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ABSTRACT: Several experimental studies indicated that large
conformational changes, including partial domain unfolding, have a
role in the functional mechanisms of the basic helix loop helix Per/
ARNT/SIM (bHLH-PAS) transcription factors. Recently, single-
molecule atomic force microscopy (AFM) revealed two distinct
pathways for the mechanical unfolding of the ARNT PAS-B. In this
work we used steered molecular dynamics simulations to gain new
insights into this process at an atomistic level. To reconstruct and
classify pathways sampled in multiple simulations, we designed an
original approach based on the use of self-organizing maps (SOMs).
This led us to identify two types of unfolding pathways for the
ARNT PAS-B, which are in good agreement with the AFM findings.
Analysis of average forces mapped on the SOM revealed a stable conformation of the PAS-B along one pathway, which represents a
possible structural model for the intermediate state detected by AFM. The approach here proposed will facilitate the study of other
signal transmission mechanisms involving the folding/unfolding of PAS domains.

■ INTRODUCTION
An increasing number of proteins have been reported showing
the ability to switch between different fold arrangements.
During their life cycle, these proteins can undergo large
conformational changes from an ordered state to an alternative
one involving secondary structure shifts or exposure of new
surfaces. This behavior is often associated with an expanded
functional role of the protein that, thanks to the structural
changes, can for example modify the interactions with
partners.1,2

Experimental evidence has suggested that considerable
conformational changes, and perhaps even a switch between
folded and partially unfolded states of a domain, have a role in
the functional mechanisms of the basic helix loop helix Per/
ARNT/SIM (bHLH-PAS) family of transcription factors.
Members of the bHLH-PAS family have a broad range of
functions in developmental and physiological processes, and
some are involved in cancer.3 The bHLH-PAS proteins
generally act as heterodimers that consist of a signal-regulated
subunit (for example, the aryl hydrocarbon receptor (AhR),
involved in toxin metabolism, and the hypoxia-inducible factor-
α (HIFα) proteins contributing to maintenance of cellular
oxygen homeostasis) and a more ubiquitous subunit (for
example, the aryl hydrocarbon receptor nuclear translocator
(ARNT), which participates in both AhR and HIFα
mechanisms by dimerizing with them). These proteins exhibit
a relatively well-conserved N-terminal domain structure,
including the bHLH and the PAS regions. The latter contains
two structurally conserved domains: PAS-A, critical for

dimerization selectivity, and PAS-B, responsible for sensing
diverse exogenous and endogenous signals.
The PAS domain is present in several proteins also outside

the bHLH-PAS family and exhibits a high level of plasticity,
fundamental for its role of sensor for different signals, including
oxygen, ligands, light, and redox potential.4 A typical PAS fold
is composed by a central five-stranded antiparallel β-sheet, a
long α-helix, and some shorter helices, which surround a
buried internal cavity5 (Figure 1). An additional N-terminal
helix (A′α) was observed in some PAS domains.
In most PAS domains, signals apparently propagate to and

through the central β-sheet and ultimately toward spatially
remote effector domains, where they modulate biological
activity. Signal reception and propagation often involve
significant fold changes. In the photoactive yellow protein
(PYP), a partial unfolding of the PAS domain was observed
upon blue-light absorption.6,7 This perturbation causes the
dissociation of the A′α helix from the β-sheet surface followed
by a conformational change of A′α.8 A similar mechanism was
also reported for the PAS domains of N. crassa Vivid9 and
LOV2.10 In the sensor histidine kinase (CitA), ligand binding
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was found to induce a considerable contraction of the PAS
domain, followed by partial unfolding of an N-terminal helix.11

These similarities suggest that a common signal transduction
mechanism involving changes in the β-sheet is conserved
among the PAS proteins, despite the wide range of stimuli they
sense. The malleability of the β-sheet of the PAS domains is
further confirmed by the β-strand slippage observed for PYP in
AFM-based pulling experiments.6

