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ABSTRACT

Upper Bounds on Minimum Distance of Nonbinary Quantum Stabilizer Codes.

(August 2004)

Santosh Kumar, B.E., Mumbai University, India

Chair of Advisory Committee: Dr. Andreas Klappenecker

The most popular class of quantum error correcting codes is stabilizer codes.

Binary quantum stabilizer codes have been well studied, and Calderbank, Rains, Shor

and Sloane (July 1998) have constructed a table of upper bounds on the minimum

distance of these codes using linear programming methods. However, not much is

known in the case of nonbinary stabilizer codes. In this thesis, we establish a bridge

between self-orthogonal classical codes over the finite field containing q2 elements and

quantum codes, extending and unifying previous work by Matsumoto and Uyematsu

(2000), Ashikhmin and Knill (November 2001), Kim and Walker (2004). We con-

struct a table of upper bounds on the minimum distance of the stabilizer codes using

linear programming methods that are tighter than currently known bounds. Finally,

we derive code construction techniques that will help us find new codes from exist-

ing ones. All these results help us to gain a better understanding of the theory of

nonbinary stabilizer codes.
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CHAPTER I

INTRODUCTION

A. Quantum Computation and Information

Quantum computing has emerged as a new computing paradigm in the last decade.

Using the principles of quantum mechanics, computations can be performed simulta-

neously, rather than separately, as on traditional classical systems. It is conjectured

that this property of quantum parallelism helps to achieve an exponential speedup

in certain quantum algorithms over their classical counterparts. Shor’s factorization

algorithm [1] supports this conjecture. This algorithm could have applications in

breaking the RSA public key exchange algorithm, which is based on the difficulty in

factoring large numbers.

While the unit of computation in classical computers is a bit, the unit of compu-

tation in quantum computers is a qubit, which is a nonzero vector in the 2-dimensional

vector space of complex numbers, C2. We denote the standard basis of C2 by

{|0〉, |1〉}. Any arbitrary state |ψ〉 in C2 can be expressed as a linear combination of

the basis states |0〉, |1〉 as given below:

|ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are complex numbers that are usually assumed to be normalized to

unit norm, i.e., |α|2 + |β|2 = 1. In vector notation, |ψ〉 can be represented as

|ψ〉 =

 α

β

 . (1.2)

The journal model is IEEE Transactions on Automatic Control.
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Analogous to the classical case, quantum computers have gates or operators

acting on the qubits. Quantum circuits are comprised of quantum gates acting on

the qubits in a logical fashion. An operator acting on a single qubit system is a unitary

2 × 2 matrix containing complex values. The above concepts can be generalized to

q-ary systems in which the unit of computation is a qudit, which is a vector over

Cq. Also, operators acting on q-ary systems are q × q matrices containing complex

values. Later, we will derive a basis for the set of q×q matrices. For a more complete

exposition of the fundamentals of quantum computing, see [2].

In spite of quantum computation holding much promise, its practical realization

has been hampered by the lack of good quantum error-correcting-codes. Errors in

quantum computation occur due to decoherence, i.e., noise resulting from the in-

teraction of the quantum computer with the environment. Also, quantum gates (in

contrast to classical gates) are unitary transformations chosen from a continuum of

possible values and, hence, are more susceptible to errors than their classical coun-

terparts. Classical error correction works on the principle of duplicating information.

However, because an arbitrary quantum state cannot be cloned, see [2, page 532], the

same technique cannot be applied to quantum error correction. Also, while classical

error correction needs to guard against bit flip errors, quantum error correction needs

to protect against both bit flip and phase flip errors.

The first breakthrough in the field of quantum-error-correction came when Shor

showed that quantum error correcting codes do exist [3]. He did this by constructing

a quantum error correcting code that encodes 1 logical qubit into 9 qubits and allows

for correction of one error. Thereafter, Gottesman [4] and Calderbank, Rains, Shor

and Sloane [5] developed a special class of quantum-error-correcting codes, the so-

called binary stabilizer codes. The class of stabilizer codes is important because it

bears a strong resemblance to classical codes.
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Calderbank, Rains, Shor and Sloane [5] have transformed the problem of finding

binary quantum stabilizer codes into that of finding additive classical codes over F4

that are self-orthogonal with respect to a certain trace inner product. F4 denotes the

finite field containing 4 elements. They have also constructed a table of upper bounds

of the minimum distance of such codes using linear programming methods. Another

feature of this paper is that it also outlines numerous code construction methods that

help discover new codes from existing ones.

The results established in [5] help in understanding the theory of binary sta-

bilizer codes. But less is known in the case of nonbinary stabilizer codes. For

some applications, such as proof-of-concept implementation in certain ion trap models

(R. Laflamme, personal communication), nonbinary quantum error correction codes

would be more useful. Also, codes over alphabets of size 2m, where m ≥ 2, could be

useful for constructing easily decodable binary codes, via concatenation [6]. Hence,

understanding the theory of nonbinary codes is of primary interest. Therefore, the

main focus of this research is to gain a deeper understanding of nonbinary stabilizer

codes by generalizing the results in [5] to the nonbinary case. In Chapters I-II, we

review some key fundamentals that will be required for an understanding of the ma-

terial covered in the later chapters. Also, in Chapter II, the problem of finding q−ary

stabilizer codes is transformed to that of finding self-orthogonal classical codes over

Fq2 . In Chapter III, we determine numerous linear programming constraints that

such classical codes over Fq2 need to satisfy. In Chapter IV, these constraints are

then modelled using a linear optimization package to determine whether a solution

exists. Non-existence of a solution implies the non-existence of the corresponding

classical self-orthogonal code over the field Fq2 . And non-existence of the classical

code will automatically imply the non-existence of a corresponding q−ary quantum

code. In Chapter IV, we also determine, using linear programming methods, whether



4

we can have linear stabilizer codes meeting the bounds derived for additive stabi-

lizer codes. In Chapter V, we outline a few code construction methods for nonbinary

stabilizer codes that will help to derive new codes from existing ones. These tech-

niques will help in finding codes that meet or nearly meet the upper bounds derived

earlier. Appendix A contains the code in Mathematica for modelling the constraints

derived for additive codes in Chapter III. Appendix B contains the code in Maple for

modelling the constraints derived for linear codes in Chapter III using Integer Linear

Programming.

B. Review of Mathematical Concepts

In this section, we review some basic mathematical concepts and introduce some

notations that will be used frequently in the later chapters.

1. Galois Fields

A field of finite cardinality is often called a Galois field or a finite field. If p is the

cardinality of the field, then the field is denoted by Fp. If p is a prime, then the field

Fp is given by the set Fp = {0, 1, . . . , p− 1} with addition and multiplication modulo

p. From now on, p will be used to denote a prime, unless mentioned otherwise. If

q = pm for some integer m ≥ 0, then a field Fq with q elements is given by the set

Fq = {f(x) ∈ Fp[x]| deg f(x) < m}. (1.3)

The addition of elements in Fq is performed by adding in Fp[x] and multiplication in

Fq is done by multiplying in Fp[x] and taking the remainder modulo a fixed irreducible

polynomial m(x) in Fp[x] of degree m.

Let β be a non-zero element in Fq. The order of β is the smallest positive integer
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k such that βk = 1. An element with order q − 1 in Fq is called a primitive element

in Fq. All nonzero elements in Fq can be represented by q − 1 consecutive powers of

a primitive element,

1, α, α2, α3, . . . , αq−2, αq−1 = 1, αq = α, and so on.

2. Character Theory

Let (G,+) be a finite abelian group and 0 the identity element of G. A character

of G is a mapping χ, from G to the set of non-zero complex numbers, satisfying the

following conditions:

1. χ(x+ y) = χ(x)χ(y) for all x, y ∈ G,

2. |χ(x)| = 1 for allx ∈ G.

There exist |G| distinct characters of the abelian group G. We can use the elements

of G to index the set of characters ψx, x ∈ G. We assume that the trivial character

ψ0(x) ≡ 1 is indexed by the identity element 0.

A symmetric set of characters is one in which for a particular manner in which

we index the set of characters, we have ψx(y) = ψy(x) for all x, y ∈ G. An asymmetric

set of characters is one in which for a particular manner in which we index the set

of characters, we have ψx(y) = ψy(−x) for all x, y ∈ G. where x 6= y and x, y 6= 0.

Group characters satisfy certain orthogonality relations as given below:

1.
∑

y∈G χx(y) = 0, whereχx is a non-trivial character,

2.
∑

x∈G χx(y) = 0, where y 6= 0 ∈ G.
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C. Classical Coding Theory

We now review some well known concepts from classical coding theory. Consider a

code C ⊆ Fn
2 that encodes k bits into n bits. Let T be the set of all vectors of length

k over F2. The code C is then given by

C = {Gt | for all t ∈ T}, (1.4)

where G is some n × k matrix (with entries from F2), called the generator matrix

of the code. Its columns form a basis for the k-dimensional coding sub-space of the

n-dimensional binary vector space. Given a generator matrix G, we can calculate

the dual matrix P , which is an (n − k) × n matrix of 0’s and 1’s with PG = 0 and

maximal rank n− k. The matrix P is called the parity check matrix for the code. It

can be used to test if a given vector is a valid codeword, since Pv = 0 ⇔ v ∈ C.

The Hamming weight of a code vector is the number of nonzero coordinates in

the code vector. The Hamming distance between two vectors x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn) in C is the number of coordinates in which they differ, i.e.,

d(x, y) =| {i | xi 6= yi} | . (1.5)

The minimum distance d of the code C is then defined as:

d = min{d(x, y)|x, y ∈ C}. (1.6)

A binary code to encode k bits in n bits with minimum distance d is said to be

an [n, k, d]2 code. For a code to correct t single bit errors, it must have distance at

least 2t+ 1 between any two code words. The same concepts can be extended to the

nonbinary alphabet of size q, where a code encoding k bits in n bits with minimum

distance d, is said to be an [n, k, d]q code.



