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ABSTRACT 

The Roles of Estradiol-17β and Prolactin in Uterine Gland 

Development in the Neonatal Ewe (August 2005) 

Karen Denise Carpenter, B.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Thomas E. Spencer 
   Dr. Fuller W. Bazer 

 

 Endometrial glands are required for adult uterine function and develop post-natally 

in mammalian species.  Therefore, studies were conducted using neonatal ewes as a 

model to determine: 1) the roles of estradiol-17β and estrogen receptor-alpha (ERα) in 

endometrial gland development; 2) the role of ovaries in endometrial gland 

development; 3) the role of prolactin in endometrial gland development; and 4) factors 

regulating prolactin receptor expression in endometrial glands. 

 Study one determined the effects of neonatal exposure of ewes to estradiol-17β 

valerate (EV); EM-800, an ERα antagonist; or CGS-20267, an aromatase inhibitor on 

endometrial gland development.  Results indicate E2-17β does not regulate endometrial 

gland differentiation or development.  Additionally, ERα does not regulate primary 

differentiation of glandular epithelium, but does influence coiling and branching 

morphogenesis of endometrial glands.   

 Study two determined the effects of ovariectomy on endometrial gland 

morphogenesis.  Results suggest that the ovary and, thus, an ovarian-derived factor(s) 

regulate, in part, the coiling and branching of endometrial glands.  Expression of 

subunits of activin, follistatin, and inhibin in the neonatal ovine ovary in addition to 
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modulation of the components of the activin/follistatin system in the uterus of 

ovariectomized ewes supports the hypothesis that the ovarian factors that influence 

endometrial adenogenesis in the neonatal ewe may be activin, follistatin, and/or inhibin. 

Studies three and four determined the role of prolactin in endometrial 

adenogenesis in the neonatal ewe.  Studies in which either hypoprolactinemia or 

hyperprolactinemia were induced indicate that prolactin regulates ovine endometrial 

adenogenesis in the neonatal ewe.   The aim of study five was to determine transcription 

factors that regulate the glandular epithelium specific expression of prolactin receptor. 

Prolactin receptor exon 2 was cloned and sequenced, but no identifiable exon 1 or 

promoter was found.  Additionally, many bovine contigs containing portions of the 

prolactin receptor gene were identified suggesting the bovine genome will be a useful 

tool as it becomes more complete. 

 These results indicate ERα, prolactin and prolactin receptor, along with an 

unidentified ovarian factor(s), influence endometrial gland development in the neonatal 

ewe; however, exposure of the neonatal ewe to exogenous estradiol-17β prevents 

differentiation and development of endometrial glands.  
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CHAPTER I 

INTRODUCTION 

All mammalian uteri contain endometrial glands that synthesize, secrete and 

transport molecules collectively termed histotroph.  Evidence accumulated from primate 

and subprimate species during the last century supports an unequivocal role for 

histotroph as primary regulators of conceptus (embryo/fetus and associated extra-

embryonic placental membranes) survival, development, and implantation/placentation 

[1-4].  Histotroph contains a variety of binding and transport proteins, mitogens, 

cytokines, lymphokines, enzymes, hormones, growth factors, protease inhibitors, and 

many other substances [5-9].  Exposure of neonatal ewes to a progestin from birth 

epigenetically ablates endometrial gland differentiation and produces a uterine gland 

knockout (UGKO) phenotype in the adult [10, 11].  UGKO ewes are subfertile and 

exhibit early pregnancy loss during the peri-implantation stage of conceptus elongation, 

thus demonstrating that endometrial glands and, therefore, their secretions are required 

for conceptus survival and development prior to the establishment of hematotrophic 

nutrition [12].  Additionally, Burton et al. [9] recently provided evidence that 

histotrophic nutrition is required throughout the first trimester of pregnancy in humans. 

Although a functional role for endometrial glands has been established in many 

mammals, the developmental mechanisms regulating endometrial gland morphogenesis, 

or adenogenesis, are not well understood.  Uterine gland development begins after birth 

_____________ 

This dissertation follows the style of Biology of Reproduction. 
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in sheep as in most mammals and involves differentiation of the endometrial glandular 

epithelium (GE) from the lumenal epithelium (LE), specification of intercaruncular 

stroma, development of endometrial folds and, to a lesser extent, growth of endometrial 

caruncular areas and the myometrium [3, 11, 13-15].  By postnatal day (PND) 56, 

uterine gland morphogenesis is essentially complete, as the histoarchitecture of the 

endometrium is similar to that found in a cyclic adult [14].  Further maturation and 

growth of the ovine uterus occurs after puberty [16] and during the first pregnancy [17, 

18].    

In the neonatal ewe, estradiol-17β (E2-17β), pituitary prolactin (PRL), and 

stromal growth factors (i.e. fibroblast growth factors-7 (FGF-7) and FGF-10, hepatocyte 

growth factor (HGF), and insulin-like growth factors one (IGF-I) and IGF-II, with their 

respective epithelial receptors have been implicated as endocrine and paracrine 

regulatory molecules controlling postnatal ovine endometrial adenogenesis [11, 14, 15].    

Postnatal uterine development is accompanied by expression of estrogen receptor-alpha 

(ERα) in both the nascent and developing GE and endometrial stroma in rodents, pigs 

and sheep.  Studies with rodents indicate that endometrial adenogenesis is not dependent 

on the ovary, adrenal gland, estrogen or uterine ERα expression [14, 19-23].  In the 

neonatal pig, endometrial adenogenesis is also not dependent on the ovary [23]; 

however, it is regulated by expression and activation of a functional ERα system [24].  

Interestingly in Fall born ewes, circulating concentrations of E2-17β are high from birth 

through PND 56 [14].  The emerging, proliferating and developing endometrial glands 

express abundant levels of ERα as well as progesterone receptor (PR), which is an 
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estrogen-responsive gene [14].  During this period, the stroma is also ERα-positive and 

expresses both IGF-I and IGF-II [15].  The developing GE expresses the IGF-I receptor 

[15], and IGF-I can activate ERα in a ligand-independent manner in other model 

systems [25].  The precise roles of circulating E2-17β and uterine ERα in endometrial 

gland morphogenesis in the neonatal ovine uterus have not been evaluated. 

Studies of several species revealed that uterine development and endometrial 

adenogenesis can proceed normally in the absence of the ovary and, by default, ovarian 

steroids for varying periods of time during early postnatal life.  At birth the ovine ovary 

contains numerous growing and vesicular follicles, which decrease in number until PND 

14 and then increase to peak in number on PND 28.  The number of ovarian follicles 

remains high from PND 42 to PND 56, and declines thereafter [26, 27].  These changes 

in ovarian follicles correlate with the ontogeny of endometrial gland development in the 

ewe lamb [14].  Interestingly, ovariectomy of the ewe at birth does not affect uterine wet 

weight [27] or the initial stages of endometrial gland tubulogenesis on PND 14 [28].  

However, ovariectomy does affect uterine growth after PND 14 [29].  Postnatal uterine 

growth and endometrial adenogenesis are ovary- and steroid-independent in rodents [30-

32] and pigs [23].  While the ovary does influence postnatal uterine growth, its specific 

role in ovine endometrial gland development after PND 14 has not been investigated. 

Prolactin regulates the growth and differentiation of a number of 

epitheliomesenchymal organs, including the pigeon crop-sac, mammary gland, prostate, 

and uterus [33].  In the mammary gland, PRL and PRLR are required for development 

and differentiation of the lobuloalveolar portion of the GE [34-36].  In neonatal ewes, 
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circulating levels of PRL are relatively high on PND 1, reach a maximum on PND 14, 

and then decline slightly to PND 56 [15, 37].  Expression of mRNAs for the short and 

long forms of the PRL receptor (PRLR) is exclusive to the nascent uterine GE buds on 

PND 7 and the proliferating and differentiating GE from PNDs 14 to 56 [14].  In the 

adult ovine uterus, PRLR expression is also restricted to the endometrial glands [18].  

Hyperprolactinemia causes uterine glandular hyperplasia in the adult mouse, rabbit and 

pig [38-40].  The precise role of PRL in neonatal ovine uterine adenogenesis has not 

been elucidated.  Given the central role ascribed to PRLR in mammary gland 

morphogenesis and function, PRLR in the nascent GE of the developing uterus may play 

a similar, albeit undiscovered, regulatory role in endometrial gland morphogenesis in the 

neonatal ewe. 

Mechanisms regulating endometrial gland differentiation and development in the 

neonate determine, in part, the functional capacity and embryotrophic potential of the 

mature uterus [3, 12, 41].  Therefore, it is important to understand the molecular aspects 

of endometrial adenogenesis.  Previous results indicate that E2-17β, ERα, the ovary, 

ovarian factors, PRL, and PRLR may play roles in regulating endometrial gland 

differentiation and development in the neonatal ewe.  The present studies were designed 

to determine: 1) the roles of estradiol-17β and ERα in endometrial gland development; 

2) the role of ovaries in endometrial gland development; 3) the role of prolactin in 

endometrial gland development; and 4) factors regulating prolactin receptor expression 

in endometrial glands. 
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CHAPTER II 

LITERATURE REVIEW 

Endometrial Glands 

The female reproductive tract (FRT) includes the oviduct, uterus, cervix and 

vagina.  The uterus is an essential organ for reproduction in mammals.  Essential 

functions of the uterus include: (1) production of prostaglandin F2α, which is the 

luteolysin required for ovarian cyclicity in domestic animals; (2) transport, storage and 

maturation of spermatozoa; (3) provision of an embryotrophic environment for 

conceptus (embryo/fetus and associated extraembryonic membranes) growth and 

development; and (4) delivery of the conceptus at parturition [42, 43].  In the adult, the 

uterine wall is comprised of two functional compartments, the endometrium and 

myometrium (Fig. 2.1).  The endometrium is the inner mucosal lining of the uterus, 

derived from the innermost layer of ductal mesenchyme.  Histologically, the 

endometrium consists of two epithelial cell types, LE, GE, two stratified stromal 

compartments including a densely organized stromal zone (stratum compactum), and a 

more loosely organized stromal zone (stratum spongiosum), blood vessels and immune 

cells.  The myometrium is the smooth muscle component of the uterine wall that 

includes an inner circular layer, derived from the intermediate layer of ductal 

mesenchymal cells, and an outer longitudinal layer, derived from subperimetrial 

mesenchyme. 

Uterine endometrial glands are present in all mammalian uteri.  The uterine 

glands selectively transport or synthesize and secrete substances, termed histotroph, into 



 

 

6

 
 
FIG 2.1.  Morphology of the mammalian uterine wall.  The mammalian uterine wall contains two functional layers, a mucosal endometrium and 
muscular myometrium.  The uterine lumen is lined by a single cell layer of luminal epithelium.  The mesenchymal stroma is divided into a dense 
stratum compactum layer and an underlying stratum spongiosum layer that is more loosely organized.  The stroma is perforated by many blood vessels 
and endometrial glands which are lined with glandular epithelium and open into the lumen.  The myometrium is made up of inner circular and outer 
longitudinal muscle layers.  The uterus is surrounded by a layer of connective tissue, the perimetrium (Graphic courtesy of Rodney Geisert and Larry 
Burditt, Oklahoma State University, Stillwater, USA). 
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the uterine lumen [1-4].  All components of histotroph are not known in any animal, but 

it is a complex material containing transport proteins, mitogens, cytokines, lymphokines, 

enzymes, hormones, growth factors, protease inhibitors, and many other substances [5-

9].  The idea that uterine secretions nourish the developing conceptus was discussed first 

by Aristotle in the third century BC and then by William Harvey in the 17th century.  In 

1882, Bonnett stated that secretions of uterine glands were important for fetal well being 

in ruminants. 

Evidence accumulated from primate and subprimate species during the last 

century overwhelmingly supports a role for uterine gland secretions in establishment of 

endometrial receptivity to the embryo and subsequent conceptus survival, growth and 

development [1-4].  In rodents, two genes, calcitonin and leukemia inhibitory factor 

(LIF), are produced by uterine glands and are essential for the establishment of uterine 

receptivity and embryo implantation [2, 44].  LIF is a pleitrophic cytokine produced 

exclusively by the LE and GE preceding blastocyst implantation on day 4 of gestation in 

mice[45, 46].  The endometrium of LIF-null females fails to undergo decidualization, 

thus preventing implantation [47].  Calcitonin, a peptide hormone, is another factor 

produced by the rat uterus exclusively during the peri-implantation period [48, 49].  

Administration of anti-sense oligonucleotides for calicitonin severely reduced litter size 

by 50-80 percent [50].  Both LIF and calcitonin are also expressed by the human LE and 

GE during the secretory phase which coincides with the peri-implantation period 

indicating they may play similar roles in human blastocyst implantation [51-53].  

Evaluation of placental tissues by Burton and colleagues [9] revealed that in the human 
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histotrophic nutrition during early gestation is necessary, because the formation of the 

discrete channels from the maternal blood supply into the intervillous space of the 

placenta, which allow direct communication and exchange of nutrients, occurs only at 

the end of the first trimester.  These findings support the conclusion that hematotrophic 

nutrition in humans is not well established until the second trimester of gestation [9].   

Histotroph appears to be particularly important for conceptus survival and 

development in domestic animals as well, especially given the prolonged nature of 

implantation and placentation.  In sheep [17, 18], cattle [54], pigs [55, 56], and horses 

[57-59], endometrial glands undergo extensive hyperplasia and hypertrophy during 

pregnancy, presumably in response to increasing demands of the developing conceptus 

for histotroph [1, 17, 59].  Indeed, the epitheliochorial placentae of domestic animals 

develop unique placental structures, termed areolae, over the mouth of each uterine 

gland.  Areolae are specialized areas for absorption and transport of uterine histotroph by 

fluid-phase pinocytosis [60].  Several components of ruminant histotroph have been 

identified and include osteopontin (OPN), glycosylated cell adhesion molecule one 

(GlyCAM-1), and uterine milk proteins (UTMP).  Osteopontin (OPN) is a member of 

the Small Integrin-Binding, N-Linked Glycoprotein (SIBLING) family of related 

extracellular matrix proteins which is a major component of histotroph in primate, pigs, 

sheep, and mice (for review, see [61]).  OPN is an extracellular matrix-adhesion 

molecule and is hypothesized to serve as a bridging ligand that mediates adhesion 

between LE and trophoblast essential for implantation and placentation [61-63].  The 

high levels of expression of GlyCAM-1, a member of the mucin family of glycoproteins 



 

 

9

[64], in the pregnant ovine endometrium during the peri-implantation period suggests of 

this adhesion molecule may also be a potent regulator of implantation [65].  UTMP 

belong to the serpin family of serine protease inhibitors [66] and, along with OPN,  are 

excellent markers of endometrial gland differentiation and overall uterine secretory 

capacity during pregnancy in ewes [18, 67]. 

Treatment of neonatal ewes with a non-metabolizable progestin from birth to at 

least PND56 epigenetically ablates endometrial gland development and creates an 

UGKO phenotype in the adult [10, 11].  Other reproductive tract tissues, including the 

anterior vagina, cervix and oviduct, are not significantly affected by postnatal exposure 

to progesterone [10, 11].  The mechanism of progestin action to inhibit endometrial 

gland development is not known, but it is not due to inhibition of epithelial cell 

proliferation as no difference in expression of proliferating cell nuclear antigen (PCNA) 

is detected in the LE of progestin-treated versus control ewes [11]; however, an increase 

in PCNA was seen in the stratum compactum stroma of progestin treated ewes [11].  

This increase in stromal cell proliferation may alter epithelial-mesenchymal interactions 

that have been shown to be critical to uterine development or the extracellular matrix 

thereby altering normal uterine development [11, 68, 69].  Evidence suggests that 

progestin may ablate glandular development by suppressing ERα expression in the LE 

and stroma or by altering expression of growth factors in the stroma and/or their 

receptors in the LE [11].   

In addition to insights into endometrial gland development, the UGKO ewe 

provides an excellent model to study the role of endometrial glands and their secretions 
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in pregnancy.  Embryos recovered from UGKO ewes on Days 6 and 9 after breeding 

were developmentally normal, which confirmed that UGKO ewes are capable of 

ovulating viable oocytes and have a normal rate of fertilization [12].  However, embryos 

recovered from untreated ewes on Day 7 were unable to establish pregnancy when 

transferred into uteri of UGKO recipient ewes [12].  Additionally, UGKO ewes 

examined on Day 14 of pregnancy were found to possess either growth-retarded 

conceptuses or no conceptuses.   These studies indicate that endometrial glands and, by 

extension, their secretions are required for maintenance of pregnancy [12].  Therefore, it 

is important to understand the mechanisms that regulate uterine adenogenesis as 

development and function of endometrial glands is critical for mammalian reproduction. 

Uterine Morphogenesis 

Despite the importance of the uterus for the fertility and health of women and 

their offspring, relatively little is known about the hormonal, cellular and molecular 

mechanisms that regulate its development in either the fetus [70] or neonate [3, 41]. 

Factors that regulate events during critical developmental periods ultimately determine 

the functional capacity and embryotrophic potential of the adult uterus in both humans 

and domestic animals. 

Prenatal Organogenesis  

Development of the uterus begins prenatally with formation, patterning, and then 

fusion of the Müllerian ducts.  During vertebrate embryogenesis, the FRT is initially 

formed as part of the urogenital system, which is derived from the intermediate 

mesoderm formed during gastrulation of the embryo [70-72].  The urogenital system 
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encompasses the kidneys and gonads as well as the accompanying urinary and 

reproductive tracts.  After differentiation, the embryonic intermediate mesoderm 

subsequently proliferates and some cells transition from a mesenchymal to an epithelial 

cell type in order to generate the tubules that compose the male and female reproductive 

tracts, as well as the kidneys and gonads.  Before sexual differentiation, embryos are 

bipotential and have both male and female reproductive tract primordia regardless of 

their genetic sex.  The FRT system develops primarily from the Müllerian 

(paramesonephric) ducts, whereas the male reproductive tract forms from the Wolffian 

(mesonephric) ducts.  The Wolffian duct is first formed from the intermediate 

mesoderm.  Subsequently, the Müllerian duct is formed by invagination of the surface 

epithelium of the anterior mesonephros in the developing urogenital ridge.  This 

epithelial invagination extends caudally along the Wolffian duct laterally and then 

medially towards the urogenital sinus to form the primordium of the FRT.  The Wolffian 

duct can differentiate into the epididymis, vas deferens, and seminal vesicle of the male 

reproductive tract.  The Müllerian duct can differentiate into the oviducts, uterus, cervix 

and anterior vagina of the FRT [71].    

 Mammalian sex determination and subsequent development of either the Wolffian or 

Müllerian ducts depends on the genetic sex of the gonads [73, 74].  Given the absence of 

any genetic anomilies, XY embryos become males, and XX embryos become females.  

In XX females, the absence of the Y chromosome permits the bipotential gonad to 

differentiate into an ovary leading to the female phenotype [75].  After gonadal sex is 

determined, the differentiating gonads secrete hormones that promote sexual 
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differentiation.  In males, the fetal testis secretes several important hormones, including 

Müllerian Inhibiting Substance (MIS; also termed Anti-Müllerian Hormone), 

testosterone, and insulin-like 3 (Insl3) [76].  The Müllerian duct regression is stimulated 

by MIS, and testosterone promotes the differentiation and development of the Wolffian 

duct.  All three hormones are involved in testicular descent.  In females, the 

differentiating ovaries do not produce MIS, testosterone, or Insl3. Thus, the Müllerian 

duct differentiates and develops into the FRT, while the Wolffian duct degenerates. 

 The morphology of the FRT organs can differ markedly among mammalian species 

[70, 77].  Regardless of the eutherian species, the point at which the gubernacula cross 

the Müllerian duct marks the uterotubal junction.  The portion of the female duct lateral 

and cephalic to the crossing becomes the oviduct, whereas the medial and caudal portion 

becomes the uterus, cervix and anterior vagina [71].  Müllerian duct formation is similar 

between species, and differences in morphology mainly results from differences in the 

extent of anterior fusion of the two Müllerian ducts  [77].  The degree of Müllerian duct 

fusion, which can be complete, partial or incomplete, is species-specific and defines 

gross (i.e. simplex, bicornuate, or duplex) morphological characteristics of adult uteri.  

In rodents, Müllerian fusion is absent or limited, which leads to the formation of two or 

‘duplex’ uteri.  In domestic animals, the Müllerian ducts fuse more at the posterior ends, 

which results in a long (pig) to medium-length (sheep and cow) bicornuate uterus with a 

small common corpus, single cervix, and vagina.  In contrast, fusion of the Müllerian 

ducts of higher primates (including humans) is primarily anterior, which results in  
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formation of a single ('simplex') uterus with a single cervix and vagina.  Anatomical 

variations of the FRT can even be observed within a species [77]. 

Postnatal Morphogenesis  

 Unlike most FRT organs, the uterus is not fully developed or differentiated at birth.  

Establishment of tissue-specific histoarchitecture is completed postnatally in laboratory 

rodents, domestic animals, and humans [3, 41, 78, 79].  The process of postnatal radial 

patterning morphogenesis establishes the three classic histological elements of the 

uterine wall, including the: (1) endometrium; (2) myometrium, which consists of an 

inner circular layer and an outer longitudinal layer of oriented smooth muscle; and (3) 

perimetrium (Fig. 2.2).  Morphogenetic events common to postnatal development of 

uteri include: (1) organization and stratification of endometrial stroma; (2) 

differentiation and growth of the myometrium; and (3) coordinated development of the 

endometrial glands [3, 41, 79].  The timing of these developmental events differs among 

species and is subject to differences in uterine maturity at birth.  Importantly, 

endometrial gland morphogenesis is a uniquely or primarily postnatal event in all studied 

mammals.  Available evidence strongly supports the hypothesis that the functional 

capacity of the adult uterus is defined, to a significant extent, by developmental events 

associated with ‘programming’ of uterine tissues during prenatal and postnatal life [41, 

70, 80, 81].  Postnatal uterine morphogenesis depends on maturity of the uterus at birth, 

e.g. gestation length, and perhaps the interval between birth and puberty [3].  For 

instance, postnatal development of the rodent uterus after birth begins with 

differentiation of the mesenchyme into endometrial stroma and myometrium, whereas 
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the uterine mesenchyme in domestic animals and humans is already differentiated into 

endometrial stroma and myometrium at birth. 

 

A.

B.

Rodent Sheep Pig

 

FIG 2.2.  Uterine morphology and radial patterning in rodents, sheep, and pigs.  A.  Diagrams of ideal 
frontal sections of uterine types.  The drawings cut off the oviducts near the uterotubal junctions, and the 
vaginae just caudal to the cervices.  Rodents (rats and mice) have a long duplex type of uterus with dual 
cervices.  Pigs have a long bicornuate type of uterus with a short uterine body and a single cervix.  Sheep 
have a medium–length bicornuate type of uterus, a short uterine body and a single cervix.  B.  Diagrams of 
ideal radial patterns of the uterine wall.  The curved lines in the endometrium denote the tubular, coiled 
and branched glands that extend from the uterine lumen to the inner layer of myometrium.  The rodent 
uterus contains only a few endometrial glands.  The sheep uterus contains large number of glands in the 
intercaruncular areas of the endometrium, whereas the caruncles are glandless.  The pig uterus contains 
large numbers of glands throughout the endometrium. 
 
 

Comparative Morphogenesis 

Laboratory Animals   

 The histological organization of the adult rodent uterus consists of a simple columnar 

LE surrounded by mesenchymal (i.e., stromal) cells that contain endometrial glands 

lined by simple columnar epithelial cells (Fig 2.2).  The endometrium typically contains 
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only 10 to 20 glands in a cross-section of the mature uterine wall.  The rodent uterus 

does not contain the tightly coiled and slightly branched glands that are characteristic of 

endometrium in humans and domestic animals.  However, the rodent endometrium is 

surrounded by circular and longitudinal layers of smooth muscle (i.e., myometrium) that 

define the outer boundary of the uterus, similar to other mammals [79, 82, 83].     

 Postnatal development of the uterus is very similar in rats and mice [83].  At birth, 

the uteri of mice and rats lack endometrial glands and consist of a simple epithelium 

supported by undifferentiated mesenchyme.  Between birth and PND 5 in mice, 

epithelial invaginations appear representing formation of GE buds, and the three layers 

of mesenchyme are distinctly segregated into radially oriented endometrial stroma and 

inner-circular and outer-longitudinal myometrial layers [83].  Genesis of endometrial 

glands is not observed until PND 7 and PND 9 in mice and rats, respectively [84].  By 

PND 10 in mice, uterine glands extend from the LE into the surrounding endometrial 

stroma, and the outer-longitudinal layer of the myometrium becomes organized into 

bundles [83].  The basic adult configuration of the uterus in mice is established by PND 

15 [85].  In the rat uterus, endometrial gland morphogenesis proceeds from PND 9 

through PND 15 [84] and results in development of simple, tubular glands that, unlike 

ungulate or human endometrial glands, are neither tightly coiled nor extensively 

branched [85].   
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Domestic Animals   

Pig   

 The mature uterine wall in the adult gilt or sow has a similar architecture to that of 

humans and other domestic animals, because the endometrium contains hundreds of 

glands in a single uterine cross-section (Fig 2.2).  Transformation of the porcine uterine 

wall from histoarchitectural infancy to maturity occurs within 120 days of birth [23, 78, 

86, 87].  Uterine development in the neonatal pig includes appearance and proliferation 

of endometrial glands, organization of the stroma, development of endometrial folds, 

and growth of the myometrium.  At birth or PND 0, the porcine uterus consists of a 

simple, slightly corrugated, columnar epithelium supported by unorganized stromal 

mesenchyme, encircled by a rudimentary myometrium [41, 86].  Shallow, epithelial 

depressions can be observed on PND 0, and are the presumed precursors for the coiled 

and slightly branched uterine glands characteristic of the adult porcine uterus.  

Endometrial adenogenesis is initiated when GE develops into simple epithelial tubes that 

extend radially from the LE into the stroma.  By PND 7, stromal zones, including a 

shallow stratum compactum and a deep stratum spongiosum, are evident and 

accompanied by the presence of distinct, simple tubular glands present throughout the 

shallow stroma.  Eventually, tubular glands undergo coiling and some branching within 

the stroma until they reach the adluminal border of the myometrium.  By PND 14, many 

coiled tubular glands are apparent, and they extend approximately one-third of the 

distance from the LE to the myometrium, which has clearly differentiated into inner-

circular and outer-longitudinal layers.  On PND 28, many of the coiled glands have 
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obvious branches, and GE is present throughout the endometrial stroma.  Well 

developed endometrial folds are apparent by PND 28 and serve to increase the uterine 

lumenal surface area.  By PND 56, the endometrial gland population is dense and 

extensive.  The porcine uterus is capable of supporting pregnancy by PND 120, 

indicating that it is functionally mature [41]. 