Evidence of the flexibility of PAS domains has also been
found within the bHLH-PAS family, and substantial conforma-
tional changes have been suggested to have a role in the
function of proteins from this family. Despite the buried nature
of the HIF-2α PAS-B cavity, ligand binding was found to occur
with rapid association rates, typical of solvent accessible ligand
binding sites rather than internal cavities.12 The comparable
rate constants for compounds with different chemical proper-
ties and size suggested a common energetic barrier to
overcome, which could be associated with the HIF2α PAS-B
conversion from a “closed” structure to a binding-competent
“open” state.12 Similarly, the AhR PAS-B was suggested to have
a more open cavity when associated with the HSP90
chaperone protein and undergoing a substantial conforma-
tional change upon ligand binding and HSP90 displacement.13

The hypothesis that the open conformation of the AhR PAS-B
displays partially unfolded Aβ and Bβ strands was supported by
mutagenesis and coimmunoprecipitation experiments showing
that a set of residues in these sheets are involved in both
HSP90 association and ligand binding (suggesting that they are
exposed in the open state and buried into the binding cavity in
the closed one).14 In addition, other HSP90 clients have been
shown to undergo an unfolding of two beta strands to allow
chaperone recognition.15 Particularly relevant in this frame-
work is the experimental evidence regarding ARNT. Several
studies evidenced the remarkable flexibility of the ARNT PAS-
B β-sheet. In a recent study, a single-site mutant in this β-sheet
was shown to populate an alternative conformation with a
three-residue register shift in the Iβ,16 and it was observed that
the interconversion between the two states proceeds through a
chiefly unfolded transition state.17 Moreover, single-molecule
atomic force microscopy (AFM), used to investigate the
mechanical unfolding of the ARNT PAS-B domain, revealed
two distinct pathways via a kinetic partitioning mechanism.18 A

simple two-state pathway was observed for the majority of the
unfolding events (67%), whereas in the other 33% of cases a
well-defined intermediate state was found in which the C-
terminal β-hairpin is detached from the domain. It was
suggested that the observed low mechanical stability of the
PAS-B domain may help PAS proteins to recruit protein
partners and lower the free-energy barrier for the formation of
the binding interface.
In this work we use steered molecular dynamics (SMD)

simulations to investigate the unfolding process of the ARNT
PAS-B domain, with the aim of gaining insight into the
involvement of the PAS-domain unfolding in the signal
transmission mechanisms of the bHLH-PAS family. This
system represents an ideal starting point for our studies given
the availability of AFM experiments18 for a direct validation of
computational results.
SMD applies external forces to manipulate biomolecules in

order to probe mechanical functions, as well as to accelerate
processes that are otherwise too slow to simulate. This method
complements single-molecule AFM experiments and provides
invaluable insights into mechanical unfolding processes at an
atomistic level.19−22 Multiple SMD replicas can be run to
sample different unfolding events.23−25 The analysis of the
resulting trajectories may lead to the discovery of different
pathways for the process under study,26 but the interpretation
of the results is not trivial. Often visual inspection of the
trajectories may highlight the conformational differences in the
sampled states, but there are no standard protocols to detect
and classify multiple pathways. In this work, we developed an
original approach based on the use of a self-organizing map27

(SOM) to identify different pathways in the unfolding of the
ARNT PAS-B. A SOM is considered a type of artificial neural
network, with an explicit visual representation of data on a
two-dimensional map, which has been widely used for the
analysis of different types of data,28−30 including protein
conformations extracted from MD simulations.27,31 Here, we
applied a SOM-based approach not only to detect the different
conformational states observed during the unfolding but also
to reconstruct and classify the unfolding pathways sampled by
the SMD replicas. Using this strategy, we were able to identify
two different types of unfolding pathways for the ARNT PAS-
B domain, which are in good agreement with the available
AFM data, as well as to indicate a possible atomistic model for
the intermediate state revealed by the AFM experiments in one
of the pathways.

