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ABSTRACT 
 

Visualization of Cellular Mechanisms Regulating Differential Neuronal Synapse 

Formation.  (August 2004) 

Joshua Paul Neunuebel, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Mark J. Zoran 

 
 
Over thirty years ago electrical coupling was observed in embryonic cells prior to 

chemical communication.  This temporal relationship of electrical coupling preceding 

functional chemical neurotransmission occurs throughout neurogenesis, prompting the 

idea that gap junctional coupling synchronizes the synaptogenic establishment of 

functional neural networks.  Helisoma neuronal pairs treated with trophic factors exhibit 

increased electrical coupling and subsequently delay the formation of inhibitory chemical 

connections.  Studies in this thesis addressed the mechanism regulating this inverse 

relationship between electrotonic and chemical communication. 

Synaptogenesis between two neurons from the Helisoma buccal ganglia, B110 

and B19, were examined using alternative culturing conditions that were either exposed 

to or deprived of trophic factors.  Incubating neuronal pairs in trophic factors induced 

transient electrical synapses and postponed the formation of chemical connections.  In 

electrically coupled neuronal pairs, presynaptic secretory vesicles were recruited to the 

sites of presynaptic contact, but did not respond to calcium elevation (i.e., photolytic 

release of calcium from NP-EGTA) with neurotransmitter release.  These and other 

studies demonstrated that transient electrical coupling does not disrupt calcium handling 

or postsynaptic responsiveness.  Rather, electrotonic coupling delays chemical synaptic 
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transmission by imposing a functional block between the accumulation of presynaptic 

calcium and the synchronized vesicular release of neurotransmitter.     
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CHAPTER I 
 

GENERAL INTRODUCTION 

 

Electrical coupling, mediated by gap junctions, exists transiently between neurons and 

targets in both developing and regenerating nervous systems.  These transient electrical 

synapses constitute a temporary mechanism of cellular communication, where signaling 

occurs when ions and small molecules pass through junctional pores into neighboring 

cells (Veenstra et al., 1995; Nicholson and Bruzzone, 1997; Bennett and Zukin, 2004).  

Electrotonically coupled cells are present during the development of the spinal cord.  For 

example, Xenopus neurons maintain electrical connectivity until Na+ spikes emerge 

(Spitzer, 1982).  The developing mammalian neocortex transiently expresses gap 

junctions, which possibly coordinate the mitotic phases in groups of clonally-related cells 

(Bittman et al., 1997; reviewed in Sutor, 2002).  In addition to embryonic development, 

transient electrical synapses exist following axotomy of mammalian PNS neurons, which 

suggests a role in regeneration (Chang et al., 2000).   

Despite appearing in both developing and regenerating nervous systems, the role 

of these short-lived intercellular connections remains elusive.  Since transient electrical 

coupling often occurs prior to the formation of chemically transmitting synapses, a role 

for gap junctional coupling in the synaptogenic establishment of functional neural 

networks has been suggested (reviewed in Kandler and Katz, 1995).  A temporal pattern 

of electrical communication preceding chemical connectivity exists during the 

development of frog neuromuscular junctions (Allen and Warner, 1991), both vertebrate 

and invertebrate visual systems (Curtin et al., 2002; Penn et al., 1994), and mouse motor 

neurons (Personius et al., 2001).  Several recent studies have implicated a functional 

interaction between these two forms of neurotransmission during synaptic development.  

First, chemical neurotransmission is inhibited in neonatal rats as electrical coupling 

increases (Mentis et al., 2002; Pastor et al., 2003).  Second, trophic factor-induced 

enhancement of electrical connectivity delays the onset of functional chemical 

neurotransmission at regenerating synapses (Szabo et al., 2004).  

                                                 
  This thesis follows the style and format of Neuron. 
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 Helisoma motor neurons B19 and B110, while regenerating synapses in cell 

culture, exhibit transient electrical connections that are maintained for several days.  

Intercellular electrical coupling is subsequently replaced by inhibitory chemical synaptic 

transmission at these synapses and the acquisition of functional neurotransmission is 

correlated with decline in gap junctional communication (Szabo et al., 2004).  This 

inverse relationship between electrical and chemical transmission is virtually identical to 

the pattern of synaptogenesis observed between these neurons following axotomy in vivo 

and suggests that electrical synaptic mechanisms facilitate the exclusion of functional 

chemical neurotransmission at developing synapses.  Since the nature of both electrical 

and chemical synapse formation has been extensively examined in Helisoma neurons 

(Bulloch et al., 1980; Bulloch and Kater, 1981; Hadley et al., 1982, 1983, 1985; Haydon 

and Kater, 1988; Zoran et al., 1996) and giant somatic synapses allow for precise spatial 

and temporal resolution of synaptic properties (Haydon and Zoran, 1989; Hamakawa et 

al., 1999; Szabo et al., 2004), I have used this system to test the hypothesis that electrical 

coupling mediates the functional exclusion of chemical neurotransmission at synaptic 

contacts formed between Helisoma neurons 110 and 19 in cell culture.   

This thesis has been divided into four chapters.  Following this brief introduction 

to the research topic (Chapter I), I will summarize the critical background literature 

(Chapter II) necessary to provide the reader with a fundamental knowledge of electrical 

and chemical neurotransmission and a historical perspective on research in synaptic 

transmission, especially as it applies to this master’s research.  I will also describe the 

Helisoma buccal nervous system and the relevant aspects of this animal’s 

neurophysiology, cell biology, and neuroethology.  Finally, I will indicate the relevance 

of this project to the field of medical science. 

Chapter III embodies the bulk of my research, excluding several preliminary and 

functional experiments that will not be discussed in this venue.  This section is written in 

scientific manuscript format, following the style of the journal Neuron, and is subdivided 

into conventional sections.  The studies described in Chapter III have examined the 

potential role of electrotonic/biochemical coupling in the 1) regulation of voltage-

dependent calcium accumulation, 2) shunting of presynaptic calcium by cell to cell 

diffusion, 3) regulation of postsynaptic receptor sensitivity, and 4) the developmental 
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mobilization of the presynaptic secretory vesicles.  My data suggest that transient 

electrical coupling does not disrupt these fundamental mechanisms of chemical 

neurotransmission, but rather mediates a functional block between the accumulation of 

presynaptic calcium and synchronized, vesicular release of neurotransmitter. 

The final section (Chapter IV) is a general conclusion that addresses the role that 

transient electrical synapses might play in shaping a neural network and intertwines my 

results with current opinions in neural development.           
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CHAPTER II 

LITERATURE REVIEW 

HISTORICAL DEBATE 

 Soon after Ramon Cajal and others had established that nervous systems consists of 

interconnected cells called neurons, research and argument became focused on how these 

neurons communicate with each other.  One side, composed largely of pharmacologists, 

favored a chemical means of transmission.  They were opposed by a group of 

electrophysiologists that supported the direct transfer of a presynaptic electrical signal 

into the postsynaptic cell.  From 1910 to 1911, Henry Dale and George Barger discovered 

and synthesized structures from extracts of ergot fungus that mimicked autonomic nerve 

stimulation.  Further evidence supporting the existence of chemical neurotransmitters 

came in 1920 when Dale’s friend and collaborator, Otto Loewi, performed a landmark 

but controversial experiment.  Loewi excised a frog heart with the vagus and accelerator 

nerves still attached, and then a second heart that lacked innervation.  After stimulating 

the vagus nerve, the media from the first heart was transferred to the bathing solution of 

the second heart.  This exogenous media caused a decrease in the contraction rate of the 

second heart, mimicking the effect that vagal stimulation had on the first.  Loewi claimed 

that a chemical messenger was released from these nerves, which he called Vagusstoff.  

Electrophysiologists responded with the argument that the duration of time required to 

release a chemical neurotransmitter and generate a postsynaptic response could not 

account for the rapid signaling necessary in the central nervous system.  Nonetheless, 

acetylcholine was soon shown to be the principal chemical neurotransmitter at vertebrate 

neuromuscular junctions (Dale and Dudley, 1929) and sympathetic and parasympathetic 



 

. 

5

ganglia (Dale and Feldberg, 1934a, 1934b).  Additionally, the level of hyperpolarization 

recorded with intracellular microelectrodes could not be induced electrically, but 

inhibition in the CNS resulted from chemical transmission (Brock et al., 1951).  These 

studies helped convince skeptics that chemical neurotransmission was a viable form of 

communication, even those vocally-opposed to the idea such as Sir John Eccles.  Yet the 

belief that the propagation of an eddy current from pre- to postsynaptic neurons was not 

lost.   

In the late fifties, a wealth of information supported the notion that electrical 

synapses could mediate excitatory signals.  Akira Watanabe revealed that electrotonic 

transmission occurs in cardiac ganglion neurons of Squilla.  This form of electrical 

coupling was proposed to synchronize neuronal firing as the signal passed through a 

cytoplasmic continuity (Watanabe, 1958).  Another example of electrical transmission, 

the quintessential finding, was observed in the crayfish giant fiber system in which an 

excitatory current mediates a rapid escape reflex (Furshpan and Potter, 1959).  The first 

example of electrical synapses in a vertebrate model system, discovered by Michael 

Bennett, Stanley Crain, and Harry Grundfest, were located in the supramedullary neurons 

of the pufferfish (reviewed in Bennett, 1997).  Clearly, evidence for dual forms of 

neuronal communication exists in the nervous system, but these signaling processes serve 

different functions throughout neural networks.  A summary of the structure and function 

of each follows.                
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ELECTRICAL SYNAPSES 

After the discovery of intracellular gap junctional communication in the crayfish 

(Furshpan and Potter, 1959), critics claimed that electrical coupling was limited to lower 

invertebrates needing to synchronize their reflexes; however, this was not the case.  In 

1971, Baker and Llinas revealed electrotonic coupling in the mesencephalic trigeminal 

nucleus of the mammalian midbrain/brainstem, which gave rise to an explosion of 

discoveries exposing the vast coupling within the nervous system.  For example, 

observation of extensive coupling occurred in the forebrain, in the regions of the external 

plexiform (Landis et al., 1974), internal granular layers (Reyher et al., 1991), piriform 

cortex (De Zeeuw et al., 1997), neocortex (Sloper, 1972), hippocampus (MacVicar and 

Dudek, 1981), dentate gyrus (MacVicar and Dudek, 1982), dorsal septal nucleus (Phelen 

et al. 1993), nucleus accumbens (O’Donnell and Grace, 1993), striatum (Cepeda et al., 

1989), and the Islands of Calleja (Ribak and Fallon, 1982).  Additionally, electrical 

synapses exist in the paraventricular and supraoptic nuclei of the diencephalons (Andrew 

et al., 1981) and the cerebellar cortex (Sotelo and Llinas, 1972), substantia nigra (Grace 

and Bunney, 1983), locus coeruleus (Travagli et al., 1995), and inferior olive (Llinas et 

al., 1974).  Gap junctional intracellular communication is not limited to the brain, but also 

extends into other areas of the nervous system.  Both the retina and spinal cord possess 

the ability to communicate in this manner (Vaney, 1994; Rash et al. 1996).  In 1967 

Michael Bennett used the pufferfish to demonstrate that connexins were the 

ultrastructural component of electrical transmission (Bennett et al., 1967a, 1967b), which 

became an excellent model system to study the structure and method of communicating 

in electrical synapses.        



