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ABSTRACT 

 

The Dynamics, Interactions and Phenotypes Associated with the Three Members of the 

14-3-3 Family in Drosophila melanogaster. 

(August 2004) 

Summer Fontaine Acevedo, B.A., University of Northern Colorado 

Chair of Advisory Committee: Dr. Efthimios M. C. Skoulakis 

 

It has been proposed that the various 14-3-3 isotypes and isoforms present in all 

eukaryotes are largely functionally equivalent.  However, this is not consistent with the 

conservation of multiple isoforms and isotypes, especially in vertebrates with seven 14-

3-3 encoding genes and nine isotypes.   The hypothesis tested in this thesis is that both 

isoform-specific and overlapping functions are likely mediated through tissue specific 

expression, colocalization and dimerization of 14-3-3 proteins occur in vivo.  Drosophila 

melanogaster was selected because it offers a simple, but representative system to study 

these proteins functionally.  This thesis focuses primarily on D14-3-3ε, although the 

expression pattern and phenotypes associated with all three Drosophila 14-3-3s were 

determined.  I first determined the expression pattern of the three different 14-3-3 

isotypes (leoI, leoII and D14-3-3ε) and described developmental phenotypes associated 

with mutations in 14-3-3 isotypes in Drosophila.  I found that there is partial redundancy 

with respect to lethality.  Both LEO and D14-3-3ε appear required for normal germ-line 

and somatic gonadal development.  However, they do not appear to be functionally 



 iv

equivalent with respect to this phenotype since LEO is unable to compensate for the loss 

of D14-3-3ε.  I also determined that D14-3-3ε mutants have unique phenotypes 

including deficits in adult cross-vein formation and rapid habituation to olfactory and 

footshock stimuli.  To further understand the unique role that D14-3-3ε plays in the adult 

CNS, I mapped the areas in the brain involved in olfactory and footshock habituation.  I 

found that although the mushroom bodies (MBs) are necessary to inhibit premature 

habituation such as that exhibited by D14-3-3ε mutants, D14-3-3ε expression 

specifically in the MBs is not sufficient to rescue premature habituation.  Although the 

loss of either LEO or D14-3-3ε appears to cause a deficit in olfactory associative 

learning, premature habituation is the cause of the deficit seen in D14-3-3ε mutants.  As 

leo mutants do not exhibit a premature habituation phenotype, it appears that within the 

MBs LEO and D14-3-3ε are not functionally equivalent.  Therefore, the data supports 

the hypothesis that 14-3-3s have functional specificity and redundancy likely to 

represent use of homo and heterodimers in different processes within the tissues of an 

organism.   
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CHAPTER I 

INTRODUCTION 

 

14-3-3S  

 
What are 14-3-3’s? 

 The 14-3-3 proteins comprise a family of small acidic molecules with multiple 

and apparently diverse cellular functions (Skoulakis and Davis, 1998; Muslin and Xing, 

2000; Fu et al., 2000; van Hemert et al., 2001; Berg et al., 2003).  These small acidic 

proteins have molecular masses between 29-32 kD and isoelectric points of 4.5-5.  While 

attempting to identify proteins unique to the nervous system, seven isoforms were 

purified from bovine brains in 1967.  They were named, α, β, γ, δ, ε, ζ and η according 

to their order of elution from (DEAE)-cellulose chromatography columns and their 

position in starch electrophoresis gels (Moore and Perez, 1967).  The initial seven, along 

with two additional proteins, σ and τ(θ) make up the nine family members of 14-3-3s in 

vertebrates.  These nine proteins are products of seven distinct genes with the α and δ 

isoforms being the phosphorylated forms of β and ζ genes respectively (Aitken, 1995).  

Because of the complexity of the family, I will adapt the stringent nomenclature that 14-

3-3 proteins derived from different  genes  will  be  called isotypes  or  family  members.   

_________________ 

This dissertation follows the style and format of Neuron. 
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In contrast, 14-3-3 proteins derived from the same gene by either alternative splicing or 

post-translational modification will be called isoforms.   

 The animal family members are divided into two groups based on protein 

sequence similarity.  The typical group contains α/β, γ, η and ζ/δ.  There is 92-75% 

sequence identity among members of the typical group (Figure 1).  The ε, σ and 

τ(θ) species although most dissimilar with the typical isotypes are still 45-63% identical 

with each other (Figure 1) (Martin et al., 1993; Wang and Shakes, 1996).  According to 

protein alignments there are three conserved regions shared by these proteins.  Domain 

one is a possible protein kinase C phosophorylation site (62-69), domain two is a 

annexin-like sequence (139-154) and domain three occurs at the C-terminus affecting 

interactions with targets such as Raf and Bad (231-245) (Wang and Shakes, 1996; 

Aitkens et al., 2002).  In contrast, the residues involved in dimerization at the amino 

terminus show some variation, which could affect 14-3-3 functional specificity by 

selective dimerization.  Members of the 14-3-3 family have been found in all species 

examined including mammals, insects, nemotodes/frogs, plants and yeast (Aitken et al., 

1992, Wang and Shakes, 1996; Muslin and Xing, 2000; Fu et al., 2000; Takahashi, 2003; 

Berg et al., 2003).  Although every species has at least one isotype of 14-3-3, the number 

of isotypes/isoforms differs depending on the species.   For instance, there are nine in 

Homo sapiens (and all vertebrates for which data is available), three in Drosophila 

melanogaster, two in the nemotode Caenorhabditis elegans, fourteen in the plant 

Arabidopsis thaliana and two in the yeasts Schizosaccharomyces pombe and 

Saccharomyces cerevisiae (Wang and Shakes, 1996; Yaffe and Elia, 2001; Ferl et al., 
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Figure 1. Phylogenetic tree of human 14-3-3s 
 
Modified from Berg et al. 2003 with the length of the branches corresponds to the 
number of substitutions per site. 
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 2002; van Hermert et al., 2001; Aitken et al., 2002).  Sequence alignments between 

proteins from different species reveal that the ε protein in the animal lineage is more 

similar to yeast and plant isotypes (Wang and Shakes, 1996).  This suggests ε may in 

fact be the oldest isotype, perhaps even ancestral to all animal 14-3-3s.  Within the non-

epsilon isotypes, the Schizosaccharomyces pombe, Saccharomyces cerevisiae and 

Caenorhabditis elegans proteins are more similar to each other than they are to proteins 

from any other species (Wang and Shakes, 1996), suggesting that these may represent 

primitive animal isotypes.  The alignments also indicate that the non-epsilon 

Caenorhabditis elegans protein and one of the Drosophila melanogaster proteins 

(LEONARDO II) share particular amino acids in conserved domain that are divergent 

from the remaining isotypes suggesting that they potentially share a common ancestor in 

the early divergent β/ζ/τ group.  The distribution, structural characteristics and 

functional attributes of 14-3-3s will be presented below. 

 

14-3-3 Distribution 

14-3-3s were initially identified as highly abundant proteins in vertebrate brains 

(up to 1% of soluble brain proteins), but they are also expressed at lower levels in most 

vertebrate tissues examined (Boston et al., 1982; Ichimura et al., 1991; Aitken et al., 

1992; Aitken, 1995; Skoulakis and Davis, 1998; Takahashi, 2003; Berg et al., 2003).  In 

vertebrates, they are highly enriched in the cerebellum, certain cerebral areas including 

the hippocampus, olfactory bulb and motor neurons in the brainstem and spinal cord 

(Table 1) (Boston et al., 1982; Ichimura et al., 1991; Watanabe et al., 1991; Watanabe et 
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al., 1993; Watanabe et al., 1994; Rosenboom et al., 1994; Toyooka et al., 2002; van der 

Brug et al., 2002; Baxter et al., 2002).  With the exception of σ (epithelial cell specific) 

and τ(θ) (Τ−cell/Glia cell specific), all of the other vertebrate isotypes are primarily 

expressed in neurons (Skoulakis and Davis, 1998; Baxter et al., 2002).  The overlapping 

expression of these proteins appears tightly regulated and highly patterned during 

development of the vertebrate central nervous system (CNS) (Watanabe et al., 1993; 

Baxter et al., 2002).  Their abundance in the brain and recent evidence of up-regulation 

in various neurological disorders suggests they may play significant roles in neuronal 

functions.  Some isotypes and particular isoforms have also been detected at lower levels 

in the ovaries, testes, retina, kidneys, spleen, thyroid, liver and lungs (Rosenboom et al., 

1994; Aitken et al., 2002).  Their widespread expression in tissues other than the CNS 

suggests that they may be involved in fundamental cellular activities as well as neuronal 

processes.  In agreement with the importance of 14-3-3s for many fundamental cellular 

activities, the fourteen different isotypes in plants such as Arabidopsis thaliana are found 

in various tissues including stems, roots, leaves and flowers (Ferl et al., 2002).  This 

research is focused on the characterization of metazoan isotypes, specifically those 

found in Drosophila melanogaster.  Therefore, the focus of further discussion will be on 

animal isotypes with the exclusion of plants and yeast. 
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Table 1.  Expression of 14-3-3s in vertebrate CNS 

14-3-3 Isoform Expression in vertebrate CNS 
β/α cerebellum (Purkinje cells), hippocampus (pyramidal cells), 

cerebral cortex, olfactory bulb, thalamus, hypothalamus 
ζ/δ cerebellum (Purkinje cells), hippocampus, cerebral cortex, 

caudate-putamen, neocortex, thalamus, brain stem, medulla, 
amygdale 

η cerebellum (Purkinje cells), hippocampus (pyramidal cells), 
olfactory bulb, thalamus, cerebral cortex, brain stem, spinal 
cord, medulla, hypothalamus 

γ cerebellum (Purkinje cells), hippocampus, cerebral cortex, 
olfactory bulb, medulla, thalamus, hypothalamus 

τ(θ) nueropil/glia cells - Cerebral cortex and hippocampus 
ε cerebellum, cerebral cortex, hypothalamus, retina 
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14-3-3 Structure and motifs 

Conserved regions 

14-3-3s contain three invariant regions, conserved in all species examined.   The 

first region, residues 52-59 (Figure 2) at the amino-terminus contain a sequence highly 

homologous to a PKC phosphorylation site (pseudo substrate region) with the only 

difference seen in the τ and σ isotypes which lack it (Wang and Shakes, 1996; Aitken et 

al., 2002).  Although here is no evidence yet that these residues are phosphorylated by 

PKC, Jones et al. (1995) showed that PKC can phosphorylate serine-63 which is also 

present in all 14-3-3 sequences (Figure 2).  The second region is located towards the 

central portion of the protein and is homologous to a region in the calcium and 

phospholipid binding proteins annexin I and II at residues 139-154. 

Research suggests that 14-3-3s ε, γ, β, η and ζ can directly bind phospholipids in 

a calcium independent manner allowing for aggregation of phospholipid vesicles (Roth 

et al., 1994).  However, the actual function of this region (if any) remains unknown.  The 

third region also named the C-terminal loop is comprised of mostly acidic amino-acids at 

the carboxy-terminus from residues 231 to 245 (Aitken, 1992; Aitken et al., 2002).  

Deletions of this C-terminal loop from 14-3-3ζ increase the binding affinity with target 

binding proteins Raf and Bad for reasons that are not apparent (Troung et al., 2002).  

Substitutions to residue 232 alter the conformation of 14-3-3s resulting in inhibition of 

phosphopeptide binding (Obsilova et al., 2003).  Because this region is highly conserved 

among isotypes it suggests that all of them could potentially interact with similar target 

proteins.  This data suggest that the C-terminal loop is a regulator of  
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Figure 2. Vertebrate 14-3-3ζ phosphorylation sites and motifs 
 
The amino acids in red 6 to 22 and 59 to 90 represents the regions involved in 
dimerization.  The * above represents the amino acids involved in the binding site for 
phosphoserine target proteins.  The blue represents potential phosphorylation sites. 
 

      * 
MDKNELVQKA  KLAEQAERYD  DMAACMKSVT  EQGAELSNEE  RNLLSVAYKN   50 
     * 
VVGARRSSWR  VVSSIEQKTE  GAEKKQQMAR  EYREKIETEL  RDICNDVLSL  100 
     ** 
LEKFLIPNAS  QAESKVFYLK  MKGDYYRYLA  EVAAGDDKKG  IVDQSQQAYQ  150 
 
ESFEISKKEM  QPTHPIRLGL  ALNFSVFYYE  ILNSPEKACS  LAKTAFDEAI  200 
 
AELDTLSEES  YKDSTLIMQL  LRDNLTLWTS  DTQGDEAEAG  EGGEN       250 
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14-3-3/ligand interactions.  The combination of these regions is unique and characteristic 

of 14-3-3s among protein families. 

 

Dimerization 

The crystal structures of two typical mammalian isotypes, ζ and τ, demonstrate 

that these proteins are composed of nine anti-parallel α-helices that have the ability to 

form dimers (Liu et al., 1995; Xiao et al., 1995; Aitken, 1995; Fu et al., 2000; Yaffe and 

Elia, 2001; Obsil et al., 2001, Truong et al., 2002).  The interaction occurs between 

residues 5-21 in helix 1 from one monomer and 58-89 in helices 3/4 from another 

monomer (Figure 2) (Aitken et al., 2002).  Variations in these residues may affect the 

possible homo- and heterodimer combinations.  This is consistent with studies in PC-12 

cells that indicate that the γ isotype formed homodimers and heterodimerize with ε, 

whereas ε does not homodimerize and instead forms heterodimers with β, η, γ and ζ 

(Aitken et al., 2002).  These variations could potentially influence which of the 14-3-3 

interacting proteins can be brought together, hence altering functional specificity (Wang 

and Shakes, 1996).  The 14-3-3 dimer forms a palisade around a central negatively 

charged amphipathic groove comprised mostly of invariant amino acids.  From 

alignments of all known 14-3-3s, this groove with its cluster of polar residues from 

helices 3 and 5 and hydrophobic residues from helices 7 and 9 is over 70% conserved 

(Ferl et al., 2000).   This groove provides a binding surface commonly, but not 

exclusively, for phosphoserine or phosphothreonine residues on target binding proteins 

(Figure 2) (Liu et al, 1995; Xiao et al., 1995; Fu et al., 2000; Aitken et al., 2002). The 
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fact that this region is highly conserved suggests that specificity for interacting proteins 

may by dictated by other less conserved regions. 

 

Phosphorylation 

In 14-3-3 proteins, there are four potential phosphorylation sites that could 

regulate potential dimer formation and target interaction.  Serine-59 (Figure 2) can be 

phosphorylated by a novel sphingosine-dependent kinase or PKB/Akt (Megidish et al., 

1998; Powell et al., 2002).  Serine-63 (Figure 2) can be phosphorylated by PKC, but so 

far there is no evidence that this occurs in vivo (Toker et al., 1992; Jones et al., 1995; 

Aitken et al., 2002).   There is evidence that the Bcr serine/threonine kinase can 

phosphorylate 14-3-3ζ, but the site of phosphorylation has not been determined yet 

(Reuther et al., 1994; Van Der Hoeven et al., 2000).  In addition, a threonine (Thr-232) 

(Figure 2), conserved in all ζ isoforms and conservatively substituted with a serine in the 

τ isoforms is phosphorylated by casein kinase I and this modification appears to regulate 

interaction between 14-3-3ζ and c-Raf (Dubois et al., 1997).  The motif SPEK (Figure 2) 

present in the ζ and β isoforms, is also a potential target for a proline directed kinase 

(Aitken et al., 2002).   Although there is evidence that phosphorylation of various 14-3-

3s occurs via several kinases (Jones et al., 1995; Van Der Hoeven et al., 2000; Reuther et 

al., 1994; Dubois et al., 1997; Megidish et al., 1998; Powell et al., 2002), there is no 

evidence that phosphorylation affects dimer formation or the role of 14-3-3s in basic 

cellular processes in vivo.  
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14-3-3 Functions 

Binding motifs 

The most common binding site for 14-3-3s is RSxSxP (where x = any amino 

acid), when the second serine in the motif is phosphorylated (Muslin et al., 1996).  This 

motif is found in many 14-3-3 targets including Cdc25 phosphatase, Raf and two of the 

PKC isotypes (Muslin et al., 1996; Aitken et al., 2002).  However, additional 

phosphorylated serine motifs have been identified making the consensus: 

R[S/Ar][+]pSXP or RX[Ar][+]pSXP, where Ar is an aromatic residue, + is a basic 

residue and pS is phosphoserine (Rittinger et al., 1999; Fu et al., 2000; Yaffe and Elia, 

2001; Aitken et al., 2002).  The binding site on the 14-3-3 monomer for the 

phosphoserine consists of a basic pocket composed of Lys-49, Arg-56, Arg-127 and Tyr-

128 (Figure 2).  Some of the kinases that appear to be involved in this serine/threonine 

phosphorylation include protein kinase B (Akt kinase), cAMP-dependent protein kinase, 

p21-activated protein kinase 1 (PAK), Ras-mitogen-activated protein kinase (RSK1 or 

MAPKAP-K1), MAP kinase-activated protein kinase-2 (MAPKAP-K2) and protein 

kinase C (PKC) (Fu et al., 1994; Michaud et al., 1995; Muslin et al., 1996, Aitken et al., 

2002; Chen et al., 2003).  One of these kinases has been investigated in Drosophila, the 

Akt kinase phosphorylates Ataxin-1 allowing its association with 14-3-3s (Chen et al., 

2003).  These experiments suggest that phosphorylation of target proteins is likely the 

primary mechanism to regulate 14-3-3 binding. 

While many known target proteins appear to bind 14-3-3 via phosphoserine 

sequence motifs, additional modes of interaction are apparent (Aitken et al., 2002).  The 
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crystal structure of 14-3-3s complexed with non-phosphorylated proteins suggests that 

the same negatively charged groove as that which binds phosphoserines is involved in 

these types of interactions (Fu et al., 2000).  Evidence of this mode of interaction 

includes 14-3-3 binding to the cysteine-rich domain of Raf-1 (McPherson et al., 1999).  

Two unphosphorylated ligands that have been shown to bind with high affinity to14-3-

3ζ are 5-phosphatase, which has a RSxSxP-like motif (RSESEE), and Exoenzyme S 

(ExoS) with a unique DALDL motif (Campbell et al., 1997; Masters et al., 1999; Aitken 

et al. 2002).  Surface plasmon resonance spectroscopy between 14-3-3ζ and both 

glycoprotein I (GPI) bα (unphosphorylated GHSL motif) and GPIbβ (phosphorylation-

dependent binding motif) indicate that the affinity for unphosphorylated ligands seems to 

be similar to that of phosphorylated ligands (Andrews et al., 1998; Aitken et al., 2002).  

The 14-3-3ζ binding to the WDLE motif of an unphosphorylated peptide derived from 

phage display library (R18, PHCVPRDLSWLDLEANMCLP) inhibits binding Raf-

derived phosphopeptide (Petosa et al., 1998).  The fact that these types of interactions 

can be inhibited by phosophoserine containing peptides is consistent with the hypothesis 

that both phosphorylated and unphosphorylated ligands use the same binding sites on 

14-3-3’s (Petosa et al., 1998; Masters et al., 1999).  Binding of 14-3-3 to these types of 

proteins appears to alter their target binding, modify target localization, alter intrinsic 

catalytic activity, bringing proteins together and protecting proteins from modification 

(reviewed in Yaffe, 2002). 
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Enzyme activity modifiers 

Tyrosine and tryptophan hydroxylase  
 

14-3-3s were first identified as activators of tyrosine and tryptophan 

hydroxylases, the rate limiting enzymes in the biosynthesis of catecholamine and 

serotonin neurotransmitters (Ichimura et al., 1987; Ichimura et al., 1988; Makita et al., 

1990).  These studies assayed Ca2+/calmodulin-dependent protein kinase type II (kinase 

II)-dependent activation of tyrosine and tryptophan hydroxylases with and without the 

addition of excess 14-3-3 protein (Isobe et al., 1991).  Their data suggested that kinase II 

phosphorylates the tyrosine and tryptophan hydroxylases creating a binding site for 14-

3-3s leading to hydroxylase activation (Ichimura et al., 1988; Isobe et al., 1991).  

However, other research suggests that activation of tyrosine hydroxylase via 

phosphorylation is independent of 14-3-3 binding (Sutherland et al., 1993; Kumer and 

Vrana, 1996).  They do agree that phosphorylations lead to the formation of a 14-3-

3/hydroxylase complex (reviewed in Klein et al., 2003).  Since this interaction has only 

been examined in vitro using brain extracts (Ichimura et al., 1988; Isobe et al., 1991; 

Furukawa et al., 1993; Sutherland et al., 1993; Kumer and Vrana, 1996; Banik et al., 

1997), whether or not this complex truly activates tyrosine hydroxylase in vivo is still 

unknown. 

 

Enzyme activity modulation 

In addition to its interaction with tyrosine and tryptophan hydroxylases, 14-3-3s 

appear to interact with many other protein kinases including various isoforms of Raf, 
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protein kinase C (PKC), Kinase suppressor of Ras (KSR), Mitogen-activated protein 

kinase (MAPKs) and Bcr-Abl tyrosine kinase (reviewed in van Hermert et al., 2001).  

Although these studies indicated that 14-3-3 could interact with many different signal 

transduction molecules affecting the pathways in multiple steps, in most cases the 

function of the 14-3-3-protein association is still unclear.  These interactions are 

presented below. 

 

Enzyme activity modulation 

Raf kinase 

The most studied biological process involving 14-3-3s is the Ras/Raf pathway, 

where 14-3-3s have been shown to directly interact with various Raf’s including Raf-1 

and c-Raf (Jaumot and Hancock, 2001; Qui et al., 2000; Widen et al., 2000).  The 

Ras/Raf signaling cascade is a major transduction pathway which links signals at the cell 

surface to changes in gene expression in the nucleus.  The apparent primary role of 14-3-

3 in the process is to directly bind Raf, recruiting it to the plasma membrane where it is 

protected from dephosphorylation (Figure 3) (Jaumot and Hancock, 2001; Widen et al., 

2000; Morrison and Cutler, 1997; Fu et al., 2000; Chong et al., 2003).  Raf is a mitogen-

activated kinase (MAPK) kinase kinase that relays information by phosophorylation of 

MAPK kinase (MEK).  Raf is composed of three conserved regions CR1 and CR2 that 

make up the regulatory domain and CR3 the catalytic kinase domain (reviewed in Chong 

et al., 2003).  C1 contains the Ras binding domain (RBD) and cysteine rich domain 

(CRD) (residues 55-131) (Figure 3).  The serine/threonine-rich CR2 appears to be where 
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phosphorylation dependent protein interactions occur that regulate localization and 

activity (Figure 3) (Dent et al., 1995; Roy et al. 1998; Chong et al., 2003).   

At the plasma membrane, Raf interacts with the Ras-GTP complex through its 

CR1 domain at two sites RBD and CRD (Figure 3) (Morrison and Cutler, 1997; Roy et 

al., 1998; Fu et al., 2000; Chong et al., 2003).  Raf also contains two phosphorylation 

dependent binding sites for14-3-3s including serine-259 in CR2 and serine-621 in CR3 

and one phosphorylation independent site in the CRD of CR1 (Figure 3) (Morrison et al., 

1993; Morrison and Cutler, 1997).  The phosphorylation dependent sites and the ability 

of 14-3-3s to bind multiple sites on Raf may explain why some results indicate that 14-3-

3s activate Raf and others imply that 14-3-3s suppress Raf activity (Morrison, 1994; 

Michaud et al. 1995; Morrison and Cutler, 1997).   The current model is that the 

interaction between Ras and the CRD domain of Raf leads to activation of the kinase by 

displacement of 14-3-3 from the N-terminus (Morrison and Cutler, 1997; Roy et al., 

1998).  Evidence indicates that phosphatase 1 and 2A dephosphorylate serine-259 in the 

CR2 region, which allows the displacement of 14-3-3 from Raf (Figure 3) (Dent et al., 

1995; Roy et al. 1998).  Observations that Ras binding interferes with 14-3-3 interaction 

with the Raf N-terminal further support this model (Rommel et al., 1996; Morrison and 

Cutler, 1997).  This displacement along with phosphorylation of serine-338 in the CR2 

region completes the steps necessary for Raf association with the membrane and its 

activation (Roy et al., 1998; Jaumot and Hancock, 2001).  This data is consistent with 

the CR2 region being necessary for localization and activation of Raf (Chong et al., 

2003). 
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Raf displacement from the plasma membrane appears to occur when serine-259 

is phosphorylated again (Figure 3) (Morrison and Cutler, 1997; Fu et al., 2000; Chong et 

al., 2003).  This phosphorylation causes a conformational change that no longer allows 

Raf to bind the Ras-GTP complex (Figure 3) (Roy et al. 1998; Jaumont and Hancock, 

2001).   This model suggests that 14-3-3s have a dual role in modulating the catalytic 

activity of Raf, where binding to the CR1/CR2 region of Raf suppresses activation and 

binding to CR3 appears to be essential for Raf activity (Figure 3) (Light et al., 2002).  

The fact that more than one phosphorylation site is necessary for stable binding to Raf, 

suggests that 14-3-3s are likely to bind as dimers (Tzivion and Avruch, 2002).  Evidence 

also suggests that any mutations in the amphipathic groove created by a 14-3-3 dimer 

disrupt binding to Raf (Wang et al., 1998).  However, mutations that affect dimerization 

do not affect binding (Tzivion et al., 2001).   This indicates that although 14-3-3s appear 

to form obligate dimers, they are capable of binding as monomers.  It is unknown 

whether 14-3-3s interact with Raf as homo- or heterodimers, however, it is known that 

all isotypes are able to bind A-Raf, B-Raf and c-Raf-1 in vitro (Rittinger et al., 1999). 
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Active Raf 

 
 
 
 
 
 
 
 
 
 
 
 
Inactive Raf 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Map of Raf binding with 14-3-3 and Ras 
 
(A) At the plasma membrane if the Ras-GTP complex is bound at the CR1 domain, 
serine-621 is phosphorylated (  ) so a 14-3-3 dimer can bind and if serine-338 is 
phosphorylated, Raf is active.  Ras binds to two sites, the Ras binding domain (RBD) 
and cysteine rich domain (CRD).   
(B) If serine-259 is also phosphorylated the 14-3-3 dimer binds to Raf, creating a  
conformational change that no longer allows for Ras binding and shuttling Raf to the 
cytosol which causes Raf inactivation.  Modified from Morrison and Cutler, 1997; Fu et 
al., 2000; Chong et al., 2003. 
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Protein kinase C (PKC) 
 

To add to the dynamics of 14-3-3/Raf interactions, experimental evidence 

indicates that phosphorylation of 14-3-3 may regulate its ability to act as a scaffold  

between Protein kinase C (PKC) and Raf (Matto-Yelin et al., 1997; Van der Hoeven et 

al., 2000).  Signal transduction mediated through PKC, is essential for basic cellular 

functions such as gene expression and proliferation (Nishizuka, 1988; Asaoka et al., 

1992).  The family of PKC isotypes share a conserved kinase core whose function is 

modulated by its regulatory domain (Figure 4).  The three different types of PKC, the 

conventional (α, βI, βII, γ), novel (δ, ε, θ, η) and atypical (ζ, λ) groups, vary in their 

regulatory domain which dictates the cofactor dependence of the isotype (Figure 4). 

Unlike the conventional and novel PKCs that respond to diacylglcerol/phorbol esters, 

proteins of the atypical group do not respond to them, apparently because they lack the 

appropriate C1 domain (Figure 4).  The conventional C2 domain binds phospholipid in a 

Ca2+ dependent manner, whereas the novel C2 domain binds neither Ca2+ nor membrane 

lipids.  The regulatory domain is necessary for proper localization of the kinase and for 

regulation of kinase activity (Newton, 2003). PKC binds to 14-3-3 via a cysteine rich 

zinc-finger like region at its amino-terminal regulatory domain (Figure 4) (Aitken et al., 

1992; Dai and Murakami, 2003).   It is known that not all isotypes of 14-3-3 can bind to 

all isotypes of PKC (Van Der Hoeven et al., 2000).  However if they do, the interaction 

occurs in the C1 not the C2 domain of PKC (Figure 4) (Matto-Yelin et al., 1997; Dai and 

Murakami, 2003).  According to sequence data only PKC-γ, δ, ε, η, ζ, and λ contain the 

14-3-3 phosphoserine consensus binding sequence.  However, PKC-α and θ can also 
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complex with 14-3-3s, apparently in a phosphorylation independent manner by an 

unknown motif (Meller et al., 1996; Gannon-Murakami and Murakami, 2002). 

The direct interaction between 14-3-3s and PKC appears to be both inhibitory 

and activating depending on the tissue examined (Toker et al., 1990; Toker et al., 1992; 

Isobe et al., 1992; Tanji et al., 1994; Matto-Yelin et al., 1997; Gannon-Murakami and 

Murakami, 2002).  In Dictyostelium discoideum, PKC forms a complex with 14-3-3 in 

the cytosol in a cyclic AMP-dependent manner preventing PKC from attaching to the 

plasma membrane (Matto-Yelin et al., 1997).  Only the membrane bound PKC is active; 

therefore, 14-3-3ζ’s interaction with PKC in this case is inhibitory.  This is consistent 

with evidence from PC-12 cells, where PKC-δ and ζ are bound by, and negatively 

regulated by 14-3-3ζ  in differentiated cells (Meller et al., 1996; Matto-Yelin et al., 

1997; Hausser et al., 1999; Gannon-Murakami and Murakami, 2002; Dai and Murkami, 

2003).  However, bound 14-3-3ζ allows constitutive PKC-ε activation in mouse brains 

(Dai and Murakami, 2003).  This suggests that activation or inhibition may vary 

depending on the isotypes of PKC and/or isotypes of 14-3-3 present within any given 

tissue.  

Apparently due to their interaction with PKC, 14-3-3s appear to play a role in 

exocytosis in cultured PC-12 cells.  This process requires Ca2+, is stimulated by PKC 

activation (at least in the system used) and seems to be augmented by the addition of 14-

3-3s leading to an increase in catecholamine secretion (Morgan and Burgoyne, 1992a; 

Morgan and Burgoyne, 1992b; Chamberlain et al., 1995; Gannon-Murakami and 

Murakami, 2002).  Anti-14-3-3 antibodies are able to block stimulation of this type of 
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Protein Kinase C 

     Regulatory    Kinase 
 
Conventional (α, βI, βII, γ) 
 
 
 
Novel (δ, ε, θ, η) 
 
 
 
 
Atypical (ζ, λ) 
 
 
 
 
 
Figure 4. Domain maps of PKC isotypes 
 
There are several isotypes of protein kinase C.  The conventional group (α, βI, βII, γ) 
and novel (δ, ε, θ, η) have a regulatory domain composed of C1A/C1B, which are 
tandem repeats that function as a diacylglycerol sensor.  In the atypical group the C1 
domain does not respond to diacylglcerol/phorbol esters.  The conventional C2 domain 
serves as a Ca2+-regulated phospholipid-binding module; whereas the novel C2 domain 
binds neither Ca2+ nor membrane lipids.  (Modified from Newton, 2003). 

 

 

 

C1A C1B C2 

novel C2

Atypical C1

C1A C1B 



 21

exocytosis (Wu et al., 1992).  Furthermore, stimulation of exocytosis by 14-3-3 is 

blocked by excess of an oligopeptide identical to the centrally located invariant domain 

of the protein partially homologous to a domain in the synaptosomal protein annexin II 

(Roth et al., 1993).  Interestingly, in independent experiments an oligopeptide largely 

identical to this domain was shown to block binding of activated PKC to annexin I, a 

membrane bound receptor protein for activated PKC (Mochly-Rosen, 1991).  However, 

the interaction between 14-3-3 and annexin is not essential for exocytosis (Roth et al., 

1993; Roth et al., 1999).  It is likely then, that 14-3-3 interacts directly or indirectly with 

PKC in a way that regulates the effect of the kinase on exocytosis.  In addition, 14-3-3s 

appears to increase PKC mediated exocytosis by reorganizing the cortical actin barrier 

allowing for the release of secretory vesicles (Roth and Burgoyne, 1995; Misonou et al., 

1998; Roth et al., 1999) 

 

Other enzymes 

Another kinase that associates with 14-3-3s is the kinase suppressor of Ras 

(KSR), which typically appears to form a complex with Raf (Xing et al., 1997).  Isolated 

in Ras suppressor screens, evidence suggests that KSR does not have kinase activity.  It 

still plays an important role as a scaffold protein that has its location and function 

regulated by phosphorylation (Dhillion and Kolch, 2002).  KSR can bind Raf, mitogen-

activated protein kinases (MEKs) and extracellular signal-regulated kinases (ERKs) 

stimulating MEK activation at the plasma membrane (Figure 5) (Roy et al., 2002).  

Mitogen induced phosphorylation of serine-392 creates a 14-3-3 binding site and KSR is 
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sequestered into the cytosol (Muller et al., 2001; Dhillion and Kolch, 2002; Ory et al., 

2003).  Once protein phosphatase 2A dephosphorylates KSR at serine-392, it releases 

14-3-3 allowing the translocation of KSR back to the membrane where it again interacts 

with Raf (Muller et al., 2001; Ory et al., 2003).  Therefore, it appears that the interaction 

between KSR/14-3-3 is another step in regulating the Ras/Raf pathway (Figure 5). 

14-3-3s also bind to mitogen-activated kinase kinase (MEK) (Figure 5) (Fanger 

et al., 1998; van Hermert et al., 2001).  The binding between 14-3-3 and MEK has been 

mapped to the terminal 393 residues outside the kinase domain.  In S. cerevisiae, 14-3-3 

homologs (BMH1 and BMH2) bind multiple MEKs as well as the upstream activator 

ST20 similar to KSR.   When a cell receives an extra-cellular signal to induce apoptosis, 

the MEK regulatory domain can be selectively cleaved by caspase-3 thereby removing 

the 14-3-3 binding site and inducing apoptosis (Fanger et al., 1997; Fanger et al., 1998).  

In fibroblasts, expression of the cleaved or activated form of MEK inhibited clonal 

expansion of transfected cells causing DNA fragmentation, cytoplasmic shrinkage and 

nuclear condensation, all characteristics of apoptosis (Johnson et al., 1996).  Mutations 

in the cleavage site suppress adherence-induced apoptosis (Fanger et al. 1998).  The 

interaction between 14-3-3s and MEK does not appear to influence activity or the 

caspase-mediated cleavage, but simply scaffold the kinase to other endogenous proteins 

(Fanger et al., 1998; van Hermert et al., 2001).   From this data it appears that 14-3-3s 

allow selective organization and localization of signaling complexes.  

Bcr is a multi-domain kinase which complexes with Raf via 14-3-3.  However, 

its unique regions suggest it is involved in a different intracellular signaling pathway 
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from that of the typical Ras-Raf-MAPK signaling (Reuther et al., 1994; Braselmann and 

McCormick, 1995; van Hermert et al., 2001).  The N-terminus of the bcr gene encodes a 

novel serine/theonine kinase domain where 14-3-3s appear to bind (Pendergast et al., 

1991).   It is known that Bcr does not bind directly to Raf.  However, in the presence of 

14-3-3β, a complex can be formed (Braselmann and McCormick, 1995).   First 

discovered as the cause of Ph1-positive leukemias, the bcr gene had fused to the c-abl 

proto-oncogene forming the Bcr-Abl chimeric protein (reviewed in Reuther et al., 1994).  

14-3-3 can also bind to the Bcr-Abl chimeric proteins.  This protein is activated by the 

first exon of Bcr mediating the transformation of normal cells into leukemia positive 

cells (Reuther et al., 1994).  Although there is no evidence that Bcr-Abl and Bcr are 

simultaneously bound to 14-3-3s, the fact that both have the ability to bind suggests that 

14-3-3s may facilitate their interaction and/or simply allow them to complex with other 

signaling proteins such as Raf (Reuther et al., 1994; van Hermert et al., 2001). 

14-3-3 also interacts with an acetyl transferase, Arylalkylamine N-

acetyltransferase (AANAT).  14-3-3ζ and 14-3-3ε dimers bind a single AANAT in a 

phospho-dependent manner (Obsil et al., 2001).  AANAT is necessary for regulating the 

daily rhythm of melatonin synthesis (Osbil et al., 2001).  The interaction between 14-3-

3s and AANAT appears to affect access to the N-terminal of AANAT preventing 

dephosphorylation (Ganguly et al., 2001; Obsil et al., 2001).  Crystallographic analysis 

suggests that 14-3-3s have a role in modulating AANAT activity by stabilizing its 

substrate binding region (Obsil et al., 2001).  However, it is unknown whether this 

interaction alters melatonin synthesis. 
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Figure 5. The role of 14-3-3s in the Ras-Raf-MAPK signaling pathway 
 
14-3-3s can bind Raf (mitogen–activated protein kinase (MAPK) kinase kinase), protein 
kinase C (PKC) and Kinase suppressor of Ras (KSR) and MAPK kinase (MEK) 
potentially regulating their localization and subsequent kinase activity.  In this pathway, 
Raf phosphorylates MEK, which phosphorylates extracellular signal-regulated kinase 
(ERK) leading to the activation of transcription factors.  
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Cell cycle 

Another process that 14-3-3 proteins are essential for in vertebrates is regulating 

the cell cycle (Fu et al., 2000; Muslin and Xing, 2000; van Hemert et al., 2001).  The 

four stages of the cell cycle include G1 (gap mitosis and before DNA synthesis), S 

(synthesis of DNA) phase, G2 (gap after DNA synthesis and before mitosis), and M 

(Mitosis).  The transition between stages is highly regulated by the cyclin-dependent 

protein kinase (Cdks) such as Wee1/Mik1/Myt1, which are activated by their association 

with cyclin subunits and by phosphorylation of tyrosine and threonine residues 

(reviewed in Donzelli and Draetta, 2003).  These complexes are inactivated by specific 

phosphatases that dephosphorylate phosphotyrosines and phosphothreonines such as 

Cdc25 (cell division cycle 25).  In the mammalian system, there are three Cdc25’s that 

have specific roles in cell-cycle regulation.  The Cdc25A regulates the G1/S transition, S 

phase and G2/M transition, whereas Cdc25B and Cdc25C have a role in only the G2/M 

transition (van Hermert et al., 2001; Donzelli and Draetta, 2003).  The localization of 

these proteins varies, with Cdc25A in the nucleus, Cdc25B in the cytosol and Cdc25C 

found in both nucleus and cytosol (Gabrielli et al., 1996; Donzelli and Draetta, 2003).  

This suggests that their localization may be linked to their roles in regulating cell cycle 

transitions. 

One of the primary roles for 14-3-3s in the cell cycle is to regulate the 

cytoplasmic localization of Cdc25B and Cdc25C phosphatases, which affect the G2 to M 

transition (Forrest and Gabrielli, 2001).  In yeast, 14-3-3’s have been shown to have a 

role in G2 checkpoint regulation (Forrest and Gabrielli, 2001).  The mechanism appears 
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to involve a direct interaction between 14-3-3σ and a phosphorylated Serine-(216) on 

Cdc25C or Cdc25B during the G2 interphase.  The binding leads to cytoplasmic 

sequestering of Cdc25C or Cdc25B (Figure 6A) (Forrest and Gabrielli, 2001; van 

Hermert et al., 2001; Fu et al., 2000).  Mutations in Serine-216 eliminate the ability of 

Cdc25C to bind 14-3-3σ compromising the G2/M transition (Graves et al., 2001).  

Nuclear localization of Cdc25C at the end of G2 is necessary for dephosphorylation of 

Cdc2, which allows the cell to enter mitosis (Figure 6A) (Su et al., 1998; Fu et al., 2000; 

van Hermert et al., 2001; Graves et al., 2001).  Over-activation of Cdc2 has been shown 

to induce apoptosis in proliferating cells (Shi et al., 1994, Yu et al., 1998).  In Hela cells 

in particular, loss of this type of Cdc25 regulation by 14-3-3’s leads to a high proportion 

of abnormal mitotic phenotypes including DNA fragmentation, one of the characteristics 

of apoptosis (Forrest and Gabrielli, 2001).  This is consistent with data from over-

expression of 14-3-3σ in cell culture resulting in G2 arrest (Hermeking et al., 1997).  