■ METHODS
Steered MD Simulations. The structure of the ARNT

PAS-B domain was downloaded from the Protein Data Bank32

(PDBID: 1X0O33). The structure was preprocessed for
simulation with the Schrodinger’s Protein Preparation Wizard
tool,34 and residue protonation states were determined by
PROPKA35 at pH = 7.0. The system was then solvated in a
triclinic box with TIP3P water molecules (size of the box: 45 ×
8 × 8 nm). The size of the box was set to accommodate the
extended ARNT PAS-B polypeptide (40 nm long) on the x-
dimension. No counterions were added since the system was
already neutral. Simulations were run using GROMACS
2018.336 with the Amber ff14SB force field.37 A multistage
equilibration protocol, as described in ref 38, was applied to
remove unfavorable contacts and provide a reliable starting
point for the SMD runs: the system was first subjected to 2000
steps of steepest descent energy minimization, with positional

Figure 1. Typical PAS-domain fold is here represented using the
three-dimensional structure of the ARNT PAS-B domain (PDBID:
1X0O). Secondary structure elements are a five-stranded antiparallel
β-sheet (the N-terminal Aβ, Bβ and the C-terminal Gβ, Hβ, and Iβ)
flanked by a long α-helix (Fα, called “helical-connector”) and several
shorter α-helices (Cα, Dα, and Eα, often called “helical bundle”).
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restraints (2000 kJ mol−1 nm−2) on all resolved atoms.
Subsequently a 200 ps NVT MD simulation was used to heat
the system from 0 to 100 K with restraints lowered to 400 kJ
mol−1 nm−2, and then the system was heated to 300 K in 400
ps during a NPT simulation with further lowered restraint
(200 kJ mol−1 nm−2). Finally, the system was equilibrated
during an NPT simulation for 2 ns with backbone restraints
lowered to 50 kJ mol−1 nm−2. In the NVT simulations the
temperature was controlled by the Berendsen thermostat39

with a coupling constant of 0.2 ps, while in the NPT
simulations the V-rescale thermostat40 (coupling constant of
0.1 ps) was used and the pressure was set to 1 bar with the
Parrinello−Rahman barostat41 (coupling constant of 2 ps). A
time step of 2.0 fs was used, together with the LINCS42

algorithm, to constrain all the bonds. The particle mesh Ewald
method43 was used to treat the long-range electrostatic
interactions with the cutoff distance set at 12 Å. Short-range
repulsive and attractive dispersion interactions were simulta-
neously described by a Lennard-Jones potential, with a cutoff
at 12 Å, applying long-range dispersion corrections for energy
and pressure.44

With structures properly equilibrated, SMD simulations22

were performed by harmonically restraining the x-component
of the distance between the center of mass of the first and last
four residues of the protein backbone. A force constant of 500
kJ mol−1 nm−2 was used, and the equilibrium value of the
distance was changed from the initial to the final value at a
constant velocity (0.2 nm ns−1). The system was simulated for
200 ns to steer the protein to a fully extended conformation. In
order to assess the reproducibility of the unfolding pathways,
the SMD simulations were run in 50 replicas, for a total
simulation time of 10 μs. The force applied to the harmonic
spring was monitored during each replica. To test the
dependence of the results from the pulling speed, 10 replicas
of 1200 ns at a lower velocity (0.02 nm ns−1) were also
performed, for a total simulation time of 12 μs.
H-bonds were computed using Chimera-X45 software with

default values for geometrical parameters.
Per-residue nonbonded energy decomposition analysis was

performed using the gmx energy command. Pairwise non-
bonded contributions of each residue were then summed up to
obtain the cumulative interaction energy of each residue with
the remaining ones.
Self-Organizing Maps. A SOM46,47 is considered an

unsupervised artificial neural network where neurons are
arranged in a grid map enforcing topological relationships.
Multidimensional input data can be effectively visualized in a
low-dimensional representation using a SOM. Each neuron is a
feature vector with the same dimension of the input data
vectors. Training of the map is an iterative process in which the
following are true:

1. The map is initialized with random values for the neuron
vectors;

2. Input data vectors are assigned to the neuron with closer
feature values, also called the best matching unit
(BMU);

3. The feature values of the winning neuron and its
neighbors are adjusted toward the values in the input
vector. The magnitude of the modification decreases
with the distance from the BMU and along the training.