Sheep 

 Ruminants (cattle, goats, and sheep) have a bicornuate uterus with a small common 

corpus and single cervix.  The uterine wall is lined by the endometrium and surrounded 

by the myometrium.  The myometrium has two layers of smooth muscle including the 

inner-circular and outer-longitudinal layers.  The endometrium in adult sheep and cattle 

consists of a large number of raised aglandular caruncles, which are dense stromal 

protuberances covered by a simple LE, and glandular intercaruncular areas (Fig 2.2) [17, 

88].  As in humans and pigs, the intercaruncular areas of the endometrium contain many 

hundreds of glands in a cross-section of the uterine wall.  However, it is the caruncular 

areas that are the sites of superficial implantation and placentation [17, 77].  In 

synepitheliochorial placentation found in ruminants, fusion of placental cotyledons with 

endometrial caruncles forms placentomes, which serve a primary role in fetal-maternal 

gas exchange and derivation of micronutrients by the placenta [4, 17, 89].  The 

dichotomous nature of the adult ruminant endometrium, consisting of both aglandular 

caruncular areas and glandular intercaruncular areas, makes it an excellent model for the 

study of mechanisms underlying establishment of divergent structural and functional 

areas within a single, mesodermally derived organ [13].   
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 The ovine vagina, cervix, and oviduct appear to be histologically completely 

developed at birth [11, 90].  This is in contrast to the uterus, which is not fully developed 

at birth.  Postnatal uterine morphogenesis involves the emergence and proliferation of 

endometrial glands, development of endometrial folds and, to a lesser extent, growth of 

endometrial caruncular areas and myometrium [10, 13, 14, 28].  Development of the 

endometrial GE, progressing from the LE to the inner-circular layer of myometrium, is a 

coordinated morphological event involving bud formation, tubulogenesis, coiling, and 

branching prior to completion.  In sheep, endometrial gland genesis is initiated between 

PND 0 and PND 7, when shallow epithelial invaginations appear along the LE in 

presumptive intercaruncular areas [10, 14].  Between PND 7 and PND 14, nascent GE 

buds proliferate and invaginate into the stroma, forming tubular structures that coil and 

slightly branch by PND 21.  After PND 21, the majority of glandular morphogenetic 

activity involves coiling and branching morphogenesis of tubular endometrial glands as 

they extend into the deeper stratum spongiosum stroma adjacent to the inner-circular 

layer of myometrium.  By PND 56, the caruncular and intercaruncular endometrial areas 

are histoarchitecturally similar to those of the adult uterus.   

Humans  

 Humans have a simplex uterus that consists of a single uterine corpus that is lacking 

uterine horns, which are characteristic of the bicornuate uterus found in domestic 

animals.  The endometrium is lined by LE and contains tubular glands that radiate from 

the surface to the endometrial-myometrial interface.  The adult human and primate 

endometria are divided into two functional layers, the upper stratum functionalis, which 
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contains glands surrounded loosely by stroma, and the lower stratum basalis, consisting 

of branching glands and dense stroma [91-93].  The endometrial functionalis is shed 

during menses.  The endometrial basalis is a dynamic, but structurally stable, 

compartment of the uterus that is not eroded during menstruation or at the end of 

gestation.  This tissue functions as the germinal compartment of the endometrium in 

these species, and provides stem cells from which the functionalis regenerates with each 

cycle, or after gestation [92, 94, 95].   

 Our knowledge of human prenatal and postnatal FRT organogenesis and 

morphogenesis is very limited [96].  As seen in neonatal rodents and ungulates, the 

simple columnar epithelium of the undifferentiated uterine body gives rise to numerous 

invaginations that represent primordial GE buds; however, this occurs during gestation 

in humans.  By 20 to 22 weeks of gestation, the myometrium is well-defined and 

endometrial gland development is present but remains very superficial [97]. 

 Uterine histoarchitecture at birth resembles that of the adult, but is less developed.  

Neonatal endometrial LE is low columnar or cuboidal and the GE is sparse and limited 

to the adluminal stroma [98].  From birth to the onset of puberty, endometrial glands 

develop slowly.  By six years of age, endometrial glands extend from one-third to one-

half of the distance to the myometrium.  Mature uterine histoarchitecture is observed at 

puberty, with endometrial glands extending to the inner- circular layer of the 

myometrium [98].  Although initiated during fetal life, endometrial gland proliferation in 

the human uterus is completed postnatally, in a manner similar to that observed for 

domestic ungulates.  Thus, genesis of endometrial glands in the human fetus and neonate 
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involves differentiation of GE from LE, followed by radial development of the tubular 

glands through endometrial stroma to the myometrium.  This initial pattern of 

endometrial development is opposite to the process of endometrial gland genesis 

associated with the menstrual cycle in uteri of adult women and primates, where 

endometrial glands develop adluminally from the basalis during the proliferative phase 

after menses [91].   

Factors That Influence Endometrial Adenogenesis 

Postnatal uterine morphogenesis is governed by a variety of hormonal, cellular 

and molecular mechanisms, for which details remain relatively undefined as compared 

to other epitheliomesenchymal organs [3, 41].   Morphogenetic events common to 

postnatal development of uteri include: (1) organization and stratification of endometrial 

stroma; (2) differentiation and growth of the myometrium; and (3) coordinated 

development of the endometrial glands [3, 41, 99].  The timing of these developmental 

events differs among species, but development of the endometrial glands is a uniquely or 

primarily postnatal event in all studied mammals.  Development of the uterine glands is 

a particularly pivotal and critical event, because alteration or ablation of endometrial 

glands and/or their secretory products compromises survival and growth of the 

conceptus in the mouse, rat, pig, cow, sheep and humans [2, 9, 41, 100].  Postnatal 

uterine development is regulated by many factors including the ovaries, steroids and 

their receptors, growth factors, and epithelial-stromal interactions.  
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Ovaries, Steroids, and Steroid Receptors 

Jost established the concept that prenatal urogenital tract development in female 

mammals is an ovary-independent process [101].  In the neonatal pig, ovariectomy at 

birth does not affect genesis of uterine glands or related endometrial morphogenetic 

events prior to PND 120, but does inhibit uterine weight after PND 60 [23].    Early 

postnatal events in rodent uterine development and endometrial adenogenesis are also 

both ovary-independent [102] and adrenal-independent [30, 32].   From  PND 10 to PND 

14 in rodents, uterine growth is dependent on the presence of the ovaries and, to a lesser 

extent, the adrenal glands [32], which is thought to be mediated by the appearance of 

systemic estrogens beginning at this age [103].  Estrogen is formed from testosterone by 

the aromatase enzyme, and female aromatase null mice (ArKO) have underdeveloped 

external genitalia and uteri at 9 weeks of age [104].  Thus, estrogen from the ovary 

appears to regulate peri-pubertal uterine growth in mice and pigs, but not endometrial 

adenogenesis.   

 Ovaries of Spring-born ewes contain significant numbers of growing and antral 

ovarian follicles at birth (~455 and 935 per ovary, respectively) that increase in number 

by PND 28 (~683 and 1100 per ovary) and then decline in number by PND 84 (~100 and 

287 per ovary) [16].  However, there is no evidence that these ovarian follicles secrete 

appreciable amounts of estrogens between birth and puberty [16].  Ovariectomy of ewe 

lambs at birth reduces uterine weight after PND 28 [16]; however, the effects of 

ovariectomy on endometrial adenogenesis is unknown.  In neonatal and prepubertal 

girls, uterine development and adenogenesis is also likely to be an ovary- and steroid-
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independent process [105].  However, functional differentiation of the uterus after 

puberty requires ovarian steroids [93, 106-109].       

Endometrial adenogenesis involves coordinated changes in epithelial phenotype 

that are marked by ERα expression in nascent and proliferating endometrial GE as well 

as in stroma and myometrium in neonatal porcine [23, 24], rodent [19-21],  and ovine 

[14] uteri.  Homozygous ERα null mice (αERKO) have hypoplastic uteri that contain all 

characteristic cell types in reduced proportions [110].  Thus, ERα expression is not 

essential for organogenetic development and differentiation of the fetal uterus nor 

postnatal uterine histogenesis, but is essential for normal peripubertal uterine growth and 

development in the mouse [110].   However, homozygous ERβ null mice have no 

defects in FRT differentiation or fertility [111].  The requirement of ERα for uterine 

growth and development in the mouse is related to the uterotrophic actions of estrogen 

[32, 112].    

 In contrast to rodents, ERα has a particularly important regulatory role in uterine 

development in the neonatal pig.  In the neonatal gilt, administration of the anti-estrogen 

ICI 182,780, a potent ERα antagonist, to neonatal pigs from birth inhibited endometrial 

adenogenesis and overall uterine growth at PND 14 without effects on ERα protein 

expression [24].  The precise roles of E2-17β and ERα in endometrial adenogenesis 

have not been studied in the neonatal ewe; however, circulating concentrations of E2-

17β are high at birth, increase from PND 7 to a peak on PND 28, and then decline to 

PND 56 in Fall born ewes [14].  During this time, the developing endometrial glands 

express abundant levels of ERα as well as PR, an estrogen-responsive gene [14].  
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Collectively, these results are generally consistent with the idea that uterine ERα 

expression and activation, which may be species-specific, are important elements of the 

organizational program that determines patterns of uterine growth and endometrial 

morphogenesis.  In this regard, elegant tissue recombination studies involving mouse 

uterine stroma and epithelium indicate that epithelial ERα is neither necessary nor 

sufficient to mediate the mitogenic actions of estrogen [113, 114].  In addition to direct 

ligand-dependent activation of epithelial ERα, proliferative effects of estrogen on 

epithelium appear to be mediated primarily by stromal ERα via production of paracrine-

acting, stromal-derived growth factors such as epidermal growth factor (EGF), IGF-I and 

IGF-II [113, 115].  

 ERα can be activated by estrogens, in a ligand-dependent manner, or by growth 

factor-coupled pathways, in a ligand-independent manner [116, 117].  Transient 

transfection experiments indicate that ligand-independent ERα activation can be induced 

by many factors including dopamine, EGF, transforming growth factor α (TGFα), 

heregulin, and IGF-I [25, 118].  The precise roles and significance of ligand-dependent 

and ligand-independent actions of ERα in endometrial gland morphogenesis remain to 

be determined, but the neonatal sheep uterus expresses both IGF-I and IGF-II in the 

periglandular stroma of the developing endometrium [15].  In the human and primate 

uterus, organogenetic and perhaps functional differentiation of the endometrium during 

the proliferative phase is regulated by ovarian estrogen acting through ERα present in 

the stroma and epithelium [93].  Therefore, the regulatory role of ERα in uterine 

development and endometrial adenogenesis is species- and developmental stage-specific. 
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Growth Factors 

 Stromal-derived growth factors play important roles in epithelial proliferation, 

differentiation and branching morphogenesis in many developing epitheliomesenchymal 

organs, including the uterus [68, 69, 119].  Interactions between growth factors and their 

receptors can involve elements of the ECM, which not only affect patterns of growth 

factor presentation to target cells, but may also participate as elements of cell surface 

receptor complexes.  Although many studies have promoted the concept that local 

growth factors regulate organ morphogenesis and differentiated function, recent 

evidence indicates that systemic growth factors, such as IGF-I, are also important [120].  

Thus, uterine development is likely regulated by a carefully orchestrated network of 

growth factors and hormones from local as well as systemic origins. 

Fibroblast growth factors and hepatocyte growth factor   

FGF-7 is an established paracrine growth factor that stimulates epithelial cell 

proliferation and differentiation [121] and FGF-10, isolated originally from rat lung 

mesenchyme, is essential for patterning of early events in branching morphogenesis 

[122].  HGF functions as a paracrine mediator of mesenchymal-epithelial interactions 

that govern mitogenic, motogenic and morphogenic behaviors of epithelia in developing 

liver, lung and mammary tissues [123].  In the developing neonatal ovine uterus, FGF-7, 

FGF-10, HGF and their epithelial receptors (FGFR2IIIb and c-met) were identified as 

growth factor systems associated with endometrial morphogenesis [11, 15].  Although 

FGF-7 mRNA was constitutively expressed in uteri from PND 1 to PND 56, FGF-10 and 

HGF mRNA levels increased markedly after PND 21, a period characterized by coiling 
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and branching morphogenesis of endometrial glands in the neonatal ovine uterus.  

Studies have shown that postnatal progestin exposure suppresses HGF mRNA 

expression in the stroma and FGFR2IIIb and c-met mRNA expression in the LE 

suggesting these systems may play a role in the epigenetic ablation of endometrial 

glands in the UGKO [11].  In the human uterus, profiles of HGF and FGF-7 expression 

are consistent with roles in epithelial proliferation and morphogenesis during the 

proliferative phase of the menstrual cycle [124, 125].   

Insulin-like growth factors   

IGF-I and IGF-II regulate cell proliferation, differentiation, and functions acting 

through autocrine and/or paracrine mechanisms in many organ systems including the 

uterus [126, 127].  Null mutation of the IGF-I gene in mice demonstrated the critical role 

of this growth factor in normal development of the female reproductive tract [128], as 

well as estrogen-induced uterine growth.  In the human endometrium, IGFs mediate 

proliferative growth responses to ovarian estradiol [126, 129].  IGF-II may also be 

important in growth of the fetal human uterus.  IGF-II and variant IGF-II mRNA are 

expressed in the uterus at 10 to 22 weeks of gestation [130], and the endometrium 

contains immunoreactive insulin, insulin receptors, IGF-I and IGF-1R in the epithelium 

of uteri from 19 to 22 weeks of gestation [131].  

 In neonatal rodent and ovine uteri, the IGF system is involved in postnatal uterine 

morphogenesis and growth [15, 128, 132].  IGF-I mRNA expression in the neonatal rat 

uterus is confined to the stroma and myometrium and increases during endometrial 

adenogenesis [132].  In the neonatal ovine uterus, IGF-I and IGF-II are expressed 
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predominantly in the stroma surrounding the developing endometrial glands that express 

the IGF-I receptor [15]; however, their roles in ovine endometrial gland development 

have not been elucidated. 

Epithelial-Mesenchymal Interactions 

 Development of the uterus depends upon epithelial-mesenchymal interactions for 

local control and coordination of morphogenetically important cell behaviors including 

movement, adhesion, differentiation and proliferation [69, 79, 133].  Tissue 

recombination studies in rodents clearly indicate that uterine mesenchyme directs and 

specifies patterns of epithelial development, whereas epithelium is required to support 

organization of endometrial stroma and myometrial differentiation [68, 69, 134, 135].  In 

rodents, distinct cytodifferentiation of the uterine mesenchyme occurs during postnatal 

development, and differentiation is complete two weeks after birth.  Experiments in 

which neonatal epithelium from any part of the FRT is recombined with presumptive 

uterine or vaginal mesenchyme revealed that the epithelium is developmentally plastic 

and adopts either a uterine (simple columnar) or vaginal (squamous/stratified) epithelial 

fate dependent upon the origin of the mesenchyme [69, 135]. 

 Studies of neonatal ovine and porcine uterine development, as well as the 

regenerating primate endometrium during the menstrual cycle, also support the 

hypothesis that endometrial gland morphogenesis or adenogenesis is supported and 

regulated through interactions between epithelium and stroma [11, 15, 86, 91, 136, 137].  

It is through such interactions that developmentally critical tissue microenvironments, 

necessary to support and maintain spatially focused changes in cell behaviors associated 
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with gland genesis, are thought to evolve [41].  The initial differentiation and budding of 

endometrial GE from LE does not appear to require cell proliferation in the pig and 

sheep [11, 14, 86].  Rather, the initial growth of the GE buds into the stroma is 

hypothesized to involve alterations in the basal lamina that permit and direct GE cell 

migration into the underlying stroma [13, 28].  

 Epithelial-mesenchymal interactions are mediated by intrinsic growth factor systems 

as well as by changes in the composition and distribution of extracellular matrix (ECM) 

components. Glycosaminoglycans (GAGs), oligosaccharide components of the ECM, 

can affect cell function directly and indirectly, by mediating access of growth factors and 

other molecules to their receptors or target cells.  During adenogenesis in many tissues, 

including salivary glands, prostate, and uterus, sulfated GAGs, such as chondroitins and 

heparans, become localized to morphogenetically inactive sites, such as the necks of 

glands, while non-sulfated GAGs, such as hyaluronic acid, accumulate in 

morphogenetically active sites, such as the tips of proliferating glands [28, 86, 119].     

 Matrix metalloproteinases (MMPs) and other factors that alter the biochemical 

nature of the basal lamina, affect both physical and chemical interactions between 

epithelium and underlying stroma in human and menstruating primate uteri during the 

menstrual cycle [138].  Mice lacking tissue inhibitor of metalloproteinase one (TIMP-1) 

gene have an increased number of endometrial glands in the uterus [139].  Microarray 

analysis of the developing postnatal uterus in mice found that a number of MMPs and 

TIMPs were present [85, 140].  MMP-2 mRNA was detected only in the uterine stroma, 

whereas MMP-10 mRNA was present only in the uterine epithelium from PND 3 to 
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PND 9.  Other MMPs (MMP-11, MMP-14, and MMP-23) and TIMPs 1-3 were detected 

in both epithelial and stromal cells of the endometrium, but not in the myometrium.  

Immunoreactive MMP-9 protein was detected only in the endometrial stroma, whereas 

immunoreactive MMP-2 was detected in both stroma and epithelium of the uterus.  

These results support the hypothesis that MMPs and TIMPs regulate postnatal 

development of the mouse uterus. 

Prolactin and Prolactin Receptor 

 PRL, a member of the somatolactogenic superfamily [34], regulates growth and 

differentiation in many epitheliomesenchymal organs including the pigeon crop sac, 

mammary glands, and prostate [141].  Available results support the hypothesis that PRL 

plays a similar role in uterine adenogenesis.  In fact, hyperprolactinemia causes uterine 

glandular hyperplasia in the adult mouse, rabbit and pig [38-40].  In the neonatal ewe, 

circulating levels of PRL are relatively high on PND 1, reach a maximum on PND 14, 

and then decline slightly to PND 56 [14, 37].  These temporal changes in circulating 

levels of PRL in the neonatal ewe parallel the ontogeny of endometrial glands in the 

developing intercaruncular endometrium of the uterine wall [14].  Additionally, budding, 

nascent and proliferating endometrial glands express mRNAs for both the long and short 

PRLR forms on PNDs 7 and 14 [14].  After the budded glands elongate to a more 

tubular form and begin coiling and branching morphogenesis by PND 21, the ductal GE 

loses PRLR expression [14].  Only the GE in the stratum spongiosum expresses PRLR 

on PNDs 28 to 56 [14].  In the adult ovine uterus, PRLR expression is also restricted to 

GE [18].  Moreover, intrauterine administration of ovine placental lactogen, a PRL-like 
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hormone that signals through the PRLR [142], stimulates proliferation of endometrial 

glands in the adult ewe and, in particular, the coiled and branched glands in the stratum 

spongiosum of adult ewes [67].  Given the central role ascribed to PRLR in other 

epitheliomesenchymal organs [141], PRLR in the nascent GE of the developing neonatal 

ovine uterus may play a similar albeit undiscovered regulatory role in endometrial gland 

morphogenesis; however, the precise role of PRL in neonatal ovine uterine adenogenesis 

has not been elucidated.  Additionally, the GE specific expression of PRLR suggests that 

its expression is an integral component of GE differentiation.  Therefore, the factor(s) 

responsible for controlling PRLR expression also possesses some level of control over 

GE differentiation. 

PRLR Gene Structure 

 The complete gene structure for PRLR has been determined in the human, rat, and 

mouse.  While there is variation among these species, many similarities exist including 

the location of the start codon in exon 3.  Both the human [143] and the rat [144] PRLR 

genes are comprised of eleven exons, while the mouse PRLR gene contains thirteen 

exons [145].  In these species, the transcriptional start site is located in exon 3; therefore, 

exons 1 and 2 as well as part of exon 3 comprise the 5’-untranslated region of the gene.  

Most mammals, including rats, express both long and short forms of the PRLR protein 

due to alternative splicing of exons 10 and 11, respectively [144].   Alternative splicing 

of exons 10 and 11 also occurs in humans resulting in one long and two short isoforms 

[143, 146].  The mouse expresses four isoforms, one long and three short, also arising 

from alternative splicing of the 3’ exons [145, 147].  The variant forms within a species 
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are identical in their extracellular and transmembrane domain, but differ in the length of 

their cytoplasmic domains as well as the mechanisms through which they signal [143, 

148].  Additionally, the PRLR gene contains a complex 5’ genomic structure made up of 

multiple promoters and non-coding first exons.  These alternative first exons are 

differentially expressed depending on tissue type and developmental stage [149-153].  

Rat 

 The rat PRLR gene spans a 145kb region on chromosome 2 (2q16) [154] and 

contains four known first exons (E11, E12, E13, and E14) [150, 151].  The expression of 

each E1 is controlled by a separate, proximal promoter (PI, PII, PIII, and PIV) [151, 

155].  Interestingly, canonical TATAA elements, found in most promoters, are absent 

from the PRLR promoters; however, they do contain TATA-like sequences [151].  In 

rats, the long PRLR is encoded for by a 9.7kb mRNA, while the short PRLR is the 

product of two shorter (2.1kb and 1.8kb) mRNA species [156].  The variability in length 

of the first exon does determine in part the species of mRNA expressed (2.1kb or 1.8kb) 

but does not influence the length of the protein product which is most likely determined 

by post-transcriptional processing [151].  E11 is 442 nucleotides (nt) long and spans 

from -557 to -116 (ATG +1) [151].  Expression of E11 is primarily controlled by a 

steroidogenic factor-1 (SF1) binding domain in PI [154].  SF1 is an orphan nuclear 

receptor that is involved in the regulation of sexual differentiation, steroidogenesis and 

reproduction.  Thus, E11 is highly expressed in ovaries and has a low level of expression 

in the testis [151, 154].  Expressed only in the liver, E12 is 233 nt long and spans from -

348 to -116 [151].  The expression of this exon is controlled by hepatic nuclear factor-4, 
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a transcription factor required for the expression of several liver specific genes [153].  

The more ubiquitous expression pattern of E13 can be attributed to the presence of 

binding sites for the transcription factors C/EBPβ, a member of the CCAAT-enhancer 

binding protein family (C/EBP), and Sp1, a transcription factor that binds to GC-rich 

sequence, within PIII [152].  Hu et al. [151] detected high levels of E13 expression in 

testis where it was the predominant form with low levels being detected in ovaries and 

liver.  A brain specific PRLR first exon, E14, was first described by Tanaka et al. [150].  

Interestingly, the splicing of this E1 onto PRLR mRNA prohibits the inclusion of exon 2 

and is also controlled by a Sp1 binding site [150]. 

Mouse 

 The mouse prolactin gene (Prlr) resides on chromosome 15 [157] and encodes four 

species of mRNA (9.5kb, 4.2kb, 2.4kb, and 1.4kb) [154].  A total of five first exons and 

promoters span more than 60kb of the 5’ region of Prlr [145].  Exons homologous to rat 

E11, E12, and E13 have been described as well as two novel first exons [145, 154].  The 

expression patterns of murine E11, E12 and E13 are similar to that seen in the rat.  The 

two novel first exons were isolated by 5’-rapid amplification of cDNA ends (5’-RACE) 

using liver cDNA [145].  They and their respective promoters have yet to be 

characterized.  

Human 

 The PRLR gene spans 167kb on human chromosome 5 (5p13) [158].  Six first exons 

(hE13, hE1N1, hE1N2, hE1N3, hE1N4, and hE1N5) and promoters (hPIII, hPN1, hPN2, hPN3, 

hPN4, and hPN5 respectively) have been isolated (Fig 2.3) [158, 159].  Divergence in the 
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human PRLR mRNA is seen 5’ of nucleotide -106.  Only one of the human first exons, 

hE13, is homologous to an E1 found in rats and mice [159].  Spanning from -357 to -106, 

hE13 is comprised of 253 nt, and, like rodents, its expression is controlled by C/EBP and 

Sp1 [158].  hEN1 is 147 nucleotides long from -252 to -106 [159].  The hPN1 promoter 

contains putative binding sites for the transcription factors ETS-1, Sp1, and AP2, as well 

as a cyclic-AMP responsive element (CRE) [159].  The ETS element has been proven to 

be functional; however, Sp1 was not able to bind to this region [158].  The AP2 and 

CRE sites have not yet been examined.  The remaining four first exons were described 

by Hu et al. using 5’-RACE of cDNA isolated from T-47D cells, a human breast cancer 

cell line [158].  Of these, hEN2 (129 nt) and hEN3 (154 nt) are both expressed at low 

levels in the testis.  hEN3 is also expressed at high levels in the liver [158].  Also found in 

the liver, hEN5 (132 nt) expression is detectable by RT-PCR analysis in the ovary [158].  

Interestingly, hEN4 (134 nt) expression was not detectable by RT-PCR analysis in either 

the gonads or the liver [158].  The promoters for these novel human first exons have not 

been analyzed. 

 

hE13/hE1N1 hE1N1/hE1N1 hE1N4 hE1N5 E2 E3 E4-E11

-165873/-165727

-100529/-100401

-100106/-99953

-75230/-75097

-45794/-45662

-28501/-28440
-45/+67

ATG

-166719/-166467

  
 
FIG 2.3.  Structure of the human prolactin receptor gene (adapted from Hu et al. [153]).  The human 
PRLR gene spans 167 kb on chromosome 5p13.  The relative localization of the six alternative first exons 
and exons 2-11 are shown according to NT_006679.6.  The translational start site (ATG) is located in 
exon 3.  Locations and sizes of the exons are shown below (ATG=0). 
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CHAPTER III 

THE ROLE OF ESTRADIOL IN UTERINE ADENOGENESIS 

Introduction 

Evidence accumulated from primate and subprimate species during the last 

century supports an unequivocal role for secretions from endometrial glands as primary 

regulators of conceptus (embryo/fetus and associated extra-embryonic placental 

membranes) survival, development, production of pregnancy recognition signals, and 

implantation/placentation [2, 3].  Exposure of neonatal ewes to a progestin from birth 

epigenetically ablates endometrial gland differentiation and produces an UGKO 

phenotype in the adult [12].  UGKO ewes are infertile and exhibit early pregnancy loss 

during the peri-implantation stage of conceptus elongation [12].  Therefore, mechanisms 

regulating endometrial gland differentiation and development, also termed adenogenesis, 

in the neonate determines, in part, the functional capacity and embryotrophic potential of 

the mature uterus [3, 41].  Although a functional role for endometrial glands has been 

established in many mammals, the developmental mechanisms regulating endometrial 

gland morphogenesis are not well understood.  Uterine development after birth involves 

differentiation of the endometrial GE from the LE, specification of intercaruncular 

stroma, development of endometrial folds and, to a lesser extent, growth of endometrial 

caruncular areas and the myometrium [14, 15].  Endometrial gland development or 

adenogenesis in the ewe begins between PND 1 and 7 when shallow epithelial 

invaginations appear along the LE in presumptive intercaruncular areas.  Between PND 
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7 and 14, the nascent GE buds proliferate into the stroma and form tubules or ducts that 

begin to coil and branch at the tips by PND 21.  After PND 21, uterine adenogenesis 

primarily involves branching morphogenesis of tubular and coiled endometrial glands in 

the lower stroma (e.g. stratum spongiosum) adjacent to the inner circular layer of the 

myometrium.  By PND 56, uterine morphogenesis is essentially complete, as the 

aglandular caruncular and glandular intercaruncular endometrial areas appear 

histoarchitecturally similar to that of the adult uterus [14].  Final maturation and growth 

of the ovine uterus does not occur until puberty [16].    

In the neonatal ewe, pituitary PRL, E2-17β, and stromal growth factors, 

including FGF-7 and FGF-10, HGF, and IGF-I and IGF-II, with their respective 

epithelial receptors have been implicated as endocrine and paracrine regulatory systems 

controlling postnatal ovine endometrial adenogenesis [11, 14, 15].  Available evidence 

strongly supports a primary regulatory role for PRL in endometrial gland growth and 

branching morphogenesis [14].  Expression of both short and long forms of the PRL 

receptor (PRL-R) is restricted to the nascent GE buds on PND 7 and proliferating and 

developing GE from PND 14 to 56 [14].  Hypoprolactinemia in neonatal ewes retards 

endometrial gland development, whereas hyperprolactinemia increases endometrial 

gland development [Chapter V].  The precise roles of circulating E2-17β and uterine 

ERα in endometrial gland morphogenesis in the neonatal ovine uterus have not been 

evaluated.  Postnatal uterine development is accompanied by expression of ERα in both 

the nascent and developing GE and endometrial stroma in rodents, pigs and sheep [14, 

19-22, 25].  Studies in rodents indicate that endometrial adenogenesis is not dependent 
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on the ovary, adrenal gland, estrogen or uterine ERα [23, 30, 32, 110].  In contrast, 

endometrial adenogenesis in the neonatal pig is not dependent on the ovary [22], but is 

regulated by expression and activation of a functional ERα system [112]. 