7

The dual code of C, denoted as C⊥, is given by

C⊥ = {u|u ∈ Fn
2 , u.v = 0 for all v ∈ C}, (1.7)

where u.v is some inner product between the vectors u and v. The actual specifics

of this inner product may vary from one code to another, as we shall see in later

chapters. A code C is said to be self-orthogonal if C ⊆ C⊥. In other words, C is

contained in its dual space with repect to a certain notion of duality. For a more

detailed exposition on classical coding theory, see [7].
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CHAPTER II

CONNECTING NONBINARY QUANTUM CODES AND CLASSICAL CODES

The ultimate goal of any coding theorist is to construct as many codes as possible.

An effective strategy employed in [5] is to translate the problem of finding binary

quantum codes to that of finding quaternary classical codes that are self-orthogonal

with respect to a certain trace inner product. The rationale behind this idea is that

it is easier to construct equivalent classical codes and, hence, a bridge to classical

codes would help us derive many quantum codes. Also, by means of such a bridge,

we can translate the existence and non-existence of many quantum codes to that of

classical codes and vice versa. In this chapter, we construct a similar bridge that

connects q-ary quantum codes to q2-ary self-orthogonal classical codes. The first part

of the bridge connects q-ary quantum codes to q-ary classical codes and the second

part of the bridge connects q-ary classical codes to q2-ary self-orthogonal classical

codes. Though the first part of the bridge may seem sufficient to address the problem

at hand, it becomes cumbersome to operate in the domain of q-ary classical codes,

as it involves use of symplectic weights as opposed to the Hamming weights. We

will look at the symplectic weights later in this chapter. Hence, for convenience, we

have the second part of the bridge. The bridge presented in this chapter attempts to

extend and unify [8, 9, 10, 11]. First, we review some of the fundamental concepts of

quantum-error-correction and also a special class of quantum error-correcting-codes,

called the stabilizer codes.
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A. Quantum Error Correction

1. Review of Fundamental Concepts

The central idea of quantum-error-correction is to introduce redundancy, not neces-

sarily through duplication. A q-ary quantum-error-correction code, Q, that encodes

k qubits into n qubits is a qk-dimensional subspace of Cqn
. Errors on a single qudit

system are q × q operators. Because of the linearity of quantum mechanics, we need

only consider a basis for the set of q× q operators. Later we will derive a set of basis

operators acting on a single qudit system. If E is the set of basis operators acting on

a single qudit system, then the set of basis error operators, En, for n-qudit quantum

systems is the set of all possible n-fold tensor products of operators in E and is given

by

En = {σ1 ⊗ σ2 ⊗ σ3 . . . σn |σi ∈ E}. (2.1)

We say that a quantum system that can correct a set of basis error operators can

correct any arbitrary linear combination of these error operators. The weight of an

error operator e is defined as the number of errors that differ from the identity matrix

w(e) = |{σi : σi 6= I}|. (2.2)

The error correction and detection capabilities of a quantum error correcting code Q

are the most crucial aspects of the code. A result by Knill and Laflamme [12] shows

that a quantum code Q is able to detect an error E in U(qn), the set of all qn × qn

unitary matrices, if and only if the condition 〈c1|E|c2〉 = λE〈c1|c2〉 holds for all states

|c1〉 and |c2〉 in Q, where λE is a complex scalar. In addition to the detectable errors,

there are undetectable errors that move vectors to another valid code vector in the

same subspace.
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2. Stabilizer Codes

Suppose Gn is the group generated by the error operators in En. Then the stabilizer

is an abelian subgroup S of Gn, such that every operator of S leaves every vector in

the code space fixed. The quantum code is then defined as the joint eigenspace of all

the operators in S. The centralizer of S, denoted C(S), is a subgroup of Gn such that

operators in C(S) commute with all the operators in the stabilizer. Now, the set of

detectable errors are those that lie outside C(S). The set of undetectable errors are

those that lie in C(S) − S. Finally, the operators that lie in S have trivial effect on

any vector in the code space. If a code is to have distance d, then there should not

be any non-zero operators of weight less than d in C(S)− S.

A main advantage of this stabilizer formalism is that the code can be defined in

terms of the set of generating elements of the group S rather than describing it in

terms of the code vectors. Two conditions that must be satisfied by S in order that

it stabilizes a non-trivial vector space are:

1. The elements of S commute, and

2. −I is not an element of S.

We illustrate the above concepts with the help of a simple example for the binary

case.

Example 1. Consider a repetition code that encodes 1 qubit into 3 qubits as given

below:

|0〉 7→ |000〉, |1〉 7→ |111〉. (2.3)

For a single qubit system, the set of basis error operators are the identity operator I,

bit flip operator X, phase flip operator Z, and the Y operator, which is a combination

of the bit flip and the phase flip operators. This set of I,X, Z and Y operators is also
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called the Pauli basis. The set of error operators En, acting on the encoded subspace,

will be the set of all 3-fold tensor products of the Pauli matrices. If Gn is the group

generated by the operators in En, then the stabilizer S is a subgroup of Gn, consisting

of all operators that leave the code vectors fixed. For the repetition code above, S

will consist of the operators I ⊗ I ⊗ I, Z ⊗ I ⊗Z, Z ⊗Z ⊗ I and I ⊗Z ⊗Z, where ⊗

denotes the tensor product. It can be seen that the subgroup S is generated by the

group elements Z ⊗ I ⊗ Z and Z ⊗ Z ⊗ I.

Thus, we see that the entire code can be compactly described in terms of these

generator elements rather than in terms of the code vectors themselves. In this regard,

stabilizer codes are analogous to classical codes.

Definition 2. Pure Stabilizer codes: A stabilizer code is said to be pure if there are

no operators of weight less than d in C(S), else it is said to be impure.

For a more complete treatment of stabilizer codes, see [4].

B. Connecting q-ary Quantum Codes to Classical Codes over Fq2

1. Error Bases

As discussed earlier, a quantum error correcting code Q is a qk-dimensional subspace

of Cqn
= Cq ⊗ · · ·⊗Cq. We denote by |x〉 the vectors of a distinguished orthonormal

basis of Cq, where the labels x range over the elements of a finite field Fq with q

elements. First, we need to select an appropriate error model so that we can measure

the performance of a code. To simplify matters, we choose a basis En of the vector

space of complex qn × qn matrices to represent a discrete set of errors. To reiterate,

the stabilizer code then is defined as the joint eigenspace of a subset of En, so the

error operators play a crucial role.
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Let a and b be elements of the finite field Fq. We define the unitary operators

X(a) and Z(b) on Cq by

X(a)|x〉 = |x+ a〉, Z(b)|x〉 = ωtr(bx)|x〉,

where tr denotes the trace operation from the extension field Fq to the prime field

Fp, and ω = exp(2πi/p) is a primitive pth root of unity.

We form the set E = {X(a)Z(b) | a, b ∈ Fq} of error operators. The set E

has some interesting properties, namely (a) it contains the identity matrix, (b) the

product of two matrices in E is a scalar multiple of another element in E , and (c) the

trace Tr(A†B) = 0 for distinct elements A,B of E (see Lemma 3). A finite set of q2

unitary matrices that satisfies the properties (a), (b), and (c) is called a nice error

basis [13].

The set E of error operators forms a basis of the set of complex q × q unitary

matrices, thanks to property (c).

Lemma 3. The set E = {X(a)Z(b) | a, b ∈ Fq} is a nice error basis of Cq.

Proof. The matrix X(0)Z(0) is the identity matrix, so property (a) holds. We have

ωtr(ba)X(a)Z(b) = Z(b)X(a), which implies that the product of two error operators

is given by

X(a)Z(b)X(a′)Z(b′) = ωtr(ba′)X(a+ a′)Z(b+ b′). (2.4)

This is a scalar multiple of an operator in E , hence, property (b) holds.

Suppose that the error operators are of the form A = X(a)Z(b) and B =

X(a)Z(b′) for some a, b, b′ ∈ Fq. Then

Tr(A†B) = Tr(Z(b′ − b)) =
∑
x∈Fq

ωtr((b′−b)x).

The map x 7→ ωtr((b′−b)x) is a character of Fq. The sum of all character values is 0
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unless the character is trivial; thus, Tr(A†B) = 0 when b′ 6= b.

On the other hand, if A = X(a)Z(b) and B = X(a′)Z(b′) are two error operators

satisfying a 6= a′, then the diagonal elements of the matrix A†B = Z(−b)X(a′ −

a)Z(b′) are 0, which implies Tr(A†B) = 0. Thus, whenever A and B are distinct

elements of E , then Tr(A†B) = 0, which proves (c).

Example 4. We give an explicit construction of a nice error basis with q = 4 levels.

The finite field F4 consists of the elements F4 = {0, 1, α, α}. We denote the four

standard basis vectors of the complex vector space C4 by |0〉, |1〉, |α〉, and |α〉. Let 12

denote the 2× 2 identity matrix, σx = ( 0 1
1 0 ), and σz =

(
1 0
0 −1

)
. Then

X(0) =12 ⊗ 12, X(1) =12 ⊗ σx, X(α) =σx ⊗ 12, X(α) =σx ⊗ σx,

Z(0) =12 ⊗ 12, Z(1) =σz ⊗ 12, Z(α) =σz ⊗ σz, Z(α) =12 ⊗ σz.

We see that this nice error basis is obtained by tensoring the Pauli basis, a nice error

basis on C2. The next lemma shows that this is a general design principle for nice

error bases.

Lemma 5. If E1 and E2 are nice error bases, then

E = {E1 ⊗ E2 |E1 ∈ E1, E2 ∈ E2}

is a nice error basis as well.

The proof of this simple observation follows directly from the definitions.

Let a = (a1, . . . , an) ∈ Fn
q . We write X(a) = X(a1) ⊗ · · · ⊗X(an) and Z(a) =

Z(a1) ⊗ · · · ⊗ Z(an) for the tensor products of n error operators. Our aim was

to provide an error model that conveniently represents errors acting locally on one

quantum system. Using the new notations, we can easily formulate this model.

Corollary 6. The set En = {X(a)Z(b) | a,b ∈ Fn
q } is a nice error basis on the

complex vector space Cqn
.
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Let Gn denote the group generated by the matrices of the nice error basis En. It

follows from equation (2.4) that

Gn = {ωcX(a)Z(b) | a,b ∈ Fn
q , c ∈ Fp}.