The resulting SOM can be interpreted as an approximation
of the data space where similar samples are mapped close

together. In this work we used an 8 × 8 sheet-shaped SOM
(without periodicity across the boundaries) with hexagonal
lattice shape. The input features to train the SOM were
selected from the set of pairwise distances among Cβ atoms.
Only distances between Cβ atoms closer than 1.0 nm in the
native folded conformation were included. This choice was
motivated by the evidence that the Cβ contact matrix with 1.0
nm cutoff is within the optimal range for accurate
reconstruction of a protein conformation from a set of
pairwise atomic distances.48 In the native structure of ARNT
there are 839 Cβ distances below 1.0 nm. This set of distances
was used to build the data set of SMD conformations for SOM
training. Input conformations for the SOM training were taken
every 100 ps from the SMD simulations at 0.2 nm ns−1 pulling
speed. In a second step, the neurons are further grouped in a
small, but representative, number of clusters by agglomerative
hierarchical clustering using Euclidean distance and complete
linkage. The optimal number of clusters, N, was selected based
on the Silhouette profiles. In the present case, selecting the
clustering with N = 8 produced less neurons with negative
silhouette scores compared to other clustering methods with
comparable average silhouette width. All the analyses were
performed in the R statistical environment49 using the kohonen
package.50

Mapping of Pathways on the SOM. For each SMD
simulation, the unfolding pathway was mapped on the SOM by
monitoring the BMU of each frame of the simulation and
tracking the route covered on the map. The resulting SOM
pathways were clustered by agglomerative hierarchical
clustering using average linkage. The distance between the
SOM pathway of simulation A and that of simulation B is
defined as

d A B( , )
i

n

i i
1

∑
=

where n is the number of frames of each simulation and d(Ai,
Bi) is the distance between the BMUs of frame i in the two
simulations. The distance between two BMUs is defined as the
mean square deviation of the two BMU vectors.
SOM can also provide a higher-level representation of the

dynamics in the form of a state graph, where important steps in
the process are represented by discrete nodes connected
according to transition probabilities. To build this graph, an
approximate transition matrix between neurons was estimated
from the counts of transitions between the starting neuron A
and the ending neuron B in all the simulations and repeated for
all the possible combinations of A and B. The matrix was then
transformed into a row stochastic matrix (dividing each
element by the sum of the row). A graph was then built
with nodes represented by neurons and edges set to the
negative logarithm of the transition probability between the
corresponding neurons. The distance between two nodes in
the graph was calculated for their shortest path. The distance
value was calculated as the negative logarithm of the product of
the pairwise transition probabilities between neurons along the
path.
Simulations run at 0.02 nm ns−1 pulling speed were retraced

on the SOM trained with conformations at 0.2 nm ns−1 pulling
speed, where each frame of the simulations was assigned to the
closest neuron. A single SOM was used to analyze both sets of
trajectories for an easier comparison and to avoid changes in
map topology. We verified that the SOM derived from the
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highest speed simulations is consistent with the low-speed ones
by calculating the distances between the two sets of frames and
the closest neurons (Figure S1). Comparable distance
distributions were observed for the two sets of simulations,
indicating that the low-speed frames are well represented by
the SOM even if they were not used for training. All the
analyses were performed in the R statistical environment49

using the igraph package.51

■ RESULTS
Mapping Conformations Sampled by Steered MD on

SOM. To study the unfolding pathway of ARNT PAS-B under
mechanical forces, we performed multiple replicas of SMD
simulations using the backbone atoms of the last four residues
at the N-terminal and C-terminal ends as pulling groups (see
Methods). The simulations were run until the protein was
extended at 40 nm, consistent with the extension of the fully
elongated polypeptide.18