Apparently different 14-3-3s regulate the various transitions of the cell cycle by 

interacting with different enzymes.  In mammalian tissue culture, 14-3-3σ specifically 

interacts with Cdc25B or Cdc25C to regulate the G2 to M transition (Hermeking et al., 

1997; Forrest and Gabrielli, 2001; van Hermert et al., 2001; Donzelli and Draetta, 2003), 

whereas, 14-3-3ε interacts with Cdc25A regulating both the G1 to S and the G2 to M 

transitions (Chen et al. 2003).  The mouse isoforms of 14-3-3ζ and β bind to Wee1 in a 

phospho-dependent manner increasing protein stability and activity which affects the G2 

to M transition (Wang et al. 2000; van Hermert et al., 2001).  14-3-3ζ and ε interactions 

with Cdc25 appear to affect the DNA damage checkpoint that occurs during the G2 to M 
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Figure 6.  Role of 14-3-3 in the cell cycle and cell apoptosis 
 
(A) During M-phase Cdc25 is in the nucleus dephosphorylating Cdc2 thus inactivating.  
At the end of G2, Cdc25 phosphorylation (   ) at serine-216 leads to the cytoplasmic 
localization of Cdc25 and blockage of the nuclear localization signal (NLS) on Cdc25.  
Modified from Fu et al., 2000 and Muslin et al., 2000.   
(B) Cell death occurs when BAD interacts with BCL-xL in the mitochondria.  If BAD is 
phosphorylated at serine-136, it interacts with 14-3-3 leading to blockage of the BH3 
domain thus allowing for cell survival.  
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transition.  When a cell has damaged DNA, there is a cell cycle arrest while the cell 

repairs it before mitosis continues.  In Drosophila, mutations that do not allow Cdc25 to 

bind to 14-3-3ζ and ε cause embryos to prematurely proceed into mitosis (Su et al., 

2001).  In colorectal cancer cells, ionized radiation causes increased levels 14-3-3σ 

proteins, which results in arrest at both the G1 to S and G2 to M transitions (reviewed in 

van Hermert et al., 2001).  The G1 to S transition is arrested when the p53 transcription 

factor is dephosphorylated allowing 14-3-3 to bind (Waterman et al., 1998; van Hermert 

et al., 2001).   This interaction increases the DNA sequence-specific binding activity of 

p53 leading to transcriptional activation of genes that induce cell cycle arrest (p21 and 

GADD25) or apoptosis (Bax) (Levine, 2003; van Hermert et al., 2001).  In all of these 

cases, 14-3-3s have an inhibitory effect on the progression of the cell cycle by 

inactivation via nuclear export and cytoplasmic sequestering or activation of different 

cell cycle regulators. 

 

Apoptosis 

 Results from Konishi et al. (2002) suggest a direct link between components of 

the cell cycle and cell death that involves 14-3-3 proteins.  Cell survival requires 

continuous cues from the extracellular environment.  These cues include a series of 

cytokines that signal through tyrosine receptor kinases (TRKs) and insulin growth factor 

receptors (IGFR) (Zha et al., 1996).  Conversely there are ligands that trigger apoptosis, 

such as FasL that signal through tumor necrosis factor (TNF) receptors (FAS and TNFR-

55) (Zha et al., 1996).  Within cells, there are proteins that promote survival (Bcl-2, Bcl-
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xL, Mcl-1 and A1) or apoptosis (Bas, Bak, Bcl-xS and BAD) that dictate whether any 

given cell will respond to the extracellular signal (Zha et al, 1996; Adachi et al., 2003).  

These proteins function as apoptosis/survival heterodimers (BAD/Bcl-2), suggesting 

they act to counter each other with the extracellular signals tipping the scale in one 

direction or the other (Datta et al., 2000).   The pro-apoptotic proteins all contain a BH3 

domain to allow interaction with the survival factors.  BAD is unique among BH3 

containing proteins because it is regulated by a series of serine phosphorylations (Zha et 

al., 1996; Adachi et al., 2003). 

When a cell receives a survival factor, BAD is phosphorylated at serine-155 and 

serine-136, where a binding site for a 14-3-3 is created (Datta et al., 2000).  Binding of 

14-3-3 to BAD induces a conformational change that inhibits BAD from associating 

with BCL-xL, resulting in the cytoplasmic localization of BAD, which allows cell 

survival (Figure 6B) (Datta et al., 2000; Muslin et al. 2000; van Hermert et al., 2001).  

When BAD is dephosphorylated it binds to Bcl-xL at its BH3 domain, which localizes 

BAD to the mitochondrial membrane leading to apoptosis (Muslin et al., 2000; van 

Hermert et al., 2001).  However, if Cdc2 phosphorylates serine-128 on BAD, it inhibits 

the ability of 14-3-3s to bind, leading to apoptosis (Figure 6B) (Konishi et al., 2002).   

This research supports earlier work done by Xing et al. (2000) in cultured cells and 

cardiac tissue that concluded the primary function of mammalian 14-3-3s is to inhibit 

apoptosis.  They suggested the role of 14-3-3s in apoptosis involves sequestering 

phosphorylated BAD to the cytosol, thereby preventing its interaction with Bcl (Springer 

et al., 2000).  It is unknown whether in these tissues this interaction is affected by Cdc2, 
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only that when an apoptotic stimulus is present BAD is dephosphorylated allowing 

dissociation from 14-3-3. 

 

Modifiers of receptors and channels 

Localization 

Recently 14-3-3 proteins have been found to play a role in controlling the 

function and localization of different receptors and ion channels (Couve et al., 2001; 

Ganguly et al., 2001; Kagan et al., 2002; Berg et al., 2003).  In rat brains, 14-3-3ζ 

associates with γ-Amino-butyric acid GABA type B receptor (GABABR1) to regulate 

aspects of its trafficking and targeting of GABAB to the plasma membrane (Couve et al., 

2001).  The glycoprotein Ib-IX complex (GP Ib-IX) is a platelet receptor that plays a 

role in platelet adhesion and aggregation during injured vascular walls (van Hermert et 

al., 2001).  14-3-3ζ has the ability to interact with several proteins in this complex 

including GP Ibz, GP Ibb and GP-V (Andrews et al., 1998).   When injury occurs, the 

platelets are stimulated and 14-3-3ζ the GP Ib-IX complex and phosphoinositide 3-

kinase (PI3-Kinase) are all translocated to the cytoskeleton (Munday et al., 2000).  This 

suggests that 14-3-3ζ functions as a link between the GP Ib-IX complex and PI3-Kinase 

that may be involved in this translocation (Andrews et al., 1998; Munday et al., 2000; 

van Hermert et al., 2001).   Another example of the potential role of 14-3-3s in 

translocation of a receptor occurs when 14-3-3η binds to glucocorticoid receptor (GR) 

leading to its translocation into the nucleus (Wakui et al., 1997).  This data is consistent 

with the model that 14-3-3s modulate the activity of the receptors by altering their 
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location and/or ability to bind other target proteins (Kagan et al., 2002; Ganguly et al., 

2001; Obsil et al., 2001). 

 

Functional modulation 

In human tissue, ether-a-go-go related protein HERG, a rectifier potassium 

channel, binds directly with 14-3-3ε accelerating and enhancing HERG activation which 

regulates membrane potential (Kagan et al., 2002).  In rats, 14-3-3ζ and 14-3-3ε bind 

with chloride intracellular channel proteins (CLIC4) and DYNAMIN I to influence 

membrane trafficking (Sugita et al., 2001).  In Drosophila, there is evidence that 14-3-3ζ 

complexes with the calcium dependent potassium channel Slowpoke via Slowpoke 

binding protein (Slob) regulating voltage sensitivity of the membrane at pre-synaptic 

nerve terminals (Zhou et al., 1999; Zhou et al., 2001).  This interaction is dependent on 

the phosphorylation of Slob and can occur in the absence of 14-3-3 dimerization, 

suggesting that 14-3-3 monomers can regulate channel activity (Zhou et al., 2003).  

These experiments indicate that 14-3-3s may regulate channel activity by mediating 

phosphorylation of the receptor/channel or coupling them with other proteins or 

signaling complexes (Sugita et al., 2001; Zhou et al., 1999; Zhou et al., 2003).  However, 

the effect of these interactions on development or information processing in the nervous 

system is still unknown. 
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Adapters/Chaperones 

In vertebrates, 14-3-3s appear to participate in many diverse cellular processes 

where they bring two different proteins together in an adapter like manner.  Their ability 

to dimerize allows them to simultaneously bind two proteins facilitating the formation of 

signaling complexes.  14-3-3s interact with signaling proteins typically in a 

serine/threonine phosphorylation dependent manner to regulate their localization, 

activity, and ability to bind other proteins or be modified.  14-3-3s bring various 

enzymes together such as Raf and KSR or Raf and PKC or MEK and KSR all of which 

may play a role in regulating the Ras-Raf-MAPK signaling pathway (Figure 5) 

(reviewed in van Hermert et al., 2001).  Although considered to be part of another 

signaling pathway, 14-3-3β also facilitates interaction between Bcr/Raf and c-Bcr/Bcr-

Abl in regulation of cell proliferation (Reuther et al., 1994; Braselmann and McCormick, 

1995).  Furthermore, 14-3-3s have the ability to bring together different receptors with 

their associated proteins, for example insulin-like growth factor I receptor (IGFIR) with 

the insulin receptor substrate I (IRS-1), in regulation of cellular growth and 

differentiation (Craparo et al., 1997).  Another example, is the binding of 14-3-3ζ to 

chloride intracellular channel proteins (CLIC4) and DYNAMIN I creating a complex 

that regulates membrane trafficking (Suginta et al., 2001).  14-3-3s bind together GP Ib-

IX complex and PI3-Kinase to regulate the activity of the kinase (Andrews et al., 1998; 

Munday et al., 2000; van Hermert et al., 2001).  In many of these cases, 14-3-3s have the 

ability to activate or inhibit enzymes allowing them to regulate multiple steps in several 

signaling pathways.  
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Table 2. Proteins with 14-3-3-dependent alternate cellular location  

Interacting protein Unbound location Bound location 
Calmodulin cytosol Centrosome/spindle apparatus 
Raf plasma membrane Cytosol (Serine-259) 
PKC plasma membrane Cytosol 
KSR plasma membrane Cytosol 
BAD mitochondria Cytosol 
Cdc25 nucleus Cytosol 
Histone deacetylase nucleus Cytosol 
GABABR1 cytosol plasma membrane 
GP Iβ-IX / PI3-Kinase cytosol Cytoskeleton 
GR cytosol Nucleus 
Raf(mitogen-activated kinase kinase kinase) 
KSR (Kinase suppressor of Ras) 
PKC (Protein kinase C) 
Cdc25 (cell division cycle 25)  
GABABR1 (α-Amino-butyric acid GABA type B receptor) 
GP (glycoproteins) 
GR (glucocortcoid receptor) 
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Although there are several examples of 14-3-3s functioning as adapters, their 

predominant role appears to be as chaperones.  14-3-3s modulate the localization of 

target proteins such as calmodulin from the cytosol to the centrosome and spindle 

apparatus (Table 2) (Chan et al., 2000).  Other proteins that interact with 14-3-3 appear 

to be directed or sequestered to the cytosol including Raf (Jaumot and Hancock, 2001; 

Widen et al., 2000), PKC (Matto-Yelin et al., 1997), KSR (Ory et al., 2003), Cdc25 

(McGonrangle et al., 2001), BAD (Zha et al., 1996), and histone deacetylase (Grozinger  

and Schreiber, 2000) (Table 2).  The signaling mechanism that allows 14-3-3s to bind 

and translocate proteins to their appropriate location appears to be phosphorylation 

dependent in all of these cases.  Moreover, 14-3-3s control localization of different 

receptors GABABR1 (Couve et al., 2001), GP Iβ-IX/PI3 Kinase (Munday et al., 2000) 

and GR (Wakui et al., 1997) from the cytosol to their appropriate locations (Table 2).   It 

 is unknown whether or not these interactions are phosphorylation dependent.  In 

addition, this unique family of adapter/chaperones has the ability to bind non-

phosophorylated motifs, increasing the number of potential target proteins.  Regardless 

of their mode of action, it is clear that 14-3-3s are essential in several basic cellular 

processes. 

 

14-3-3 implications in disease 

14-3-3s and neurodegenerative disease 

Recent studies indicate that the distribution of 14-3-3 proteins changes in 

multiple human neuro-degenerative diseases including spongiform encephalitis or 
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Creutzfeldt-Jakob disease (CJD) (reviewed in Berg et al., 2003).  The human 

transmissible spongiform encepalopathy or prion disease was first characterized by Hans 

Gerhard Cretzfeldt and Alfons Jakob in the1920’s (Creutfeldt, 1920; Jakob, 1921).  New 

clinical diagnostics indicate that there are two forms of transmittable CJD, sporadic CJD 

and variant CJD (Zerr and Poser, 2002).  Sporadic CJD occurs in patients in their 

seventies and is characterized by rapid dementia that lasts 6 to 14 months resulting in 

death (Zerr and Poser, 2002).  In contrast, variant CJD occurs in patients from 14 to 74 

years of age and has a slower progression that may last years (Zerr and Poser, 2002).  To 

characterize this and other neurodegenerative diseases, researchers are looking for 

changes in the protein levels in cerebral spinal fluid (CSF) or in disease specific lesions 

within the brain.   

Clinical studies have described increases in different 14-3-3s (β, ε, γ, τ and ζ) in 

the cerebrospinal fluid from patients with Creutzfeldt-Jakob disease (CJD) (Table 3) 

(Takahashi et al., 1999; Sanchez-Valle et al., 2002).  The anti-14-3-3β antibody appears 

to be both sensitive and specific for sporadic CJD in suspected patients (Zerr et al., 1998; 

Zerr et al., 2000; Takahashi et al., 1999; Wiltfang et al., 1999; Wakabayashi et al., 2001; 

Giraud et al., 2002).  On the other hand, increased levels of 14-3-3γ and 14-3-3ε were 

present in the CSF of patients with CJD, Alzheimer’s disease and Down Syndrome 

(Table 3), suggesting they may be more general markers for neurodegeneration 

(Fountoulakis et al., 1999; Tschampa et al., 2001).  Research indicates that 14-3-3β is 

also elevated in the CSF of multiple sclerosis patients who have severe inflammation- 

induced extensive damage of the central nervous system (Sanchez-Valle et al., 2002;  
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Table 3.  Changes in 14-3-3 expression in diseases 

Disease CSF/Tissue Isotypes 
up-regulated 

Isotypes 
down-regulated 

 
Creutzfeldt-Jakob disease 
(Sporadic) 

 
 

CSF 

 
 

β, ε, γ, τ, ζ 

 

Alzheimer’s disease CSF ε, γ  
Down Syndrome CSF ε, γ  
Multiple sclerosis CSF β  
Scrapie Hippocampus 

Thalamus 
 β, γ, η, ζ 

Herpetic encephalitis CSF β  
Small Cell Lung Cancer Cells ζ, β, ε,  τ/θ  σ 
Breast Cancer Cells  σ 
Mammary carcinoma Cells  σ 
Anaplastic carcinomas Cells σ  
Papillary carcinomas Cells σ  
CSF(CerebralSpinalFluid) 
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Satoh et al, 2003).  The levels of the different 14-3-3s in the CSF appear to correlate 

with the particular areas of the brain that are damaged and how rapidly 

neurodegeneration occurs (Zerr and Poser, 2002; Huang et al., 2003).  In the 

hippocampus and the thalamus of scrapie-infected mice there appears to be preferential 

loss of 14-3-3β, γ, η and ζ proteins in areas of severe degeneration (Table 3) (Baxter et 

al., 2002; Berg et al., 2003).  In some cases, such as herpetic encephalitis 14-3-3s may be 

present in the CSF initially (Table 3), but not later on.  In addition, in dementia caused 

by Lewy bodies, 14-3-3s may not start to appear until later stages of dementia (Huang et 

al., 2003).  Therefore, examining the level of 14-3-3 proteins in the CSF is not sufficient 

for a full diagnosis of any of these diseases, but rather in conjunction with clinical data 

may help with the diagnosis and characterization of different neurodegenerative diseases 

(Zerr et al, 2000; Zerr and Poser, 2002). 

14-3-3s are highly abundant in the central nervous system (Table 1), but whether 

the presence of 14-3-3s is a cause or effect of neurodegeneration remains unclear.  

However, there is evidence that 14-3-3ζ appears to affects the stability of microtubule 

associated protein, τ (Hashiquchi et al., 2001).  The tight association appears to lead to 

abnormal phosphorylation of τ via protein kinase A (PKA).  This abnormal 

phosphorylation τ is a key event the development of Alzheimer’s disease pathology 

(Wang et al., 1995; Hashiquchi et al.,2000).  In Spinocerebellar ataxia type 1 (SCA1), a 

polyglutamine disease, neurological disorders are caused by expansion of ataxin-1 

protein (Chen et al., 2003).  14-3-3s have the ability to interact with both the wild type 

and mutant ataxin-1 and when 14-3-3ε is co-over-expressed it enhances neurotoxicity by 
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stabilizing the mutant ataxin-1 (Chen et al., 2003; Berg et al., 2003).  In Parkinson’s 

disease, there is an accumulation of α-synuclein that results in formation of Lewy bodies 

leading to neurodegeneration (Kawamoto et al, 2002).  14-3-3s complexes with α-

synuclein mediate dopamine dependent neurotoxicity (Xu et al., 2002; Berg et al., 2003).  

All of these studies suggest that 14-3-3 proteins may in fact promote neurodegeneration 

by stabilizing neurotoxic proteins (Hashiquichi et al., 2001; Xu et al., 2002; Chen et al., 

2003) 

It is unclear why in the adult central nervous system (CNS) 14-3-3 proteins are 

necessary to regulate neurodegeneration.  One explanation for why they are necessary 

relates to their potential involvement in regulating neuronal regeneration (Berg et al., 

2003).  Research in rats indicates that 14-3-3ζ and τ/θ are upregulated in injured motor 

neurons (Namikama et al., 1998).  Their model suggest that when 14-3-3s are 

upregulated it facilitates the Ras-Raf-MAPK signaling pathway (Figure 5) that is known 

to alter gene expression during neuron regeneration (Kiryu et al., 1998; Namikama et al, 

1998).  In this case, 14-3-3s appear to activate Raf-1 in response to nerve injury 

stimulating the expression of growth factors necessary for peripheral nerve regeneration 

(Kiryu et al., 1995; Tanabe et al., 1998; Kiryu et al., 1998).  This activation along with 

down regulation of PKA, which inhibits Raf-1 leads to stimulation of the Ras-Raf-

MAPK signaling pathway (Kiryu et al., 1995).  The up-regulation of 14-3-3 may also 

promote cell survival through its interaction with BAD, a protein that promotes cell 

death.  Therefore, 14-3-3s may be necessary for maintaining neuronal integrity by 

promoting both survival and nerve regeneration (Berg et al., 2003). 
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14-3-3s and cancer  

Due to their ability to regulate the cell cycle, 14-3-3s have been studied for their 

potential role in tumorigenesis. 14-3-3σ regulates the G2 cell cycle check point by 

sequestering Cdc2-cyclinB into the cytoplasm (Chan et al., 1999).  In lung and breast 

cancers, there is a frequent loss of 14-3-3σ expression (Table 3) (Ferguson et al., 2000; 

Osada et al., 2001).  This inactivation appears to be linked to hypermethylation that 

silences 14-3-3σ gene expression in the most aggressive type of lung cancer, small cell 

lung cancers (Osada et al., 2001).  14-3-3σ is also down-regulated in transformed 

mammary carcinoma cells (Table 3) (Yang et al., 2003).  It was found that the link 

between 14-3-3σ and the tumor-suppressor p53 is important for transcriptional activity, 

which regulates cell cycle transitions (Laronga et al., 2000; van Hermert et al., 2001; 

Yang et al., 2003).  This data is consistent with over expression of 14-3-3σ inhibiting 

cell proliferation and preventing growth of breast cancer cells (Laronga et al., 2000).  In 

contrast, 14-3-3ζ, β, ε and τ/θ  appear to be highly expressed in lung cancers (Table 3), 

suggesting that likely there are differential roles for 14-3-3s in cell cycle regulation (Qi 

and Martinez, 2003).   

A further understanding of how 14-3-3’s affect the cell cycle may provide 

evidence for potential treatment options for these types of cancers.  The level of 14-3-3s 

appears to vary depending on the type of cancer cells (Yang et al., 2003; Ito et al., 2003; 

Qi and Martinez et al., 2003).  For example, 14-3-3σ is expressed at a higher level in 

anaplastic carcinomas than papillary carcinomas and is down-regulated in breast and 

lung cancers (Table 3) (Ito et al., 2003; Yang et al., 2003).  Therefore, changes in the 
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level of 14-3-3 proteins may be a useful diagnostic tool for cancer detection and 

characterization. 

 

Are 14-3-3s functionally redundant? 

The dynamic roles of 14-3-3s in signaling processes raise the question of whether 

all 14-3-3 isotypes exhibit similar activities toward all potential substrates, or have 

functional specificity.  All 14-3-3 proteins are capable of dimer formation mediated by 

the amino-terminal helix (Jones et al., 1995; Luo et al., 1995).  The crystal structure 

indicates a compact, globular molecule.  The properties of the dimer interface or 

temporal and spatial distribution of 14-3-3 isotypes may play the primary role in which 

homo- or heterodimers can be formed (Aitkens, 1995; Jones et al., 1995; Aitkens et al., 

2002).  However, data suggest that the variability in the dimerization region may 

actually limit the possible heterodimers (Aitkens, 1995; Aitkens et al., 2002).  For 

example, in PC12-cells, 14-3-3γ formed homodimers and heterodimers with ε (Aitkens 

et al., 2002).  In contrast, ε formed heterodimers with all the 14-3-3 isotypes tested 

(β,η,γ and ζ), but apparently no homodimers, suggesting that the differences in the dimer 

interface correlate to dimer preference and not the sub-cellular localization of an isotype 

(Aitken et al., 2002).   It is known that α and δ are phosphorylated forms, a modification 

that could change dimerization preferences among isoforms (Aitkens, 1995).  

Phosphorylation could limit dimer formation and the selectivity, or specificity of dimers 

towards their targets.  The ability of 14-3-3 to be modified by phosphorylation increases 

the probability of differential target interactions and does not appear to inhibit their 
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ability to bind phosophoserine target proteins (Woodcock et al., 2003).  It is likely 

however that dimer interface, modifications and subcellular localization contribute to 

homo and heterodimer formation depending on the particular isotypes under 

consideration.  In addition, as yet unknown proteins may mediate dimer formation by 

promoting particular combinations of isotypes to form homo and heterodimers and/or 

preventing others from forming.  These putative processes could result in selective and 

regulated dimer formation even within a particular cell. 

Different combinations of 14-3-3s could potentially form distinct populations of 

dimers that each recognize unique ligand binding motifs or have different binding 

affinities (Yaffe, 2002).  The interaction may be dependent on the target binding motif.  

Rittinger et al. (1999) demonstrated that all 14-3-3 isotypes were able to bind A-Raf, B-

Raf, c-Raf-1 and BAD in vitro.  All of these proteins share the same optimal consensus 

motif RSxpSxP (Rittinger et al., 1999; Fu et al., 2000; Aitkens et al., 2002).  

Experiments using this RSxpSxP peptide as the target protein indicated that 14-3-3s 

interact with the same specificity (Wang et al., 1998; Andrews et al., 1998; Yaffe et al. 

1997).  However, Rosenquist et al. (2000) postulated that 14-3-3 specificity may be 

similar for this optimized motif, but more selective towards more diverse motifs.  This is 

supported by evidence that 14-3-3σ specifically interacts with Cdc25B or Cdc25C 

whereas, 14-3-3ε interacts with Cdc25A (Hermeking et al., 1997; Forrest and Gabrielli, 

2001; van Hermert et al., 2001; Donzelli and Draetta, 2003).  Preferential interactions 

between PKC-θ and 14-3-3τ (Meller et al., 1996), the IGF1 receptor and 14-3-3ε 

(Craparo et al., 1997) and the glucocorticoid receptor and 14-3-3η (Wakui et al., 1997; 
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Yaffe et al., 1997) have been documented.  Due to the high homology within the inner 

binding surface, the functional specificity among isotypes is likely the result of 

variability in the outer surface of the 14-3-3 dimers caused by the particular isotype 

combination of each dimer (Yaffe et al., 1997; Fu et al., 2000; Aitkens et al., 2002). 

Studies suggest that 14-3-3 monomers are thermodynamically unstable; 

therefore, 14-3-3s form obligate dimers (Aitken et al., 2002).  However, mutations that 

affect dimerization do not inhibit the ability to bind target proteins or modulate target 

activity, suggesting that 14-3-3s may function both as dimers and monomers (Tzivion et 

al., 2001; Zhou et al., 2003).  In fact, Woodcook et al., (2003) have been able to detect 

14-3-3 monomers in vivo.  It appears that both 14-3-3 monomers and dimers are able to 

interact with targets in vivo, for example Raf (Shen et al., 2003).  However, only the 

interaction between the 14-3-3 dimer and Raf appears to be phosphorylation dependent 

and the dimer has reduced susceptibility to phosphorylation (Shen et al., 2003).  This 

suggests that phosphorylation may both regulate the interaction between 14-3-3s and 

target binding proteins.  14-3-3ζ monomers and dimers are both able complex with Slob 

(channel binding protein) and the Drosophila calcium-dependent potassium channel 

(dSlo) (Zhou et al., 2003).  In this case, the dimer is not necessary for modulation of the 

dSlo channel (Zhou et al., 2003).  The suggests that 14-3-3 interactions with target 

proteins is independent of dimerization (Tzivion et al., 1998; Shen et al., 2003; Zhou et 

al., 2003). 
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EXPERIMENTAL MODEL 

 
 The Drosophila melanogaster or fruit fly model system is useful for genetic 

dissection of developmental and anatomical traits (Nusslein-Volhard et al., 1987; 

Sokolowski, 2001).  These insects have a relatively short generation time of 

approximately 9 days, allowing for rapid production of specimens for experimental 

purposes.  Their life cycle is divided in the following stages: embryonic (0-16 hours after 

egg lay (AEL)), 1st instar larval (16-48 hours AEL), 2nd instar larval (48-72 hours AEL), 

3rd instar larval (72-120 hours AEL), pupariation (120-200 hours AEL) and the adult 

stage that can last up to 90 days depending on the genetic background (Ashburner, 

1989).  Each stage can be easily identified by morphological differences, which allow 

the examination of specific traits throughout development and in the adult. 

This research project examines the role of 14-3-3s in basic cellular process and in 

information processing using an integrated molecular, genetic, histological and 

behavioral approach.  Drosophila provides a simple model system for studying 

isotype/isoform specific function and regulation with at least one member of each major 

14-3-3 isotype groups.  This allows the systematic investigation of 14-3-3 functions in 

vivo.  In Drosophila, the distribution of 14-3-3s is similar to that of vertebrates, where 

14-3-3s are enriched in the nervous system, as well as expressed at lower levels 

throughout other tissues (Skoulakis and Davis, 1996; Broadie et al., 1997; Philip et al., 

2001).  Since, Drosophila are amenable to behavioral manipulation and are capable of 

both associative and non–associative learning and memory (Davis, 1996; Roman and 

Davis, 2001, Heisenberg, 2003), by combining sophisticated molecular and classical 
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genetics with behavioral manipulation, the role of 14-3-3 can be examined in 

development as well as in information processing in the adult central nervous system 

(CNS).   

In Drosophila, temporal and spatial specific gene expression can be regulated 

with a wide variety of transgenic constructs including heat shock inducible transgenes 

and the UAS/GAL4 system.  This system is especially suited for the study of genes with 

multiple temporally and tissue distinct roles like leo, because it allows their temporal and 

tissue specific dissociation allowing for the study of multiple phenotypes individually.  

The availability of several different GAL4 lines that express specifically in different 

tissues and stages of development provides a system to dissect each phenotype 

individually and identify the tissue affected by mutations in the gene in different 

temporally distinct (developmental or not) phases.  There are several different available 

mutants of the two 14-3-3 isotypes in Drosophila including P-element insertions, 

deletions and point mutations.  Each was used to accurately map phenotypes and help us 

to further understand the role of each isotype throughout early development and adult 

neuronal processes. 

 

Learning and memory in Drosophila 

Drosophila are capable of learning in a variety of positively or negatively 

reinforced associative or non-associative tasks utilizing olfactory, visual and tactile 

stimuli.  Drosophila share all the same basic elementary characteristics of learning and 

memory with mammalian species, including humans and are capable of learning and 
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remembering what they are taught for significant portion of their lives (Cheng et al., 

2001; Sokolowski, 2001).  The Drosophila genome also contains genes for neuronal 

signaling proteins including neuronal cell adhesion receptors, ion channels, 

neurotransmitter receptors, synapse-organizing proteins and synaptic vesicle-trafficking 

proteins that share homology in mammals (reviewed in Yoshihara et al., 2001).  There 

are also high number of fly homologs of human neurological disease loci (Yoshihara et 

al., 2001).  Therefore, understanding of genes that have roles in learning and memory 

and neuronal physiology in Drosophila will enable comprehension of these processes in 

humans and other vertebrates.   

 Associative learning in Drosophila involves experience dependent encoding of 

temporal and spatial relationships that exist between stimuli.   This type of Pavlovian or 

classical conditioning (Pavlov, 1927), involves pairing a neutral stimulus (the 

conditioned stimulus (CS)) with a biologically meaningful event (the unconditioned 

stimulus (US)).   The fly learns to respond differently to a CS that was paired with a US 

(the CS+) and a stimulus that was not paired to a US (the CS-).  This type of 

conditioning has been demonstrated in several species, suggesting that the basic 

biological processes involved are likely evolutionarily conserved.  There are also 

different types of non-associative learning that can produce a differential response to the 

CS+.   These include habituation, desensitization and sensory fatigue or adaptation.  

Repeated or prolonged exposure to a stimulus can cause desensitization, sensory fatigue 

or adaptation, which involve physiological changes that decrease the sensitivity to a 

stimulus (Dalton, 2000).  Habituation is also a gradual diminution of response to a 
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repetitive stimulus, but it does not appear to involve changes in sensitivity and the 

response will return after the presentation of a noxious novel stimulus (dishabituation).   

In Drosophila, it appears that associative learning involves the integration of 

information within the mushroom bodies (reviewed in Heisenberg, 2001).  However, 

where non-associative learning occurs is unknown.  To further understand the flow, 

processing and integration of associative and non-associative information in the adult 

CNS the following questions need to be addressed.  What structures or neurons are 

necessary for learning and memory?  What physiological or biochemical changes occur 

in those cells and how does information get in and around specific neurons (Davis, 

2001)?  The variety of genetic mutants in Drosophila have been great tools in 

understanding the CNS structures and neurons involved in various associative learning 

and memory tasks and some of the physiological or biochemical changes that may be 

occurring, although the flow of information within the CNS is less clear.  

There are different behavioral paradigms that can be used to address the previous 

questions including assays based on an all-or-nothing response or choice assays.  Assays 

based on all-or-nothing response include the proboscis extension reflex and the 

chemosensory jump.  These assays involve a simple response to a single stimulus, 

although it is sometimes difficult to determine whether the lack of response is due to 

inability to detect the stimulus or its incorrect identification.  For the choice assay, most 

commonly used to study olfactory learning and memory, attraction and avoidance are 

measured by the response of the flies when presented with two similar stimuli (Devaud 
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et al., 2003). The following is a summary of Drosophila behavioral paradigms, 

anatomical structures and genetic methods that are relevant to this analysis.  

  

Sensory stimuli 

Olfaction 

The system primarily studied in Drosophila is the pathway of information flow 

necessary for olfactory learning.  The perception of odors is essential in Drosophila for 

the identification of food sources and suitable sites for egg laying among other functions 

(Vosshall, 2000).  60 odorant receptors (ORs) located on sensilla on the surface of the 

maxillary palp (bulbous protrusion at the anterior proboscis) and aristas (hair like 

protrusions extending from the 3rd antennal segment or funiculus) receive olfactory 

information (Stocker, 1994; Vosshall, 2000).  The sharp-tipped trichoid sensilla, the 

club-shaped basiconic sensilla, and tiny coeloconic sensilla can all be found on the 

surface of the funiculus but, the maxillary palps contain only basiconic sensilla 

(reviewed in Stocker, 2001).  The information is then relayed by the 1500 olfactory 

receptor neurons (ORNs) to glomeruli in the antennal lobe (Figure 7) (Stocker, 1994; de 

Bruyne et al., 2001).  The glomeruli are the sites of synaptic integration between 

terminal branches of ORNs and the dendritic arborizations of interneurons (Laissue et 

al., 1999).  There are 43 morphologically distinct glomeruli in the antennal lobes that 

process the information from the ORNs (Laissue et al., 1999; Vosshall, 2000).  Blocking 

neurotransmission from any individual glomerulus selectively affects odorant perception 

(Devaud et al., 2003). Local interneurons that connect various glomeruli and projection 
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interneurons relay the information from the antennal lobe to higher order brain centers 

(Stocker, 1994; Laissue et al., 1999; Stocker, 2001).  Extra-cellular electrophysiological 

recordings were able to map the olfactory response to a spectrum of odors within the 

Drosophila antennal lobes (de Bruyne et al., 2001).  This allowed the classification of 

groups of ORNs that respond to specific odors (de Bruyne et al., 2001; Stocker, 2001).  

Using this type of assay, de Bruyne et al., (2001) determined that the mechanism for 

olfactory encoding depends on the odor identity, odor concentration and length of odor 

presentation.  Exposure to a strong odor can also reduce the response to, or salience of 

subsequent odors (Preat, 1998).  Studies of a single ORN suggest that an odorant has the 

potential to bind multiple ORs and activate or inhibit any of several different ORNs 

(Laurent et al., 1996; Vosshall, 2000).   

Olfactory information from the antennal lobe is then relayed via the projection 

neurons to the mushroom bodies and the lateral horn (Figure 7 and 8) (Stocker, 1994; 

Heisenberg, 2003).  Since the Drosophila olfactory system appears to be similar to, but a 

lot simpler than that of mammals, it is a powerful model system to studying odor 

processing (Stocker, 2001).  The mushroom bodies apparently process olfactory 

information, but are not essential for odor recognition and elementary responses such as 

avoidance of aversive odors and attraction to appetitive odors (osmotaxis).  However, 

recent evidence (Wang et al. 2003), suggests that blocking neurotransmission to 

mushroom bodies selectively impairs responses to attractive but not aversive odors.  This 

information contrasts with previous studies (de Belle and Heisenberg, 1994; McQuire et 

al., 2001) and our own evidence  
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Figure 7.  Pathway of information in the Drosophila CNS 
 
Olfactory information initiated by the odor (o) is received by the antennal lobe (AL), 
then passes through the middle/inner antennal cerebral tracts to the mushroom body 
dendrite or calyx (Ca).  Mechanosensory information arrives at the calyces via an 
unknown route but likely through the lateral horn and becomes integrated with olfactory 
information in the calyces and probably the pedunculus and lobes.  The information is 
then past to the posterior slope (PS) to the thoracic ganglia (TG) where motor neurons 
are stimulated.  The arrow indicates the direction of the dorsal (D) and anterior (A) 
portions of the adult head (Modified from Nighorn et al 1992). 
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provided below.  Olfactory information flows to the lateral horn from the antennal lobes 

either directly via the middle Antennal Cerebral Track (mACT) and inner Antennal 

Cerebral Track (iACT) or indirectly through the mushroom bodies, which receive inputs 

from these tracks as well.  Therefore, mushroom body-lateral horn interactions are likely 

to be important for the evaluation and response to olfactory information.  This is 

consistent with evidence that flies without mushroom bodies can categorize aversive and 

attractive odors (Guo and Gotz, 1997; Strauss et al., 2001; Heisenberg, 2003).   

 

Footshock information 

The pathway of electric shock information flow to the brain differs from that of 

olfactory information in that the major apparent target is the lateral horn (Ito et al., 

1998).  Electric shock stimulates nerves in the legs that relay the information to the 

thoracic ganglia.  The thoracic nervous system is connected to the suboesophageal 

ganglion in the adult brain.  The information is then relayed to its major target in the 

lateral horn (Ito et al., 1998).  Little is known about the pathway or the mechanisms for 

processing this type of information.   However there is apparent convergence with 

olfactory information within the mushroom bodies during associative olfactory learning 

(Ito et al., 1998; Waddell and Quinn., 2001a; Sokolowski, 2001; Heisenberg, 2003).  It is 

also unknown whether the electric shock information can be relayed directly from the 

suboesophageal ganglion to the mushroom bodies or if it always feeds back through the 

lateral horn. 
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Figure 8. Expression of GAL4 drivers 
 
The red structures represent the expression pattern of the 247-GAL4 driver with 
expression in the entire the mushroom bodies (MB) including the calyx (ca), peduncle 
(ped), lobes (α, α’, β, β’, γ).  The blue represents expression of the GH146-GAL4 line 
that expresses in the middle antennal cerebral tract  (mACT), leading to the lateral horn 
(l ho) and mushroom body calyces from interneurons located in the antennal lobe (ant 
lob).  The green represents the expression pattern of the OK72-GAL4 driver that 
expresses in the inner antennal cerebral tract (iACT), which leads to the lateral horn and 
mushroom body calyces from four glomeruli in the antennal lobes.  (Modified from Ito 
et al., 1998 and Heisenberg, 2003) 
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    There is information on a mechanosensory response pathway in Drosophila 

involving the giant fiber interneurons.  This pathway mediates a jump-and-flight escape 

response to visual stimuli (Trimarchi and Schneiderman, 1995; Engel and Wu, 1996; 

Engel and Wu, 1998).  Visual information is passed through the central nervous system 

to the bilateral cervical giant fibers that extend into the thorax.  However, the particular 

neurons that are necessary for the flow of information in the central nervous system are 

unknown.  The visual or mechanical stimulation to the cervical giant fiber leads to a 

jump-and-flight response, which can be measured by the spike pattern in the 

tergotrochanteral “jump” and dorsal longitudinal “flight” muscles (Engel and Wu, 1998).  

However, olfactory stimulation activates a non-giant fiber pathway, suggesting there are 

different mechanosensory response pathways for different stimulus modalities 

(Trimarchi and Schneiderman, 1995). 

There is a second mechanosensory response pathway in Drosophila known to 

involve sensory neurons controlling the femoral-tibial joint reflex (leg positioning 

reflex) (Reddy et al., 1997; Jin et al., 1998).  In this simple reflex paradigm, decapitated 

flies are immobilized with only their mesothoracic leg free to move (Jin et al., 1998).  

Stimulation is then applied to the femoral chorodotonal organ leading to the excitation of 

two motor neurons innervating the tibial extensor muscle that ultimately leads to the 

reflex of the femoral-tibial joint (Reddy et al., 1997; Jin et al., 1998).  Any anatomical 

disruption of the femoral chorodotonal organ axons (Reddy et al., 1997) or blockage of 

neurotransmission (Sweeney et al., 1995) corresponds to disruption of the leg 

positioning reflex.  This suggests that these neurons are necessary for normal reflex 
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function (Reddy et al., 1997; Jin et al., 1998).  Because this paradigm uses decapitated 

flies, any potential involvement from the central brain is unknown (Reddy et al., 1997; 

Jin et al., 1998). 

 

Associative learning   

Associative learning involves the acquisition of information about the 

environment and results in an alteration of the organism’s behavior (Davis, 1996). 

Associative learning requires the CS+ to be paired to the US and causes a behavioral 

change or conditioned response (CR) to the CS+ but no CR to the CS-, which is not 

paired to US.  The CS+/US temporal contiguity is a critical factor affecting the 

magnitude of the CR, therefore the presentation of the US or CS alone should not evoke 

the CR.  Conditioning is dependent on the training schedule defined by the duration of 

the CS and US, the number of pairings and the interval between pairings (Joynes and 

Grau, 1996).  In Drosophila, there are several different instrumental conditioning 

paradigms to study associative learning including courtship conditioning, heat avoidance 

with visual stimuli, proboscis extension reflex, motor learning, and spatial learning in a 

heating chamber (Wolf et al., 1998).  There are also classical conditioning paradigms 

such color choice, intensity contrast, heat avoidance with stationary patterns and the 

paradigm used in this research, the conditioned olfactory avoidance assay.   

In the conditioned avoidance assay, used to study olfactory learning and memory, 

the CS+ (odor) paired to US (shock) causes a CR to the CS+ but no CR to the CS- (Tully 

and Quinn, 1985).  This is a classical conditioning paradigm also termed Pavlovian 
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conditioning because the response is dependent on the training schedule and not initiated 

by the fly itself as in instrumental conditioning.  The following is a summary of the three 

different conditioned olfactory avoidance assay-training protocols used to study 

olfactory associative learning and memory in Drosophila. 

During olfactory learning training, 50-70 flies are presented with the shock-

associated odor (CS+) concomitant with the US, 12, 1.25-second 90V electric shocks 

followed by the control odor (CS-) in the absence of the US.  Two groups of animals of 

the same genotype are trained in parallel, so that each odorant serves as a CS+ and the 

complementary odorant as the respective control.  We term this training schedule the 

LONG PROGRAM because it requires 12 CS/US pairings.  The animals are tested 

immediately after training in a T-maze, where they choose between the two converging 

odors.  Memory is tested tens of minutes or hours after training.  The fraction of flies 

that avoid the shock-associated odor reflects learning of the conditioning stimuli and is 

quantified as a performance index ranging from a maximum of 100 to 0.   