 

. 

7

Gap junctions provide the physical bases for the formation of regulatory syncytia 

between juxtaposed cells with respect to ions and small molecular weight molecules.  The 

vertebrate gap junctional composition consists of a hemichannel (connexons), which 

contains six oligomerized connexins in the membrane of a cell, pairing with the 

connexons of an adjacent cell (Laird, 1996; Kumar and Gilula, 1996; Alexander and 

Goldberg, 2003).  In invertebrates, innexin proteins oligomerize forming the 

hemichannels (Phelan and Starich, 2001), but maintain similarity to vertebrate gap 

junctional proteins both in topology and function (Phelan et al, 1998; Landesman et al., 

1999; Stebbings et al., 2000).  For vertebrates, connexins are a family of proteins 

indispensable in pore formation.  These proteins consist of four hydrophobic domains 

spanning across the cellular membrane (reviewed in Harris, 2001).  The amino-and 

carboxy-terminals, in addition to the loop linking the second and third membrane 

spanning regions, are accessible from the cytoplasm (Milks et al., 1988; Yancey et al. 

1989; Laird and Revel, 1990; Yeager and Gilula, 1992).  Whereas, the domains between 

first and second and between the third and fourth are accessible from the extracellular 

space (Goodenough et al., 1988; Milks et al., 1988; Laird and Revel, 1990).  In Cx43, 

each hydrophobic segment is an alpha helical structure revealed from electron cryo-

microscopy (Unger et al., 1997).  By analogy, the corresponding domains in the other 

connexins are presumed to be α-helical, while the only significant difference in this 

family of proteins results from variations in the length of the carboxy-terminal (Harris, 

2001; Table 1).  Different permutations of these proteins oligomerize creating half the 

gap junctional channel.   

Structurally, gap junctional channels are quite diverse.  For example, homomeric,  
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Table 1. Distribution of Connexin Expression in the Central Nervous System 
Cellular types Connexin Reference 
Astrocytes Cx26 Alvarez-Maubecin et al., 2000 
 Cx30 Nagy et al., 1999 
 Cx40 Dermietzel et al., 2000 
 Cx43 Dermietzel et al., 1989 
 Cx45 Dermietzel et al., 2000a 
 Cx46 Dermietzel et al., 2000b 
 Cx47 Rouach et al., 2002 
Oligodendrocytes Cx29 Sohl et al., 2001 
 Cx32 Dermietzel et al., 1989 
 Cx36 Parenti et al., 2002 
 Cx45 Dermietzel et al. 1989 
Neurons Cx26 Dermietzel et al., 1989 
 Cx32 Dermietzel et al., 1989 
 Cx36 Condorelli et al., 1998 
 Cx37 Chang et al., 1999 
 Cx40 Chang et al., 1999 
 Cx43 Nadarajah et al., 1996 
 Cx45 Chang et al., 1999 
 Cx47 Teubner et al., 2001 
Neuronal  Cx26 Bittman and LoTurco, 1999 
Precursors Cx33 Rozental et al., 1998 
 Cx40 Rozental et al., 1998 
 Cx43 Rozental et al., 1998 
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heterotypic, and heteromeric junctional channels are three different motifs.  For 

homomeric junctional channels, both connexon arrangements consist of a single connexin 

isoform (Harris, 2001).  These conduits have radial symmetry around a central pore that 

is approximately 40 Å at the cytoplasmic lumen, tapers to roughly 15 Å, and then 

expands to 25 Å within the extracellular vestibule (Yeager and Nicholson, 1996).  These 

dimensions permit molecules under 2 kDa to diffuse into a neighboring cell (Phelan and 

Starich, 2001).  The two hemichannels are not aligned so that homologous connexin 

monomers are positioned directly above each other, but instead one channel is rotated 30 

degrees; thus, staggering the proteins so that each monomer is directly positioned 

between two monomers in the apposing hemichannel (Unger et al., 1997; Perkins et al., 

1998).  Heterotypic junctional channels have one hemichannel containing only a single 

connexin isoform and the other channel has a different connexin isoform repeat (i.e., 

channel one contains six Cx38s and the second hemichannel contains six Cx41s).  

Heteromeric hemichannels are hemichannels composed of multiple different connexins 

(Harris, 2001).  These structural deviations provide cells with opportunity to regulate 

channel physiologies and govern the permeability to ions and other messengers 

propagating through the porous junction.                

Electrotonic transmission transpires when a presynaptic neuron depolarizes and 

the influx of ions diffuse into the postsynaptic cell.  Similar to chemical synapses, 

voltage-gated ion channels must produce enough current to surpass the threshold 

necessary to generate an action potential, and also generate sufficient ionic current to 

produce a change in postsynaptic membrane potential.  Based on the experiments of 

Furshpan, Potter, and Watanabe, electrical transmission mediates two different functions: 
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(1) transmitting excitation from an active axon to a postsynaptic cell, and (2) 

synchronizing activity of cell bodies, in which coupling is both excitatory to the less 

depolarized cell and inhibitory to the more depolarized cell, since current flowing to 

depolarize one cell is making the other cell less depolarized (Bennett, 1997).  The 

passage of eddy current into the postsynaptic neuron requires a high degree of regulation 

that is conducted by phosphorylating or dephosphorylating the carboxy-terminal region 

of connexins.  Many of the connexins not only contain consensus phosphorylation 

sequences for protein kinases, but experiments also showed that this enzymatic activity 

occurred on the carboxy-terminal of assorted connexins (Lampe and Lau, 2000).  The 

crucial influence of the carboxy-terminal region on channel function was illustrated when 

a truncated Cx43 mutant in Xenopus oocytes exhibited different permeability and 

electrophysiological properties than those formed by wild-type Cx43 (Dunham et al., 

1992).  Differential effects on the gating of gap junctional communication occur resulting 

from variations in both the method and object of phosphorylation.  When 

phosphorylating Cx32 and subsequently increasing gap junctional communication, T84 

cells physiologically respond with increases in fluid secretion (Chanson et al., 1996).  In 

pancreatic cells expressing Cx45, an increase in electrotonic communication occurred 

only in the presence of a functional cAMP-gated chloride channel (Chanson et al., 1999).  

Gap junctional communication increases after some connexins are phosphorylated; 

however, this is not the case for all connexins.  Cx43 channels reconstituted into lipid 

vesicles were phosphorylated by purified MAP kinase and the permeability of the 

liposomes decreased significantly (Kim et al., 1999).  The phosphorylation of Cx43 by 

PKC, stimulated by the phorbol ester tumor promoter (TPA), decreased dye coupling in 
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rat epithelial cells; thus, implying that TPA disrupts gap junctional communication after 

protein phosphorylation (Lampe et al., 2000).  Additionally, EGF treatment of rat liver 

epithelial cells resulted in a transient disruption of gap junctional communication that 

correlated with a marked increase in phosphorylation of Cx43 (Lau et al., 1992).  

Obviously, gap junctional communication is a tightly regulated process necessary for 

synchronizing neural networks both during and after development. 

  

ELECTRICAL SYNAPSES IN DEVELOPMENT  

Intercellular coupling is prevalent during vertebrate embryogenesis.  For example, cells 

in the neural fold of amphibians are permanently coupled to other neural cells and 

evanescently coupled to surrounding ectodermal cells (Warner, 1973).  Xenopus neurons 

are extensively coupled during the differentiation of the neural tube into the spinal cord; 

however, coupling decreases following this developmental progression (Spitzer, 1982).  

This pattern of transient coupling preceding chemical connectivity is also common 

throughout the development of the rat brain (Connors et al., 1983; Christie et al., 1989; 

Walsh et al., 1989; Walton and Navarrete, 1991).  The timing of this phenomenon 

fluctuates in different neuronal populations, insinuating that in different systems, 

electrotonic transmission contributes to different functions or interferes with new 

neuronal processes (Kandler and Katz, 1995; Table 2).  Uncoupling occurs simultaneous 

to synaptogenesis in rat spinal cord neurons (Walton and Navarrete, 1991), cerebral 

cortex (Connors et al., 1983; Peinado et al., 1993), and locus coeruleus (Christie et al., 

1989).  Furthermore, the chick otocyst sensory epithelium exhibits ephemeral coupling 

before and during early synapse formation (Ginzberg and Gilula, 1979).  Invertebrates  
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Table 2.  Expression of Transient Electrical Coupling  
System Time Location Possible Function References 
Frog Development spinal cord synchronizes motor 

neurons 
Spitzer, 1982 

Frog Development nmj establishing a 
functional neural 
networks  

Allen and Warner, 
1991 

Grasshopper Development DUM 
neurons 

coordinates 
differentiation 

Goodman and Spitzer, 
1979 

Rat Development spinal cord synchronizes motor 
neurons 

Walton and Navarrete, 
1991 

Rat Development cerebral 
cortex 

??? Conors et al., 1983 

Rat Development cerebral 
cortex 

temporal coordination 
of neuronal ensembles 
during circuit formation 

Peinado et al., 1993 

Rat Development locus 
coeruleus 

synchronize 
subthreshold activity 

Christie et al., 1989 

Rat Development retina synchronize 
biochemical activity  

Penn et al., 1994 

Rat Development neostriatum contributes to the 
differentiation and 
growth of neurons 

Walsh et al., 1989 

Rat Regeneration motor 
neurons 

may mediate signaling 
until reestablishing 
synaptic connections  

Chang et al., 2000 

Cat Regeneration motor 
neurons 

may mediate signaling 
until reestablishing 
synaptic connections  

Chang et al., 2000 

Snail Regeneration motor 
neurons 

Delays chemical 
neurotransmission 

Szabo et al., 2004 

 



 

. 