Note that Gn is a finite group of order pq2n. We call Gn the error group associated

with the nice error basis En.

It turns out that a stabilizer code Q with stabilizer S can detect all errors in Gn

that are scalar multiples of elements in S or that do not commute with some element

of S; see Lemma 10. The following characterization of the commutation properties is

instrumental in the construction of stabilizer codes.

Lemma 7. Two elements E = ωcX(a)Z(b) and E ′ = ωc′X(a′)Z(b′) of the error

group Gn satisfy the relation

EE ′ = ωtr(b·a′−b′·a)E ′E,

where b · a′ =
∑n

i=1 bia
′
i and b′ · a =

∑n
i=1 b

′
iai, is the standard inner product. In

particular, the elements E and E ′ commute if and only if the trace symplectic form

tr(b · a′ − b′ · a) vanishes.

Proof. It follows from equation (2.4) that EE ′ = ωtr(b·a′)X(a + a′)Z(b + b′) and

E ′E = ωtr(b′·a)X(a + a′)Z(b + b′). Therefore, multiplying E ′E with the scalar

ωtr(b·a′−b′·a) yields EE ′, as claimed.

An error ωcX(a)Z(b) of Gn is said to have weight d if and only if it has d tensor

components that are different from the identity,

d = |{ k | (ak, bk) 6= (0, 0)}|.

Remark: The definition of the weight of an error as stated above corresponds to the
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symplectic weight, denoted as swt, which is different from the Hamming weight of an

error discussed earlier.

Let us define a map Fix that associates to a subgroup S of Gn its joint eigenspace

with eigenvalue 1,

Fix(S) =
⋂
E∈S

{v ∈ Cqn |Ev = v}. (2.5)

We also define a map Stab that associates to a quantum code Q its stabilizer group

Stab(Q),

Stab(Q) = {E ∈ Gn |Ev = v for all v ∈ Q}. (2.6)

Lemma 8. If Q is a nonzero subspace of Cqn
, then its stabilizer S = Stab(Q) is an

abelian group satisfying S ∩ Z(Gn) = {1}.

Proof. Suppose that E and E ′ are non-commuting elements of S = Stab(Q). By

Lemma 7, we have EE ′ = ωkE ′E for some ωk 6= 1. A nonzero vector v in Q would

have to satisfy v = EE ′v = ωkE ′Ev = ωkv, a contradiction. Therefore, S is an

abelian group. The stabilizer cannot contain any element ωk1, unless k = 0, which

proves the second assertion.

Lemma 9. Suppose that S is the stabilizer of a vector space Q. An orthogonal

projector onto the joint eigenspace Fix(S) is given by

P =
1

|S|
∑
E∈S

E.

Proof. A vector v in Fix(S) satisfies Pv = v, hence, Fix(S) is contained in the image

of P . Conversely, note that EP = P holds for all E in S, hence, any vector in the

image of P is an eigenvector with eigenvalue 1 of all error operators E in S. Therefore,

Fix(S) = imageP . The operator P is idempotent because

P 2 =
1

|S|
∑
E∈S

EP =
1

|S|
∑
E∈S

P = P
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holds. The inverse E† of E is contained in the group S, hence, P † = P . Therefore,

P is an orthogonal projector onto Fix(S).

Remark: If S is a nonabelian subgroup of the group Gn, then it necessarily contains

the center Z(Gn) of Gn; it follows that P is equal to the all-zero matrix. Note that

the image of P has dimension trP .

2. From q-ary Quantum Codes to q-ary Classical Codes

We are now ready to construct the first part of our bridge that connects q-ary quantum

stabilizer codes to q-ary self-orthogonal classical codes.

Lemma 10. Suppose that S ≤ Gn is the stabilizer group of a stabilizer code Q. An

error E in Gn is detectable by the code Q if and only if either E is an element of

SZ(Gn) or E does not belong to C(S).

Proof. An element E in SZ(Gn) is a scalar multiple of a stabilizer; thus, it acts by

multiplication with a scalar λE on Q. It follows that E is a detectable error.

Suppose now that E is an error in Gn that does not commute with some element

F of the stabilizer S; it follows that EF = λFE for some complex number λ 6= 1; see

Lemma 7. All vectors u and v in Q satisfy the condition

〈u|E|v〉 = 〈u|EF |v〉 = λ〈u|FE|v〉 = λ〈u|E|v〉;

hence, 〈u|E|v〉 = 0. It follows that the error E is detectable.

Finally, suppose that E is an element of C(S)\SZ(Gn). Seeking a contradiction,

we assume that E is detectable; this implies that there exists a complex scalar λE

such that Ev = λEv for all v in Q. Let S∗ denote the abelian group generated by

λ−1
E E and by the elements of S. The joint eigenspace of S∗ with eigenvalue 1 has
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dimension qn/|S∗| < dimQ = qn/|S|. This implies that not all vectors in Q remain

invariant under λ−1
E E, in contradiction to the detectability of E.

Theorem 11. An [[n, qk, d]]q stabilizer code exists if and only if there exists an addi-

tive code C ≤ F2n
q of size |C| = qn/qk such that C ≤ C⊥s and swt(C⊥s \ C) = d.

Proof. Suppose that an [[n, qk, d]]q stabilizer code Q exists. By Lemma 8, there exists

an abelian subgroup S ≤ Gn, such that S ∩ Z(Gn) = 1 and G = Fix(S). Also, from

Lemma 9, we have |S| = qn/qk. Let SZ(Gn) be the abelian group generated by the

elements in S and Z(Gn). The quotient C ∼= SZ(Gn)/Z(Gn) is an additive subgroup

of F2n
q such that |C| = |S| because SZ(Gn) trivially intersects the center Z(Gn).

Since the group SZ(Gn) is abelian, C is contained in its trace-symplectic dual C⊥s by

Lemma 7. The stabilizer code Q has minimum distance d; therefore, the elements in

C(S)\SZ(Gn) have at least weight d by Lemma 10. We have C⊥s = C(S)/Z(Gn), so

swt(C⊥s \C) = d because the weight of an element ωcX(a)Z(b) is equal to swt(a|b).

Conversely, suppose that C is an additive subcode of F2n
q such that |C| = qn/qk,

C ≤ C⊥s , and swt(C⊥s \ C) = d. Let

N = {ωcX(a)Z(b) | c ∈ Fp and (a|b) ∈ C}.

Notice that N is an abelian normal subgroup of Gn because it is the pre-image of

C = N/Z(Gn). Choose a character χ of N such that χ(ωc1) = ωc. Then

PN =
1

|N |
∑
E∈N

χ(E−1)E

is an orthogonal projector onto a vector space Q because PN is an idempotent in the

group ring C[Gn]. We have

dimQ = trPN = |Z(Gn)|qn/|N | = qn/|C| = qk.
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Each coset of N modulo Z(Gn) contains exactly one matrix E such that Ev = v for

all v in Q. Set S = {E ∈ N |Ev = v for all v ∈ Q}. Then S is an abelian subgroup of

Gn of order |S| = |C| = qn/qk. We have Q = Fix(S) because Q is clearly a subspace of

Fix(S), but dimQ = qn/|S| = qk. An element ωcX(a)Z(b) in C(S) \SZ(Gn) cannot

have weight less than d because this would imply that (a|b) ∈ C⊥s \ C has weight

less than d, which is impossible. Therefore, Q is an [[n, qk, d]]q stabilizer code.

3. From q-ary Codes to Codes over Fq2

We now construct the second part of the bridge that connects q-ary classical codes

to q2-ary classical codes. Let (β, βq) denote a normal basis of Fq2 over Fq. We define

a trace-alternating form of two vectors v and w in Fn
q2 by

〈v|w〉a = trq/p

(
v · wq − vq · w
β2q − β2

)
. (2.7)

We note that the argument of the trace is invariant under the Galois automorphism

x 7→ xq, so it is indeed an element of Fq, which shows that (2.7) is well-defined.

The trace-alternating form is bi-additive, i.e, 〈u + v|w〉a = 〈u|w〉a + 〈v|w〉a and

〈u|v + w〉a = 〈u|v〉a + 〈u|w〉a holds for all u, v, w ∈ Fn
q2 . It is Fp-linear, but not

Fq-linear unless q = p. And it is alternating in the sense that 〈u|u〉a = 0 holds for all

u ∈ Fn
q2 . We write u ⊥a w if and only if 〈u|w〉a = 0 holds.

We define a bijective map φ that takes an element (a|b) of the vector space F2n
q

to a vector in Fq2 by setting φ((a|b)) = βa+βqb. The map φ is isometric in the sense

that the symplectic weight of (a|b) is equal to the Hamming weight of φ((a|b)).

Lemma 12. Suppose that c and d are two vectors of F2n
q . Then

〈c|d〉s = 〈φ(c)|φ(d)〉a.
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In particular, c and d are orthogonal with respect to the trace-symplectic form if and

only if φ(c) and φ(d) are orthogonal with respect to the trace-alternating form.

Proof. Let c = (a|b) and d = (a′|b′). We calculate

φ(c) · φ(d)q = βq+1 a · a′ + β2 a · b′ + β2q b · a′ + βq+1 b · b′

φ(c)q · φ(d) = βq+1 a · a′ + β2q a · b′ + β2 b · a′ + βq+1 b · b′.

Therefore, the trace-alternating form of φ(c) and φ(d) is given by

〈φ(c)|φ(d)〉a = trq/p

(
φ(c) · φ(d)q − φ(c)q · φ(d)

β2q − β2

)
= trq/p(b · a′ − a · b′),

which is precisely the trace-symplectic form 〈c | d〉s.

Theorem 13. An [[n, qk, d]]q stabilizer code exists if and only if there exists an ad-

ditive subcode D of Fn
q2 of cardinality |D| = qn/qk that satisfies the weight condition

wt(D⊥a \D) = d, and is self-orthogonal D ≤ D⊥a.