Though the protocol described above is sufficient to generate good learning, 

Short Term Memory and Middle Term Memory scores up to 6 hrs post-training, a 

second more rigorous training regime is necessary to induce true Long Term Memory 

generating reliable scores 24 hrs to 7 days post training.  In this modification (SPACED 

TRAINING) the 12 pairing LONG PROGRAM is repeated 8-10 times with an interval 

of 15 minutes between each 12 CS/US pairing episode.  This regime produces learning 

scores slightly higher than one set of 12 US/CS pairings, but produces memories of the 

association that last at least 7 days.  The interval between pairing episodes is essential 
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for Long Term Memory formation because if the 10 CS/US pairing episodes are given 

sequentially without rest (MASSED TRAINING) it generates normal learning and 

memory up to 6 hrs but no 7-day Long Term Memory (Yin et al., 1994; Yin et al., 1995). 

There is also a modification of the training protocol (SHORT PROGRAM) that 

differs only in the number of US/CS pairings (Beck et al., 2000; Roman and Davis, 

2001).  Animals are trained with a single 10-second pulse of odorant (CS+ and CS-), and 

a single 1.25-second shock (US) delivered 6-7 seconds into the CS+ presentation.  This 

results in performance indices that are lower than for the LONG paradigm, but 

consistently reproducible.  Using the SHORT PROGRAM training with a rest interval 

(ITI) of 15 minutes also allows a study of acquisition of information (Beck et al., 2000).   

Although the LONG PROGRAM is quicker and more convenient for screening 

mutants for potential learning and memory deficits, the 12 pairings could induce a 

ceiling level of performance after only one training session (Beck et al., 2000).  This 

type of massed training with a high number of shock pulses is also thought to produce a 

stressful situation that could potentially alter the salience of odors.  Roman and Davis 

(2001) also suggest that the LONG PROGRAM may reflect a combination of extinction 

(when presentation of the CS alone diminishes the CR), odor desensitization (repeated 

exposure to CS diminishes effectiveness of the CS to induce a CR), stress, and 

potentially other types of adaptive processes.  The SHORT PROGRAM produces only 

modest performance after a single training and makes it possible to compare the memory 

formed after one, two or three training sessions to measure the rate of memory formation 

or acquisition of information (Beck et al., 2000).  The SHORT PROGRAM is less 
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stressful on the flies and in addition it allows study of mutants involved in memory 

formation.  The shortened odor presentation reduces the possibility of altered response to 

the odors themselves and possible complications due to repeated shock presentations 

(Roman and Davis, 2001).  Both of these training protocols have provided significant 

insights into the mechanisms of learning and memory in Drosophila. 

A number of learning and/or memory mutants have been isolated in the past 25 

years.  Associative learning mutants are subdivided into three classes: those with defects 

in sensory processing, disruptions in CNS development and those with altered 

biochemistry and physiology of the relevant cells or conditioning mutants (Davis, 1996). 

Only those mutants with normal sensory processing and CNS development are 

considered true learning and memory mutants.  Some of the first genes identified to play 

a role in learning and memory through the isolation of mutants were the cAMP-

dependent phosphodiesterase dunce, the adenylyl cyclase rutabaga, the cAMP-

dependent kinase (PKA) catalytic subunit DCO, and amnesiac the homolog to the 

mammalian pituitary adenylyl cyclase-activating peptide all effecting cAMP signaling 

(Nighorn et al., 1991; Han et al., 1992; Skoulakis et al., 1993; Davis, 1996; Waddell and 

Quinn, 2001).   The amn gene codes for a protein with features of a preproneuropeptide 

and sequence similarity to pituitary-adenylyl cyclase-activating peptide (PACAP) 

(Feany and Quinn, 1995; Moore et al., 1998).    

Through the study of these mutants, models have emerged that suggest a 

significant role of the cAMP pathway in Drosophila associative olfactory learning and 

memory.  The US and CS pathways must somehow converge in the mushroom bodies 
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activating adenylyl cyclase (rutabaga), thereby increasing cAMP synthesis (reviewed in 

Heisenberg, 2003).  The level of cAMP can also be increased by neuropeptides such as 

that encoded by the amnesiac gene expressed in the dorsal paired medial neurons (DPM) 

that project into the mushroom bodies (Figure 9) (Feany and Quinn, 1995; Waddell et 

al., 2000).  The increase in cAMP activates cAMP-dependent kinase (PKA), 

phosphorylating targets such as potassium channels at the synapse potentially involved 

in short-term memory (STM) (Figure 9) (Waddell and Quinn, 2001b; Sokolowski, 2001; 

Schwaerzef et al., 2002; Heisenberg, 2003).  PKA (the DCO gene encodes the catalytic 

subunit) phosphorylates CREB, which mediates the transcription of new genes necessary 

for long-term memory (LTM) formation (Figure 9) (Yin et al., 1994; Bourtshouladze et 

al., 1994; Bartsch et al., 1995; DeZazzo and Tully, 1995; Roman and Davis, 2001).  The 

cAMP is degraded by a phosphodiesterase (dunce) (Figure 9) and loss of proper 

degradation leads to cAMP elevation and is manifested as an olfactory learning defect 

(Dudai et al., 1976, Davis and Kieger, 1981; Davis and Davidson, 1986; Zhong et al., 

1991; Waddell and Quinn, 2001b).  All of these mutants affect the level of PKA 

activation either by reducing it as in the case of rut and DCO mutants, or increasing it in 

the case of dnc, thereby inhibiting learning and the formation of memory (Waddell and 

Quinn, 2001a; Sokolowski, 2001; Heisenberg, 2003) 

There are four distinct memory phases in Drosophila. Short-term memory (STM) 

that decays in less than an hour (reviewed in Heisenberg, 2003).  Middle-term memory 

(MTM) lasts from one to three hours and requires new protein synthesis from pre-

existing messages.  There are two types of long term memory, one independent of 
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protein synthesis (anesthesia-resistant memory, ARM) and the other requiring protein 

synthesis (long-term memory, LTM) (reviewed in Heisenberg, 2003).  The different 

phases of memory were determined using pharmacological assays and analysis of 

genetic mutations.  In Drosophila, ARM appears to be insensitive to cycloheximide, 

which blocks transcription, but LTM is cycloheximide-sensitive (DeZazzo and Tully, 

1995).  MTM can be disrupted by diethylthiocarbomate, which inhibits synthesis of 

noradrenaline (DeZazzo and Tully, 1995).  In Aplysia, STM is unaffected by an inhibitor 

of transcription (actinomycin) and an inhibitor of translation (anisomycin) (Mueller and 

Carew, 1998).  In contrast, MTM and LTM are both disrupted by anisomycin and LTM 

is also disrupted by actinomycin (Mueller and Carew, 1998).  In either model system, 

experiments have lead to the same conclusion that STM is independent of translation and 

transcription, MTM is dependent on translation and LTM is dependent on both 

translation and transcription (DeZazzo and Tully, 1995; Mueller and Carew, 1998). 

Genetic mutations in Drosophila have added invaluable in vivo information in 

further understanding the mechanism of memory formation as well as neurons involved 

in storage.  For example, LTM requires repeated training that includes rest intervals 

(spaced training) and the cAMP response-element binding protein (CREB) transcription 

factor (Yin et al., 1994; Tully et al., 1994; Waddell and Quinn, 2001a).  The role of 

CREB in LTM formation appears to be evolutionarily conserved (Yin et al., 1994).   In 

addition, the radish (rsh) mutation eliminates ARM without effecting LTM (Figure 9)  
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Figure 9.  Mediating learning and memory in the Drosophila mushroom bodies 
 
The Drosophila mushroom bodies receive olfactory information through the 
antennocerebral tract from the antennal lobe glomeruli and electric-shock input from an 
unknown source.  The dorsal paired medial (DPM) neurons potentially modulate that 
information with the release of the AMN neuropeptides leading to up-regulation of 
cAMP.  The electroshock stimulation increases the level of cAMP by activation of RUT 
adenylyl cyclase (rut-AC) through a G-protein coupled receptor (G), which may also 
interact with neurofibromin (NF1) regulating short term memory (STM).  The protein 
kinase A (PKA) catalytic subunits (DCO) and regulatory subunit R1 also affect the level 
of cAMP within the neuron.  cAMP is then deactivated by a phosphodiesterase encoded 
by the dnc gene.  When the mushroom bodies receive repeated olfactory and 
electroshock input simultaneously, PKA phosphorylates cAMP response-element 
binding protein (CREB) leading to transcriptional activation and long term memory 
(LTM).  Mutations in the radish (rsh) gene lead to loss of anesthesia-resistant memory 
(ARM).  The neuronal cell adhesion protein fasciclinII (FasII) and an α-intregrin volado 
(VOL) can also alter the release of neurotransmitters. (Modified from Waddell and 
Quinn, 2001a)   
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(Folkers et al., 1993; Tully et al., 1994; Waddell and Quinn, 2001a) and the α-lobe 

absent (ala) mutation lacking the mushroom body α lobe on both sides, have normal 

STM and ARM, but lack LTM (Pascual and Preat, 2001; Heisenberg, 2003). 

It appears that all memory phases except ARM, for which the mechanism is 

relatively unknown, are affected by PKA activation (DeZazzo and Tully, 1995; Roman 

and Davis, 2001).  In addition, there are other factors that do not appear to affect PKA 

that alter learning and memory processes (Groteweil et al., 1998).  For example, the vol 

gene encodes an α-integrin subunit thought to alter necessary cell adhesion during short-

term memory formation when mutated, leading to deficits in this process (Figure 9).  

Mutations in fasII cause a deficit in a different neuronal cell adhesion molecule (NCAM) 

apparently altering olfactory learning (Figure 9) (Cheng et al., 2001).  There are also 

mutants that block the initial phase of learning including NF1, a GTPase-activating 

protein for Ras and Ddc an aromatic-amino-acid-decarboxylase necessary in the making 

monoamine neurotransmitters such as serotonin and dopamine (Figure 9) (reviewed in 

Waddell and Quinn, 2001b).  This information has led to the current model of how 

learning and memory formation may occur within the mushroom bodies (Figure 9) 

(Waddell and Quinn, 2001a; Roman and Davis, 2001; Sokolowski, 2003).  With the 

discovery of new mutants the mechanism of olfactory learning and memory in 

Drosophila is unfolding and will hopefully lead to further understanding of higher order 

brain functions. 
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Non-associative behaviors  

Non-associative learning could occur when an organism habituates, or is 

sensitized to a stimulus, whereas associative learning occurs when an organism learns 

relationships among stimuli (Dudai, 1988; Devaud et al., 2003).  In order to understand 

olfactory learning and memory, appropriate controls must be performed to ascertain that 

any defects in learning and memory are due to altered physiology or biochemistry that 

affect integration of information not stimulus perception.  In this case, proper responses 

to olfactory and electric shock stimuli are the necessary task relevant controls.  These 

controls are used to identify sensory deficits that potentially interfere with stimulus input 

or processing necessary for olfactory learning.  However, additional essential controls 

are needed to investigate the effect of the US (shock) on CS+ and CS- (odor) perception 

and processing, and CS+ pre-exposure to subsequent CS- perception and processing.  

Tully and Quinn (1985) suggested that pre-exposure to odor or shock then subsequent 

testing of proper response to the CS+, CS- and US should also be included as task 

relevant controls.  Presenting only one odor during the training period resulted in a 

response decrement to the same odor, but not to a novel odor (Tully and Quinn, 1985).  

Therefore, these controls need to be performed in order to determine whether a proposed 

associative olfactory learning mutant has non-associative or sensory deficits, which 

could account for the “mutant” phenotype.  Using attractive odors in olfactory assays 

may also be necessary because of data suggesting that dnc mutants have a learning 

deficit when conditioned with negative stimuli, but are normal when conditioned to 

positive CS (Temple et al., 1983).  In fact, experiments indicate that mutants such as 
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amnesiac (amn), rutabaga (rut1) and dunce (dnc1) exhibited deficits in olfactory 

avoidance when pre-exposed to an odor paired with shock (Preat, 1998).  Is then the 

deficit due to odor pre-exposure alone and what structures are necessary for proper 

response to an odor after such pre-exposure?  The olfactory avoidance deficit in the amn 

mutant also occurs when they are pre-exposed to shock alone.  This effect of shock pre-

exposure on odor avoidance did not recover for 24 hours.   

In addition, examining non-associative behaviors offers some understanding of 

the pathway of the CS and US information flow through the adult CNS.   To understand 

the effect of possible pre-exposure dependent non-associative deficits, it is important to 

examine if they require the mushroom bodies or other tissues.  In the case of amn, the 

protein accumulates in dorsal paired medial neurons, which project axons medially that 

innervate the ipsilateral mushroom body lobes (Feany and Quinn, 1995; Waddell and 

Quinn, 2001a).  AMN is not found in mushroom bodies, antennal lobe or lateral horn. 

Suggesting, the deficit may be due to perturbation in mushroom body function because 

AMN is required in modulatory neurons.  Experiments with vertebrate PACAP in 

Drosophila neuromuscular junctions (NMJ's), indicate that application of synthetic 

PACAP increased voltage-dependent potassium channel activity (Zhong, 1995), thereby 

altering the potential of the neuron to respond to subsequent stimuli.   

Mutants in genes encoding channel proteins such as in the gene Transient 

receptor potential (Trp)-Ca2+ channel also have been shown to have non-associative 

behavioral defects (Stortkuhl et al., 1999).  They responded to a dilute odor after pre-

exposure to the same strong odor, whereas wild type strains showed no avoidance.  The 
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researchers proposed that this deficit resulted from loss of olfactory "adaptation", which 

is odor concentration and exposure duration dependent.  These experiments used only 

aversive odors, octanol and isoamyl alcohol, resulting in an effect that could last 

anywhere from one minute to several hours (Dalton, 2000).  It is uncertain whether this 

experiment was indeed a measure of adaptation, but it was consistent with the definition 

of adaptation: the repeated or prolonged exposure of a stimulus leads to a specific 

decrease in sensitivity to that stimulus (Dalton, 2000).  More experiments are necessary 

to understand how and where this type of deficit occurs and if it is truly adaptation or 

possibly some form of non-associative learning. 

 In addition to the various types of non-associative learning, it is essential to not 

only explore where associative learning occurs within the CNS, but also the neurons 

essential for non-associative learning in order to accurately couple or uncouple the two 

processes.  For example, in Aplysia, studies indicated that the site of habituation is 

within the CNS rather than the thoracic portion of the giant fiber pathway (Marcus et al., 

1988), however it is unknown where in the central nervous system habituation occurs.  It 

is also unknown whether associative learning and habituation are dependent or 

independent processes. During associative training, habituation or desensitization to the 

CS could potentially inhibit proper CS/US association that leads to CS+ vs. CS- 

discrimination (Joynes and Grau, 1996).  The non-associative effects attributed to 

habituation, desensitization or sensory fatigue are all manifested as diminished or 

eliminated responses to stimuli after pre-exposure to the same type of stimulus and 

spontaneously recover in a time dependent manner.  Only for habituation can the 
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response be recovered by dishabituation with a novel stimulus.  Furthermore, it is 

unknown whether any of these non-associative defects share similar biochemical 

mechanisms with associative olfactory learning. 

Habituation and desensitization are necessary processes that likely allow 

Drosophila to reduce their behavioral response to a stimulus with no reinforcement and 

focus on more relevant stimuli (Devaud et al., 2003).  Many different assays have been 

used to study non-associative behaviors in Drosophila, including the cleaning reflex 

(Corfas and Dudai, 1990), the proboscis extension reflex (Duerr and Quinn, 1982), the 

landing response (Asztalos et al., 1993), the visual escape jump (Engel and Wu, 1996), 

the leg position reflex (Jin et al., 1998) and the jump-and-flight escape response (Engel 

et al., 2000).  With the exception of the proboscis extension reflex, these assays involve 

the study of simple proprioceptive reflexes within the thoracic sensory neurons of the 

peripheral nervous system (PNS) (Jin et al., 1998).  Apparently the cAMP mutants 

rutabaga (rut) and dunce (dnc), which have deficits in associative olfactory learning 

could habituate and dishabituate in these paradigms.  However, habituation occurred 

more quickly and was short lived for the rut and dnc mutants (Corfas and Dudai, 1989; 

Duerr and Quinn, 1982; Engel and Wu, 1996).  Habituation could also be eliminated by 

targeted expression of calcium independent CaMKII in the thoracic sensory neurons, 

which also has a function in learning (Mayford et al., 1996; Jin et al., 1998).  The Su-

var(3)601 mutants that lack protein phosphatase 1 that habituated faster are also severely 

impaired in olfactory learning (Asztalos et al., 1993).  The fact that these mutants affect 

both habituation and associative olfactory learning suggests the two might be linked 
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biochemically and/or associated with the same region of the brain (Corfas and Dudai, 

1989; Duerr and Quinn, 1982; Asztalos et al., 1993; Engel and Wu, 1996; Jin et al., 

1998). 

 

Mushroom body mediated behaviors 

Olfactory learning and memory 

In Drosophila, most of the genes important for olfactory learning and memory 

are expressed preferentially in mushroom body neurons (reviewed in Waddell and 

Quinn, 2001; Sokolowski, 2001; Heisenberg, 2003).  However, olfactory learning 

mutants that disrupt mushroom body function such as mushroom body deranged (mbd) 

are capable of associative visual learning (Heisenberg et al., 1985).  This suggests that 

the mushroom bodies may be essential for olfactory learning, but are dispensable for 

some other types of associative learning (Wolf et al., 1998; Heisenberg, 2003).  The 

mushroom bodies are clusters of about 2500 neurons, situated bilaterally in the dorsal 

and posterior cortex of the Drosophila brain (Figure 7).  Evidence suggests that olfactory 

information received by the olfactory receptors is transmitted from antennal lobe 

glomeruli through the antenno-cerebral tracts to the mushroom bodies (Stocker et al., 

1990; Ito et al., 1998; Heisenberg, 1998; Heisenberg, 2003).  There are two main 

ascending tracks, the inner antenno-cerebral tract (iACT) and the middle antenno-

cerebral tract (mACT). These two tracks also feed directly into the lateral horn and as 

demonstrated by Ito et al., (1998) there are bi-directional connections between specific 

anatomical regions of the mushroom bodies and the lateral horn.  This suggests that 
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responses to olfactory information could be mediated by both the mushroom bodies and 

lateral horn independently or by both.  Marin et al., (2002) suggests that the lateral horn 

is necessary for olfactory discrimination and the mushroom bodies are necessary for 

associative olfactory learning.  The information from the antenno-cerebral tracts arrives 

at the mushroom body calyces, which are composed of dendrites comprising a neuropil 

just ventral to the cell bodies (Figure 7).  In contrast, the axons of mushroom body 

neurons fasciculate to form the peduncle that projects to the anterior of the brain.  There, 

the axons bifurcate, with some processes extending medially and others projecting 

dorsally to comprise the lobes (Figure 7) (Strausfeld et al., 1976; Crittenden et al., 1998; 

Ito et al., 1998; Heisenberg, 2003).  There are five major axonal projections that 

comprise the lobes of the mushroom bodies: the dorsally projecting α and α’ along with 

the three medially projecting β, β’ and γ (Critttenden et al., 1998; Heisenberg, 2003).  

Developmentally, these structures arise from differentiation of four mushroom body 

neuroblasts to create a tripartite structure of projections with α and β branches, α’ and β’ 

branches and the unbranched axon projection to the heel and γ lobe (Crittenden et al., 

1998).   

The different neuronal types that comprise the lobes exhibit different mushroom 

body specific and preferential gene expression patterns indicating possible functional 

differences between lobes (Crittenden et al., 1998).  Evidence suggests that the γ lobes 

are responsible for associative olfactory learning (Zars et al., 2000) and α lobes 

responsible for storage of long term memory (Pascual and Preat, 2001).  However, little 
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is known about whether non-associative learning is processed in the mushroom bodies 

and if it is lobe specific.     

 

Visual learning and memory 

Apparently mushroom bodies are dispensable for some types of learning 

paradigms that involve visual stimuli including color choice, arena test, heat avoidance, 

avoidance of turbulence and spatial learning in a heating chamber (reviewed in Wolf et 

al., 1998).  However, the mushroom bodies are necessary for context generalization in 

visual learning that is performed in a flight simulator (Zars, 2000).  Context 

generalization involves learning the relationship between discrete stimuli in a particular 

environmental setup (context) and then being able to remember that relationship in a 

different context (Bouton et al., 1999).  In this paradigm, flies learn to anticipate a future 

event based on a past experience as a consequence of their own response.  This type of 

conditioning is called operant or instrumental (Thorndike, 1911). 

In the flight simulator, a fly is tethered to a string and placed in an arena with T-

shaped patterns as landmarks while its movements are measured by a torque meter (Wolf 

and Heisenberg, 1991; Zars, 2000).  The fly is negatively conditioned when heading 

towards one of the patterns with the presence of heat.  After the training phase, the fly’s 

memory is measured by testing for its preference of orientation with respect to the 

landmarks (Wolf and Heisenberg, 1991; Zars, 2000).  Mushroom body defective flies are 

normal for this type of learning (Wolf et al., 1998).  However, when the background 

color of the arena is changed from white to green or blue (a different context) between 
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the training and testing phases, these flies failed to remember the training situation (Liu, 

et al., 1999; Zars et al., 2000).  This suggests that the mushroom bodies are necessary for 

the integration and generalization of visual information with respect to context changes.  

 

Courtship and courtship conditioning 

 The conditioned courtship suppression paradigm is based on natural sexual 

behavior involving only natural stimulation and can be performed with relatively few 

animals (Kamyshev et al., 1999).  In Drosophila, courtship involves the processing of 

visual, chemosensory and auditory information between the two sexes (reviewed by 

Hall, 1994).  Females produce a courtship-stimulating pheromone (cuticular 

hydrocarbon) that the male perceives by contact (gustation) (Ferveur, 1997).  Virgin 

females stimulate males to court more vigorously than do fertilized females due to 

reduced levels of cuticular hydrocarbons in the latter (Siegel and Hall, 1979; Kamyshev 

et al., 1999). However, mated females still induce courtship, but once mated they are no 

longer receptive to copulation.  This change in mated female behavior leads to extrusion 

of female ovipositor in response to male courtship blocking copulation attempts 

(Connolly and Cook, 1973; Kamyshev et al., 1999).  Males exposed to mated females 

and rejected, tend not to court subsequent virgin females for 2-3 hours, or fertilized 

females for one day (Siegel and Hall, 1979; Kamyshev et al., 1999).  Male flies with 

mutations in genes that affect learning (dunce, rutabaga and amnesiac) show their 

failure to learn in this paradigm as continued courtship regardless of previous 
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experiences courting fertilized females (Siegel et al., 1984; Siwicki and Ladewski, 2003; 

Sokolowski, 2003). 

A single one-hour pairing of a male fly with a mated female leads to 2-3 hour 

conditioned courtship suppression or short term memory (STM) formation, whereas 

three one-hour pairings or one five hour pairing leads to 9 day conditioned courtship 

suppression or long term memory (LTM) (McBride et al., 1999).  In this paradigm 

immediate recall tested zero minutes after training is no considered to require 

consolidation of information.  Whereas, STM tested 30-60 minutes after training and 

LTM tested 9 days after training do require some type of consolidation of information 

(McBride et al., 1999).  Blocking neurotransmission within the projection neurons from 

the antennal lobe to the lateral horn and mushroom bodies leads to deficit in odor 

detection and all stages of male courtship (Joiner and Griffith, 1999; Heimbeck et al., 

2001; Siwicki and Ladeski, 2003).  However, if only mushroom bodies are missing, 

male flies are able to learn and recall courtship conditioning immediately, but are unable 

to form STM or LTM (Ito et al., 1998; McBride et al., 1999; Heimbeck et al., 2001).  

This data is consistent with the lateral horn being necessary for processing 

chemosensory information and the mushroom bodies necessary for associative memory 

formation, however the precise neural systems responsible for learning in the courtship 

paradigm have not been identified yet. 
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Locomotion control 

In Drosophila, the mushroom bodies appear to influence locomotor activity (de 

Belle and Heisenberg, 1996; Martin et al., 1998; Wolf et al., 1998; Helfrich-Forster et 

al., 2002; Putz and Heisenberg, 2002).  Locomotor activity is a measure of a fly’s 

continuous walking in a tube from one end to the other and back for a period of time 

(Martin et al., 1998; Helfrich-Forster et al., 2002).  Flies with non-functional mushroom 

bodies have more frequent initiation of spontaneous walking activity than normal flies, 

suggesting that the mushroom bodies normally suppress locomotor activity (Martin et 

al., 1998; Helfrich-Forster et al., 2002).  This is consistent with the interpretation that 

mushroom bodies do not affect maintenance of general motor activity rhythms, but 

rather their ablation induced hyperactivity under continuous darkness (free running 

activity) (Helfrich-Forster et al., 2002).  The Helfrich-Forster et al., (2002) studies imply 

that the mushroom bodies are not involved in circadian activity rhythms (cycles of 

stereotypical behaviors driven by autonomous gene expression), but do affect initiation 

of general locomotor activity. 

 

Alcohol addiction  

In Drosophila, genes expressed in the mushroom bodies involved in olfactory 

learning also appear to influence acute and chronic response to ethanol (Bellen, 1998; 

Heberlein, 2000; Cheng et al., 2001; Guarnieri and Heberlein, 2002).  Though it is 

presently unclear why, it may be related to the fact that genes involved in cAMP 

signaling are preferentially expressed there and mediate olfactory learning and memory. 
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In cell culture, acute exposure to ethanol apparently potentiated receptor activated cAMP 

synthesis leading to CREB activation (Diamond and Gordon, 1997).  Whereas, chronic 

exposure decreased cAMP production (Bellen, 1998).  To investigate the behavior of a 

fly upon ethanol exposure, the animals are presented with ethanol vapor within a 

specialized devise called an inebriometer (Cohan and Graf, 1985).  This devise measures 

ethanol resistance by the time it takes a fly to roll down a series of baffles as it becomes 

more uncoordinated due to the ethanol vapor (Cohan and Graf, 1985; Bellen, 1998).   

Flies with mutations in the amnesiac (amn), rutabaga (rut) and DCO genes 

leading to decreased levels of cAMP exhibit increased sensitivity to alcohol (Lane and 

Kalderon, 1993; Moore et al., 1998; Bellen, 1998).  Flies lacking DUNCE which 

precipitates an increase in cAMP appear to be desensitized to up-regulation of cAMP 

during acute exposure therefore showing sensitivity similar to controls (Bellen, 1998).  

These experiments support the model that the cAMP pathway regulates the response to 

ethanol.  However, as for learning, the ethanol response is likely more complex as 

suggested by evidence that mutations in the fasciclinII (fasII) gene, encoding a cell 

adhesion receptor also cause heightened sensitivity to ethanol vapors (Cheng et al., 

2001).  The fact that several genes that affect mushroom body- dependent olfactory 

learning also affect response to ethanol (Bellen, 1998; Heberlein, 2000; Cheng et al., 

2001; Guarnieri and Heberlein, 2002), suggests that these two behaviors may share 

biochemistries and a common anatomical structure, the mushroom bodies. 
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Tools to study behavior 

Mapping of non-associative and associative behaviors in the brain of Drosophila 

can be accomplished using biochemical and genetic manipulations.  Hydroxyurea 

ablations stop the four mushroom bodies and one antennal lobe neuroblast from dividing 

during development.  In Drosophila, these five neuroblasts are the only proliferating 

cells from 0 through 8 hours after hatching (Ito and Hotta, 1992).  Therefore, if newly 

hatched larvae are fed the cell cycle inhibitor hydroxyurea those five neuroblasts fail to 

proliferate deleting the mushroom body and specific antennal lobe lineages (de Belle and 

Heisenberg, 1994).  This manipulation has been reported to lead to defective associative 

learning (de Belle and Heisenberg, 1994).  However, the results are difficult to interpret 

since the treatment affects not only the mushroom bodies, but there is also loss of 2/3 of 

the inner antenno-cerebral tract and most of the lateral relay interneurons (Heimbeck et 

al., 2001; Stocker et al., 2001).  Therefore, to truly understand the contribution and roles 

of the structures in the pathway of olfactory information, blockage of the information 

flow in each specific structure involved is necessary. 

A very useful tool for such studies was offered by adapting the yeast UAS/GAL4 

system for use in Drosophila.  An enhancer-less construct bearing the GAL4 gene was 

inserted randomly into multiple independent genomic locations, where its expression is 

driven by different resident enhancers (Brand and Perrimon, 1993).  Because the GAL4 

protein is a transcription factor, it can activate target transgenes attached to its binding 

sequence, the Upstream Activating Sequence (UAS).  This target gene is silent in the 

absence of GAL4.  To express any UAS bearing transgene, flies carrying this transgene 
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are crossed to flies expressing the GAL4 in the desired tissue or temporally restricted 

pattern (Enhancer Trap GAL4).  In the progeny of this cross, the UAS-gene is activated 

in cells or tissues where GAL4 is expressed and the effects of this restricted or 

ubiquitous expression can be studied (Brand and Perrimon, 1993).  There are also UAS-

bearing transgenic strains available that allow direct visualization of the expression 

pattern (such as UASGFP and UASlacZ etc).  

Using various CNS specific GAL4 lines to express neurotransmission-blocker 

transgenes under UAS, the function of specific neurons and brain areas can be 

permanently or conditionally inhibited allowing study of its effects on olfactory and 

mechanosensory behaviors.  There are two types of such transgenes available to date.  

First, transgenes based on the Shibirets mutation.  Shibirets is a temperature sensitive 

allele of the dynamin GTPase protein that functions during the clathrin-mediated 

endocytosis necessary for neurotransmitter re-uptake in synapses.  At the non-permissive 

temperature (>32oC) and in competition with the normal resident dynamin protein, SHIts 

prevents neurotransmitter re-uptake and subsequent release due to a conformational 

change (Kitamoto, 2001).  Dynamin mutants have been found to block endocytosis 

without affecting protein trafficking along the exocytic pathway or the morphology of 

the nerve terminal (vanderBliek et al., 1993).  This conditional system allows separation 

between the direct physiological consequences of perturbing neuronal subsets with a 

conditional neurotransmission blockade and potential developmental effects that may 

arise by a permanent blockade.  A simple temperature shift from 25ºC to the non-

permissive temperature can induce rapid perturbation of neuronal activities allowing 
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study of its acute behavioral consequences.  Importantly, the effects of SHIts are fully 

reversible after a 15 minute rest period at the permissive temperature (25ºC) (Kitamoto, 

2001).   

The second system utilizes the tetanus toxin light chain protein.  The Tetanus 

toxin light chain (TeTxLC or TNT) gene, produces part of a neurotoxin protein from 

Clostridium tetani (Schiavo et al., 2000).  This particular neurotoxin is a metalloprotease 

capable of cleaving the synaptic vesicle-associated membrane protein, synaptobrevin 

(Schiavo et al., 1992; Martin et al., 2001).  Synaptobrevin is necessary for regulating 

exocytosis by interacting with various presynaptic proteins such as SNAP-25 and 

syntaxin (Schiavo et al., 2000).  Disruption of this association completely blocks evoked 

exocytosis (Schiavo et al., 1992; Martin et al., 2001).  In Drosophila, only a neuronally 

expressed form of synaptobrevin (dn-syn) is sensitive to the tetanus toxin light chain 

(Sweeney et al., 1995; Martin et al., 2001).  Although the effects of tetanus toxin are 

irreversible, there is no retrograde transport, no morphological defects and no known 

targets outside the nervous system (Martin et al., 2001).  This makes TNT expression a 

powerful tool to understand the structures in the central nervous system necessary for 

specific behaviors in Drosophila.  In fact, previous studies using UAS driven tetanus 

toxin indicate that it is capable of blocking neural activity affecting a particular 

behavioral response (Keller et al., 2002; Martin et al., 2002).  

These powerful techniques will allow the identification of deficits that are 

mushroom body specific and deficits outside the mushroom bodies, but still within the 

central olfactory information pathway.  There are a few GAL4 driver lines (Enhancer 
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Trap GAL4s) that label different structures in the olfactory information-processing 

pathway.  247-GAL4, is expressed in most mushroom body neuronal types which allows 

specific neurotransmission blockage into and out of the mushroom bodies (Figure 8) 

(Zars, 2000).  There are several other mushroom body GAL4 lines that vary in temporal 

and spatial expression, however many have sensory defects (Zars et al., 2000; McQuire 

et al., 2001).  247-GAL4 expresses late in development without causing any apparent 

sensory defects (McQuire et al., 2001).  This allows use of this line to block 

neurotransmission specifically in these neurons of the adult fly.  In fact, McGuire et al. 

(2001) have shown that expression of the shibirets mutation with the 247-GAL4 driver at 

the non-permissive temperature (37ºC) affects memory retrieval, but not acquisition or 

consolidation.   

In addition, a mutant isolated by de Belle and Heisenberg (1996) which exhibits 

a severe mushroom body structural defect known as mushroom body miniature (mbm1), 

will also be used to investigate mushroom body specific functions.  The mbm gene 

apparently supports the maintenance of mushroom body cells during third instar larva 

and metamorphosis (de Belle and Heisenberg, 1996).  The reduction in mushroom body 

cells impairs olfactory learning, without reduction in odor avoidance, shock reactivity or 

locomotor behavior (de Belle and Heisenberg, 1996).  

GH146-GAL4 is expressed in the antennal lobe interneurons, + 100 relay 

interneurons and 2/3 of inner antennocerebral tract leading to the calyx and lateral horn 

(Figure 8).  Using this driver allows neurotransmission blockage from the inner 

projection neurons to both the calyx and lateral horn (Stocker et al., 1997; Heimbeck et 
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al., 2001).  Previous behavioral analysis performed on GH146 transgenic flies that were 

crossed to UAS-TNT indicated that expression of tetanus toxin in those neurons affects 

responses to dilute odors and abolishes male courtship (Heimbeck et al, 2001; Martin et 

al., 2002).   

OK72-GAL4 is expressed in the middle antennocerebral tract leading to the 

calyx and lateral horn and glomeruli VM1, VM4 and DL1, allowing blockage of 

neurotransmission from the middle projection neurons to both the calyx and lateral horn 

(Figure 8) (Acebes and Ferrus, 2001; Devaud et al., 2003).  OK72-GAL4 crossed to 

UAS-TNT appears to affect olfactory perception of benzaldehyde, but not butanol 

(Devaud et al., 2003).  This suggests that there is specificity with respect to odor coding 

among the different GAL4 drivers.  Unfortunately, none of the known GAL4 expression 

lines are specific to the lateral horn or the entire iACT and/or mACT. 

 

14-3-3’s in Drosophila melanogaster 

All 14-3-3 proteins were named after their mammalian counterparts based on 

their degree of similarity.  In Drosophila melanogaster, there are two isoforms of ζ from 

the typical protein group, LEO I and LEO II, which arise by alternative splicing of the 

14-3-3ζ (leonardo) transcript, with only a five amino acid difference between the two 

isoforms (Figure 10).  In contrast, Drosophila contains only one member of the atypical 

group, D14-3-3ε.  The Drosophila homologs are highly conserved, sharing 88% and 

82% identity with the human 14-3-3ζ and 14-3-3ε respectively (Table 4) (Skoulakis and 
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Table 4.  Percent identity between Drosophila and vertebrate 14-3-3s 

Drosophila  Vertebrate 
Isotype % Identity Isotype 

 81 ζ 
 78 β 
 77 τ 

Dζ (LEO) 75 γ 
 73 η 
 68 ε 

         61% 65 σ 
 83 ε 
 67 ζ 

Dε 65 β 
 65 τ 
 63 γ 
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 Davis, 1998), verified by completion of the respective genome projects (Table 4).  

Therefore, results obtained by this study in Drosophila will contribute significantly to 

our understanding of human 14-3-3s.  

 In adult flies, the LEO proteins are found enriched in the mushroom bodies and 

ellipsoid body and at lower levels throughout the entire body (Skoulakis and Davis, 

1998; Philip et al., 2001).  D14-3-3ε is present in all stages of development and in all 

tissues examined (Figure 11) (Philip et al., 2001).  Due to the high isotype homology, 

understanding the role of these 14-3-3s in the Drosophila central nervous system is 

likely to contribute to understanding the role of these proteins in the normal function and 

neuro-degenerative diseases in the human brain.  The following is a summary of what is 

already known about the functions of 14-3-3s in Drosophila melanogaster. 

 

14-3-3ζ 

The leonardo gene is contained within 26 kb of genomic DNA encoding three 

RNA populations of 2.9, 1.9 and 1.0 kb, with the 2.9 kb specific to the adult head 

(Skoulakis and Davis, 1996).  Those RNAs populations contain five species of mRNAs 

that differ by the alternative use of the non-coding exons 1 or 1’ and the coding exons 6 

or 6’.  In addition one of three different poly(A) addition sites can be used with the 2.9 

kb transcript always using the furthest one (Figure 11) (Kockel et al., 1997).  These 

mRNAs produce two different LEO isoforms with LEO I containing exon 6 and LEO II 

containing exon 6’ (Kockel et al., 1997).  The fact that the 2.9 kb head specific RNA 
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Figure 10.  Map of leonardo transcripts and mutations 
 
41  The genomic region, structure and mutations of the D14-3-3ζ  gene.  Boxes 
represent exons, whereas lines represent introns and surrounding non-transcribed 
regions.  The stippled boxes indicate untranslated portions of exons.  LEO I includes the 
splice variation with exon 6 and LEO II contains the splice variation with exon 6’.   The 
white circles in exon 7 represent polyadenylation sites.  The arrows indicate the P-
element insertions in the introns.  The solid black bar indicates the extent of the leo12X 
deletion, whereas the hatched bars indicate a region of uncertainty at the ends.  (Adapted 
Skoulakis and Davis, 1996, Philip et al., 2001).   
(B) PROTEIN sequence of LEO I exon 6 underlined and the differences in exon 6’ that 
produce LEO II underneath. 
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encodes a LEO I specific cDNA suggested that there might be differences in the 

temporal and spatial expression of the two isoforms (Kockel et al., 1997).  However, 

two-dimensional westerns indicated that only one protein can be detected from heads or 

bodies (Skoulakis and Davis, 1996).  This was likely due to the fact that the two LEO 

isoforms differ only by five amino acids and the differences are mostly conservative in 

size and charge (Figure 10) (Kockel et al., 1997; Philip et al., 2001).  The amino acids 

encoded by exon 6 are the least conserved throughout the 14-3-3 protein family 

suggesting that the differences between the exons might affect target specificity (Figure 

10) (Skoulakis and Davis, 1998; Philip et al., 2001).  

Due to the high homology among isoforms, RT-PCR was required to determine 

possible differences in the temporal and spatial pattern of the two isoforms.  leoI RNA 

was found to be expressed in early embryos, late embryos, all larval stages, and in adult 

heads (Figure 11).  In 12-14 hour embryos, when the nervous system is developing, leoI 

is absent (Figure 11) (Philip et al., 2001).  In contrast, leoII appeared to be adult 

mushroom body specific and found in all embryonic stages including 12-14 hour 

embryos and larval stages.  Using mushroom body ablated adult flies, leoI was found to 

be present throughout the head and apparently enriched in ellipsoid body (Figure 11) (de 

Belle and Heisenberg 1994, Philip et al., 2001).  leoII appeared to be adult mushroom 

body specific as well as expressed in the thorax, abdomen, and adult heads outside the 

mushroom bodies like leoI (Figure 11) (Philip et al., 2001).  This evidence suggested  
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Figure 11.  Expression of leo and D14-3-3ε mRNA 
 
(A) Wild type adult fly head sections stained with anti-LEO without (MB+) and with 
hydroxyurea treatment (MB-). 
(B) mRNA was isolated from 0-2 hr (E), 12-14 hr (M) and 18-20 hr (L) embryos, first, 
second and third instar larvae, adult heads control (wt), eyes-absent (eya) and control 
hydroxyurea mushroom ablated (MB-) and eyes-absent animals, and from wt thoraces 
and abdomens (Adapted from Philip et al, 2001). 
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that there is differential expression of leo I and leo II throughout development, although 

it is unknown whether each may have unique developmental roles.  It is possible that the 

two LEO isoforms are functionally distinct, perhaps in analogy to the two ζ phospho-

isoforms (the ζ/δ pair) in vertebrates (Aitkens et al., 1995), since LEO proteins 

apparently are not phosphorylated (Skoulakis and Davis, 1998)  

An enhancer detector screen for genes that express preferentially in the 

mushroom bodies produced several leo mutant alleles including a semi-lethal P-element 

insertion leoP1375, a lethal P-element insertion leoP1188 and a lethal imprecise deletion 

leo12X (Figure 10) (Skoulakis and Davis, 1996).  Small imprecise excisions (leoX1 and 

leo2.3) that apparently removed the mushroom body enhancer and therefore are 

homozygous viable with reduced staining in the adult mushroom bodies were also 

isolated (Skoulakis and Davis, 1996).  These mutants allowed investigation of the role of 

LEO in eye, embryonic and oocyte development as well as synaptic activity and 

olfactory learning and memory (Chang and Rubin, 1996; Skoulakis and Davis, 1996; 

Broadie et al., 1997; Kockel et al., 1997; Li et al., 1997; Skoulakis and Davis, 1998; 

Philip et al., 2001; Benton et al., 2002).  The following is a summary of the known 

functions of the Drosophila 14-3-3ζ (D14-3-3ζ) or leonardo (leo) gene. 