13

also display similar patterns of electrical synapse formation during development.  For 

instance, downregulating gap junctional communication in DUM neurons of the 

grasshopper correlates with the appearance of Na+ spikes (Goodman and Spitzer, 1979).  

In Helisoma, both in vitro and in vivo, transient electrical coupling occurs prior to the 

onset of chemical neurotransmission (Szabo et al., 2004).  The demonstration of specific 

neuronal coupling patterns during synaptogenesis raises the possibility that gap junctions 

can create functional communication compartments within neuronal populations, which 

might guide the subsequent development of organized synaptic connections (Kandler and 

Katz, 1995).  Transient electrical coupling might precede chemical communication in 

many systems, but the mechanism prompting the switch remains enigmatic. 

 

CHEMICAL SYNAPSES 

Chemical neurotransmission depends on synaptic vesicles fusing with the presynaptic 

membrane and exocytosing their vesicular contents following an influx of calcium.  

Synaptic vesicles consist of two functionally distinct domains referred to as the reserve 

and readily-releasable pools.  These two pools differ in the strength of stimulation 

necessary for release, location in the neuron, and the relative sizes of the clusters.  

Vesicles in the reserve pool, approximately 100-200 nm from the active zone, cluster 

together and bind to actin utilizing synapsin proteins (Brodin et al., 1997; Pieribone et al., 

1995; Takei et al., 1995; Hilfiker et al., 1999).  This synapsin-dependent pool requires a 

high frequency (18-20 Hz) stimulation to generate transmitter release; ablating the pool 

by injecting synapsin antibodies causes release to occur during low frequency stimulation 

(Pieribone et al., 1995).  Using bafilomycin A1 to prevent the reuptake of transmitter, data 
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support the notion that the readily-releasable pool recruits synaptic vesicles from the 

larger reserve pool following high frequency tetanic stimulation (Kuromi and Kidokoro, 

2003).  On the other hand, the readily releasable pool differs considerably from the 

reserve pool and other fusion-competent vesicles in different neurons.  At mammalian 

hippocampal synapses, application of a hypertonic solution generates vesicle exocytosis 

from the readily-releasable pool (Rosenmund and Stevens, 1996); whereas, goldfish 

retinal bipolar neurons require a short pulse of strong depolarizing current for 

neurotransmission (von Gersdorff et al., 1996).  The readily-releasable vesicles at the 

Drosophila neuromuscular junction are defined as the endo-exo cycling pool and released 

either by injecting a depolarizing current or through high K+ depolarization (Kuromi and 

Kidokoro, 1998).   In essence, the readily-releasable pool consists of a small number of 

synaptic vesicles that are capable of fusing with the adjoining membrane and is secreted 

in an activity-dependent fashion.     

 The complicated process of releasing chemical neurotransmitters from the active 

zone requires precise temporal and spatial coordination of the synaptic proteins that 

govern calcium-dependent exocytosis.  Synaptic vesicles undergo a five step process 

during neurotransmission, which is regulated through a series of 

phosphorylation/dephosphorylation enzymatic pathways, and consists of vesicular 

mobilization, priming, docking, fusion, and endocytosis (reviewed in Li and Chin, 2003; 

Table 3, Table 4).   Vesicles from the reserve pool are recruited after detaching from the 

actin cytoskeleton following the phosphorylation of a linker protein, synapsin I (Doussau 

and Augustine, 2000).  A decreased affinity for both actin filaments and synaptic vesicles 

results from Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) inducing a  
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Table 3.  Enzymatic Phosphorylation of Synaptic Proteins 
Name Enzyme Reference 

Mobilization   

     Synapsins   

          I 

CaMKI, 
PKA, 
MAPK, 
CaMKII 

Greengard et al., 1993; Jovanovic et al., 1996 

          II CaMKI, 
PKA Greengard et al., 1993 

Docking   

     Rab 3 ???  

     Rabphilin CaMKII, 
PKA Fykse and Sudhof, 1995 

     PRA1 ???  

     Calmodulin ???  

     Exocyst ???  

Priming   

     RIM ???  

     Synaptobrevin CaMKII, 
PKC Bennett et al., 1993 

     SNAP-25 CaMKII, 
PKC Hirling and Scheller, 1996 

     Syntaxin CK2 Nielander et al., 1995; Shimazaki et al., 1996 

     Munc18/nSec1 PKC, 
Cdk5 Fujita et al., 1996; Shuang et al., 1998 

     Complexins ???  

     Munc13 ???  

Fusion   

     Synaptotagmin CK2, 
CaMKII Bennett et al., 1993; Popoli, 1993 

Endocytosis   

     NSF CaMKII Hirling and Scheller, 1996 

     SNAP CaMKII, 
PKA Hirling and Scheller, 1996 

     Staring ???  
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Table 4.  Synaptic Proteins Affiliated With Chemical Neurotransmission  
Name Functions  Reference 
Mobilization   

     Synapsins phosphorlation permits vesicles to move into active zone   Doussau and 
Augustine, 2000 

Docking   

     Rab 3 traffics vesicles to active zones; couples exocytosis and 
endocytosis   

Nonet et al., 1997; 
Geppert et al., 1997; 
Coppola et al., 2001b 

     Rabphilin GTP-bound Rabs effector protein; regulates exocytosis 
and endocytosis  

Burns et al., 1998; 
Coppola et al., 2001a 

     PRA1 Rab3 effector protein; involved in inserting 
synaptobrevin into vesicles; targeting 

Martincic et al., 1997; 
Gougeon et al., 2002 

     Calmodulin effector protein; Rab3 and synaptic vesicle dissociation Park et al., 1997 

     Exocyst large conglomerate of proteins that aid in vesicle 
docking Hsu et al., 1999 

Priming   
     RIM coordinates the components that regulate transmission Hibino et al., 2002 

     Synaptobrevin SNARE integral membrane protein located on synaptic 
vesicles Trimble et al., 1988 

     SNAP-25 part of SNARE complex localized to target membrane Oyler et al., 1989 

     Syntaxin part of SNARE complex bound to target membrane; 
binds synatotagmin & N-type Ca2+ channel  Bennett et al., 1992 

     
Munc18/nSec1 

prevents closed conformation of syntaxin from 
interacting with synaptobrevin and SNAP-25 Dulubova et al., 1999 

     Complexins regulate fast Ca2+-triggered release, Reim et al., 2001 
     Munc13 switches syntaxin to open conformation Betz et al., 1997 
Fusion   
     
Synaptotagmin calcium sensing protein that mediates vesicle fusion Mackler et al., 2002 

Endocytosis   

     NSF disassembles SNARE complex; regulates number of 
readily releasable vesicles Sollner et al., 1993 

     SNAP regulates number of readily releasable vesicles Tolar and Pallanck, 
1998 

     Staring regulates degradation of syntaxin 1 through ligase 
activity  Chin et al., 2000 

Cytoskeleton   
     Bassoon scaffolding protein; helps assemble machinery  Dresbach et al., 2001 
     Piccollo scaffolding protein; helps assemble machinery  Dresbach et al., 2001 
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conformational change in the protein (Benfenati et al., 1990; Schiebler et al. 1986; Bahler 

and Greengard, 1987).  After separation, the vesicles become competent to migrate to the 

active zone and dock with the presynaptic membrane. 

 Synaptic vesicles in the docking stage of transmission enter the active zone and 

join the readily-releasable pool.  This cytomatrix of the active zone contains a high 

density of a derivative of the cortical cytoskeleton and presumed to direct vesicles to the 

plasma membrane (Dresbach et al., 2001).  Rab3 and exocyst, two key players in 

docking, regulate vesicular guidance.  When GTP binds to Rab3, a structural change 

occurs that permits the protein to bind to synaptic vesicles and guide them to the 

membrane (Pfeffer, 2001).  Data gathered from C. elegan Rab3 loss-of-function mutants 

support the notion that Rab3 functions as a guidance molecule, since synaptic vesicles 

accumulate in the axon and levels decrease at the synaptic bouton (Nonet et al., 1997).  

Exocyst, a large conglomerate of proteins, initiates the tethering of vesicles to the 

membrane (Pfeffer, 1999).  Once in the proper position, the vesicles enter a priming 

stage.  

 Exocytosis requires fusion competent vesicles to make contact with the 

presynaptic membrane, preparing the vesicle for release.  Soluble N-ethylmaleimide-

sensitive fusion protein receptors (SNAREs), three structures comprising the core of the 

exocytic machinery, are necessary for this process.  In the SNARE hypothesis, the vesicle 

bound synaptobrevin (v-SNARE) forms a stable four-helix bundle with the target 

membrane receptors, syntaxin (t-SNARE) and SNAP-25, and effectively pulls the two 

membranes into close proximity (Sollner et al., 1993; Sutton, 1998).  SNAP-25 links the 

two integral membrane receptors to each other, but conformational changes in syntaxin 
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regulate the process.  In isolation, the amino-terminal of syntaxin folds onto the carboxy-

terminal, which increases the affinity for Munc18, an inhibitory protein (Dulubova et al., 

1999).  This structural modification prevents interaction with the core complex until 

Munc13 causes t-SNARE and Munc18 to dissociate (Betz et al., 1997).  After the 

SNARE complex associates, the vesicles are fusion competent and await a signal to 

initiate the release of chemical neurotransmitter.  

