnetic susceptibility profile 

on Lakes Bedali and Matano shows an increasing trend with depth in the upper 

section and a rather stable in the lower sections, suggesting the accumulation of 

magnetic minerals during sediment compaction. 

Climatic events should be recorded as variation in magnetic susceptibility 

values in these lakes’ sediment. The magnetic susceptibility peaks in the profile 

from Lake Lading probably correspond to climatic events, such as prolonged 

rain seasons, that cause higher erosion in the catchments area. 

The magnetic properties, especially magnetic susceptibility, of sediments from 

Lakes Lading, Bedali, and Matano can be used as proxy recorders of 

paleoclimate. Homogeneity of magnetic minerals in the three lakes sediment 

would allow that the paleoclimate proxy be based on variation of their magnetic 

susceptibility.  
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