  

Embryonic development 

Homozygous leoP1375  and leoP1188 embryos die as apparently normal fully formed 

larvae and leoP1188 embryos exhibit a large deficit in neurotransmission, which is the 

likely cause of their failure to hatch (Skoulakis and Davis, 1996; Broadie et al., 1997).  
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This finding is consistent with the lethal phenotypes of homozygous LEO loss of 

function mutants derived from heterozygous mothers (Skoulakis and Davis, 1996, 

Broadie et al., 1997, Kockel et al., 1997, Li et al., 1997).  Although the mechanism by 

which neurotransmission may be affected in these mutant embryos is unknown, this was 

the first evidence of 14-3-3s having a role in neuronal physiology/ neurotransmission.  

An explanation of the phenotype may lie in evidence from bovine adrenal chromaffin 

cells that 14-3-3ζ affects exocytosis (Roth and Burgoyne, 1995; Wu et al., 1992).  14-3-

3ζ affects exocytosis apparently by participating in cortical actin disassembly and 

secretory vesicle release (Roth and Burgoyne, 1995) (see section III.B.2.b.).  The leo 

mutant lethality however could not be rescued by expression of a single LEO isoform 

suggesting that more than one of the LEO proteins is necessary for viability (Kockel et 

al., 1997).  However, both leoI and leoII transgenes can support development to 

adulthood of the weakest P-element insertion leoP1375 in agreement with the observations 

that there is leaky expression from the leo gene in this mutant.  

LEO has been shown to interact with the Drosophila homolog of Raf, D-RAF (Li 

et al., 1997; Rommel et al., 1997; Jones et al., 1995a).  Although its exact role in Raf 

activation is still not fully understood, LEO plays an essential role in the Torso (Tor) 

receptor tyrosine kinase (RTK) pathway, which activates the Ras-Raf-MAPK signaling 

controlling tailless (tll) expression in syncytial blastoderm embryos (Li et al., 1997).   It 

appears that in the absence of Tor, over-expression of leo is able to activate tll 

expression.  Li et al., (1997) also concluded that the interaction between LEO and Raf is 
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necessary, but not sufficient for activation of Raf and over-expression of LEO still 

requires Ras1 to activate D-Raf.   

Although, the leonardo gene is required for viability there is a strong maternal 

contribution that allows embryos to proceed through the initial stages of embryogenesis 

without any abnormalities (Skoulakis and Davis, 1996).  Therefore, genetic mosaics in 

the germ-line of heterozygous leo mutant females were created to study its potential 

effects on early cell cycle progression (Su et al., 2001).  In syncytial embryos prior to 

stage 13 of embryogenesis, LEO is dispersed during interphase and found in the 

proximity of the chromosomes during metaphase, anaphase and telophase (Su et al., 

2001).  D14-3-3ζ-deficient embryos contained defects such as DNA bridges between 

chromosomes, pronounced asynchrony in divisions, free microtubule-organizing centers 

not associated to nuclei and larger than normal DNA masses (Su et al., 2001).  These 

observations suggested that these embryos retained spindle function, but lacked proper 

chromosomal segregation (Su et al., 2001).  Therefore, D14-3-3ζ appears to be required 

for normal chromosome separation during syncytial mitoses. 

  

Eye development 

In Drosophila, photoreceptor development depends on two different receptor 

tyrosine kinases (RTK) that activate and lie upstream of the Ras-Raf signaling pathway 

(Simon, 1994; Zipursky and Rubin, 1994).  The R1-R6 photoreceptors require signaling 

from Drosophila EGF receptor (DER), whereas the R7 photoreceptor requires signaling 

from the Sevenless receptor (Simon, 1994; Wasserman et al., 1995).  Mitotic clones that 
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reduce LEO, or expression of anti-sense LEO cause defects in photoreceptor 

differentiation (Kockel et al., 1997).  The mutant ommatidia appeared to have lost the 

outer and R7 photoreceptor cells, but the outer cells seemed more sensitive to loss of 

LEO than the Sevenless-requiring R7 cells.  In addition, D14-3-3ζ mutants were unable 

to modify the abnormal rough eye phenotype produced by constitutively active Ras 

(Chang and Rubin, 1997).  Therefore, LEO appears to be essential in photoreceptor 

differentiation and Ras-independent cell proliferation (Kockel et al., 1997; Chang and 

Rubin, 1997). 

 

Oocyte development 

LEO is expressed in nurse cells and maturing oocytes of female flies, suggesting 

it may play a role in their development (Skoulakis and Davis, 1996).  Results from a 

yeast two hybrid screen, indicated that LEO associates with the kinase domain of 

partitioning defective (PAR-1), which contains a phosphorylation dependent conserved 

motif (Fu et al., 2000; Benton et al., 2002).  In epithelia, the apical domain is defined by 

a complex containing Bazooka (BAZ), PAR-6 and a protein kinase C (aPKC) 

(Petronczki and Knoblich, 2001).  PAR-1 phosphorylates BAZ/PAR-3 to generate a 14-

3-3 binding site that inhibits the formation of the BAZ/PAR-6/aPKC complex in the 

lateral region of the epithelia between the apical and basal regions (Rose and Kemphues, 

1998).  Follicle cell clones homozygous for the leo null allele leo12X show severe defects 

in apical-basal polarity (Benton and St Johnston, 2003).  Earlier follicle cell clones 

homozygous for the leoP1188 allele displayed defects in tissue organization that fail to 
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encapsulate germ-line cysts, a phenotype that can be partially rescued by components of 

the BAZ/PAR-6/aPKC complex (Benton and St Johnston, 2003).  This suggests that leo 

is necessary for apical-basal polarity in the epithelia of developing oocytes. 

 

Nervous system functions 

Since investigation of synaptic physiology is not currently possible in the 

Drosophila central nervous system, neuromuscular junctions (NMJs), have been used as 

a model in determining the role of many molecules in synaptic physiology and plasticity 

(Zhong and Wu, 1991; Zhong et al., 1992; Davis, 1996; Featherstone and Broadie, 

2000).  Since severe leo mutations are lethal, electrophysiological investigation was 

performed in the mature embryonic NMJ, where LEO is enriched in pre-synaptic 

neurons (Broadie et al., 1997).  Synaptogenesis and basic synaptic function is normal, 

but synaptic transmission, amplitude and fidelity, as well as long-term facilitation and 

post-tetanic potentiation were impaired in the mutant embryos.  This did not appear to be 

the result of synaptic vesicle deficits, or defective vesicle release, but rather a failure to 

recruit them properly in the synapses (Broadie et al., 1997).  These defects in synaptic 

plasticity may underlie all, or part of the behavioral deficits of leo mutants.  Further 

research is needed to determine whether loss of one or both LEO isoforms is responsible 

for this deficit. 

At the synaptic boutons of neuromuscular junctions, LEO can be found along 

with the Drosophila Slowpoke (dSlo) calcium dependent potassium (KCa) channel and 

Slowpoke-binding protein (Slob) (Broadie et al., 1997; Zhou et al., 1999).  LEO is 
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capable of interacting with Slob in a phosphorylation dependent manner to create a 14-3-

3/Slob/dSlo complex (Zhou et al., 1999).  Electrophysiological recordings of transfected 

tsA201 cells indicated that the presence of D14-3-3ζ and wild type Slob changed dSlo 

voltage sensitivity and channel activity which was not evoked with 14-3-3 alone (Zhou 

et al., 1999).  This effect appeared to be independent of D14-3-3ζ dimerization (Zhou et 

al., 2003).  Although, D14-3-3ζ appeared to interact and modify dSlo via Slob, it is 

unknown what effect this may have on neurotransmission at the neuromuscular junction 

or behavioral defects associated with D14-3-3ζ mutants. 

In viable leo mutants, there is a 30-35% learning and 90 minute memory 

decrement using the LONG training paradigm, consistent with the lack of LEO in the 

mushroom bodies of the leoX1 and leo2.3 mutants (Figure 10) (Skoulakis and Davis, 1996; 

Philip et al., 2001).  However, the mutants did not exhibit any morphological defects in 

the central nervous system or stimulus perception deficits (Skoulakis and Davis, 1996).  

In addition, the mutants exhibited a highly significant 50% reduction in performance 

upon single stimulus pairing (SHORT PROGRAM).  However, the performance of the 

mutant animals improved significantly after a second training episode to the level of 

singly trained controls. This is consistent with the interpretation that the mutants do not 

harbor developmental defects, which inhibit them to acquire and process information, 

but rather, they learn and remember inefficiently. 

The decrement in learning and memory using the LONG PROGRAM seen in 

viable mutants can be restored with acute induction of LI or LII transgenes in the 

Drosophila mushroom bodies (Philip et al., 2001).  This suggests that both LEO 
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isoforms are capable of rescuing the learning and memory deficit.  Moreover, lethal 

homozygotes and heteroallelic mutants rescued to adulthood by conditional induction of 

LI or LI/LII transgenes are learning and memory impaired.  These adult animals contain 

only 10% of normal LEO throughout their bodies.  Conditional induction of LI, LII or 

LI/LII transgenes in the rescued lethal homozygotes restores their defective learning and 

memory (Philip et al., 2001).  However, the decrement returns when the transgenically 

supplied LEO is allowed to decay, suggesting that LEO is acutely necessary for learning.  

This is further evidence that LEO is not necessary for neuronal development, but instead 

necessary for information processing in the adult mushroom bodies.   

This data along with the apparent ability of LEO to interact with PKC and Raf 

suggests an additional model for how learning and memory formation may occur within 

the mushroom bodies (Figure 12) (Philip et al., 2001; Dubnau et al., 2003).  In contrast 

to the current model (Figure 9) (Waddell and Quinn, et al., 2001; Roman and Davis, 

2001; Sokolowski, 2003), this model proposes that in addition to PKA-dependent 

processes known to play essential roles, long-term memory (LTM) formation involves 

phosphorylation of CREB by MAPK, a member of the Ras-Raf-MAPK pathway, or by 

PKC (Dudnau et al., 2003) (Figure 12).  In agreement with this proposal, in the courtship 

paradigm also mediated by the mushroom bodies, disrupting PKC function suppress 

associative learning and memory (Kane et al., 1997).   Similar to the current model 

(Figure 9), short-term memory (STM) involves the acute release of neurotransmitter 

(Figure 12) (Waddell and Quinn, 2001b; Roman and Davis, 2001; Sokolowski, 2003), 

mediated by PKC and the ability 14-3-3s to promote exocytosis (see Section IV.B.2.b), 
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in addition to the standard mechanisms (Figure 12) (Morgan, 1992a; Morgan, 1992b; 

Chamberlain et al., 1995; Gannon-Murakami and Murakami, 2002; Drier et al., 2002; 

Dudnau et al., 2003).  The release may also be mediated by 14-3-3 directly as suggested 

by their role in neurotransmitter release at the NMJ (Broadie et al., 1997).  This new 

model (Figure 12) added to what is already known about learning and memory formation 

in Drosophila mushrooms bodies (Figure 9), helps to further explain the biochemical 

complexities that translate synaptic plasticity into experience-dependent behavioral 

responses. 

 

14-3-3ε 

The D14-3-3ε isotype is the most similar in sequence and length to the ancient 

plant and yeast 14-3-3 proteins (Roseboom et al., 1994; Wang and Shakes, 1996).  At the 

onset of this study, the available D14-3-3ε alleles were a P-element insertion (D14-3-

3ε l(3)j2B10 and three mis-sense mutations (D14-3-3ε E183K, D14-3-3ε F199Y and D14-3-

3ε Y214F) (Figure 13) isolated in a screen for modifiers of  a RAS1 dominant allele that 

caused a rough eye phenotype (Chang and Rubin, 1997).  Due to the fact that the only 

available insertion allele may not be a null, we obtained and characterized three novel 

alleles generated by mobilization of the transposon in D14-3-3ε l(3)j2B10 (Chang and 

Rubin, 1997), D14-3-3ε ex5, D14-3-3ε ex4, D14-3-3ε ex24 generated by H. C. Chang 

(Chang and Rubin, unpublished).  The following is a summary of the known functions of 

the Drosophila D14-3-3ε gene. 
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Figure 12.  LEO is involved in mediating learning and memory in the Drosophila 
mushroom bodies 
 
A stimulus activates receptor tryosine kinase (RTK) activating Ras and Raf (mitogen–
activated protein kinase (MAPK) kinase kinase) which is bound to a14-3-3 dimer.  The 
Raf then phosphorylate MAPK kinase (MEK) which phosphorylates MAPK which then 
phosphorylates CREB allowing for transcriptional activation, thereby long term memory 
(LTM) formation.  Protein kinase C (PKC) via 14-3-3s or 14-3-3 directly regulate the 
acute release of neurotransmitters leading to short term memory (STM). 
 

  

 

Nucleus

Follower Neuron

PKC 14-3-3

RasRaf

MAPK

MEK

RTK

Cytoplasm

Transcriptional
effects (CREB) LTM

STM



 91

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13.  Map of D14-3-3ε mutations 
 
A. The genomic region, structure and mutations of the D14-3-3ε  gene.  Boxes represent 
exons, whereas lines represent introns and surrounding non-transcribed regions.  The 
stippled boxes indicate untranslated portions of exons.  The white circles in exon V 
represent polyadenylation sites.  Restriction endonuclease sites are indicated by capital 
letters (X: Xba I, B: BamHI, R: EcoRI).  The location of the P-element insertion in 
intron I is indicated by the arrow.  The extension of the deficiencies for D14-3-3εex4 and 
D14-3-3εex24 are indicated by the black bars, whereas the regions of uncertainty are 
indicated by the hatched bars.  (Adapted from Chang and Rubin 1997).   
(B) D14-3-3ε E183K at position 183 is a glutamic acid changed to a lysine D14-3-3ε F199Y 
at position 199 has a phenylalanine changed to a tyrosine and D14-3-3ε Y214F at position 
214 has a tyrosine change to a phenylalanine (Adapted from Chang and Rubin, 1997). 
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 Embryonic development 

Drosophila D14-3-3ε is ubiquitously expressed in all tissues, and stages of 

development examined (Figure 11) (Philip et al., 2001).  D14-3-3ε appears to be 

expressed in cells during embryonic development immediately prior to MAPK activation 

(Tien et al., 1999), suggestive of its importance in Ras-Raf-MAPK signaling. The crystal 

structure of D14-3-3ε is unknown, but the apparently highly conserved quaternary 

structure of all 14-3-3s (Xiao et al., 1995) suggests that the point mutants available likely 

map to the middle of the dimer pocket, the proposed site of ligand binding (Li et al, 

1997).  Using in vitro analysis Rittinger et al. (1999) established that 14-3-3’s with the 

E183K mutation no longer bind to A-Raf, B-Raf, C-Raf-1 or BAD.  In addition to being 

capable of binding D-Raf, the E183K mutation dominantly enhanced lethality in a partial 

loss of function D-Raf background (Chang and Rubin, 1997).  These data led to the 

conclusion that D14-3-3ε is necessary for the Ras1-dependent process required for 

viability (Chang and Rubin, 1997).   

Consistent with vertebrate studies, 14-3-3ε appears to be required for timing of 

mitosis and regulation of the cell cycle in Drosophila (Su et al., 2001).  During the first 

13 synchronous nuclear divisions of embryogenesis, D14-3-3ε appeared dispersed in 

interphase and nuclear prior to mitosis (Su et al., 2001).  D14-3-3ε was found in various 

locations during the mitotic cycle including proximal to the chromosome during 

anaphase/telophase (Su et al., 2001).  Nuclear localization for D14-3-3ε continued when 

the embryo became cellularized (Su et al., 2001).  This localization of D14-3-3ε to the 

chromosomes was apparently coupled to the cycles of Cdk1 activation and inactivation 
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that occur when entering and exiting mitosis (Su et al., 2001).  In agreement with this 

hypothesis, lack of D14-3-3ε allowed premature entry into and out of mitosis, advancing 

the entire schedule without disrupting its relative order (Su et al., 2001).  There was a 

similar effect after embryos were irradiated.  Instead of a delay in the cell cycle to allow 

for DNA repair, embryos that lack D14-3-3ε advanced their schedule and entered 

mitosis (Su et al., 2001). This suggests that D14-3-3ε is necessary for the timing of 

mitosis during post-blastoderm cell cycles and after irradiation. 

 

Eye development 

D14-3-3ε mutants were first identified as effectors of Ras/Raf signaling in 

photoreceptor differentiation (Chang and Rubin, 1997).  In photoreceptors, D14-3-3ε 

mutants appeared to increase the efficiency of Ras1 signaling (Wasserman and Therrien, 

1997; Chang and Rubin, 1997).  There was not a dominant interaction with either yan or 

sev-phyl, two downstream targets of the SEV/Ras1 signaling cascade, suggesting that 

D14-3-3ε acts downstream of Ras and upstream of these two nuclear factors (Chang and 

Rubin, 1997; Therrien et al., 2000).  The mutations were also capable of suppressing 

rough eye deficits caused by constitutively activated Raf, suggesting D14-3-3ε acts 

downstream or parallel to Raf (Chang and Rubin, 1997).  This suggests that D14-3-3ε is 

necessary for photoreceptor differentiation via the Ras/Raf signaling pathway. 
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Oocyte development 

The P-element insertion l(3)j2B10 located in the first intron of D14-3-3ε isolated 

in this suppressor screen, appeared not to be essential for viability, but necessary for 

fertility.  With regard to fertility, there were still eggs laid by D14-3-3ε homozygotes 

(Chang and Rubin, 1997; Benton et al., 2002).  Recent studies indicate these eggs do not 

develop because D14-3-3ε plays a role in oocyte determination and the polarization in 

the A-P axis (Benton et al., 2002).  Apparently, unlike LEO, D14-3-3ε interacts with 

PAR-1 via a novel non-phosphorylation dependent interface on the external surface of 

the 14-3-3 molecule (Benton et al., 2002).  This association is abolished by the Y214F 

and F199Y point mutations located outside the phosphoserine binding pocket in a 

hydrophobic region, but not the E183K point mutation that lies within the pocket (Chang 

and Rubin, 1997; Rittinger et al., 1999).   

Using germ-line clones, Benton et al., (2002) determined that like PAR-1, D14-

3-3ε is required for oocyte differentiation, which depends on microtubule (MT) 

dependent transport of specific factors (Benton et al., 2002).  Both par-1 null mutants 

and D14-3-3ε mutants failed to form the microtubule cytoskeleton (MTOC) in the 

oocyte, suggesting that they function in parallel in this step of oocyte differentiation.  

Similarities between par-1 and D14-3-3ε mutants can also be seen in their altered 

localization of osk mRNA, bcd mRNA and STAU, which play a role in oocyte anterior-

posterior (A-P) polarity (Benton et al., 2002).  The mis-localization of osk mRNA and 

STAU affect the proper microtubule anterior to posterior gradient, a phenotype which is 
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unique to par-1 and D14-3-3ε mutants.  This suggests that D14-3-3ε has a predominant 

function in A-P polarity in the oocytes. 

 

Nervous system functions 

14-3-3ε appears particularly abundant in the CNS (Rosenboom et al., 1994).  

Drosophila is the only metazoan model system with genetic mutations available to study 

the role of this particular isotype in cell signaling, in the developing and the adult CNS.  

D14-3-3ε is expressed in the adult head (Philip et al., 2001), although it’s potential role 

in associative and non associative processes is unknown.   

 

Link between 14-3-3’s and Neurodegeneration in Drosophila 

In Drosophila, the Akt kinase phosphorylates wild type and mutant Ataxin-1 

allowing its association with 14-3-3s (Chen et al., 2003).  Both D14-3-3ζ and D14-3-3ε 

appear to have higher binding affinity to the mutant form of Ataxin-1, which has the 

additional CAG repeats and produces a long polyglutamine tract (Chen et al., 2003).  

This expansion of the polyglutamine tract is similar to other inherited neurodegenerative 

diseases such as Huntington’s.  Using D14-3-3ε UAS constructs that I generated, Chen 

et al. (2003) investigated the interaction between mutant Ataxin-1 and 14-3-3ε. This 

interaction appears to stabilize Ataxin-1 leading to its accumulation and formation of 

spinocellular ataxia type 1 like aggregates that can cause neurodegeneration.  The over-

expression of D14-3-3ε in ataxin-1 mutant (SCA130Q) backgrounds enhanced 

neurotoxicity, which led to the conclusion that higher levels of certain 14-3-3 isoforms 
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may contribute to neuronal vulnerability (Chen et al., 2003).  This is the first evidence 

that any 14-3-3 protein has an active role in the pathogenesis of neuronal degeneration.   

 

Are Drosophila 14-3-3’s functionally redundant? 

There is a 66% sequence identity among LEO and D14-3-3ε isotypes (Table 4), 

but are they functionally redundant?  It appears that in the case of embryonic 

development, the reduction to one copy of leo in the D14-3-3εl(3)j2B10 homozygous flies, 

which are partially viable results in complete lethality (Chang and Rubin, 1997). With 

respect to eye development, although only 14-3-3ε mutants modified constitutively 

activated Ras, the phenotype of homozygous 14-3-3ε mutants is weaker than those of 

other components of the SEV/Ras1 pathway and appears to become stronger by 

reduction of LEO (Chang and Rubin, 1997).  This data led to the conclusion that the 14-

3-3 proteins were at least partially redundant in viability and photoreceptor development 

(Chang and Rubin, 1997).  

D14-3-3ε and LEO share a common cycle of perichromosomal localization 

during syncytial mitosis, suggesting that both play a role in mitotic progression during 

embryogenesis (Su et al., 2001).  Although the two 14-3-3 isotypes co-localize, they 

have very different functions with respect to cell cycle progression.  D14-3-3ε is 

required for the timing of mitosis during post-blastoderm cell cycles and after 

irradiation, whereas, LEO is required for normal chromosome separation during 

syncytial mitoses (Su et al., 2001).  This is evidence that in Drosophila the two 14-3-3s 
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are not functionally redundant, they in fact have specific functions even when they are 

present within the same cells. 

Analysis using germ-line clones determined that D14-3-3ε is required for oocyte 

differentiation, whereas clones of strong lethal alleles of leo had no effect (Benton et al., 

2002).  D14-3-3ε mutants also appeared to affect the proper localization of osk mRNA, 

bcd mRNA and STAU necessary for anterior-posterior polarity, whereas the oocytes 

homozygous for leoP1188 had no polarity defects (Benton et al., 2002).  However, the 

D14-3-3ε phenotypes were incompletely penetrant and could be enhanced with 

reduction in leo copy number, suggesting LEO can partially compensate for the absence 

of D14-3-3ε in oocytes (Benton et al., 2002). The oocyte epithelia of leo mutants 

appeared to have defects in apical-basal polarity, whereas D14-3-3ε mutants showed no 

obvious defects (Benton and St Johnston, 2003).  However, reduction of D14-3-3ε 

worsened the phenotype associated with leo mutants, suggesting that D14-3-3ε can 

partially compensate for the absence of LEO in the epithelia (Benton and St Johnston, 

2003).  In the case of oocyte determination, A-P polarity and epithelial apical-basal 

polarity, the two 14-3-3 isotypes appeared to partially compensate for one another, 

although the evidence also argued for functional specificity among isotypes (Benton et 

al., 2002; Benton and St Johnston, 2003). 

Both 14-3-3 isotypes are capable of binding the PAR-1 kinase that regulates 

oocyte differentiation, A-P polarity and apical-basal polarity in the epithelia (Benton et 

al., 2002; Benton and St Johnston, 2003).  D14-3-3ε is highly expressed in the dividing 

germ-line cell in the germarium and co-localizes with PAR-1 at the ring canals (Lin et 
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al., 1997; Benton et al., 2002).  LEO also co-localizes with PAR-1 at the ring canals, but 

is expressed at very low levels in the germarium (Benton et al., 2002).   Apparently, the 

LEO-PAR1 interaction occurs within the phosphoserine pocket and the interaction with 

D14-3-3ε occurs on the external surface of the dimer (Benton et al., 2002).  The 

differences in target specificity with PAR-1 and spatial expression may account for the 

phenotypic differences between the two isotypes.   

Overall, despite the high homology among the 14-3-3 isotypes in Drosophila the 

data suggest that the isotypes may be at least partially functionally redundant in certain 

biological processes but not in others.  This appears to be the case for viability and 

photoreceptor differentiation (Chang and Rubin, 1997; Kockel et al., 1997; Philip et al., 

2001).  Differences in temporal and spatial expression may account for 14-3-3 isotype 

specificity in oocyte determination, A-P polarity and epithelial apical-basal polarity 

(Benton et al., 2002; Benton and St Johnston, 2003).  However, with respect to cell cycle 

progression D14-3-3ε and LEO co-localize, but apparently have different functions (Su 

et al., 2001).  This suggests that whether the two can functionally compensate for one 

another is likely to depend on the particular 14-3-3 targets involved in each particular 

process under study.  Therefore, it is very likely that D14-3-3ε and LEO can be both 

functionally redundant in some cases and thus the two be able to functionally 

compensate each other, but in addition there are distinct isoform specific functions. 

A possible explanation for the apparent functional redundancy between the two 

Drosophila 14-3-3 isotypes (LEO and D14-3-3ε) is that they work together as 

heterodimers at least in some cases.  The fact that both are capable of binding signaling 
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molecules such as Raf and are both expressed in embryos and the eye supports the idea 

that LEO and D14-3-3ε may work together as heterodimers to regulate signaling in these 

tissues.  In the adult head, LEO is expressed preferentially in the mushroom bodies, 

whereas D14-3-3ε is ubiquitous through the adult head, suggesting the potential for 

unique function.  However, behavioral research needs to be done to understand the 

function of D14-3-3ε in the adult CNS.  Research aimed at confirming the presence of 

heterodimers within the specific tissues and developmental stages where 14-3-3 mutants 

display phenotypes.   The following experiments will provide evidence for whether 14-

3-3s have redundant functions or that in Drosophila, the different 14-3-3s have unique 

functions.   
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CHAPTER II 

 

14-3-3 FUNCTIONAL SPECIFICITY AND HOMEOSTASIS 

IN DROSOPHILA MELANOGASTER 

 

INTRODUCTION 

 

The 14-3-3 proteins comprise a highly conserved family of small 28-32 kD 

acidic molecules present in all eukaryotes.  14-3-3s appear to share a common structure 

composed of nine anti-parallel α-helices forming a U-shaped palisade around a central 

negatively charged groove of largely invariant amino acids (Aitken, 1995; Fu et al., 

2000; Tzivion and Avruch, 2002).  All 14-3-3s form homo- and heterodimers by 

interaction of hydrophobic residues in helix 1 of one monomer with similar residues in 

helixes 3 and 4 of another (Fu et al., 2000; Liu et al., 1995; Tzivion and Avruch, 2002; 

Xiao et al., 1995).  A phosphoprotein binding surface formed by conserved amino acids 

in the negatively charged groove interacts with target proteins that contain the motifs 

RSxpS/TxP, or RxxxpS/TxP (where x=any amino acid, pS/T=phosphoserine or 

phosphothreonine).  Target proteins bind dimeric 14-3-3s preferentially, but instances 

where monomers are able to bind such sequences are known (Muslin et al., 1996; Muslin 

and Xing, 2000; Tzivion and Avruch, 2002).   

14-3-3 binding on a target protein may protect it from dephosphorylation or 

proteolysis, modulate its activity, alter its ability to interact with other partners, or 
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modify its cytoplasmic/nuclear partition (Tzivion and Avruch, 2002).  Therefore, it is not 

unusual that 14-3-3 proteins have been implicated in a diverse number of processes and 

biochemical pathways (Fu et al., 2000; Skoulakis and Davis, 1998; Van Hemert et al., 

2001).  14-3-3s are involved in regulation of multiple members of signaling cascades in 

response to growth factors, cytokines, or environmental stress (Fu et al., 2000; Morrison, 

1994; Skoulakis and Davis, 1998; Van Hemert et al., 2001).  These signaling cascades 

occur through a series of phosphorylations that activate the Mitogen-activated protein 

kinases (MAPKs) which in turn translocate to the nucleus where they activate 

transcription factors that modulate gene expression in response to the stimuli.  The 

phosphorylation cascade is initiated by activation of MAPK kinase kinases (MAPKKs), 

which activate MAPK kinases that in turn activate MAPKs.  These series of 

phosohorylations generate 14-3-3 binding sites, which are thought to modulate the 

activity or cellular location of the kinases (Kyriakis and Avruch, 2001; Tzivion and 

Avruch, 2002).   

An extraordinary feature of this protein family is the high sequence conservation 

among related isotypes from diverse species.  This clearly reflects their evolutionary age, 

which apparently precedes the separation of plants and animals since they are ubiquitous 

in both (Rosenquist et al., 2000; Wang and Shakes, 1996).  Vertebrates contain seven 

distinct 14-3-3 genes (β, ζ, γ, η, σ, τ(θ), and ε) that yield nine structurally distinct 

protein isotypes (with α and δ being the phosphorylated forms of β and ζ, respectively) 

classed into two conservation groups (Rosenquist et al., 2000; Skoulakis and Davis, 

1998; Wang and Shakes, 1996).  Of these, the epsilon (ε) isoforms are unique because 
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they are more similar to yeast and plant than other animal isotypes.  This suggests that 

they may be closer to the ancestral 14-3-3 protein(s) and form their own unique branch 

among eukaryotic 14-3-3s (Rosenquist et al., 2000; Wang and Shakes, 1996).  In 

vertebrate brains where these proteins are highly abundant, there is some specificity in 

isotype distribution, but generally 14-3-3s are expressed in complex overlapping patterns 

(Baxter et al., 2002).  This suggests that multiple heterodimers are possible in tissues that 

contain more than one isotype and some of these have been detected in vitro and in vivo 

(Jones et al., 1995).  It is unknown whether the possible heterodimers and homodimers 

are functionally divergent in vivo, or as suggested by in vitro studies, all isotypes can act 

equivalently in the diverse processes 14-3-3s have been implicated (Muslin et al., 1996; 

Yaffe et al., 1997).  In addition, it is unknown whether homodimers or heterodimers 

exhibit the same temporal or tissue specificity in vivo.  

Drosophila melanogaster contains two 14-3-3 genes.  Alternative splicing of the 

leonardo gene encodes two nearly identical protein isoforms (LEOI and LEOII) of the 

typical 14-3-3 conservation group with 88% identity to mammalian ζ, (Philip et al., 

2001; Skoulakis and Davis, 1996).  There are differences in the temporal and spatial 

distribution of the two leo isoforms, although it is unknown what controls expression.  

According to RT-PCR, leoI is present in early and late embryos, all larva stages, the 

adult head and abdomen; whereas, leoII is present in all embryo stages, larva stages and 

adult tissues.  Although, leoII appears to be specific to the mushroom bodies and thorax 

(Philip et al., 2001), it is unknown if each isoform has unique functions. The D14-3-3ε 

gene encodes a single protein 82% identical to the mammalian ε isoform (Chang and 
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Rubin, 1997).  As in vertebrates, the LEO proteins are found enriched in adult brain and 

in low levels throughout the body, as well as embryos, larvae and pupae.  Whereas, D14-

3-3ε is present in all developmental stages and in all tissues examined with only slight 

enrichment in the adult brain (Philip et al., 2001).  Therefore, Drosophila provides a 

simple genetically tractable model system to study 14-3-3 isotype specific functions and 

interactions in vivo.  

Total lack of LEO results in lethality likely due to its involvement in activation 

of the MAPKK RAF-1 required for early embryonic developmental decisions (LI et al. 

1997).  However, leo loss of function mutants exhibit additional late developmental 

phenotypes and functional impairments of their nervous system (Broadie et al., 1997), 

but whether these result from a requirement for LEO in additional signaling pathways is 

not known.  In addition, LEO functions during photoreceptor development, another 

process that involves signaling through RAF-1 kinase (Kockel et al., 1997).  LEO is 

acutely required in adult brain neurons, the mushroom bodies, for processes underlying 

learning and memory (Philip et al., 2001; Skoulakis and Davis, 1996), but the signaling 

pathways they involve remain unknown.  The D14-3-3ε gene was identified in genetic 

screens for factors essential for signaling through RAF-1 in photoreceptor development 

in the eye (Karim et al., 1996; Therrien et al., 2000) and embryonic development (Li et 

al., 2000).  D14-3-3ε and LEO appeared partially redundant for photoreceptor 

development and viability (Chang and Rubin, 1997), but the observed redundancy may 

reflect heterodimerizarion of the two proteins.  Furthermore, D14-3-3ε mutants exhibited 

additional phenotypes suggestive of participation of the protein in additional processes.  
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In accord with this hypothesis, unique roles for each 14-3-3 protein in regulating entry to 

mitosis in embryos were recently described (Su et al., 2001).  These results may underlie 

multiple tissue and temporal requirements for D14-3-3ε activity. 

To investigate involvement of D14-3-3ε in temporal and tissue specific processes 

and potential 14-3-3 isotype-specific functions, I systematically examined its role by 

mutant analysis.  Since roles of this protein in photoreceptor development and 

embryonic mitotic decisions have been established (Chang and Rubin, 1997; Su et al., 

2001), I focused on novel phenotypes.  To avoid potential complications due to allele-

specific phenotypes, in addition to the described alleles, I utilized novel loss of function 

alleles in a normalized genetic background.  In addition, I addressed the question of 

redundancy with LEO by analysis of leo loss of function phenotypes and investigation of 

heterodimerization of the two isotypes.  The results indicate involvement of D14-3-3ε in 

multiple processes, reveal D14-3-3ε  specific mutant phenotypes and suggest a dynamic 

temporal and spatial interaction of the two 14-3-3 isotypes. 

 

RESULTS 

 

Morphological characterization of D14-3-3ε mutants 

At the onset of this study the available D14-3-3ε alleles were a P-element 

insertion (D14-3-3ε l(3)j2B10. We obtained three novel alleles generated by mobilization of 

the transposon in D14-3-3εl(3)j2B10 (Chang and Rubin, 1997), generated by H. C. Chang 

(Chang and Rubin, unpublished).  Southern analysis (not shown) demonstrated that the 
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D14-3-3ε genomic region in D14-3-3εex5 appeared identical to the w1118 and ry506 

isogenic strains consistent with precise excision of the transposon in D14-3-3εl(3)j2B10.  In 

contrast, alleles D14-3-3εex4 and D14-3-3εex24 harbored molecular lesions in this region.  

In D14-3-3εex24, a large deletion (>10 kb) extending beyond the entire D14-3-3ε coding 

region and likely encompasses neighboring transcription units on either side.  D14-3-

3εex4 harbors a smaller deletion removing exon 1 of the gene.  Therefore, both D14-3-

3εex4 and D14-3-3εex24 alleles remove all, or part of the D14-3-3ε coding region and are 

likely null alleles.  As predicted from these results, whereas there is normal D14-3-3ε 

protein accumulation in D14-3-3εex5 homozygotes, the D14-3-3εl(3)j2B10, D14-3-3εex4 and 

D14-3-3εex24 alleles do not yield detectable protein (see below and Figure 15).  Although 

these mutants contain no detectable D14-3-3ε and appear smaller than controls D14-3-

3εex5, the homozygous embryos are morphologically normal (Figure 14).  Thus, these 

alleles permit a systematic investigation of the role of this gene in the complex 

phenotypes suggested by a prior (Chang and Rubin, 1997).   

   

Morphological characterization of D14-3-3ε mutants 

Since a significant fraction of D14-3-3εex4 and D14-3-3εl(3)j2B10 homozygotes die 

prior to adulthood, I determined the lethal phase of these null mutations.  I did not 

include the D14-3-3εex24 homozygotes because the deficiency harbored in this allele is 

likely to encompass neighboring genes, thus complicating the analysis.  In agreement 
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Figure 14.  Morphology of D14-3-3ε mutant embryos 
 
Anterior is to the left for the 16-18 hour embryos.  Photographs 20X magnification (A) 
ventral view of control D14-3-3εex5 homozygotes, (B) ventral view of mutant D14-3-
3εex4 homozygotes, (C) lateral view of D14-3-3εex5 homozygotes and (D) lateral view of 
D14-3-3εex4 homozygotes were stained with mAb22c10 indicate PNS is morphologically 
normal.  Photographs 40X magnification (I) lateral view of D14-3-3εex5 homozygotes, 
and (J) lateral view of D14-3-3εex4 homozygotes indicates the CNS are morphological 
normal. Magnification of the lateral side of embryos focused on the PNS neuronal 
clusters.  Abbreviations:  (dc) dorsal cluster; (hy) hypophysis; (lch) lateral chordotonals; 
(v and v’) ventral cell clusters.  Lateral views of (G) D14-3-3εex5 homozygotes and (H) 
D14-3-3εex4 homozygotes stained with anti-engrailed staining indicate that striping is 
normal and there are a proper number of segments.   All embryos were photographed at 
the same magnification (200X) to illustrate the smaller size of D14-3-3εex5 homozygotes.  
According to staining and observations of D14-3-3εex4 homozygotes, death occurs at 
hatching and the embryos do not have any developmental defects. 
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with data on Table 5, a fraction of null embryos of either genotype die prior to hatching 

(data not shown).  However, apparently all null embryos that hatch successfully proceed 

to adulthood.  If manually removed from the egg, larvae that failed to hatch were able to 

move around and feed, albeit slowly.  Furthermore, embryos that failed to hatch 

remained alive within the egg for an additional 24 hrs, indicated by their occasional 

peristaltic movements.   

To determine whether null embryos that fail to hatch exhibit developmental 

defects, we subjected them to immunohistochemical analysis.   Morphological 

examination and immunohistochemical results with a number of antigenic markers did 

not reveal gross developmental defects except homozygous embryos were smaller in size 

(Figure 14).  I focused on the nervous system because I hypothesized that the inability to 

hatch was likely a reflection of neuro-developmental deficits since both D14-3-3ε and 

LEO are abundant in this tissue in late embryos (Skoulakis and Davis, 1996; Tien et al., 

1999).  The results of mAb22c10 immunohistochemistry indicated that the central 

nervous system (CNS) and peripheral nervous system (PNS) were largely normal, except 

for a slight reduction in the density of the ventral nerve cord in D14-3-3εex4 homozygotes 

(Figure 15).  Identical results were obtained with D14-3-3εl(3)j2B10 homozygotes (not 

shown).  Therefore, lack of D14-3-3ε did not precipitate gross anomalies of the 

embryonic nervous system and the embryos died as apparently fully formed larvae.  

However, our results did not eliminate the possibility that the failure to hatch was due to 

functional deficits of the nervous system, which do not facilitate this process properly.  

Similarly, homozygous leoP1188 embryos die as fully formed larvae and exhibit a large 
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Table 5.  Complementation for viability of D14-3-3ε mutants 
Genotype % Lethality (Observed/Expected) na 

D14-3-3ε ex5/D14-3-3εex5 0 550 
D14-3-3ε ex5/D14-3-3εl(3)j2B10 0 413 
D14-3-3ε ex5/D14-3-3εex4 0 546 
D14-3-3ε ex5/D14-3-3εex24 0 660 
D14-3-3εl(3)j2B10/D14-3-3εl(3)j2B10 25 645 
D14-3-3εl(3)j2B10/D14-3-3εex4 22 510 
D14-3-3εl(3)j2B10/D14-3-3εex24 39 510 
D14-3-3εex4/D14-3-3εex4 58 495 
D14-3-3εex4/D14-3-3εex24 61 684 
D14-3-3εex24/D14-3-3εex24 100 650 
a :   number of total flies scored per cross. 
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deficit in neurotransmission, which is the likely cause of the failure to hatch (Broadie et 

al., 1997). 

 

D14-3-3ε mutations affect viability  

Because we observed a small number of homozygotes for the D14-3-3εl(3)j2B10and 

D14-3-3εex4 mutations, but none for D14-3-3εex24, an undergraduate in the lab performed 

complementation tests, which I continued to determine whether all mutations map to the 

D14-3-3ε gene and whether the gene is essential for viability.  The results in Table 5 

indicate that all tested mutations are alleles of the D14-3-3ε gene.  Homozygotes for the 

transposon insertion (D14-3-3εl(3)j2B10) and the null excision allele D14-3-3εex4 were 

recessive sub-viable.   Whereas 75% D14-3-3εl(3)j2B10 homozygotes were recovered, only 

42% of expected D14-3-3εex4 homozygotes were observed, indicating that the former is a 

hypomorphic mutation.  In contrast, both EMS induced alleles and the D14-3-3εex24 

deletion were recessive lethal.  Congruent with the molecular analysis, D14-3-3εex24/ 

D14-3-3εex4 and D14-3-3εex24/ D14-3-3εl(3)j2B10 heteroallelics were recovered as readily 

as D14-3-3εex4 and D14-3-3εl(3)j2B10 homozygotes, indicating that the full lethality 

associated with the D14-3-3εex24 allele is likely the result of disruption of neighboring 

gene(s) in addition to D14-3-3ε.   
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14-3-3 homeostasis in embryonic development  

In homozygous null embryos, there was a highly significant (p<0.001) increase 

in the amount of LEO compared to that in heterozygotes, or control animals (Figure 15A 

and Table 6A).  Because we cannot distinguish which of the embryos utilized in this 

assay would survive to hatching, we cannot determine whether this increase occurs in all 

embryos, or only in potential survivors.  In the latter case, our measurement is an 

underestimate of the actual level of LEO in embryos that survive.  Nevertheless, it is 

likely that this near doubling in the amount of LEO functionally compensates for the 

absence of D14-3-3ε and allows survival to hatching for a fraction of homozygotes.  To 

examine when in embryogenesis this elevation occurs, the exact time of hatching was 

examined in null embryos and controls and a two-hour delay in hatching of null embryos 

was uncovered.  It was apparently during this delay when the embryos up-regulated the 

level of LEO protein (Figure 15B and Table 6B).  This large increase in the amount of 

protein, may be due to increased LEO accumulation stability, increased translation, 

increased transcription or combination of thereof. 