 The rapid process of chemical communication, approximately 200 µs from Ca2+ 

influx to postsynaptic receptor response, requires a rapid kinetic response in the sequence 

of events governing exocytosis.  Following membrane depolarization in mammalian 

systems, voltage gated calcium channels switch to the open conformational state, thus 

creating an influx of calcium (Hanlon and Wallace, 2002).  Surprisingly, calcium entry in 

Lymnaea and other invertebrates depends on a splice variant of the calcium channel that 

interacts with the adaptor proteins Mint-1 and CASK (Spafford et al., 2003).  

Synaptotagmin, the calcium sensing protein, possess a weak affinity for syntaxin before 

calcium ions enter the cell; however, ionic influx results in a tighter binding between the 

two proteins (Koh and Bellen, 2003).  Additionally, calcium increases the affinity 

between synaptobrevin and the core complex (Hu et al., 2002).  The compact 

configuration of the four proteins causes the two membranes to fuse, creating a pore that 

permits the preliminary release of neurotransmitters, and eventually, the neuronal 

membrane incorporates the entire vesicular membrane (Koh and Bellen, 2003).  After 

exocytosis, NSF and SNAP disassemble the components of the synaptic vesicles and the 

cycle of chemical neurotransmission is repeated (Weber et al., 2000).   
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MIXED SYNAPSES 

Active neuronal communication does not exclusively result from either chemical or 

electrical transmission, but in many instances dual forms of communication at the same 

synapses are prevalent.  Mixed synapses reside in many invertebrate nervous systems 

(Maniya et al., 2003), in the spinal cord of both mammalian (Rash et al., 1996) and 

primitive fishes (Christensen, 1983).  Additionally, electrotonic and chemical 

postsynaptic potentials exist in Mauthner cells of the goldfish (Lin and Faber, 1988).  

These composite, mixed synapses function as a single synaptic unit and are thought to act 

to synchronize the firing of neurons within a network and subserve rhythm generation.  

The electrical component of the synapse might provide a less use-dependent 

communication; whereas, the chemical component might show facilitation and 

depression of synaptic transmission. 

 

HELISOMA MODEL SYSTEM 

The buccal ganglia and associated structures in feeding behavior have been extensively 

examined to determine the physiological properties regulating the function of neural 

networks (Bulloch and Kater, 1981; Bulloch et al., 1980; Hadley et al., 1982, 1983, 1985; 

Haydon and Kater, 1988; Zoran et al., 1996).  The neuronal model predicted to pattern 

feeding requires triphasic neuronal activity (Quinlan and Murphy, 1991, 1996; Quinlan et 

al., 1995, 1997).  These phases include protraction (phase 1), retraction (phase 2), and 

hyper-retraction (phase 3), in which neurons are either inhibited or excited (reviewed in 

Murphy, 2001).  In neuron B110, excitation occurs during both retraction and hyper-
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retraction of the radular feeding structure.  This motorneuron peripherally innervates the 

SLrT muscle via extending axonal projections through the ventrobuccal and laterobuccal 

nerves.  Another neuron, B19, also has axonal branches in the ventrobuccal nerves that 

innervate the SLrT; however, excitation occurs during the hyper-retraction phase.  

Despite innervating the same peripheral muscle, neurons B110 and B19 do not elicit 

direct neuronal communication after development; this is not the case during 

regeneration. 

Helisoma motor neurons B19 and B110, while regenerating synapses in cell 

culture, exhibit transient electrical connections that are maintained for several days. 

Intercellular coupling is subsequently replaced by inhibitory chemical synaptic 

transmission at these synapses and the acquisition of functional neurotransmission is 

dependent on the suppression of gap junctional communication (Szabo et al., 2004).  This 

inverse relationship between electrical and chemical transmission is virtually identical to 

the pattern of synaptogenesis observed between these neurons following axotomy in vivo 

and suggests that electrical synaptic mechanisms facilitate the exclusion of functional 

chemical neurotransmission at developing synapses.  A bidirectional electrical connection 

forms between neurons B19 and B110 two days following commissural crush, and is only 

faintly detectable by the fourth day (Szabo et al., 2004).  As electrical coupling declines, 

a unidirectional chemical connection from neuron B110 onto neuron B19 emerges (Szabo 

et al., 2004).  By 5 weeks, these connections are lost (Szabo et al., 2004).  This in vivo 

phenomenon is recapitulated in cell culture by manipulating cells into contact and then 

exposing the cell pairs to trophic factors.  These trophic factors induce temporary 

electrotonic coupling between neurons, but the ability to generate an action-potential 
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evoked change in the postsynaptic membrane is impeded.  Consequently, it was 

hypothesized that electrical coupling mediated the functional exclusion of chemical 

neurotransmission at synaptic contacts formed between Helisoma neurons B110 and B19 

in cell culture. 

 

HYPOTHESES 

One of the implications of transient electrical coupling during development is that 

specific chemical synapses, perhaps at discrete locations, might be delayed in their 

formation.  Three plausible circumstances could explain the mechanism in which 

electrical coupling impedes chemical neurotransmission.  First, gap junctional proteins 

might spatially prevent neurotransmitter machinery from accessing the presynaptic 

membrane.  Second, gap junctions might functionally exclude the components necessary 

to generate neurotransmitter secretion.  Finally, the presence of electrical synapses may 

exclude the development of secretory machinery.     

The ultrastructural changes to chemical synapses in the presence of junctional 

coupling remain unclear; however, the structural compositions of neurons and glia in 

fully developed buccal ganglia have been resolved.  The axonal processes of neuron B19 

contain gap junctions (Berdan et al., 1987).  Gap junction formation varies depending on 

cell type, but it arises from the insertion of hemichannels into the plasma membrane 

utilizing either polymerized actin or molecular motors transporting vesicles along intact 

microtubules (Johnson et al. 2002; Lauf et al. 2002).  These channels continue to 

accumulate at the periphery of existing gap junctions and contribute to gap junctional 

growth; thus forming gap junction plaques (Gaietta et al. 2002; Lauf et al., 2002).  
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Therefore, we hypothesize that the junctional machinery present in the synaptic 

membrane could interfere with the incorporation of presynaptic secretory machinery into 

this same area (i.e., a physical exclusion hypothesis).  That is, the spatial requirements of 

gap junctional plaques might exclude the placement of chemical synaptic machinery; 

thus, impeding the release of chemical neurotransmitter. 

A second mechanism explaining the inverse relationship between the increase in 

electrotonic coupling and the inhibition of chemical connectivity might result from 

functionally excluding molecules necessary for synaptic transmission.  This idea suggests 

that gap junctions would function as a conduit for calcium ions.  During action potential 

induced elevations, ions would readily diffuse down their concentration gradient from the 

presynaptic to postsynaptic cytoplasm.  Elevating the concentration of calcium to a 

minimum of 1.0 µM is mandatory for generating cholinergic neurotransmitter release in 

Aplysia californica (Ohnuma et al., 2001); therefore, such a molecular sink would 

decrease local concentrations and reduce the probability of action potential-evoked 

neurotransmitter release.  Indeed, morphologically mixed synapses and sites of 

colocalized chemical and electrical synaptic machinery, are not necessarily indicative of 

dual transmission (Lin and Faber, 1988; Rash et al., 1996). 

A third mechanism explaining inhibition of chemical neurotransmitter release 

might involve the exclusion of secretion machinery through the transient disruption of 

crucial developmental events.  In embryonic vertebrate neurons synaptic vesicle protein 

synthesis increases as a result of elevating mRNA levels and escalating the rate of 

translational initiation (Daly and Ziff, 1997).  This suggests that regulation could occur 

not only in the nucleus, but also in the cytosol.  Additionally, the distribution of synaptic 
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proteins is initially confined to the soma and neurites, but then redistributed during the 

developmental progression of synaptogenesis (Basarsky et al., 1994).  The exclusion 

hypothesis therefore proposes that signaling pathways directly conducted through gap 

junctions could inhibit the maintenance of the chemical synaptic machinery. 

Alternatively, intrinsic developmental programs orchestrating the formation of electrical 

and chemical synapses might involve mutually exclusive molecular cascades. Here, 

transcriptional or posttranscriptional regulatory pathways might select for the production 

of one type of synaptic machinery over the other. 

 

RELEVANCE TO MEDICAL SCIENCE 

Approximately 250,000 people in America currently suffer from debilitating spinal cord 

injuries, with 47% becoming paraplegic and 52% quadriplegic.  Recovering the lost 

function of injured neurons and damaged networks is crucial for significant physical 

rehabilitation.  Since transient electrical connections form following nerve injury in 

vertebrate spinal motor neurons and exist until proper chemical connectivity is reformed, 

it is likely that electrical coupling plays a fundamental role in regulating nerve 

regeneration.  Determining the basic physiological mechanisms underlying the 

relationship between electrical and chemical synapses during regeneration is critical to 

our understanding of these cellular events.   
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CHAPTER III 

ELECTROTONIC TRANSMISSION AT DEVELOPING SYNAPSES DISRUPTS 

CALCIUM-DEPENDENT EXOCYTOSIS DESPITE ENHANCING VESICLE 

MOBILIZATION 

 

Electrical coupling, mediated by gap junctions, exists transiently between neurons and 

targets in both developing and regenerating nervous systems.  These transient electrical 

synapses constitute a temporary mechanism of cellular communication, where signaling 

occurs when ions and small molecules pass through junctional pores into neighboring 

cells (Veenstra et al., 1995; Nicholson and Bruzzone, 1997; Bennett and Zukin, 2004).  

Electrotonically coupled cells are present in the development of the spinal cord, for 

example, Xenopus neurons maintain electrical connectivity until Na+ spikes emerge 

(Spitzer, 1982).  The developing mammalian neocortex transiently expresses gap 

junctions, which possibly coordinate the mitotic phases in groups of clonally related cells 

(Bittman et al., 1997; reviewed in Sutor, 2002).  In the developing vertebrate visual 

system, both ions and second messengers pass through gap junctions; thus, establishing 

the idea that these channels synchronize biochemical activity (Kandler and Katz, 1998).  

In addition to embryonic development, transient electrical synapses exist following 

axotomy of mammalian PNS neurons, which suggests a role in regeneration (Chang et 

al., 2000).  Despite appearing in both developing and regenerating nervous systems, the 

role of these short-lived intercellular connections remains elusive. 