Proof. Theorem 11 shows that there exists an additive code C ≤ F2n
q satisfying

C ≤ C⊥s and swt(C⊥s \ C) = d. We obtain the result by applying the isometry φ,

D = φ(C).

Definition 14. Linear Stabilizer Code: If the associated classical code D over Fq2 is

also linear, then the stabilizer code is said to be linear.
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CHAPTER III

LINEAR PROGRAMMING BOUNDS

In this chapter, we derive constraints that additive and linear classical self-orthogonal

codes over Fq2 need to satisfy. These constraints will be used to derive upper bounds

on the minimum distance d of q-ary stabilizer codes where q = 3, 4, using linear

programming methods. The minimum distance is an important parameter of a code

because the error correcting capabilities of a code are directly related to its minimum

distance d. To recap, for a code to correct t errors, its minimum distance should be

at least equal to 2t+1. For given values of n and k, a code with a higher value of d is

obviously better than a code with a lower value of d. The bounds are useful because

they automatically prove the non-existence of codes having certain values of n, k, d

and place an upper limit on the highest achievable value of d for given values of the

parameters n and k.

A. Linear Programming Bounds for Additive Codes

Knill and Laflamme [12] have shown that the distance d of a quantum code is related

to the parameters n and k by

d ≤ n− k + 2

2
. (3.1)

Equation 3.1 is the quantum analog of the Singleton bound for classical codes. Using

linear programming methods, we derive bounds that are tighter than those obtained

for the quantum Singletom bound 3.1.
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1. Notations and Terminology

Suppose an [[n, k, d]]q code exists. Let D be the corresponding (n, qn−k) code over

Fq2 and let D⊥a , an (n, qn+k) code, be its dual with respect to the trace-alternating

form. The weight distribution A = A(D) = (A0, A1, . . . , An) is a vector of dimension

n+ 1, where

Ai =| {x ∈ D | w(x = i} |, (3.2)

that is, the ith component of A is the number of codewords of Hamming weight i in

D. Analogously, the weight distribution A′ = A′(D⊥a) = (A′
0, A

′
1, . . . , A

′
n) of the dual

code D⊥a is also a vector of dimension n + 1, where the the ith component of A′ is

the number of codewords of weight i in D⊥a .

Krawtchouk polynomials are a family of orthogonal polynomials that have been

used extensively in coding theory. The generating function of Krawtchouk polynomi-

als [14, page 20] is given by

n∑
j=0

Pj(x, n)zj = (1 + (q2 − 1)z)n−x(1− z)x. (3.3)

In other words, the coefficient of zj in (1 + (q2 − 1)z)n−x(1 − z)x is given by the

Krawtchouk polynomial Pj(x, n), where Pj(x, n) is defined as

Pj(x, n) =

j∑
s=0

(−1)s(q2 − 1)
j−s

 x

s


 n− x

j − s

. (3.4)

2. Constraints for Additive Codes

Theorem 15. Let D ≤ Fn
q2 be an additive code with weight enumerator A(z), and let

D⊥a denote its trace-alternating dual code. The weight-enumerator A′(z) of the code
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D⊥a is given by

A′(z) =
(1 + (q2 − 1)z)n

|D|
A

(
1− z

1 + (q2 − 1)z)

)
.

Proof. We define for b ∈ Fn
q2 and c ∈ D, a character χb(c) of the additive group D,

such that

χb(c) = χ(〈c|b〉a).

The character χb is trivial if and only if b is an element of D⊥a . Therefore, we obtain

from the orthogonality relations of characters that

∑
c∈D

χb(c) =

 |D| for b ∈ D⊥a ,

0 otherwise.

The following relation for polynomials is an immediate consequence

∑
c∈D

∑
b∈Fn

q2

χb(c)z
wt(b) =

∑
b∈Fn

q2

zwt(b)
∑
c∈D

χb(c) = |D|A′(z). (3.5)

The right hand side is a multiple of the weight enumerator of the code D⊥a . Let us

have a closer look at the inner sum of the left-hand side. If we express the vector

c ∈ D in the form c = (c1, . . . , cn), then we obtain

∑
b∈Fn

q2

χb(c)z
wt(b) =

∑
(b1,...,bn)∈Fn

q2

z
∑n

k=1 wt(bk)

n∏
k=1

χbk
(ck)

=
∑

(b1,...,bn)∈Fn
q2

n∏
k=1

zwt(bk)χbk
(ck)

=
n∏

k=1

∑
bk∈Fq2

zwt(bk)χbk
(ck).
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Now, from the orthogonality relations of a character, it follows that

∑
bk∈Fq2

zwt(bk)χbk
(ck) =

 1 + (q2 − 1)z if ck = 0,

1− z if ck 6= 0.

It follows that

∑
b∈Fn

q2

χb(c)z
wt(b) = (1− z)wt(c)(1 + (q2 − 1)z)n−wt(c).

Substituting this expression into equation (3.5), we find that

A′(z) = |D|−1
∑
c∈D

∑
b∈Fn

q2

χb(c)z
wt(b)

=
(1 + (q2 − 1)z)n

|D|
∑
c∈D

(
1− z

1 + (q2 − 1)z

)wt(c)

=
(1 + (q2 − 1)z)n

|D|
A

(
1− z

1 + (q2 − 1)z

)
,

which proves the claim.

Lemma 16. The weight distribution of the dual code D⊥a and the weight distribution

of the code D are related as

A
′

j =
n∑

r=0

ArPj(r, n). (3.6)

Proof. From the above theorem, the weight-enumerator A′(z) of the code D⊥a is given

by

A′(z) =
(1 + (q2 − 1)z)n

|D|
A

(
1− z

1 + (q2 − 1)z)

)
.

Hence,

n∑
j=0

A′
jz

j =
(1 + (q2 − 1)z)n

|D|

n∑
r=0

Ar

(
1− z

1 + (q2 − 1)z)

)r

=
1

|D|

n∑
r=0

Ar(1− z)r(1 + (q2 − 1)z)n−r. (3.7)
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Equating the coefficients of zj on both sides, we get

A′
j =

n∑
r=0

ArPj(r, n). (3.8)

Lemma 17. If D is an [n, k, d]q2 classical linear code, then

(q2 − 1) |Ai (1 ≤ i ≤ n). (3.9)

Proof. If 0 6= x ∈ D, then for each non-zero α ∈ Fq2 , αx ∈ D and w(αx) = w(x),

where w denotes the Hamming weight. Hence, the number of codewords of weight i

is a multiple of q2 − 1.

Lemma 18. If D is an [n, k, d]q2 additive code, then

(p− 1) |Ai (1 ≤ i ≤ n). (3.10)

Theorem 19. If an [[n, k, d]]q quantum-error-correcting code exists such that the asso-

ciated additive (n, qn−k) code D is self-orthogonal with respect to the trace-alternating

form and D⊥a\D contains no vectors of weight < d, then there is a solution to the

following set of linear equations.

1. A0 = 1, Aj ≥ 0 (1 ≤ j ≤ n)

2. A0 + A1 + · · ·+ An = qn−k

3. A
′
j = 1

qn−k

∑n
r=0 Pj(r, n)Ar (0 ≤ j ≤ n)

4. Aj = A
′
j (0 ≤ j ≤ d− 1), Aj ≤ A

′
j (d ≤ j ≤ n)

5. (p− 1) |Aj (1 ≤ j ≤ n),

where Aj and Aj
′
denote the weight distribution, i.e., the number of vectors in D and

D⊥a of weight j, respectively.
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Proof. Constraint (1) follows from the fact that D is additive and, hence, the identity

element, which is the all zero vector, has to be present, and the weight distribution

is non-negative. Constraint (2) follows from the fact the weight distributions should

sum up to the number of vectors in D. Constraint (3) is a direct consequence of

Lemma 16. Constraint (4) follows from the facts that D ⊂ D⊥a and all vectors in

D⊥a of weights between 1 and d − 1 inclusive must also be in D. Constraint (5)

follows from lemma 18.

We observe that the constraints depend only on the parameters of the code,

namely n, k, d and q. The way we have applied the theorem in finding the upper

bounds is to find whether a solution exists for a given set of values of n, k, d and q.

If a solution does not exist, then we conclude that no code can exist for the given

parameters. We then find whether a solution exists for the next lower value of d.

We repeat this process until we find a solution for some set of input values n, k, d

and q. The value of d obtained at this point is then the upper bound for the given

values of n, k and q. At this point, the bounds obtained are for the classical codes.

However, we can easily translate these bounds to the quantum domain by means of

Theorem 13. This is because from Theorem 13, the non-existence of a classical code

automatically implies the non-existence of the corresponding quantum code.

B. Linear Programming Bounds for Linear Codes

The constraints outlined in the previous section determine the non-existence of certain

additive codes and, hence, the non-existence of the corresponding additive quantum

codes by means of Theorem 13. These constraints then help to derive upper bounds

on d. However, it is of practical interest to see if we can have linear stabilizer codes

meeting the bounds derived for the additive stabilizer codes. This is because it is
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conjectured that linear codes have a more convenient form as compared to additive

codes, and this property facilitates the design of encoding circuits for the same. For

example, the stabilizer of the linear five qubit code [4, page 97] has 16 elements: the

identity, and 3× 5 cyclic permutations of X ⊗ Z ⊗ Z ⊗X ⊗ I, Y ⊗X ⊗X ⊗ Y ⊗ I

and Z⊗Y ⊗Y ⊗Z⊗ I. In this section, we derive constraints that classical Fq2-linear

codes need to satisfy. These constraints will be modelled using an integer linear

optimization package such as Maple [15], to get more information about the code

such as the weight distribution. This information about the weight distribution can

be used to optimize programs that exhaustively search for codes.

1. Background

First, we review some fundamental concepts that will be required for an understanding

of the proofs later. Let Fq2 = {αi|i = 0, 1, . . . , q2−1} denote the set of field elements.

For every vector x ∈ Fn
q2 , we define wi(x) = |{i|xi = αi}|.