 

LEO up regulation in D14-3-3ε mutants 

Due to the similarity between the two leo isoforms, the only way to determine 

which isoform is up regulated is using quantitative RT-PCR techniques.  Three 

independent RT-PCR experiments utilizing the comparative Ct method indicated no 

change in the level of leo I, but a significant accumulation of of leoII transcripts (Figure 

16).  This type of transcriptional up-regulation, whose mechanism is currently unknown, 
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Figure 15.  Western blot analysis from D14-3-3ε  mutant and control lysates 
 
i. A representative blot from embryonic lysates used in acquisition of the data on Table 
6a.  Genotypes: (1) D14-3-3ε ex5 homozygotes, (2) D14-3-3ε ex5/ D14-3-3ε l(3)j2B10 , (3) 
D14-3-3ε ex5/ D14-3-3ε ex4, (4) D14-3-3ε l(3)j2B10 D14-3-3ε l(3)j2B10 and (5) D14-3-3ε ex4/ 
D14-3-3ε ex4.  There is a significant increase in the amount of LEO that accumulates in 
homozygous null embryos compared to heterozygotes and controls.   
ii. A time course of pre-hatching embryonic lysates used in acquisition of the data on 
Table 6b.  Genotypes: (1-3) D14-3-3ε ex5 homozygotes and (4-6) D14-3-3ε ex4 

homozygotes.  In addition to a two-hour delay in hatching of D14-3-3ε ex4 homozygotes, 
there is a significant increase in the amount of LEO during those extra two hours 
compared to controls. 
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Table 6.  D14-3-3ε and LEO levels in embryo lysates 

A Genotype D14-3-3ε/β-TUB LEO/β-TUB 
1 D14-3-3ε ex5/D14-3-3εex5 1 1 
2 D14-3-3εl(3)j2B10/TM3SerGFP 1.1863 + 0.0495 1.1077 + 0.1147 
3 D14-3-3εex4/TM3SerGFP 0.9972 + 0.1260 1.2871 + 0.1358 
4 D14-3-3εl(3)j2B10/D14-3-3εl(3)j2B10 0 3.1404 + 0.2281 
5 D14-3-3εex4/D14-3-3εex4 0 2.8778 + 0.0623 

 
B Genotype Hour of 

embryogenesis 
D14-3-3ε/β-TUB LEO/β-TUB 

1 D14-3-3ε ex5 1-3 1 1 
2 D14-3-3ε ex5 20 .9503 + 0.1734 1.0762 + 0.1759 
3 D14-3-3ε ex5 22 .9912 + 0.1273 1.0318 + 0.1030 
4 D14-3-3εex4 1-3 0 1.0535 + 0.0987 
5 D14-3-3εex4 22 0 1.4515 + 0.0887 
6 D14-3-3εex4 24 0 2.7356 + 0.0748 
Mean + SEM is shown for three independent experiments.  Numbers 1-5 correspond to the respective 
genotypes in the representative western blot in Figure 15 A.  Numbers 1-6 correspond to the respective 
genotypes in the representative western blot in Figure 15 B. 
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Figure 16.  Quantitative RT-PCR of leo in D14-3-3ε mutant and control lysates 
 
The change in Ct between internal control RP49 and leoI or leoII for three different 
RNA concentrations using three independent embryo lysates was calculated for D14-3-
3ε ex5 heterozygotes and D14-3-3ε ex5 homozygotes.  Results indicate that there is an 
increase in leoII transcript in the D14-3-3ε ex5 homozygotes and no change is the level of 
leoI. 
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is unique in D14-3-3ε null embryos, suggesting that with respect to developmental 

processes LEOII is at least partially redundant with D14-3-3ε as previously proposed 

(Chang and Rubin, 1997).  Compensation of D14-3-3ε loss by elevation of leoII 

transcripts and therefore LEOII protein explains the observed accumulation of LEO 

protein in pre-hatching D14-3-3ε null embryos.  It is possible that LEO II homodimers 

functionally compensate for LEO II/D14-3-3ε potential heterodimers for processes 

essential for embryonic development.  In fact, as reported by Chang and Rubin (1997) 

removal of a single copy of leo completely abolishes recovery of either D14-3-3εex4 or 

D14-3-3εl(3)j2B10 homozygous adults (not shown).   

 

Rescue of D14-3-3ε lethality with D14-3-3ε 

To verify if the heat shock D14-3-3ε transgenes are able to rescue D14-3-3ε 

mutant lethality, single pair matings were performed and allowed to develop at 18°C, 

room temperature (RT) and under 3 daily heat shocks of 32°C (HS) (Table 7).  The 

variability in the rescue by the heat shock transgenes is likely due to the expression level 

of the transgenes (Figure 17).  The rescuing transgenic strains were labeled low and high 

based on D14-3-3ε protein expression determined by westerns (Figure 17).  

hsD14-3-3ε could completely rescue the P-element mutation l(3)j2B10 and partially 

rescue the ex4 deletion (83%) (Table 7).  In addition, UASmycD14-3-3ε containing flies 

were crossed to various GAL4 expression lines to determine were D14-3-3ε needs to be  
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Table 7.  Rescue of D14-3-3ε mutant lethality with D14-3-3ε 

D14-3-3ε 
Allele 

hs / UAS GAL4 % Lethality 
(Observed/Expected) 

na % 
Rescueb,c 

D14-3-3εl(3)j2B10 --- --- 25 645 NA 
D14-3-3εl(3)j2B10 hsD14-3-3ε L (18) --- 25 505 0b 
D14-3-3εl(3)j2B10 hsD14-3-3ε L (RT) --- 22 518 12b 
D14-3-3εl(3)j2B10 hsD14-3-3ε L (HS) --- 12 501 52b 
D14-3-3εl(3)j2B10 hsD14-3-3ε H (18) --- 25 499 0b 
D14-3-3εl(3)j2B10 hsD14-3-3ε H (RT) --- 15 610 40b 
D14-3-3εl(3)j2B10 hsD14-3-3ε H (HS) --- 0 440 100b 

      
D14-3-3εex4 --- --- 58 495 NA 
D14-3-3εex4 hsD14-3-3ε L (18) --- 57 582 2c 
D14-3-3εex4 hsD14-3-3ε L (RT) --- 39 577 33c 
D14-3-3εex4 hsD14-3-3ε L (HS) --- 39 427 33c 
D14-3-3εex4 hsD14-3-3ε H (18) --- 57 552 2c 
D14-3-3εex4 hsD14-3-3ε H (RT) --- 44 416 28c 
D14-3-3εex4 hsD14-3-3ε H (HS) --- 10 458 83c 
D14-3-3εex4 UAS mycD14-3-3ε L TUB 0 441 100c 

D14-3-3εex4 UAS mycD14-3-3ε H TUB 12 478 79c 
D14-3-3εex4 UAS mycD14-3-3ε L Act5C 7 502 88c 
D14-3-3εex4 UAS mycD14-3-3ε H Act5C 7 562 88c 
D14-3-3εex4 UAS mycD14-3-3ε L C155 0 680 100c 
D14-3-3εex4 UAS mycD14-3-3ε H C155 0 701 100c 

HS: Three daily 20-minute heat shocks at 32°C through development to adulthood. 
RT: Constant 20-22°C.  18: Constant 18°C. NA = not applicable. 
a :   number of total flies scored per cross.  
b:   100 minus %Lethality divided by % lethality for D14-3-3εl(3)j2B10/D14-3-3εl(3)j2B10 (25%) 
c:   100 minus %Lethality divided by % lethality for D14-3-3εex4/D14-3-3εex4 (58%) 
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Figure 17.  Western blot/RT-PCR analysis of level of D14-3-3ε or LEO expression with 
heat shock drivers  
 
(A) To verify the level of D14-3-3ε produced by the D14-3-3εL and D14-3-3εH lysates 
prepared from D14-3-3εex4 homozygous adult flies, raised at 18°C (1,4), room 
temperature (RT) 22-23°C (2,5) or 25C with three daily 37°C heat shocks (3,6) were run 
on gels, blotted and probed with anti-tublin and anti-D14-3-3ε.  Results indicate varying 
levels of expression that increase with heat shock induction.   
(B) RT-PCR was used to verify the expression levels of LI or LII transgenes at 18°C 
(1,4), room temperature (RT) 22-23°C (2,5) or 25°C with three daily 37°C heat shocks 
(3,6) using Act5C as a loading control.  Results indicate varying levels of expression that 
increase with heat shock induction.   
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expressed in order to rescue lethality (Table 7).  Ubiquitous expression using a tubulin 

driver (TUB), or nervous system specific driver (elav-GAL4, C155) were both able to 

completely rescue D14-3-3ε mutant lethality (Table 7).  However, expression of the 

UASmycD14-3-3ε via an actin5C driver (ACT5C) was only able to partially rescue D14-

3-3ε mutant lethality (Table 7).  This consistent with the possibility that D14-3-3ε 

mutant lethality is due to functional deficits in the nervous system. 

 

Rescue of D14-3-3ε lethality with LEO 

To more closely examine whether and which of the two leo isoforms could 

rescue D14-3-3ε mutant lethality, the leo-bearing heat shock transgenes were raised at 

the different temperatures mentioned above (Table 8). The expression levels of leoI ( LI)  

and leoII (LII) transgenes were examined using RT-PCR (Figure 17).  It appears that low 

levels of LII expression were able to completely rescue, whereas high LI expression 

could only partially rescue the lethality of D14-3-3ε homozygotes (Figure 17 and Table 

8).  This suggests that the two LEO isoforms are not equivalent in their ability to 

compensate for the lack of D14-3-3ε.  This data is consistent with LEO being partially 

redundant with D14-3-3ε in vital functions in the embryo and is consistent with the 

observed leoII up-regulation in D14-3-3ε mutants embryos.  This compensation by 

LEOII may allow survival of some of the D14-3-3ε mutant homozygotes (Figure 16).   
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D14-3-3ε plays a role in wing cross-vein formation 

Adult D14-3-3εex4 and D14-3-3εl(3)j2B10 homozygotes have smaller wings.  Cell 

counts along the longitudinal veins of homozygous and heteroallelic adults indicated a 

10% proportional reduction in length compared to control D14-3-3εex5 homozygotes.  

This may be the result of the overall reduction in size observed in null homozygous and  

heteroallelic embryos (Figure 14), larvae and adults (not shown).  Lack of LEO in adult 

tissues (Philip et al., 2001) does not result in any wing malformation (Figure 18A and 

Table 8), however homozygous and heteroallelic D14-3-3ε  mutant adults exhibit wing 

venation aberrations.  The majority of adult D14-3-3εex4 and D14-3-3εl(3)j2B10 

homozygotes exhibited a conspicuous lack, of the dorsal posterior cross-vein (>75%) 

and with lesser penetrance, malformation of the ventral anterior cross-vein (Figure 18A 

and Table 9). 

 

Rescue of the D14-3-3ε mutant wing cross-vein aberrations 

The defect maps to D14-3-3ε  as all null alleles and heteroallelics with the D14-

3-3εex24 deletion exhibit the phenotype despite its variable penetrance (Table 9).  This 

phenotype can be rescued when heat shock transgenes expressing D14-3-3ε are placed in 

a homozygous null background (Figure 18B and Table 9).  To examine if LEO may be 

able to partially compensate for the D14-3-3ε requirement in wing venation, LI and LII 

heat shock constructs were placde in the homozygous null D14-3-3ε mutant background.  

Constructs that express only high levels of LI were able to completely rescue the 
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Table 8.  Rescue of D14-3-3ε mutant lethality with LEO 

D14-3-3ε 
Allele 

hs  construct 
(Temperature) 

% Lethality 
(Observed/Expected) 

na % Rescueb,c 

D14-3-3εl(3)j2B10 (18) 25 645 NA 
D14-3-3εl(3)j2B10 (RT) 22 501 12b 
D14-3-3εl(3)j2B10 (HS) 18 485 38b 
D14-3-3εl(3)j2B10 LIL (18) 24 462 4b 
D14-3-3εl(3)j2B10 LIL (RT) 16 455 46b 
D14-3-3εl(3)j2B10 LIL (HS) 12 524 52b 
D14-3-3εl(3)j2B10 LIIL (18) 20 412 20b 
D14-3-3εl(3)j2B10 LIIL (RT) 0 479 100b 
D14-3-3εl(3)j2B10 LIIL (HS) 0 425 100b 

     
D14-3-3εex4 (18) 58 495 NA 
D14-3-3εex4 (RT) 51 470 13c 
D14-3-3εex4 (HS) 46 433 21c 
D14-3-3εex4 LIL (18) 51 481 13c 
D14-3-3εex4 LIL (RT) 44 440 24c 
D14-3-3εex4 LIL (HS) 13 493 77c 
D14-3-3εex4 LIH (18) 49 415 16c 
D14-3-3εex4 LIH (RT) 39 429 33c 
D14-3-3εex4 LIH (HS) 23 440 60c 
D14-3-3εex4 LIIL (18) 51 496 13c 
D14-3-3εex4 LIIL (RT) 24 481 59c 
D14-3-3εex4 LIIL (HS) 0 555 100c 
D14-3-3εex4 LIIH (18) 34 477 42c 
D14-3-3εex4 LIIH (RT) 0 464 100c 
D14-3-3εex4 LIIH (HS) 0 485 100c 

HS: Three daily 20-minute heat shocks at 32°C through development to adulthood. 
RT: Constant 20-22°C.  18: Constant 18°C. 
a :   number of total flies scored per cross. NA = not applicable. 
b:   100 minus %Lethality divided by % lethality for D14-3-3εl(3)j2B10/D14-3-3εl(3)j2B10 (25%) 
c:   100 minus %Lethality divided by % lethality for D14-3-3εex4/D14-3-3εex4 (58%) 
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malformations of the anterior cross-veins (Figure 18B and Table 9).  Neither isoform of 

LEO was able to rescue the posterior cross-vein malformation, suggesting that these two 

isotypes are not redundant with respect to this cross-vein formation.  In agreement with 

this result, in control wing disks, RT-PCR indicated that leoI is the only isoform present 

(Figure 19B). We used different GAL4 lines that expressed specifically in the 

developing wing disk to examine where D14-3-3ε expression was necessary for normal 

development.  wg-GAL4 was able to partially rescue the anterior cross-vein deficit, while 

dpp-GAL4 was able to completely rescue when crossed to the strongly expressing UAS 

mycD14-3-3εD (Table 9 and Figure 18B).  Therefore, it appears that D14-3-3ε is 

necessary in the dpp pattern of expression during the developing wing disk for proper 

anterior cross-vein formation.  The fact that expression using the dpp-GAL4 driver can 

rescue the anterior cross-vein deficit and not posterior cross-vein deficit (Table 9), 

suggests there may be two different mechanisms for posterior and anterior cross-vein 

formation. 

 

D14-3-3ε mutant wing disk  

To investigate whether the malformations of the adult wings were detectable in 

the larval wing disk, D14-3-3ε ex5 and D14-3-3ε ex4 homozygous wing disks were 

challenged with the anti-LEO and anti-D14-3-3ε antibodies (Figure 19A).  There is a 

high level of co-localization and with LEO which appeared ubiquitously in the 

developing wing disk, although leo null homozygous have no apparent wing defects.  

This suggested that co-localization is not the only requirement for LEO/D14-3-3ε  
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Table 9.  Deficits of adult wing cross-veins in D14-3-3ε mutants 

 14-3-3 
Allele 

hs / UAS GAL4 Anterior cross-vein 

%               % 

Malformed Rescuea 

Posterior cross-vein 

%              % 

Malformed Rescuea 
1 D14-3-3εex5 --- --- 0 NA 0 NA 
 leoP1188 (R)b --- --- 0 NA 0 NA 

2 leo12X (R) c --- --- 0 NA 0 NA 
 D14-3-3εex5 

D14-3-3εl(3)j2B10 
--- --- 0 NA 0 NA 

3 D14-3-3εl(3)j2B10 --- --- 25 NA 75 NA 
4 D14-3-3εl(3)j2B10 

D14-3-3εex4 
--- --- 26.7 NA 86.7 NA 

 D14-3-3εl(3)j2B10 

D14-3-3εex24 
--- --- 25 NA 80 NA 

 D14-3-3εex5 

D14-3-3εex24 
--- --- 0 NA 0 NA 

5 D14-3-3εex4 --- --- 42.9 NA 80.9 NA 
6 D14-3-3εex4 

D14-3-3εex24 
--- --- 64.3 NA 78.6 NA 

 D14-3-3εex4 hsD14-3-3ε L --- 9.3 78.3 14 83 
7 D14-3-3εex4 hsD14-3-3ε H --- 0 100 3.6 95.6 
 D14-3-3εex4 LIL --- 29 32.4 72 11 

8 D14-3-3εex4 LIH --- 0 100 60 25.8 
 D14-3-3εex4 LIIL --- 40 6.8 78.3 3.2 

9 D14-3-3εex4 LIIH --- 33 23 73 9.8 
10 D14-3-3εex4 UAS mycD14-3-3ε L TUB 3 93 1.5 98 

 D14-3-3εex4 UAS mycD14-3-3ε H TUB 1.4 96.7 4.3 95.7 
11 D14-3-3εex4 UAS mycD14-3-3ε L Act5C 4.7 89 11 86.4 

 D14-3-3εex4 UAS mycD14-3-3ε H Act5C 17.6 60 34 58 
12 D14-3-3εex4 UAS mycD14-3-3ε L wg 17 60.4 72 11 

 D14-3-3εex4 UAS mycD14-3-3ε H wg 33 23 100 0 
13 D14-3-3εex4 UAS mycD14-3-3ε L dpp 0 100 63 22 

 D14-3-3εex4 UAS mycD14-3-3ε H dpp 3.7 91.4 63 22 
Numbers on the left correspond to genotypes in Figure 19.  (n>40 wings)  NA = not applicable. 
a:  100 minus % malformed/missing divide by %malformed/missing forD14-3-3εex4/D14-3-3εex4  
b, c:  homozygotes rescued (R) from lethality   

 



 122

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18.  Abnormal cross-vein formation in D14-3-3ε mutant wings  
 
3. Adult cross-vein phenotypes define three classes of aberrations in mutants compared 
to (1) D14-3-3ε ex5 homozygous controls and (2) homozygous null leo12X adults rescued 
from lethality.  Arrowheads indicate anterior cross-veins, while arrows indicate posterior 
cross-veins.  The aberrations are characterized by missing or malformed anterior and 
posterior cross-veins are represented by (3) D14-3-3ε l(3)j2B10 homozygotes, (4) D14-3-
3ε ex4/D14-3-3ε l(3)j2B10, (5) D14-3-3ε ex4 homozygotes and (6) D14-3-3ε ex4/D14-3-3εex24.  
The adult wing aberrations are unique to 14-3-3ε mutants and vary in penetrance.   
4. Rescue of D14-3-3εex4 homozygotes missing or malformed cross-veins 
with three daily heat shocks of (7) hsD14-3-3ε H is able to completely 
rescue, whereas (8) LI H can only rescue anterior cross-vein deficit and (9) 
LII H is unable to rescue either deficit.  General GAL4 transgenic lines (10) 
tubP-GAL4 and (11) act5C-GAL4  were able to rescue when crossed to UAS 
mycD14-3-3ε D.  GAL4 lines that expressed specifically in the developing 
wing disk wg-GAL4 was only able to partially rescue the anterior cross-vein 
deficit, while dpp-GAL4 was able to completely rescue when crossed to 
UAS mycD14-3-3ε D.  It appears that 14-3-3ε is necessary in the dpp pattern 
of expression during the developing wing disk for proper anterior cross-vein 
formation. 
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heterodimerization.  Another potential explanation is that the proteins involved in this 

signaling pathway interact only with the D14-3-3ε homodimer, since neither LEO 

isoform can rescue the posterior cross-vein deficit the D14-3-3ε protein was present 

throughout the wing disks, but was particularly abundant along the distal edge of the 

disk (Figure 19A).   

Although mutant disks did not exhibit gross anomalies, the characteristic folding 

pattern in the medial region was malformed, the folds were ill defined and appeared 

fused in the D14-3-3εex4 disks (Figure 19A).  These wing disk folds are likely the tissues 

that give rise to the cross-veins which are malformed in the mutants.  These results 

suggest that normal D14-3-3ε activity is required for proper cross-vein formation.  In 

support of this conclusion, the transcription factor OMB is expressed in a pattern similar 

to that of D14-3-3ε, especially in these wing disk folds.   Perturbation of this expression 

pattern results in complete absence or cross-vein malformation (Adachi-Yamada et al., 

1999).   

The results of this study expand the established functions of D14-3-3ε in 

photoreceptor development and timing of mitosis in post-blastoderm embryos (Chang 

and Rubin, 1997; Su et al., 2001).  Roles in hatching and wing cross-vein formation have 

been elucidated by this analysis.  Since both 14-3-3 proteins are maternally supplied in 

early embryos (Skoulakis and Davis, 1996; Broadie et al., 1997; Li et al., 1997; Tien et 

al., 1999; Philip et al., 2001; Su et al., 2001), I focused our analysis on late stage 

embryos and adults.  In addition, our results revealed a novel compensatory over-

accumulation of LEO upon loss of D14-3-3ε. 
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Figure 19.  Expression pattern and malformations in wing disk in D14-3-3ε  mutants  
 
(A) Co-localization of LEO (green Alexa 488) and D14-3-3ε (red Alexa 594) in third 
instar larva wing disk.  (1) Co-localization of LEO/D14-3-3ε in third instar larva wing 
disk, the arrows in 2 indicate the normal arrangement of the central folds and primary 
folds in control D14-3-3ε ex5 homozygotes.  (2) Co-localization of LEO/D14-3-3ε in 
D14-3-3ε ex4 homozygotes, the arrows in 4 indicate the malformation in the central folds.   
(B) RT-PCR to examine which leo isoform is normally present in third instar wing disk 
or larva brain.  Using Act5C as a loading control, results indicate that only leoI is present 
in wing disk, whereas both leoI and leoII are present in the larva brain.   
(C) RT-PCR to verify that hsleo transgene are being expressed in the wing during 
development.  Using Act5C as loading control results indicate that both LI and LII  
transgenes are expressed in the wing disk. 
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 DISCUSSION 

 

The new excision alleles were instrumental in understanding the role of D14-3-

3ε.  Complementation data indicate that while D14-3-3εex4 and D14-3-3εex24 are null 

alleles, the D14-3-3εl(3)j2B10 appears a strong hypomorphic mutation despite the apparent 

lack of protein in our western analyses.  This suggests occasional successful removal of 

the transposon in intron 1 by splicing and protein production, albeit below the detection 

limits of our western assays.  Recovery of 75% of homozygous embryos as adults, 

suggested that the gene is dispensable for viability (Chang and Rubin, 1997).  However, 

only about 40% of null homozygotes and heteroallelics yielded adults.  In addition, 

recovery of these mutant homozygotes is likely due to the observed over-accumulation 

of LEO indicating that the gene is essential for viability.  

The mechanism of over-accumulation of LEO in D14-3-3ε null embryos is 

unknown.  I propose that this may be a manifestation of the known function of 14-3-3s 

in nuclear/cytoplasmic partition of transcription factors among other proteins (Muslin 

and Xing, 2000; Rittinger et al., 1999; Tzivion and Avruch, 2002).  In this model, wild 

type D14-3-3ε modulates the level of leoII mRNA either by exclusion of transcription 

factors from the nucleus, or by keeping factors in an inactive conformation that are 

necessary for its transcription.  The up-regulation of leoII compared to leoI may be due 

to the fact that one of the leoII transcripts has a unique promoter (Kockel et al., 1997).  

In either case, loss of D14-3-3ε in null embryos allows elevated transcription of leoII 

specifically.  Therefore, LEO appears partially redundant with D14-3-3ε only when 
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expressed at high levels, and even then it is only LEOII that can compensate for the loss 

of D14-3-3ε.  This is further supported by the observation that removal of one copy of 

leo eliminated recovery of D14-3-3ε null homozygotes (E. M. C. Skoulakis, unpublished 

observations and (Chang and Rubin, 1997)).  Finally, despite its reported abundance 

(Skoulakis and Davis, 1996; Skoulakis and Davis, 1998), LEO does not appear in excess 

relative to its potential binding sites, because a large increase was necessary for D14-3-

3ε null embryos to survive.  

The over-accumulation of LEO if D14-3-3ε null embryos may be the reason they 

progress normally through development.  However, a significant number of null mutant 

embryos die, likely due to neuronal or musculature deficits that do not allow hatching.  

This is consistent with the preferential distribution of the protein in the CNS and PNS of 

late embryos (Tien et al., 1999) and suggests a requirement for D14-3-3ε in nervous 

system function.   Interestingly, post-embryonic developmental processes did not appear 

to require D14-3-3ε, as successfully hatched null embryos yielded phenotypically 

normal adults except for the wing-vein aberrations and their smaller size.  These adults 

did not harbor elevated levels of LEO in the head or other tissues.  

This analysis established novel roles for D14-3-3ε in wing cross-vein 

development.  Clearly, D14-3-3ε homodimers, or monomers are required for wing cross-

vein formation since the process is not disrupted in leo mutants and all D14-3-3ε null 

combinations exhibit the defect.  These mutations are consistent with the loss of wing 

veins upon inhibition of Ras signaling in the wing disk (Prober and Edgar, 2000) for 

three reasons.  First, D14-3-3ε mutants were isolated as dominant suppressors of 
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activated Ras (Karim et al., 1996) and secondly, they are known to regulate Ras 

signaling through their interactions with Raf (Morrison, 1994; Michaud et al. 1995; 

Morrison and Cutler, 1997).  The third reason is that if mutant activated Ras1 is 

expressed using dpp-GAL4, it specifically affects anterior cross-vein formation 

producing similar aberrations to that seen in D14-3-3ε mutants.  Interestingly these are 

aberrations that can be completely rescued by expressing UAS mycD14-3-3ε transgenes 

with the dpp-GAL4 driver. 

Patterning of the wing blade largely depends on DPP signaling (Martin-Blanco, 

2000; Raftery and Sutherland, 1999) and it is likely to involve the Drosophila homolog 

of the p38 MAPK (Adachi-Yamada et al.,1999).  Given the positive regulation of the 

TGFβ type I receptor by 14-3-3ε in human cells (McGonigle et al., 2001; McGonigle et 

al., 2002), it is possible that the Drosophila protein plays a similar role in wing blade 

patterning.  Interestingly despite the elevated accumulation of D14-3-3ε in the posterior 

distal wing disk, no additional malformations were observed.  This indicates either that 

despite its accumulation D14-3-3ε activity is not required there, or a redundant activity 

compensates for it in the morphogenesis of this tissue. 

LEO accumulates ubiquitously in the developing wing disk, although leo null 

homozygotes have no apparent wing defects.  However, only leoI is present in wild type 

wing disks; therefore, maybe its is the only leo isoform capable interacting with target 

proteins that recognize D14-3-3ε within the wing disk.  In agreement, only the LI 

transgenes were able to functionally compensate for the loss of D14-3-3ε in anterior 

cross-vein formation.  The fact that only the anterior cross-vein deficit can be rescued is 
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consistent with the conclusion that there are two different mechanisms for anterior and 

posterior cross-vein formation.  

In summary, our results indicate that there are 14-3-3 isotype-specific functions 

and the dynamic interactions among them are necessary in multiple tissues and processes 

necessary for normal development in Drosophila.  This analysis demonstrated that co-

localization is not the only requirement for hetero-dimerization.  Since LEO has two 

isoforms that differ by only six amino acids it may not be surprising that they exhibit 

such specific temporal and tissue distributions (Philip et al., 2001).  It is surprising that 

they exhibit such differential ability to functional compensate for D14-3-3ε mutations, 

suggesting specificity not only in hetero-dimerization with D14-3-3ε, but potentially in 

target binding specificity as well. 

 

EXPERIMENTAL PROCEDURES 

 

Drosophila culture and strains   

The Drosophila were cultured in standard cornmeal sugar food supplemented 

with soy flour and CaCl2 at 20-22oC.  The D14-3-3εl(3)j2B10 mutant allele has been 

described previously [Chang, 1997 #278].  Alleles D14-3-3εex5, D14-3-3εex4 and D14-3-

3εex24 generated by mobilization of the transposon in D14-3-3εl(3)j2B10 were a kind gift of 

Dr. Henry Chang.  The genetic background of these alleles was normalized to that of 

Cantonized w1118 using balancer chromosomes in a Cantonized w1118 background.  

Allelism was assessed by complementation tests.  Homozygotes for the lethal null leo12X 
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and leoP1188 alleles Broadie et al., 1997) were obtained by heat shock induction of a leo 

transgene as described by Philip et al (2001) (Philip et al., 2001).  Briefly, leo12X /CyO; 

hsLEOI and leoP1188 /CyO; hsLEOI virgin females raised under three daily induction’s of 

the transgene were mated with their brothers and progeny was allowed to develop at 22-

230C.  This protocol yields adults harboring less than 10% of normal LEONARDO 

protein (Philip et al., 2001).  Complementation tests for viability were performed by 

crossing parents of the appropriate genotypes en masse and scoring the progeny of 

multiple such crosses per genotype.  Complementation for the wing vein phenotype was 

assessed similarly.  Sterility of homozygous, or heteroallelic mutants was assessed by 

placing single mutant males or females with a minimum of three w1118 individuals of the 

opposite sex.  For a 2-week period the food vials were investigated for the presence of 

larvae.  Presence of a single larva signified a fertile subject.  To determine the lethal 

phase of null homozygotes, embryos were collected from D14-3-3ε l(3)j2B10/TM3SerGFP 

and D14-3-3εex4/TM3SerGFP flies and manually separated into GFP fluorescence-

negative (homozygous mutant) and GFP fluorescence-positive.  After hatching, they 

were monitored in separate food vials until emergence of adult flies at which time their 

genotype was verified again based on adult visible markers. 

 

Immunohistochemistry   

Embryos were collected on apple juice plates.  To obtain homozygous embryos, 

12-16 hr GFP fluorescence-negative embryos were hand selected from eggs laid by D14-

3-3εl(3)j2B10/TM3SerGFP and D14-3-3εl(3)j2B10/TM3SerGFP parents.  Sibling GFP 



 130

fluorescence-positive embryos or larva were selected as controls based on their less 

intense fluorescence and apparent normal appearance in contrast to the abnormal 

appearance and intense fluorescence of TM3SerGFP homozygotes.  Embryos were 

dechorionated and fixed in 43.2 mM Hepes, 0.96 mM MgSO4, 0.48 mM EGTA, pH 6.9, 

1.6% formaldehyde in 59% heptane, followed by rinses in methanol, 5% EGTA.  The 

embryos were rehydrated to BBT (140 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 

mM KH2PO4, pH 7.3, 0.1% Tween-20, 1%, Bovine Serum Albumin) and blocked for 1 

hr in BBT-250 (BBT, 250 mM NaCl), 10% normal goat serum.  Incubation with primary 

antibodies in 5% normal goat serum BBT-250 was as follows: chicken anti-D14-3-3ε 

(1:3,000), mouse mAb-22c10 (1:2,000) (Developmental Hybridoma Studies Bank, 

University of Iowa, Iowa City, IA), mouse anti-engrailed (1:5 Developmental 

Hybridoma Studies Bank, University of Iowa, Iowa City, IA), mouse anti-HRP (1:500 

Developmental Hybridoma Studies Bank, University of Iowa, Iowa City, IA).  

Secondary antibodies anti-mouse HRP (1:2,000).  Images were captured on a Ziess 

Axiovert 35 microscope using a 20X objective lens.  Third instar larval wing disks were 

dissected in PBS (150 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH 

7.3), fixed with 1% gluderaldehyde (Sigma, St. Louis, MO), washed with PBST (PBS 

with 0.1% Triton X-100) and blocked with 10% normal donkey serum.  Anti-LEO 

(1:50,000) and anti-D14-3-3ε (1:30,000) in 5% normal donkey serum in PBST was 

followed with Alexa anti-rabbit 488 (1:2,000) and Alexa anti-chicken 594 then mounted 

in Dako anti-fluorescent medium (Carpinteria, CA).  Images were captured on a Ziess 
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Axiovert 135 microscope with an Atto Carv confocal module (Nipkow spinning disk) 

using a 25X objective lens. 

 

Western blot analysis   

To obtain extracts from homozygous embryos, 12-16 hr GFP fluorescence-

negative embryos were hand selected from eggs laid by D14-3-3εl(3)j2B10/TM3SerGFP 

and D14-3-3εl(3)j2B10/TM3SerGFP parents.  Sibling GFP fluorescence-positive embryos 

were selected as controls based on their less intense fluorescence and apparent normal 

appearance in contrast to the abnormal appearance and intense fluorescence of 

TM3SerGFP homozygotes.  The fidelity of the embryonic genotype based on the above 

criteria was verified on similarly selected embryos by immunohistochemistry.  Single 

whole flies or embryo equivalent to three fly heads per lane from control and mutant 

animals were homogenized in 10µl of modified radioimmunoprecipitation assay (RIPA) 

buffer as previously described (Philip et al., 2001).  Extracts were then run on 18% 

acrylamide gels.  Blots were probed at room temperature for 1 hour with rabbit anti-

LEONARDO (1:40,000), or for 4 hours with chicken anti-D14-3-3ε (1:5000) or mouse 

anti-Cmyc (1:200 Developmental Hybridoma Studies Bank, University of Iowa, Iowa 

City, IA) and a 1:300 dilution of mouse anti-tublin (Developmental Hybridoma Studies 

Bank, University of Iowa, Iowa City, IA).  Secondary antibodies were used 1:15,000 for 

anti-rabbit HRP, 1:5,000 for anti-chicken HRP, 1:5000 for anti-mouse HRP and the 

results were visualized with enhanced chemiluminescense (Pierce).  The results of three 



 132

independent experiments utilizing different extract preparations were quantified 

densitometrically and analyzed statistically. 

 

RT-PCR analysis   

Twenty head equivalents of hand selected embryo’s or larva wing disk samples 

were prepared and RT-PCR reactions conditions with leoI, leo II and D14-3-3ε primers 

were performed as previously described (Philips et al., 2001).  As an internal control 

primers Act5C forward (GATGACCCAGATCATGTTCG) and Act5C reverse 

(GGTGATCTCCTTGTGCATAC) were used to quantify the relative amount of RNA in 

each sample.  To identify hsleo I (LI), the leo I forward primer was used with SV40 

specific reverse primer and for hsleo II (LII), the leo II forward primer was used with a 

Hsp70 specific reverse primer. 

 

Quantitative PCR  

To perform the one-step RT-PCR reaction described by Applied Biosystems, 

25 µl of SYBR green PCR master mix, 0.25 µl Taqman reverse transcriptase, 0.50 µl 

RNAse inhibitor, 120nm of each primer were used in each 50µl reaction.  1ng, 0.40ng 

and 0.10ng of each type of RNA was used to establish a standard curve.  Specific leoI 

and leoII forward primers were combined with a common leo reverse primer.  As the 

comparative control, RP49 forward (GATCGTGAAGAAGCGCAC) and RP49 reverse 

(CGCTCGACAATCTCCTGG) primers were used.  Samples were run on ABI Prism 

7700 Sequence Detection system (Applied Biosystems), the thermal cycling conditions 
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were 48° for 30min, 95° for 10min, 40 cycles of 95° 15sec and 58° for 1min.  A melting 

curve was analyzed for each sample to verify specificity.  The comparative Ct method 

described by Applied Biosystems was used to analysis the results of three independent 

experiments. 

 

Wing mounting  

Adult flies were dissected in 95% ethanol.  Wings were placed in Xylene for 10 

minutes, washed twice with ethanol and mounted in Canada balsam (C-1795, Sigma, St. 

Louis, MO).  Images were captured on a Ziess Axiovert 35 microscope using a 20X 

objective lens. 

 

Statistical analysis   

Untransformed data from densitometric quantification of protein amounts and the 

results of all cell counting experiments, complementation tests and Q-PCR results were 

analyzed using the JMP3.1 statistical software package (SAS Institute, Cary, NC).  

Following initial ANOVA, the data were analyzed by planned comparisons to a control 

(Dunnett’s test) or Tukey–Kramer tests. 
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CHAPTER III 

 

14-3-3 PROTEINS ARE ESSENTIAL FOR POLE CELL SURVIVAL IN 

DROSOPHILA MELANOGASTER 

 

INTRODUCTION 

 

To date, 14-3-3 proteins have been identified in all eukaryotes examined and 

comprise a highly conserved family of small 28-32kD acidic molecules.  14-3-3s share a 

common structure composed of nine anti-parallel α-helices that form a U-shaped 

palisade around a central negatively charged groove of largely invariant amino acids.  

Apparently all 14-3-3s are capable of homo- and hetero-dimer formation by interaction 

of hydrophobic residues in helix 1 of one monomer with similar residues in helixes 3 and 

4 of another (Skoulakis and Davis, 1998; Fu et al., 2000; Tzivion and Avruch, 2002).  A 

phosphoprotein binding surface formed by conserved amino acids in the negatively 

charged groove interacts with target proteins that contain the motifs RSxpS/TxP, or 

RxxxpS/TxP (where x=any amino acid, pS/T=phosphoserine or phosphothreonine) 

(Muslin and Xing, 2000; Tzivion and Avruch, 2002).   

The effects of 14-3-3 binding on target proteins can be classified in three main 

categories: 1) modulation of enzymatic activities, 2) phosphoserine binding adapter 

molecules mediating protein-protein interactions, 3) regulators of the subcellular 

localization of proteins (Skoulakis and Davis, 1998; Fu et al., 2000; Muslin and Xing, 
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2000; van Hemert et al., 2001).  In accord with their apparent multi-functionality, though 

highly abundant in vertebrate brains (up to 1% of soluble brain proteins), these proteins 

are present, albeit at lower levels in most vertebrate tissues examined (Aitken, 1995).  

One of the major questions in relation to these diverse roles is whether homo-dimers of 

the various isotypes and hetero-dimers with other co-expressed 14-3-3s are functionally 

unique or redundant.  The widespread tissue and temporal distribution of 14-3-3s and 

their extensive co-expression in complex overlapping patterns (Skoulakis and Davis, 

1998; Baxter et al., 2002) is consistent with both hypotheses.  To approach this question 

then, the contribution of each isotype in a particular function has to be investigated. 

Unlike vertebrates that harbor seven 14-3-3 genes with largely overlapping 

expression profiles, Drosophila have only two, leonardo encoding two 14-3-3ζ isoforms 

(81% identity with the vertebrate isoform) and D14-3-3ε (83% identity with the 

vertebrate cognate) (Skoulakis and Davis, 1998; Fu et al., 2000; Philip et al., 2001).  

Despite the simplicity of Drosophila, multiple in vivo roles for 14-3-3s have been 

described through the isolation and characterization of mutants in the two 14-3-3 genes.  

The two Drosophila isotypes are involved in embryonic development (Chang and Rubin, 

1997; Li et al., 1997; Su et al., 2001), eye neuronal specification (Chang and Rubin, 

1997; Kockel et al., 1997; Rommel et al., 1997), behavioral and physiological 

neuroplasticity (Skoulakis and Davis, 1996; Broadie et al., 1997; Philip et al., 2001) and 

recently in oocyte determination and A-P polarization (Benton et al., 2001).  Both 14-3-3 

proteins appear to regulate activity of the kinase Raf in embryonic development and eye 

neuronal determination (Chang and Rubin, 1997; Kockel et al., 1997; Skoulakis and 
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Davis, 1998) and their roles may be redundant.  However, during early syncytial 

embryonic divisions, the two proteins appear to have unique roles (Su et al., 2001).  

Partial functional redundancy of the two 14-3-3 isotypes was observed in their 

interaction with the PAR-5 kinase in oocyte determination and polarization (Benton et 

al., 2001).  In order to understand the functional specificity of 14-3-3 proteins that may 

underlie these differences, it is necessary to establish the different tissue and temporal 

roles of each isotype. 