Endometrial adenogenesis in the neonatal ewe is accompanied by abundant 

expression of ERα in emerging, proliferating and developing glands, as well as in the 

surrounding peri-glandular stroma [14].  In Fall born ewes, circulating concentrations of 

E2-17β are high at birth, increase from PND 7 to a peak on PND 28, and then decline to 

PND 56 [14].  The developing endometrial glands express abundant levels of ERα as 

well as PR, an estrogen-responsive gene [14].  During this period, the stroma is also 

ERα-positive and expresses both IGF-I and IGF-II [15].  The developing GE expresses 

the IGF-I receptor [15], and IGF-I can activate ERα in a ligand-independent manner in 

other model systems [24].  Available evidence in the neonatal ewe supports the working 

hypothesis that uterine ERα, activated by ligand-dependent or ligand-independent 

mechanisms, regulates endometrial gland morphogenesis in the neonatal ovine uterus.  

In order to test this hypothesis, this study was conducted to determine effects of 

estradiol-17β valerate (EV; an ERα agonist), CGS 20267 (a non-steroidal aromatase 

inhibitor), and EM-800 (an ERα antagonist) on uterine growth and endometrial gland 

development in the neonatal ewe.   

Materials and Methods 

Animals 

 All experiments and surgical procedures were in accordance with the Guide for the 

Care and Use of Agriculture Animals and approved by the University Laboratory 
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Animal Care Committee of Texas A&M University. 

Experimental Design 

Crossbred Suffolk ewes were mated to Suffolk rams between September and 

November.  Pregnant ewes were maintained according to normal husbandry practices.  

Ewes used in the following experiments were born in February and March of 2001.  

Ewes (n=5 per treatment) were assigned randomly at birth (PND 0) to receive daily 

subcutaneous (s.c.) injections from PND 0 to PND 56 of: (1) saline and corn oil vehicle 

as a control (CX); (2) estradiol-17β valerate (EV; 50 µg/kg body weight (BW)) in corn 

oil; (3) EM-800 (125 µg/kg BW) in saline; or (4) CGS 20267 (125 µg/kg BW) in saline. 

The selected dose of EV induces general uterine hyperplasia and precocious GE 

development in neonatal gilts [22, 112, 160].  The antiestrogen EM-800 fully impedes 

activities of ERα and ERβ, is a potent and pure antagonist of both ER subtypes [161], 

and is more potent than ICI 182,870 when injected subcutaneously in the mouse [162].  

The EM-800 compound was kindly provided by Fernand Labrie (Universite Lavale, 

Quebec, Canada).  The selected dose of EM-800 is equivalent to the amount of ICI 

182,780 used to retard endometrial gland development in neonatal pigs [112].  The CGS 

20267 (Letrozole; 4,4-[1,2,3-triazol-1yl-methylene] bis-benzonitrite) compound, a 

highly specific non-steroidal aromatase inhibitor selected to decrease endogenous 

estrogen production, was kindly provided by Norvartis Pharma AG (Basel, Switzerland).  

The selected dose of CGS 20267 was based on results from in vivo studies in baboons 

[163].      
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Beginning on PND 1, blood samples were collected by jugular venipuncture 

every 4 days into Vacutainer tubes (BD, Franklin Lakes, NJ) and then processed to 

obtain serum or plasma.  On PND 14, the right ovarian pedicle was ligated with suture, 

and the ovary and oviduct removed.  The right uterine horn was ligated with suture 

above the intercornual ligament, and the anterior portion of the right uterine horn above 

the ligature was removed, fixed in fresh 4% paraformaldehyde in PBS (pH 7.2) at room 

temperature for 24 h, and processed for histology.  On PND 56, all ewes were weighed 

and necropsied.  The left ovary was trimmed free of the mesovarium and weighed.  The 

uterus was obtained and trimmed free of the broad ligament, oviduct and cervix.  The 

entire left uterine horn was dissected from the remaining portion of the right uterine 

horn, weighed, and measured for length.  Sections (~ 1 cm) from the mid-portion of the 

uterine horn were fixed in 4% paraformaldehyde and processed for histology.   

Radioimmunoassay 

 Blood samples for serum were allowed to clot for 1 h at room temperature.  Serum 

was then collected by centrifugation (3000 x g for 30 min at 4C), removed and stored at 

–20C.  Blood samples for plasma were placed on ice immediately after collection.  

Plasma was then collected by centrifugation (3000 x g for 10 min at 4C), removed and 

then stored at –20C.   

Concentration of PRL in serum was determined using reagents for the ovine PRL 

RIA provided by Dr. A.F. Parlow and the NIDDK National Hormone and Pituitary 

Program as described previously [14].  Purified ovine PRL (NIDDK-oPRL-I-3) was 

iodinated using the chloramine T reaction, and the assay conducted using methods and 
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reagents provided by the NIDDK Pituitary Hormones and Antisera Center.  Assay 

sensitivity was 0.1 ng/ml, and the intra- and inter-assay coefficients of variation were 5% 

and 12%, respectively.  

Concentration of estradiol in plasma were determined by a double-antibody RIA 

procedure (Ultra-Sensitive estradiol assay, DSL-4800; Diagnostic Systems Laboratories, 

Inc., Webster, TX).  The procedure entails use of rabbit anti-17β-estradiol (polyclonal) 

serum and iodinated estradiol.  The primary antiserum cross-reacts 2.4%, 0.6%, 0.2%, 

2.6%, 0.2% and 3.4% with estrone, estriol, 17α-estradiol, 17β-estradiol-3-glucoronide, 

estradiol-3-sulfate and D-equilenin, respectively.  The estradiol standard curve (ranged 

from 1.76 to 1600 pg/tube) was prepared from 1,3,5 (10)-Estratrien-3,17beta-diol (17β-

estradiol; E950, Batch H239; Steraloids, Inc., Wilton, NH).  Goat anti-rabbit gamma 

globulin serum and polyethylene glycol were used as the precipitating second antibody 

reagent.  The sensitivity of the assay was 3 pg/tube.  The intra- and inter-assay 

coefficients of variation for the assay were 4.3% and 5.4%, respectively.  

Radioimmunoassay data were analyzed using AssayZap Version 2.0 software (Biosoft, 

Cambridge, UK).  

Histology and Morphometry 

After fixation, uterine tissues were changed to 70% ethanol for 24 h and then 

dehydrated and embedded in Paraplast Plus (Oxford Labware, St. Louis, MO).  Uteri 

were sectioned (5 µm) and stained with hematoxylin and eosin as described previously 

[12].  Uterine sections (n=4) from each ewe were photomicrographed, and images were 

analyzed using Scion Image software (Scion Corporation, Frederick, MD) as described  
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[Chapter V].  Measurements were standardized using the image of a stage micrometer at 

the same magnification.  The number of superficial ductal invaginations of GE from LE 

into the stroma was determined.  Endometrial gland number was determined by counting 

the total number of uterine glands in a complete cross-section of the uterine horn.  A 

gland cross-section with a visible open lumen was counted as a single uterine gland.  

Endometrial gland density was determined by counting the number of glands in a 200 

µm2 area of the stratum compactum and stratum spongiosum areas of the intercaruncular 

endometrium.  The number of ductal gland invaginations, endometrial gland number, 

and gland density estimates were generated for at least three areas within five non-

sequential sections from each uterine horn.  Intra- and inter-section repeatability 

estimates for determination of ductal gland invagination number and endometrial gland 

number by a single observer was 0.85 and 0.8, respectively.  In the endometria of uteri 

from CX and EV ewes, the thickness or width of the endometrium and myometrium 

(inner circular and outer longitudinal layers) as well as LE cell height were measured 

using the Scion Image software from multiple points (n=3 to 4) of at least 10 non-

sequential uterine sections.     

In Situ Hybridization Analysis  

Location of mRNA in uterine tissue sections was determined by in situ 

hybridization as described previously [164].  Deparaffinized, rehydrated, and 

deproteinated sections (5 µm) of the uterus were hybridized with radiolabeled sense or 

antisense cRNA probes generated from linearized plasmid templates using in vitro 

transcription with [α-35S]UTP.  Plasmid templates were partial cDNAs for: ovine ERα 
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[165]; ovine IGF-I, IGF-II and IGF-IR [15]; and bovine long PRLR [166].  After 

hybridization and digestion with ribonuclease A, slides were exposed overnight to 

Kodak BioMax X-ray film (Rochester, NY).  Slides were then dipped in Kodak NTB-2 

liquid photographic emulsion, exposed at 4C for one to four weeks depending on signal 

intensity as judged from autoradiographs, developed in Kodak D-19 developer, 

counterstained with hematoxylin, dehydrated, and protected with coverslips. 

Immunohistochemistry 

 Immunoreactive proliferating cell nuclear antigen (PCNA) and ERα proteins were 

localized in cross-sections (5 µm) of the uterus using the appropriate mouse antibodies 

and a Super ABC Mouse/Rat IgG Kit (Biomeda, Foster City, CA)  as described 

previously [14].  Mouse monoclonal antibody to PCNA (M0879; clone PC10) was 

purchased from DAKO (Carpinteria, CA).  Rat monoclonal antibody to human ERα 

(H222) was kindly provided by Dr. Geoffrey Greene (University of Chicago, Chicago, 

IL).  The final working antibody concentration was 2 µg/ml for PCNA and 5 µg/ml for 

ERα.  Antigen retrieval utilizing boiling citrate buffer was performed as described 

previously for PCNA detection [11, 14].  Antigen retrieval using limited pronase 

digestion was performed as described previously for ERα detection [165].  The 

chromagen used for peroxidase localization was 3,3'-diaminobenzidine 

tetrahydrochloride from Sigma Chemical Co. (St. Louis, MO).  Negative controls were 

performed in which the primary antibody was substituted with the same concentration of 

purified normal mouse IgG from Sigma Chemical Co.  Multiple tissue sections from 
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each ewe were processed as sets within an experiment.  Assessment of staining intensity 

and effects of treatment were evaluated by two independent observers. 

Photomicroscopy 

Representative photomicrographs of tissues analyzed by in situ hybridization or 

immunohistochemistry were taken using a Nikon Eclipse 1000 photomicroscope (Nikon 

Instruments Inc., Lewisville, TX) fitted with a Nikon DXM1200 digital camera.  Digital 

images were assembled using Adobe Photoshop (Adobe Systems, Seattle, WA).   

Statistical Analyses 

 All quantitative data were subjected to least-squares analysis of variance (LS-

ANOVA) using General Linear Models (GLM) procedures of the Statistical Analysis 

System [167].  Plasma E2-17β and serum PRL levels were log transformed prior to least 

squares regression analyses.  Ovarian weight, uterine horn weight, and uterine horn 

length data were analyzed using bodyweight as a covariate.  Histomorphometrical data 

were analyzed using an overall model that included main effects of treatment, day, 

treatment by day interaction, section and area.  If a treatment by day interaction was 

detected, data were reanalyzed within day to determine effects of treatment.  Preplanned 

comparisons used to determine treatment effects on a within-day basis were CX vs EM-

800, CX vs CGS 20267, and CX vs EV.  In all analyses, error terms used in tests of 

significance were identified according to the expectation of the mean squares for error.  

Data are presented as least-square means (LSM) of untransformed values with overall 

standard errors (SE).  
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Results 

Circulating Level of Estradiol-17β and PRL 

Circulating concentrations of E2-17β in plasma were affected (P<0.01) by 

treatment, day and their interaction.  In CX ewes (Fig. 3.1), E2-17β levels were highest 

between PND 1 and PND 9, declined to PND 13, increased slightly to PND 29, and then 

declined slightly to PND 56 (cubic effect of day, P=0.03).  Overall, E2-17β levels in 

EM-800 ewes were not different (P>0.10) from CX ewes.  However, circulating 

concentrations of E2-17β were lower (effect of treatment, P=0.07) in ewes receiving 

CGS 20267, particularly between PND 5 and 13 (quadratic effect of day, P=0.09).  As 

expected in EV ewes, plasma E2-17β was higher on PND 1 than in CX ewes and 

increased thereafter (quadratic effect of day, P=0.02).   Treatment of ewes with EV, EM-

800 or CGS 20267 did not affect (P>0.10) circulating concentration of PRL in serum as 

compared to CX ewes (data not shown). 

Treatment with EM-800 Antiestrogen Retards Endometrial Gland Morphogenesis 

As summarized in Table 3.1, uterine weight and horn length on PND 56 were not 

affected (P>0.10) by EM-800 or CGS treatments.  Treatment of ewes with EV from birth 

decreased (P<0.01) uterine weight, uterine horn length, and ovarian weight on PND 56.  

Ovarian weight was 200% greater (P>0.01) in CGS-treated ewes, but not different 

(P>0.10) in EM-800 compared to CX ewes.   The ovaries from CX and EM-800 ewes 

contained numerous small vesicular follicles (data not shown).  The ovaries of CGS 

ewes also contained follicles as well as one or more corpora lutea in three of the five 

treated ewes.  In contrast, the ovaries of EV ewes were small and devoid of vesicular 
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follicles.   
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FIG 3.1.  Concentrations of estradiol-17β in plasma from neonatal ewes assigned to the four treatment 
groups, as indicated by the legend, between PND 1 and PND 56.   The Y scale is logarithmic.     
 
 
 
Table 3.1.  Effects of treatment on ovarian weight, uterine weight and uterine horn length on PND 56 for 
ewes treated with corn oil (CX), estradiol valerate (EV; ERα agonist), EM-800 (ERα antagonist), and 
CGS 20267 (aromatase inhibitor) from birth. 
 

Treatment Ovarian Weight (g) Uterine Weight (g) Uterine Horn Length (cm)

CX 0.8 2.5 6.0 

EV 0.3a 1.2 a 4.0 a 

EM-800 1.0 2.7 5.9 

CGS 20267 1.6 a 2.7 6.3 

SE 0.2 0.3 0.2 
a Significant difference (P<0.01) compared with CX. 
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On PND 14, the intercaruncular endometrium in CX ewes contained tubular and 

slightly coiled endometrial glands radiating from the uterine lumen into the upper stroma 

(Fig. 3.2).  The endometrial LE appeared to be pseudostratified and columnar.  On PND 

56, the intercaruncular endometrium contained numerous coiled and branched glands in 

the intercaruncular endometrium extending from the LE through the stroma to the inner 

circular layer of smooth muscle of the myometrium.  In CX ewes, the number of 

superficial ductal gland invaginations and endometrial glands increased (P<0.01) 

between PND 14 and PND 56 (Table 3.2).   Treatment of ewes with CGS 20267 from 

birth did not result in detectable effects on uterine development or endometrial 

adenogenesis (Fig. 3.2).  The number of ductal gland invaginations and endometrial 

glands were not different (P>0.10) for CGS compared to CX ewes on either PND 14 or 

PND 56. 

Treatment of ewes with EM-800 from birth altered endometrial gland 

morphogenesis (Fig. 3.2).  On PND 14, uteri from EM-800 ewes appeared histologically 

similar to CX ewes, except for a slight reduction in coiled endometrial glands in the 

stratum compactum.   The number of ductal gland invaginations and endometrial glands 

were not different (P>0.01) in EM-800 compared to CX ewes on PND 14 (Table 3.2).  

However, the intercaruncular endometrium of EM-800 ewes on PND 56 tended to have 

fewer (P<0.10) endometrial glands that were less branched, and ductal gland 

invaginations were clearly lower (P<0.01) than for CX ewes.    

As summarized in Table 3.2, endometrial gland density in the stratum 

compactum area of the intercaruncular endometrium adjacent to the LE was affected by 
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FIG 3.2.  Representative photomicrographs of uteri on PND 14 and PND 56 in ewes.  Effects of treatment 
are described in the text and summarized in Table 2.  Tissues were prepared and stained using hematoxylin 
and eosin.  Legend: GE, glandular epithelium; LE, luminal epithelium; M, myometrium; S, stroma.  Bars 
represent 500 µm at low magnification and 50 µm at high magnification. 
 
 
treatment (P<0.01), but not day (P>0.10).  On PND 14 and PND 56, gland density was 

not different (P>0.10) in CX as compared to CGS ewes.  In contrast, treatment of ewes 

from birth with EM-800 decreased (P<0.01) gland density in the stratum compactum on 

PND 14 and PND 56.  Endometrial gland density in the stratum spongiosum area of the 

intercaruncular endometrium adjacent to the inner circular layer of myometrium was not 

affected (P>0.10) by CGS treatment, but treatment with EM-800 decreased (P<0.01) 

endometrial gland density on PND 56.   
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Table 3.2.  Histomorphometrical measurements of uteri on PND 14 and PND 56 in ewes treated with corn 
oil (CX), estradiol valerate (EV; ERα agonist), EM-800 (ERα antagonist), and CGS 20267 (aromatase 
inhibitor) from birth.  Legend: SC, stratum compactum; SS, stratum spongiosum. 
 

_________PND 14_________ __________PND 56_________ 

 
Measurement 

 
CX 

 
EV 

 
EM-
800 

CGS 
20267

 
SE

 
CX 

 
EV 

 
EM-
800 

CGS 
20267

 
SE

Ductal Gland 
Invaginations 
(number/section) 

40 0 a 39 38 4 66 0 a 37 a 56 3 

Gland Number 
(per section) 68 0 a 68 69 6 498 0 a 391 b 606 45 

SC Gland Density 
(number/200 µm2) 4.4 0 a 3.5 a 4.2 0.2 4.2 0 a 3. 5 a 4.3 0.2 

SS Gland Density 
(number/200 µm2) 0 0 0 0 0 11.0 0 a 8.7a 11.7 0.3 
a Effect of treatment within PND (P<0.05) compared to CX. 
bEffect of treatment within PND (P<0.10) compared to CX. 
 
 
Treatment with EV Inhibits Uterine Growth and Endometrial Gland Differentiation 

Treatment of ewes from birth with EV affected uterine development and 

endometrial adenogenesis.  The endometrium from uteri of EV ewes on both PND 14 

and PND 56 did not contain any histologically discernable endometrial glands (Fig. 3.2).  

The LE of the presumptive intercaruncular endometrial areas appeared hypertrophic, 

columnar and more ruffled than for CX ewes.  In uteri from EV ewes, the stroma 

appeared more compact on PND 14 and was markedly denser on PND 56 as compared 

to CX ewes.  The dense endometrial stroma in EV ewes on PND 56 lacked the 

characteristic stratum compactum and stratum spongiosum layers observed for the 

intercaruncular endometrium of CX ewes.   

The effect of EV exposure on different uterine tissues was determined using 
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histomorphometry.  Overall, endometrial thickness was affected (P<0.001) by day, 

treatment and their interaction.  In CX ewes, endometrial thickness increased between 

PND 14 and PND 56.  In contrast, EV treatment decreased (P<0.01) endometrial 

thickness on PND 14 (CX vs EV, 219 vs 178+5 µm) and PND 56 (318 vs 138+5 µm).  

In CX ewes, myometrial thickness increased (P<0.05) between PND 14 and PND 56.  

Treatment with EV increased (P<0.01) myometrial thickness on both PND 14 (CX vs 

EV, 224 vs 335+11 µm) and PND 56 (291 vs 355+11 µm).  Overall, height of the LE 

was affected by treatment (P<0.0001), day (P=0.05) and their interaction (P<0.01).  In 

uteri from PND 14, LE height was greater (P<0.01) in EV than CX ewes (CX vs EV, 2.9 

vs 5.0+0.1 µm).  Similarly, treatment with EV from birth increased (P<0.01) height of 

the LE on PND 56 (CX vs EV, 2.4 vs 5.1+0.1 µm).    

Treatment with EV Does Not Affect Uterine Cell Proliferation 

In order to determine how EV affects uterine growth and differentiation, 

expression of PCNA protein was determined in uteri from CX and EV ewes (Fig. 3.3).  

PCNA is a highly conserved DNA polymerase accessory protein essential for DNA 

synthesis, expressed during late G1 and S phases of the cell cycle, and a marker of cell 

proliferation [168].  In CX ewes, immunoreactive PCNA expression was present in all 

cell types of PND 14 uteri.  Highest levels of PCNA protein were detected in the LE, GE 

and stroma of the intercaruncular endometrial areas.  By PND 56, overall levels of 

PCNA expression were lower in endometrium of CX ewes.  In EV ewes, expression of 

PCNA protein was not different on PND 14 compared to CX ewes.  On PND 56, PCNA 

protein expression was particularly abundant in the upper portion of the stroma in the 
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uteri from EV ewes, similar to that observed in the stratum compactum of the 

intercaruncular endometrium of uteri from CX ewes.  In addition, the endometrial LE of 

EV ewes contained a higher abundance of PCNA protein in the presumptive 

intercaruncular endometrial areas.    

 

 
 
FIG 3.3.  Representative photomicrographs depicting the distribution of immunoreactive PCNA protein in 
uteri from control and EV- treated ewes on PNDs 14 and 56.  Immunoreactive protein was detected using 
mouse anti-PCNA monoclonal antibody and a BioStain Super ABC kit.  Nuclear staining was not 
observed when irrelevant mouse IgG was used (see inset).  Legend: GE, glandular epithelium; LE, luminal 
epithelium; M, myometrium; S, stroma.  Bars represent 100 µm at high magnification and 50 µm at low 
magnification. 
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FIG 3.4.  Representative photomicrographs depicting expression of PRLR mRNA and ERα mRNA and 
protein in uteri of control and EV treated ewes on PND 14 and 56.  Top panel: In situ localization of 
PRLR mRNA; Middle panel:  In situ localization of ERα mRNA; and Bottom panel: immunolocalization 
of ERα protein using rat-anti-human ERα monoclonal antibody.  Nuclear staining was not observed when 
irrelevant rat IgG was substituted for primary antibodies.  Cross-sections of uterine wall were hybridized 
with radiolabeled antisense or sense PRL-R or ERα cDNA probes.  Protected transcripts were visualized 
by liquid emulsion autoradiography and were imaged under bright- and dark-field illumination.  The inset 
panels illustrate the sense or IgG control.  Many uteri contained pigmented melanocytes that are black in 
brightfield and white in darkfield photomicrographs.  Legend: GE, glandular epithelium; LE, luminal 
epithelium; Mel, melanocytes; M, myometrium; S, stroma.  Bars represent 50 µm at low magnification 
and 100 µm at high magnification. 
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Treatment with EV Suppresses PRLR and ERα Expression 

The PRLR is a specific and restricted marker of GE phenotype in the neonatal 

and adult ovine uterus [14, 18].  Therefore, PRLR mRNA expression was determined in 

CX and EV uteri (Fig. 3.4).  The uteri of many ewes contained darkly pigmented 

melanocytes that appear white in darkfield photomicrographs.  In uteri from CX ewes, 

PRLR mRNA was detected only in the nascent budding and tubular glands on PND 14 

and only in the coiled and branched glands on PND 56.  There was an absence of PRLR 

mRNA in the superficial ductal glands in uteri from CX ewes on PND 56.  In uteri from 

EV ewes, PRLR mRNA expression was not detected in any uterine cell type.  

On PND 14 in CX ewes, expression of ERα mRNA and protein was most 

abundant in the endometrial GE with lower levels in LE and stroma (Fig. 3.4).  In 

contrast, ERα expression on PND 56 in CX ewes was low in GE and LE, but abundant 

in the stroma.  In uteri from EV ewes, ERα expression was markedly reduced in the 

endometrial LE and essentially absent in stroma and myometrium on both PND 14 and 

PND 56.   

Treatment with EV Reduces Stromal IGF-I and IGF-II mRNA in the Endometrium  

 In CX ewes, IGF-I mRNA was detected only in the uterine stroma and 

predominantly in the intercaruncular endometrium (Fig. 3.5).  Overall levels of IGF-I 

mRNA expression increased in uteri from CX ewes between PND 14 and PND 56.  In 

EV ewes, stromal IGF-I mRNA expression was markedly decreased in PND 14 uteri and 

completely absent in PND 56 uteri as compared to the sense control.   
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FIG 3.5.  Expression of IGF-I and IGF-II mRNAs in uteri from CX and EV treated ewes on PND 14 and 
PND 56.  Cross-sections of uterine wall were hybridized with radiolabeled antisense or sense ovine IGF-I 
or ovine IGF-II cRNA probes.  Protected transcripts were visualized by liquid emulsion autoradiography 
and were imaged under bright- and dark-field illumination. Many uteri contain pigmented melanocytes 
that are black in brightfield and white in darkfield photomicrographs.   Legend: GE, glandular epithelium; 
LE, luminal epithelium; M, myometrium; S, stroma.  Bar represents 100 µm. 
 

Expression of IGF-II mRNA was also detected only in the endometrial stroma 

and increased between PND 14 and PND 56 in uteri from CX ewes (Fig. 3.5).  In uteri 

from PND 14 EV ewes, IGF-II mRNA expression was not detected in any uterine cell 
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type.  However, IGF-II mRNA expression was detected in the stroma of uteri from PND  

56 EV ewes.  As compared to uteri from PND 56 CX ewes, the expression pattern of 

IGF-II mRNA was not as abundant and uniform, but appeared variegated.  Expression of 

IGF-I receptor mRNA was detected in all endometrial cell types on both PND 14 and 

PND 56 and was not affected by treatment with EV (data not shown). 

Discusssion 

In the present study, average plasma E2-17β levels were maximal on PND 1 (~25 

pg/ml) and ranged from a low of 6 pg/ml on PND 13 to 16 pg/ml on PND 29 in CX 

ewes.  The circulating concentrations of E2-17β in the present study using Spring born 

ewes were lower than those previously reported by this laboratory for Fall born ewes 

[14].  It is possible that this difference is due to seasonal effects, as marked differences 

in circulating levels of PRL at birth and on PND 0 to PND 35 were found in neonatal 

ewes that may have reflected effects of photoperiod in utero [37].  Treatment with CGS 

20267, a non-steroidal aromatase inhibitor, decreased circulating concentrations of E2-

17β in plasma.  Although circulating levels of E2-17β were not completely suppressed 

in CGS-treated ewes, CGS 20267 decreased circulating concentrations of E2-17β in 

baboons from 1-2 ng/ml to 0.1 ng/ml within 48-72 h post-treatment [169].  In the present 

study, ovarian weight was 200% greater in CGS than CX ewes on PND 56, which can be 

attributed to the presence of corpora lutea (CL) on the ovaries of three of the five ewes 

treated with CGS 20267.  In women with anovulatory infertility, oral administration of 

2.5 mg CGS 20267 was effective in inducing ovulation [170].  The ovary of the neonatal 

ewe normally contains large numbers of growing and vesicular follicles that increase 
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from birth to PND 28 and then decline significantly by PND 84 [16].  The ovaries of 

Spring born ewes do not usually contain CL, because they are prepubertal and born 

during the period of seasonal anestrus.   