Definition 20 (Complete Weight Enumerator:). The complete weight enumer-

ator of a code D is a homogeneous polynomial of degree n in q2 variables given by

WD(X0, X1, . . . , Xq2−1) =
∑
x∈D

X
w0(x)
0 X

w1(x)
1 . . . X

wq2−1(x)

q2−1 . (3.11)

Let χa(b) be an asymmetric character defined over Fn
q2 as follows:

χa(b) = exp

(
j2π

p
〈a, b〉a

)
= exp

(
j2π

p
tr(
abq − aqb

β2 − β2q
)

)
, (3.12)

where a, b ∈ Fn
q2 and {β, β2} form a normal basis of Fq2 over Fq.

Let f be a function defined on Fn
q2 . The Fourier transform of f , denoted by f̂ ,
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is defined in terms of the characters over Fn
q2 ,

f̂(x) =
∑

y∈Fn
q2

χx(y)f(y). (3.13)

Lemma 21 (Poisson’s theorem). For any code D and its trace-alternating dual

code D⊥a, we have ∑
x∈D⊥a

f(x) =
1

|D|
∑
y∈D

f̂(y). (3.14)

Proof. Our proof is similar to the proof in [14, page 11] for duality with respect to

the standard inner product. We note that

∑
y∈D

f̂(y) =
∑
y∈D

∑
x∈Fn

q2

χy(x)f(x) =
∑

x∈Fn
q2

f(x)
∑
y∈D

χy(x)

=
∑

x∈Fn
q2

f(x)
∑
y∈D

χx(−y) =
∑

x∈Fn
q2

f(x)
∑
z∈D

χx(z).

If x in D⊥a , then χx is the trivial character and, hence,
∑

z∈D χx(z) = |D|. If x is

not in D⊥a , then there exists u in D such that χx(u) 6= 1. Hence,

(1− χx(u))
∑
z∈D

χx(z) =
∑
z∈D

χx(z)−
∑
z∈D

χx(u+ z) = 0.

Therefore, we get ∑
y∈D

f̂(y) = |D|
∑

x∈D⊥a

f(x). (3.15)

Theorem 22 (MacWilliams). For any linear code D over Fn
q2, the complete weight

enumerator of D⊥a, dual with respect to the trace-alternating form is given by the

following relation:

WD⊥a (X0, X1, . . . , Xq2−1) =
1

|D|
WD(Z0, Z1, . . . , Zq2−1), (3.16)

where Zi =
∑q2−1

j=0 χαi
(αj)Xj.
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Proof. Our proof is similar to the proof in [14, page 11] for duality with respect to

the standard inner product. We have

f̂(u) =
∑

x∈Fn
q2

χu(x)X
w0(x)
0 X

w1(x)
1 . . . X

wq2−1(x)

q2−1 .

Now, χu(x) =
∏n

i=1 χui
(xi) and for α ∈ Fq2 ,

wα(x) = δα,x1 + δα,x2 + · · ·+ δα,xn , (3.17)

where δ is the Kronecker delta. Then f̂(u) can be written as

f̂(u) =
∑

x∈Fn
q2

n∏
i=1

(
χui

(xi)X
δ0,xi
0 Xδ1,xi

1 , . . . , X
δq2−1,xi

q2−1

)

=
∑

x1∈Fq2

· · ·
∑

xn∈Fq2

n∏
i=1

(
χui

(xi)X
δ0,xi
0 Xδ1,xi

1 , . . . , X
δq2−1,xi

q2−1

)
(3.18)

Expanding the product in equation 3.18, we get

f̂(u) =

q2−1∑
j=0

χu1(αj)Xj

×

q2−1∑
j=0

χu2(αj)Xj

× · · · ×

q2−1∑
j=0

χun(αj)Xj


=

n∏
i=1

q2−1∑
j=0

χui
(αj)Xj

 =

q2−1∏
i=0

q2−1∑
j=0

χui
(αj)Xj

wi(u)

=

q2−1∏
j=0

Z
wi(u)
i

= Z
w0(u)
0 Z

w1(u)
1 . . . Z

wq2−1(u)

q2−1 . (3.19)

From Poisson’s theorem, we have

∑
x∈D⊥a

f(x) =
1

|D|
∑
u∈D

f̂(u).

Consequently,

∑
x∈D⊥a

X
w0(x)
0 X

w1(x)
1 . . . X

wq2−1(x)

q2−1 =
1

|D|
∑
u∈D

Z
w0(u)
0 Z

w1(u)
1 . . . Z

wq2−1(u)

q2−1 ,
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which proves that

WD⊥a (X0, X1, . . . , Xq2−1) =
1

|D|
WD(Z0, Z1, . . . , Zq2−1) (3.20)

holds.

Definition 23 (Even-like codes:). A codeword c ∈ D is said to be even-like if∑n
i=0 ci = 0, else it is said to be odd-like. A code D is even-like if all the codewords

are even-like, else it is called odd-like. The complete weight enumerator can be used

to derive an important relationship between the even-like codewords of a code D and

the weight enumerator of the dual code D⊥a .

Theorem 24 (MacWilliams). For an Fq2-linear code D, let A0i
be the number of

even-like codewords of weight i, Ai − A0i
the number of odd-like codewords of weight

i. Let B
(1)
i be the number of codewords in D⊥a, which have i components equal to 1.

Then, we have

n∑
i=0

B
(1)
i X iY n−i =

1

|D|

n∑
i=0

(
A0i

− A
′
i − A0i

q2 − 1

) (
X + (q2 − 1)Y

)n−i
(X − Y )i. (3.21)

Proof. Our proof is similar to the proof in [7] for duality with respect to the standard

inner product. From Theorem 22, the complete weight enumerator is given by:

WD⊥a (X0, X1, . . . , Xq2−1) =
1

|D|
WD(Z0, Z1, . . . , Zq2−1). (3.22)

Replace X1 = X and Xi = Y for i 6= 1. Then,

WD⊥a (Y,X, Y . . . , Y ) =
∑

x∈D⊥a

Xw1(x)Y n−w1(x)

=
n∑

i=0

B
(1)
i X iY n−i. (3.23)

Note that from the orthogonality relations of the characters, we have Z0 = (X+(q2−



30

1)Y ) and Zi = (X − Y )χαi
(1) = (X − Y )χ1(−αi) for i ≥ 1. Also,

WD(Z0, Z1, . . . , Zq2−1) =
∑
x∈D

Z
w0(x)
0 Z

w1(x)
1 . . . Z

wq2−1(x)

q2−1 (3.24)

=
∑
x∈D

(X + (q2 − 1)Y )n−w(x)(X − Y )w(x)

q2−1∏
j=1

(χ1(−αj))
wj(x)


=

∑
x∈D

(X + (q2 − 1)Y )n−w(x)(X − Y )w(x)χ1(−
q2−1∑
j=1

αjwj(x))

=
∑
x∈D

(X + (q2 − 1)Y )n−w(x)(X − Y )w(x)χ1(−
n∑

j=1

xj). (3.25)

Since D is Fq2-linear, for any x in D and α in Fq2 , αx is also in D. All these codewords

have same terms in equation (3.23). So we have

∑
x∈D,w(x)=i

(X + (q2 − 1)Y )n−w(x)(X − Y )w(x)χ1(−
n∑

j=1

xj)

=
∑

x∈D,w(x)=i

(X + (q2 − 1)Y )n−w(αx)(X − Y )w(αx)χ1(−
n∑

j=1

αxj) (3.26)

=
1

q2 − 1

∑
α∈F×

q2

∑
x∈D,w(x)=i

(X + (q2 − 1)Y )n−w(αx)(X − Y )w(αx)χ1(−
n∑

j=1

αxj).

Where the last equality is obtained by summing equation (3.26) over all the non-zero

field elements. Hence,

1

q2 − 1

∑
α∈F×

q2

∑
x∈D,w(x)=i

(X + (q2 − 1)Y )n−w(αx)(X − Y )w(αx)χ1(−
n∑

j=1

αxj)

=
1

q2 − 1
(A0i

(q2 − 1)− (Ai − A0i
))(X + (q2 − 1)Y )n−i(X − Y )i, (3.27)
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where the last equality follows from the orthogonality relations of a character, viz.

∑
α∈F×

q2

χ1(−α
n∑

j=1

xj) =

 −1 if
∑n

j=1 xj 6= 0,

q2 − 1 otherwise.

Summing over all i and substituting in equation 3.24 and equating to equation 3.23

gives us the desired result.

2. Constraints for Linear Codes

From [16], we also have the following important lemma, which we state without proof.

Lemma 25. Let D be a linear [n, k, d]q2 classical code. Let De be the set of even-like

codewords. Then either

1. |De| = |D|, or

2. |De| = |D|
q2 .

Lemma 26. Let D be a linear [n, k, d]q2 classical even-like code and D⊥a its dual with

respect to the trace-alternating form. Then D⊥a contains the all one vector.

Proof. Since D is even-like, for any c ∈ D, we have

n∑
i=1

ci = 0 =
n∑

i=1

cqi . (3.28)

Hence,
n∑

i=1

cqi − ci
β2 − β2q

= 0 = 〈1, c〉a. (3.29)

Lemma 27. Let D be a linear [n, k, d]q2 classical code and D⊥a be its dual with respect

to the trace-alternating form. Then D⊥a is also linear.
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Proof. Suppose x ∈ D and y ∈ D⊥a . Hence 〈x, y〉a = 0. Since D is linear, 〈αx, y〉a =

0, where α ∈ Fq2 . Hence, we have trq/p

(
〈αx,y〉−〈αx,y〉

β2−β2q

)
= trq/p

(
〈x,αy〉−〈x,αy〉

β2−β2q

)
= 〈x, αy〉a

= 0.

With all the requisite background at our disposal, we now present a set of con-

straints that linear classical self-orthogonal codes over Fq2 need to satisfy.

Theorem 28. If an [[n, k, d]]q linear stabilizer code exists such that the associated

linear (n, qn−k) code D is self-orthogonal with respect to the trace-alternating form

and D⊥a\D contains no vectors of weight < d, then there is a solution to at least one

of the following three sets of linear equations: The first set of equations apply to the

case when both D and D⊥a are even-like. The second set applies to the case when D

is even-like and D⊥a is odd-like, and the third set applies to the case when both D

and D⊥a are odd-like. Constraints (1)-(5) are common to each of the three cases. In

addition, constraints (6a)-(6b) apply to the first case, constraints (7a)-(7d) apply to

the second case, and constraints (8a)-(8g) apply to the third case.