To reconstruct the possible paths of unfolding sampled by
different replicas, we used a self-organizing map (SOM), a
specific architecture of artificial neural networks, consisting of a
grid of neurons (hexagons of the map). The map was trained
using protein conformations from the steered MD simulations.
After training, each input conformation is assigned to a single
neuron so that similar conformations are represented by the
same neuron, and similar neurons are close to each other. In
this work, a square 8 × 8 SOM without periodic boundaries
conditions was used with the distances among Cβ atoms as
neuron features (see Methods). Different SOM parameters
(SOM shape and neuron features) were tested to obtain an
efficient grouping of the protein conformations on the map
(data not shown). Figure 2 represents the three-dimensional
structures of the centrotypes of each neuron (conformation
closest to the neuron vector).
In the trained map, the completely folded and completely

unfolded conformations (first and last frames of the SMD
simulations) are at the top left and bottom right corners of the
map, respectively. Intermediate conformations along the
unfolding path populate the other regions of the map.

To evaluate the quality of the method in separating different
conformations, we compared the distance root mean square
deviation (dRMSD) values calculated between structures from
the same neuron (blue in Figure 3) with the values calculated
between structures belonging to neighboring neurons (red).
The intraneuron differences are significantly smaller, indicating
an effective segregation of similar conformations in each
neuron.
To obtain a more “coarse-grained” view of the process and

highlight putative macrostates sampled during the unfolding,
the neurons were further grouped by agglomerative hierarch-
ical clustering (clusters A−H in Figure 4). An optimal number
of eight clusters was selected based on the analysis of the
silhouette profiles (Figure S3) and the visual inspection of the
resulting clusters.
A diagram of the secondary structure composition of frames

within each neuron is reported in Figure S4. The average
composition in secondary structure and the radius of gyration
for each cluster are reported in Table S1.
In addition to canonical descriptors of secondary structures,

annotations using structural alphabets are particularly effective
in capturing local conformations and their dynamical
changes.52 Local structures from the ensembles in each neuron
were encoded with a structural alphabet (SA),53 and a per-
fragment profile of divergence from the distribution of local
conformations in the folded state was calculated (see the
Supporting Information). These profiles were mapped on each
of the associated SOM neurons (Figure S5). The analysis
highlighted local patterns of unfolding in intermediate
neurons; in particular, clusters B and E show changes in
conformational dynamics mainly at the N-terminal fragments
of the protein, and cluster C does so more frequently at the C-
terminal region of the protein.

SOM Highlights Different Unfolding Pathways. In
order to analyze the unfolding pathways followed during the
simulations, we mapped each trajectory onto the SOM by
tracking the position of each frame on the map. All simulations
started from the upper left corner and ended in the lower right
corner, but we classified the simulations into two distinct types
of pathways: pathway 1, visiting neurons in the lower left
corner of the map (left in Figure 5), and pathway 2, going
through neurons in the top right corner of the map (right in
Figure 5).
The mapping of each trajectory replica is shown in Figures

S6 and S7. Pathway 2 was the most probable and was sampled
in 74% of the replicas.
The above classification was assessed performing hierarch-

ical clustering of the simulation pathways (using average
linkage, as detailed in Methods) and analyzing the resulting
dendrogram (Figure S8). This diagram mostly agrees with our
classification except for the identification of two additional
minor pathways (pathway 1b for replicas 1, 26, 42 and pathway
2b for replicas 8, 35, 39) that are grouped in different small
branches of the dendrogram. We grouped replicas of pathway
1b to pathway 1, and replicas of pathway 2b to pathway 2, for
their similarity to the characteristics of each pathway in the first
part of the unfolding process.
Simulations following either pathway 1 or 2 visit most of the

eight clusters on the SOM. Two clusters remain exclusive and
differentiate the type of path: cluster B was only sampled by
simulations following pathway 2, while cluster C was only
sampled by simulations following pathway 1. Interestingly also
cluster E was only sampled by replicas 8, 35, and 39 and cluster

Figure 2. 3D structures of the neuron centrotypes represented on the
SOM. Colors assigned to neurons refer to cluster analysis that is
treated later in the text.
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G by replicas 1, 26, and 42. The transition of these replicas
through the E or G clusters explains their assignment to
separate branches of the dendrogram in the hierarchical
clustering of the simulation pathways.
From pairwise transitions between neurons, we recon-

structed an approximate transition matrix. This matrix was
then visualized as a graph in which nodes represent the SOM
neurons, and the edges are weighted by the negative logarithm
of the transition probability between pairs of neurons (Figure
6). The sum of edge weights along a pathway is proportional to
the logarithm of the combined probability along that pathway