Treatment of ewes with CGS 20267 did not affect ovine uterine gland 

morphogenesis between birth and PND 56 in the present study.  These results do not 

support our initial working hypothesis that changes in circulating E2-17β regulate 

endometrial gland differentiation and morphogenesis in the neonatal ovine uterus.  In the 

ewe, removal of the ovary at birth does not affect uterine gland development on PND 14 

[28].  Similarly, the ovary and E2-17β do not play a role in endometrial gland 

development in either the rodent or pig.  Although circulating estrogens increase 

between PNDs 9 and 11 in the rat [103], initial postnatal uterine growth and endometrial 

adenogenesis are both ovary- and adrenal-independent [23, 110].  In the neonatal gilt, 

ovariectomy at birth inhibits uterine growth after PND 56, but does not affect genesis of 

uterine glands or related endometrial morphogenetic events prior to PND 120 [22].   

Available evidence indicates that prepubertal uterine development and endometrial 

adenogenesis is an estrogen-independent process in mammals.   

Genesis of endometrial glands in porcine [22], rodent [19-21, 25] and sheep [14] 

uteri involves coordinated changes in epithelial phenotype that are marked by ERα 

expression in nascent and proliferating endometrial GE.  In the present study, treatment 

of neonatal ewes with EM-800, an antagonist of both ERα and ERβ, did not affect the 

initial stage of gland genesis between birth and PND 14 that involves budding 

differentiation of the GE from the LE and formation of tubules.  However, EM-800 
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treatment retarded coiling and branching morphogenetic development of the endometrial 

glands between PND 14 and PND 56.  Further, histomorphometry indicated that EM-

800 treatment prevented the increase in superficial ductal gland invaginations that occurs 

between PND 14 and PND 56 in CX ewes.  These results support a portion of our 

working hypothesis that expression and functional ERα activation regulate endometrial 

gland morphogenesis in the ewe, but modifies our hypothesis to indicate a specific 

role(s) in gland genesis and coiling and branching morphogenesis between PND 14 and 

PND 56 rather than initial stages of gland tubulogenesis between birth and PND 14.  

Indeed, daily administration of the anti-estrogen ICI 182,870 (125 µg per kg BW) from 

birth does not affect endometrial adenogenesis in neonatal ewes [K.M. Taylor and T.E. 

Spencer, unpublished results].  Similarly, inhibition of ERα activation by ICI 182,870 in 

neonatal rats from PND 10-14 has no effect on endometrial adenogenesis [32].  

Homozygous ERα null mice (αERKO) have hypoplastic uteri that contain all 

characteristic cell types in reduced proportions [30].  In contrast to rodents, activated 

ERα regulates, in part, endometrial gland morphogenesis in pigs, because administration 

of ICI 182,780 to gilts from birth retarded endometrial adenogenesis on PND 7 and PND 

14 [112].  The lack of involvement of uterine ERα in endometrial gland morphogenesis 

in rodents may be attributed to the lack of tightly coiled and branched endometrial 

glands in their uteri as compared to the sheep and pig.   

Results from the present study indicated that the uterine ERα system regulates, in 

part, the coiling and branching morphogenetic development of the endometrial glands 

following the initial period of gland genesis that occurs between birth and PND 14 in the 
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ewe.  The activation of ERα appears to be ligand-independent rather than ligand-

dependent [24].  Activation of ERα by growth factors, such as IGF-I, involves direct 

serine phosphorylation by mitogen activated protein kinase (MAPK) pathways [171].  In 

the neonatal ovine uterus, both IGF-I and IGF-II mRNAs were expressed in the 

endometrial stroma and myometrium, with IGF-I predominantly present in the 

intercaruncular endometrial stroma [15].  Interestingly, IGF-I mRNA is nearly 

undetectable in ovine endometrium at birth and becomes strikingly abundant in the 

intercaruncular stroma surrounding the differentiating, developing, and proliferating 

endometrial glands between PND 7 and PND 56 [15].  In the neonatal ovine uterus, the 

IGF-I receptor is expressed in all uterine cell types, and phosphorylated extracellular 

regulated (ERK1 and ERK2) MAPKs are particularly abundant in the endometrial GE 

[15].  Therefore, IGF-I and perhaps IGF-II may regulate endometrial gland coiling and 

branching morphogenesis via ligand-independent activation of ERα that may account for 

the effects of EM-800 in the present study. 

The present study is the first to indicate that inappropriate exposure of the 

developing neonatal ovine uterus to EV from birth disrupts uterine development and 

epigenetically ablates endometrial gland morphogenesis. Transcription of the PRLR 

gene is localized exclusively to nascent and developing endometrial glands where it 

plays a role in proliferation and development of the GE [14].  Therefore, absence of 

PRLR mRNA in EV treated uteri clearly suggests that EV inhibited the genesis of 

endometrial glands.  The effects of EV in the present study are similar to those observed 

in rodents, but opposite to that reported for pigs.  The same dose of EV administered to 
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gilts from birth to PND 6 or PND 13 increased uterine weight and induced precocious 

development of endometrial glands [112, 160].  In gilts, thickness of the endometrium, 

but not the myometrium, was increased by EV treatment.  In contrast, results from the 

present study indicated that treatment of ewes with EV from birth decreased endometrial 

thickness and increased myometrial thickness on both PND 14 and PND 56.  The anti-

adenogenic effect of EV in the neonatal ovine uterus is similar to that reported for rats in 

that administration of estrogens to neonatal rats during the period of normal gland 

genesis (PND 10-14) induced a dose-related delay in the onset of appearance of glands 

[84].  Similarly, administration of tamoxifen, a mixed ER agonist/antagonist, to neonatal 

rats on PNDs 1-5 or PNDs 10-14 elicited a dose-related inhibition of uterine gland 

genesis that persisted to PND 26 or PND 60, respectively [172]. However, tamoxifen 

administered on PND 20-24, which is after the age of normal gland genesis, did not alter 

the number of preexisting glands.   The observed differences in effects of inappropriate 

exposure to estrogen on uteri of sheep and rodents as compared to pigs may be due to 

differences in effects of ovarian steroids on steroid receptor gene expression in 

endometrial epithelia and myometrium of the adult uterus [173].   Collectively, studies in 

the sheep, pig and rodent reinforce the concept that postnatal uterine development occurs 

during a critical period during which endocrine disruptors can exert irreversible negative 

epigenetic effects on uterine development that determines uterine function in the adult.   

The mechanism whereby exposure to EV inhibits endometrial adenogenesis is 

not fully understood.  In the present study, treatment with EV from birth almost 

completely suppressed ERα expression in the uterus.  Similarly, treatment of ewes with 
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a 19-norprogestin from birth ablates endometrial adenogenesis and suppresses ERα 

expression [11].  However, results from the present study indicate that expression and 

activation of a functional ERα system is not required for endometrial adenogenesis 

between birth and PND 14.  Further, results from the analyses of PCNA protein 

expression indicates that the anti-adenogenic effects of EV are not due to inhibition of 

cell proliferation in the endometrial epithelia or stroma.  Interestingly, PCNA expression 

in endometrium of EV ewes on PND 56 appeared to be greatest in the subepithelial 

stroma and correlates with PCNA staining in the deep stroma surrounding the 

proliferating and differentiating GE during normal uterine development [14].  In 

developing lung epithelium, bud outgrowth is not accompanied by induction of localized 

cell proliferation [174], but appears to involve remodeling of the basement membrane 

[175].  Thus, EV may suppress alterations in the epithelial-mesenchymal interface or 

extracellular matrix that have been proposed to support initiation of endometrial 

adenogenesis [10, 12, 28, 176].  Treatment of neonatal rats and mice with EV induces 

hypertrophy of the LE in both mice and rats [32, 114].  Similarly, EV exposure in the 

present study induced LE hypertrophy combined with compaction of the stroma, 

resulting in a 66% decrease in endometrial thickness by PND 56 in EV ewes.  The 

disorganized, variegated nature of IGF-II expression in the compacted stroma of uteri 

from PND 56 EV ewes is distinctly different from its temporal and spatial pattern of 

expression during normal development of the intercaruncular endometrial stroma into 

two layers termed the stratum compactum and stratum spongiosum [14].  Given that the 

first step in uterine gland development involves differentiation of GE and invagination 
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of nascent glands into underlying stroma, one may speculate that the extreme 

hypertrophic state of LE induced by ERα agonists, such as EV and tamoxifen, prevents 

invagination of GE physically, as a consequence of alterations in cell shape and 

associated changes in cell-cell, and cell-ECM relationships that would otherwise support 

this process [177, 178].  Under such conditions, epithelial cells could be unable to 

recognize, integrate and respond normally to cooperative signals that normally drive 

gland genesis [32, 68, 84].   

The process of uterine morphogenesis is governed by a variety of hormonal, 

cellular and molecular mechanisms, many of which remain to be defined [3, 41, 179].  

Results from our previous studies supported the hypothesis that E2-17β and uterine ERα 

comprise a regulatory system to stimulate and maintain endometrial gland 

morphogenesis in the neonatal ovine uterus [14, 15].  Results from the present study do 

not support a role for E2-17β as a regulator of endometrial gland morphogenesis.  

However, results clearly support the hypothesis that expression and functional activation 

of ERα by ligand-independent mechanisms is required for proper endometrial gland 

coiling and branching morphogenesis in the neonatal ewe.  Further, results from EV-

treated ewes support the hypothesis that epithelial-stromal interactions are important for 

endometrial gland differentiation.  Future studies will be directed at determining the 

roles of these critical interactions and stromal-derived factors, such as IGF-I and IGF-II, 

in endometrial gland morphogenesis using the neonatal ewe as a model system.    
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CHAPTER IV 

OVARIAN REGULATION OF ENDOMETRIAL GLAND 

MORPHOGENESIS 

Introduction 

Uterine adenogenesis in the ewe begins after birth and involves the emergence, 

proliferation and differentiation of endometrial glands, specification of intercaruncular 

stroma, development of endometrial folds and, to a lesser extent, growth of endometrial 

caruncular areas and the myometrium [3, 11, 13-15].  Uterine gland development or 

adenogenesis is initiated between PND 1 and 7 when shallow epithelial invaginations 

appear along the endometrial LE in presumptive intercaruncular areas.  Between PND 7 

and 14, the nascent GE buds proliferate, grow into the stroma and form tubules or ducts 

that begin to coil and branch at the tips by PND 21.  After PND 14, endometrial 

adenogenesis primarily involves coiling and branching morphogenetic growth of tubular 

endometrial glands from the upper stroma (e.g. stratum compactum) underneath the LE 

into the lower stroma (e.g. stratum spongiosum) adjacent to the inner circular layer of 

the myometrium.  By PND 56, uterine morphogenesis is essentially complete, as the 

aglandular caruncular and glandular intercaruncular endometrial areas appear 

histoarchitecturally similar to that of the adult uterus [14].  Final maturation and growth 

of the ovine uterus does not occur until after puberty and endocrine events of pregnancy 

[16].   

Jost [101] first established the concept that prenatal urogenital tract development 

in female mammals is an ovary-independent based on results from studies of rabbits.  
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Since then, studies of several species revealed that uterine development and endometrial 

adenogenesis can proceed normally in the absence of the ovary and, by default, ovarian 

steroids for varying periods of time during early postnatal life.  In the prepubertal ewe, 

the ovary contains growing and vesicular ovarian follicles at birth that decline to PND 

14, increase and peak in number on PND 28, remain high from PND 42 to PND 56, and 

decline thereafter [26, 27].  These changes in ovarian follicles correlate with the 

ontogeny of endometrial gland development in the ewe lamb [14].  However, 

ovariectomy of the ewe at birth does not affect uterine wet weight [27] or the initial 

stages of endometrial gland tubulogenesis [28] on PND 14, but does affect uterine 

growth after PND 14 [180].  Postnatal uterine growth and endometrial adenogenesis are 

ovary- and steroid-independent in rodents [30-32] and pigs [23].  Similarly, recent 

results indicate that postnatal uterine growth and endometrial adenogenesis are estrogen-

independent from birth to PND 56, although coiling and branching morphogenesis after 

PND 14 is, in part, dependent on activated ERα [Chapter III].  Although the ovary plays 

a role in postnatal uterine growth, the role of the ovary in endometrial gland 

development after PND 14 has not been investigated in the ewe. 

Recent results from studies of the neonatal ovine uterus implicate follistatin, 

activins, and activin receptors as autocrine and paracrine regulators of endometrial gland 

morphogenesis [181].  Activins and inhibins are members of the transforming growth 

factor (TGF) β superfamily and regulate growth and differentiation of many branched 

epitheliomesenchymal organs via autocrine, paracrine and perhaps endocrine 

mechanisms [182-187].  Activins and inhibins are dimeric proteins [188, 189].  Activin 
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consists of two β subunits, βA and βB, that homodimerize or heterodimerize to form 

activin A (βA:βA), activin B (βB:βB), or activin AB (βA:βB).  Inhibin consists of an α-

subunit that heterodimerizes with an activin β-subunit to form either inhibin A (α:βA) or 

inhibin B (α:βB).  The biological activity of activins is mediated by receptor complexes 

consisting of Type IA (ActRIA) or Type IB (ActRIB) receptor and Type II (ActRII) 

receptor.  One of the key features that distinguish the effects of activins from those of 

TGFβ is that binding of activins to their receptors can be blocked if activin binds to 

follistatin or if inhibin α-subunit binds to activin receptors [190-192].   Follistatin binds 

to activins with high affinity and neutralizes their activity [193-195].  Inhibin α-subunit, 

activins and follistatin are synthesized and secreted by granulosa cells of ovarian 

follicles in the neonate and the adult [188, 189, 196-199].  Therefore, these ovarian 

factors could act in an endocrine manner to regulate uterine growth and endometrial 

adenogenesis via the activin-follistatin system to compliment endocrine and paracrine 

effects of the activin-follistatin system in the in the neonatal ovine uterus.     

Available evidence in the ewe and other domestic and laboratory animals 

supports the working hypothesis that endometrial adenogenesis is not regulated by the 

ovary and, thus, ovarian factors.  In order to test this hypothesis, the present studies were 

conducted to determine: (1) effects of removing the ovary at PND 7 on subsequent 

uterine growth and endometrial adenogenesis on PND 56; (2) effects of ovariectomy on 

the activin-follistatin system in the uterus; and (3) expression of the activin-follistatin 

system in the neonatal ovary.  
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Materials and Methods 

Animals and Experimental Design 

 All experiments and surgical procedures were in accordance with the Guide for the 

Care and Use of Agriculture Animals and approved by the University Laboratory 

Animal Care Committee of Texas A&M University.  Crossbred Suffolk ewes were 

mated to Suffolk rams between the months of September and November 2001.  Pregnant 

ewes were maintained according to normal husbandry practices.  Ewes used in the 

following experiments were born between the months of February and March 2002.  In 

Study One, ewes were assigned randomly at birth or PND 0 to undergo either a sham 

surgery as a control (CX) or bilateral ovariectomy (OVX) on PND 7 (n=6 per treatment).  

Beginning on PND 0, blood samples were collected by jugular venipuncture every 7 

days into Vacutainer tubes without anticoagulant (Becton-Dickinson, NJ).  On PND 56, 

all ewe lambs were weighed and necropsied.  The uterus was obtained, trimmed free of 

the broad ligament, oviduct and cervix, and weighed.  Sections (~ 1 cm) from the mid-

portion of each uterine horn were fixed in fresh 4% paraformaldehyde at room 

temperature for 24 h and processed for histology.  The remainder of the uterus was 

frozen in liquid nitrogen and stored at –80C.  In Study Two, ewes (n=45) were assigned 

randomly at birth to be ovariohysterectomized on PND 0 (n=6), 7 (n=4), 14 (n=5), 21 

(n=5), 28 (n=5), 35 (n=5), 42 (n=5), 49 (n=5) or 56 (n=5). A portion of the ovary was 

fixed in 4% paraformaldehyde for histology, and the remainder of the ovary was frozen 

in liquid nitrogen and stored at –80C.   
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Radioimmunoassay 

 Blood samples were allowed to clot for 1 h at room temperature.  Serum was then 

separated by centrifugation (3000 x g for 30 min at 4C), removed and stored at –20C.   

Concentrations of PRL in serum were determined using reagents for the ovine PRL RIA 

provided by Dr. A.F. Parlow and the NIDDK National Hormone and Pituitary Program 

as described previously [14].  Purified ovine PRL (NIDDK-oPRL-I-3) was iodinated 

using the chloramine T reaction, and the assay conducted using methods and reagents 

provided by the NIDDK Pituitary Hormones and Antisera Center.  Assay sensitivity was 

0.1 ng/ml, and the intra- and inter-assay coefficients of variation were 5% and 12%, 

respectively.  

Concentrations of E2-17β in plasma were determined using methods described 

previously [14].  Assay sensitivity was 3 pg/ml, and the intra-assay and inter-assay 

coefficients of variation were 5% and 12%, respectively.  Assay results were calculated 

using the AssayZap Version 3.1 program (Biosoft, Ferguson, CA).      

Histology and Morphometry 

After fixation, ovarian and uterine tissues were changed to 70% ethanol for 24 h 

and then dehydrated and embedded in Paraplast Plus (Oxford Labware, St. Louis, MO).  

Uteri from Study One were sectioned (5 µm) and stained with hematoxylin and eosin as 

described previously [11].  Sections (n=4) of the uterus from each ewe were 

photomicrographed, and images were analyzed using Scion Image software (Scion 

Corporation, Frederick, MD) as previously described [Chapter V].  Measurements were 

standardized using the image of a stage micrometer at the same magnification.  The 
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number of superficial ductal invaginations of GE from the LE into the stroma was 

determined.   Endometrial gland number was determined by counting the total number of 

uterine glands in a complete cross-section of the uterine horn.  The observation of a 

gland cross-section with a visible open lumen was counted as a single gland.  

Endometrial gland density was determined by counting the number of glands in a 200 

µm2 area in the stratum compactum and stratum spongiosum areas of the intercaruncular 

endometrium.  The number of ductal gland invaginations, endometrial gland number, 

and gland density estimates were generated for at least three areas within four non-

sequential sections from each uterine horn.  Intra- and inter-section repeatability 

estimates for determination of ductal gland invaginations and endometrial gland number 

by a single observer was 0.85 and 0.8, respectively.  The thickness or width of the 

endometrium and myometrium (inner circular and outer longitudinal layers) in the 

intercaruncular endometrial areas was measured using the Scion Image software from 

multiple points (n=3 to 4) of at least 10 non-sequential uterine sections.  Ovaries from 

Study Two were sectioned (5 µm) and stained with Masson’s trichrome as described 

previously [100]. 

Semi-quantitative Reverse Transcription PCR (RT-PCR) Analysis 

Expression of mRNAs for βA subunit, βB subunit, ActRIA, ActRII and 

follistatin was assessed in uterine total RNA using semi-quantitative RT-PCR with 

methods [3, 15], and primers [181] as described previously[3, 15].  Total cellular RNA 

was isolated from frozen uteri using Trizol (Gibco-BRL, Grand Island, NY) according to 
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manufacturer recommendations.  Briefly, cDNA was synthesized from total cellular 

RNA (5 µg) isolated from neonatal uteri using random (Life Technologies, Gaithersburg, 

MD) and oligo-dT primers and SuperScript II Reverse Transcriptase (Life 

Technologies).  Newly synthesized cDNA was acid-ethanol precipitated, resuspended in 

20 µl of water, and stored at -20C.  The cDNAs were diluted (1:1 or 1:10) with water 

prior to use in PCR.  Primers were designed to amplify partial cDNAs for ovine 

follistatin, βA subunit, βB subunit, ActRIA, ActRII, ActRIA, and ActRII as descrived 

previously [181].  β-Actin primers were ACGAAGATCCTTCACGGAACG (forward) 

and GAAGGTGGTCTCGTGAATGC (reverse), which amplified a 270-base pair 

product.  PCR reactions were performed using AmpliTaq DNA polymerase (Applied 

Biosystems, Foster City, CA) and Optimized Buffer D (Invitrogen, Carlsbad, CA) for β-

actin; Optimized Buffer E (Invitrogen) for AcyRIB; Optimized Buffer F (Invitrogen) for 

follistatin, ActRIA and ActRII; and Optimized Buffer J (Invitrogen) for βA-subunit and 

βB-subunit according to manufacturer recommendations.  The amount of cDNA 

template, annealing temperature, and number of cycles used for PCR were initially 

optimized to ensure that final PCR conditions were within the linear range of 

amplification for each primer pair.  Follistatin and βA-subunit PCR reactions contained 

1.5 µl of cDNA (1:10); βB subunit reactions had 2.5 µl of cDNA (1:1); ActRIA 

reactions had 2 µl of cDNA (1:10); ActRII reactions had 3 µl of cDNA (1:10); and β-

actin reactions had 1 µl of cDNA (1:10).  All PCR reactions were performed at 95C for 

30 sec, 55-59C for 1 min, and 72C for 1 min.  Cycle number was: 25 for β-actin; 27 for 
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ActRII; 30 for follistatin, βA-subunit and ActRIA; and 35 for βB-subunit.  In negative-

control reactions, RT cDNA was substituted by inclusion of uterine total RNA or water.  

Following PCR, equal amounts of reaction product were analyzed using a 2% agarose 

gel, and PCR products visualized by ethidium bromide staining.  The amount of DNA 

present was quantified by measuring the intensity of light emitted from correctly sized 

bands under UV light using an AlphaImager (Alpha Innotech Corporation, San Leandro, 

CA), and data are expressed as relative light units.  The β-actin values were used as 

covariates in statistical analyses to correct for differences in amounts of cDNA used for 

each samples. All RT-PCR products were cloned into pCRII (InVitrogen) and fully 

sequenced in both directions to confirm identity. 

In Situ Hybridization Analysis 

Expression of mRNAs in the uterus and ovary was determined by in situ 

hybridization as described previously [181].  Briefly, deparaffinized, rehydrated, and 

deproteinated cross-sections (5 µm) of the uterus from each ewe were hybridized with 

radiolabeled sense or antisense cRNA probes generated from linearized plasmid 

templates containing partial cDNAs using in vitro transcription with [35S-α]UTP.  Partial 

cDNAs for ovine inhibin α subunit, βA subunit, βB subunit, ActRIA, ActRII and 

follistatin were generated by RT-PCR.  After hybridization, washing and ribonuclease A 

digestion, slides were dipped in NTB-2 liquid photographic emulsion (Kodak, 

Rochester, NY), stored at 4C for 2 to 28 days, and developed in Kodak D-19 developer.  

Slides were then counterstained with Gill’s modified hematoxylin (Stat Lab, Lewisville, 

TX), dehydrated through a graded series of alcohol to xylene, and protected with a 
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coverslip.  Images of representative fields were recorded using a Nikon Eclipse 1000 

photomicroscope (Nikon Instruments Inc., Lewisville, TX) fitted with a Nikon 

DXM1200 digital camera.   

Immunohistochemistry 

 Expression of immunoreactive follistatin, inhibin α subunit, βA subunit, βB subunit, 

ActRIA, ActRIB and ActRII were detected in cross-sections (5 µm) of the ovary and 

uterus from each ewe using specific antibodies and a Super ABC Mouse/Rat 

Immunoglobulin G (IgG) Kit (Biomeda, Foster City, CA).  Mouse anti-human 

monoclonal antibody to follistatin (catalog # MAB669), ActRIA (catalog # MAB637), 

ActRIB (catalog # MAB222) and ActRII (catalog # MAB3391) were from R&D 

Systems, Inc. (Minneapolis, MN).  Mouse anti-human antibody to inhibin α subunit 

(catalog # MCA951S), βA subunit (catalog # MCA950S), and βB subunit (catalog # 

MCA1661) were purchased from Serotec, Inc. (Raleigh, NC).  The working antibody 

concentration employed for immunohistochemistry was 6.7 µg/ml for follistatin, 400 

ng/ml for inhibin α-subunit, 200 ng/ml for βA-subunit, 200 ng/ml for βB-subunit, 1 

µg/ml for ActRIA, 2 µg/ml for ActRIB, and 1 µg/ml for ActRII.  Negative controls were 

performed in which the primary antibody was substituted with the same concentration of 

normal mouse IgG from Sigma Chemical Company (St. Louis, MO).  Antigen retrieval 

using a boiling citrate buffer was performed for all antibodies according to 

manufacturer’s recommendations.  Multiple tissue sections from each ewe were 

processed as sets within an experiment. 
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Relative staining intensity for immunoreactive protein expression were assessed 

in sections of the uterus and ovary from each ewe visually by two independent observers 

and scored as follows:  absent (-; i.e., no staining above IgG control), weak (+), 

moderate (++), or strong (+++) [15].  If histologically discernable in the uterus, 

intercaruncular endometrial tissues, including LE, stroma, and GE, caruncular 

endometrial tissues, including LE and stroma, and myometrium were scored.  In the 

ovary, cumulus cells (COC), granulosa cells (GC), oocyte (O), and theca cells (TC) were 

scored.  Representative photomicrographs were taken using a Nikon Eclipse 1000 

photomicroscope fitted with a Nikon DXM1200 digital camera. 

Statistical Analyses 

 All quantitative data were subjected to least-squares analysis of variance (LS-

ANOVA) using General Linear Models (GLM) procedures of the Statistical Analysis 

System [167].  Serum E2-17β and PRL levels were log transformed prior to least squares 

regression analyses.  Uterine wet weight data were analyzed using body weight as a 

covariate.  Histomorphometrical data were analyzed using an overall model that 

included main effects of treatment, day, treatment by day interaction, section and area.  

In all analyses, error terms used in tests of significance were identified according to the 

expectation of the mean squares for error.  RT-PCR data were subjected to one-way 

ANOVA utilizing the β-actin values as a covariate in the model to correct for differences 

in amounts of RT cDNA analyzed for each uterus.  A probability (P) value of 0.10 or 

less was accepted as indicating significance.  Data are presented as least-square means 

(LSM) of untransformed values with overall standard errors (SE). 
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Results 

Circulating Concentrations of E2-17β and PRL Are Unaffected by Ovariectomy 

Circulating concentrations of E2-17β in plasma were low and affected by day 

(P<0.10), but not treatment (P>0.10) or their interaction (P>0.10).   Serum E2-17β levels 

were highest on PND 0 (10+1.5 pg/ml), declined to PND 7 (3+1.5 pg/ml), and remained 

low to PND 56 (Fig. 4.1).   
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FIG 4.1.  Concentrations of estradiol-17β in plasma from neonatal ewes that either underwent a sham 
surgery (CX) or ovariectomy (OVX) on PND 7, as indicated by the legend, between PND 1 and PND 56. 
 
 
OvariectomyRretards Uterine Growth and Endometrial Gland Morphogenesis 

As summarized in Table 4.1, uterine wet weight was 52% lower (P<0.01) in 

OVX compared to CX ewes on PND 56.  The intercaruncular endometrium of CX ewes 

contained numerous coiled and branched glands extending radially from the LE through 
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the stroma to the inner circular layer of myometrium (Fig. 4.2).  In contrast, the 

intercaruncular endometrium of OVX ewes contained substantially lower numbers of 

coiled and branched endometrial glands.   

 
TABLE 4.1.  Weights and histomorphometrical measurements of uteri from control (CX) and 
ovariectomized (OVX) ewes on PND 56.    