Development of the germ line in Drosophila starts with the precocious 

cellularization of 8-10 nuclei at the posterior of the otherwise syncytial embryo.  Some 

of these cells do not divide further, while others undergo 1-2 rounds non-synchronous 

divisions to yield 35-40 pole cells by stage 5 (Sonnenblick, 1950; Williamson and 

Lehman, 1996).  At this stage pole cells become mitotically arrested in cell cycle phase 

G2 (Su et al., 1998).  Pole cells migrate into the posterior midgut pocket at the 

completion of germ band extension on stage 10 of embryogenesis and then transit this 

epithelium and become incorporated in the developing gonad by stage 15 (Williamson 

and Lehman, 1996).  Cells that remain outside the gonad at this stage die, suggesting that 

mechanisms regulating germ cell survival must exist (Sonnenblick, 1950; Williamson 

and Lehman, 1996; Coffman et al., 2002).  In addition, only about 50% of the early pole 

cells survive to complete migration, suggesting that programmed cell death mechanisms 

must be present within them (Sonnenblick, 1950; Williamson and Lehman, 1996).  

However, the mechanisms that regulate pole cell migration and survival are largely 
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unknown, since only a couple of genes specifically affecting these processes were 

identified recently (Coffman et al., 2002). 

Since we are interested in the roles and functional specificity of 14-3-3s in 

Drosophila, we investigated the causes of male and female sterility of D14-3-3ε and 

leonardo mutant animals.  Since such females lay very few eggs, we focused on the 

germ-line in these mutants.  Our results demonstrate that both 14-3-3 proteins are 

present in pole cells and appear to play essential roles in their survival, but not in their 

divisions or migration.  

 

RESULTS AND DISCUSSION 

 

D14-3-3ε alleles utilized 

To avoid potential complications due to allele-specific phenotypes of the known 

point mutations (Chang and Rubin, 1997), we characterized three novel alleles generated 

by mobilization of the transposon in P-element insertion allele D14-3-3ε l(3)j2B10 in a 

normalized genetic background.  Southern analysis (not shown) demonstrated that the 

D14-3-3ε genomic region in D14-3-3εex5 appeared identical to the w1118 and ry506 

isogenic strains consistent with precise excision of the transposon in D14-3-3ε l(3)j2B10 

(Figure 20A).  In contrast, allele D14-3-3εex24 harbors a large deletion (>10 kb) that 

encompasses the entire D14-3-3ε coding region and likely neighboring transcription 

units (Figure 20A).  D14-3-3εex4 is a smaller deletion confined within the BamHI 
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Figure 20.  Mutations in the D14-3-3ε gene and their effects on protein accumulation  
 
(A) The genomic region and mutations of the D14-3-3ε gene.  Exons are represented by 
boxes, introns and surrounding non-transcribed regions by lines.  The untranslated 
portions of exons are indicated by the striped boxes with the open circles in exon 4 
representing the polyadenylation sites.  The P-element insertion in intron 1 is indicated 
by the arrow, deleted DNA in D14-3-3ε ex4 and D14-3-3ε ex24 is indicated by the black 
bars. The hatched bars represent regions of uncertainty at the ends of the deficiencies.  A 
perpendicular line indicates the precise excision of the 1(3)j2B10 in the reverent allele 
D14-3-3ε ex5.  X: Xba I, B: BamHI, R: EcoRI. (Adapted from Chang and Rubin, 1997).   
(B) Mutant homozygotes and heteroallelic combinations yield adult animals lacking 
D14-3-3ε protein.  Semi-quantitative western blot analysis of whole animal lysates of the 
following genotypes: (1) D14-3-3ε ex5 homozygotes, (2) D14-3-3ε ex5/ D14-3-3ε l(3)j2B10 , 
(3) D14-3-3ε ex5/ D14-3-3ε ex4, (4) D14-3-3ε ex5/ D14-3-3ε ex24, (5) D14-3-3ε l(3)j2B10 D14-
3-3ε l(3)j2B10, (6) D14-3-3ε l(3)j2B10/ D14-3-3ε ex4, (7) D14-3-3ε ex4/ D14-3-3ε ex4 and (8) 
D14-3-3ε / D14-3-3ε ex24.    
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fragment flanking the j2B10 transposon, which removes exon 1 of the gene.  Therefore, 

both D14-3-3εex4 and D14-3-3εex24 alleles are predicted to be null and in fact, whereas 

there is normal D14-3-3ε protein accumulation in D14-3-3ε ex5 homozygotes, the D14-3-

3ε ex4 and D14-3-3ε ex24alleles do not yield detectable protein (Figure 20B).  Since allele 

D14-3-3εex24 extends beyond the D14-3-3ε gene, we did not include it in any subsequent 

analyses.  Significantly, the D14-3-3ε l(3)j2B10 allele appeared to be a protein null despite 

its modest phenotypes. 

 
D14-3-3ζ alleles utilised 

leo alleles utilised in this analysis have been described previously and are shown 

schematically in Figure 21A.  leoP1188 and leoP1375 are a strong and weak respectively 

lethal transposon insertion alleles (Skoulakis and Davis, 1996; Li et al., 1997).  The 

complex deletion/rearrangement allele leo12X is a protein null (Broadie et al., 1997).  

Furthermore, two different methods (protocols A and B), have been described that yield 

viable homozygotes for lethal leo mutations by transgenic rescue (Philip et al., 2001).  

Newly eclosed rescued animals and homozygous escapers for the weak leoP1375 allele 

harbour drastically reduced levels of LEO protein (Figure 21B).  In fact, leoP1375/leo12X; 

hsleoI rescued adults were nearly devoid of LEO, whereas homozygous escapers for the 

weak insertion allele leoP1375 harboured ≤ 10% of the protein previously reported for 

rescued leoP1188/leoP1188; hsleoI homozygotes (Figure 21B and Philip et al., 2001).  

Therefore, animals that lack D14-3-3ε, or are nearly devoid of LEO can be obtained and 

they were used in the analyses below.  Doubly mutant adults lacking both D14-3-3ε and
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Figure 21.  Mutations in the D14-3-3ζ gene and their effects on protein accumulation 
 
(A) Structure and mutations of the D14-3-3ζ (leonardo) gene.  Boxes represent exons, 
lines represent introns and surrounding non-transcribed regions and stippled boxes 
indicate untranslated portions of exons.  The alternatively spliced exons 6 and 6’ giving 
rise to leoI  and leoII mRNAs respectively (Philip et al., 2001), are indicated by the 
striped boxes.  The white circles in exon 7 represent polyadenylation sites.  The arrows 
indicate the P-element insertions in intron 2.  The complex deletion/re-arrangement 
allele leo12X is indicated by the black bar and includes internal and terminal regions of 
uncertainty (hatched bars).  (Adapted from Skoulakis and Davis,, 1996, Philip et al., 
2001).   
(B) Semi-quantitative Western blot analysis of whole animal lysates of the following 
genotypes:  (1) w1118, (2) leoP1375/leoP1375; hsleoI (LI) adults rescued from lethality with 
protocol B (RB), (3) leoP1188/leoP1188; LI (RB), (4) leoP1375/leoP1375 homozygous escapers 
and (5) leoP1375/leo12X; LI adults (RB). 
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LEO cannot be obtained, as they are lethal in early embryonic stages (Chang and Rubin, 

1997; Skoulakis, unpublished observations). 

 

D14-3-3s are essential for fertility 

In agreement with a prior report (Chang and Rubin, 1997), homozygous loss of 

function D14-3-3ε  mutant adults exhibited recessive male and female sterility.  Few 

eggs were laid by homozygous mutant females and these failed to hatch likely due to the 

described defects in oocyte determination (Benton et al., 2001).  Similar sterility was 

observed for leo mutant homozygotes and allelic combinations that harbour less than 

10% of normal LEO protein (Philip and Skoulakis, unpublished observations).  To 

determine whether these deficits map to the D14-3-3ε and leo genes, we performed 

complementation analysis.  Male and female individuals harbouring the D14-3-3εex5 

revertant allele were indistinguishable from the w1118 control strains and exhibited 100% 

fertility.  In contrast, all mutant homozygotes and heteroallelics were fully sterile (Table 

10).  The effect is recessive, since all animals heterozygous for the mutant alleles were 

fertile.   

Similarly, the rare escapers homozygous or heteroallelic with the weak leoP1375 

lethal allele were sterile (Table 10).  leoP1188 homozygotes or leoP1375/ leo12X 

heteroallelics rescued from lethality by maternal leoI transgene expression (see 

experimental procedures and (Philip et al., 2001) were similarly sterile.  Partial sterility 

was observed with rescued leoP1375 homozygotes (Table 10) likely because this is not a 

null allele (Skoulakis and Davis, 1996) and the observed perdurance of the transgenic



 142

  

Table 10.  Sterility of homozygous and heteroallelic D14-3-3ε and leonardo mutants 

Genotype Female 
       n           % Fertilea   

Male 
      n         % Fertilea 

D14-3-3ε ex5/ D14-3-3ε ex5 20 100 20 100 
D14-3-3ε l(3)j2B10/ D14-3-3ε ex5 20 100 20 100 
D14-3-3ε l(3)j2B10/ D14-3-3ε l(3)j2B10 30 0 27 0 
D14-3-3ε l(3)j2B10/ D14-3-3ε ex4 30 0 25 0 
D14-3-3ε l(3)j2B10/ D14-3-3ε ex24 23 0 21 0 
D14-3-3ε ex4/ D14-3-3ε ex5 18 100 18 100 
D14-3-3ε ex4/ D14-3-3ε  ex4 25 0 26 0 
D14-3-3ε ex4/ D14-3-3ε  ex24 21 0 18 0 
w1118 25 100 25 100 
leoP1375/ leoP1375  58 0 38 0 
leoP1375/ leoP1188 31 0 8 0 
leoP1375/ leo12X; hsleoI (RB)  26 0 28 0 
leoP1375/ leoP1375; hsleoI (RB )  46 13 35 17 
leoP1188/ leoP1188 ; hsleoI (RB) 38 0 28 0 
a The number of single crosses that yielded larvae over the total number of animals crossed per 
genotype.  Strains used as controls (D14-3-3εex5 for D14-3-3ε  mutants and w1118 for leo) have the same 
genetic background as the mutants.   
n = number single pair matings 
RB:  Lethal homozygotes rescued from lethality with protocol B as indicated in experimental 
procedures.   
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protein (Philip et al., 2001).  This is reflected in the higher level of LEO in these animals 

in relation to that in leoP1188 rescued animals or leoP1375 escapers (Figure 21B).  It 

appears then that adults lacking D14-3-3ε, or harbouring less than 10% LEO are sterile.  

These mutant animals were observed mating and devoid of gross morphological 

aberrations of their genitalia.  Since all mutations reside in normalised genetic 

backgrounds, the observed sterility likely maps genetically to the 14-3-3 genes and not 

to other associated mutations that cause sterility.  Therefore, the results suggest roles for 

both 14-3-3 proteins in physiological or developmental processes requisite for fertility.  

It should be noted that since fertility or levels of 14-3-3s are not different between D14-

3-3ε ex5 and w1118, with which all mutants tested herein share genetic backgrounds, the 

former strain was used as control in all subsequent experiments.   

 

Transgenic rescue of sterility in 14-3-3 mutants 

 To unequivocally demonstrate that the observed sterility is indeed associated 

with mutations in the two 14-3-3 genes, we attempted transgenic rescue of the 

phenotype.  Transgenic lines that carried either inducible, heat shock-driven (hs) D14-3-

3ε or myc-tagged UAS-D14-3-3ε transgenes were introduced into D14-3-3ε mutant 

backgrounds.  Similarly, the hsleoI (LI) transgenes introduced into leo mutant 

backgrounds were employed under different induction protocols as reported before 

(Philip et al., 2001) and detailed in experimental procedures.  The hsleoII (LII) 

transgenic lines were excluded from this analysis though tested in preliminary tests, 
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because they did not rescue lethality.  This is consistent with previous results suggesting 

that LEOII is apparently not involved in developmental processes (Philip et al., 2001). 

Highly expressed D14-3-3ε transgenes rescued conditionally the sterility of D14-3-3εex4 

homozygotes, while the apparent basal rescue (no HS) was likely due to position effect-

dependent “leakiness” of the heat shock promoter (Table 11).  Partial rescue was 

obtained with transgenes of apparently lower expression level (hsD14-3-3εL).  In 

congruence, basal rescue was not observed with these transgenes.  Similarly, complete 

rescue was obtained with UAS-D14-3-3ε transgenes driven with GAL4 (Brand and 

Perrimon 1993) under the direction of the beta tubulin promoter (tub-GAL4), but not the 

cytoplasmic actin 5C promoter (act5C-GAL4).  Again, complete rescue was obtained 

with highly expressed transgenes (UAS-mycD14-3-3εD).  Identical rescue results were 

obtained with D14-3-3εj2B10 homozygotes (data not shown).   

Both tub and act5C GAL4 drivers were able to direct equivalent transgene 

expression (Figure 22A), indicating that the reason for the failure to rescue under act5C-

GAL4 was not the result of decreased expression.  In addition, this experiment confirmed 

that the UAS-mycD14-3-3εL transgenes express at lower levels as suggested by the data 

in Table 11.  To investigate whether both tub-GAL4 and act5C-GAL4 can drive 

expression in pole cells, we crossed these driver lines to UAS-GFP transgenic animals 

and stained the progeny with both anti-GFP and the pole cell-specific anti-VASA 

antibody (Hay et al., 1988).  Figure 22B demonstrates that whereas tub-GAL4 can drive 

GFP expression (and thus UAS-mycD14-3-3ε) in pole cells, the act5C-GAL4 driver does  
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Table 11.  Rescue of sterility of D14-3-3ε mutants with D14-3-3ε transgenes 

14-3-3 
Allele 

hs / UAS GAL4 Female 
   n     % Fertile a 

Male 
  n    % Fertile a 

D14-3-3εl(3)j2B10 --- --- 30 0 25 0 
D14-3-3εl(3)j2B10 hsD14-3-3ε L (18) --- 22 0 24 0 
D14-3-3εl(3)j2B10 hsD14-3-3ε L (RT) --- 27 0 24 0 
D14-3-3εl(3)j2B10 hsD14-3-3ε L (HS) --- 24 100 26 100 
D14-3-3εl(3)j2B10 hsD14-3-3ε H (18) --- 25 0 23 0 
D14-3-3εl(3)j2B10 hsD14-3-3ε H (RT) --- 25 20 24 25 
D14-3-3εl(3)j2B10 hsD14-3-3ε H (HS) --- 25 100 25 100 

D14-3-3εex4 --- --- 25 0 25 0 
D14-3-3εex4 hsD14-3-3ε L (18) --- 23 0 25 0 
D14-3-3εex4 hsD14-3-3ε L (RT) --- 25 0 25 0 
D14-3-3εex4 hsD14-3-3ε L (HS) --- 28 66 22 50 
D14-3-3εex4 hsD14-3-3ε H (18) --- 25 0 24 0 
D14-3-3εex4 hsD14-3-3ε H (RT) --- 25 8 27 7 
D14-3-3εex4 hsD14-3-3ε H (HS) --- 24 100 25 100 
D14-3-3εex4 UAS mycD14-3-3ε L TUB 28 100 23 100 
D14-3-3εex4 UAS mycD14-3-3εH TUB 24 50 18 50 
D14-3-3εex4 UAS mycD14-3-3ε L Act5C 21 0 16 0 
D14-3-3εex4 UAS mycD14-3-3εH Act5C 24 0 18 0 

a The number of single crosses that yielded larvae over the total number of animals crossed per 
genotype.  n = number of single pair matings. 
HS: Three daily 20-minute heat shocks at 32°C through development to adulthood.   
RT: Constant 20-22°C. 18: Constant 18°C. 
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Figure 22.  Differential activity of GAL4 drivers in pole cells 

  
(A) Western blot analysis of stage 11 embryos of the genotypes: (1) act5C-GAL4/+; 
UAS-mycD14-3-3ε L, D14-3-3ε ex4/+, (2) act5C-GAL4/+; UAS-mycD14-3-3ε H, D14-3-3ε 

ex4/+, (3) tub-GAL4/ UAS-myc D14-3-3ε l, D14-3-3ε ex4, (4) tub-GAL4 / UAS-mycD14-3-
3ε H, D14-3-3ε ex4.  The blots were probed simultaneously with anti-myc and anti-β 
tubulin, which served as loading control.  Expression levels of the mycD14-3-3ε 

transgenes were found equivalent under both GAL4 drivers.   
(B) Stage 11 of embryogenesis in act5C-GAL4/ UAS-GFP and UAS-GFP/+ ; tub-
GAL4/+  embryos.  Merged confocal images of female embryos stained with anti-GFP 
(green) and anti-VASA (red).  The act5C-GAL4 driver does not direct expression in pole 
cells.  Identical results were obtained with male embryos. 
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not.  Therefore, rescue from sterility requires transgene expression in the germ-line.  The 

complete rescue obtained under the heat-shock promoter indicates that these transgenes 

were expressed in the pole cells as well.  In addition, the data demonstrate that the 

observed homozygous sterility was indeed precipitated by mutations in the D14-3-

3ε gene. 

To rescue the sterility associated with leo mutations, homozygotes (leoP1188) and 

heteroallelics (leoP1188/ leo12X) of strong leo mutant alleles harbouring the hsleoI 

transgene were raised under conditions of continuous heat shocks through development 

until adult emergence (protocol A, see Experimental procedures and (Philip et al., 

2001)).  Adult animals obtained under these conditions were fully fertile, whereas 

animals raised under conditions that yielded low levels of LEO upon emergence 

(protocol B, see Experimental procedures and (Philip et al., 2001) remained sterile 

(Table 11). 

Since induced heat shock-driven transgenes rescued D14-3-3ε mutations, the 

results suggest that these transgenes were indeed expressed in the germ-line (Table 11).  

However, similarly expressed hsleo transgenes could not rescue the D14-3-3ε mutations 

(Table 12), suggesting that with respect to pole cell development LEO cannot 

functionally compensate for the loss of D14-3-3ε.   Both D14-3-3ε and LEO appear 

essential for fertility, in agreement with the reported role of 14-3-3s in Drosophila 

oocyte determination and polarization (Benton et al., 2001), which addressed the 

inability of eggs laid by mothers mutant in either of the 14-3-3s to hatch.  However, the 

cause for the severe reduction in the number of laid eggs remained unknown.   
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Table 12.  Rescue of sterility of D14-3-3ε mutants with LEO transgenes 

14-3-3 
Allele 

hs / UAS GAL4 Female 
    n      % Fertile a 

Male 
   n    % Fertile a 

D14-3-3εl(3)j2B10 LIL (18) --- 25 0 25 0 
D14-3-3εl(3)j2B10 LIL (RT) --- 25 66 24 50 
D14-3-3εl(3)j2B10 LIL (HS) --- 24 100 25 100 
D14-3-3εl(3)j2B10 LIIL (18) --- 25 0 25 0 
D14-3-3εl(3)j2B10 LIIL (RT) --- 22 0 25 0 
D14-3-3εl(3)j2B10 LIIL (HS) --- 25 8 24 8 

D14-3-3εex4 LIL (HS) --- 25 0 23 0 
D14-3-3εex4 LIH (HS) --- 21 0 19 0 
D14-3-3εex4 LIIL (HS) --- 22 0 21 0 
D14-3-3εex4 LIIH (HS) --- 18 0 17 0 

a  The number of single crosses that yielded larvae over the total number of animals crossed per 
genotype.  n = number of single pair matings. 
HS: Three daily 20-minute heat shocks at 32°C through development to adulthood.   
RT: Constant 20-22°C. 18: Constant 18°C. 
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Severe reduction of the germ line in 14-3-3 mutants  

To investigate the causes of reduced fecundity in 14-3-3 mutants, sagittal 

sections of adult male and female abdomens were examined histologically.  While 16-20 

ovarioles were found in each ovary of control females (Figure 23A), on average a single 

ovariole with one cell cyst per ovary were found in D14-3-3εex4 homozygotes (Figure 

23B).  In leoP1188 homozygous females rescued from lethality by induction of the hsleoI 

transgene, the number of ovarioles was severely reduced with few cell cysts per ovariole 

(data not shown).  There also seem to be an affect on somatic gonadal development, 

since the follicle cells in D14-3-3εex4 homozygous (Figure 23D) derived from somatic 

gonadal tissues appear disorganized and reduced in cellular mass.  The role of D14-3-3ε 

in somatic gonadal tissue development is unknown.  D14-3-3εex5 homozygotes males 

contain abundance of groups of 64 mature sperm (Figure 23G) derived from germ-line 

stem cells.  However, testes do not appear to contain as many groups of mature sperm  

 (Figure 23F and 23H) in D14-3-3ε ex4 homozygotes.  Defects in somatic gonadal tissues 

in males were not observed.  Identical results were obtained with D14-3-3εl(3)j2B10 

homozygotes and all D14-3-3ε and leo mutant and heteroallelic combinations (data not 

shown).  Therefore, the lack of either 14-3-3  protein appears to affect both the germ-line 

and somatic gonadal development.  The atrophied germaria and small number of germ-

line cysts in females resembled those of vasa mutant homozygotes (Styhler et al., 1998), 

suggesting that fewer germ cells were present in the mutants.      

To determine whether lack of mature ovarioles and sperm was due to deficits or 

reduction in the number of pole cells, homozygous mutant embryos were stained with 
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Figure 23.  Loss of ovariole and groups of mature sperm in D14-3-3ε mutants   
 
Severe reduction in adult germ line.  Representative sagittal sections through the 
abdomen of control 20X females ovaries (A), 100X single maturing oocyte (B), 20X 
males testis (E) and 100X male testis (F) D14-3-3ε ex5 homozygotes, 20X female ovaries 
(B), 100X single maturing oocyte (D) and males testis (F) and 100X male testis (H) 
D14-3-3ε ex4 homozygotes.  Mutant females (B) have fewer ovarioles per ovary, fewer 
cell cysts per ovariole and fewer nurse cells per cell cyst (arrows).   The follicle cells in 
D14-3-3ε ex4 homozygous (D) derived from somatic gonadal tissues appear disorganized 
and reduced in cellular mass (arrowhead) when compared to controls (C).  D14-3-3ε ex5 

homozygotes males contain abundance of groups of 64 mature sperm (E,G,arrow); 
however testes do not appear to contain as many groups of mature sperm (F,H, 
arrowhead) in D14-3-3ε ex4 homozygotes. 
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 anti-VASA, a protein specific to and necessary for germ cell specification (Hay et al., 

1988; Lasko and Ashburner, 1990).  We used stage 14 embryos because by that stage 

pole cells have gone through their typical divisions to yield the final number of 35-40 

pole cells and have finished their migration and encapsulation by the mesoderm to form 

gonads (Williamson and Lehman, 1996).  Moreover, VASA expression is an appropriate 

marker for cells of the germ-line since it is present in all stages of their development 

(Hay et al., 1988; Lasko and Ashburner, 1990), and is essential for oocyte 

differentiation, anterior-posterior egg patterning and dorsal-ventral follicle patterning 

(Styhler et al., 1998).  

As indicated in Figure 24A and 24D, D14-3-3ε and LEO appear present within 

pole cells since they co-localize with VASA.  Furthermore, both D14-3-3εl(3)j2B10 and  

D14-3-3εex4 homozygous mutant embryos appeared to have normal VASA-positive 

cells.  However, whereas controls and mutant heterozygotes had 35-37 pole cells, 

homozygous mutant embryos contained on average 8-10 (Table 13). The pole cells that 

are produced except for 8 to 10 fail to migrate properly and are lost leading to reduced 

ovariole and sperm production.  Similar results were obtained with homozygotes for the 

independently isolated D14-3-3εE183K point mutation (Chang and Rubin, 1997) (data not 

shown).  In stage 14 leoP1188 homozygotes (Figure 24E), pole cells appeared to form and 

migrate normally, except their number was significantly lower (22-24 cells, Table 13) 

than in controls.  Since leo12X homozygotes exhibit deficits in dorsal closure (Broadie et 

al., 1997), they harbour severe deficits in the dorsal mesoderm tissue where pole cells 

migrate and become encapsulated.  This is the likely reason for the apparent defects in
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Figure  24.  Loss of germ cells in D14-3-3ε and leonardo mutants   
 
Distribution of pole cells in control and mutant female embryos.  (1, 4) Merged confocal 
images of stage 14 female D14-3-3ε l(3)j2B10/TM3GFP and leoP1188/CyOGFP 
heterozygotes stained with (A) anti-D14-3-3ε (red) and anti-VASA (green) and (D) anti-
LEO (green) and anti-VASA (red).  Heterozygotes were hand selected due to their GFP 
fluorescence.  (B, C) Stage 14 D14-3-3ε  homozygous mutant embryos stained with anti-
GFP (green) to differentiate homozygotes and heterozygotes and anti-VASA (red).  
Genotypes: (B) D14-3-3ε l(3)j2B10 homozygote, (C) D14-3-3ε ex4 homozygote.  (E) Stage 
14 leoP1188 homozygous mutant embryos and (F) stage 11 leo12X homozygote stained as 
for 2 and 3.  The green background fluorescence in C, D, E and F has been enhanced for 
better visibility of the embryos. Mutant embryos have fewer pole cells than wild type 
controls.   Identical results were obtained with male embryos.   
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Table 13.  Quantification of vasa positive cells 
 Genotype # vasa positive cells 

 D14-3-3ε ex5/ D14-3-3ε ex5 34.25 + 0.44 
A D14-3-3ε l(3)j2B10/TM3SerGFP 35.00 + 1.00 
B D14-3-3ε l(3)j2B10/ D14-3-3ε l(3)j2B10  8.00 + 2.00 
  D14-3-3ε ex4/TM3SerGFP 34.50 + 0.50 

C D14-3-3ε ex4/ D14-3-3ε ex4  9.00 + 1.00 
D leoP1188/ CyO GFP 34.50 + 0.50 
E leoP1188/ leoP1188 22.87 + 0.69 
F leo12X/ leo12X 22.00 + 1.05 

Letters A-F correspond to the respective genotypes of the embryos in Figure 24.  
n =8.  
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pole cell migration evident as VASA positive cells present throughout the embryos.  In 

addition, the number of pole cells in leo12X homozygotes was significantly less than 

controls, but not different than that in leoP1188. 

Collectively, the results are consistent with a blockade, or inability of cells to 

divide in the absence of 14-3-3 proteins.  In D14-3-3ε mutants, pole cells do not appear 

to be able to divide beyond the initial eight.   In leo mutants initial divisions appeared 

normal since pole cell numbers indicated at least one successful division (Table 13), 

perhaps due to perdurance of maternal LEO in homozygous embryos (Philip et al., 

2001).  This is consistent with known essential roles for 14-3-3s in vertebrate cell cycle 

regulation (Fu et al., 2000; Muslin and Xing, 2000; van Hemert et al., 2001) and recent 

results suggesting similar roles for the Drosophila isotypes during early embryonic 

divisions (Su et al., 2001).  Alternatively, pole cells may divide properly, but be unable 

to survive, or maintain pole cell identity when they lack 14-3-3s. 

 

 

 The number of pole cells decreases through development in 14-3-3 mutant 

embryos 

 To differentiate among these alternative hypotheses, we initially examined the 

levels of maternal and zygotic D14-3-3ε and LEO proteins in relation to the number of 

pole cells during embryogenesis.   In control embryos, the levels of both D14-3-3ε and 

LEO appeared to remain relatively constant throughout the developmental periods tested 

(Figure 25A).  As in control animals, there was abundant D14-3-3ε in stage 5 leo12X and 
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D14-3-3εex4 homozygotes suggesting that the protein represents perduring maternal 

contribution (Figure 25A).  Whereas the level of D14-3-3ε remained relatively constant 

through stage 11 in leo12X homozygotes, it was not detectable by stage 8 in D14-3-3εex4 

homozygotes (Figure 25A and Table 14).  In contrast, maternally contributed LEO 

perdured through stage 8 in leo12X homozygotes, but by stage 11 was barely detectable, 

whereas D14-3-3ε remained relatively unchanged (Figure 25A and Table 14).   

There was a dramatic change in the number of pole cells among control and 

mutant embryos through these stages of embryogenesis.  The number of pole cells 

remained at 35-37 in control embryos through stage 11 (Figure 25B and 25C) and stage 

14 (Figure 24C).  The number of pole cells in stage 5 D14-3-3εex4 homozygotes was 

consistently lower (27-28) than controls and their number actually decreased through 

stage 8 and 11 to 8-10 by stage 14 (Figure 24B and 24C, Figure 25C).  In leo12X 

homozygous embryos, pole cell number was identical to that of controls in stage 5, but 

as in D14-3-3εex4 homozygotes, their numbers declined through stage 8 and 11 to 22-23 

(Figure 25B and 25C).  These results suggested that pole cell survival declined 

concomitantly with the level of either 14-3-3 protein in mutant homozygotes.  Consistent 

with this interpretation, in leo12X homozygotes, longer perdurance of LEO may be the 

reason these embryos, have a larger number of pole cells than D14-3-3εex4 homozygotes 
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Figure 25.  Decrease in D14-3-3ε and LEO levels and in pole cell numbers in mutant 
embryos   
 
(A) Semi-quantitative Western blot analysis of lysates from 10 D14-3-3ε ex5 (1-3), D14-
3-3ε ex4(4-6) and leo12X (7-9) homozygous embryos at stage 5 (1,4,7), stage 8 (2,5,8) and 
stage 11 (3,6,9) of embryogenesis.  Blots were simultaneously probed for the presence of 
LEO, D14-3-3ε and SYNTAXIN.   
(B) Pole cell number and location in female control D14-3-3ε ex5 (1-3), D14-3-3ε ex4 (4-
6), and leo12X homozygotes (7-9).  Embryos stained with anti-VASA are shown in stage 
5 (1,4,7), stage 8 (2,5,8) and stage 11(3,6,9) of embryogenesis.  Identical results were 
obtained with male embryos.   
(C) Quantification of the number of VASA labelled cells at stage 5, 8, and 11 of 
embryogenesis for control and D14-3-3ε ex4 and leo12X homozygous mutants (n>8). 
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Table 14.  Quantification of D14-3-3ε and LEO levels in staged embryo lysates 

 Genot

ype 

Stages of 
embryogenesis 

D14-3-3ε/SYN 
Ratio 

LEO/SYN 
ratio 

1 D14-3-3εex4 5 1 1 
2 D14-3-3εex4 8 0 1.1567 + 0.1235 
3 D14-3-3εex4 11 0 0.9687 + 0.0568 
4 leo12X 5 1 1 
5 leo12X 8 0.9625 + 0.1038 1.2579 + 0.1001 
6 leo12X 11 1.0388 + 0.0887 0.1578 + 0.0326 
a In carefully staged embryo collections, D14-3-3εex4 homozygotes were separated from D14-3-3εex4 

/TM3GFP heterozygotes and leo12X homozygotes from leo12X/CyOGFP based on GFP fluorescence.  
Western blots of lysates from 10 such embryos were simultaneously probed for the presence of LEO, 
D14-3-3ε and SYNTAXIN, which was used to normalise the blots and obtain quantitative data.  The 
mean + SEM is shown for three independent experiments.  Numbers 1-6 correspond to the respective 
genotypes in the representative western blot in Figure 25A.   
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in stage 14.  Similar results were obtained with leoP1188 homozygotes (data not shown).  

The fewer initial pole cells observed in stage 5, D14-3-3εex4 homozygotes may reflect a 

contribution of D14-3-3ε in early pole cell divisions.  In fact, a role in timing entry into 

somatic cell mitoses in Drosophila embryos has been suggested by Su et al. (Su et al., 

2001).  Alternatively, fewer pole cells may be a reflection of the observed overall 

smaller size of D14-3-3ε homozygous mutant embryos.  Therefore, it appears that 

mutations that limit or eliminate 14-3-3 proteins during embryogenesis affect pole cell 

survival or maintenance of their fate, with a possible minor role of D14-3-3ε on early 

pole cell divisions.  

 

Increased pole cell death in 14-3-3 mutants 

 The hypothesis that pole cells do not survive in the absence of 14-3-3 proteins 

was addressed by acridine orange staining to investigate increased cell death would be 

observed in areas occupied by pole cells in hand selected homozygous mutant embryos 

and controls. The pattern of cell death in stage 5, 8 and 11 for D14-3-3εex5 control 

embryos was similar to that described previously (Abrams et al., 1993).  However, in 

stage 8 and 11 of D14-3-3εex4 and leo12X homozygotes, intense acridine orange staining 

was observed where pole cells were expected to be located.  The number of acridine 

orange-positive cells and their location appeared higher in leo12X homozygotes and this 

may reflect their described dorsal closure deficits and possibly additional unknown 

defects.  Interestingly, in D14-3-3εex4 embryos, aberrant acridine orange staining was 
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largely confined to areas likely occupied by pole cells.  This indicated that in contrast to 

leo12X, apoptosis was largely limited to these cells in D14-3-3εex4 homozygotes.   

 

The role of 14-3-3s in pole cells 

Programmed cell death in the germ line is normally used to reduce pole cell 

numbers, likely ones with damaged DNA (Sonnenblick, 1950; Coffman et al., 2002).  

Moreover, the mechanism for apoptotic death has been proposed to be present within 

pole cells and to be an active and highly regulated process (Starz-Gaiano and Lehmann, 

2001; Coffman, et al., 2002).  14-3-3 proteins are known to inhibit apoptosis by binding 

and sequestering in the cytoplasm phosphorylated BAD, thus preventing it from 

interacting with and inactivating members of the anti-apoptotic Bcl-2 family.  Similarly, 

14-3-3 proteins bind and retain in the cytoplasm Forkhead-family transcription factors, 

thus preventing them from transcribing cell death genes (van Hemert et al., 2001).  It is 

possible then that loss of 14-3-3s in mutant embryos results in activation of pole cell 

apoptotic pathways they normally help keep inactive.  The observed loss of pole cells 

concomitantly with the loss of 14-3-3s, early in D14-3-3ε mutant embryos and later in 

leo homozygotes due to LEO perdurance, is consistent with this interpretation.  Similar 

strong anti-apoptotic roles for 14-3-3s have been described before for mammalian cells 

(Xing et al., 2000; Datta et al., 2001; van Hemert et al., 2001).  Additional genes 

apparently involved in regulation of programmed cell death in pole cells have been 

identified recently (Coffman, et al., 2002).    
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Alternatively, death of pole cells may be the result of ectopic activation of their 

cell cycle, in the regulation of which the role of 14-3-3s is well established (reviewed in 

van Hemert et al., 2001).  Following stage 7 of embryogenesis, pole cells enter 

quiescence through G2 cell cycle arrest mediated apparently by phosphorylation-

dependent inhibition of Cdc2 (Su et al., 1998).  Activation of Cdc2 requires removal of 

the inhibitory phosphates by Cdc25stg (Edgar et al., 1994; Edgar and Lehner, 1996).  In 

yeast and mammalian systems, cytoplasmic sequestering of Cdc25, necessary for proper 

Cdc2 inhibition and G2 arrest is known to be mediated by 14-3-3 proteins (Forrest and 

Gabrielli, 2001; van Hemert et al., 2001).  Similarly in Drosophila pole cells, proper 

localization of Cdc25 is necessary for Cdc2 inhibition and G2 arrest (Su et al., 1998).  In 

addition, pole cells appear unable to enter mitosis and S phase and proceed directly to G1 

upon temporally miss-regulated activation of Cdc2 (Su et al., 1998), which may lead to 

apoptosis.  In Hela cells, abrogation of 14-3-3 binding and cytoplasmic localization of 

Cdc25 precipitated a high proportion of abnormal mitotic phenotypes including 

apoptosis (Forrest and Gabrielli, 2001), consistent with the reported apoptotic 

phenotypes upon Cdc2 over-activation (Shi et al., 1994; Yu et al., 1998) and the anti-

apoptotic functions of 14-3-3s (Xing et al., 2000).  Moreover, both 14-3-3 proteins play 

specific roles in cell cycle regulation of syncytial mitoses in early embryos (Su et al., 

2001).  Given these observations, loss of pole cells in 14-3-3 mutant embryos may be the 

result of the decline in maternally loaded 14-3-3s, which results in gradual Cdc25stg 

relocation in pole cells, precipitating Cdc2 activation and apoptotic cell death.  The 
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observation that the number of pole cells declines as the levels of maternal 14-3-3s 

decline during development in homozygous mutant embryos lends support to this notion.  

The similarity in the D14-3-3ε and leo mutant phenotypes and co-localization of 

the two proteins in pole cells suggests that both are involved in preventing cell death, or 

maintaining G2 arrest, likely by heterodimer formation.  The importance of 14-3-3 

heterodimers instead of homodimers is consistent with the fact that the two 14-3-3s are 

not functionally redundant, suggesting roles for both 14-3-3s in maintenance of pole 

cells.  This is supported by the dramatic loss of pole cells in D14-3-3ε mutant 

homozygotes despite the presence of abundant LEO homodimers, which did not appear 

to functionally compensate for the proposed D14-3-3ε LEO heterodimers.  In fact, it 

appears that considering the perdurance of LEO, the reduction in pole cells occurs as 

soon as D14-3-3ε disappears (Fig 25).  Similarly, loss of LEO was not compensated by 

D14-3-3ε in leo mutants.  The two proteins are capable of heterodimerization in vivo. 

Therefore, with respect to pole cell survival loss of either 14-3-3 protein appears rate 

limiting, consistent with the proposed obligate heterodimers.   This is in contrast to the 

reported partial compensation of D14-3-3ε by LEO in oocyte determination and 

polarization of the A-P axis (Benton et al., 2001).  An alternative interpretation is that in 

pole cells, the two 14-3-3 proteins regulate different, but closely related aspects either of 

G2 arrest or apoptosis prevention.  In fact, in syncytial mitosis regulation, the two 

proteins appear to have distinct roles, as D14-3-3ε is apparently required to time the 

mitoses and LEO appears to be required for normal chromosome separation (Su et al., 

2001).   
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Our data extend the requirement for 14-3-3 proteins in oocyte determination and 

polarization of the A-P axis (Benton et al., 2001), which is the likely explanation of why 

the few eggs laid by the D14-3-3ε and leo mutant females do not hatch.  The earlier 

requirement for both 14-3-3 proteins in pole cell survival is the likely explanation of the 

observed small number of eggs laid by these mutant females and the sterility of mutant 

males (Chang and Rubin, 1997; Coffman, et al., 2002; and this paper).  It is interesting 

that in oocyte determination and polarization, the two 14-3-3 isotypes can be partially 

functionally redundant, but in the earlier processes of pole cell survival they do not 

appear to be.  It is currently unknown whether this pattern of 14-3-3 isotype involvement 

in distinct steps of a process, unique properties of heterodimers versus homodimers and 

partial or complete functional compensation will be characteristic of each of the growing 

number of roles for 14-3-3 proteins in vivo. 

 

EXPERIMENTAL PROCEDURES 

 

Drosophila culture and strains   

Drosophila were cultured in standard cornmeal sugar food supplemented with 

soy flour and CaCl2 at 20-22oC.  The D14-3-3εl(3)j2B10 mutant allele has been described 

previously (Chang and Rubin, 1997).  Alleles D14-3-3εex5, D14-3-3εex4 and D14-3-3εex24 

generated by mobilisation of the transposon in D14-3-3εl(3)j2B10 were a gift of Dr. Henry 

Chang.  The genetic background of these alleles was normalised to that of Cantonized 
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w1118 using balancer chromosomes in a Cantonized w1118 background.  Allelism was 

assessed by complementation tests.   

D14-3-3ε transgenic strains were generated by sub-cloning wild type D14-3-3ε, 

and myc-tagged D14-3-3ε cDNAs provided by Chang and Rubin, (data not published), 

into pUAST (Brand and Perrimon, 1993) or pCaSpeR-hs and injecting w1118 embryos.  

Multiple independent transformant lines were obtained and the ones with the darkest w+ 

eye color were used for this analysis.  The hsleoI (LI) transgenic strains have been 

described elsewhere (Philip et al., 2001).  The Gal4 “driver” strains containing the 

transgenes tubP-GAL4 (BL#5138) and act5C-GAL4 (BL#3957) were provided by the 

Bloomington Stock center. 

   

Southern blot analysis    

Genomic samples were prepared as previously described (Skoulakis and Davis, 

1996), blots were obtained using the Turboblotter rapid downward neutral transfer 

system (Schleicher & Schuell, Keene, NH) and probed with D14-3-3ε cDNA and 

genomic DNA fragments. 

 

Generation of anti-D14-3-3ε antibodies 

The D14-3-3ε pRSET expression vector was a kind gift of Dr. Chien (Tien et al., 

1999).  Recombinant D14-3-3 protein was purified from bacterial cultures by virtue of 

the hexahistidine tag and injected into hens (Charles River laboratories).  IgY was 

purified from eggs using standard protocols (Charles River laboratories).  The specificity 
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of the anti-D14-3-3ε antibodies was tested with recombinant D14-3-3ε and LEO proteins 

and fly head lysates by western blots (see below). 

 

Western blot analysis 

Two whole flies from control and mutant animals were homogenized in 10 µl of 

modified radioimmunoprecipitation assay (RIPA) buffer as previously described (Philip 

et al., 2001).  Extracts, equivalent to one fly per lane were run on 18% acrylamide gels.  