1. A0 = 1, Aj ≥ 0 (1 ≤ j ≤ n)

2. A0 + A1 + · · ·+ An = qn−k

3. A
′
j = 1

qn−k

∑n
r=0 Pj(r, n)Ar (0 ≤ j ≤ n)

4. Aj = A
′
j (0 ≤ j ≤ d− 1), Aj ≤ A

′
j (d ≤ j ≤ n)

5. (q2 − 1) |Aj (1 ≤ j ≤ n)

6. (a) n ≡ 0mod p, where q is a power of a prime p

(b) An ≥ q2 − 1

7. (a)
∑n

i=0B0i
= qn+k−2

(b) Ai = B0i
= A

′
i (0 ≤ i ≤ d− 1) Ai ≤ B0i

≤ A
′
i (d ≤ i ≤ n)
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(c)
∑n

i=0A
(1)
i = qn−k

(d) A
(1)
n−i =

∑n
j=0

((
B0j

− A
′
j−B0j

q2−1

)
Pi(j, n)

)
8. (a)

∑n
i=0B0i

= qn+k−2

(b)
∑n

i=0A
(1)
i = qn−k

(c) A
(1)
n−i =

∑n
j=0

((
B0j

− A
′
j−B0j

q2−1

)
Pi(j, n)

)
(d)

∑n
i=0A0i

= qn−k−2

(e)
∑n

i=0B
(1)
i = qn+k

(f) B
(1)
n−i =

∑n
j=0

((
A0j

− A
′
j−A0j

q2−1

)
Pi(j, n)

)
(g) A0j

= B0j
(0 ≤ j ≤ d− 1), A0j

≤ B0j
(d ≤ j ≤ n)

Proof. From Lemma 26, D contains the all one vector and also since D is even-like,

constraint (6a) follows. Constraint (6b) follows from the fact that D is linear and,

hence, all the q2 − 1 non-zero multiples of the all one codeword are in D. Constraint

(7a) follows from Lemma 25 and constraint (7d) follows from Theorem 24. Constraint

(7b) is obtained by applying distance relationships to the weight enumerators of the

even-like code D and the even-like subcode of dimension |D|
q2 within D⊥a . Constraint

(7c) follows from the fact that the sum of the weight distributions that count the

number of 1’s within codewords in D should be equal to the number of codewords in

D. Constraints (8a) - (8g) are obtained by applying the same logic to the even-like

subcodes of dimension |D|
q2 and |D⊥a |

q2 within D and D⊥a , respectively.
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CHAPTER IV

TABLE OF UPPER BOUNDS ON MINIMUM DISTANCE OF NONBINARY

STABILIZER CODES

A. Table of Upper Bounds for Additive Codes

The set of linear equations for additive codes outlined in the previous chapters were

modelled using the linear optimization package, Mathematica [17]. The package dy-

namically formulates the constraints given the input parameters n, k, d and q. The

program then attempts to find a solution to the set of constraints formulated. If a

solution exists, then the program displays the solutions or else reports that no feasible

solution exists, in which case we can conclude that no [[n, k, d]]q code exists. In the

case that a solution exists, we may also also learn some additional properties about

the code like whether it is pure or impure, or whether it contains vectors of a partic-

ular weight or not. We have computed the table of upper bounds for values of n up

to 30. We now present the table of upper bounds on d for q-ary additive quantum

codes, where q = 3, 4. Table I, Table II and Table III outline the upper bounds for q

= 3 and Table IV, Table V and Table VI outline the upper bounds for q = 4. Note

that the entries in the tables that have a superscript of β are the ones for which we

have derived upper bounds that are tighter than Singleton bound.
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Table I. Upper bounds on d for a [[n, k, d]]3 error-correcting-code (n:3..15, k:1..15)

n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 1 1 - - - - - - - - - - - -

4 2 2 1 1 - - - - - - - - - - -

5 3 2 2 1 1 - - - - - - - - - -

6 3 3 2 2 1 1 - - - - - - - - -

7 4 3 3 2 2 1 1 - - - - - - - -

8 4 4 3 3 2 2 1 1 - - - - - - -

9 5 4 4 3 3 2 2 1 1 - - - - - -

10 5 5 4 4 3 3 2 2 1 1 - - - - -

11 6 5 5 4 4 3 2β 2 2 1 1 - - - -

12 6 6 5 5 4 3β 3 2β 2 2 1 1 - - -

13 7 6 6 5 4β 4 3β 3 2β 2 2 1 1 - -

14 7 7 6 5β 5 4β 4 3β 3 2β 2 2 1 1 -

15 8 7 6β 6 5β 5 4β 4 3β 3 2β 2 2 1 1
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Table II. Upper bounds on d for a [[n, k, d]]3 error-correcting-code (n:16..30, k:1..15)

n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 8 7β 7 6β 6 5β 5 4β 4 3β 3 2β 2 2 1

17 8β 8 7β 7 6β 6 5β 5 4β 4 3β 3 2β 2 2

18 9 8β 8 7β 7 6β 6 5β 5 4β 4 3β 3 2β 2

19 9β 9 8β 8 7β 7 6β 6 5β 5 4β 4 3β 3 2β

20 10 9β 9 8β 8 7β 7 6β 6 5β 5 4β 4 3β 3

21 10β 10 9β 9 8β 8 7β 7 6β 6 5β 5 4β 4 3β

22 11 10β 10 9β 9 8β 8 7β 7 6β 6 5β 5 4β 4

23 11β 11 10β 10 9β 9 8β 8 7β 7 6β 6 5β 5 4β

24 11β 11β 11 10β 10 9β 9 8β 8 7β 7 6β 5β 5β 4β

25 12β 11β 11β 11 10β 10 9β 9 8β 8 7β 6β 6β 5β 5β

26 12β 12β 11β 11β 10β 10β 9β 9β 8β 8β 7β 7β 6β 6β 5β

27 13β 12β 12β 11β 11β 10β 10β 9β 9β 8β 8β 7β 7β 6β 6β

28 13β 13β 12β 12β 11β 11β 10β 10β 9β 9β 8β 8β 7β 7β 6β

29 14β 13β 13β 12β 12β 11β 11β 10β 10β 9β 9β 8β 8β 7β 7β

30 14β 14β 13β 13β 12β 12β 11β 11β 10β 10β 9β 9β 8β 8β 7β
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Table III. Upper bounds on d for a [[n, k, d]]3 error-correcting-code (n:16..30, k:16..30)

n/k 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

16 1 - - - - - - - - - - - - - -

17 1 1 - - - - - - - - - - - - -

18 2 1 1 - - - - - - - - - - - -

19 2 2 1 1 - - - - - - - - - - -

20 2β 2 2 1 1 - - - - - - - - - -

21 3 2β 2 2 1 1 - - - - - - - - -

22 3β 3 2β 2 2 1 1 - - - - - - - -

23 4 3β 3 2β 2 2 1 1 - - - - - - -

24 4β 4 3β 3 2β 2 2 1 1 - - - - - -

25 4β 4β 4 3β 3 2β 2 2 1 1 - - - - -

26 5β 4β 4β 4 3β 3 2β 2 2 1 1 - - - -

27 5β 5β 4β 4β 4 3β 3 2β 2 2 1 1 - - -

28 6β 5β 5β 4β 4β 4 3β 3 2β 2 2 1 1 - -

29 6β 6β 5β 5β 4β 4β 4 3β 3 2β 2 2 1 1 -

30 7β 6β 6β 5β 5β 4β 4β 3β 3β 2β 2β 2 2 1 1



38

Table IV. Upper bounds on d for a [[n, k, d]]4 error-correcting-code (n:3..15, k:1..15)

n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 1 1 - - - - - - - - - - - -

4 2 2 1 1 - - - - - - - - - - -

5 3 2 2 1 1 - - - - - - - - - -

6 3 3 2 2 1 1 - - - - - - - - -

7 4 3 3 2 2 1 1 - - - - - - - -

8 4 4 3 3 2 2 1 1 - - - - - - -

9 5 4 4 3 3 2 2 1 1 - - - - - -

10 5 5 4 4 3 3 2 2 1 1 - - - - -

11 6 5 5 4 4 3 3 2 2 1 1 - - - -

12 6 6 5 5 4 4 3 3 2 2 1 1 - - -

13 7 6 6 5 5 4 4 3 3 2 2 1 1 - -

14 7 7 6 6 5 5 4 4 3 3 2 2 1 1 -

15 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1
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Table V. Upper bounds on d for a [[n, k, d]]4 error-correcting-code (n:16..30, k:1..15)

n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1

17 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2

18 9 9 8 8 7 7 6 6 5 5 4 4 3 2β 2

19 10 9 9 8 8 7 7 6 6 5 5 4 3β 3 2β

20 10 10 9 9 8 8 7 7 6 6 5 4β 4 3β 3

21 11 10 10 9 9 8 8 7 7 6 5β 5 4β 4 3β

22 11 11 10 10 9 9 8 8 7 6β 6 5β 5 4β 4

23 12 11 11 10 10 9 9 8 7β 7 6β 6 5β 5 4β

24 12 12 11 11 10 10 9 8β 8 7β 7 6β 6 5β 5

25 13 12 12 11 11 10 9β 9 8β 8 7β 7 6β 6 5β

26 13 13 12 12 11 10β 10 9β 9 8β 8 7β 7 6β 6

27 14 13 13 12 11β 11 10β 10 9β 9 8β 8 7β 7 6β

28 14 14 13 12β 12 11β 11 10β 10 9β 9 8β 8 7β 7

29 15 14 13β 13 12β 12 11β 11 10β 10 9β 9 8β 8 7β

30 15 14β 14 13β 13 12β 12 11β 11 10β 10 9β 9 8β 8
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Table VI. Upper bounds on d for a [[n, k, d]]4 error-correcting-code (n:16..30, k:16..30)

n/k 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

16 1 - - - - - - - - - - - - - -

17 1 1 - - - - - - - - - - - - -

18 2 1 1 - - - - - - - - - - - -

19 2 2 1 1 - - - - - - - - - - -

20 2β 2 2 1 1 - - - - - - - - - -

21 3 2β 2 2 1 1 - - - - - - - - -

22 3β 3 2β 2 2 1 1 - - - - - - - -

23 4 3β 3 2β 2 2 1 1 - - - - - - -

24 4β 4 3β 3 2β 2 2 1 1 - - - - - -

25 5 4β 4 3β 3 2β 2 2 1 1 - - - - -

26 5β 5 4β 4 3β 3 2β 2 2 1 1 - - - -

27 6 5β 5 4β 4 3β 3 2β 2 2 1 1 - - -

28 6β 6 5β 5 4β 4 3β 3 2β 2 2 1 1 - -

29 7 6β 6 5β 5 4β 4 3β 3 2β 2 2 1 1 -

30 7β 7 6β 6 5β 5 4β 4 3β 3 2β 2 2 1 1

Comments on the tables: The entries in the table are to be interpreted as follows:

From Table I, we see that no [[11, 7, 3]]3 quantum stabilizer code exists. However,

a [[11, 6, 3]]3 code may exist. This corroborates our initial conjecture that using

linear programming methods, we can derive upper bounds tighter than those obtained

using equation 3.1. Codes that meet the upper bounds obtained via equation 3.1 are

called Maximum Distance Separable (MDS) codes. They are called MDS because the

Singleton bound gives the largest value of d for the given parameter values n and k,

and these codes have a value of distance equal to the highest achievable minimum
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distance.

We also investigate the possible existence of pure codes by setting A1 through

Ad−1 equal to 0. In all cases up to n = 25, the bounds for pure codes were equal to

the bounds for impure codes.

To further substantiate the results outlined above, we scanned literature exten-

sively and we could not find a single example that proves the non-existence of a code

meeting the upper bounds derived by us. This may lead us to believe that the bounds

derived by us are pretty tight. However, to support this conjecture, we need to ac-

tually find codes that meet or nearly meet the bounds derived. Also, for none of the

values of n and k, did we get an upper bound that was greater than the Singleton

bound.

B. Table of Upper Bounds for Linear Codes

Mathematica does not include a package for integer linear programming, hence, most

of the solutions to the constraints for additive codes that were obtained were real

numbers. But weight distributions are integer valued and this constraint does not

get implicitly incorporated while modelling with Mathematica. On the other hand,

integer linear programming is computationally very expensive and, hence, it would

be possible to model a set of constraints only for very small values of n.

We modelled the set of linear equations for linear codes outlined in the previous

chapter using the integer linear optimization package, ilp [15], developed by Pathria,

which is part of the Maple Share library. We have computed the table of upper

bounds for values of n upto 13. We now present the table of upper bounds on d for

3-ary linear quantum stabilizer codes.
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Table VII. Upper bounds on d for [[n, k, d]]3 linear error-correcting-codes

n/k 1 2 3 4 5 6 7 8 9 10 11 12 13

3 2 - 1 - - - - - - - - - -

4 - 2 - 1 - - - - - - - - -

5 3 - 2 - 1 - - - - - - - -

6 - 3 - 2 - 1 - - - - - - -

7 4 - 3 - 2 - 1 - - - - - -

8 - 4 - 3 - 2 - 1 - - - - -

9 5 - 4 - 3 - 2 - 1 - - - -

10 - 5 - 4 - 3 - 2 - 1 - - -

11 6 - 5 - 4 - 2 - 2 - 1 - -

12 - 6 - 5 - 3 - 2 - 2 - 1 -

13 7 - 6 - 4 - 3 - 2 - 2 - 1

Lemma 29. If n − k is odd, then there does not exist a linear quantum stabilizer

code.

Proof. Let D be the associated Fq2-linear classical subspace over Fq2 with qn−k vec-

tors. From Constraint 1 and 2 in Theorem 28, we have

n∑
i=1

Ai = qn−k − 1 = qz − 1, (4.1)

where z = n− k is odd. Also, from Constraint 5 in Theorem 28 and equation 4.1, we

have

(q2 − 1) | qz − 1. (4.2)

The above equation holds only when z is even and, hence, from definition 14 it follows

that a linear [[n, k, d]]q quantum stabilizer code cannot exist when n− k is odd.
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Comments on the table: From Table VII, we see that the bounds derived for linear

codes coincide with those derived for additive codes for values of n up to 13 and for

q = 3 when n − k is odd. This means that we can potentially have linear quantum

stabilizer codes that have the same error correcting capabilities as additive quantum

stabilizer codes whenever n− k is even. This is useful because it is conjectured that

building encoding circuits for linear codes is simpler than building encoding circuits

for additive codes because of the rich structure associated with linear codes. For cases

when n− k is odd, we can only have additive quantum stabilizer codes.
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CHAPTER V

CODE CONSTRUCTIONS

The bounds established previously only prove the non-existence of codes having cer-

tain parameters. To actually prove the existence of codes having certain parameter

values, we need to explore the literature to find families of codes and derive code con-

struction theorems that help construct new codes from existing ones. Ketkar [18] has

constructed a table of lower bounds on the minimum distance d for additive codes

using the techniques stated above. This table of lower bounds will help evaluate

the tightness of the upper bounds derived previously. In this chapter, we present a

few code construction techniques that will help in the construction of new additive

nonbinary quantum codes from existing ones.

A. General Constructions

The technique for constructing new additive quantum codes from existing ones will

involve the following steps:

1. Find the associated classical code over Fq2 of the existing quantum code.

2. Derive a new classical code from the one established in step 1, satisfying all the

required properties.

3. Prove the existence of the quantum code corresponding to the classical code

derived in step 2 by means of Theorem 11.

Lemma 30. An additive [[n, k, 1]]q code exists for all 0 ≤ k ≤ n, n ≥ 3.

Theorem 31. Given two additive codes [[n1, k1, d1]]q and [[n2, k2, d2]]q with k2 ≤ n1,

we can construct an additive [[n1+n2−k2, k1, d]]q code, where d ≥ min{d1, d1+d2−k2}.
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Proof. Let the associated codes be D1, D
⊥a
1 with parameters (n1, q

n1−k1), (n1, qn1+k1)

andD2, D
⊥a
2 with parameters (n2, q

n2−k2), (n2, q
n2+k2). Let ρ be the composition of the

natural map from D⊥a
2 to D⊥a

2 /D2 with any inner-product-preserving homomorphism

from the additive group D⊥a
2 /D2 to Fk2

q2 . Construct a new code D of the form

D = {uv : v ∈ D⊥a
2 , uρ(v) ∈ D1} (5.1)

and D⊥a of the form

D⊥a = {uv : v ∈ D⊥a
2 , uρ(v) ∈ D⊥a

1 }. (5.2)

We now have to show that

1. D is additive.

2. D ⊆ D⊥a .

3. The corresponding quantum code obtained from D has minimum weight d given

by d ≥ min{d1, d1 + d2 − k2}.

4. Number of code words in D = qn1+n2−k2−k1 .

We note that D is additive because ρ is a homomorphism of additive groups. Let

(u1|v1), (u2|v2) ∈ D meaning that (u1|ρ(v1)), (u2|ρ(v2)) ∈ D1. Now,

〈(u1|v1), (u2|v2)〉a = 〈u1, u2〉a + 〈v1, v2〉a

= 〈u1, u2〉a + 〈ρ(v1), ρ(v2)〉a

= 〈(u1|ρ(v1)), (u2|ρ(v2))〉a

= 0,

where the last equality holds because (u1|ρ(v1)) and (u2|ρ(v2)) are elements of the

self-orthogonal code D1; hence D ⊆ D⊥a .
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To prove the distance property, we find the minimum weight of a vector in

D⊥a\D. Any vector in D⊥a\D is of the form

D⊥a\D = {uv : v ∈ D⊥a
2 \D2, uρ(v) ∈ D⊥a

1 \D1}

Note that if ρ(v) 6= 0, v contributes at least d2 to the weight of uv, but u need have

weight only d1 − k2. If ρ(v) = 0, and uv 6= 0, wt(u) ≥ d1.

To show that |D| = qn1+n2−k2−k1 , we proceed as follows: The mapping ρ maps

qn2+k2 elements to q2k2 elements. This means that each one of the q2k2 sets of qn2−k2

elements each is mapped to the same element in Fk2

q2 . Let us denote the ith set of

elements as Seti. Let Ai be the number of code words in D1 that have suffix ρ(vj),

where vj is any element in Seti. Then the number of code words in D is given by

|D| = qn2−k2 × (A1 + A2 + · · ·+ A2k2). (5.3)

Since ρ generates all possible vectors in Fk2

q2 , (A1 +A2 + · · ·+A2k2) = qn1−k1 . Hence,

we have shown that the number of vectors in D is qn1+n2−k2−k1 . Note that if the initial

codes are pure, then the code so obtained as a result of the direct sum construction

is also pure.

B. Concatenated Quantum Codes

In this section, we give a brief exposition on the construction of quantum codes using

a powerful technique that is analogous to the concatenated codes in the classical

setting. The discussion presented here is basically a generalization of the theory of

binary concatenated codes in [4]. Concatenated codes are a special class of codes that

use a combination of an inner encoder and an outer encoder to encode the data. We

illustrate it with the help of an example below. Suppose the inner encoder uses a
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code that is a [[n, 1, d]]q quantum code and the outer code is an [[N,K,D]]q quantum

code. The encoding is done as follows: First, the K information symbols are encoded

into N qubits by the outer encoder. Then, each qubit in the output produced by

the outer encoder is encoded into further n qubits using the inner encoder. Thus,

the final code word that is transmitted is of length nN and has minimum distance

dD. Decoding is done as follows: The error syndrome for each level is calculated by

performing parallel computations on different blocks that make up that level. The

information about the error syndromes from each level is then combined to perform

the error recovery operations. The ability to combine information about the error

syndromes from different levels is a crucial requirement in order to be able to achieve

the full minimum distance of the code. For example, using the above procedure, we

can construct a [[25, 1, 9]]3 code from two [[5, 1, 3]]3 codes and also a [[25, 1, 9]]4 code

from two [[5, 1, 3]]4 codes.