 

Measurement CX OVX SE P-value 

Uterine Wet Weight (g) 3.8 2.0 0.4 0.007 

Ductal Gland Invaginations (number/section) 71 67 3 0.30 

Endometrial Glands (total number/section) 789 439 80 0.0001 

Stratum Compactum Gland Density (number/200 µm2) 5.0 5.0 0.2 1.0 

Stratum Spongiosum Gland Density (number/200 µm2) 10.6 8.3 0.3 <0.0001

Endometrial Thickness (µm) 600 467 21 <0.0001

Myometrial Thickness (µm) 506 428 22 0.014 
  

These histological observations were confirmed by histomorphometrical analyses 

and results are summarized in Table 4.1.  The total number of endometrial glands in the 

uterine wall was reduced (P<0.0001) by 44% in ovariectomized ewe lambs.  The number 

of gland invaginations from the LE and density of glands in the stratum compactum 

stroma adjacent to the LE were not affected (P>0.10) by ovariectomy.  However, density 

of glands in the stratum spongiosum stroma adjacent to the inner circular layer of 

myometrium was reduced (P<0.001) by 22% in OVX ewes.  In the intercaruncular 

endometrium, the thickness and width of the endometrium, and the myometrium were 

reduced (P<0.05) by 22% and 16%, respectively, in uteri of OVX ewes. 
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FIG 4.2.  Representative photomicrographs illustrating the histoarchitecture of uteri from control (CX) and 
ovariectomized (OVX) ewes on PND 56.  Tissues were prepared and stained using hematoxylin and eosin.  
Legend:  GE, glandular epithelium; LE, luminal epithelium; M, myometrium; S, stroma.  Bars represent 
500 µm at low magnification and 50 µm at high magnification. 

 

Expression of the Follistatin-Activin System in the Uterus Is Altered by Ovariectomy 

Semi-quantitative RT-PCR analyses were conducted using total RNA isolated 

from uteri of CX and OVX ewes to determine steady-state levels of activin-follistatin 

system components.  The number of PCR cycles was optimized for each primer pair to 

ensure amplification within the linear range of detection as representatively illustrated by 

follistatin (Fig. 4.3A).  As illustrated in Figure 4.3B, each of the primer pairs used for 

RT-PCR amplified a single product of the expected size [181].  A partial cDNA for 
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ActRIB was detected abundantly in total RNA isolated from the neonatal ovary, but at 

extremely low amount in the neonatal ovine uterus (data not shown).  The amplified 

products were sequenced to confirm identity (data not shown).   As compared to mRNA 

levels in uteri of CX ewes (Table 4.2), uteri of OVX ewes had substantially lower levels 

of activin βA subunit, ActRIA, ActRII and follistatin on PND 56.  In contrast, the level 

of activin βB-subunit mRNA was greater in uteri of OVX compared to CX ewes on 

PND 56.    

 

 
FIG 4.3.  Semi-quantitative RT-PCR analysis of the mRNAs for the follistatin-activin system in total RNA 
isolated from uteri of sham control (CX) and ovariectomized (OVX) neonatal ewes on PND 56.  [A]  
Representative analysis of the effects of cycle number on yield of follistatin cDNA.  [B]  Expression of 
mRNAs for follistatin, βA-subunit, βB-subunit, ActRIA, ActRII and β-actin in the ovine uterus.  PCR 
products were separated in a 2% agarose gel and stained with ethidium bromide.  Positions of the 100 bp 
DNA marker (M) ladder are shown.  Results of analyses of changes in band intensity due to treatment are 
summarized in Table 2. 
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TABLE 4.2.  RT-PCR analysis of the activin-follistatin system in total RNA from uteri of control (CX) 
and ovariectomized (OVX) ewes on PND 56. 
 

Relative Light Units (x 103)a 
 
mRNA CX OVX 

 
SE 

 
P-value 

Follistatin 5,243 835 464 0.003 

βA-subunit 6,886 993 704 0.006 

βB-subunit 1,262 2,441 244 0.011 

ActRIA 7,948 1,772 800 0.001 

ActRII 3,425 470 326 0.004 
 

a Measurement of cDNA synthesized in PCR reactions were made from ethidium bromide stained agarose 
gels.  Data are presented as LSM with SE. 
bData were analyzed by one-way LS-ANOVA. 
 
 
 In situ hybridization and immunohistochemical analyses were performed to localize 

expression of follistatin-activin system mRNAs and protein in the uteri from CX and 

OVX ewes (Figs. 4.4 and 4.5).  Results of immunohistochemical analyses were 

quantified and are summarized in Table 4.3.  Expression of inhibin α subunit mRNA or 

protein was not detected in the neonatal ovine uterus (data not shown).  As compared to 

CX ewes, uteri of OVX ewes had lower levels of βA subunit expression, particularly in 

the endometrial LE, GE and myometrium (Fig 4.4A and Table 4.3).  In contrast, the 

expression of βB subunit was more abundant in the endometrial LE and GE of OVX 

ewes (Fig 4.4B).  Follistatin mRNA and protein levels were lower in uteri of OVX ewes, 

particularly in the endometrial stroma and myometrium (Fig 4.4C). 



 

 

74

 

FIG 4.4.  Representative photomicrographs indicating the distribution of βA-subunit [A], βB-subunit [B], and follistatin [C] mRNA and protein in uteri 
from CX and OVX ewes on PND 56.  In situ localization of mRNA in the uterus is presented in brightfield and darkfield illumination (left panel).  
Representative photomicrographs of immunohistochemical results are presented for the upper and lower portions of the uterine wall (right panel). As a 
negative control, mouse IgG (mIgG) was substituted for the primary antibody. Legend: GE, glandular epithelium; LE, luminal epithelium; M, 
myometrium; S, stroma.  Bar represents 50 µm. 
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FIG 4.5.  Representative photomicrographs depicting the distribution of ActRIA [A], ActRIB [B], and ActRII [C] expression in uteri from CX and OVX 
ewes on PND 56.  For both ActRIA and ActRII, in situ localization of mRNA in the uterus is presented in brightfield and darkfield illumination (left 
panel).  Representative photomicrographs of immunohistochemical results are presented for the upper and lower portions of the uterine wall. As a 
negative control, mIgG was substituted for the primary antibody. Legend: GE, glandular epithelium; LE, luminal epithelium; M, myometrium; S, 
stroma.  Bar represents 50 µm. 
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TABLE 4.3.  Distribution and relative abundance of immunoreactive βA-subunit, βB-subunit, follistatin, ActRIA, ActRIB and ActRII protein in uteri 
from CX and OVX ewe lambs. 
                    
  Intercaruncular endometrium  Caruncular endometrium 

    LE GE: Shallow GE: 
Deep Stroma   LE Stroma Myometrium 

βA-subunit CX +++ +++ +++ +  + + ++ 
  OVX ++ ++ ++ +   + + + 

βB-subunit CX ++ ++ ++ +  + + + 
  OVX +++ +++ +++ +   + + +/++ 

Follistatin CX -/+ - - ++/+++  - +++ +++ 
  OVX -/+ - - +   - + -/+ 

ActRIA CX +++ +++ ++/+++ +  + + +/++ 
  OVX ++ + + +   -/+ + -/+ 

ActRIB CX +++ +++ ++ +  + + ++/+++ 
  OVX ++ + + +   + + + 

ActRIIA/B CX +++ +/++ +/++ ++   + ++ + 
  OVX ++ +/++ +/++ +/++   +/++ +/++ + 

 
LE, luminal epithelium; GE, glandular epithelium. 
βA-subunit, βB-subunit, follistatin, ActRIA, ActRIB and ActRIIA/B protein staining intensity was evaluated visually as absent (-), weak (+), moderate 
(++), or strong (+++). 
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Overall, expression of ActRIA and ActRIB was lower in the uteri of OVX ewes 

(Fig. 4.5, A and B).  Specifically, ActRIA and ActRIB protein levels were reduced in 

both the endometrial glands and myometrium of OVX compared to CX ewes (Table 

4.3).  The abundance of ActRIB mRNA was below the detectable limits of the in situ 

hybridization procedure (data not shown).  The mouse anti-human ActRII antibody 

detects both ActRIIA and ActRIIB (R&D Systems, Inc., Minneapolis, MN).  Although 

ActRII mRNA expression was lower in uteri of OVX ewes, immunoreactive ActRIIA/B 

protein abundance was not different between uteri from CX and OVX ewes (Fig. 4.5C).   

Expression of Activin-Follistatin System Components in the Neonatal Ovary 

As expected, the number of growing and antral follicles in the neonatal ovine 

ovary declined from PND 0 to PND 7, increased between PND 7 and 14, peaked on 

PND 28 and remained high to PND 56 (Fig. 4.6).  On PND 28 and thereafter, a number 

of the follicles exhibited signs of atresia, including rupture and disorganization of the TC 

and GC layers.  As expected, no corpora lutea were observed in the ovaries.   

In the ovaries, inhibin α subunit mRNA and protein were detected only in GC 

and cells of the COC (Fig. 4.7A).  Overall, expression of inhibin α subunit mRNA and 

protein increased in vesicular and Graafian follicles between PND 0 and PND 14 and 

remained abundant thereafter (Table 4.4).   In the neonatal ovary, βA subunit mRNA and 

protein were detected in GC, COC, and the oocyte with low levels of protein in the TC 

(Fig 4.7B).  The βB subunit mRNA and protein were detected in GC and COC (Fig. 

4.7C).  The most abundant levels of immunoreactive βB subunit protein were in the zona 

pellucida of the oocyte.  Follistatin mRNA and protein expression were detected 
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predominantly in the GC and COC (Fig 4.7D), but immunoreactive follistatin protein 

was also present in TC and tunica muscularis of blood vessels. 

 
 

 

FIG 4.6.  Representative photomicrographs illustrating the histoarchitecture of the ovary between PNDs 0 
and 49 which corresponds to the period of postnatal uterine development in lambs.  Tissues were prepared 
and stained using Masson’s trichrome.  Legend: F, follicle; GC, granulosa cells; TC, theca cells; O, 
oocyte.  Bar represents 500 µm. 
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FIG 4.7.  Representative photomicrographs indicate the distribution of inhibin α-subunit [A], βA-subunit 
[B], βB-subunit [C], and follistatin [D] mRNA and protein in ovaries from ewes on PND 14, 28 and 56.  
In situ localization of mRNA is presented in brightfield and darkfield illumination (left panel).  
Immunoreactive protein was detected using mouse monoclonal antibody and a BioStain Super ABC kit.  
Irrelevant mouse IgG was substituted for primary antibodies as a negative control.  Legend: COC, 
cumulus oocyte cell complex; GC, granulosa cells; TC, theca cells; O, oocyte.  Bar represents 100 µm. 
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TABLE 4.4. Distribution and relative abundance of immunoreactive α-subunit, βA-subunit, βB-subunit, 
and follistatin protein in the neonatal ovine ovary1. 
 
α-subunit     βA-subunit    

PND GC TC COC O  PND GC TC COC O 
0 - - - -  0 +++ - +++ +++ 
7 +/- - + -  7 +++ - +++ +++ 
14 +++ - +++ -  14 +++ - +++ +++ 
21 +++ - +++ -  21 +++ - +++ +++ 
28 +++ - +++ -  28 +++ +/- +++ +++ 
35 +++ - +++ -  35 +++ + +++ +++ 
42 +++ - +++ -  42 +++ + +++ +++ 
49 ++ - ++ -  49 +++ + +++ +++ 
56 ++ - ++ -  56 ++ + +++ +++ 

Follistatin     βB-subunit    
PND GC TC COC O  PND GC TC COC O (ZP)

0 ++ +/- ++ ++  0 ++ - ++ +++ 
7 ++ +/- + ++  7 ++ - ++ +++ 
14 ++ + + ++  14 ++ - ++ +++ 
21 +++ + ++ +++  21 ++ - ++ +++ 
28 +++ + +++ +++  28 ++ - ++ +++ 
35 +++ ++ +++ +++  35 ++ - ++ +++ 
42 +++ ++ +++ +++  42 ++ - ++ +++ 
49 +++ ++ +++ +++  49 ++ - ++ +++ 
56 +++ ++/+++ +++ +++  56 ++ - ++ +++ 

 
1PND, postnatal day; GC, granulosa cells; TC, theca cells; COC, cumulus oocyte complex; O, oocyte; ZP, 
zona pellucida.  All protein staining intensity was evaluated visually as absent (-), weak (+), moderate 
(++), or strong (+++). 
 
 

Discussion 

Although uterine morphogenesis begins in the fetus, endometrial gland 

morphogenesis is a uniquely neonatal event [13, 14].  Ovariectomy of the neonatal ewe 

at birth does not affect the initial genesis and development of endometrial glands on 

PND 14 [28].  Similarly, ovariectomy of ewes on or before PND 4 had no effect on 

uterine wet weight on PND 14 [27].   Results of the present study confirm previous 
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reports that the ovary affects uterine growth after PND 14 [16, 180] and demonstrate that 

ovariectomy of the ewe on PND 7 reduced uterine wet weight by approximately 50% on 

PND 56.  Liefer et al. [180] found a similar reduction in uterine weight on PND 44 in 

ewes ovariectomized on PND 4.  In the present study, ovariectomy reduced growth of 

the endometrium and myometrium and the total number of endometrial glands in the 

uterus on PND 56.  Development of the neonatal uterus involves reciprocal epithelial-

mesenchymal interactions [3, 68, 134].  In the developing rodent uterus, the endometrial 

epithelium affects myometrial organization and growth [134].  In the neonatal ewe, 

estrogen or progestin treatment of neonatal ewes from birth epigenetically ablates 

endometrial adenogenesis, reduces uterine growth, and decreases endometrial and 

myometrial thickness [3].  In contrast, treatment of neonatal ewes with PRL from birth 

increases endometrial gland number as well as intercaruncular endometrial and 

myometrial thickness [Chapter V].  These results clearly indicate that effects of 

ovariectomy on intercaruncular endometrial and myometrial growth may result from 

decreased development of endometrial glands as well as changes in epithelial-stromal 

interactions.   

In the present study, ovariectomy on PND 7 did not affect the number of 

superficial ductal invaginations of the GE from the LE nor the density of endometrial 

glands in the stratum compactum area of the stroma on PND 56.  Results of the present 

study confirm those of Bartol et al. [28] that initial genesis and development of 

endometrial glands between birth and PND 14 is not dependent on the ovary or an 

ovarian factor(s).  However, results of the present study clearly demonstrated that total 
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number of endometrial glands in the uterine wall and the density of the endometrial 

glands in the stratum spongiosum area of the stroma were reduced in uteri from OVX 

ewes which indicates that an ovarian-derived factor(s) regulates, in part, the coiling and 

branching morphogenesis stage of endometrial gland development that occurs between 

PND 14 and PND 56.  Postnatal uterine growth and endometrial adenogenesis are ovary-

, adrenal-, and steroid-independent in rodents [30-32].  In the neonatal gilt, ovariectomy 

at birth inhibits uterine growth after PND 56, but does not affect genesis of uterine 

glands or related endometrial morphogenetic events prior to PND 120 [23].  

Collectively, available results indicate that the precise role of ovarian factor(s) in uterine 

growth and endometrial adenogenesis is species-specific.   

The process of uterine morphogenesis is governed by a variety of hormonal, 

cellular and molecular mechanisms, many of which remain to be defined [3, 41].  In the 

neonatal ovine uterus, the PRL receptor gene is specifically expressed by the 

endometrial GE [14], and circulating PRL is a primary regulator of endometrial 

adenogenesis [Chapter V].  In the present study, ovariectomy on PND 7 did not affect 

circulating levels of PRL, indicating that effects of ovariectomy were not due to 

alterations in this endocrine regulatory system.  Although changes in uterine ERα gene 

expression can be correlated with endometrial adenogenesis [14], uterine growth and 

endometrial gland development is an estrogen-independent process in the ewe between 

birth and PND 56 [Chapter III].  However, endometrial gland coiling and branching 

morphogenesis between PND 14 and PND 56 is dependent, in part, on expression and 

functional activation of uterine ERα [Chapter III].  In the present study, effects of 
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ovariectomy on uterine growth and development were not due to alterations in 

circulating E2-17β.  Moreover, expression of ERα and PR protein was not different 

between uteri of CX and OVX ewes [K.D. Carpenter, K. Hayashi and T.E. Spencer, 

unpublished observations]. Therefore, the effects of ovariectomy on uterine growth and 

endometrial adenogenesis cannot be attributed to alterations in either PRL or the uterine 

ERα system. 

The ovarian factor(s) that regulates uterine growth and endometrial 

adenogenesis is not known, but could be inhibin, follistatin or activins.  In the neonatal 

ewe, the increase in ovarian weight between PND 14 and PND 56 is caused, in part, by 

the increase in number and size of antral follicles and the associated accumulation of 

follicular fluid [26].  The stimulus for initiation and maintenance of ovarian follicular 

growth after birth is not known.  During this period, low levels of LH release in a 

pulsatile fashion can be detected, whereas FSH secretion is tonic [26, 180, 200].  The 

unregulated growth of ovarian follicles in the ewe after birth may be due to endocrine 

stimuli, such as LH and FSH, as well as intraovarian mechanisms.  In the present study, 

ewes were born during seasonal anestrus and ovaries were collected before puberty, but 

inhibin α subunit, β subunits, and follistatin were expressed in nearly all growing and 

vesicular follicles.  In the ewe, follistatin levels rise in the fetus during parturition and 

remain high in the neonate [196].  In contrast, immunoreactive inhibin levels are low at 

two weeks and then decline to fifteen weeks of life in the ewe lamb [198].  In the present 

study, abundant expression of β subunits and ActRs as well as follistatin and inhibin α 

subunit were detected in the neonatal ovary.  These findings are similar to previously 
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reported results [197, 199].  Undoubtedly, these factors regulate follicular development 

in the prepubertal ovine ovary through their established roles in GC proliferation and 

control of pituitary hormones [188, 189].   

Recent evidence from studies of the neonatal ovine uterus implicates follistatin, 

activins, and activin receptors as regulators of endometrial gland morphogenesis in the 

neonatal ovine uterus [181].  Follistatin, activins and inhibins regulate growth and 

differentiation of many branched epitheliomesenchymal organs via autocrine, paracrine 

and perhaps endocrine mechanisms [182-187, 201].  In general, exogenous activin 

inhibits gland development, whereas follistatin counteracts these inhibitory effects of 

activins by binding to the individual βA and βB subunits and preventing activin receptor 

activation [182, 190].  In a variety of cell types, expression of activin-follistatin system 

components can be modulated by activins, inhibin, and follistatin in a cell type-specific 

manner [202-206].  Activin can increase follistatin expression and differentially regulate 

ActR expression in pituitary cells [205].  In testicular tumor cells, activin regulates 

expression of ActRII and βA subunit and inhibits cell proliferation [204].  In rat Sertoli 

cells, activin increases expression of ActR and follistatin and increases cell proliferation 

[206].  In human GC, activin A increases βB subunit expression with no effects on βA 

mRNA or inhibin α subunit mRNA [203].  Available results support the working 

hypothesis that follistatin and activins from the ovary act on the uterus to regulate, in 

part, coiling and branching morphogenetic development of endometrial glands as well as 

overall uterine growth.  This hypothesis is supported by findings in the present study that 

expression of specific components of the activin-follistatin system was affected by 
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ovariectomy and could be correlated with reduced endometrial gland development.  

Indeed, marked reductions in expression of follistatin, βA subunit, ActRIA, and ActRII 

genes and an increase in βB subunit expression were detected in uteri of ovariectomized 

ewes.  Furthermore, these changes could be correlated with, but not completely 

accounted for, by the decreases in uterine size and endometrial gland development in 

ovariectomized ewes.  One or more of the responsible ovarian factors likely is follistatin, 

activins, or inhibin.   

Collectively, available results support the idea that a factor from the ovary 

regulates overall development, adenogenesis, and expression of the follistatin-activin 

system in the neonatal ovine uterus.  It is tempting to speculate that the coordinate 

activities of the activin-inhibin-follistatin system in the ovary and uterus may be 

important in prolific breeds of ewes that possess an intrinsic high ovulation rate as well 

as a enhanced uterine capacity to maintain large litters [207].  Future experiments will be 

directed toward understanding the mechanistic aspects of the novel finding that an 

ovarian endocrine factor(s) includes a member of the activin-inhibin-follistatin system 

that may act in concert with autocrine-paracrine effects of the uterine activin-follistatin 

system to regulate coiling and branching morphogenesis of the endometrial glands 

during postnatal development of the ovine uterus.   
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CHAPTER V 

PROLACTIN REGULATION OF NEONATAL OVINE UTERINE 

GLAND MORPHOGENESIS 

Introduction 

Postnatal uterine morphogenesis in the ewe involves the emergence, proliferation 

and differentiation of endometrial glands, specification of intercaruncular stroma, 

development of endometrial folds, and, to a lesser extent, growth of endometrial 

caruncular areas and the myometrium [3, 11, 14, 15].  Uterine gland development or 

adenogenesis is initiated between PND 1 and 7 when shallow epithelial invaginations 

appear along the LE in presumptive intercaruncular areas.  Between PND 7 and 14, the 

nascent GE buds proliferate into the stroma and form tubules or ducts that begin to coil 

and branch at the tips by PND 21.  After PND 21, uterine adenogenesis primarily 

involves branching morphogenesis of tubular and coiled endometrial glands in the 

stratum spongiosum adjacent to the inner circular layer of the myometrium.  By PND 56, 

uterine gland morphogenesis is essentially complete, as the aglandular caruncular and 

glandular intercaruncular endometrial areas appear histoarchitecturally similar to that of 

the adult uterus [14].  Final maturation and growth of the ovine uterus may not occur 

until puberty [16] and during the first pregnancy, which involves extensive hyperplasia 

and hypertrophy of the endometrial glands [17, 18].   

In the neonatal ewe, pituitary PRL, E2-17β, and stromal growth factors, 

including FGF-7 and -10, HGF, and IGF-I and -II, with epithelial receptors have been 

implicated as regulatory factors controlling endometrial adenogenesis [11, 14, 15].  
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Circulating levels of PRL are relatively high on PND 1, reach a maximum on PND 14, 

and then decline slightly to PND 56 [15, 37].  Expression of mRNAs for the short and 

long PRLR proteins is restricted to the nascent uterine GE buds on PND 7 and in 

proliferating and differentiating GE from PND 14 to 56 [15].  In the adult ovine uterus, 

PRLR expression is also restricted to the endometrial glands and not detected in other 

uterine cell types [18].  Prolactin, a member of the helix bundle peptide 

hormone/cytokine superfamily [141], regulates the growth and differentiation of a 

number of epitheliomesenchymal organs, including the pigeon crop sac, mammary 

gland, prostate, and uterus [33].  In the mammary gland, PRL and PRLR are required for 

development and differentiation of the lobuloalveolar portion of the GE [34-36].  

Hyperprolactinemia elicits uterine glandular hyperplasia in the adult mouse, rabbit and 

pig [38-40].  The precise role of PRL in neonatal ovine uterine adenogenesis has not 

been elucidated.   

Biological responses to PRL in other model systems is mediated by the PRLR 

and intracellular activation of several signal transduction systems, including signal 

transducers and activators of transcription (STAT) proteins 1, 3 and 5, IFN regulatory 

factor one (IRF-1), and the mitogen activated protein kinase (MAPK) cascade [148, 208, 

209].  High levels of phosporylated ERK 1 and 2 MAPKs are also detected in nascent 

and proliferating endometrial glands of the neonatal ovine uterus [15].  Available 

evidence in the neonatal ewe supports the working hypothesis that PRL activates PRLR 

signaling pathways in the nascent and proliferating endometrial GE to stimulate and 

maintain their coiling and branching morphogenesis in the neonatal ovine uterus.  In 
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order to test this hypothesis, studies were conducted in the neonatal ewe to determine 

effects of: (1) hypoprolactinemia on uterine adenogenesis; (2) hyperprolactinemia on 

uterine adenogenesis; (3) postnatal age on expression of STATs 1, 3 and 5 and IRF-1; 

and (4) PRL on activation of STAT and MAPK signal transduction pathways. 

Materials and Methods 

Reagents 

Antibodies used in the present study included: monoclonal mouse anti-STAT 1 

IgG (#610185), monoclonal mouse anti-STAT 3 IgG (#610189), and monoclonal mouse 

anti-STAT 5 IgG (#610191) from BD Transduction Laboratories (Lexington, KY); 

rabbit anti-phospho-STAT 1 IgG (Tyr 701; #9171), rabbit anti-phospho-STAT 3 IgG 

(Tyr 705; #9131), rabbit anti-phospho-STAT 5 IgG (Tyr694; #9351), rabbit anti-

phospho-p44/42 MAPK IgG (Thr202/Tyr204;  #9101), rabbit anti-p44/42 (ERK1/2) 

MAPK IgG (#9102), and rabbit anti-phospho-SAPK/JNK IgG (Thr183/Tyr185; #9251) 

from Cell Signaling Technology (Beverly, MA); rabbit anti-human IRF-1 IgG (sc-497) 

from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA); peroxidase-labeled goat anti-

mouse (#474-1806) and anti-rabbit IgG (#474-1506) from Kirkegaard & Perry 

Laboratories (Gaithersburg, MD); and normal rabbit IgG (#I5006) and normal mouse 

IgG (#I5381) from Sigma-Aldrich (St. Louis, MO).   
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Animals 

 All experiments and surgical procedures were in accordance with the Guide for the 

Care and Use of Agriculture Animals and approved by the University Laboratory 

Animal Care Committee of Texas A&M University. 

Preparation of Recombinant Ovine Prolactin 

Recombinant ovine PRL (roPRL) (GenBank Accession No. M27057) was 

prepared in Escherichia coli cells as described by Leibovich and colleagues [210].   The 

expressed protein, found in inclusion bodies, was refolded and purified to homogeneity 

on a Q-Sepharose column, yielding an electrophoretically pure fraction composed of 

over 98% monomeric protein of the expected molecular mass of approximately 23 kDa. 

The biological activity of the roPRL after proper renaturation was evidenced in vitro by 

its ability to stimulate proliferation of rat lymphoma Nb2 cells possessing PRLR, 

stimulate biological activity in HEK 293 cells transiently transfected with ovine PRLR, 

and induce progesterone secretion in primary cultures of luteal cells obtained from 

midpregnant ewes [210]. 

Experimental Design 

Crossbred Suffolk ewes were mated to Suffolk rams in the Fall between the 

months of September and November of 2000 and 2001.  Pregnant ewes were maintained 

according to normal husbandry practices and fed hay and corn.  Ewes used in the 

following experiments were born in the Spring between the months of February and May 

of 2001 and 2002. 
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Study one 

Biodegradable placebo and bromocryptine mesylate (100 mg) 21-day release 

pellets were obtained from Innovative Research of America (Sarasota, FL).  Ten ewe 

lambs (n=5 per treatment) were assigned randomly at birth (postnatal day or PND 0) to 

be implanted with a placebo pellet as a control (CX) or 100 mg bromocryptine mesylate 

pellet (BROMO) that releases 100 mg over a 21-day period (approximately 4.8 mg per 

day).  Biodegradable pellets were placed subcutaneously in the periscapular region every 

20 days from birth.  Blood samples were collected every 7 days beginning at birth by 

jugular venipuncture.  On PND 56, all ewes were hemi-ovariohysterectomized.  For 

removal of the right uterine horn and ovary, a hemostat was clamped perpendicular 

across the uterine horn at the bifurcation of the uterine horns.  A scalpel blade was used 

to remove the right uterine horn, oviduct and ovary.  Electrocautery was used to seal the 

opening of the remaining portion of the uterine horn.  The uterine horn piece was then 

trimmed free of the broad ligament, oviduct and cervix.  Sections (~ 1 cm) from the mid-

region of the uterine horn were fixed in fresh 4% paraformaldehyde in PBS (pH 7.2) for 

24 h at room temperature and processed for histology.   

Study two 

Crossbred Suffolk ewes (n=5 per treatment) were assigned randomly on PND 0 

to receive twice daily injections (0700 h and 1800 h) of sterile saline vehicle as a control 

(CX) or roPRL (1 mg per kg body weight) from PND 1 to PND 56 to determine effects 

on uterine gland development.  Body weight of the ewes was measured every 4 days and 
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used to adjust treatments.  Blood samples were collected every 8 days beginning on PND 

1 by jugular venipuncture.  On PND 14, all ewes were subjected to mid-ventral 

laparotomy.  The right ovarian pedicle was ligated, and the ovary and oviduct removed.  

