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Abstract. In this paper we discuss a mathematical model for the transmission of 

Lymphatic Filariasis disease in Jati Sampurna, West Java Indonesia. The model 

assumes that acute infected humans are infectious and treatment is given to a 

certain number of acute infected humans found from screening process. The 

treated acute individuals are assumed to be remain susceptible to the disease. The 

model is analyzed and it is found a condition for the existence and stability of the 

endemic equilibrium. A well known rule of thumb in epidemiological model, 

that is, the endemic equilibrium exists and stable if the basic reproduction 

number is greater than one, is shown. Moreover, it is also shown that if the level 

of screening n  is sufficiently large, current medical treatment strategy will be 

able to reduce the long-term level of incidences. However, in practice it is not 

realistic and cannot eliminate the disease, in terms of reducing the basic 

reproduction number. The reproduction number can be reduced by giving 

additional treatments, such as reducing the biting rate and mosquito's density. 

This suggests that there should be a combination of treatment to eliminate the 

disease.  
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1 Introduction 

Elephantiasis, which is often known as lymphatic filariasis, is regarded as a 

parasitic dangerous disease. It may cause a chronic morbidity if the persons who 

are infected are left untreated. Even successful treatment may still left the 

persons in a cripple condition for life that makes psychological and economical 

burden, both for them and for the society in general. The disease is 

characterized by the thickening of the skin and underlying tissues. Most of the 

cases are in the legs and genital areas, as results from the damages of the 

lymphatic vessels. The disease is mainly caused by  Wuchereria bancrofti 

parasites and transmitted by  Culex spp. mosquitoes. 
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Due to the widespread of the incidences, especially in many tropical countries, a 

global program to eliminate lymphatic filariasis was initiated in 1998 to target 

the worldwide elimination of this parasitic disease [1]. Among the strategies are 

transmission interruption and morbidity management. Transmission interruption 

was done by treating infected population with anti-filarial drugs. Morbidity 

management was done to reduce the suffering of patients who have acute and 

chronic manifestations. In 2004 alone there were more than thirty countries 

have started elimination program and this number is still escalating [2]. 

Various degrees of success have emerged as a result of the implementation of 

this program. Although it was reported that in some places the program has 

interrupted the transmission, but in many other places the program could not 

stop the transmission of the disease [2]. It has been argued that strategic choices 

and operational or biological factors contribute to the success or failure of the 

program [2]. However, sometimes it is difficult to evaluate the success or the 

failure of a health program, especially in the beginning of the program. 

Since in many cases a mathematical model has provided useful tools for 

planning and evaluation of control program in disease elimination [3], in this 

paper we discuss, via mathematical modeling, a program set up by the 

Indonesian government in the effort to eliminate the disease. We use a set of 

equations as a model of the disease transmission and analyze the model to help 

us to explore and understand the complex transmission dynamics of this 

parasitic disease, from which some insight and interpretation could be derived. 

The model discussed here is developed from a local context by looking at 

current filariasis treatment in Jati Sampurna Bekasi, West Java. 

In general, mathematical models for the transmission of disease caused by 

parasites, such as filariasis, at least fall into two different categories. In the first 

category are those that deal with only the process of infection, in the sense of 

the presence and absence of the disease in the host caused by the parasites. 

While in the second category, are those deal not merely in the presence and 

absence of parasites, but also with the count of the parasistes burden in an 

individual host. Among the example in the first category is [4]. While [5] and 

[6] are examples of the second category for general parasite infections, and [7] 

and [8,9] are examples for the case of filariasis infection. Since filariasis is 

transmitted via mosquitoes, [10,11] also modeled the filariae count in the 

vector. The author in [12] discussed different categorization. 