(see the Methods section). The two unfolding pathways are
clearly visible in this representation.
Analysis of the structural changes for the different pathways

indicates that simulations following pathway 1 start with the
detachment of the N-terminal region (Aβ, Bβ, and helical
bundle) from the rest of the protein (a in Figure 7). This
region, however, preserves its internal contacts and does not
completely unfold until the C-terminal Iβ is completely
unfolded (b). Then the simulations continue with the
unfolding of either the N-terminal region (most of pathway
1 replicas) or the C-terminal region (only in replicas 1, 26, and
42 that visit cluster F). Pathway 2 differs from pathway 1 in the
order of events leading to the Iβ unfolding: while in pathway 1
the N-terminal region detaches from the core of the protein
but remains “folded”, in pathway 2 the N-terminal region
completely unfolds (f in Figure 7) before the Iβ (g).
The different timing for the unfolding of Iβ is also evident

from the time evolution of protein backbone H-bonds: Figure
S9 reports the extension of the protein corresponding to the
last frame where each H-bond was detected in the different
replicas. In simulations following pathway 1, the H-bonds

Figure 3. Distribution of dRMSD values calculated between structures from the same neuron (blue) and between structures assigned to
neighboring neurons (red). The neurons numbering is shown in Figure S2.

Figure 4. Self-organizing map. Conformations sampled in the
different replicas are first assigned to different neurons (tiles of the
map), and then neurons are further grouped by hierarchical clustering
(colors of the tiles). See Methods for a detailed description.

Figure 5. Tracing of two replicas representative of pathways 1 and 2
on the SOM.

Figure 6. Graph representation of the transition matrix for the SMD
unfolding of the PAS-B domain. Nodes are colored according to the
cluster colors of Figure 2.
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between Hβ and Iβ (dark blue) break in the first part of the
simulation (before the extension of the protein reaches 10.5
nm), while H-bonds in the N-terminal part (Cα (dark green)
and bundle-Bβ (orange)) break at a later time. An opposite
behavior is observed in pathway 2 simulations, where the N-
terminal H-bonds break in the first part of the simulation and
the Hβ-Iβ ones break in the second part. This is consistent
with the AFM results that showed an intermediate with Iβ
unfolded before 10.5 nm in one-third of the experiments.18

To assess the presence of an unfolding barrier along one of
the two pathways, we mapped the SMD forces on the SOM by
calculating the average force over the frames belonging to each
neuron (Figure 8). Most of the frames belonging to cluster C
(sampled only by pathway 1 trajectories) are associated with
higher forces compared to the adjacent clusters, which could

be interpreted as the presence of a force peak consistent across
different replicas and suggests the presence of an intermediate
state just before those frames. This observation led us to
consider frames belonging to neuron 41 (within cluster C and
often visited before the high-force frames) as an intermediate
state along pathway 1. From the analysis of the accessible
pathways on the graph representation in Figure 6, it can be
noted that neuron 41 is often visited along pathway 1. The
only alternative route along pathway 1 is through neuron 49
that however shares fundamental features of neuron 41, like
the folding of the helical bundle. The frames in neuron 41 have
a length extension (9.4 ± 1.0 nm) consistent with that of the
intermediate observed in AFM experiments (10.5 nm). On the
contrary, frames belonging to cluster B (exclusive of pathway
2) are associated with low forces, without clear peaks along the
pathway, which do not suggest the presence of a stable
intermediate conformation along the path.
Conformations belonging to Neuron 41 are highly

structured, with the PAS domain split into two lobes: the N-
terminal lobe composed of Aβ, Bβ, Cα, and Dα and the C-
terminal lobe composed of Fα, Gβ, and Hβ (Figure 9).
Surprisingly, each lobe remained well folded preserving