Blots were probed at room temperature with rabbit anti-LEO (1:40,000), or chicken anti-

D14-3-3ε (1:5000) and a 1:200 dilution of mouse anti-SYNTAXIN (9E10, 

Developmental Hybridoma Studies Bank, University of Iowa, Iowa City, IA).  The blots 

anti-tubulin (E7 Developmental Hybridoma Studies Bank, University of Iowa, Iowa 

City, IA) was used at 1:500 dilution.  Secondary antibodies were used at 1:15,000 for 

anti-rabbit, 1:5,000 for anti-chicken and 1:4000 for anti-mouse and the results were 

visualised with enhanced chemiluminescense (Pierce).  

To obtain homozygous mutant embryos for Western analysis, timed egg 

collections from D14-3-3εex4/TM3GFP and leo12X/CyOGFP stocks were obtained. 

Homozygotes were hand-selected due to their lack of GFP fluorescence and an equal 

number of GFP-positive morphologically normal heterozygotes were homogenized in 

RIPA buffer and processed for Western blot analysis.  Unless specified otherwise, 20 

embryos from a tight 1-hour collection were homogenized in RIPA buffer, 10 µl Laemli 

buffer was added and 10 µl of the homogenate were run per lane. Quantification of the 

results was obtained by densitometry and the ratios of LEO/SYNTAXIN and D14-3-
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3ε/SYNTAXIN were determined for each sample in minimally three independent 

experiments. 

   

Fertility assays 

To test fertility, single mutant male or female flies were paired with three tester 

w1118 females or males accordingly and the vials were tested for the presence of larvae 

for 7 days.  Presence of even a single larva within a vial was scored to denote fertility for 

the tested animal.  Vials that did not contain offspring were scored as sterile only when 

at the least the female parent was still alive at the end of the 7-day period.  

Homozygotes for the lethal null leo12X and leoP1188 alleles (Skoulakis and Davis, 

1996; Broadie et al., 1997) were obtained by heat shock induction of a leo transgene as 

described (Philip et al., 2001).  Briefly, leo12X /CyO; hsleoI (LI) and leoP1188 /CyO; LI 

virgin females raised under three daily induction’s of the transgene were mated either 

with their brothers, or leoP1375 /CyO; LI males and progeny was allowed to develop at 

22-230C.  This protocol (protocol B) yields adults harbouring less than 10% of normal 

LEO protein (Philip et al., 2001), which along with the rare leoP1375 homozygous and 

leoP1375/ leoP1188 heteroallelic escapers were tested for fertility. Alternatively (protocol A) 

leo12X /CyO; LI and leoP1188 /CyO; hsleoI animals were allowed to develop to adulthood 

under 3 daily 20 minute heat shocks, collected and fertility tested at 22-230C.   To rescue 

sterility of D14-3-3ε mutants, hsD14-3-3ε, D14-3-3ε ex4homozygotes were collected, 

paired to appropriate tester w1118 individuals and given three daily 20-minute heat 

shocks.  In addition, UAS-mycD14-3-3ε D14-3-3ε ex4/TM3Sb transgenic lines were mated 
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either to tubP-GAL4, D14-3-3ε ex4/TM3Sb, or act5C-GAL4/CyO; UAS-mycD14-3-3ε 

D14-3-3ε ex4/TM3Sb and the progeny were tested for fertility as described above.  For 

the leo transgenics, leo12X / leoP1375or leoP1188 homozygous virgin females rescued from 

lethality as outlined above, were paired to appropriate tester w1118 individuals, given 

three daily 20-minute heat shocks and their fertility was assessed. 

 

Immunohistochemistry  

To obtain homozygous embryos for immunohistochemistry, GFP fluorescence-

negative embryos were hand selected from eggs laid by D14-3-3ε ex4/TM3SerGFP and 

leo12X/CyOGFP parents.  Sibling GFP fluorescence-positive embryos were selected as 

controls based on their less intense fluorescence and apparent normal appearance in 

contrast to the abnormal appearance and intense fluorescence of balancer homozygotes. 

Embryos were collected on apple juice plates, dechorionated and fixed in 43.2 

mM Hepes, 0.96 mM MgSO4, 0.48 mM EGTA, pH 6.9, 1.6% formaldehyde in 59% 

heptane, followed by rinses in methanol, 5% EGTA.  The embryos were rehydrated to 

BBT (140 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH 7.3, 0.1% 

Tween-20, 1%, Bovine Serum Albumin) and blocked for 1 hr in BBT-250 (BBT, 250 

mM NaCl), 10% normal goat serum.  Incubation with primary antibodies in 5% normal 

goat serum BBT-250 was as follows: rabbit anti-LEO (1:4000), chicken anti-D14-3-3ε 

(1:3,000), mouse anti-GFP (1:30,000) and rat anti-VASA (1:2,000) (Provided by Dr. T. 

Lasko).  Fluorescent secondary antibodies diluted 1:2,000 were Alexa 594 anti-chicken, 

Alexa 488 anti-mouse and Alexa 488 or 594 anti-rabbit.  Images were captured on a 
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Zeiss Axiovert 135 microscope with an Atto Carv confocal module (Nipkow spinning 

disk) using a 25X objective lens. 

 

Statistical analysis 

The results of all cell-counting experiments were analyzed using the JMP3.1 

statistical software package (SAS Institute, Cary, NC).  Following initial ANOVA, the 

data were analyzed by planned comparisons to a control (Dunnett’s test) or Tukey–

Kramer tests. 
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CHAPTER IV 

 

PROTECTION FROM PREMATURE HABITUATION REQUIRES 

FUNCTIONAL MUSHROOM BODIES IN DROSOPHILA 

 

INTRODUCTION 

 

Selection of an appropriate behavioral response depends on the ability of an 

organism to discriminate between novel and pre-experienced environmental stimuli.  

Sensory information that elicits a particular response maybe enhanced or suppressed by 

additional novel or pre-experienced sensory inputs.  Therefore, filtering less significant 

events, such as a non-reinforced prolonged or repetitive stimulus is likely essential in 

avoiding inappropriate behavioral responses.  Habituation is a major mechanism to 

decrease responsiveness to repetitive or prolonged non-reinforced stimuli (Thomson and 

Spencer, 1966; Rankin, 2000; Rose and Rankin, 2001).  Equally important, since 

habituation may be the foundation of selective attention, inappropriate or premature 

habituation to a stimulus would not permit discrimination between novel and pre-

experienced stimuli essential in mediating appropriate responses (Mackintosh, 1974).  In 

humans, defective habituation has been associated with schizophrenia (Freedman et al., 

1991; Adler et al., 1999; Meincke et al., 2004), learning disabilities (Gillberg, 2003; 

Slaats-Willemse et al., 2003) and migraines (Siniatchkin et al., 2003) among other 

conditions. 
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In addition to stimulus gating, habituation as a form of non-associative learning 

has been studied in a variety of models (Thomson and Spencer, 1966; Hawkins, 1988; 

Rose and Rankin, 2001).  In Drosophila, a number of different assays have been 

developed to study habituation focused mainly on the effects of known associative 

learning mutations on habituation (Duerr and Quinn, 1982; Corfas and Dudai, 1989; 

Asztalos et al., 1993; Engel and Wu, 1996; Jin et al., 1998; Engel et al., 2000).  

Moreover, with the exception of the proboscis extension reflex (Duerr and Quinn, 1982), 

most assays focused on habituation of Peripheral Nervous System sensory neurons.  

Little has been done in Drosophila to investigate habituation mediated by the Central 

Nervous System (CNS), and in particular to stimuli used for associative conditioning.  

Since this could provide a direct comparison of associative and non-associative 

processes we investigated habituation to the olfactory and footshock stimuli used in 

negatively reinforced olfactory associative conditioning in Drosophila (Tully and Quinn, 

1985).   

Two main neural centers in the Drosophila CNS have been implicated in 

processing of olfactory and footshock information processing, the Mushroom Bodies 

(MBs) and the Lateral Horn (LH) (Heisenberg, 2003; Tanaka et al., 2004).  The MBs, 

essential for olfactory associative learning and memory, but not olfaction per se, are 

bilateral neuronal clusters in the dorsal posterior cortex of each Drosophila brain lobe 

(Roman and Davis, 2001; Heisenberg, 2003).  The dendrites (calyces) lie ventrally to the 

somata, while their axons fasciculate to form the peduncles, which projects to the 

anterior of the brain.  There, it bifurcates with processes extending medially (β, β′  and 
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γ  lobes) and others projecting dorsally to comprise the α  and α′ lobes (Crittenden et al., 

1998). The LH which has been suggested to mediate direct responses to olfactory stimuli 

(Marin et al., 2002; Tanaka et al., 2004) lies lateral to the MB calyces and the two 

neuropils appear to interact bi-directionally (Ito et al., 1998).  Olfactory information 

arrives at the MBs and the LH from the antennal lobe via two ascending tracks of 

projection neurons, the medial (mACT) and inner (iACT) antenocerebral tracks (Marin 

et al., 2002; Heisenberg, 2003).  The iACT connects the antennal lobes to the posterior 

brain where it bifurcates into one branch of axons projecting to the MB calyces, while 

the other projects to the lateral horn (LH) of the protocerebrum (Stocker et al., 1997; 

Heimbeck et al., 2001).  The mACT leads primarily to the LH and a minor track 

branches to the MB calyces (Acebes and Ferrus, 2001). 

To investigate CNS mediated habituation and the anatomical sites that participate 

in the response, we focused on olfactory and footshock responses.  Avoidance of 

aversive and attraction to appetitive odors (osmotactic responses) constitute essential 

behaviors in Drosophila and have been used to investigate the organization and function 

of the olfactory system in this insect (de Bruyne et al., 2001; Stocker, 2001; Devaud, 

2003).   We aimed to capitalize on the robustness of these responses and their use in 

conditioning paradigms (Tully and Quinn, 1985; Davis and Han, 1996; Roman and 

Davis, 2001; Waddell and Quinn, 2001; Heisenberg, 2003), and the extensive 

information regarding the organization and function of the olfactory system in 

Drosophila (Vosshall, 2000; Stocker, 2001).  We report on the establishment of two 
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novel habituation paradigms and the role of the MBs and potentially the lateral horn in 

protecting from premature habituation to the stimuli.    

 

RESULTS 
 

An experience-dependent odor specific decrement in osmotaxis   

Because the decrease in response characteristic of habituation depends on 

repeated stimulation (Thomson and Spencer, 1966) which is difficult to deliver 

discretely and with high frequency with airborne odorants, we used continuous exposure 

to odors adjusted such as to elicit relatively mild responses.  We exposed flies (w1118 and 

ex5) to aversive and attractive odors for different lengths of time (pre-exposure) and 

tested their subsequent performance when confronted with a choice of the same odor and 

air.  Naïve animals exhibited mild osmotactic responses (Avoidance Indices of about 50) 

in avoidance of octanol (OCT) and benzaldehyde (BNZ) and attraction to ethyl acetate 

(ETA) (Figure 26A and 26.II, naïve, and Table 15).  After 3 minutes of pre-exposure to 

OCT, a highly significant 60% reduction in subsequent avoidance of this odor was 

observed (Figure 26A).  However, OCT avoidance did not change if the flies were pre-

exposed to equally aversive BNZ (Figure 26A), indicating odor specificity in the pre-

exposure dependent osmotactic decrement and argued against generalized olfactory 

fatigue or sensory adaptation both predicted to have poor odor specificity (Thomson and 

Spencer, 1966; Devaud, 2003).  Pre-exposure to BNZ precipitated a similar decline in 

subsequent avoidance of this odor with respect to pre-exposure time required, magnitude 
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Figure 26.  Odor pre-exposure-dependent osmotactic decline   
 
The mean index (AI) for odor avoidance (I) or attraction (II) are shown + SEM after pre-
exposure for 0 (naïve) to 4 minutes to the odors indicated.  After pre-exposure, 
avoidance of aversive odors was tested for 90 seconds and attraction for 180 seconds.  
SD:  significant differences, NSD:  non significant differences 
(I) Octanol (OCT) avoidance after pre-exposure for the indicated times to OCT (open 
symbols), or benzaldehyde (BNZ, filled symbols).  ANOVA indicated significant 
differences (F(9,82)=49.46 p<0.0001, SD) among the AIs.  Subsequent planned 
comparisons between naïve and pre-exposed w and ex5 demonstrated significant 
reductions in OCT avoidance (p<0.0001) after 3 and 4 minutes pre-exposure to this odor.  
Shorter pre-exposure did not have any effects.  In contrast, no significant differences in 
OCT avoidance (ANOVA (F(9,83)=0.73 p<0.6826, NSD) were observed after pre-
exposure to BNZ.  OCT avoidance declined after 2 minutes of pre-exposure to this odor. 
(n>8 for all measurements).   
(II) Attraction to ethyl acetate (ETA) by control flies after pre-exposure for the indicated 
times to the same odor.  Note the negative AI scores indicating attraction.  ANOVA 
indicated significant differences (F(9,84)=32.65 p<0.0001).  Subsequent planned 
comparisons revealed significant differences (p<0.0001) in attraction to ETA only 
between naïve and flies pre-exposed to the odor for 3 and 4 minutes.  Attraction declined 
after 2 minutes of pre-exposure to ETA (n>8 for all measurements). 
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Table 15.    Odor acuity and shock avoidance 
I.    Genotype 0.1X OCT 0.1X ETA 1X BNZ 
 w1118 51.79 + 4.08 -43.75 + 5.52 56.24 + 1.67 
 w1118 HU 48.50 + 2.94 -39.80 + 2.43 48.35 + 2.25 
 ex5/ex5 48.32 + 1.92 -37.02 + 1.79 54.58 + 2.41 
 ex5/ex5 HU 52.55 + 1.91 -46.65 + 2.89 56.52 + 2.15 

 
II. Genotype 45V 90V 

w1118 72.59 + 1.12 79.82 + 2.04 
w1118 HU 73.63 + 2.50 84.24 + 1.58 
ex5/ex5 70.85 + 1.20 84.37 + 1.50 
ex5/ex5 HU 72.50 + 1.07 85.23 + 2.16 
   
Berlin 75.34 + 4.43 82.30 + 1.00 

 mbm1 78.59 + 3.10 80.29 + 0.96 
    

w; UAS-TNT  74.38 + 1.16 84.38 + 1.16 
 UAS-TNT / 247 74.93 + 1.43 84.93 + 1.43 
 UAS-TNT / GH146 78.41 + 0.81 84.77 + 0.84 
    
D w; UAS-shi5ts   74.56 + 1.02 84.56 + 1.02 
 UAS-shi5ts / 247  71.39 + 1.33 81.39 + 1.33 
 UAS-shi5ts / GH146  72.77 + 1.23 82.29 + 1.24 
 UAS-shi5ts / OK72  73.66 + 0.88 82.85 + 1.28 
    

w; UAS-shi10ts   74.38 + 1.29 84.38 + 1.29 
 UAS-shi10ts  / 247  73.72 + 1.52 83.72 + 1.52 
 UAS-shi10ts  / GH146  72.01 + 2.06 84.88 + 1.36 
 UAS-shi10ts  / OK72  74.33 + 1.52 83.40 + 1.80 
(I) The PI for olfactory acuity are shown + SEM.  Positive values indicate avoidance and negative values 
indicate attraction to odors. ANOVA’s for olfactory acuity indicate no significant differences (NSD) for 
0.1X OCT (F(3,35)=2.14 P<0.1139 NSD), 0.1X ETA (F(3,32)=1.18 P<0.3347 NSD) and BNZ avoidance 
(F(3,31)=3.18 P<0.0391). (n>8 for all measurements) 
(II) The following ANOVA’s for shock avoidance indicated no significant difference: (n>8) 
A) 45V (F(3,39)=3.26 P<0.0324) and 90V (F(3,32)=1.90 P<0.1569). 
B) 45V (F(1,16)=3.09 P<0.1024) and 90V (F(1,16)=3.09 P<0.1024). 
C) 45V (F(2,24)=3.68 P<0.0772) and 90V (F(2,25)=0.21 P<0.8109). 
D) 45V (F(3,35)=0.11 P<0.7417) and 90V (F(3,32)=0.88 P<0.4643). 
E) 45V (F(3,55)=0.13 P<0.7231) and 90V (F(3,33)=0.30 P<0.8279). 
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of the decline and odor specificity (not shown).  Furthermore, a similar decline in ETA 

attraction was observed after 3 minutes of pre-exposure to this odor (Figure 26B) and 

identical results were obtained with additional attractive odors such as butanedione (not 

shown).   

Interestingly, in all experiments we observed a refractory period when animals 

appeared to respond to the pre-exposed odor as if they were naïve.  In the experiments 

shown in Figure 26 the refractory period was about 120 seconds, but this time varied 

depending on stimulus strength.  Strong stimulation increased the refractory period 

(Figure 27B.II and data not shown), consistent with predictions for habituation and in 

contrast to olfactory fatigue or desensitization predicted to have the opposite effect 

(Thomson and Spencer, 1966).  Failure to move away from, or towards the test stimulus 

could not be attributed to odor-induced impairments in locomotion for three reasons.  

First, flies pre-exposed to one aversive odor and tested against another avoided the latter 

normally (Figure 26A).  Second, the vast majority of animals moved away from the 

central compartment of the maze during the testing phase of the experiment.  Third, in 

the absence of test odors, both naïve and pre-exposed animals distributed equally in the 

two arms of the maze within 30-35 seconds, a time 3 times faster than the 90-second 

period allotted for testing (not shown).   

 

The osmotactic response decrement conforms to habituation parameters  

 Because the pre-exposure dependent osmotactic decline was stimulus specific, 

we investigated whether it conforms to additional classically defined habituation  
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Figure 27.  Parameters of olfactory habituation   
 
The mean AI for odor avoidance (positive scales) or attraction (negative scales) + SEM 
are shown in all panels. SD:  significant differences.  NSD:  non significant differences 
(A)  Spontaneous recovery of the pre-exposure-dependent reduction in osmotaxis within 
3 minutes.   
(I)  Recovery of OCT avoidance to naïve levels by w (open symbols) and ex5  (filled 
symbols) animals after the indicated rest period following 4 minutes of OCT pre-
exposure.  ANOVA (F(7,66)=33.34 p<0.0001, SD) and planned comparisons indicated a 
performance deficit of pre-exposed animals in comparison to naïve, after 1 minute of 
rest (p<0.0001), but not for other rest periods.  Therefore recovery occurred after 3 
minutes of rest post pre-exposure (n>8 for all measurements).   
(II)  Recovery of attraction to ETA by w (open symbols) and ex5  (filled symbols) after 
the indicated rest period following 4 minutes of ETA pre-exposure.  ANOVA 
(F(7,66)=21.43, p<0.0001 SD) and subsequent planned comparisons indicated that 
differences in attraction between ETA pre-exposed and naïve animals were significant 
only after 1 minute of rest (p<0.0001) but not after 3 or 6 minutes. Therefore recovery 
occurred after 3 minutes of rest post pre-exposure (n>8 for all measurements). 
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Figure 27. (continued) 
 
(B) Dependence of the pre-exposure-dependent reduction in osmotaxis on stimulus 
strength.   
(I)  Avoidance of 1X OCT after pre-exposure to 1X or 0.1X OCT compared to 
avoidance of naïve animals.  ANOVA (F(5,50)=30.58 p<0.0001 SD).  The differences 
between naïve and pre-exposed animals were significant (p<0.0001) regardless of the 
amount of odorant (Dunnett’s tests).  In addition, the differences in avoidance of animals 
pre-exposed to 1X OCT and 0.1X OCT were significant (p<0.0001).  A decrease in the  
pre-exposed odorant (0.1X) resulted in a smaller pre-exposure-dependent reduction in 
avoidance of full strength odor (n>8 for all measurements).   
(II)  Avoidance of 1X OCT delivered at increased (600 ml/min) flow rate (1X OCT*) 
after 4 minute and 8 minute pre-exposure to the same conditions (1X OCT*).  ANOVA 
(F(5,64)= 13.27 p<0.0001 SD).  Subsequent planned comparisons (Dunnett’s test) 
indicated significant differences only between animals pre-exposed for 8 minutes 
(p<0.0001) and naïve controls but not for naïve and animals pre-exposed for 4 minutes.  
Increased stimulus strength decreased habituation (n>8 for all measurements). 
 

A
V
O
I
D
A
N
C
E  
 
I
N
D
E
X

B

0 
1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 

1 0 0 

w ex5

naïve 
0.1X 
1X 

1X OCT

w ex5

naïve 4' 8' 

1X OCT*I. II.



 177

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27. (continued) 
 
(C)  Dishabituation of the pre-exposure-dependent reduction in osmotaxis with electric 
shock.   
(I)  Animals were tested for avoidance of 1X OCT either naïve (open bars), after 4 
minute 1X OCT pre-exposure (dark gray bars), 1X OCT pre-exposure followed by a 
single 45V electric shock 30 seconds prior to testing (hatched gray bars).  Light gray 
bars indicate the effect of the 45V shock on naïve flies on subsequent OCT avoidance.  
ANOVA (F(7,65)=59.00 p<0.0001 SD).  Planned comparisons indicated that the 
performance differences between pre-exposed animals (OCT), and pre-exposed shocked 
animals (OCT+45V) were significant (p<0.0001).  However, the performances of naïve, 
naïve+45V shock and pre-exposed shocked flies (OCT+45V) were not significantly 
different, indicating that a single 45-volt shock restored normal OCT avoidance after 4 
min of pre-exposure (n>7 for all measurements).   
(II)  A 45V shock was delivered either 30 seconds prior to, during, or 30 seconds after 
OCT pre-exposure (line indicates duration of odor exposure) and subsequent OCT 
avoidance was tested.   ANOVA (F(7,64) = 37.59 p<0.0001 SD).  Subsequent planned 
comparisons revealed significant differences (p<0.0001) in OCT avoidance between 
animals that received the shock midway, or at the end of pre-exposure, and those that 
received it prior to or at the onset of the pre-exposure (n>7 for all measurements). 
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parameters.  A 3-4 minute post pre-exposure rest prior to testing yielded responses not 

different than those of naïve animals (Figure 27A.I and 27A.II), indicating a time-

dependent spontaneous recovery of osmotactic behaviors as predicted for habituation 

(Thomson and Spencer, 1966).  Similar results were obtained for BNZ and butanedione 

(not shown).  Since identical results were obtained for all aversive and attractive odors 

tested for this and the remaining experimental sets, only data collected with OCT will be 

presented henceforth for simplicity.   

To investigate whether the decrement in osmotactic response depended on 

stimulus strength, we pre-exposed to 10-fold less octanol (0.1X OCT), which 

precipitated a smaller decline in subsequent avoidance (18%) than the 60% decline after 

pre-exposure to 1X OCT (Figure 27B.I).  However, naïve avoidance of the reduced 

odors was robust (Table 15).  The reduced habituation elicited by pre-exposure to stimuli 

weaker than the test stimulus suggests inefficient habituation when the two stimuli are 

not equivalent, but a degree of OCT avoidance irrespective of stimulus strength was 

elicited nevertheless.  Conversely, increasing the effective amount of OCT by increasing 

the air flow over the odorant resulted in increased avoidance by naïve animals.  

However, a modest decrement in avoidance was apparent after 8 minutes of pre-

exposure but not after 4 minutes (Figure 27B.II).   Therefore, the decline in avoidance 

depended on both the intensity and duration of the pre-exposure stimulus (Figure 27B.I, 

II) and the refractory period increased with stronger stimulation consistent with the 

predictions for habituation of Thomson and Spencer (Thomson and Spencer, 1966).   
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Finally, if the pre-exposure dependent decline in osmotaxis was olfactory 

habituation and not sensory desensitization or fatigue, the effect should be eliminated by 

brief application of an unrelated noxious stimulus (dishabituation) (Thomson and 

Spencer, 1966).  We attempted to eliminate the effects of odor pre-exposure with electric 

footshock because attempts to dishabituate with visual (strong white light), or strong 

mechanical stimulation (vortexing) failed (not shown).   The strength and number of 

footshock stimuli required to reverse the osmotactic response decrement with the 

weakest possible footshock were determined in control experiments (see Materials and 

Methods).  A single 45-Volt shock did not affect subsequent OCT avoidance in naïve 

flies (Figure 27C.I).  However, when delivered after a 4-minute OCT pre-exposure 

typically precipitating a 60% decrement in avoidance, it resulted in normal odor 

avoidance indicating that electric shock dishabituated the osmotactic response.  If the 

electric footshock was indeed a dishabituating stimulus, then it should not be effective 

prior to pre-exposure.  In fact, the footshock was effective only if delivered at the end of 

pre-exposure, or the end of the apparent 120-second refractory period (Figure 27C.II).  

The latter suggests that the dishabituating stimulus likely interferes with processes 

necessary for the onset of habituation, effectively re-setting the refractory period.  

Recovery of normal osmotactic response after footshock strongly suggests that the pre-

exposure dependent decline was caused by habituation to the odor and not 

desensitization or fatigue (Thomson and Spencer, 1966).  Qualitatively and 

quantitatively identical results were obtained with osmotactic responses to BNZ and 

ETA (not shown). 
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Collectively, the results suggest that the experience-dependent decrement in 

osmotactic response conforms fully to habituation parameters.  Moreover, the time 

refractory to obtaining a habituated response will be referred to henceforth as a period 

that the animals are “protected from premature habituation”.   

 

The mushroom bodies are essential for protection from premature habituation  

 Because the mushroom bodies are central to olfactory information processing 

and olfactory learning and memory (Zars, 2000; Roman and Davis, 2001; Heisenberg, 

2003), we investigated whether these neurons are involved in olfactory habituation.  We 

obtained adult animals with ablated mushroom bodies (Figure 28D-F) by hydroxyurea 

(HU) treatment of first instar larvae (de Belle and Heisenberg, 1994; Philip et al., 2001) 

and subjected them to odor pre-exposure and osmotaxis testing (Figure 29A).  Lack of 

mushroom bodies did not affect naïve responses to odors (Figure 29A, 0 time, Table 15 

and (de Belle and Heisenberg, 1994)).  However, whereas control animals habituated 

after 3-4 minutes exposure to OCT, mushroom body ablated animals exhibited a 

dramatic decline in osmotaxis after 10 seconds, the shortest pre-exposure we could 

deliver reliably (Figure 29A).  This drastically reduced refractory period suggested that 

HU-treated animals lack either all or part of the neuronal circuitry requisite for a normal 

refractory period and therefore habituated prematurely.  Similar results were obtained 

with pre-exposure to BNZ and ETA for both w1118 and ex5 mushroom body ablated 

animals (not shown).  Although hydroxyurea ablation did not grossly change the number  
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Figure 28.  Structural analysis of mushroom body perturbed animals and expression 
patterns of GAL4 drivers  
 
All histology was performed on frontal, 5µm paraffin sections and shown at 200X 
except for antennal lobes shown at 400X. 
 (A-I). Heads stained with α−LEO to reveal the structure of the mushroom bodies (MBs) 
at the level the calyx (A, D, G), peduncle (B, E, H) and lobes (C, F, I).  Arrows point to 
the MB structures in control animals (w) deleted or altered (arrowheads) by hydroxy-
urea ablation (HU) and in mbm1 mutants.  Note that HU treatment does not ablate the 
ellipsoid body (E).  (J-R).  Sections stained with α−bTAU to reveal the expression 
patterns of the 247, GH146 and OK72 GAL4 drivers.  Sections were taken from the 
progeny of these GAL4-bearing lines crossed to UAS-btau.  (J-L).  Arrows indicate 
accumulation in the calyx (J), peduncle (K) and lobes (L) of the MBs under the 247 
driver.  (M-O).  Under GH146, TAU accumulated in the inner antennocerebral tract 
(iACT) leading into the calyx (M), its projections into the lateral horn (N) and antennal 
lobe interneurons and relay neurons (O).  (P-R). Under OK72, TAU accumulated within 
the medial antennocerebral tract (mACT) leading to the calyx (P,Q), and antennal lobe 
glomeruli VM1 (R).    (S-U) Antennal lobes of control, ablated and mbm1 animals 
stained with the α−SH3PX1 antibody, which appears to decorate a similar number of 
glomeruli apparently intact and morphologically normal.  (V-W) Antennal lobes of 
GH146/UAS-btau stained with α-TAU.   Arrow in V indicates the lateral cluster of relay 
interneurons, absent after HU treatment (arrow head) in W.  All other interneurons and 
relay neurons labeled by GH146 were intact. 
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Figure 29.  Olfactory habituation in structurally or functionally mushroom body-
perturbed flies.  
 
AIs are shown + SEM.  Positive values indicate avoidance and negative values indicate 
attraction.  After pre-exposure for the indicated times avoidance of aversive odors was 
tested for 90 seconds and attraction for180 seconds.  SD:  significant differences. NSD:  
non significant differences. 
(A)  Time course of habituation onset in mushroom body ablated w1118 (w HU) compared 
to controls (w).  Each minor subdivision in the graph represents 20 seconds.  The AI for 
OCT avoidance after pre-exposure for the indicated times is shown.  ANOVA indicated 
significant effects of pre-exposure times and genotype (F(15,158)=69.21 p<0.0001).  
Subsequent ANOVAs for the effect of time revealed significant differences in OCT 
avoidance of both strains depending on the length of pre-exposure (F(7,82)=22.41 
p<0.0001, SD for w, and F(7,76)=11.01 p<0.0001, SD for w HU).  Compared to the 
performance of naïve w animals (0 time), significant differences (p<0.0001-Dunnett’s 
test) in performance arose after 2 minutes of pre-exposure and remained highly 
significant at 3 and 4 minutes.  In contrast, compared to naïve w HU, avoidance declined 
significantly (p<0.0001) after 10 seconds of pre-exposure and remained significantly 
different for up to 4 minutes of pre-exposure.  Cross genotype comparisons 
demonstrated significant differences (p<0.0001) between w and w HU at 10, 20, 40 
seconds, 1 and 2 minutes of pre-exposure, while the differences for longer pre-exposure 
times where not significant.  Ablation of mushroom bodies precipitated premature 
habituation within 10 seconds of pre-exposure (n>8 for all measurements). 
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Figure 29. (continued) 
 
(B)  Premature habituation upon structural and functional perturbation of the mushroom 
bodies.   
(I)  Octanol avoidance following 10 or 60 seconds of octanol pre-exposure is shown for the 
indicated strains and appropriate controls.  All structural or functional perturbations of the MBs 
did not affect naïve OCT avoidance.  ANOVA for all naïve (open bars) genotypes (F(9,89)=2.37 
p<0.0123, NSD).  In contrast, OCT pre-exposure precipitated significant deficits in MB-
perturbed animals as indicated below:    
Experimental ANOVAs.  10" OCT pre-exposure (light gray bars).  Mushroom body ablated 
group (w, w HU, ex5, ex5 HU):  F(3,37)=63.36 p<0.0001, SD.  Genetic mushroom body 
perturbation group (Berlin, mbm1):  F(1,18)=94.22 p<0.0001, SD.  Permanent functional 
mushroom body abrogation group (w; UAS-TNT/+, w; 247/UAS-TNT):  F(1,17)=113.72 
p<0.0001, SD.  Conditional functional mushroom body abrogation group  
(UAS-shi5ts/+, UAS-shi5ts/+; 247/+ -SHI inactivation at 32°C for 15 minutes prior to testing-): 
F(1,15)=55.87 p<0.0001, SD.   
1' OCT pre-exposure (dark bars).  Mushroom body ablated group (w, w HU, ex5, ex5 HU):  
F(3,32)=63.50 p<0.0001, SD.  Genetic mushroom body perturbation group (Berlin, mbm1):  F(1,16)= 
72.58 p<0.0001, SD.  Permanent functional mushroom body abrogation group (w; UAS-TNT/+, 
w; 247/UAS-TNT):  F(1,16)=55.06 p<0.0001, SD.  Conditional functional mushroom body 
abrogation group (UAS-shi5ts/+, UAS-shi5ts/+; 247/+ -SHI inactivation at 32°C for 15 minutes 
prior to testing-):  F(1,17)=69.35 p<0.0001, SD.  Subsequent Dunnett’s tests among 10 second and 
1 minute pre-exposed animals of the same genotype revealed no significant differences in 
performance.  Similar analysis did not reveal significant differences in the performance of HU-
treated w1188 animals and all other MB-perturbed genotypes after 10 second and 1-minute pre-
exposures.  For the shits recovery group (striped bars-REC+1’OCT) UAS-shi5ts/+, UAS-shi5ts/+; 
247/+ animals were subjected to SHI inactivation at 32°C for 15 minutes and then SHI recovery 
at 25°C for 15 minutes prior to testing. ANOVA for UAS-shi5ts/+, UAS-shi5ts/+; 247/+: 
F(1,15)=0.1988 p<0.6630, NSD.  Therefore, 10 seconds or 1 minute pre-exposure to 1X OCT 
resulted in significant deficits (p<0.0001) in subsequent octanol avoidance for all mushroom 
body perturbed flies compared to wild type, which is reversible in the case of SHI-mediated 
inactivation by allowing the protein to recover (n>8 for all measurements). 
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Figure 29. (continued) 
 
(II)  The AIs for Ethyl Acetate (ETA) attraction following 1 minute of ETA pre-
exposure are shown.  All groups and treatments were as described above in II.  There 
were no significant differences in the performance of naïve animals (ANOVA: 
F(9,87)=1.28 p<0.0598, NSD).  However, compared to controls, significant differences 
were uncovered in the performance of mushroom body perturbed animals. Experimental 
ANOVAs.  Mushroom body ablated group (w, w HU, ex5, ex5 HU):  F(3,40)=65.84 
p<0.0001, SD.  Genetic mushroom body perturbation group (Berlin, mbm1):  F(1,16)= 
82.45 p<0.0001, SD.  Permanent functional mushroom body abrogation group (w; UAS-
TNT/+, w; 247/UAS-TNT):  F(1,14)=81.02 p<0.0001, SD.  Conditional functional 
mushroom body abrogation group (UAS-shi5ts/+, UAS-shi5ts/+; 247/+ -SHI inactivation 
at 32°C for 15min prior to testing-): F(1,16)=40.51 p<0.0001, SD.  Recovery group UAS-
shi5ts/+, UAS-shi5ts/+; 247/+:  F(1,15)=0.8574 p<0.3255, NSD.  Therefore, as for aversive 
odors there was a significant decrease in ETA attraction of mushroom body perturbed 
animals after one minute pre-exposure to this odor (n>7 for all measurements). 
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of antennal lobe glomeruli (Figure 28T and Figure 28U), it eliminated a number of 

antennal lobe inter-neurons and projection neurons (Figure 28V and (Stocker et al., 

1997)).  Thus, this method disrupts tissues in addition to the MBs that could be involved 

in olfactory habituation.  Alternatively, the observed phenotype could be precipitated 

entirely by these missing antennal lobe neurons.   

To differentiate between these two hypotheses and define the role of the MBs in 

olfactory habituation more precisely, we used two different methods to specifically 

disrupt them structurally and functionally.  First we used a mutant, mushroom body 

miniature (mbm1), with severely perturbed but not totally absent MBs (Heisenberg et al., 

1985b; de Belle and Heisenberg, 1996) (Figure 28G-I), which does not appear to affect 

the antennal lobe structurally (Figure 28U and (de Belle and Heisenberg, 1996)).  

Second, we used the MB-specific GAL4 driver line 247 (Figure 28J-L) to drive 

expression of transgenes that mediate constitutive (Tetanus Light Chain-UASTNT), or 

conditional (shibirets- UAS-shi5ts and UAS-shi10ts- (Kitamoto, 2001)) neurotransmission 

blockade (see Materials and Methods), leaving these neurons intact but functionally 

compromised.  mbm1, w; 247/UAS-TNT, UAS-shi5ts/+; 247/+ and 247/+; UAS-shi10ts/+, 

were fully viable and fertile and did not exhibit gross morphological, neuroanatomical or 

behavioral aberrations.  Furthermore these animals did not appear different from controls 

in osmotaxis and reactivity to footshock (Table 15, Figure 29B-naïve, Figure 32-naïve).  

Although the performance of animals bearing the single UAS-shi5ts transgene, is shown 

in all subsequent figures, identical results were obtained with the two-insert line UAS-

shi10ts for all experiments, but not shown for simplicity.   
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Remarkably, a 10 second OCT pre-exposure was sufficient to precipitate 

significant habituation in all MB-perturbed genotypes, which was similar to that 

obtained with hydroxyurea treated animals (Figure 29B.I).  Identical results were 

obtained with pre-exposure to the attractive odor ETA (Figure 29B.II).  Normal 

osmotaxis towards ETA by animals with compromised MBs is in contrast to a recently 

published report claiming impairment in attraction in such animals (Wang et al., 2003).  

This difference may be because higher concentrations of odors were used in our 

experiments and the apparatus to deliver them to the animals was significantly different. 

Since 60-second and 10-second pre-exposure precipitated similar degrees of habituation 

(Figure 29B.I), we used the former in all subsequent experiments because of result 

consistency and ease of manipulations.  Functional recovery of the temperature sensitive 

transgenic dynamin prior to pre-exposure and testing (REC+OCT) resulted in normal 

responses (Figure 29B.I and B.II, hatched bars), indicating that neither the heat 

treatment, nor mere expression of the transgene affected habituation.  Moreover, animals 

harboring recovered dynamin habituated identically to controls (not shown), suggesting 

that the heat treatment or prior inactivation of the transgenic dynamin itself did not 

disrupt the process. These results indicated that the deficits observed in shits animals 

under non-permissive conditions were indeed caused by the neurotransmission blockade 

in the MBs and not by other structural or functional alterations in these neurons.    

If indeed the mushroom bodies are necessary for evaluation of experience 

dependent olfactory information and protection from premature habituation, then 

blocking the flow of such information to these neurons should precipitate deficits in 



 187

habituation similar to functional perturbation of the MBs.  To test this we blocked 

neurotransmission from the medial (mACT) and inner (iACT) antenocerebral tracks.  An 

additional reason to investigate the contribution of the GH146-marked iACT neurons is 

that the driver directs expression in a subset of antennal lobe interneurons and projection 

neurons ablated by hydroxyurea treatment (Figure 28W).  Driver OK72 directs 

expression in the mACT (Figure 28P and Figure 28Q and antennal lobe glomeruli VM1 

(Figure 28R), VM4 and DL1, (Devaud et al., 2003), which do not appear to be involved 

in perception of OCT, ETA or modest concentrations of BNZ (Devaud et al., 2003).  