Since transient electrical coupling occurs at many developing synapses prior to 

the onset of chemical neurotransmission, a role for gap junctional coupling in the 
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synaptogenic establishment of functional neural networks has been suggested (reviewed 

in Kandler and Katz, 1995).  A temporal pattern of electrical communication preceding 

chemical connectivity exists during the development of frog neuromuscular junctions 

(Allen and Warner, 1991), both vertebrate and invertebrate visual systems (Curtin et al., 

2002; Penn et al., 1994), and mouse motor neurons (Personius et al., 2001).  Chemical 

neurotransmission is inhibited in neonatal rats, when electrical coupling increases 

(Mentis et al., 2002; Pastor et al., 2003).  Furthermore, trophic factor-dependent 

expression of electrical connectivity delays the onset of functional chemical 

neurotransmission at regenerating synapses in Helisoma (Szabo et al., 2004).    

 Helisoma motor neurons B19 and B110, while regenerating synapses in cell 

culture, exhibit transient electrical connections that are maintained for several days.  

Intercellular coupling is subsequently replaced by inhibitory chemical synaptic 

transmission at these synapses and the acquisition of functional neurotransmission is 

dependent on the suppression of gap junctional communication (Szabo et al., 2004).  This 

inverse relationship between electrical and chemical transmission is virtually identical to 

the pattern of synaptogenesis observed between these neurons following axotomy in vivo 

and suggests that electrical synaptic mechanisms facilitate the exclusion of functional 

chemical neurotransmission at developing synapses.  Since the nature of both electrical 

and chemical synapse formation has been extensively examined in Helisoma neurons 

(Bulloch and Kater, 1981; Bulloch et al., 1980; Hadley et al., 1982, 1983, 1985; Haydon 

and Kater, 1988; Zoran et al., 1996) and giant somatic synapses allow for precise spatial 

and temporal resolution of synaptic properties (Haydon and Zoran, 1989; Hamakawa et 

al., 1999; Szabo et al., 2004), we have used this system to test the hypothesis that 
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electrical coupling mediates the functional exclusion of chemical neurotransmission at 

synaptic contacts formed between Helisoma neurons 110 and 19 in cell culture. In the 

present studies, we have examined the potential role of electrotonic/biochemical coupling 

in the 1) regulation of voltage-dependent calcium accumulation, 2) shunting of 

presynaptic calcium by cell to cell diffusion, 3) regulation of postsynaptic receptor 

sensitivity, and 4) the developmental mobilization of the presynaptic secretory vesicles.  

Our data suggest that transient electrical coupling does not disrupt these fundamental 

mechanisms of chemical neurotransmission, but rather mediates a functional block 

between the accumulation of presynaptic calcium and synchronized, vesicular release of 

neurotransmitter.    

 

EXPERIMENTAL PROCEDURES 

Animals  

Laboratory stocks of American pond snails, Helisoma trivolvis, were cultured in twenty 

gallon aquaria at 22ºC.  Snail cultures were maintained on a 12 hour light / 12 hour dark 

photoperiod and fed daily on a combination of trout chow and lettuce. 

Cell Culture 

Two motor neurons, B110 and B19, were isolated from buccal ganglia based on location, 

pigmentation, and morphology as previously described (Zoran et al., 1991; Poyer and 

Zoran, 1996).  Cells were placed in conditioned medium (CM) for three days, which 

allowed for absorption of original axons and the formation of spherical somata.  CM was 

prepared by incubating two ring-ganglia per 1 mL of defined medium (DM) in 

sigmacoated (Sigma, St. Louis, MO) glass culture dishes.  After three days, neurons were 
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paired and transferred to 35 mm plastic culture dishes (No. 1008 Falcon) containing 2 mL 

of medium for 24 hours.  The plastic culture dishes were made non-adhesive through 

pretreatment with a 0.5% solution of bovine serum albumin (BSA). 

Electrophysiology 

Electrophysiological experiments were conducted using intracellular, current-clamp 

techniques, while viewing and imaging preparations with an Olympus IX70 inverted 

microscope.  Dual glass electrodes (Borosil 1.5 mm, FHC), filled with 1.5 M KCl (10-20 

MΩ), were used for simultaneous recordings (pre-and postsynaptic) of neuronal pairs.  

Cell pairs were plated on poly-L-lysine (Sigma, St. Louis, MO) coated culture dishes 

(plastic or coverglass bottom) containing DM.  The neuronal membrane potential was 

held at approximately -75 mV before base current injection.  Electrical coupling was 

measured by injecting a hyperpolarizing step current using a Grass S48 stimulator and 

bridge-balanced electrometers (Model 5A, Getting Instruments, Inc.).  

Electrophysiological input signals were converted from analog to digital by MacLab 

software (ADInstruments) and a Macintosh computer.  The digitalized data were archived 

and later analyzed with MacLab Chart software.  Electrical coupling was calculated using 

the following formula: 

 ECC = (∆ Vm postsynaptic cell) / (∆ Vm presynaptic cell). 

Digital Microscopy   

Neurons were viewed at 40X magnification for differential interference contrast 

microscopy (DIC; objective, NA=0.6) or ratiometric calcium imaging (Fura-2 oil 

objective, NA=0.65).  For Fura-2 experiments, excitation light was emitted from a 

computer-controlled Lambda DG4 monochromator (Sutter Instrument Company).  The 
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excitation light path included passage through 1.0 or 1.3 neutral density transmission 

filters and the excitation filters (340 and 380 nm).  A dichroic mirror (400 nm) and 

emission filter (510 nm) were used for collection of emitted fluorescence.  A digital CCD 

camera (OreaER; Hamamatsu) collected 2 X 2 binning images at variable exposures. 

Intracellular Pressure Injections 

Sharp glass pipettes, with a tip diameter ranging from 0.5-1.0 µm, were created from 

capillary tubes (Borosil 1.5 mm, FHC) and either filled with internal solutions of 

fluorescent calcium indicators or NP-EGTA preloaded with calcium.  Solutions were 

pressure injected with a Picospritzer II (General Valve).  The duration of the injection 

pulses were 5-10 msec at 20-30 psi.  Solutions were injected until the diameter of the cell 

detectably increased by approximately 5-10%.  Therefore, the final cytosolic 

concentrations were lower than that contained in the pipette.         

Calcium Imaging 

Cells were loaded for one hour with the cell permeable calcium-sensitive probe Fura-2 

AM (Molecular Probes, Eugene, OR) at a final concentration of 5 µM in DM, or pressure 

injected (as previously described) with Fura-2, pentapotassium salt (Molecular Probes, 

Eugene, OR).  The membrane permeable calcium dye was washed from the cells by 

transferring them through two, 30 min DM baths.  After washing, the cells were plated on 

poly-L-lysine coated coverglass slides.  Cell pairs injected with the cell impermeable 

version of Fura-2 were plated prior to loading.   

Fura-2 fluorescence was viewed in the manner indicated earlier.  SimplePCI 

software (Compix, Inc.) was used to determine F340/F380 ratios for intracellular calcium 

concentrations from image pairs collected at rates of 2-4 pairs/second.  A portion of the 
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image devoid of cells, processes, or debris was sampled for background subtraction.  

Calcium concentrations were calculated using the ratio of Fura-2 excitation at 340 and 

380 (Grynkiewicz et al., 1985) with the equation:   

[Ca2+] = Kd x [R - Rmin / Rmax - R] x (Fmax380 / Fmin380).  

[Ca2+] represents the intracellular free calcium concentration, Kd is the 

dissociation constant of calcium from the dye (224 nM), and R is the calculated ratio 

intensity.  Zero and saturation calcium intensity ratios are denoted by Rmin (0.251) and 

Rmax (10.876), respectively.  Fmax380 (210.8) is the fluorescence intensity measured at zero 

calcium, and Fmin380 (18.9) is the fluorescence intensity measured when the cells were 

saturated.  These values were determined for this imaging system using cell free methods 

and Fura-2 calibration standards (Molecular Probes, Eugene, OR). 

Calcium Manipulation 

Flash photolysis of o-nitrophenyl EGTA (NP-EGTA, Molecular Probes, Eugene, OR), 

preloaded with calcium, was implemented to experimentally manipulate intracellular 

calcium concentrations.  Presynaptic neurons were pressure injected (as previously 

described) with a solution that contained 40 mM NP-EGTA, 32 mM CaCl2, and 10 mM 

Hepes at a pH of 7.4.  Neurons were allowed to recuperate from the injection for 15-30 

minutes.  After obtaining resting calcium levels for ten seconds (as formerly mentioned), 

electronically controlled shutters (Prior) were opened for 2-3 seconds exposing cells to 

UV light emitted from an Olympus mercury vapor lamp.  Ratiometric image pairs were 

captured before and after UV exposure for calcium estimations.  
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UV-Evoked Neurotransmitter Release 

Neurotransmitter release was estimated by calculating the total area under the 

postsynaptic potential (PSP) trace following UV photolysis of NP-EGTA.  Area under 

the PSP curve was determined by analyzing images of postsynaptic electrophysiological 

recordings (Adobe Photoshop 6).  A contiguous line was extended that connected the 

extrapolated baseline (resting potential) to the depolarizing postsynaptic membrane 

potentials.  Image J (NIH Image) software was used to calculate the total area in pixels 

encompassed by this line.  A relative neurotransmitter release index was determined for 

both CM and DM preparations, where an index of 1 equals 1000 pixels of area under a 

PSP curve.       

Postsynaptic Receptor Sensitivity  

Neuronal pairs were cultured in CM or DM for 24 hours and then transferred to a poly-L-

lysine coated 1008 culture dish containing DM.  Acetylcholine (10 µM; Sigma, St. Louis, 

MO), contained in a glass pipette (~1 µm tip) positioned 5-10 µm from the postsynaptic 

cell membrane, was focally applied to the B19 with 5 msec pulses provided by a 

Picospritzer II (30 psi).  Tubocurarine chloride (3.75-10 µM; Sigma, St. Louis, MO) 

antagonized the effects of acetylcholine at these synapses.  