almost all the backbone H-bonds. The N-terminal lobe, in
particular, showed great resistance to the unfolding process
despite the lower number of native hydrogen bond interactions
that stabilize its fold (10 compared to the 22 found in the C-
terminal β-strands). Indeed, even more surprising are the
simulations passing through cluster F, where the N-terminal
lobe remains folded until the complete unfolding of the C-
terminal lobe. With the aim of detecting the residues that
mostly stabilize the N-terminal lobe in this type of
conformation, we performed a per-residue energy decom-
position analysis on conformations belonging to neuron 41
(Figure S10). This analysis highlighted the residues that give
the most stable interactions: a group of hydrophobic residues
(F363, F373, Y386, L391) in the core of the protein and two
pairs of residues involved in electrostatic interactions (Glu362-
Arg379 and Glu390-Gln387). Together, the above interactions

Figure 7. Three-dimensional representation of unfolding pathways. Pathway 1 starts with the detachment of the N-terminal region (a), then
unfolding of Iβ (b), elongation of the N-terminal region (c), unfolding of Fα (d), and finally unfolding of Gβ and Hβ (e). Pathway 2 starts with
detachment and unfolding of the N-terminal region (f) before the unfolding of the Iβ (g). Then the pathway proceeds as in the case of pathway 1
(h and i). Secondary structure colors are consistent with Figure 1.

Figure 8. Average SMD forces mapped on the SOM. Neuron 41,
discussed in text, is labeled. Cluster boundaries are highlighted for
cluster B (green) and C (magenta).
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hinder the unfolding process of the N-terminal lobe (Figure 9,
right inset).
Retracing of Low Pulling Speed SMD on the Trained

SOM Confirmed the Two Pathways. To verify the effect of
the SMD pulling speed on the conformations sampled in the
unfolding process, 10 replicas at lower pulling speed were run
for 1200 ns, up to an extension of about 24 nm. No alternative
pathway was detected aside from the ones already recorded at
a faster pulling speed. While these simulations did not cover
the full unfolding for time limitations, they were long enough
to compare the initial stages of the unfolding in the two sets of
replicas.
The work performed in the 0−24 nm extension range (the

region sampled at both pulling speeds and where most of the
unfolding process takes place) is reported as a function of the
extension length in Figure 10.
Despite the difference in pulling speed, the total work in the

low-speed simulations (1000−1500 kJ/mol) falls within the
range of the higher speed ones (1000−2000 kJ/mol),

indicating that the pulling speed of 0.2 nm ns−1 is still able
to capture lower energy pathways.
Mapping the low-speed simulations over the SOM (Figure

11) shows that they are very similar to the initial part of the
higher speed simulations (Figures S4 and S5). In particular, six
low-speed simulations visit cluster C (pathway 1), while the
other 4 go through cluster B (pathway 2).
At a lower pulling speed we found a relative difference in the

frequency of sampling of the two pathways, but this is expected
due to the limited sample (10 replicas). These data provide
limited statistics. However, further exploration of the process at
low speed would require significant computational resources,
and it is beyond the scope of the present work.

■ DISCUSSION

In this work we present a novel computational approach to
analyze large conformational changes in SMD simulations

Figure 9. Three-dimensional representation of the putative intermediate state during pathway 1 unfolding. The two insets show the backbone
hydrogen bonds in the C-terminal lobe (left) and the group of residues that mostly contribute to stabilizing the N-terminal lobe (right). Secondary
structures are colored according to Figure 1.