Although mathematical models for the transmission and controlling filariasis 

are abundance, however, there is no model related to the current treatment of 

filariasis in Jatisampurna, Indonesia. In this paper we explore the effectiveness 

of this filariasis treatment by developing a model that considers a host-vector 
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transmission. Although parasite burden is important, especially in determining 

the degree of infection, for our study we limit to the presence and absence of 

infection in host and vector individuals. We follow a standar SI model both for 

the host and the vector with and addition of treatment. We show that although 

current treatment can reduce the number of filarial prevalence, but in the long 

run it will not able to eliminate the disease completely, unless different strategy 

is used. This is partially due to the fact that host individuals successfully treated 

may still reinfected. 

The incidence of filariasis in Jati Sampurna is regarded as the highest in 

Indonesia [13]. For this reason, the Indonesian Government has set up an 

intensive program to eliminate the disease in that region. The current practice of 

the treatment in the region can be described briefly as follow. For every new 

single chronic found, a health worker undertakes screening to test n number of 

nearby individuals. If an infected individual is found in this screening test, 

treatment is given to this individual [14]. This strategy implicitly based on an 

assumption that the chronic is no longer infectious, for example due to isolation 

from the rest of the population. We devise a mathematical model to investigate 

the long-run effects of this existing strategy in the transmission of the disease. 

2 Mathematical Model 

To formulate the mathematical model we use assumptions that initially the 

human population is virgin, the total population of human is constant, there is 

only one species of worm and one species of mosquito, and there is no vertical 

transmission of the disease. The human population is divided into three sub-

populations, susceptible 
hS , infected-carrier A  and infected-chronic K  

populations, with total number 
hN . The mosquitoes is divided in two 

subpopulation, susceptible 
VS  and infected 

VI  mosquitoes, with total number 

VN . Related parameters in the model are the human recruitment rate 
hR , 

human death rate 
h , successful rate of transmission from mosquitoes to 

susceptible human 
hp , mosquitoes biting rate on human b , symptomatic rate 

 , mosquitoes recruitment rate 
VR , mosquitoes death rate 

V  and successful 

rate of filaria transmission from human to susceptible mosquitos 
Vp . If the 

medical treatment is quantified by the number of people screened by the health 

authority n , with the probability of successful treatment 
0p , then the 

governing differential equations as the mathematical model of the disease 

transmission are 
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The next sections discuss the endemic and non-endemic steady states of the 

model related to the basic reproduction ratio to evaluate the effectiveness of the 

medical treatment n  of the current policy in managing the disease. 

3 Endemic and Non-endemic Steady States 

To analyze the model we assume that the host and vector populations are 

constant, so that = h
h

h

R
N


 and = v

v

v

R
N


. We will derive the basic reproduction 

number via the next generation matrix [15]. We will show that the existence and 

the stability of the endemic equilibrium depend on the basic reproduction 

number 
0R . We will also show that the number of acute population is inversely 

proportional to the level of screening n . 

In the steady state condition, the densities of the vector are given by  
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Substituting these vector densities into (1)-(2) yields a reduced form of the 

transmission model  
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 is a nonlinear incidence rate satisfying  
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The basic reproduction number can be obtained using the next generation 

matrix from the reduced model, equations (8)-(10), with the resulting expression 

given by  
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It is worth to note that the basic reproduction number does not depend on the 

level of screening n , and hence, current method of treatment does not 

annihilate the endemicity of the disease. This is partially because of the re-

susceptibility of the treated population. However, we will show that it indeed 

reduces the number of the acute population in the long-term. 

From equation (9), the non-trivial steady state acute population satisfies  

 2

1 2 3 = 0c A c A c  , (16) 

where 

2
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2
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2 2 2 2
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while from equation (8), the susceptible population satisfies  
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Substituting the last equation into (16) gives  
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We see from the last equation that A  exists if and only if < 0 , or 

equivalently, >1R , where 
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Note that 
2

0=R R . Hence, we conclude that the non-trivial equilibrium acute 

population exists if and only if the basic reproduction number 
0R  is greater 

than one. Furthermore we note that equation (18) is equivalent to 
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This implies that the long-term acute population density 
*A  decreases 

whenever n  increases. 