Synaptic Vesicle Imaging 

Synaptic vesicles were stained with FM 1-43 (Molecular Probes, Eugene, OR) to monitor 

vesicle recruitment during synapse formation.  Prior to cell contact, nascent presynaptic 

neurons (B110s) were incubated for five minutes in a solution of high potassium DM (50 

mM KCl) and 2.5 µM FM 1-43.  Negative control cells were depolarized in high K+ DM 

that lacked the synaptic vesicle stain.  Following the depolarization-facilitated loading, 
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the cells were washed in DM.  The loading and wash procedure was repeated two 

additional times to insure pervasive vesicle staining.  B110s were cultured, either isolated 

or with B19s, in the appropriate medium.  After plating on coverglass dishes containing 

DM, fluorescence images were acquired using rhodamine optics (excitation:  530-550 

nm; dichroic mirror:  570 nm; emission:  590 nm) and digital photography.  Fluorescence 

intensity was determined for individual neurons.  Regions of interest (ROI) were digitally 

selected and the background intensity was subtracted.  An arbitrary point on a single cell 

was chosen for the first ROI (7 µm in diameter).  Subsequently, every 30 degrees 

(clockwise and counter clockwise) an additional ROI was analyzed.  Two groups 

consisting of the average of three points proximal to the synapse and three distally 

located ROIs were chosen to determine synaptic vesicle distribution in neuronal pairs.  

ROIs were spaced 30 degrees apart in each group.          

Data Analysis 

SPSS software (SPSS Inc.) was used to analyze experimental data sets.  Mann-Whitney 

or Wilcoxon Signed tests were implemented for data analysis as indicated in the text.  

Values are displayed as the mean plus or minus the standard error of the mean (SEM).  

Statistical significance was defined as p < 0.05. 

 

RESULTS 

Giant somatic synapses, derived from the nervous system of Helisoma, exhibited 

differences in intercellular coupling when cultured with and without exposure to trophic 

factors in conditioned medium (Fig. 1).  An electrical coupling coefficient (ECC) of 0.34 

± 0.05 was calculated for cell pairs cultured in CM, medium containing trophic factors.  
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Figure 1.  
Trophic factors promote electrical synapse formation.  (A) This schematic diagram of neuronal somata 
pairs, B110 and B19, demonstrates the electrophysiological recording configuration for manipulation and 
assessment of presynaptic and postsynaptic membrane potentials.  Hyperpolarizing current (I inj) was 
injected into the presynaptic neuron B110 for the purpose of monitoring electrical coupling.  (B) 
Representative recordings of electrical coupling in B110-B19 cell pairs cultured in CM.  The onset and 
termination of the current injection pulse is indicated in the top trace.  Membrane potentials were current-
clamped for both neurons B110 (middle trace) and B19 (bottom trace) at approximately -75 mV prior to the 
hyperpolarizing current injection.  Horizontal bar equals 1.0 sec; vertical bar equals 20 mV.  (C) CM cell 
pairs (n = 18; black bar) exhibited a strong electrical coupling coefficient (ECC); whereas, DM pairs (n = 
18; gray bar) were significantly less coupled (*, p < 0.002).  Data represent mean ± SEM. 
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In contrast, pairs incubated in DM, medium lacking trophic factors, possessed an ECC of 

0.14 ± 0.05.  These ECC values for CM and DM groups were significantly different (p < 

0.002; n = 18 per group; Fig. 1C).  In six cell pairs from each group, the presynaptic 

B110 was injected with the photolytic calcium cage, NP-EGTA, and then exposed to a 

brief UV light flash to elevate presynaptic calcium levels (Fig. 2A).  An inverse 

relationship between electrical coupling and chemical neurotransmission was obvious in 

these cell pairs (Fig. 2B-E).  Synapses with strong electrical coupling (i.e., CM pairs; Fig. 

2B) did not respond to photolytic elevation in calcium with release of neurotransmitter 

(Fig. 2C).  At synapses that lacked detectable electrotonic transmission (i.e., CM pairs; 

Fig. 2D), large PSPs were induced by UV flash (Fig. 2E).  Photolytic release of calcium 

induced a significantly greater change in the postsynaptic potential (PSP) at DM-cultured 

synapses than at CM-cultured synapses (p < 0.02; Fig. 2F). Additional UV flashes in DM 

pairs, leading to a depletion of the cage’s calcium available for release, evoked 

postsynaptic membrane potentials much reduced in magnitude from the initial flash (Fig. 

2E and 2F).  UV-photolysis of the caged calcium did not generate changes in presynaptic 

membrane potential or, in CM pairs, changes in postsynaptic potential (Fig. 2C).   

 To determine if photolytic release of caged-calcium had effectively elevated 

intracellular calcium concentrations in both CM and DM groups, we monitored 

presynaptic calcium using the ratiometric fluorescent indicator, Fura-2 AM (Fig. 3A-D).  

In neuronal pairs cultured in CM, an average resting calcium concentration of 150 ± 25 

nM was elevated to 460 ± 100 nM following UV photolysis (Fig. 3F).  Similarly, the
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Figure 2. 
Photolytic release of calcium induced neurotransmitter secretion at uncoupled, but not electrically coupled, 
synapses.  (A) This schematic diagram of neuronal somata demonstrates the arrangement for intracellular 
recordings and NP-EGTA loading (black arrow) in cell pairs.  (B-E) An inverse relationship existed 
between electrotonic coupling and NP-EGTA/UV-evoked neurotransmitter release.  Electrophysiological 
recordings of electrical coupling in cell pairs cultured in CM (B and C) and DM (D and E) are paired with 
respective recordings of neurotransmitter release in these same cell pairs.  The membrane potential 
recording of neuron B19 is shown at the top and that of neuron B110 is represented in the middle for each 
set of recordings.  Horizontal bar equals 1.0 sec; vertical bar equals 20 mV.  (C) Following the initiation of 
the UV pulse (indicated by the arrow), no change was detected in membrane potential in either neuron of 
this CM pair.  (E) In a DM cell pair, the first UV pulse (trace #1) generated a significant change in the 
membrane potential of B19 (postsynaptic cell).  A second UV pulse (trace #2) elicited less of a 
postsynaptic response.  There was no change in membrane potential of B110 (presynaptic cell).  (F) This 
histogram quantifies the average levels of chemical neurotransmission as measured by relative magnitude 
of PSPs.  Following the first UV pulse, CM cell pairs (n = 7) exhibited significantly less neurotransmission 
than DM pairs (*, p < 0.02).  After a second UV pulse, neurotransmitter secretion was greatly reduced in 
DM pairs (†, p < 0.01). 
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Figure 3.  
NP-EGTA photolysis elevated presynaptic calcium levels equally in CM and DM cultured somatic 
synapses.  (A) This schematic diagram illustrates the loading procedure utilized to manipulate (Ca2+-loaded 
NP-EGTA; closed arrow) and visualize (Fura-2; open arrow) intracellular calcium.  (B) The Nomarski 
image of the giant somatic synapse shows a typical B110-B19 neuronal pair cultured in DM (B110 is on 
the left).  The scale bar equals 10 µm.  (C, D) The representative fluorescent images indicate resting 
calcium levels before UV photolysis (C) and the elevated calcium concentration in B110 after photolysis 
(D).  On the scale bar, the transitions between blue-green and green-orange are approximately 100 nM and 
1000 nM, respectively.  (E) This graph represents the intracellular calcium concentration of a DM pair after 
an initial (trace 1) and a subsequent (trace 2) flash of ultraviolet light.  The first pulse elevated the calcium 
concentration to at least 300 nM, which was twice the level generated from the second pulse.  Bar indicates 
UV flash (2-3 sec).  (F) The graph represents the average intracellular calcium concentration in B110 for 
both CM and DM cell pairs.  There was a significant rise in presynaptic calcium concentration after UV 
photolysis for both CM (n = 9) and DM (n = 8) controls (*, p < 0.01; †, p < 0.02); however, there was no 
significant difference in the intracellular calcium concentration between the presynaptic neurons in CM and 
DM before (rest; p = 0.2) or after photolysis (flash; p = 0.81).   
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average resting calcium level in DM pairs was 100 ± 15 nM and, after photolysis, the 

calcium concentration increased to 480 ± 95 nM.  Subsequent flashes of UV light caused 

reduced calcium transients as the NP-EGTA cage was depleted of calcium (Fig. 3E).  

Although photolysis resulted in a significant increase in presynaptic calcium in both CM 

(n = 9; p < 0.01) and DM pairs (n = 8; p < 0.02), there was no difference in the final level 

of calcium attained between the two groups (Fig. 3F).  Therefore, the ability of DM 

synapses, but not CM synapses, to respond to photolysis with calcium-dependent 

exocytosis was not due to differential function of NP-EGTA in the two trophic 

environments.  Additionally, synapses formed in these disparate culture conditions did 

not differ in their capacities to buffer changes in intracellular calcium.   

To determine if electrical coupling or trophic stimulation altered postsynaptic 

receptor sensitivity, and thereby chemical neurotransmission, we examined postsynaptic 

neuronal responses to acetylcholine (ACh) using a combination of electrophysiological 

and pharmacological techniques (Fig. 4A).  The average ECC in CM pairs (n = 11) was 

0.27 ± 0.06 compared to 0.06 ± 0.03 in DM pairs (n = 12) in this experiment.  Following 

focal application of acetylcholine to the postsynaptic cell of the giant synapse, both CM 

and DM preparations displayed an increase in postsynaptic membrane voltage (Fig. 4B).  