Figure 10. Work profiles for replicas at higher (0.2 nm ns−1 on the left) and lower (0.02 nm ns−1 on the right) pulling speeds.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.0c01308
J. Chem. Theory Comput. 2021, 17, 2080−2089

2086

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c01308/suppl_file/ct0c01308_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01308?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01308?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01308?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01308?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01308?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01308?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01308?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01308?fig=fig10&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.0c01308?rel=cite-as&ref=PDF&jav=VoR


using SOMs. The approach is applied to the characterization of
the mechanical unfolding of the ARNT PAS-B domain.
In SMD, the use of multiple replicas is crucial to sample all

the possible unfolding routes. However, this usually leads to a
large amount of complex information, which is difficult to
translate into a unified and simple representation of the
process. A strategy that is often used to extract information
from MD trajectories is cluster analysis, which generates a
reduced set of nonredundant structures that are representative
of the main features of the simulations. A variety of clustering
approaches exist, many of which are optimized for the analysis
of conformational ensembles of proteins.27,54,55 Popular
choices include hierarchical clustering, linkage, and k-
means.54 Among the different solutions, artificial neural
networks have emerged as particularly successful for many
applications in bioinformatics, chemometrics, and computa-
tional chemistry.27 SOMs, in particular, are a powerful data-
analysis method that combines the advantages of an adaptive
learning process with the ability to produce a topological
mapping.
In this work, SOMs were used to obtain a geometrical

clustering of the ARNT PAS-B conformations. The use of
SOM bidimensional visualization facilitates the identification
of major conformational states and unfolding pathways.
The use of Cβ atom distances instead of Cartesian

coordinates as descriptors of protein conformations made the
calculation of the dissimilarity matrix superposition-independ-
ent. This removed the effect of structural alignment errors,
which can be particularly evident in unfolding simulations due
to the large conformational changes. The reference set for
superposition was limited to the Cβ distances within 1.0 nm in
the native conformation with the advantage that the similarity
measure was driven by detecting nativelike contacts and
interactions. Finally, the use of a 2D map without periodic
boundary conditions automatically segregated the end points
of the process (folded and unfolded states) in two corners of
the map. These features enhanced the readability of the map,
and the final SOM well represented the most important
conformational states.
Taking advantage of the topological mapping of the SOMs,

in this work we introduced for the first time the idea of tracing

the pathways followed by different SMD replicas on the map to
obtain an immediate visualization of differences among the
sampled pathways. This approach led us to identify two groups
of pathways that undergo unfolding of secondary structures in
a different order. Pathway 1 starts with a rigid detachment of
the N-terminal region, followed by unfolding of the Iβ and
subsequently of the N-terminal region, while in pathway 2 the
whole N-terminal region unfolds at first, followed by Iβ.
Pulling forces associated with each frame of the simulations

are informative of the process, but detecting patterns in the
force profiles from the different replicas is difficult due to the
different stages in which they reach peak forces. Through
analysis of average forces mapped on the SOM, we were able
to highlight conformations along pathway 1 with maximum
forces, while neurons along pathway 2 are all characterized by
lower forces. This suggested the presence of a stable
intermediate conformation along pathway 1.
Our findings are in agreement with previous AFM

experiments that indicate the existence of two unfolding
pathways, with one of them characterized by an intermediate
state at about 10.5 nm extension.18 Not only did we find a
probability distribution for the two pathways (24% pathway 1
vs 76% pathway 2) comparable to the experimental one (33%
pathway 1 vs 67% pathway 2), but also the intermediate state
identified on neuron 41 has the features highlighted by the
experiments, i.e., an extension of about 10 nm and an unfolded
Iβ region.18 The description of the intermediate state,
emerging from our analysis, complemented or added to the
experimental findings by offering a possible structural model.
It has been suggested that other proteins in the bHLH-PAS

family, acting as transcription factors in key developmental and
physiological processes, may exert their functions through
major conformational changes within their PAS domains.12,13

However, for these proteins no experimental data on the
unfolding process and no evidence on the structure of their
putative partially unfolded states have been obtained. The
approach proposed in this work for simulating the unfolding
processes of PAS domains and analyzing the metastable states
along the different pathways may contribute to shed light into
the role of PAS-domain folding/unfolding events in the signal
transmission mechanisms of the bHLH-PAS proteins.

Figure 11. Evolution of low pulling speed (0.02 nm ns−1) SMD simulations, plotted over the 0.2 nm ns−1 SOM. For each replica, frames were
assigned to the nearest neuron and represented as circles colored in a blue−white−red color scale according to their time in the simulation.
Consecutive frames are connected by solid lines.
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