To analyze the stability of the endemic-free steady state 

* *
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h

h

R
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 and the endemic steady state * *

2 1 1= ( , )hE S A  we 

proceed by proving the following Lemmas. 
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Proof. Note that there is a relationship between the incidence rate (11) and the 

basic reproduction number (15) in the form 
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Lemma 2 At the endemic equilibrium state * *
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Proof. We observe, from (9), that the endemic equilibrium state satisfies  
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Define the following function,  
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By considering (12), the mean value theorem guarantees that there is a point 
*
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This contradicts (14), and hence 
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Using Lemma 1 it is easy to prove that the endemic-free equilibrium is locally 

asymptotically stable if 
0 <1R . A similar result for the endemic equilibrium is 

summarized in the following theorem. 

Theorem 1 If 
0 >1R  then the endemic equilibrium of the system is locally 

asymptotically stable, otherwise it is unstable.   

Proof. The Jacobian matrix of the system is given by 
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in which 
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From Lemma 2 we have 
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This proves the theorem.  

4 Numerical Simulation 

To illustrate the results presented in the previous sections, we give a numerical 

example representing the case in Jati Sampurna (West Java Indonesia) and use 

the parameters: = 0.001hp , 
1

=
65

h  per year, =12.67v  per year, = 0.001vp , 

0 = 0.9p  per year, = 243b  per capita, = 0.2  per year. We assume that there is 

one acute individual in a nearly virgin population. There is no chronic 

individual and no infected mosquito initially.  

The upper part of Figure 1 shows that if there is no medical treatment, = 0n , 

the peaks for the acute and chronic populations are at the level of 7,432 and 

13,275 individuals, respectively. These peaks are attained 14.6 and 30.3 years 

after the introduction of the first human infection, respectively. In the long-term 

the equilibrium levels for the acute and chronic populations are 906 and 11,784, 

which shows a severe endemicity of the disease. The lower part of Figure 1 

shows that if there is a medical treatment with = 100n , the peaks for the acute 

and chronic populations are much lower than that for = 0n  in Figure 1. In the 

long-term the equilibrium levels for the acute and chronic populations also 

decrease, which shows that the level of the endemicity of the disease reduces.  
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Figure 1 The upper figure shows that if there is no medical treatment, = 0n , 

the peaks for the acute and chronic populations are at the level of 7,432 and 

13,275 individuals, respectively. These peaks are attained 14.6 and 30.3 years 

after the introduction of the first human infection,respectively. In the long-term 

the equilibrium levels for the acute and chronic populations are 906 and 11,784, 

which shows a severe endemicity of the disease. The lower figure shows that if 

there is a medical treatment with = 100n , the peaks for the acute and chronic 

populations are lower than that for = 0n  in the left figure. In the long-term the 

equilibrium levels for the acute and chronic populations also decrease, which 

shows that the level of the endemicity of the disease reduces.  
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Figure 2 The figure show the reduction of the endemicity of the Acute (upper) 

and chronic (lower) infected human populations as the level of screening n  

varies.  

Figures 2 shows the reduction of the endemicity as the level of screening n  

varies. The last figure (Figure 3) shows the reduction of 
0R  as the biting rate, 

vector density, and the ratio of vector and human densities reduce to a certain 

percentage of existing level. This figure helps to identify the effort needed to 

reduce the basic reproduction number in order to prevent the transmission of the 
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disease. It shows that reducing the biting rate is more effective than reducing the 

vector density. This easy to understand since the biting rate term appears as a 

quadratic form in the 
0R  expression. For example, reducing the biting rate to 

40 %  from existing level will result in the reduction of 
0R  from nearly 5.5 to 

just above 3, while reducing the vector density to 40 %  from existing level will 

only result in the reduction of 
0R  to approximately 4. 

 
 

Figure 3 The reduction of 
0R  as the biting rate (dots) and vector density (solid) 

reduce to a certain percentage of existing level. For example, reducing the biting 

rate to 40 %  from existing level will result in the reduction of 
0R  from nearly 

5.5 to approximately just above 3. The curve of vector density reduction (
VR ) 

coincides with the curve of vector per human index reduction ( /V HR R ).  
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