One-half of the ipsilateral anterior uterine horn was then removed and fixed in 4% 

paraformaldehyde for histology.  On PND 56, all ewes were weighed and necropsied.  

The left ovary was trimmed free of the mesovarium and weighed.  The uterus was 

obtained and trimmed free of the broad ligament, oviduct and cervix.  The entire left 

uterine horn was dissected free of the partial right uterine horn and weighed.  Sections 

from the mid-region of the uterine horn were fixed in paraformaldehyde for histology.   

Histology and Morphometry 

After 24 h of fixation in 4% paraformaldehyde, uterine tissues were changed to 

70% ethanol for 24 h and then dehydrated and embedded in Paraplast Plus (Oxford 

Labware, St. Louis, MO).  Uteri were sectioned (4-6 µm) and stained with hematoxylin 

and eosin as described previously [11].  Sections (n=4) of the uterus from each ewe were 

photomicrographed, and images were analyzed using Scion Image software (Scion 

Corporation, Frederick, MD).  Measurements were standardized using the image of a 

stage micrometer at the same magnification.  In the intercaruncular endometrium, the 

thickness or width of the endometrium and myometrium (inner circular and outer 

longitudinal layers) was measured using the Scion Image software from multiple points 

(n=3 to 4) of each uterine section.  The number of superficial ductal invaginations of the 

GE into the stroma was counted in each section.   Endometrial gland number was 

determined by counting the total number of uterine glands in a complete cross-section of 
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the uterine horn using methods described previously [67].  Gland number estimates were 

generated for at least 10 non-sequential sections from each uterine horn.  The 

observation of a gland cross-section with a visible open lumen was counted as a gland.  

Intra- and inter-section repeatability estimates for determination of gland number by a 

single observer was 0.85 and 0.8, respectively.  Data are presented as total gland number 

per uterine horn cross-section.  Gland density was determined in the stratum compactum 

and stratum spongiosum of the intercaruncular endometrium.  The number of glands in a 

200 µm2 area was counted in four areas of four sections for each uterine horn.   Data are 

presented as total gland number per 200 µm2 area.    

Photomicroscopy 

Representative photomicrographs were taken using a Nikon Eclipse 1000 

photomicroscope (Nikon Instruments Inc., Lewisville, TX) fitted with a Nikon 

DXM1200 digital camera.   

Radioimmunoassay 

 Blood samples were allowed to clot for 1 h at room temperature.  Serum was then 

collected by centrifugation (3000 x g for 30 min at 4C), removed and stored at -20C for 

hormone analyses.  Concentrations of PRL in serum were determined using reagents for 

the ovine PRL RIA provided by Dr. A.F. Parlow and the NIDDK National Hormone and 

Pituitary Program as described previously [14].  Purified ovine PRL (NIDDK-oPRL-I-3) 

was iodinated using the chloramine T reaction, and the assay conducted using methods 

and reagents provided by the NIDDK Pituitary Hormones and Antisera Center.  Assay 
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sensitivity was 0.1 ng/ml, and the intra- and inter-assay coefficients of variation were 5% 

and 12%, respectively.   

Concentrations of E2-17β in the serum were determined by RIA as described 

previously [14].  Assay sensitivity was 1 pg per tube, and the intra-assay and interassay 

coefficients of variation were 8% and 14%, respectively. Assay results were calculated 

using the AssayZap Version 3.1 program (Biosoft, Ferguson, CA).      

Statistical Analyses 

All quantitative data were subjected to least-squares analysis of variance (LS-

ANOVA) using General Linear Models (GLM) procedures of the Statistical Analysis 

System [167].   For serum PRL and E2-17β measurements, statistical models included 

the main effects of treatment, PND, and their interaction.  Statistical models for analysis 

of morphometry data in Study One included main effects of treatment, ewe within 

treatment, tissue section, microscopic field within tissue section, and the appropriate 

interactions.  Models for Study Two included main effects of treatment, ewe within 

treatment, PND, tissue section, microscopic field within tissue section, and the 

appropriate interactions.  Initial analyses indicated that uterine wall location, tissue 

section, and microscopic field within section were not significant sources of variation.  

In some cases, data were log transformed to alleviate heterogeneity of error variance.  

Data are presented as least-square means (LSM) with overall standard errors (SE). 
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Results 

Hypoprolactinemia Retards Endometrial Adenogenesis (Study One) 

This study tested the hypothesis that lowering circulating levels of PRL with 

bromocryptine mesylate, a dopamine D2 receptor agonist and inhibitor of PRL secretion 

in the ewe [34], would retard or prevent endometrial adenogenesis.  Ewes received a 

biodegradable pellet that released placebo as a control (CX) or bromocryptine mesylate 

(BROMO) every 20 days beginning at birth.  Circulating levels of PRL were affected by 

treatment (P<0.0001) and PND (P<0.10), but not their interaction (Fig. 5.1).  In CX 

ewes, serum levels of PRL were high on PND 1, increased to a maximum on PND 14, 

and decreased thereafter (P<0.10, cubic).  In BROMO ewes, serum PRL levels were 

lower on PND 1 and increased two-fold (P<0.10, linear) to PND 56, but always 

remained markedly lower (~4.5-fold) than CX ewes.   Treatment with BROMO did not 

affect (P>0.10) serum levels of E2-17β compared to CX ewes (data not shown). 

 



 

 

95

0

100

200

300

400

1 7 14 21 28 35 42 49 56
Postnatal Day

Pr
ol

ac
tin

 (n
g/

m
l)

CX BROMO

 
FIG 5.1.  Concentrations of PRL (LSM + SEM) in serum from neonatal ewes implanted every 20 days 
with either a placebo pellet as a control (CX) or bromocryptine mesylate (BROMO) pellet from birth to 
PND 56. 
 
 

Histological analyses of the uterine wall indicated that the endometrium of CX 

ewes contained large numbers of coiled and branched glands in the intercaruncular 

endometrium (Fig. 5.2).  In contrast, the endometrium of BROMO ewes lacked the large 

numbers of characteristically coiled and branched glands in the lower stroma.  As 

summarized in Table 5.1, the number of primary ductal invaginations of the GE into the 

stratum compactum stroma was lower (P<0.06) in the endometrium of BROMO-treated 

as compared to CX ewes.  Endometrial gland number was lower (P<0.001) in the 

endometrium of BROMO-treated as compared to CX ewes.  Endometrial gland density 

was lower (P<0.001) in the stratum spongiosum, but not in the stratum compactum 
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endometrium, of BROMO-treated ewes.  Endometrial and myometrial thicknesses were 

not affected (P>0.10) by treatment.     

 

 

FIG 5.2.  Representative photomicrographs depicting effects of treatment with placebo pellets as a control 
(CX) or bromocryptine mesylate (BROMO) pellets from birth (PND 0) on uterine wall development at 
PND 56.  Uterine tissue sections were prepared and stained with hematoxylin and eosin.  
Photomicrographs are shown at low (4X) magnification (top) with the area denoted by the white bar at a 
higher (20X) magnification (bottom).  Note the reduction in coiled and branched endometrial glands in the 
stratum spongiosum of BROMO-treated ewes.  Legend:  Car, Caruncle; DI, ductal gland invagination; LE, 
lumenal epithelium; GE, glandular epithelium; sc, stratum compactum; ss, stratum spongiosum; Myo, 
myometrium. 
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TABLE 5.1.  Effects of bromocryptine treatment on endometrial gland ductal invaginations, gland 
number, gland density, and thickness of both endometrium and myometrium (Study One). 
 

Treatment  
Measurement CX BROMO 

 
SE 

Ductal Invaginations (number/section) 70.4 51.8a 1.3 

Gland Number (per section) 695 455 a 30 

Gland Density (number/200 µm2)  

     Stratum Compactum 5.7 5.8 0.2 
     Stratum Spongiosum 13.0 9.4 a 0.3 

Endometrial Thickness (µm) 457 464 34 

Myometrial Thickness (µm) 295 276 15 
 
a Effect of treatment (P<0.10) 
 
 
Hyperprolactinemia Increases Endometrial Gland Development (Study Two) 

 This study tested the hypothesis that hyperprolactinemia elicits uterine gland 

hyperplasia in the neonatal ovine uterus.  Ewes were treated from PND 0 to PND 56 

with either saline vehicle as CX or roPRL (2 mg/kg body weight/day).  Ewes were hemi-

ovariohysterectomized on PND 14, and the remaining uterine horn and ovary were 

removed on PND 56.  Serum levels of PRL were affected (P<0.01) by PND, treatment, 

and their interaction (Fig. 5.3).  In CX ewes, serum levels of PRL were high on PND 1, 

reached a maximum on PND 17, and decreased thereafter (cubic effect of day, P<0.05).  

Overall, treatment of neonatal ewes with roPRL increased (P<0.01) circulating levels of 

PRL.  In roPRL ewes, serum levels of PRL were higher than CX ewes on PND 1 

(P<0.01, day x treatment) and increased between PNDs 1 and 56 (quadratic effect of 

day, P< 0.10).  Treatment with roPRL did not affect (P>0.10) serum levels of E2-17β as 
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compared to CX ewes (data not shown).  As summarized in Table 5.2, weights of the 

ovary and right uterine horn were not affected (P>0.10) by treatment on PND 56.   
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FIG 5.3.  Concentrations of PRL (LSM + SEM) in serum from neonatal ewes treated with either saline 
vehicle as a control (CX) or recombinant ovine prolactin (roPRL) from PNDs 1 to 56. 
 
 

Treatment of neonatal ewes with roPRL affected uterine gland morphogenesis 

(Fig. 5.4).  On PND 14, the endometrium of CX ewes contained nascent glands that were 

mostly tubular.   On PND 56, the endometrium of CX ewes contained large numbers of 

coiled and branched endometrial glands, particularly in the stratum spongiosum.  As 

summarized in Table 5.2, the number of primary superficial ductal invaginations of the 

GE into the stratum compactum increased (P<0.01) between PND 14 and PND 56 in CX 

ewes, but was not affected (P>0.10) by treatment with roPRL regardless of PND.  In 

contrast, endometrial gland number and density were affected (P < 0.01) by PND, 

treatment and their interaction.  In CX ewes, endometrial gland numbers increased 

(P<0.001) almost 13-fold from PND 14 to PND 56.  Administration of roPRL tended to 
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increase (P=0.09) endometrial gland number on PND 14 and increased (P<0.01) it by 

63% on PND 56.  Similarly, endometrial gland density was increased (P<0.05) by 

roPRL on PND 14.  On PND 56, endometrial gland density was greater (P<0.05) in the 

stratum spongiosum, but not stratum compactum endometrium, in roPRL-treated as 

compared to CX ewes.  Endometrial and myometrial thicknesses were affected (P<0.10) 

by PND, treatment, and their interaction.  The thicknesses of the endometrium and 

myometrium were not different (P>0.10) on PND 14.  However, treatment with roPRL 

increased (P<0.10) the thicknesses or widths of the endometrium and myometrium on 

PND 56.   

Immunoreactive STATs 1, 3 and 5 Are Present in the Developing Endometrial Glands 

(Study Three) 

Immunoreactive STATs 1, 3 and 5 were detected in the nucleus and cytoplasm of 

most uterine cell types in the neonatal ewe (Fig. 5.5).  STAT 1 protein was detected in 

all cell types on PND 1, but was more abundant in the LE.  On PND 14 and thereafter, 

STAT 1 protein was detected in the developing GE.  STAT 3 protein was detected in the 

LE and stroma.  Expression of STAT 3 protein was particularly abundant in the LE and 

nascent and developing GE.  In the stroma, STAT 3 protein expression was most 

abundant in immune cells as compared to stromal cells.  STAT 5 protein was detected in 

all uterine cell types on PND 1, but was most abundant in the stroma and LE.  STAT 5 

protein was detected in the nascent and developing GE throughout development.  

Negligible levels of background were detected in negative controls wherein the primary 

antibodies were replaced with an equal amount of non-specific mouse IgG. 
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FIG 5.4.   Representative photomicrographs depicting effects of treatment with vehicle as control (CX) or 
recombinant ovine prolactin (roPRL) on PND 14 and PND 56.  Ewes were assigned at birth to receive 
treatment with saline vehicle as a CX or roPRL from PNDs 1 to 56.  On PND 14, ewes were hemi-
ovariohysterectomized, and the remaining uterine horn and ovary removed on PND 56.  Uterine tissue 
sections were prepared and stained with hematoxylin and eosin.  Photomicrographs are shown at low (4X) 
magnification (top) with the area denoted by the white bar at a higher (20X) magnification (bottom).  Note 
the increase in coiled and branched endometrial glands in the stratum spongiosum of roPRL-treated ewes 
on PND 56, but not on PND 14.  Legend:  LE, lumenal epithelium; GE, glandular epithelium; Myo, 
myometrium. 
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TABLE 5.2.  Effects of day and prolactin treatment on endometrial gland ductal invaginations, gland number, gland density, and thickness of both 
endometrium and myometrium (Study Two). 
 

______PND 14______ ______PND 56______  
Measurement CX roPRL SE CX roPRL SE 
Ductal Invaginations (number/section) 

52 55 4 64 70 4 

Gland Number (per section) 36 61* 7 450 732* 32 
Gland Density (number/200 µm2)   
      Stratum Compactum 4.4 5.9 0.3 8.9 9.0 0.4 
      Stratum Spongiosum - - - 15.4 18.7* 0.6 
Endometrial Thickness (µm) 359 383 14 492 563* 17 
Myometrial Thickness (µm) 289 292 11 353 464* 19 
Ovarian Weight (g) n.d.1 n.d. n.d. 1.2 0.8 0.1 
Right Uterine Horn Weight (g) - - - 2.3 2.1 0.2 

 
* Effect of treatment within PND (P<0.10);  1 n.d. = not determined 
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FIG 5.5.  Expression of STAT 1, STAT 3 and STAT 5 proteins in the developing neonatal ovine uterus.  
Immunoreactive STAT proteins were detected using mouse anti-human STAT 1, 3 or 5 antibodies and a 
Biostain Super ABC Kit.  Specific cellular staining was not observed when irrelevant mouse IgG was 
substituted for primary antibodies.  All photomicrographs are shown at 40X.  Legend:  LE, lumenal 
epithelium; GE, glandular epithelium; Myo, myometrium. 
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FIG 5.6.  Effects of prolactin treatment of PND 28 ovine uterine explants on phosphorylation of STAT, 
ERK1/2 and SAPK/JNK proteins.  Whole uterine explants from PND 28 ewes were treated with roPRL 
(500 ng/ml) for 0, 15, 30, 60 or 120 min, and 40 µg of each lysate was separated by SDS-PAGE and 
analyzed for phosphorylated STATs 1, 3, and 5 (panel A) or ERK1/2 and JNK/SAPK (panel B) by 
Western Blotting.  Positions of the prestained molecular weight markers are shown on the right.  Effects of 
PRL on expression of STAT and MAPK proteins in uterine explants are shown in panels C-F.  Data are 
presented as LSM with SE.  Representative results are from the analyses of uterine explant cultures from 
five ewes.     
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Although IRF-1 protein was detected in immune cells, immunoreactive IRF-1 

protein was not detected in the endometrial glands or in any other uterine cell types 

regardless of neonatal age (data not shown).  In situ hybridization analyses of the 

neonatal ovine uterus also confirmed these results using a homologous full-length ovine 

IRF-1 cRNA probe and methods described previously [211].  IRF-1 mRNA was not 

detected in any uterine cells, but was present in immune cells (data not shown).  

Prolactin Stimulates Phosphorylation of STATs 1 and 5, ERK 1 and 2, and 

JNK/SAPK (Study Four) 

 In order to investigate PRL signaling pathways in the neonatal ovine uterus, uteri 

from PND 28 ewes were explanted into serum-free medium and stimulated with 500 

ng/ml purified native oPRL.  The explants were harvested at specific times, and effects 

of PRL on STAT, ERK 1 and 2, MAPK, and JNK/SAPK signaling pathways determined 

by Western blot analysis of proteins isolated from whole uterine explants (Fig. 5.6).  

Levels of tyrosine phosphorylated STAT 1 were increased by PRL (P<0.05, quadratic) 

after 30 min post-treatment (Fig. 5.6A and 5.6C).  Treatment of uterine explants with 

PRL elicited a transient increase (P<0.01, cubic) in levels of tyrosine phosphorylated 

STAT 5 within 15 min post-treatment (Fig. 5.6A and 5.6D), but had no effect (P>0.10) 

on STAT 3 (Fig. 5.6A).  The phospho-specific antibody used for this study detected both 

STAT 5a and STAT 5b.  Within 15 min, PRL increased (P<0.01, cubic) levels of 

threonine and tyrosine phosphorylated ERK 1 and 2 MAPKs (Fig. 5.6B and 5.6E).  

Similarly, PRL also stimulated an increase (P<0.10, cubic) in levels of threonine and 

tyrosine phosphorylated JNK/SAPK by 15 min post-treatment (Fig. 5.6B and 5.6F). 
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Discussion 

Results from each of the present studies strongly support the hypothesis that PRL 

regulates the critical process of endometrial gland morphogenesis in the developing 

uterus of the neonatal ewe.  As observed previously [14], serum PRL levels in CX ewes 

in both Study One and Two were relatively high on PND 1, reached a maximum around 

PND 14, and then declined.  Serum levels of PRL on PND 56 are much greater than in 

adult ewes during most of the estrous cycle and pregnancy [212].  The temporal changes 

in circulating levels of PRL in the neonatal ewe parallel the ontogeny of endometrial 

glands in the developing intercaruncular endometrium of the uterine wall [14].  

Hypoprolactinemia was induced in neonatal ewes by treatment with bromocryptine 

mesylate, which markedly reduced (~4.5-fold) circulating levels of PRL to an average of 

36 ng/ml.  These findings are consistent with the ability of bromocryptine to markedly 

inhibit, but not completely ablate, PRL release from the pituitary in sheep [34].  

Unfortunately, an effective antagonist of the PRLR is not available [213].  

Hypoprolactinemia decreased endometrial gland number and density in the PND 56 

uterus.  Histologically, the uteri of BROMO-treated ewes contained lower numbers of 

superficial ductal gland invaginations as well as coiled and branched endometrial glands 

in the endometrial stratum spongiosum near the myometrium.  In the neonatal ewe, 

PRLR mRNA is most abundant in the proliferating, branching and differentiating GE 

between PNDs 21 and 56 [14, 15].  These findings are interpreted to support the 

hypothesis that PRL is a regulatory factor controlling endometrial gland coiling and 

branching morphogenesis in the developing neonatal ovine uterus.  However, the 
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inability of BROMO treatment to completely inhibit PRL secretion may preclude 

determination of the precise role of PRL in the initial stages of endometrial 

adenogenesis.   

Hyperprolactinemia causes uterine glandular hyperplasia in the adult mouse, 

rabbit and pig [39, 40].  Moreover, intrauterine administration of ovine placental 

lactogen (oPL), a PRL-like hormone that homodimerizes and signals through the PRLR 

[142], stimulates proliferation of endometrial glands in the adult ewe and, in particular, 

the coiled and branched glands in the stratum spongiosum of adult ewes [67].  In Study 

Two, treatment of ewes with roPRL from birth to PND 14 only slightly elevated 

circulating PRL levels, but increased endometrial gland number and density on PND 14.  

Indeed, the endometrium of roPRL-treated ewes on PND 56 contained more coiled and 

branched endometrial glands in the stratum spongiosum, but not stratum compactum.  

The budding, nascent and proliferating endometrial glands express mRNAs for the long 

and short PRLR forms on PNDs 7 and 14 [14].  Although all budding glands express 

PRLR on PNDs 7 and 14, only the GE in the stratum spongiosum express PRLR on 

PNDs 28 to 56 [14].  These temporal and spatial changes in PRLR mRNA expression 

are likely to be responsible for the differential effects of hyperprolactinemia on 

endometrial adenogenesis on PND 14 compared to PND 56.  After the budded glands 

elongate to a more tubular form and begin coiling and branching morphogenesis by PND 

21 [14], the ductal GE loses PRLR expression, thereby preventing it from responding to 

PRL.  Indeed, the PRLR is expressed only in the endometrial glands of the stratum 

compactum in the adult ewe [18].  In mice with targeted disruption of the PRL gene, the 
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mammary glands display normal ductal tree formation, but fail to develop lobuloalveolar 

structure [35].  Similarly, mammary gland transplants from PRLR null mice into normal 

mice showed normal side branching and the formation of alveolar buds, but no 

lobuloalveolar development [36, 214].  These findings are different from the present 

studies and suggest that mechanisms whereby PRL regulates gland development is organ 

specific.   

In Study Two, treatment of neonatal ewes with roPRL increased thickness of the 

endometrium and myometrium on PND 56.  These effects of PRL are likely to be the 

results of increased numbers of endometrial glands.  Development of the neonatal uterus 

involves reciprocal epithelial-mesenchymal interactions [3].  In the developing rodent 

uterus, the endometrial epithelium affects myometrial organization and growth [215].  

Similarly, progestin treatment of neonatal ewes epigenetically ablates endometrial 

adenogenesis and reduces endometrial and myometrial thickness [90].  In Study Two, 

the thickness of the endometrium and myometrium increased between PND 14 and PND 

56 in CX ewes, which correlates with coiling and branching morphogenetic development 

of the endometrial glands into the stratum spongiosum adjacent to the myometrium.  

These results support the idea that the endometrial glands regulate endometrial and 

myometrial growth during uterine development.  Although estrogen can affect uterine 

growth and size in a number of species [3], the effects of bromocryptine and roPRL in 

Studies One and Two did not involve alterations in the circulating levels of E2-17β.  

Collectively, results from Studies One and Two strongly support the hypothesis that PRL 
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acts directly on the endometrial GE that express the PRLR, and regulates coiling and 

branching morphogenesis during postnatal development of the ovine uterus. 

Biological responses to PRL in other model systems are mediated by the PRLR 

and intracellular activation of several signal transduction systems, including STATs 1, 3 

and 5 proteins, IRF-1, and the MAPK cascade [148, 208, 209].  Prolactin binding to the 

PRLR activates janus kinase 2 (JAK2) and STATs 1, 3 and 5 [216, 217].  Although each 

of these STAT proteins have been ablated in mouse models, their roles in endometrial 

gland morphogenesis may be difficult to fully ascertain, because the mouse uterus lacks 

the extensive coiled and branched endometrial gland architecture characteristic of uteri 

from domestic animals and primates [3].  Results from Study Three indicated that 

STATs 1, 3 and 5 are present in the developing ovine uterus and, in particular, are 

expressed in the nascent and developing endometrial glands.  In Study Four, PRL was 

determined to increase phosphorylation of STATs 5 and 1, but not STAT 3 in uterine 

explants from a PND 28 ewe.  Interestingly, the effect of PRL on phospho-STAT 1 

levels was more protracted and not observed until 60 min.  Activation of the 

JAK2/STAT 5 cascade by PRL probably represents the hallmark of PRL signaling [218].  

Functional development of the mammary gland epithelium during pregnancy depends on 

PRL signaling, and STAT 5a is essential for mammary gland alveolar proliferation and 

function [219-221].  Therefore, PRL signaling via the PRLR and STAT 5 may be critical 

for endometrial adenogenesis in the uterus during the neonatal period.  However, the 

precise roles of STAT 5 are not known in neonatal ovine uterine gland development or 
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in adult uterine gland hyperplasia and hypertrophy that normally occurs in response to 

oPL in pregnant ewes [67].   

In the PRL-responsive Nb2 T lymphoma cell line, PRL-mediated STAT 1 

activation increases expression of the immediate-early gene IRF-1 [219, 222].  In the 

common marmoset monkey and human, the PRLR is also expressed predominantly in 

the endometrial glands along with JAK2, STAT 1 and IRF-1 [216, 223].  Further, 

treatment of proliferative phase endometrium from the monkey uterus increases 

expression of IRF-1 [216].  In the present study, IRF-1 mRNA and protein could not be 

detected in the endometrial glands of the developing neonatal ovine uterus, even though 

IRF-1 gene expression has been detected in the adult ovine uterus in response to 

conceptus interferon tau, a Type I interferon [211].   Therefore, IRF-1 does not appear to 

be a mediator of PRL actions on the endometrial GE in the neonatal ovine uterus. 

Results from Study Four indicated that three members of the MAPK family are 

involved in the effects of PRL in the neonatal ovine uterus.  Both ERK 1 and ERK 2 

(also known as p44 and p42 MAPKs) function in a protein kinase cascade that plays a 

critical role in regulation of cell growth and differentiation [224, 225].  These two 

kinases share structural homology with the more recently discovered c-Jun N-terminal 

kinase/stress activated protein kinase (JNK/SAPK) family [226].  A variety of 

extracellular stimuli activate the JNK/SAPK pathway, including inflammatory 

cytokines, ultraviolet light and osmotic stress.  In Nb2 cells, PRL activated JNK/SAPK 

and JNK/SAPK are important for mitogenic signaling and perhaps suppression of 

apoptosis [227].  In bovine mammary gland epithelial cells, PRL stimulation of cell 
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proliferation involves activation of JNK/SAPK and an increase in c-Jun content of the 

activator protein 1 (AP-1) transcriptional complex that leads to increased gene 

transactivation [228].  Recently, PRL signaling in the human endometrial glands was 

also shown to involve activation of ERK 1 and ERK 2 [229].  The results of Study 4 

indicate that PRL increased phosphorylated ERK 1, ERK 2 and JNK/SAPK MAPKs.  

Previously, Taylor et al. [15] found high levels of phosphorylated ERK 1 and 2 in the 

nascent and proliferating endometrial glands that express PRLR in the developing 

neonatal ovine uterus.  Collectively, results indicate that PRL stimulates several 

signaling pathways, including STATs 1 and 5, ERK 1 and 2 MAPKs, and JNK/SAPK, 

and is a major regulatory factor controlling endometrial gland morphogenesis in the 

neonatal ovine uterus.   
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CHAPTER VI 

THE COMPLEX NATURE OF THE PROLACTIN RECEPTOR 

GENE AND DISCOVERY OF THE OVINE EXON 2 

Introduction 

Prolactin regulates the growth and differentiation of a number of 

epitheliomesenchymal organs, including the pigeon crop sac, mammary gland, prostate, 

and uterus [33].  In the mammary gland, PRL and PRLR are required for development 

and differentiation of the lobuloalveoli [34-36].  Hyperprolactinemia elicits uterine 

glandular hyperplasia in the adult mouse, rabbit and pig [38-40].  In the neonatal ewe, 

circulating levels of PRL are relatively high on PND 1, reach a maximum on PND 14, 

and then decline slightly to PND 56 [15, 37].  These temporal changes in circulating 

levels of PRL in the neonatal ewe parallel the ontogeny of endometrial glands in the 

developing intercaruncular endometrium of the uterine wall [14].  Additionally, 

expression of mRNAs for the short and long PRLR proteins is restricted to the nascent 

uterine GE buds on PND 7 and in proliferating and differentiating GE from PND 14 to 

56 [15].  In the adult ovine uterus, PRLR expression is also restricted to the endometrial 

glands and not detected in other uterine cell types [18].  Intrauterine administration of 

ovine placental lactogen (oPL), a PRL-like hormone that homodimerizes and signals 

through the PRLR [142], stimulates proliferation of endometrial glands in the adult ewe 

and, in particular, the coiled and branched glands in the stratum spongiosum of adult 

ewes [67].  Moreover, hyperprolactinemia in the neonatal ewe increases the number of 

endometrial glands by 63% on PND 56 whereas hypoprolactinemia decreases the 
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number of endometrial glands present by 35% [Chapter V].  These results indicate PRL 

and the PRLR are involved in the regulation of postnatal endometrial gland development 

in the ovine uterus. 