48

CHAPTER VI

CONCLUSION AND FUTURE WORK

A. Future Work

In this work, we have derived upper bounds for nonbinary additive quantum stabilizer

codes where q = 3, 4 and also for 3-ary linear quantum stabilizer codes. A logical

extension to this work would be to derive upper bounds for higher values of q and

n. While we have not come across a single example in literature that proves the

non-existence of a code meeting the upper bounds derived by us, we still cannot

prove that our bounds are indeed tight. In [5], the authors have tightened the bounds

by applying the theory of shadow codes. Hence, exploring the generalized theory

of shadow codes as explained in [19, 20] would be good starting point that would

help us find more constraints and, hence, help us to tighten the upper bounds. Once

we have a table of upper bounds that are pretty tight, the next step would be to

find actual codes meeting the upper bounds derived in the table. One strategy to

find codes is to exhaustively search for codes satisfying a particular set of properties.

However, this method is exponential in time and unless it is highly optimized, we

cannot use the exhaustive search strategy to search for codes having large values of

n. The solutions in the form of the weight distribution of the codes returned by the

linear programming solver can be used to optimize the exhaustive search program

and, hence, help us to search for codes for larger values of n. What we ultimately

need is a table of the best possible codes for all possible parameter values up to a

certain limit along with the encoding circuits for the same. This table would then

help us to compare the nonbinary quantum codes and binary quantum codes on the

basis of their error correcting capabilities.
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B. Conclusion

The main focus of this research was to generalize the results in [5] for the binary case to

the nonbinary case. We have constructed a table of upper bounds on the minimum

distance of additive nonbinary stabilizer codes using linear programming methods.

The bounds derived by us are tighter than those obtained using the Singleton bound

equation. We then attempted to find out whether we could have linear codes meeting

the bounds derived for additive codes. Our linear programming results show that

for values of n up to 13 and for q = 3, the bounds on the distance for linear codes

coincide with the bounds for additive codes for the case when n − k is even. We

also discussed a couple of techniques for deriving new additive quantum codes from

existing additive quantum codes. All the results put together have helped us gain a

deeper understanding of the theory of nonbinary quantum stabilizer codes. We now

have the groundwork ready for the work ahead that will help us answer the question of

whether we can have nonbinary quantum stabilizer codes that are better than binary

stabilizer codes in terms of the error correction capabilities.
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APPENDIX A

MATHEMATICA CODE FOR LINEAR PROGRAMMING

This appendix contains the source code for the implementation of the linear program-

ming constraints for additive codes using MATHEMATICA. The program takes as

input the parameters n, k, d and q of the code and dynamically generates the con-

straints. These constraints are then modelled using the LinearProgramming function

which takes as arguments the objective function, c, which is a list, of dimension

1 × numVar, the matrix, m of dimension numCon × numVar that contains the co-

efficients of the variables and another numCon × 2 matrix, b that specifies the type

of constraints (≤, =, ≥) and the right hand side values of the constraints. Here,

numCon is used to represent the number of constraints and numVar is used to repre-

sent the number of variables. We now present the source code along with adequate

documentation.

******************************************************************

(* This method returns the coefficient of the Krawtchouk polynomial *)

P[j , x , n , q , k ]:=

((Sum[(( -1 ) ˆ i) * ((q * q - 1) ˆ (j - i)) * Binomial[x, i] * Binomial[n - x, j - i],

{i, 0, j}]) / (q ˆ (n - k)))

******************************************************************
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******************************************************************

(* This method takes as input the parameters of the code and then attempts

to find a solution to the set of linear programming constraints *)

Calc[n , k , d , q ]:=(

numCon = 2 * n + 4; (* Initialize the number of constraints *)

numVar = 2 * n + 2; (* Initialize the number of variables *)

curCon = 1; (* Number of the current constraint *)

c = Table[obj[i], {i, numVar}];

(* Initialize the objective function to be 0 since we are only interested

in finding a solution *)

For[i = 1, i ≤ numVar, i++, c[[i]]=0;];

(* The table b is numCon by 2 and b[i,2] =

0 if equality constraint =, 1 if ≥ constraint and -1 otherwise *)

b = Table[con[i, j], {i, numCon}, {j, 2}];

(* m is numCon by numVar and contains the coeffs. of the variables *)

m = Table[a[e, f], {e, numCon}, {f, numVar}];

(* Initialize the m matrix to contain all 0’s *)

For[i = 1, i ≤ numCon, i++,

For[j = 1, j ≤ numVar, j++,

m[[i, j]] = 0;]

];
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(* Constraint number 1 *)

m[[curCon, 1]] = 1;

b[[curCon, 1]] = 1;

b[[curCon, 2]] = 0;

curCon = curCon + 1; (* Increment the curCon count *)

(* Constraint number 2 *)

b[[curCon, 1]] = q ˆ (n - k);

b[[curCon, 2]] = 0;

For[j = 1, j ≤ n + 1, j++, m[[curCon, j]] = 1;];

curCon = curCon + 1; (* Increment the curCon count *)

(* Next n+1 constraints involving the Krawtchouk polynomial *)

For[i = 0, i ≤ n, i++, b[[curCon, 1]] = 0; b[[curCon, 2]] = 0;

m[[curCon, i + 1 + n + 1]] = 1;

For[j = 0, j ≤ n, j++, m[[curCon, j + 1]] = -1 * P[i, j, n, q, k];

];

curCon = curCon + 1; (* Increment the curCon count *)

];

(* Next n+1 constraints involving the distance relationships *)

For[i = 1, i ≤ d, i++, m[[curCon, i]] = 1;

m[[curCon, i + n + 1]] = -1;

b[[curCon, 1]] = 0;

b[[curCon, 2]] = 0;

curCon = curCon + 1; (* Increment the curCon count *)
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];

For[i = d + 1, i ≤ n + 1, i++, m[[curCon, i]] = 1;

m[[curCon, i + n + 1]] = -1;

b[[curCon, 1]] = 0;

b[[curCon, 2]] = -1;

curCon = curCon + 1; (* Increment the curCon count *)

];

LinearProgramming[c,m,b]

)

******************************************************************
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APPENDIX B

MAPLE CODE FOR INTEGER LINEAR PROGRAMMING

This appendix contains the source code for the implementation of the linear pro-

gramming constraints for linear codes using MAPLE. The program takes as input

the parameters n, k, d and q of the code and dynamically generates the constraints.

These constraints are then modelled using the ilp function which takes as arguments

the objective function, a list of constraints in symbolic form and a third argument

which specifies whether the solutions are NONNEGATIVE or not. This function at-

tempts to find a set of integeral solutions satisfying the set of constraints. We include

the source code only for the set of constraints corresponding to the case when both

the code D and its dual D⊥a are even-like. We now present the source code along

with adequate documentation.

******************************************************************

# Function that returns the coefficient of the Krawtchouk polynomial

Kraw := proc(j, x, n, q)

local coeff, k;

coeff:= sum((-1) ˆ k * (q * q - 1) ˆ (j - k) * binomial(x, k)

* binomial(n - x, j - k), k = 0..j);

return coeff;

end proc;

******************************************************************
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******************************************************************

# This method takes as input the parameters of the

# code and then attempts to find a set of integral solutions

# to the set of linear programming constraints

CalcBounds := proc(n, k, d, q, p)

numCon := n + 4; # Variable that denotes number of constraints

numVar := n + 1; # Variable that denotes number of variables

curCon := 1; # Current constraint number

# Generate a matrix numVar ×1 that contains the variables.

# This part of the code will change depending on the value of n

# For example, if the value of n is 13 then the list will hold values

# up to [a13]

var := Matrix(numVar, 1, [[a0], [a1], [a2], [a3], [a4], [a5], [a6]]);

# Generate the matrix that contains the coeffs. of all the variables

# in the constraints. This matrix contains all 0’s initially

coeff := Matrix(numCon, numVar);

# Constraint corresponding to A0 = 1

coeff[curCon, 1] := 1;

curCon := curCon + 1;

# Constraint corresponding to
∑n

i=0Ai = qn−k

for i from 1 to n + 1 do
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coeff[curCon, i] := 1;

end do;

curCon := curCon + 1;

# Next set of constraints involving the distance relationships

for i from 0 to n do

coeff[curCon, i + 1] := q ˆ (n - k);

for j from 0 to n do

coeff[curCon, j + 1] := coeff[curCon, j + 1] - Kraw(i, j, n, q);

end do;

curCon := curCon + 1;

end do;

# Constraint corresponding to An ≥ q2 − 1

coeff[curCon, n + 1] := 1;

curCon := curCon + 1;

# Implicitly include the divisibility criteria here

coeff := (q * q - 1) * coeff;

for i from 1 to numCon do

coeff[i, 1] := coeff[i, 1] / (q * q - 1);

end do;

D := coeff.var;
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#Declare a list here that will hold all the constraints

L := list(numCon);

curCon := 1;

#Generate the first constraint

L[curCon] := (D[curCon, 1] = 1 );

curCon := curCon + 1;

#Generate the next constraint

L[curCon] := (D[curCon, 1] = q ˆ (n - k));

curCon := curCon + 1;

#Generate the next d constraints

for i from 0 to d - 1 do

L[curCon] := (D[curCon, 1] = 0);

curCon := curCon + 1;

end do;

# Generate constraints d to n

for i from d to n do

L[curCon] := (D[curCon, 1] ≤ 0);

curCon := curCon + 1;

end do;

# Generate the next constraint

L[curCon] := (D[curCon, 1] ≥ (q * q - 1));

curCon := curCon + 1;
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# Now convert the list of constraints to a set

# because the ilp function requires that

constraints := convert(L, set);

# Now call the ilp solver

s := ilp(0, constraints, NONNEGATIVE);

end proc;

******************************************************************
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