No significant difference in postsynaptic membrane potential change was found between 

CM and DM groups (Fig. 4C).  One minute after applying 3.75 µM tubocurarine 

chloride, a cholinergic receptor antagonist, ACh-evoked responses were abolished in both 

CM and DM pairs (data not shown).  Thus, differences in sensitivity to acetylcholine 

between DM and CM cultured synapses were not detectable in this study. 
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Figure 4. 
Suppression of chemical neurotransmission at electrically coupled synapses was not due to changes in 
postsynaptic cholinergic receptor sensitivity.  (A) This schematic diagram illustrates the experimental 
configuration employed to test for the presence of functional postsynaptic cholinergic receptors.  After 
determining the ECC at a synapse, acetylcholine (ACh) was focally applied to the postsynaptic membrane 
to examine postsynaptic sensitivity.  (B) Representative recordings of ACh-evoked potentials in CM or DM 
cultured cell pairs showed similar changes in amplitude.  The time lines, running below the traces, indicate 
the moment (5 ms pulse) when ACh was administrated.  Horizontal scale bar equals 1 sec; vertical scale bar 
equals 5 mV.  (D) This histogram represents the average change in membrane voltage (at peak amplitude) 
after exposing neuronal pairs to acetylcholine.  There was no significant difference in postsynaptic 
responses between CM (n = 12) and DM (n = 13) pairs (p = 0.7). 
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Since calcium-dependent regulation of neurotransmitter release is a process 

localized to sites of vesicle fusion at the presynaptic membrane, we hypothesized that gap 

junctional coupling at these synapses might form a conduit for calcium shunting.  This 

idea suggests that calcium ions would readily move down their concentration gradient 

from the presynaptic to postsynaptic cytoplasm during action potential- or photolysis-

induced elevations.  To test this prediction, we monitored postsynaptic calcium levels in 

these giant somatic synapses using Fura-2 (Fig. 5A-D).  After UV photolysis of NP-

EGTA in the presynaptic neuron, no significant difference was detected between the 

average postsynaptic calcium concentrations in CM and DM pairs (p = 0.67; Fig. 5E).  

Furthermore, in CM-cultured synapses that possessed the strongest electrical coupling 

(i.e., average ECC of 0.35 ± 0.15; n = 3), no change in postsynaptic calcium 

concentrations were detected following photolysis (Fig. 5F).  Thus, no evidence of 

calcium movement from presynaptic to postsynaptic neurons emerged from these studies.  

Having determined that differences in presynaptic calcium handling and 

postsynaptic sensitivity were not detectible between CM and DM cell pairs, we examined 

the nature of synaptic vesicle mobilization at these synapses.  We tested the hypothesis 

that electrically coupled synapses formed in CM possess a diminished capacity for 

secretory machinery recruitment, thus imposing a deficiency in functional 

neurotransmission.  To address this idea, the fluorescent synaptic vesicle dye, FM 1-43, 

was used to stain vesicles in neuronal somata prior to the formation of electrical and 

chemical connections.  Following a stimulation/dye-loading protocol (see methods), there 

was a significant increase in fluorescence intensity (i.e., staining) of these cells compared 

to negative-loading controls (i.e., stimulated without dye); (p < 0.003; Fig. 6A-G).
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Figure 5.  
Experimental elevation of presynaptic calcium did not alter postsynaptic calcium levels.  (A) This 
illustration depicts the conformation employed for manipulation of intracellular presynaptic calcium (Ca2+ 
loaded NP-EGTA; closed arrow), and detection of postsynaptic calcium levels (Fura-2; open arrow).  B) 
This representative DIC/Nomarski image shows a giant somatic synapse characteristic of cell pairs cultured 
in CM.  The scale bar equals 10 µm.  (C, D) These representative fluorescence images indicate the calcium 
levels in B19 before and after UV photolysis for this cell pair.  No change in postsynaptic calcium was 
detected.  On the scale bar, the transitions between blue-green and green-orange are approximately 100 nM 
and 1000 nM, respectively.  (E) This histogram shows that no significant difference was found in the 
average postsynaptic calcium concentration between CM (n = 13) and DM (n = 5) cell pairs after UV 
photolysis (*, p = 0.67).  (F) In electrically coupled CM cell pairs (n = 3; ECC = 0.34), no significant 
difference in postsynaptic calcium concentration was observed when comparing levels before (rest) and 
after UV photolysis (flash; *, p = 0.11). 
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Figure 6.   
Nascent presynaptic neurons possessed hotspots of vesicle clustering as indicated by FM 1-43 staining.  (A-
F) These merged Nomarski and fluorescent images represent single cells stained with FM 1-43 following 
high K+ stimulation loading (FM 1-43; A-C) and non-loaded (NL; D-F) cells stimulated in the absence of 
dye.  Images were acquired using Nomarski (A, D) or fluorescence (B, E) optics and then merged (C, F).  
The scale bar is proportional to 10 µm.  In single cell loading, the entire cell contained synaptic vesicles 
stained with FM 1-43; however, some areas of the cytoplasm exhibited greater uptake of dye (upper left of 
cytosol in B and C).  (G) This graph displays the fluorescence intensity of cells loaded with dye (FM 1-43; 
n = 11) or lacking the vesicle stain (NL; n = 5).  A significant difference in the fluorescence between the 
two groups existed when analyzing the intensity of the entire somata (*, p < 0.003).  (H) This graph shows 
the relative frequency for twelve regions of interest (ROI) with known fluorescence intensity units that 
ranged from 1-175.  The schematic inset in D indicates ROI spaced every 30 degrees both clockwise and 
counterclockwise from the starting point.  ROIs were a constant diameter of 7 µm.  Approximately, 67 
percent of the ROIs fell into the fluorescence intensity range of 26-75; however, all cells contained hotspots 
with greater fluorescence.          
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Furthermore, cells were not uniformly loaded; that is, some regions of the cytoplasm 

contained greater fluorescence intensity, suggesting a higher level of vesicle turnover at 

hotspots prior to the commencement of synaptogenesis.  Analyzing regions of interest 

(ROIs) around the periphery of stained B110 neurons revealed that hotspots constituted 

approximately 10% of all ROIs prior to the formation of synaptic contact (Fig. 6H).

 Synaptic vesicles were localized to sites of contact at newly forming synapses 

possessing electrical coupling.  In fact, ROIs at the site of contact in CM pairs (following 

24 hours of synapse formation) possessed high fluorescent intensity; whereas, 

fluorescence was more homogenously distributed in DM pairs (Fig. 7A-H).  In CM pairs, 

a pronounced band of fluorescent staining was present at the interface of the two synaptic 

membranes (Fig. 7B and C).  In DM pairs, these bands of synaptic staining were not 

observed.  Fluorescent intensity was not significantly greater at presynaptic sites of cell-

cell contact after 24 hours in DM as compared to cells after only 30 minutes of contact (p 

= 0.052; Fig. 7G).  When comparing synaptic vesicle distribution for each of the three 

groups, only neuronal pairs cultured in CM exhibited a significant increase in 

fluorescence at ROIs proximal to the synapse compared to the most distal regions (p < 

0.003; Fig. 7G).  Thus, mobilization of synaptic vesicles occurred at CM-cultured 

synapses.  These studies demonstrated that the presence of electrical/biochemical 

coupling in CM-cultured neuronal pairs enhanced vesicle recruitment and possibly 

facilitated this synaptogenic process.  
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Figure 7.  
Trophic factors enhanced vesicle mobilization even in the absence of chemical neurotransmission.  (A-F) 
These representative images indicate cell pairs cultured for 24 hours in either CM or DM.  Images were 
acquired using Nomarski (A, D) or fluorescence (B, E) optics and then merged (C, F).  (G) This histograph 
represents the average FM 1-43 fluorescent intensity for three regions of interest located closest and 
furthest from the synapse (as indicated in Fig. 7H).  (A, B, C, G) These panels illustrate cell pairs cultured 
in CM for 24 hours, and reveal the presence of stained synaptic vesicles around the peripheral cytoplasm; 
however, a heavy band of staining is visible at the newly forming synapse.  (D, E, F, G) Neuronal pairs 
cultured in DM for 24 hours exhibit no significant accumulation of staining at the synapses, but more of a 
comprehensive distribution.  The scale bar equals 10 µm.  (I) This graph represents the average FM 1-43 
fluorescence at both the newly forming synapse (black box) and most distal regions (stripped box) 
following 30 minutes paired in DM (DM30m; n = 7), 24 hours paired in CM (CM24h; n = 15), and 24 hours 
paired in DM (DM24h; n = 14).  The FM 1-43 intensity near the synapse was significantly different between 
CM and both other groups (*, p < 0.002; £, p < 0.04); whereas, no difference between groups was detected 
distally to cell-cell contact.  When comparing regions within a group, neuronal pairs cultured in CM 
showed an increase in fluorescence at the boundary compared to the section situated farthest away from the 
synapse (†, p < 0.003). 
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DISCUSSION 

The establishment of physical contact between neurons, in many embryonic and 

regenerating nervous systems, triggers a developmental progression of synaptic 

communication involving an initial formation of electrical connectivity that switches to 

predominantly chemical neurotransmission as electrotonic coupling declines (Allen and 

Warner, 1991; Penn et al., 1994; Personius et al., 2001; Chang et al., 2000; Szabo et al., 

2004).  These observations prompt the speculation that gap junctional intercellular 

communication may coordinate electrical or biochemical neuronal activities during the 

initial phases of synaptogenesis (Kandler and Katz, 1995).  Strength of electrical coupling 

is inversely correlated with the amplitude of chemically-transmitted synaptic potentials 

during early synaptogenesis between cultured Helisoma neurons (Szabo et al., 2004). 

This observation indicates that the presence of gap junctional coupling delays the onset of 

chemical neurotransmission by means of a mechanistic interaction between the two forms 

of synaptic communication   Here, we investigated the mechanism by which electrical 

coupling delays chemical connectivity at developing synapses and demonstrated that 

electrical coupling suppresses transmitter release by disrupting the capacity for a 

presynaptic calcium influx to trigger vesicular exocytosis.  Therefore, electrotonic 

coupling provides a developmental mechanism for modulating the emergence of 

chemical neurotransmission at newly forming synaptic contacts and for regulating the 

establishment of a neural network. 

Exposure to ganglia-derived trophic factors enhanced electrical synaptic 

connectivity and suppressed calcium-dependent exocytosis.  Fluorescence imaging 

demonstrated that cells, with and without trophic factor treatment, were capable of 
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producing similar elevations in presynaptic calcium.  Therefore, differences in ability to 

handle presynaptic calcium were not the basis for differential synaptic responses between 

groups.  Additionally, calcium accumulated presynaptically was not shunted into the 

postsynaptic cell through gap junctional conduits connecting neuronal pairs.  Therefore, 

the transient development of electrical synapses disrupted a process down-stream of the 

calcium accumulation mediating vesicular release of neurotransmitter. 