The GE specific nature of PRLR expression suggests that transcription of the 

PRLR gene is activated when the GE differentiates and buds from the LE.  Therefore, 

transcription factors that regulate PRLR transcription may be key regulators of GE 

differentiation.  The complete gene structure for PRLR has been determined in the 

human, rat, and mouse [145, 151, 154, 158, 159].  While there is variation among these 

species, many similarities exist including the location of the start codon in exon 3.  Both 

the human [143] and the rat [144] PRLR genes are comprised of eleven exons, while the 

mouse PRLR gene contains thirteen [145].  In these species, the transcriptional start site 

is located in exon 3; therefore, exons 1 and 2 as well as part of exon 3 comprise the 5’ 

untranslated region of the gene.  Most mammals, including rats, express both long and 

short forms of the PRLR due to alternative splicing of exons 10 and 11, respectively 

[144].   Indeed, both the short and long forms of the PRLR are detected in the neonatal 

and adult ovine uterus [15, 18].  Alternative splicing of exons 10 and 11 also occurs in 

humans resulting in one long and two short isoforms [143, 146].  The mouse expresses 

four isoforms, one long and three short, also arising from alternative splicing of the 3’ 

exons [145, 147].  The variant forms within a species are identical in their extracellular 

and transmembrane domain, but differ in the length of their cytoplasmic domains as well 

as the mechanisms through which they signal [143, 148].  The PRLR gene possesses a 

complex 5’ genomic structure made up of multiple promoters and non-coding first exons 
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(Fig 6.1).  These alternative first exons are differentially expressed depending on tissue 

type and developmental stage [149-153].  Exons 2 and 3 are highly homologous across 

species [145]. 

 

hE13/hE1N1 hE1N1/hE1N1 hE1N4 hE1N5 E2 E3 E4-E11

-165873/-165727

-100529/-100401

-100106/-99953

-75230/-75097

-45794/-45662

-28501/-28440
-45/+67

ATG

-166719/-166467

  
 
FIG 6.1.  Structure of the 5’ region of the human prolactin receptor gene (adapted from Hu et al. [153]).  
The human PRLR gene spans 167 kb on chromosome 5p13.  The relative localization of the six alternative 
first exons and exons 2-11 are shown according to NT_006679.6.  The translational start site (ATG) is 
located in exon 3.  Locations and sizes of the exons are shown below (ATG=0). 
 

The rat PRLR gene spans a 145kb region on chromosome 2 (2q16) [154] and 

contains four known first exons (E11, E12, E13, and E14) [150, 151].  The expression of 

each E1 is controlled by a separate, proximal promoter (PI, PII, PIII, and PIV) [151, 

155].  Interestingly, canonical TATAA elements, found in most promoters, are absent 

from the PRLR promoters; however, they do contain TATA-like sequences [151].  

Expression of E11 is primarily controlled by a SF1 binding domain in PI [154].  Thus, 

E11 is highly expressed in ovaries and has a low level of expression in the testis [151, 

154].  Expressed only in the liver, E12 expression is controlled by HNF4 (hepatic nuclear 

factor-4), a transcription factor required for the expression of several liver specific genes 

[153].  The more ubiquitous expression pattern of E13 can be attributed to the presence 

of binding sites for the transcription factors C/EBPβ, a member of the CCAAT-enhancer 

binding protein family, and Sp1, a transcription factor that binds to GC-rich sequences 
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within PIII [152].  Hu et al. [151] detected high levels of E13 expression in testis where it 

was the predominant form with low levels being detected in ovaries and liver.  A brain 

specific PRLR first exon, E14, was first described in the rat by Tanaka et al [150].  The 

mouse prolactin gene (Prlr) resides on chromosome 15 [157].  A total of five first exons 

and promoters span more than 60kb of the 5’ region of Prlr [145].  Exons homologous to 

rat E11, E12, and E13 have been described as well as two novel first exons [145, 154].  

The expression patterns of murine E11, E12 and E13 are similar to that seen in the rat.  

The two novel first exons were isolated by 5’ rapid amplification of cDNA ends (5”-

RACE) using liver cDNA [145].  They and their respective promoters have yet to be 

characterized.  The PRLR gene spans 167kb on human chromosome 5 (5p13) [158] and 

contains six first exons (hE13, hE1N1, hE1N2, hE1N3, hE1N4, and hE1N5) and promoters 

(hPIII, hPN1, hPN2, hPN3, hPN4, and hPN5 respectively) [158, 159].  Only one of the 

human first exons, hE13, is homologous to an E1 found in rats and mice [159], and, like 

rodents, its expression is controlled by C/EBP and Sp1 [158].  hEN1 is 147 nt long 

reaching from -252 to -106 [159].  The hPN1 promoter contains putative binding sites for 

the transcription factors ETS-1, Sp1, and AP2, as well as CRE [159].  The ETS element 

has been proven to be functional; however, Sp1 was not able to bind to this region [158].  

The AP2 and CRE sites have not yet been examined.  The remaining four first exons 

were first described using a human breast cancer cell line [158].  Of these, hEN2 and 

hEN3 are both expressed at low levels in the testis.  hEN3 is also expressed at high levels 

in the liver [158].  Also found in the liver, hEN5 expression is detectable by RT-PCR 

analysis in the ovary [158].  Interestingly, hEN4 (134 nt) expression was not detectable 
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by RT-PCR analysis in either the gonads or the liver [158].  The promoters for these 

novel human first exons have not been analyzed. 

Both long and short prolactin receptors are expressed in the endometrial GE of 

the neonatal and adult ovine uterus [14, 18].   The short form of PRLR results from a 39 

base pair insertion 5’ of exon 10 that contains two in-frame stop codons [230].  Although 

the coding regions of both long and short ovine PRLR have been cloned, the 5’ end has 

been sequenced only -21 nt in front of the translational start site which is 23 nt shorter 

than the human exon 3 [230].  The objective of this study was to clone and characterize 

the 5’ region of the ovine PRLR in order to identify potential transcription factors 

regulating cell type-specific expression of the PRLR within the endometrial glands of 

the ovine uterus. 

Materials and Methods 

Isolation of PRLR Clones 

 A Day 14 pregnant ovine endometrial cDNA library, constructed by Clontech (Palo 

Alto, CA, USA) using directional cloning into the pTriplEx2 phage vector and an 

EMBL3 sheep genomic library (CLONTECH Laboratories, Inc., Palo Alto, CA) were 

used to screen for PRLR clones using radiolabeled probes under high stringency 

conditions.  The first library screen was performed on the genomic library using a KpnI-

NcoI fragment of a known sheep PRLR cDNA (AF041257) isolated by Bignon et al  

[230].  A second library screen was performed on the day 14 pregnant cDNA library 

using the same ovine PRLR fragment for a probe.  This library was screened again using 

a bovine PRLR cDNA (NM174155) [149] that spanned from exon 3 to exon 10 as a 
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probe. Both the genomic and Day 14 pregnant cDNA libraries were also screened using 

radiolabeled overgo primers.  Overgo primers were designed against exon 2 (5’-

AAGAACGCTTCTGTTCATGGAGGC-3’, 5’-AGCATCCTTAGCATTTGCCTCCAT-

3’) and a 47 nt region 5’ to exon 2 (5’-AGGACGAGAGAGCCGAGGAGAGGA-3’, 5’-

TTGCCCAACTTCCCTCTCCTCTCC-3’) of the 5’-RACE clones.  Probes were 

synthesized using the DECAprime II kit (Ambion, Austin, TX) and P32-dCTP.  The 

ability of the radiolabeled primers to recognize and bind the gene of interest was verified 

by Southern blot analysis using the 5’-RACE products and standard techniques [231].  

Plaque purification to homogeneity of several positive isolates and DNA isolation were 

performed using standard methods. 

Southern Blot Analysis 

 Southern blot analysis were performed by standard techniques [231].  Briefly, 

digested DNA samples were separated by electrophoresis on a TAE gel containing 

agarose (1% w/v) and ethidium bromide (1µg/L) and transferred to a nitrocellulose 

membrane (Schleicher & Schuell BioScience, Keene, NH) by capillary blotting.   The 

membranes were then hybridized with probes synthesized using the DECAprime II kit 

(Ambion, Austin, TX) and P32-dCTP.  Membranes were then washed under high 

stringency conditions.  The blots were visualized using a Typhoon 8600 MultiImager 

(Molecular Dynamics, Piscataway, NJ). 

Sequence Analysis 

A 3.6 kb fragment of a PRLR genomic clone was sequenced by Agencourt 

Biosciences (Beverly, MA).  The 5’-RACE clones were sequenced in both directions 
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using an ABI PRISM Dye Terminator Cycle Sequencing Kit and ABI PRISM automated 

DNA sequencer (Perkin-Elemer Applied Biosystems, Foster City, CA).  Sequence 

alignment was conducted with the ClustalW alignment tool of the European 

Bioinformatics Institute (EMBL-EBI) available online at http://www.ebi.ac.uk/services. 

Rapid Amplification of cDNA Ends (5’-RACE) 

 Total cellular RNA was isolated from frozen PND 28 and 56 uteri using the Trizol 

reagent (Gibco-BRL, Grand Island, NY) and analyzed for concentration and quality.  

The RNA (1 µg) was then used to synthesize cDNA using MMLV reverse transcriptase 

from the SMART RACE cDNA Amplification Kit (Clontech, Palo Alto, CA) according 

to the manufacturer’s instructions.  Ovine PRLR specific primers were based on the 

mRNA sequence published by Bignon et al (AF041257) [230].  Sequences were used to 

amplify upstream of exon 6 (5’-CACCTTCCTTGCGGTAAGTCAG-3’) and exon 3 (5’-

GACAGGTTCACAGGAGGCTCT-3’).  The PCR conditions were as follows: 5 cycles 

of 94C for 5 sec followed by 72C for 3 min; 5 cycles of 94C for 30 sec, 70C for 30 sec 

followed by 72C for 3 min; and 25 cycles of 94C for 30 sec, 68C for 30 sec, and 72C for 

3 min.  The resulting products were gel purified on a 1.2% agarose gel and subcloned 

into the pCRII cloning vector using a T/A Cloning Kit (Invitrogen Live Technologies, 

Carlsbad, CA).   

Results 

Several clones (5B, 7A, and 16C) were purified to homogeneity from an EMBL3 

sheep genomic library using a KpnI-NcoI fragment that includes the translational start 

site from the 5’-end of a previously identified ovine cDNA (AF041257) [230].  The 
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clones were then analyzed by restriction digest and Southern blot analysis (Fig. 6.2).  Of 

these, only one clone (16C) tested positive by Southern blot analysis when probed with 

the same KpnI-NcoI fragment that was used for the library screen.  This 12.5kb fragment 

was analyzed and further mapped by restriction digests (Fig. 6.3A).  A fragment of 

approximately 1.4kb was excised using the BglII restriction enzyme (Fig. 6.3B), 

subcloned into pCRII, and sequenced from both ends (Fig. 6.4).  The resulting sequences 

were homologous to human chromosome 5, but not PRLR.  EcoRV was used to remove 

8.9kb from 16C, and the remaining ends were ligated (Fig. 6.3B).  The remaining 3.6kb 

insert was sequenced by Agencourt Biosciences (Fig. 6.5).  Sequence analysis revealed 

that nucleotides 1935 to 2047 were 81% homologous to the human PRLR exon 3.  The 

KpnI-NcoI fragment was also used to screen an endometrial cDNA library from Day 14 

pregnant sheep endometrium to potentially isolate an ovine cDNA that contained exons 

1 and 2; however, no positive plaques were isolated (data not shown).  This library was 

screened again with bovine PRLR cDNA (NM174155) [149], but also resulted in no 

positive plaques unfortunately (data not shown). 

In an effort to clone exon 1 and 2, 5’-RACE was utilized.  An initial 5’-RACE 

product was obtained from PND 56 endometrial cDNA using a primer designed against 

exon 6 of the ovine PRLR gene (AF041257) [230].  The band was gel purified and used 

as a template for nested 5’-RACE using a primer homologous to exon 3.  The exon 3 

primer was also used to obtain primary 5’-RACE products from PND 28 and 56 cDNA 

(Fig. 6.6).  Each reaction yielded products of approximately 350nt in length which were 

gel purified and subcloned into pCRII.  Sequence analysis revealed high homology 
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among the 5’-RACE products (99%), and between the products and the human PRLR 

gene (82%) (Fig. 6.7).  The clones contained all of exon 3 and a 64 nt region 

homologous to human exon 2.  The 5’-RACE clones also possessed a 47 nt region 5’ of 

exon 2 that is not homologous to any known exon 1. 

 

 

FIG 6.2.  Southern blot analysis of clones isolated from an EMBL3 λsheep genomic library using the 
KpnI-NcoI fragment of an ovine PRLR cDNA.  Lanes 1 and 2 are λ-HindIII and λ-HindIII/EcoRV 
ladders, respectively, hybridized with radiolabeled λ-DNA.  Lanes 3 and 4 are the ovine cDNA from 
which the probes were synthesized.  The cDNA was digested with KpnI+SmaI+SacI and BamHI+HindIII, 
respectively, as a positive control.  Lanes 5 through 7 are clone 5B,  lanes 8 through 10 are clone 7A, and 
lanes 11 through 13 are clone 16C.  Each of these clones was digested with in order SacII, BglII+NotI, and 
XbaI+NotI.  Lanes 3 through 13 were hybridized with the KpnI-NcoI fragment of an ovine PRLR cDNA.  
All DNA was digested, separated in an agarose gel, and blotted onto a nitrocellulose membrane.  
Membranes were then hybridized with radiolabeled probes, and washed under high stringency conditions.   
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FIG 6.3.  Restriction map of the 16C clone. A. The entire 16C insert was mapped with EcoRV, BglII, and 
SspI.  NotI was used to excise the clone from the plasmid.  B. Maps of the portions of 16C that were 
sequenced.  EcoRV was used to remove 8.9kb from the insert.  The ends were ligated, and the remaining 
3.6kb was sequenced.  BglII was utilized to excise a 1.4kb fragment of 16C that was positive for ovine 
PRLR by Southern blot analysis.  The fragment was subcloned into pCRII and sequenced. 
 

A. 
TGCAGAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCTATTGTTTTCCAAGAGTTGTTT
GGAGTCCAAAGAGGCTAATGAGTCTTTTCCAAATGTCTTTCAAAATCCTTTCTTCTTAAAAGG
ACATTTAGAGGCTTTGAAAATTGTTCCAAGGGTAAAAATAATATTAATAATAAATTTCTCAAAA
CTCTCAACCCCTGTAGGNGCAAAATTTGCTTAATTCTTCAAATGCAAAGGACTTTGAATTGTT
ACTGGGAATTGTCAATTTTTGCTTATGAGGATTTTCCAAAGGGTAAGAGTCATCACATGGAA
GTCCACTAGAGTTCACTACATGGNGGGGGGGNCTTGTCCGTGAGCTGGGACACTTCTAGA
GTCTTCAGAAGCANAACCTTCAAGAGAGCCTTCCCCCTTTTTCTTGGTGGCATCCATGGGG
CCAGGTGGGAGTTAAACTGNAAGCATCAACTTT 
 
B. 
GATGGNATATCTGCAGNAATTCCAGCACACTGGGCGGCCGTTACTAGTGGATCTATTGTTTT
CCAAGNAGTTGTTTGGAGTCCAAAGAGGCTAATGAGTCTTTTCCAAATGTCTTTCAAAATCC
TTTCTTCTTAAAAGGACATTTAGAGGCTTTGAAAATTGTTCCAAGGGTAAAAATAATATTAATA
ATAAATTTCTCAAAACTCTCAACCCCTGTAGGTTCAAAATTTGCTTAATTCTTCAAATGCAAA
GGACTTTGAATTGTTACTGGGAATTGTCAATTTTTGCTTATGAGGATTTTCCAAAGGGTAAGA
GTCATCACATGGAAGTCCACTAGAGTTCACTACATGGGNGGGGGCTTGTCCGTGAGCTGG
GACACTTCTAGAGTCTTCAGAAGCAGAACCTTCAAGAGAGCCTTCCCCCTTTTTCTTGGCGG
CNTCCATGGGGCCAGGTGGGAGTTAAACTGAAAG 
 
FIG 6.4.  Forward and reverse sequences of the BglII excised fragment of 16C.  BglII was used to excise a 
1.4kb fragment of 16C that was positive for ovine PRLR by Southern blot analysis.  The fragment was 
subcloned into pCRII and sequenced.  A.  A Sp6 primer was used for forward sequencing.  B.  A T7 
primer was used for reverse sequencing. 
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AAGAACAGAGGAGCCTTCTGGGCTACAATCCATAAGGTCACGAAGAGTCAGACACGACTCT
GCAGACGTGACTGACTGAGCACACACGCACGCACTAGTTTACGGGCTTGCACATGCGCATT
ACGCAGGACTGAGCATATTTTGACGGGGAAGTGAGCCAGATGTGAAAACAGCTAACAGATT
TACTGAGAAATGAGGGAATGGAGGAAATGGGAGTGTGAAGCTTTCGGAAATGTGCAGAGAT
TAATTCTAACTGATCTTAGGAATAAAATGCTTCCTGAAAGCACTTTTATTGGAAAATGTTATTT
AGAAGAGTTTCAGGTTTATTTTAGAACTTTTTCAGTCAGTGGGTAGCACACCCATCCCCAGG
CCAAGCTGAGATCACAAGATGTGCAGGACAAAGAACTCTTTCAGGCCTCAGTGGACCCAGT
GAAACTGGATTAGGGCGAACAACAGTGTTTAAGATCCTCGGAGGCAGGCATGGCCACTCTG
CTGTCTCTCTGCTTCATAATTTCTCAACTTCTACCCTTTCCGCTGCTTTCTTTTTCCTGTTCCA
TTTTCCAGTTTCAATCCCCAACATAAAACCCCGAACCTGTATCGTCACTGAGAATTCTATTTC
CAAGTATGTCTCAAGGGACATGATAGCAGGTGGAAAGAACTTCAAGAAGTTGTTTGTTAGGT
GATGTCTGGCTGGCAGATGGAGATCCACCCTCTGACCAGGAGGAGTTGGCAAAGCCTGGT
CTTTTCAAGGCTCATCAAGCAGCATTCAGCATTTTCCAACATCCCTGGATGGGCGGCCTTG
CTCCTGCATGCCCTTCCCCCAATTTTTAAAAAAAATGTAAAATTTAAAAGGAAAATGTAAGTC
ATGGGCTTCCAAGAATTTATACTTACTTCATCAGATCTATTGTTTTCCAAGAGTTGTTTGGAG
TCCAAAGAGGCTAATGAGTCTTTTCCAAATGTCTTTCAAAATCCTTTCTTCTTAAAAGGACAT
TTAGAGGCTTTGAAAATTGTTCCAAGGGTAAAAATAATATTAATAATAAATTTCTCAAAACTCT
CAACCCCTGTAGGTTCAAAATTTGCTTAATTCTTCAAATGCAAAGGACTTTGAATTGTTACTG
GGAATTGTCAATTTTTGCTTATGAGGATTTTCCAAAGGGTAAGAGTCATCACATGGAAGTCC
ACTAGAGTTCACTACATGGCTCACAGCCTTGTCCGTGAGCTGGGACACTTCTAGAGTCTTC
AGAAGCAGAACCTTCAAGAGAGCCTTCCCCCTTTTTCTTGGTGGCATCCATGGGGCCAGGT
GGGAGTTAAACTGAAAGCATCAACTTTTCAGCCTGCCTTATTTTTGGCTAGTAGATCAGAGT
CCTCCCAGAACAGTTCTATTGTAGGGCATGCAATCTGTATCACATAAAACAGGTGATCTATT
ATTGGGTGGCTTCACTGGTGGCTCAGACAGTAGAGAATTCACCTGCAATGCAGGAGACAAG
GTTTCAACCCTGGGTCAGGAAGATCCCCTGGAGAAGGGAATGGCTACCCACTCCAGTATTC
TTGCCTGAGAAATCCCGTGAACAGAGGAGCCTGGCAAGCTACAGTCCATGGGGTTTCAGA
GTCAGATACAACTGAGCAACTAACCCTGTGGGGTGCAAAGAGAACAATTTTTCCTTAGGGT
GTGTGCAAAGGAGCCCTTTGTGCTCAGCTGACCTTGAACGTTGTCTTCGGATGACCTCTGG
TGGTGGAATTTTTCCCAGCATATGCACAGCTATGTTTCTGAGCCAAGCTATCCTTGTTACATT
TTCCTACATTCCTTTCCTCCTGTTTTGTTATTCACATTCAGCAAGGAGCAAGAATCAGTTGCA
AACACTCAGAATAAAGTGGTGCATGTGCCTCACCAGACTTTTGGTGTTTCAAAAAGTTGCCT
GTGCCTTCTCTTTCAGTGAACCTCTGATATATTTCCTGTGGAAAGAGGAAGGAGCCAACAT
GAAGGAAAATGCAGCATCCAGAGTGCTTTTCATTCTGCTACTTTTTCTCTACGCCAGCCTT
CTGAATGGTAAGTAAGAGACTGTCCTGTTCTCTTTCACTTCCTGGGTTATTTGCACAAGAGG
AGGGGAGAATCCATCCCAGTCCTTTTGCAGCACAGTTACAGGAAATGAAAATGTCCATGGC
ATTTGCTTCTCTTCAATTATTTATAATATTATGGGGATTAAAATGAAGGCAAACAGTAATGCA
AAAGACTGGATGCAGTTAATGCCACATCCTGTCACCATGCTCTGACTTCCATCCTCATTCTG
GGAGTGCAGAGAAACAACCCTGCCAGGGACATATCACAGTCTCAGTCCAGGTTCTGTCCCT
TACTGGCTGTGCAACCTTGAGCCAGTTAACTTAGTTCCCGGGATTTACACTCTTTCAAAGTG
AGGAAAATGACGTTTCCTCCACCTCAGATGAAAAGTTGTGTGAGAAAAATCTTTGAAAACCT
GTGAAGAGATCTAAGGGGATTGCTGTTACATGGTGGAAAACAGGGACACTCAACTCTGCTA
GGCAGGAAATGAAATTCACAAGTAGACTAGCACATGCAAGCCTATGTGTGTACATTTCAGTG
TGTCTACCCCAGTCTATTTGTAAGTGTGTATACTTGTGTATATCTCTGTATCTATTAGCTTCC
CTGTACGTACCTGGTGGAAAATGCTCCTTTGTGTGTACCTATATGCATACCCATTTGTGGGT
GCATATTTCTGCATATGTATCTATGTGTGGACCAGTATCTACTTCTGTAAGTATGCAGCTGC
GTATATTGTTCCTCTGTGATCTGAGGGTGTGTTTCTGATATGAGCCCTTCTGTCTGAGCACG
TGTGTGTTGGGGGTGGGGAGTACCTCTGTGGTTGTCCCTGGGTTTGTGTGCATTGTACAGG
GAAAGTGAGACCATCCATTCACTGTAACCATCTCTTCTAAAGTGGGTGAAAGAAACATTTGA
CTAATTACATTTCACAGCGTTACCTTCCTCTCTTGAGTT 
 
FIG 6.5.  Sequence of the remaining 3.6kb of the 16C insert after a 8.9kb was excised using EcoRV and 
the resulting ends were ligated.  Sequencing was performed by Agencourt Biosciences (Beverly, MA).  
The underlined region (nucleotides 1935-2047) is homologous to human exon 3. 
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TTCTCGAGGTACTGTTAATAACCAGTGAAATGTGAGAGAGAGAAGCTTTCAGAAAGAGAAAA
AGGAATGTGGAGATTGGTACAATCCATATGGAAACTTTAAGTATTCAACTAAGCCCCAAATA
ATCAGCAGTTGCCTTAATTGGCTTCTAAATATGCTCATTATTGAGCTGTAAACTTTGTGTGTT
TTTAAAATAAAAGCTTTTCCTTCCACCTCACACACTCCTCCCTAGCCGCAAGAAAAATCAAAC
AAAAAATCACTTCACCCTGTGAAATTGTCCTGAAGAAATATTCCCTAGAGGTCAAGCAACGT
TCCAAAATGGGCAGAGCTAAGCCCAGACTGGCTGGCATGAACAGTTTTCAG 
 
FIG 6.5 (Continued) 
 
 
 

 

FIG 6.6.  Products of 5’-RACE using a primer to exon 3 run on agarose gel.  Lane 1 and 6 are λ-
HindIII/EcoRV ladders.  Lanes 2 through 4 contain 5’-RACE products using day 120 pregnant sheep 
endometrium, PND28, and PND56 mRNA as template, respectively.  Lane 5 contains a nested 5’-RACE 
product using PND56 mRNA and a primer for exon 6 in the previous RACE.  The resulting product was 
gel purified and used as a template for subsequent RACE analysis. 
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NM_000949       -----------------------------------------------CTAAAGAACTCTC 
NPND56          -GGAGGACGAGAGAGCCGAGGAGAGGAGAGGGAAGTTGGGCAAACAGCTAAAGAACGCTT 
PND56-5         -GGAGGACGAGAGAGCCGAGGAGAGGAGAGGGAAGTTGGGCAAACAGCTAAAGAACGCTT 
PND28-7         GAGAGGACGAGAGAGCCGAGGAGAGGAGAGGGAAGTTGGGCAAACAGCTAAAGAACGCTT 
                                                               ********* **  
 
NM_000949       CTATTCATGGAGGCGAACACTGAGGATGCTTTCCACATGAACCCTGAAGTGAACTTCTGA 
NPND56          CTGTTCATGGAGGCAAATGCTAAGGATGCTTTCCAAGTGAACCCTGA-GTGAACCTCTGA 
PND56-5         CTGTTCATGGAGGCAAATGCTAAGGATGCTTTCCAAGTGAACCCTGA-GTGAACCTCTGA 
PND28-7         CTGTTCATGGAGGCAAATGCTAAGGATGCTTTCCAAGTGAACCCTGA-GTGAACCTCTGA 
                ** *********** **  ** *************  ********** ****** ***** 
 
NM_000949       TACATTTCCTGCAGCAAGAGAAGGCAGCCAACATGAAGGAAAATGTGGCATCTGCAACCG 
NPND56          TATATTTCCTGTGGAAAGAGGAAGGAGCCAACATGAAGGAAAATGCAGCATCCAGAGTGC 
PND56-5         TATATTTCCTGTGGAAAGAGGAAGGAGCCAACATGAAGGAAAATGCAGCATCCAGAGTGC 
PND28-7         TATATTTCCTGTGGAAAGAGGAAGGAGCCAACATGAAGGAAAATGCAGCATCCAGAGTGC 
                ** ********  * ***** * * ********************  *****   *     
 
NM_000949       TTTTCACTCTGCTACTTTTTCTCAACACCTGCCTTCTGAATGGACAGTTACCTCCTGGAA 
NPND56          TTTTCATTCTGCTACTTTTTCTCTTCGCCAGCCTTCTGAATGGACAGTCACCTCCTGAAA 
PND56-5         TTTTCATTCTGCTACTTTTTCTCTTCGCCAGCCTTCTGAATGGACAGTCACCTCCTGAAA 
PND28-7         TTTTCATTCTGCTACTTTTTCTCTTCGCCAGCCTTCTGAATGGACAGTCACCTCCTGAAA 
                ****** ****************  * ** ****************** ******** ** 
 
NM_000949       AACCTGAGATCTTTAAATGTCGTTCTCCCAATAAGGAAACATTCACCTGCTGGTGGAGGC 
NPND56          AACCCAAGCTTATTAAATGTCGGTCTCCTGGAAAGGAAACGTTCACCTGCTGGTGGGAGC 
PND56-5         AACCCAAGCTTATTAAATGTCGGTCTCCTGGAAAGGAAACGTTCACCTGCTGGTGGGAGC 
PND28-7         AACCCAAGCTTATTAAATGTCGGTCTCCTGGAAAGGAAACGTTCACCTGCTGGTGGGAGC 
                ****  ** *  ********** *****    ******** ***************  ** 
 
NM_000949       CTGGGACAGATGGAGGACTTCCTACCAATTATTCACTGACTTACCACAGGGAAGG 
NPND56          CCGGGGCAGATGGAGGACTTCCTACCAATTACACACTGACTTACCGCAAGGAAGG 
PND56-5         CCGGGGCAGATGAAGGACTTCCTACCAATTACACACTGACTTACCGCAAGGAAGG 
PND28-7         CCGGGGCAGATGGAGGACTTCCTACCAATTACACACTGACTTACCGCAAGGAAGG 
                * *** ****** ******************  ************ ** ****** 
 

FIG 6.7.  Sequence alignment of 5’-RACE products with human PRLR.  NM000949, human PRLR cDNA 
sequence; NPND56, nested PND56; PND56-5, primary product from PND56 template; and PND28-6, 
primary product from PND28 template.  Asterisks indicate nucleotides which are homologous among the 
four sequences. 
 

Overgo primers were designed against exon 2 and the proceeding 48nt using the 

5’-RACE clones as a template.  The radiolabeled probes synthesized from the overgo 

primers were able to bind to the 5’-RACE product on a Southern blot analysis 

demonstrating their ability to recognize the target sequences (Fig 6.8A).  Probes 

synthesized from the overgo primers were then used to screen an ovine genomic library.  

Two clones (3B and 14A) were purified to homogeneity were isolated using the exon 2 

probe; however, no clones were isolated using the probe designed against the 5’-47bp 



 

 

124

region.  These clones were analyzed by restriction digests and Southern blot analysis 

(Fig 6.8B and 6.8C).  Both clones were able to hybridize to the exon 2 probe and seemed 

to be duplicates.  To potentially isolate a full-length PRLR cDNA clone, the overgo 

probes were also used to screen the Day 14 ovine endometrial cDNA library; however, 

no positive plaques were recovered from this screen (data not shown). 

Discussion 

The present studies were unable to isolate the predicted non-coding exons of the 

ovine PRLR gene; however, this is the first time PRLR exon 2 has been described in the 

sheep.  Initially, the previously described ovine cDNA was used to screen an ovine 

genomic library.  Of the clones that were isolated, only one tested positive by Southern 

blot analysis.  Portions of the 16C clone were excised and further analyzed by 

sequencing.  The resulting sequence contained a region homologous to the human PRLR 

exon 3 (NM000949) (Fig 6.4).  Further analysis of the ovine PRLR cDNA (AF041257) 

revealed that it does not contain a 5’-untranslated region homologous to that found in 

other species.  Therefore, the probe derived from the ovine cDNA did not contain exons 

1 or 2, and the library was screened with a region homologous to exon 3.  A Day 14 

cDNA endometrial library was subsequently screened with the ovine PRLR probe and 

then a bovine probe that contained exons 3 through 10 to potentially isolate a full-length 

ovine cDNA; however, no positive clones were isolated.   The failure to isolate a 

positive clone from the cDNA library may be due to the relatively low amount of PRLR-

positive glandular epithelium as compared to total endometrial tissue in the Day 14 

pregnant ovine uterus [18].   
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A. 

 

FIG 6.8.  Southern blot analysis using radiolabeled overgo primers as probes.  A. Overgo probes were 
tested for their ability to hybridize to DNA.  The first two lanes λ-HindIII/EcoRV and λ-HindIII ladders, 
respectively, hybridized with radiolabeled λ-DNA.  The overgo probes were designed against the 48nt 
upstream of exon 2 and exon 2 in the 5’RACE products.  Both probes were tested for their ability to bind 
to the 16C clone and to the nested PND56 RACE product.  16C was digested with NotI, NotI+EcoRV, and 
EcoRV.  The 5’-RACE product was excised from pCRII using EcoRI.  B.  Clone 3B was purified to 
homogeneity from an EMBL3 λsheep genomic library using the exon 2 specific overgo probe and 
analyzed by Southern blot analysis.  Lanes 1 and 2 are λ-HindIII/EcoRV and λ-HindIII ladders, 
respectively, hybridized with radiolabeled λ-DNA.  The remaining lanes are the 3B clone digested with: 
lane 3, HindIII; lane 4, KpnI; lane 5, SacI, lane 6, BamHI; lane 7, EcoRI; lane 8, XhoI; lane 9, ApaI; lane 
10, BstXI; lane 11, SmaI; and lane 12, PstI.  The exon 2 specific overgo probe was radiolabeled and 
hybridized to the membrane which was subsequently washed under high stringency conditions.  C. Clone 
14A was purified to homogeneity from an EMBL3 λsheep genomic library using the exon 2 specific 
overgo probe and analyzed by Southern blot analysis.  Lanes 1 and 2 are λ-HindIII/EcoRV and λ-HindIII 
ladders, respectively, hybridized with radiolabeled λ-DNA.  The remaining lanes are the 3B clone digested 
with: lane 3, HindIII; lane 4, KpnI; lane 5, SacI, lane 6, BamHI; lane 7, EcoRI; lane 8, XhoI; lane 9, ApaI; 
lane 10, BstXI; lane 11, SmaI; lane 12, PstI; and lane 13 NcoI.  The exon 2 specific overgo probe was 
radiolabeled and hybridized to the membrane which was subsequently washed under high stringency 
conditions. 
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FIG 6.8 (Continued) 
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FIG 6.8 (Continued) 
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The complex nature of the 5’-region along with the total size of the PRLR genes 

described to date suggests that the ovine PRLR gene would be equally complex [145, 

150, 151, 154, 158, 159].  The mouse, rat and human PRLR genes range from 168 to 145 

kb in length and possess four to six first exons and promoters [145, 150, 151, 154, 158, 

159].  Only one of these first exons, E13, is conserved throughout the three species 

described to date [145, 152, 158].  The expression of E13 has been shown to controlled 

by the transcription factors C/EBPβ resulting in an ubiquitous pattern of expression 

[152, 159].  This first exon, along with a probable steroid responsive PRLR mRNA, 

should have been detectable by 5’-RACE as it was the method used to clone the PRLR 

gene in other species.  The 5’-RACE product did contain exon 2 and 3 as expected, but it 

only contained 48nt 5’ of exon 2.  Overgo probes were designed using the 5’-RACE 

products as a template and used to screen the ovine genomic and Day 14 pregnant cDNA 

libraries.  Two clones recovered with the exon 2 overgo probe from the genomic ovine 

library did not contain enough 5’ of exon 2 to include any exon 1.  Screening of the 

ovine cDNA library was expected to yield a full-length PRLR mRNA; however, the 

failure to isolate a positive clone from the cDNA library may be due to the low amount 

of glandular epithelium that expresses PRLR mRNA in the day 14 pregnant ovine 

endometrium [18].   

PRLR exon 2 is highly conserved across species.  This is again seen in the sheep 

as the ovine exon 2 has 82% homology to human exon 2.  Evaluation of the bovine 

genome and sequences not yet integrated has yielded several contigs that contain 

portions of the PRLR gene or the 5’-RACE products.  A contig of approximately 62kb 
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(NW_621253) was found to contain exons 3 through 10.  Unfortunately, no region 

homologous to exon 2 was found.  Several contigs that are not yet integrated into the 

bovine genome build were found to be homologous to exon 2.  One contig (ti# 

51287359) contained a region 95% homologous to the 47 nt 5’ region of the 5’-RACE 

clone.  This 970 nt contig was used to search human expressed sequence tags (ESTs).  

Two human ESTs were identified (AI971975, and AA398543).  These results suggest 

that as the bovine genome sequence is refined, it can be utilized to elucidate the structure 

of the ovine PRLR as many genes share a high degree of homology between the two 

species. 
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CHAPTER VII 

CONCLUSIONS 

Endometrial glands are essential for successful reproduction in all mammals 

studied to date.  However, little is known of the mechanisms that regulate their 

development.  Studies in other mammals have implicated E2-17β, ERα, PRL and PRLR 

as factors that mediate this critical developmental process.  The current studies indicate 

that estrogens are detrimental to the uterine adenogenesis, but ERα, PRL and PRLR, as 

well as uterine and ovarian factors, including follistatin, activins, and inhibin, are 

required for normal glandular development (Fig 7.1).   

Available evidence strongly supports the hypothesis that the functional capacity 

of the adult uterus is defined, to a significant extent, by developmental events associated 

with ‘programming’ of uterine tissues during prenatal and postnatal life [41, 70, 80, 81].  

In all studied mammals, endometrial gland morphogenesis is a uniquely or primarily 

postnatal event.  The timing of these developmental events varies among species and is 

subject to differences in uterine maturity at birth, e.g. gestation length, and perhaps the 

interval between birth and puberty [3].  For instance, postnatal development of the 

rodent uterus after birth begins with differentiation of the mesenchyme into endometrial 

stroma and myometrium, whereas the uterine mesenchyme in domestic animals and 

humans is already differentiated into endometrial stroma and myometrium at birth.  

Morphogenetic events common to postnatal development of uteri include: (1) 

organization and stratification of endometrial stroma; (2) differentiation and growth of 

the myometrium; and (3) coordinated development of the endometrial glands [3, 41, 79].  
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In humans, endometrial gland morphogenesis occurs with growth of the uterine lining 

during every menstrual cycle increasing the opportunities for aberrant development and 

alterations in uterine function.  Disruption of this critical developmental process could be 

detrimental to subsequent pregnancies as seen in other species. 
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FIG 7.1.  Working hypothesis of factors regulating uterine gland morphogenesis.  Factors that influence 
uterine gland development may be produced by the pituitary gland (PRL), the ovary (activins and 
follistatin), or in the uterus itself (activins, follistatin and IGF-II).  They are able to bind to their respective 
receptors (PRLR, ActRI, ActRII, and IGF-IR) in the luminal and glandular epithelia to regulate uterine 
adenogenesis.  Follistatin inhibits the activation of ActRI and ActRII by binding activins and blocking 
their ability to bind theie receptors.  Additionally, activated IGF-IR can activate ERα in a ligand-
independent manner to influence endometrial gland development.  Legend: PRL, prolactin; PRLR, 
prolactin receptor; ActRI, activin receptor-I; ActRII, activin receptor-II; IGF-II, insulin-like growth factor-
II; IGF-IR, insulin-like growth factor receptor-I; ERα, estrogen receptor-alpha. 
 

In the neonatal ewe, uterine development involves differentiation of the 

endometrial GE from the LE, specification of intercaruncular stroma, development of 
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endometrial folds and, to a lesser extent, growth of the aglandular caruncular areas and 

the myometrium [14, 15].  Endometrial adenogenesis in the ewe begins between PND 1 

and 7 when shallow epithelial invaginations appear along the LE in presumptive 

intercaruncular areas.  Between PND 7 and 14, the nascent GE buds proliferate into the 

stroma and form tubules or ducts that begin to coil and branch at the tips by PND 21.  

After PND 21, uterine adenogenesis primarily involves branching morphogenesis of 

tubular and coiled endometrial glands in the lower stroma (e.g. stratum spongiosum) 

adjacent to the inner circular layer of the myometrium.  By PND 56, uterine 

morphogenesis is essentially complete, as the aglandular caruncular and glandular 

intercaruncular endometrial areas appear histoarchitecturally similar to that of the adult 

uterus [14].  Final maturation and growth of the ovine uterus does not occur until 

puberty [16].    

Postnatal uterine development is accompanied by expression of ERα in both the 

nascent and developing GE and endometrial stroma in rodents, pigs, and sheep [14, 19-

23].  In the UGKO ewe, the absence of ERα in the epithelium on PND 28 as a result of 

progestin treatment suggested a similar requirement for epithelial ERα expression in 

sheep [11].  In the present study, treatment of neonatal ewes with EM-800, an antagonist 

of ERα and ERβ, did not affect the initial stage of gland genesis between birth and 

PND14 [Chapter III]; however, EM-800 retarded the coiling and branching of the 

endometrial glands between PND 14 and PND 56 and prevented the increase in the 

number of ductal gland invaginations during this time [Chapter III].  These results 

suggest that ERα plays a role in the branching and coiling morphogenesis, but not in the 
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initial stages of gland tubulogenesis.  Similarly, inhibition of ERα activation by ICI 

182,870 in neonatal rats during the normal period of gland development (PND 10 to 

PND 14) had no effect on endometrial adenogenesis [112].  This is in contrast to pigs in 

which ICI 182,870 inhibited early endometrial gland development on PND 7 and PND 

14 [24].  The activation of ERα appears to be ligand independent rather than ligand 

dependent as inhibition of estrogen synthesis with CGS 20267, an aromatase inhibitor, 

did not affect uterine gland morphogenesis [Chapter III].   Indeed, treatment of neonatal 

ewes with EV ablated adenogenesis and caused aberrant expression of growth factors, 

IGF-I and IGF-II [Chapter III], known to activate ERα in a ligand independent manner 

[171].   

The effects of EV in the present study were similar to those observed in rodents 

but opposite those reported for pigs.  The same dose of EV administered to gilts from 

birth to PND 6 or PND 13 increased uterine weight and induced precocious development 

of endometrial glands [24, 161].  In rats, administration of estrogens during glandular 

development induced a dose related delay in the onset of gland differentiation [84].  

Similarly, administration of tamoxifen to neonatal rats on PNDs 1-5 or PNDs 10-14 

elicited a dose related inhibition of uterine gland genesis [172].  EV treatment of 

neonatal ewes inhibited uterine adenogenesis and induced LE hypertrophy in the 

neonatal ewe [Chapter III] similar to results in mice and rats [112, 114].  This 

hypertrophic state of the LE may have prevented invagination of the GE physically, as a 

consequence of alterations in cell shape and associated changes in cell-cell, and cell-

extracellular matrix relationships that would otherwise support this process [177, 178].  
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The antiadenogenic effect of EV treatment may also have been due to changes in 

expression patterns of growth factors and binding proteins in the stroma as aberrant 

spatial and temporal patterns of expression of both IGF-I and IGF-II were seen in the EV 

treated uteri [Chapter III].  Exogenous estrogens have also been shown to suppress the 

expression of IGF binding protein-3 (IGFBP-3) in ovine stromal cells [232].  The ability 

of IGFBP-3 to interact with IGFs and cell membranes makes it a potent modulator of 

IGF action [233].  Interestingly, this binding protein is able to inhibit cell growth 

independent of the IGF receptors [234].  Therefore, the reduction in IGFBP-3 expression 

in the neonatal ewe may have contributed to the hypertrophic state of the LE in response 

to EV treatment.   

Similar results were seen when neonatal ewes were exposed to estradiol-benzoate 

(EB) during key developmental periods: PND 14-27 (period one) or PND 42-55 (period 

two) [232].  Low doses of EB (0 µg, 0.01 µg, and 0.1 µg) did not affect glandular 

development, but high doses (1 µg, and 10 µg) decreased the total number of glands 

present in a cross section as was seen in the present study [232].  The antiadenogenic 

effect of EB during these time periods was accompanied by a hypertrophic response and 

a reduction in ERα expression which was most pronounced in the GE [232].  

Furthermore, expression of growth factors and their receptors were altered [232].  

Collectively, these results support the hypothesis that neonatal exposure to estradiol 

inhibits normal endometrial gland development by inducing uterine hypertrophy and 

altering expression of many genes including ERα and growth factor networks which 

disrupts epithelial-mesenchymal interactions that regulate glandular development.  The 
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mechanisms of estradiol inhibition of uterine adenogenesis as well as the long term 

effects of neonatal exposure to estradiol on adult uterine function and reproductive 

performance need to be investigated.  Additionally, inhibition of ERα expression 

immediately after birth would elucidate the potential role of ERα in the budding of the 

GE from the LE, separating the receptor’s function from that of estradiol-17β. 

Studies of several species revealed that uterine development and endometrial 

adenogenesis can proceed normally in the absence of the ovary and, by default, ovarian 

steroids for varying periods of time during early postnatal life.  In the prepubertal ewe, 

the ovary contains growing and vesicular follicles at birth that decline to PND 14, 

increase and peak in number on PND 28, remain high from PND 42 to PND 56, and 

decline thereafter [26, 27].  These changes in ovarian follicles correlate with the 

ontogeny of endometrial gland development in the ewe lamb [14]; however, 

ovariectomy of the ewe at birth did not affect uterine wet weight [27] or the initial stages 

of endometrial gland tubulogenesis [28] on PND 14, but affected uterine growth after 

PND 14 [180].  Postnatal uterine growth and endometrial adenogenesis are ovary- and 

steroid-independent in rodents [30-32] and pigs [23].  In the neonatal gilt, ovariectomy at 

birth inhibits uterine growth after PND 56 but does not affect genesis of endometrial 

glands or related endometrial morphogenetic events before PND 120 [23].  The number 

of superficial ductal invaginations of the GE from the LE and the density of endometrial 

glands in the stratum compactum area of the stroma on PND 56 were not affected by 

ovariectomy on PND 7 [Chapter IV]; however, the total number of endometrial glands in 

the uterine wall and the density of the endometrial glands in the stratum spongiosum 
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area of the stroma were reduced in uteri from ovariectomized ewes [Chapter IV].  These 

results indicate that an ovarian-derived factor(s) regulates, in part, the coiling and 

branching morphogenetic stage of endometrial gland development between PND 14 and 

PND 56.  Collectively, available results indicate that the precise role of an ovarian 

factor(s) in uterine growth and endometrial adenogenesis is species-specific.  Results 

presented here indicate that postnatal uterine growth and endometrial adenogenesis are 

estrogen-independent from birth to PND 56, although coiling and branching 

morphogenesis after PND 14 is, in part, dependent on activated ERα [Chapter III].  

Additionally, circulating levels of estradiol as well as expression of ERα and PR were 

not different between ovariectomized and control ewes [Chapter IV].  Therefore, the 

effects of ovariectomy on uterine growth and endometrial adenogenesis cannot be 

attributed to alterations in either circulating estradiol and/or the uterine ERα system.   

The ovarian factor(s) that regulates uterine growth and endometrial gland 

development is not known, but it could be inhibin, follistatin, or activins.  Follistatin, 

activins, and inhibins regulate growth and differentiation in many branched 

epitheliomesenchymal organs via autocrine, paracrine, and perhaps, endocrine 

mechanisms [182-187, 201].  In general, exogenous activin inhibits gland development, 

whereas follistatin counteracts the inhibitory effects of activins by binding to the 

individual β subunits and preventing activin receptor (ActR) activation [182, 188, 189, 

191, 192, 201].  Inhibin α subunit, β subunit, and follistatin are expressed in the growing 

and antral follicles of the neonatal ovine ovary and uterus [181, 197, 198].  Available 

evidence supports the hypothesis that follistatin and activins from the ovary act on the 
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uterus to regulate, in part, coiling and branching morphogenetic development as well as 

overall uterine growth.  This hypothesis is supported by findings in the present study that 

the expression of specific components of the activin-follistatin system in the neonatal 

ovine uterus was affected by ovariectomy and could be correlated with reduced 

endometrial gland development [Chapter IV].  Indeed, marked reduction in expression of 

follistatin, βA subunit, ActRIA, and ActRII genes and an increase in βB subunit 

expression were observed in the uterus of ovariectomized ewes [Chapter IV].  It is 

tempting to speculate that the coordinate activities of the activin-follistatin system in the 

ovary and uterus may be important in prolific breeds of ewes that possess an intrinsically 

high ovulation rate as well as an enhanced uterine capacity to maintain large litters 

[207].  Future experiments should be directed toward understanding the mechanistic 

aspects of the novel finding that an ovarian endocrine factor includes a member of the 

activin-follistatin system that may act in concert with the autocrine-paracrine effects of 

the uterine activin-follistatin system to regulate coiling and branching morphogenesis of 

the endometrial glands during postnatal development of the ovine uterus. 

Previous results suggest that PRL and PRLR may also play roles in endometrial 

adenogenesis in the neonatal ovine uterus [14].  Data presented here as well as previous 

data showed circulating levels of PRL are high on PND 1, peak on PND 14, and decline 

slightly to PND 56 [14].  These temporal changes in circulating levels of PRL parallel 

the ontogeny of endometrial glands in the developing intercaruncular endometrium of 

the uterine wall [14].  During this time, expression of short and long forms of the PRLR 

is restricted to the nascent endometrial glands [14].  Expression of PRLR is also 
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restricted to the GE in the adult ovine uterus [18].  Furthermore, intrauterine 

administration of placental lactogen, a PRL-like hormone that signals through PRLR 

[142], stimulates proliferation of endometrial glands in the adult ewe and, in particular, 

the coiled and branched glands in the stratum spongiosum [67].  Results presented here 

support the hypothesis that PRL acts directly on the endometrial GE that express the 

PRLR and regulates coiling and branching morphogenesis during postnatal development 

of the ovine uterus.  Treatment of the neonatal lamb with bromocryptine induced 

hypoprolactinemia resulting in decreased endometrial gland number and density on PND 

56 [Chapter V].  Uteri of bromocryptine treated ewes contained lower numbers of 

superficial ductal gland invaginations as well as coiled and branched endometrial glands 

in the endometrial stratum spongiosum near the myometrium [Chapter V].  Conversely, 

hyperprolactinemia induced by treatment with roPRL from birth increased endometrial 

gland number on PND 14 and density in the stratum spongiosum, but not the stratum 

compactum, in ewes on PND 56 [Chapter V].  Interestingly, after the budded glands 

elongate to a more tubular form and begin coiling and branching morphogenesis by PND 

21 [14], the ductal GE loses PRLR expression, thereby preventing it from responding to 

PRL.  These temporal and spatial changes in PRLR mRNA expression are likely to be 

responsible for the differential effects of hyperprolactinemia on endometrial 

adenogenesis on PND 14 as compared with PND 56. The increase in endometrial and 

myometrial thickness by roPRL treatment on PND56 may be due to epithelial-

mesenchymal interactions in the developing uterus.  Endometrial epithelium has been 

shown to affect myometrial organization and growth in the rodent uterus [215].  
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Similarly, ablating uterine gland development by neonatal treatment with either 

progestins or EV reduces endometrial and myometrial thickness [11].  These results 

suggest that the development of the endometrial glands is associated with endometrial 

and myometrial growth during as a result of epithelial-mesenchymal interactions.  

Additionally, PRL may be used to enhance uterine development in the neonatal ewe 

resulting in an increase in uterine capacity in the adult.  To test this hypothesis, the 

effects of roPRL treatment on adult reproductive performance should be determined. 

Biological responses to activation of PRLR by PRL include activation of JAK2 

and STATs 1, 3, and 5 [216, 217].  Activation of the JAK2/STAT 5 cascade by PRL 

probably represents the hallmark of PRL signalling.  PRL and STAT 5a are required for 

alveolar development and functional development of the mammary gland epithelium 

during pregnancy [219, 221, 222].  The high levels of expression of STATs 1 and 5 in 

the GE along with the induction of phosphorylation of these transcription factors in 

response to PRL treatment suggest PRL signalling via the PRLR and STAT 5 may be 

critical for endometrial adenogenesis in the uterus during the neonatal period [Chapter 

V].  Three members of the MAPK family were also phosphorylated in endometrial 

explants after treatment with PRL: ERK 1, ERK2, and JNK/SAPK [Chapter V].  

Recently, PRL signalling in the human endometrial glands was shown to involve 

activation of ERK 1 and ERK 2 [229].  High levels of phosphorylated ERK 1 and ERK 2 

have also been described in the nascent and proliferating endometrial glands in the 

neonatal ovine uterus [15].  In bovine mammary gland epithelial cells, PRL stimulation 

of cell proliferation involves activation of JNK/SAPK and an increase in c-Jun content 
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of the activator protein 1 transcriptional complex that leads to increased gene 

transactivation [228].  Collectively, these results indicate that PRL influences 

endometrial gland morphogenesis by signalling through several pathways including 

STATs 1 and 5, ERK 1 and 2 MAPKs, and JNK/SAPK. 

The GE specific nature of PRLR expression in the uterus suggests that 

transcription of the PRLR gene is activated when the GE differentiates and buds from 

the LE.  Therefore, transcription factors that regulate PRLR expression may be key 

regulators of GE differentiation.  To date the promoter region of ovine PRLR has not 

been cloned and characterized.  The PRLR gene possesses a complex 5’ genomic 

structure made up of multiple promoters and non-coding first exons.  These alternative 

first exons are differentially expressed depending on tissue type and developmental stage 

[149-153].  Exons 2 and 3 are highly homologous among species.  The mouse, rat, and 

human PRLR genes range from 168 to 145 kb in length and possess four to six first 

exons and promoters [145, 150, 151, 154, 158, 159].  The single clone that was isolated 

from screening an genomic ovine library using an ovine PRLR cDNA (AF041257) as a 

probe contained a region homologous to human exon 3 but not exons 1 or 2 [Chapter 

VI].  Further analysis of the ovine PRLR cDNA used for a probe revealed that it did not 

contain a 5’-untranslated region homologous to that found in other species.  5’-RACE 

products produced from PND 28 and PND 56 uterus were 99% homologous to each 

other and contain regions homologous to human exon 2 [Chapter VI].  This is the first 

time PRLR exon 2 has been described in the sheep.  A conserved exon 1, E13, and a 

probable steroid responsive PRLR should be detectable by 5’-RACE as it was the 
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method used to clone the PRLR gene in other species; however, no identifiable exon 1 

was isolated [Chapter VI].  Overgo probes designed against exon 2 and a 48 nt long 

region 5’ of exon 2 did not allow isolation of PRLR containing clones from either the 

genomic library or a cDNA library derived from Day 14 pregnant ovine endometrium 

[Chapter VI].  Analysis of the bovine genome and sequences that have not been yet been 

integrated revealed several contigs that contain regions of the PRLR including contigs 

that contain exon 2 or the 47 nt region of the 5’-RACE clones.  These results indicate 

that as the bovine genome sequence is refined, it can be utilized to elucidate the structure 

of the ovine PRLR as many genes share a high degree of homology between the sheep 

and cattle. 

The process of uterine morphogenesis is governed by a variety of hormonal, 

cellular, and molecular mechanisms, many of which remain to be defined.  Due to their 

critical role in reproduction, it is important to understand the mechanisms regulating 

endometrial gland development.  In humans, endometrial gland morphogenesis occurs 

with every menstrual cycle, which increases the opportunity for aberrant formation and 

alteration in function.  The hormonal regimens used in assisted reproductive 

technologies may compromise the ability of the uterus to support a subsequent 

pregnancy.  Additionally, enhancing endometrial adenogenesis in livestock species may 

result in better reproductive performance.  Results presented here have established roles 

for ERα, PRL, PRLR, and ovarian factors in regulation of endometrial adenogenesis.  

Further, results of the present studies suggested these ovarian factors include activins, 

inhibins, and follistatin (Fig 7.1).  Future studies should focus on elucidating the 
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mechanisms by which these factors, and others yet to be described act in an integrated 

manner to influence endometrial gland development.  Experiments are being undertaken 

to disrupt the expression or block mRNA translation of specific genes to determine their 

effects in the neonatal ovine uterine gland development. 
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