Since gap junctional coupling did not alter calcium accumulation, molecular 

mechanisms that link, directly or indirectly, influx of calcium with the process of 

vesicular release must have been affected.  Vesicle mobilization appeared normal, or 

possibly enhanced, despite the fact that transmitter release was compromised during 

electrical synaptogenesis.  Therefore, we conclude that electrical synapses do not disrupt 

the developmental recruitment of a presynaptic pool of vesicles; however, this pool is not 

readily-releasable.  An essential component of chemical neurotransmission is the 

movement of vesicles from the reserve pool to a cluster of the readily-releasable vesicles 

(Kuromi and Kidokoro, 2003).  Once mobilized, vesicular release occurs randomly 

throughout the readily-releasable pool and is possibly based on the ease of vesicle 

detachment from cytoskeletal elements (Rizzoli and Betz, 2004).  Since gap junctional 

proteins form complexes with nearby cytoskeletal proteins (Toyofuku et al., 1998), the 

possibility exists that a direct protein-protein interaction could occur between gap 

junctional proteins and synaptic vesicle proteins, thus altering the availability of vesicles 

for release.  

Alternatively, transient electrotonic coupling could perturb local cellular signaling 

by altering the levels of presynaptic second messengers or the local cellular events they 



 

. 

45

mediate.  Chemical neurotransmission depends on a conglomerate of cytosolic, vesicle-

associated, and plasma membrane bound proteins.  Interaction between these proteins is 

highly dependent on phosphorylation states (Fujita et al., 1996).  For example, synapsins 

regulate vesicle mobilization by linking the synaptic vesicles to actin utilizing a 

phosphorylation-dependent mechanism (Pieribone et al., 1995).  In addition, many 

regulators of SNARE (soluble N-ethymaleimide-sensitive fusion protein attachment 

protein receptors) proteins and vesicle fusion, such as Sec1/Munc18, synaptotagmin, and 

tomosyn, are phosphorylated during the regulation of SNARE function (Gerst, 2003).  

Therefore, critical elements of the secretion machinery are susceptible to altered function 

due to gap junctional influences on intracellular signaling (e.g., phosphorylation).  

Gap junction formation varies depending on cell type, but electrical synapses 

generally arise from the insertion of hemichannels into the plasma membrane, and 

subsequently form plaques as junctional proteins accumulate at the periphery of 

developing clusters of connexons (Johnson et al. 2002; Gaietta et al. 2002; Lauf et al., 

2002).  A potential explanation for an inverse relationship between electrical and 

chemical neurotransmission might involve the physical disruption of the active zone 

machinery by this process of plaque formation.  That is, the spatial requirements of gap 

junctional plaques might exclude the function or construction of the components 

necessary for chemical transmission; consequently, impeding vesicle exocytosis.  Since 

mixed synapses exist in some systems where both electrical and chemical 

neurotransmission function in close proximity (Lin and Faber, 1988; Rash et al., 1996), 

gap junctional obstruction of synaptic vesicle release is not likely, but nevertheless a 

possibility. 
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The enhancement of electrical transmission, and subsequent reduction in chemical 

neurotransmission, was accomplished by the exposure of neurons to trophic factors that 

were released into the culture medium from damaged neural tissue (Wong et al., 1981; 

Barker et al., 1982).  Some of these ganglia-derived factors have been identified and they 

can modulate synaptic formation (Magoski and Bulloch, 1998; Munno et al., 2000).  One 

potential site of this modulation is on calcium signaling, since voltage-gated ion channels, 

and hence neuronal excitability and signaling, are affected by trophic factors (Lesser et 

al., 1999; Yamuy et al., 2000).  In this study, the increase in transient electrical coupling 

and the reduction in neurotransmitter release was not due to changes in voltage-gated 

currents, since the disruption occurred downstream of calcium influx.     

Besides promoting cell survival (Oppenheim et al., 1992; Pinzon-Duarte et al., 

2004) and neuronal differentiation (McAllister et al., 1997; Cohen-Cory, 1999; Lom and 

Cohen-Cory, 1999), trophic factors regulate several aspects of synaptic transmission 

(Lohof et al., 1993; Kang and Schuman, 1995; Boulanger and Poo, 1999) and alter 

electrical communication between neurons (Nadarajah et al., 1998; Reuss et al., 1998; 

Aberg et al., 2000; Szabo et al., 2004).  For these reasons, trophic factors and the 

developmental timing of their presence can profoundly impact neural network formation.  

During the initial phases of synaptogenesis, the synchrony of neuronal activities is 

electrotonically governed (Kandler and Katz, 1995).  Transient electrical coupling is 

detected prior to the emergence of chemical connectivity at developing and regenerating 

synapses, thus regulation of gap junctional communication by trophic factors serve as a 

functional switch between two forms of synaptic transmission, chemical and electrical.  

In regenerating Helisoma neurons, the duration that electrotonic coupling coincides with 
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the length of time that is required for extending axons to establish growth cone contacts 

with potential targets.  The decline of neural network coupling following the 

downregulation of electrical synaptic transmission is replaced by widespread inhibitory 

chemical synaptogenesis within the nervous system (Szabo et al., 2004).  The question 

remains to be determined as to whether or not this functional shift in synaptic 

communication is regulated by trophic factor signaling in vivo.  Nevertheless, our 

demonstration that trophic factor-induced changes in electrical synapse formation 

between cultured neurons suggests that such a mechanism is functional and conceivably 

alters chemical synapse formation.  
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CHAPTER IV 

GENERAL CONCLUSION 

 

The nervous system is a dynamic, malleable network of interconnected cells that 

coordinates the totality of an animal’s behavior.  The emergence of adult patterns of 

connectivity requires a regulated sequence of events.  The initial step occurs when neural 

progenitor cells are recruited from an undifferentiated set of ectodermal cells and form 

the neural plate (reviewed in Morest and Silver, 2003).  Depending on the various 

permutations of inducing factors and inducible signals, cells in the neural plate adopt 

specific fates (reviewed in Kintner, 2002).  After differentiating, neurons then migrate to 

appropriate regions and extend growth cones until specific targets are innervated.  The 

contact between growth cones and targets starts the synaptogenenic process that last until 

establishing functional pre- to postsynaptic neuronal communication.         

Synapses are not hardwired, but rather they are dynamic sites of intercellular 

communication that progress through a continuous state of refinement.  This plasticity 

helps shape the developing nervous system and refines previously established 

connections in such regions as the retina (Schmidt, 2004) and the hippocampus (Morris et 

al., 2003).  The flexibility of any network depends on correlated neural activity among 

sets of inputs (either spontaneous or sensory-evoked), coupled with the ability of 

postsynaptic cells to detect such correlations (Katz and Shatz, 1996).  This activity-

dependent refinement of synapse formation is characteristic of Hebbian synapses, in 

which some contacts are enhanced while others are eliminated.   
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During the initial phases of synaptogenesis and neural network formation, the 

synchronization of electrical or biochemical neuronal activities is electrotonically 

conducted (Kandler and Katz, 1995).  In embryonic chick spinal cord neurons, coupling 

is generally undetectable among adjoining cells; however, this form of neural 

communication is occasionally observed, suggesting that coupling is, somehow related to 

chemical synapse formation (Fischbach, 1972).  Additionally, transient electrical 

coupling is detected prior to the emergence of chemical connectivity at developing spinal 

cord synapses (Penn et al., 1994), neuromuscular junctions (Allen and Warner, 1991), 

and retinal synapses (Personius et al., 2001).  These, and similar observations in other 

models used to examine regeneration (Chang et al., 2000; Szabo et al., 2004), prompt the 

speculation that gap junctional intercellular communication significantly contribute to the 

development of synapses.   

 Damaged Helisoma neurons regenerate axons that must innervate the correct 

targets to reestablish a functional network.  During regeneration in vivo and cell culture, 

neurons B19 and B110 form novel, transient electrical connections that are later replaced 

with an inhibitory chemical synapse (Szabo et al., 2004).  Following twenty-four hours of 

synaptogenesis between cultured Helisoma neurons, the strength of electrical coupling 

was inversely correlated with the amplitude of chemical synaptic potentials, indicating 

that the presence of gap junctional coupling delays the onset of chemical 

neurotransmission (Szabo et al., 2004).  Furthermore, the duration that electrotonic 

coupling coincides with the length of time that is required for extending axons to 

establish contact with peripheral targets.  These data, together with my current studies, 
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suggest a mechanistic, developmentally-relevant interaction between these two forms of 

synaptic communication.   

During this period of synaptogenesis, electrotonic coupling precludes transmitter 

release by disrupting the capacity for a presynaptic calcium influx to trigger vesicular 

exocytosis (Chapter III; Figure 8).  Furthermore, electrical synapses inhibited chemical 

neurotransmission despite enhancing the quantity of synaptic vesicles mobilized to the 

region of cell to cell contact (Chapter III; Figure 8).  Therefore, electrotonic coupling 

provides a developmental mechanism for modulating the emergence of chemical 

neurotransmission at newly forming synaptic contacts, may contribute to the plasticity 

required to establish neural networks, and may represent a fundamental mechanism 

employed in neural development and regeneration. 
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Figure 8.  
Electrotonic transmission at developing synapses disrupts calcium-dependent exocytosis despite enhancing 
vesicle mobilization.  (A) This schematic diagram of neuronal somata pairs, B110 and B19, demonstrates 
the cellular process occurring during the deprivation of trophic factors (DM).  In uncoupled cell pairs, the 
presynaptic B110 responds to an influx of calcium with vesicular exocytosis.  (B) This model illustrates the 
intracellular processes occurring in electrically coupled cell pairs cultured in CM.  Electrotonic synapses 
delay chemical synaptic transmission by imposing a functional block between the accumulation of 
presynaptic calcium and the synchronized, vesicular release of neurotransmitter.  Additionally, electrical 
coupling augments the recruitment of synaptic vesicles to the newly forming synapse despite impeding the 
formation of chemical connections.   
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