Inhibition of neurotransmission via the iACT and the mACT using the UAS-TNT 

and UAS-shits transgenes precipitated deficits in OCT avoidance following either a 10 or 

60 second pre-exposure to the same odor, similar to that obtained with MB perturbation 

(Figure 30A).  Expression of the UAS-shits, or exposure of control flies to 32oC alone 

had no effect because recovery of the temperature sensitive dynamin prior to the pre-

exposure and testing phases resulted in performance indistinguishable from that of 

controls (Figure 30A, REC+OCT).  Thus, the deficit was the result of inhibiting 

neurotransmission via the mACT and iACT.  Since silencing mACT and iACT synapses 

allows normal naïve responses, these defects are not the result of the flies becoming 

anosmic (Figure 31) or unable to engage the appropriate behavioral response (avoidance 

or attraction) to odors.  Rather, the phenotypes of animals with disrupted iACT and 

mACT neurotransmission suggest that processes necessary for evaluating experience 

dependent olfactory information and mediating proper behavioral responses to such 

stimuli occur in their postsynaptic, MB and LH neurons and their disruption is likely 
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Figure 30.  Spontaneous recovery from olfactory habituation and dishabituation requires 
functional mushroom bodies 
 
SD:  significant differences.  NSD: Non significant differences. 
(A)  AIs for OCT avoidance + SEM are shown for naïve flies (open bars), following pre-
exposure for 1 minute to OCT (dark bars), or after 1 minute pre-exposure to OCT 
followed by 6 minutes of rest (light gray bars).  No significant differences were 
uncovered for naïve flies irrespective of genotype (ANOVA: F(9,89)= 2.37 p<0.0123, 
NSD).   
Experimental ANOVAs.  Mushroom body ablated group (w, w HU, ex5, ex5 HU):  
F(11,95)=23.85 p<0.0001, SD.  Subsequent Dunnett’s tests revealed significant differences 
between naïve and pre-exposed (p<0.0001) HU-treated animals, but not for controls 
irrespective of treatment.  The performances of HU-treated animals tested immediately 
after pre-exposure (OCT), or 6 minutes later (OCT + REST) were not significantly 
different indicating no spontaneous recovery.  Genetic mushroom body perturbation 
group (Berlin, mbm1):  F(5,47)=35.84 p<0.0001, SD.  The differences between naïve and 
pre-exposed mbm1 were significant, but pre-exposed mbm1 (OCT) performed identically 
with (OCT +REST) indicating no recovery.  Permanent functional mushroom body 
abrogation group (w; UAS-TNT/+, w; 247/UAS-TNT):  F(5,48)=38.12 p<0.0001, SD.  
The significant difference was attributed to the depressed performance of pre-exposed w; 
247/UAS-TNT, compared to w; UAS-TNT/+ controls, but there were no differences in 
performance of w; 247/UAS-TNT (OCT) compared to w; 247/UAS-TNT (OCT+REST).  
Conditional functional mushroom body abrogation group (UAS-shi5ts/+, UAS-shi5ts/+; 
247/+ -SHI inactivation at 32°C for 15 minutes prior to testing-): F(5,50)=25.11 p<0.0001, 
SD, because of the difference between pre-exposed UAS-shi5ts/+; 247/+ and UAS-
shi5ts/+, but again the performance of UAS-shi5ts/+; 247/+(OCT) was not different from 
UAS-shi5ts/+; 247/+(OCT+REST).  Similar results were obtained with UAS-shi10ts 

transgenic animals (not shown).  Structural or functional perturbations of the mushroom 
bodies did not allow spontaneous recovery (n>7 for all measurements). 
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Figure 30. (continued) 
 
(B)  Spontaneous recovery in MB-perturbed animals.  AIs for OCT avoidance + SEM 
are shown after 1 minute pre-exposure to OCT followed by different intervals of rest.  
No significant differences were uncovered for naïve flies irrespective of genotype 
(ANOVA: F(3,29)= 0.3176 p<0.8125, NSD).  However, ANOVA indicated significant 
differences (F(7,62)=38.75 p<0.0001, SD) in the performance of animals in the “genetic 
mushroom body perturbation group” (Berlin, mbm1).  Subsequent Dunnett’s tests 
between B and mbm1 demonstrated significant reduction in OCT avoidance (p<0.0001) 
at the 1, 6 or 15-minute rest intervals, but no significant difference after a 30 minute rest 
interval between training and testing.  Similarly for the “permanent functional 
mushroom body abrogation” group (w; UAS-TNT/+, w; 247/UAS-TNT) ANOVA 
indicated significant differences (F(7,61)=48.67 p<0.0001, SD) among the AIs.  
Subsequent planned comparisons between w; UAS-TNT/+ and w; 247/UAS-TNT 
demonstrated significant reduction in OCT avoidance (p<0.0001) at all rest intervals 
including 30 minutes of rest in contrast with the performance of mbm1animals after this 
rest interval (n>7 for all measurements).  
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Figure 30. (continued) 
 
(C)  Dishabituation in MB-perturbed animals.  AIs for OCT avoidance are shown + SEM 
for naïve flies (open bars), following pre-exposure for 1 minute to OCT (dark bars), or 
after 1 minute pre-exposure to octanol followed by a single 45V electric shock (thickly 
hatched bars).  ANOVA for naïve flies of all genotypes, F(9,89)= 2.37 p<0.0123, NSD.   
Experimental ANOVAs. Mushroom body ablated group (w, w HU, ex5, ex5 HU):  
F(11,95)=12.25 p<0.0001, SD.  Genetic mushroom body perturbation group (Berlin, 
mbm1):  F(5,47)=15.24 p<0.0001, SD.  Permanent functional mushroom body abrogation 
group (w; UAS-TNT/+, w; 247/UAS-TNT):  F(5,48)=19.25 p<0.0001, SD.  Conditional 
functional mushroom body abrogation group (UAS-shi5ts/+, UAS-shi5ts/+; 247/+ -SHI 
inactivation at 32°C for 15min prior to testing-): F(5,50)=12.22 p<0.0001, SD.  
Subsequent Dunnett’s tests within each group revealed that the 45V shock (OCT+45V) 
did not precipitate significant differences in the performance of all MB perturbed 
animals compared to pre-exposed animals (OCT) of the same genotype indicating lack 
of dishabituation. (n>7 for all measurements). 
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Figure 31.  Premature olfactory habituation upon inhibition of neurotransmission in the 
iACT and mACT  
 
AIs + SEM are shown for OCT avoidance following OCT pre-exposure.  SD:  
significant differences.  NSD:  no significant differences. Naïve: open bars. 10” OCT: 
light gray bars.  1’ OCT: dark bars. 
(I)  Experimental ANOVAs.  Permanent functional mushroom body abrogation group 
(w; UAS-TNT/+, w; 247/UAS-TNT):  Naïve:  F(2,26)=2.05 p<0.0165, NSD.  10” OCT:  
F(2,22)=22.67 p<0.0001, SD.  Dunnett’s tests revealed significant differences (p< 0.0001) 
among w; 247/UAS-TNT and w; UAS-TNT / GH146 and w; UAS-TNT/+ controls.  1’ 
OCT (dark bars):  F(1,25)=56.99 p<0.0001, SD.  The differences among experimental and 
control groups were significant (p< 0.0001- Dunnett’s tests).  The OK72/UAS-TNT 
animals were not viable. 
Conditional functional mushroom body abrogation group (UAS-shi5ts/+, UAS-shi5ts/+; 
247/+ -SHI inactivation at 32°C for 15min prior to testing-): Naïve:  F(3,33)= 4.41 
p<0.0078, NSD.  10” OCT:  F(3,34)=43.23 p<0.0001, SD.  Dunnett’s tests revealed 
significant differences (p< 0.0001) among UAS-shi5ts/+ and UAS-shi5ts/+; 247/+, UAS-
shi5ts/+; GH146/+, UAS-shi5ts/+; OK72/+ animals.  1’ OCT:  F(3,32)=32.64 p<0.0001, SD.  
The differences among experimental and control groups were significant (p< 0.0001- 
Dunnett’s).  Recovery group (REC+OCT-stripped bars): F(3,33)=2.41 p<0.1427, NSD 
indicating full performance recovery of the experimental groups upon recovery of the 
SHIts protein.  Pre-exposure to OCT either for 10 or 60 seconds resulted in osmotactic 
habituation upon inhibition of neurotransmission via the iACT, or the mACT.  (n>7 for 
all measurements). 
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Figure 31. (continued) 
 
(II)  iACT and mACT neurotransmission are required for spontaneous recovery and 
dishabituation of osmotactic habituation.  Spontaneous recovery (REST, light gray bars) 
and dishabituation (OCT+45V-thickly striped bars) by a single 45V electric shock 
following 60 second pre-exposure to OCT are shown.    
Experimental ANOVAs. Permanent functional abrogation group (w; UAS-TNT/+, w; 
247/UAS-TNT and w; UAS-TNT / GH146):  Naïve F(2,26)=2.05 p<0.0165, NSD.   
Group:  F(11,62)=13.89 p<0.0001 SD.  Subsequent Dunnett’s tests revealed that there were 
significant differences from the performance of naïve animals of each experimental 
genotype, but no significant differences in the performance of w; 247/UAS-TNT and w; 
UAS-TNT / GH146 animals after OCT pre-exposure irrespective of whether they were 
allowed to recover spontaneously (OCT+REST) or treated with a 45V electric shock 
(OCT+45V).  The OK72/UAS-TNT animals were not viable. 
Conditional functional abrogation group (UAS-shi5ts/+, UAS-shi5ts/+; 247/+, UAS-
shi5ts/+; GH146/+, UAS-shi5ts/+; OK72/+-SHI inactivation at 32°C for 15min prior to 
testing-):  Naïve: F(3,33)= 4.41 p<0.0078, NSD.  Group:  F(11,88)=24.66 p<0.0001, SD.  
Subsequent Dunnett’s tests revealed that there were significant differences from the 
performance of naïve animals of each experimental genotype, but no significant 
differences in the performance of UAS-shi5ts/+; 247/+, UAS-shi5ts/+; GH146/+, UAS-
shi5ts/+; OK72/+ animals after OCT pre-exposure irrespective of whether they were 
allowed to recover spontaneously (OCT+REST) or treated with a 45V electric shock 
(OCT+45V).  (n>7 for all measurements). 
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causal of the observed premature habituation phenotype.  A role for the LH as a spatial 

map of olfactory information and odor recognition mediating non-associative, direct 

responses to odors has been proposed (Marin et al., 2002; Tanaka et al., 2004) and these 

responses may be modified by the MBs in an experience-dependent manner.  Therefore, 

the premature habituation observed when silencing mACT and iACT synapses is likely 

the consequence of preventing information flow to the MBs and LH and not because 

neurons in these tracks are themselves essential for the process. 

 

Spontaneous recovery and dishabituation require MB function 

We tested the MB-perturbed animals for spontaneous recovery of their 

osmotactic response by allowing 6 minutes of rest after 1-minute pre-exposure to OCT, a 

time adequate for control strains to recover after a more strenuous 4-minute pre-

exposure (Figure 27.I and II).  All genotypes with perturbed MBs failed to recover 

within the allotted 6-minute period (Figure 30.I).  Similar results were obtained for 10-

second pre-exposure to OCT and ETA (not shown).  Recovery to naïve levels of 

osmotaxis was apparent 30 minutes post pre-exposure, only for mbm1 animals and not 

for animals with TNT-mediated constitutive neurotransmission blockade (Figure 30B), 

or HU-ablated MBs (not shown).   The results indicate that functional mushroom bodies, 

or functional MB/LH communication are required for spontaneous recovery.  Consistent 

with this interpretation, presence of even vestigial MBs (and the consequent reduced 

number of MB/LH synapses) in mbm1 animals allowed recovery, albeit 10 times slower 

than in controls, suggesting that the long delay may be a consequence of the drastic 
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reduction in MB neurons.  In addition, MB-perturbed animals could not be dishabituated 

with a single 45-Volt footshock (Figure 30.II), multiple 45-Volt or higher voltage 

footshocks (not shown).  However, naïve avoidance of the stimuli appeared normal in all 

MB-perturbed animals (Table 15).  Therefore, structurally and functionally intact MBs 

were required for dishabituation.  Moreover, silencing MB synapses did not allow either 

spontaneous recovery or dishabituation, suggesting that both processes must engage MB 

afferent neurons.   

In addition, preventing olfactory information flow to the MBs by silencing iACT 

and mACT neurotransmission did not allow spontaneous recovery within the 6-minute 

period adequate for controls (Figure 31B and Figure 27A.I and 28A.II).   In addition, 

these animals were not dishabituated with a 45-Volt footshock (Figure 31B) despite their 

normal naïve response to the latter (Table 15).  Similar results were obtained with BNZ 

and ETA pre-exposure (not shown).  This is consistent with the hypothesis that the iACT 

and mACT are necessary for protection from premature habituation spontaneous 

recovery and dishabituation because they provide the MBs with olfactory information 

where the stimuli are evaluated.  It appears then, that MB neurons are either central, or 

an essential part of a network evaluating experience-dependent olfactory stimuli and 

mediating appropriate responses to them. 

 
Protection from premature habituation to footshock requires the mushroom bodies  

We chose to investigate whether Drosophila could habituate to electric 

footshocks because the number and strength of stimuli could be easily and reliably 

adjusted, a new apparatus was not necessary since the assay could be conducted in a 
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standard T-maze, and we had extensive experience with this system.  There were three 

compelling reasons to establish a habituation assay utilizing a sensory modality other 

than olfaction.  First, to investigate whether MB perturbed animals exhibit deficient 

protection from habituation to non-olfactory stimuli.  Second, to investigate the 

involvement of the iACT and mACT in protecting from habituation to non-olfactory 

stimuli.  Third, if footshock is sensed as a mechanosensory stimulus and as suggested by 

Ito et al. (Ito et al., 1998), mechanosensory information is transmitted to the MBs via the 

LH, this paradigm would employ a different route to test MB involvement in pre-

experienced stimulus evaluation and response.   

 To avoid the potential complexity of hydroxyurea ablations of the MBs, we 

elected to investigate habituation to footshock using the genetic mutant mbm1, and 

constitutive inhibition of neurotransmission using w; 247/UAS-TNT animals.  Naïve 

control animals exhibited robust avoidance of 15, 45-Volt footshocks delivered during 

the 90-second testing period (Figure 32A.I and Table 15).  Pre-exposure to 1 or 4 

footshocks prior to testing did not have any apparent effect, but avoidance declined 

significantly after pre-exposure to 8 and 11 45-Volt shocks (Figure 32A.I).  Therefore, 

as for olfactory habituation, avoidance of repetitive footshocks declined after pre- 

exposure to multiple stimuli, suggesting that the animals were protected from premature 

habituation.  The 44% decline in footshock avoidance following pre-exposure to 11, 45V 

shocks was not the result of stimulus induced fatigue or paralysis for the following 

reasons.  First, pre-exposed animals distributed equally in the arms of the maze and did 

not congregate in the center of the maze in absence of test footshocks.  Second, 
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Figure 32.  Functional mushroom bodies are necessary for normal habituation to electric 
footshock 
 
AIs + SEM are shown for electric footshock avoidance (15 shocks during the 90 second 
choice period) for naïve and flies pre-exposed to shock as indicated.  SD:  significant 
differences.  NSD:  no significant differences. 
(A) Habituation to 45V electric shock 
(I)  Avoidance of 45V electric shocks in naïve flies was not significantly different 
between the two different control strains, B and w; UAS-TNT/+ (ANOVA (naïve): 
F(1,16)=2.06 p<0.1336, NSD).  Pre-exposure to 45V shock had significant effects on 
subsequent shock avoidance dependent on the number of shocks. ANOVA (F(7,64)=42.68 
p<0.0001, SD).  Subsequent planned comparisons between naïve and pre-exposed flies 
revealed significant reduction in 45V avoidance (p<0.0001) after pre-exposure to 8 or 11 
shocks, but no significant differences after 1 or 4, 45V shocks (n>8 for all 
measurements) 
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Figure 32. (continued) 
 
(II)  Habituation to 45V electric shock in control and mushroom body perturbed animals.  
Avoidance of 15, 45V electric shocks in naïve flies (open bars) was not significantly 
different from that of naïve structurally (mbm1) and functionally (247/UAS-TNT) 
perturbed mushroom body animals.  ANOVA (naïve): F(3,31)=3.86 p<0.2234, NSD.  In 
contrast, exposure to 1X45V electric shock (light gray bars) had significant effects in the 
MB-perturbed animals compared to controls.  ANOVA: Genetic mushroom body 
perturbation group (Berlin, mbm1):  F(1,16)=78.65 p<0.0001, SD.  Permanent functional 
mushroom body abrogation group (w; UAS-TNT/+, w; 247/UAS-TNT): F(1,18)=75.44 
p<0.0001, SD.  Subsequent Dunnett’s tests revealed a significant decrease (p<0.0001) in 
the performance of mbm1 and w; 247/UAS-TNT compared to their respective controls 
(n>7 for all measurements).   Exposure to 11 X 45V (dark gray bars) electric shocks.  
ANOVA: Genetic mushroom body perturbation group (Berlin, mbm1): F(1,17)=0.75 
p<0.5438, NSD and permanent functional mushroom body abrogation group (w; UAS-
TNT/+, w; 247/UAS-TNT): F(1,18)=1.88 p<0.0971 SD, indicating that 11 45V electric 
shocks resulted in similar reductions in footshock avoidance irrespective of 
genotype(n>7 for all measurements).   
Spontaneous recovery (11 X 45V + REST-light gray bars).  ANOVA: Genetic  
mushroom body perturbation group (Berlin, mbm1):  F(1,15)=116.49 p<0.0001, SD.   
Permanent functional mushroom body abrogation group (w; UAS-TNT/+, w; 247/UAS-
TNT): F(1,16)=72.73 p<0.0001, SD.  Dunnett’s tests demonstrated significant differences 
in recovery between MB-perturbed strains and their respective controls (p<0.0001 for 
both comparisons), indicating lack of recovery (n>7 for all measurements).    
Dishabituation (11 X 45V + BNZ-thickly hatched bars).  ANOVA: Genetic mushroom 
body perturbation group (Berlin, mbm1): F(1,16) =62.31 p<0.0001, SD.  Permanent 
functional mushroom body abrogation group (w; UAS-TNT/+, w; 247/UAS-TNT): 
F(1,16)=65.25 p<0.0001, SD.  The significant differences were attributable to lack of 
dishabituation in the MB-perturbed strains compared to their respective controls.  
Dunnett’s tests revealed that there was no significant difference in the performance of 
mbm1 and w; 247/UAS-TNT animals after 1 and 11 shocks or after spontaneous recovery 
and dishabituation.  (n>7 for all measurements). 
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Figure 32. (continued) 
 
(III)  Recovery of habituation to 45V electric shock in control and mushroom body 
perturbed animals. Avoidance of 15, 45V electric shocks in naïve flies was not 
significantly different from that of structurally (mbm1) and functionally (247/UAS-TNT) 
perturbed mushroom body animals.  ANOVA (naïve): F(3,31)=0.5567 p<0.6480, NSD.  In 
contrast, exposure to a single 45V had significant effects on the genetic mushroom body 
perturbation group depending on rest interval between training and testing as indicated 
by ANOVA (F(7,63)=31.73 p<0.0001, SD).  Subsequent planned comparisons between B 
and mbm1 demonstrated significant reduction in 45V avoidance (p<0.0001) at the 1 and 
6-minute rest intervals, but no significant avoidance differences after a 15 or 30 minute 
rest interval between training and testing.  Permanent functional mushroom body 
abrogation group (w; UAS-TNT/+, w; 247/UAS-TNT): ANOVA indicated significant 
differences (F(7,61)=34.01 p<0.0001, SD) among the AIs.  Subsequent planned 
comparisons between w; UAS-TNT/+ and w; 247/UAS-TNT demonstrated significant 
reduction in 45V avoidance (p<0.0001) at the 1 and 6 minute rest intervals, but no 
significant difference after a 15 or 30 minute rest before testing.  This suggested that 
habituation to electric shock can spontaneously recover even in animals with non-
functional mushroom bodies, albeit after a longer rest than controls (n>7 for all 
measurements). 
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Figure 32. (continued) 
 
(B)  Stimulus intensity was inversely proportional to the magnitude of habituation.  
(I)  60V.  ANOVAs.  Naïve: for all genotypes (F(3.34)=0.22 p<0.9994, NSD).   
1 X 60V.  Genetic mushroom body perturbation group (Berlin, mbm1): F(1,15)=24.28 p<0.0001 
SD.  Permanent functional mushroom body abrogation group (w; UAS-TNT/+, w; 247/UAS-
TNT):  F(1,16)=9.32 p<0.0001, SD.  The significance stemmed from the avoidance decrement of 
MB-perturbed animals compared to their respective controls (p<0.0001 for both) (n>8 for all 
measurements).  11 X 60V.  Genetic mushroom body perturbation group (Berlin, mbm1): 
F(1,17)=0.96 P<0.8851, NSD  and permanent functional mushroom body abrogation group (w; 
UAS-TNT/+, w; 247/UAS-TNT):  F(1,18)=1.92 p<0.6291, NSD (n>8 for all measurements).   
(II)  90V.  ANOVAs.   Naïve for all genotypes: F(3,31)=0.78 p<0.9987, NSD).   
1 X 90V.  Genetic mushroom body perturbation group (Berlin, mbm1): F(1,16)=24.28 p<0.0001, 
SD. Permanent functional mushroom body abrogation group (w; UAS-TNT/+, w; 247/UAS-
TNT):  F(1,16)=16.40 P<0.0001, SD.   Dunnett’s tests indicated significant differences (p<0.0001) 
in the performance of mbm1 and /+, w; 247/UAS-TNT from their respective controls (n>7 for all 
measurements).   
11 X 90V.   Genetic mushroom body perturbation group (Berlin, mbm1): F(1,20)=1.22 p<0.8765, 
NSD. Permanent functional mushroom body abrogation group (w; UAS-TNT/+, w; 247/UAS-
TNT): F(1,17)=2.84 p<0.9125 NSD (n>7 for all measurements).   
(C)  Functional mushroom bodies, but not the iACT and mACT are required for protection from 
habituation to footshock.  ANOVAs.  Naïve for all genotypes: F(11,95)= 4.41 p<0.0078, NSD.  1 X 
45V. Mushroom body ablated group (w, w HU, ex5, ex5 HU):  F(3,30)=54.12 p<0.0001, SD.   
Genetic mushroom body perturbation group (Berlin, mbm1):  F(1,16)=82.84 p<0.0001, SD.  
Permanent functional mushroom body abrogation group (w; UAS-TNT/+, w; 247/UAS-TNT):  
F(1,17)=60.25 p<0.0001, SD.   Conditional functional abrogation group (UAS-shi5ts/+, UAS-
shi5ts/+; 247/+, UAS-shi5ts/+; GH146/+, UAS-shi5ts/+; OK72/+):  F(3,30)=11.87 p<0.0001, SD.  
Subsequent Dunnett’s tests indicated significant differences between MB-perturbed animals and 
their respective controls (p<0.0001) for all genotypes except UAS-shi5ts/+; GH146/+, UAS-
shi5ts/+; OK72/+ and UAS-shi5ts/+ (n>7 for all measurements).   
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locomotion away from, or towards aversive and attractive odors was not affected by 

footshock pre-exposure (not shown).   

The pre-exposure-dependent decline in footshock avoidance conformed to 

habituation parameters as for the olfactory paradigm.  First, it spontaneously recovered 

to naïve levels within 6 minutes (Figure 32A.II).  Significantly, it was fully reversible 

(dishabituated), with a 15-second olfactory stimulus (BNZ) delivered immediately after 

pre-exposure and prior to testing (Figure 32A.I).   Again, attempts to dishabituate with 

visual (strong white light), or strong mechanical stimulation (vortexing) failed (not 

shown).  Third, the magnitude of habituation declined as the strength of the pre-exposure 

stimuli increased.  The 44% avoidance decline observed with 45V pre-exposure was 

reduced to 20% and 13% respectively when stimulus intensity was increased to 60-Volt 

and 90-Volt shocks (Figure 32B.I and B.II).  Therefore, control animals habituated to 

footshocks after repeated stimulation and could be dishabituated with a brief strong odor 

stimulus. Notably a number of footshocks (5-8) were necessary to obtain a response 

decrement.  This indicates a refractory period to obtaining a habituated response akin to 

that in the olfactory paradigm.  One of the advantages of the footshock paradigm is that 

the number and strength of stimuli required to obtain habituation can be determined 

more precisely.  Consistent with this, nearly twice as many footshocks were necessary to 

obtain habituation of similar magnitude with 90-Volt as that with 45-Volt stimuli (not 

shown).  

To investigate the role of the MBs in habituation to footshock we disrupted these 

neurons structurally and functionally utilizing the methods described above.  Naïve 
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mbm1, w; 247/UAS-TNT and controls avoided 45-Volt stimuli equally (Table 15), 

suggesting that the MBs are not essential for the response to footshock per se.  However, 

their avoidance declined by 45-47% following pre-exposure to a single 45-Volt 

footshock in contrast to control animals that required 11 such footshocks for a similar 

decrease in avoidance.  Therefore, similar to olfactory stimulation, MB-perturbed 

animals appeared to habituate prematurely to footshock stimuli.  In addition, mbm1 and 

w; 247/UAS-TNT flies habituated after pre-exposure to a single stimulus of increased 

strength but the magnitude of habituation was decreased (Figure 32B.I and 32B.II).  In 

contrast to controls, MB-perturbed animals were unable to be dishabituated with 

exposure to BNZ (Figure 32A.II), although avoidance of this odor was normal (Table 

15).  Unlike control strains, mbm1 and w; 247/UAS-TNT did not spontaneously recover 

within 6 minutes, but interestingly, both strains recovered shock avoidance to control 

levels within 15 minutes after pre-exposure (Figure 32A.III).  Similar recovery was 

observed after pre-exposure to olfactory stimuli in mbm1 animals, but is in contrast to the 

inability of w; 247/UAS-TNT animals to recover from such pre-exposure within the 

allotted 30 minutes.  These results suggest that although structurally and functionally 

intact MBs are necessary for normal recovery from footshock habituation, additional 

neurons likely involved in mediating the response to this type of stimulus could mediate 

recovery, albeit it with lower efficiency. 

In addition to mbm1 and w; 247/UAS-TNT, failure to be protected from 

habituation to 45-Volt footshock was observed with hydroxyurea MB-ablated and UAS-

shi5ts/+; 247/+ animals (Figure 32C).  This data suggested that functional mushroom 
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bodies are necessary to protect from habituation to repetitive mild footshock.  

Importantly, unlike for olfactory habituation, inhibition of neurotransmission in the 

iACT and mACT did not result in premature habituation (Figure 32C).  This is 

consistent with data suggesting that these ascending tracks transmit solely olfactory 

stimuli to the MB and LH (Stocker et al., 1997; Marin et al., 2002; Devaud et al., 2003) 

and thus not expected to be involved in footshock information flow to these brain areas.   

Collectively, the data support the hypothesis that as for olfaction the mushroom 

bodies are essential neural centers mediating responses to pre-experienced footshock 

stimuli.  Furthermore, the data suggest that these areas of the fly brain are essential for 

stimulus evaluation likely to underlie the refractory period when animals are protected 

from habituation. 

 
DISCUSSION 

 

Two novel habituation paradigms 

A number of studies over the last 20 years have established that Drosophila 

habituate to a number of stimuli using various experimental protocols such as 

habituation of the landing response (Rees and Spatz, 1989; Asztalos et al., 1993), the 

proboscis extension reflex (Duerr and Quinn, 1982), the cleaning reflex (Corfas and 

Dudai, 1989), visual startle reflex (Engel and Wu, 1996; Engel et al., 2000) and leg 

position (Jin et al., 1998).  In general, these assays were tedious because restrained or 

decapitated animals were used.  In some preparations the neuronal circuits mediating the 

behavior were uncertain (Duerr and Quinn, 1982; Rees and Spatz, 1989; Asztalos et al., 
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1993), while paradigms engaging defined neuronal circuits focused primarily on 

proprioceptive reflexes of thoracic sensory neurons, coupling behavioral manipulation 

and electrophysiology (Corfas and Dudai, 1989; Engel and Wu, 1996; Jin et al., 1998; 

Engel et al., 2000).  We have established two simple paradigms of habituation to 

olfactory and electric footshock stimuli.  The simplicity of both paradigms makes them 

suitable to conduct genetic screens aiming to elucidate the molecular basis of 

habituation.  In contrast to previous assays, these paradigms utilize populations of freely 

moving flies thus eliminating animal manipulations and the behavioral constraints of 

tethered or decapitated animals.  Although in both cases locomotor responses were 

engaged, the choice of how to respond to a previously experienced stimulus involved 

specific neurons of the CNS, the MBs and LH. 

 The pre-exposure dependent decline in osmotactic responses and the pre-

exposure dependent decline in footshock avoidance fit the parametric characteristics of 

habituation described by Thomson and Spencer (Thomson and Spencer, 1966) and not 

those of desensitization or fatigue.  In both paradigms there was a decrease in response 

after repeated or prolonged application of the stimulus, the decrement returned to naïve 

levels if the stimuli were withheld (spontaneous recovery), the degree of performance 

decline appeared to be inversely proportional to stimulus strength and be readily 

reversed by an unrelated noxious stimulus (dishabituation).  Taken together our results 

do not definitively exclude the possibility that some sensory fatigue, or desensitization 

may occur, especially upon continuous odor presentation.  However, the complete 

reversal of the decrement upon dishabituation suggests that if any, the contribution of 
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these processes in the observed behavioral response are likely to be minor.  Moreover, 

bona fide habituation to prolonged or repeated presentation of odors is well documented 

in mammals and humans (Poellinger et al., 2001; Deshmukh and Bhalla, 2003). 

 

The role of mushroom bodies in protection from premature habituation 

 In agreement with previous reports (Thomson and Spencer, 1966; Corfas and 

Dudai, 1989; Boynton and Tully, 1992; Beck and Rankin, 1995; Engel and Wu, 1996; 

Rose and Rankin, 2001), the response decrement characteristic of habituation was 

apparent after a distinct period of continuous stimulus exposure or after experiencing a 

number of shock stimuli (Figure 26, Figure 32A.I).  We termed the period prior to 

emergence of habituation “the refractory period”, since animals responded to pre-

experienced stimuli as if they were naïve.  The presence of a refractory period suggests 

that at this time processes which either prevent premature habituation must be 

inactivated, ones that mediate habituation must be activated or both.  In either case, the 

refractory period may reflect the time necessary to evaluate a stimulus with respect to its 

saliency, novelty and potential association with other stimuli prior to decreasing 

responsiveness towards it.  If so, shortening or eliminating the refractory period would 

precipitate premature habituation and would not allow effective evaluation of stimulus 

attributes such that inappropriate responses may be elicited. 

Collectively the results strongly indicate that the MBs are essential in inhibition 

of premature habituation to olfactory and footshock stimuli because their structural or 

functional perturbation precipitated premature habituation with minimal stimulation.  
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However, it is unlikely that the MBs are the locus where habituation to these stimuli 

occurs because then their structural or functional ablation would result in failure to 

habituate, not premature habituation.  Rather, it appears that the MBs themselves or in 

concert with other brain areas delay, prevent or modify the default response to pre-

experienced repetitive stimuli, habituation.  Our data are consistent with two models 

regarding the role of the MBs in protection from pre-mature habituation.   

First, the MBs themselves inhibit premature habituation to pre-experienced 

olfactory and footshock stimuli probably during the refractory period.  This permits 

evaluation of these stimuli relative to other environmental cues and mediation of the 

appropriate response, a property essential for associative learning.  This central role for 

the MBs is consistent with the effects of inhibiting neurotransmission to, or from these 

neurons.  Silencing mACT and iACT synapses essentially had the same effect as 

abrogating MB function because olfactory stimuli did not arrive in the latter for 

evaluation.  The response to footshock could not be prevented from habituation since 

these neurons were structurally or functionally absent.  In this model, the LH and 

possibly other brain areas are the likely mediators of the default avoidance response as 

proposed (Marin et al., 2002; Tanaka et al., 2004).      

Alternatively, the MBs are not central, but rather one part of a minimally 

bipartite system mediating protection from premature habituation.  The other main part 

of this network is the lateral horn because the main synaptic outputs from the mACT and 

iACT are in this neuropil (Stocker et al., 1997; Heimbeck et al., 2001; Marin et al., 2002; 

Tanaka et al., 2004), and footshock stimuli may arrive at the MBs via the LH (Ito et al., 
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1998).  Since silencing MB, or mACT and iACT synaptic output results in premature 

habituation, bi-directional synaptic output between the two centers likely during the 

refractory period would be essential for protection from habituation.  Consistent with 

this, extrinsic neurons connecting the MBs and LH have been described (Ito et al., 

1998).   In both models, the proposed role for the MBs is consistent with their role in 

context generalization of learned visual information (Liu et al., 1999; Zars, 2000).  As 

for protection from habituation, context generalization also involves deriving and 

maintaining relationships between stimuli irrespective of the environment they were 

formed in and requires anticipating future events based on a past experience 

(Heisenberg, 2003). Moreover, the proposed inhibitory role of the MBs is consistent 

with their suppression of general locomotor activity and generation, regulation and 

coordination of motor programs (Martin et al., 1998). 

It is difficult to differentiate between the two models with our data at the 

moment.  Functional perturbation of the LH is not possible to date because it appears 

that appropriate LH GAL4 driver lines are not available.  Determination of whether 

protection from premature habituation is mediated entirely by the MBs or both the MBs 

and the LH or additional areas would have to await isolation of a mutant in the process.  

Then, rescue of the mutant phenotype with MB-specific, versus pan-neural GAL4 

drivers is likely to distinguish between the two possibilities and these experiments are in 

progress. 

The inability to dishabituate olfactory stimuli with footshock and vice versa upon 

abrogation of MB function is in agreement with the role of the system in stimulus 
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evaluation and response modification.  It has been proposed that olfactory and footshock 

stimuli must converge in the MBs (Roman and Davis, 2001; Heisenberg, 2003), a 

condition necessary for associative olfactory learning.  Convergence of the stimuli in the 

MBs appears to be essential for dishabituation for two reasons.  First, blocking stimulus 

convergence by structural or functional ablation of these neurons did not support 

dishabituation to either olfactory or footshock stimuli.  Second, inhibition of 

neurotransmission in iACT and mACT, in effect blocking olfactory stimuli conveyed to 

the MBs and thus stimulus convergence by did not allow dishabituation.  Moreover, 

neurotransmission from the MBs was necessary for dishabituation, consistent with the 

notion that the MBs/LH play a role in modification of the behavioral response to pre-

experienced stimuli akin to the requirement for neurotransmission from MB neurons in 

memory retrieval (Dubnau et al., 2001; McGuire et al., 2001). 

If habituation requires inactivation of inhibitory processes that prevent its 

premature onset, then spontaneous recovery may reflect reactivation of the inhibition 

dependent on the time the stimulus habituated to, is absent (Rankin and Broster, 1992).  

Failure, or inefficient establishment of such inhibitory mechanisms would be manifested 

as prolonged habituation such as that exhibited by animals with perturbed MB function.  

Slower spontaneous recovery is likely to occur if additional stimuli are given after the 

response has habituated (over-habituation) (Thomson and Spencer, 1966), as observed in 

animals with compromised MBs.  Delayed spontaneous recovery to both olfactory and 

footshock stimulation occurred in mbm1 that retain vestigial MBs.  In w; 247/UAS-TNT 

animals recovery was apparent after habituation to the mild single footshock, but not 
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after the more strenuous one-minute odor pre-exposure.  Therefore, as predicted from 

their proposed role in protection from premature habituation, normal MB function is 

requisite for spontaneous recovery. 

 

Premature habituation and MB-dependent associative learning 

In general it is unclear whether associative learning and habituation are 

dependent or independent processes.   In the conditioned avoidance assay, used to study 

olfactory learning and memory, the conditioned stimulus (odor-CS+) paired to an 

unconditioned  stimulus (footshock-US) elicits a conditioned response to the CS+ but no 

such response to an unconditioned odor stimulus, the CS- (Tully and Quinn, 1985).  

During training in this olfactory associative paradigm, premature habituation to the CS+ 

and/or the US would not permit CS/US association that leads to CS+ vs. CS- 

discrimination.  Given our results and the documented involvement of the MBs in 

olfactory learning and memory (Roman and Davis, 2001; Waddell and Quinn, 2001; 

Heisenberg, 2003), it would appear that during training, the MBs/LH protect from 

premature habituation to the odor and shock stimuli such that associations between them 

may be formed.  Since structural and functional ablation of the MBs precipitated 

profound premature habituation to odor and footshock stimuli it is unlikely that such 

associations can be formed.   Even if associations could be formed normally, habituation 

to any of the test odors would not permit conditioned response dependent CS+ vs. CS- 

discrimination during testing.  In agreement with this, MB ablated animals have been 

reported totally unable to learn in an olfactory associative paradigm (de Belle and 
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Heisenberg, 1994).  Moreover,  even if the footshock US acts as a dishabituator to the 

continuous odor CS+ presentation as previously suggested (Joynes and Grau, 1996), 

habituation to the CS- could alter the CS+/CS- discrimination during testing.  

In summary, our results predict that animals mutant for genes essential for 

protection from premature habituation would be unable to learn odor/footshock 

associations.  Conversely, mutants specifically compromised in MB-dependent 

associative learning would be protected from premature habituation.  Therefore, 

experiments to differentiate between the two possibilities would be essential in 

determining the underlying mechanistic defect in apparent learning mutants. 

 

EXPERIMENTAL PROCEDURES 

Drosophila Strains  

Drosophila were cultured in standard cornmeal sugar food supplemented with 

soy flour and CaCl2.  The flies were raised at 20-22°C, except UAS-TetLC II (Keller et 

al., 2002) crosses, which were raised at 18°C until hatching, then placed at 20-22°C for 

two days prior to testing.  Hydroxyurea ablated flies were prepared with the method 

described previously (de Belle and Heisenberg, 1994), except that 75mg/ml hydroxyurea 

(HU) was used (Philip et al., 2001).  Each batch of HU-treated adults was monitored 

histologically for the extend of mushroom body ablation. 

Three different strains were utilized as wild type controls.  First, a w1118 -bearing 

strain backcrossed to Canton S for 10 generations (w) and provided by Dr. Tim Tully.   
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Second, a w1118 -bearing strain derived by excision of a transposon on the third 

chromosome (ex5), which except for the white-eye color is unrelated to the w strain 

described above.  Finally, the wild type strain Berlin was utilized as control for 

mushroom body miniature (mbm1) flies since they share a common genetic background.  

Berlin and mushroom body miniature (mbm1) flies have been described previously 

(Heisenberg et al., 1985a).  The GAL4 lines used were P[GAL4] GH146 

(GH146)(Stocker et al., 1997), P[GAL4] OK72 (OK72) (Acebes and Ferrus, 2001), 

P[GAL4] 247 (247) (Zars, 2000).  The UAS strains used were UAS-btau (Ito et al., 

1997), two independent transformant strains of the temperature sensitive Drosophila 

dynamin shibire gene, UAS-shi5ts and UAS-shi10ts (Kitamoto, 2001) and the Tetanus 

Light Chain transgene, UAS-TetLC II (UAS-TNT) (Keller et al., 2002).  Tetanus Light 

Chain prevents neurotransmitter release by cleaving synaptobrevin, a protein required 

for synaptic vesicle docking on presynaptic neurons (Humeau et al., 2000).  In contrast, 

inactivation of the temperature sensitive dynamin encoded by the shibirets transgenes is 

thought to prevent neurotransmitter recycling to the presynaptic neurons, causing their 

functional depletion (Kitamoto, 2001). 

To obtain flies for behavioral analyses, 247, GH146, OK72 homozygotes were 

crossed en masse to UAS-TetLC and UAS-shi5ts and UAS-shi10ts or the parental w1118 

and the progeny was collected and tested 3-5 days after emergence.  Similarly, UAS-

TetLC and UAS-shi5ts and UAS-shi10ts homozygotes were crossed en masse to w1118, to 

obtain heterozygous controls. 
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Histology 

Frontal paraffin sections (5µm) of heads were prepared for 

immunohistochemistry or histology as described previously (Skoulakis and Davis, 1996; 

Crittenden et al., 1998).  The α-LEO antibody (1:4500) was used to identify the 

mushroom bodies and ellipsoid body (Crittenden et al., 1998).  The α−SH3PX1 antibody 

used (1:1000) to examine the gross morphology of antennal lobe glomeruli was provided 

by Dr. J. Dixon (Worby et al., 2001).  The α−bovine TAU (α-bTAU) monoclonal 

antibody (Sigma) was used (1:1000) to investigate the GAL4 expression patterns.  

 

Osmotaxis 

Behavioral experiments were performed under red light at 23-24ºC and 65% 

humidity.  Odor avoidance and attraction were quantified by exposing ~50 flies at the 

choice point of a standard T-maze (Tully and Quinn, 1985; Skoulakis, 1993; Skoulakis 

and Davis, 1996) to an air-stream (500 ml/min) carrying the odor in one arm and fresh 

air in the other.  The flow rate was adjusted to 600 ml/min or higher to increase the 

effective amount of odor the flies were exposed to when necessary, as indicated.  The 

odors utilized for these experiments were 1000µl (1X) of 3-Octanol (OCT) (Fluka), 

110µl (1X) of benzaldehyde (BNZ) (Sigma) and 10µl of a 1/10 dilution in water (1X) of 

ethyl acetate (ETA) (Sigma).  Flies were given 90 seconds to choose between aversive 

odors and air.  Control experiments (not shown) determined that 180 seconds for the 

choice between attractive odors and air gave the most consistent and reliable indices.  At 
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the end of the choice period, flies in each arm were trapped and counted.  The avoidance 

index (AI) was calculated as the percentage of flies that avoid or are attracted to a 

particular odor.  An AI of 100 indicates that the flies avoid the odor completely (-100 

complete attraction), whereas an AI of 0 indicates equal distribution between the maze 

arms and therefore no avoidance or attraction. 

 

Olfactory habituation 

Olfactory habituation experiments were performed under the conditions 

described above.  For the “training phase”, approximately 50 flies were exposed to either 

attractive (ETA, BUT) or aversive odors (OCT, BNZ) for the indicted times in the upper 

chamber of a standard T-maze.  After a 30 second rest period (unless indicated 

otherwise), the flies were lowered to the center of the maze for the “testing phase”.   The 

flies were tested for their avoidance or attraction to odors by a choice of air vs. either the 

previously experienced or a novel odor.  At the end of the choice period (90 seconds for 

aversive and 180 for attractive odors) the number of flies in each arm were trapped, 

counted and the avoidance index (AI) calculated as described above.  The UAS-shi5ts 

and UAS-shi10ts harboring strains were placed in a 32°C water bath for 15 minutes prior 

to the start of the “training phase” to inactivate the SHIBIRE protein.  This treatment 

results in complete inactivation of SHIBIRE, which recovers within 15 minutes after 

removal from 32°C (Dubnau et al., 2001; Kitamoto, 2001; McGuire et al., 2001). To 

examine spontaneous recovery, flies were given a rest period for various lengths of time 

(6 minutes being the experimentally derived standard recovery period) within the upper 
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arm of the maze after they were given the odor pre-exposure.  Subsequently they were 

tested against the odor they were pre-exposed to versus air and an AI was calculated as 

described above.  To determine the conditions for dishabituation with electric shock, 

control experiments were performed first to determine the stimulus strength and number 

of shocks necessary. Dishabituation was attempted at different shock stimulus strengths 

with the following results:  OCT AI for naïve: 59.2 + 2.3.  Habituated OCT AI:  20.6 + 

1.7.  Dishabituation with 30 V, OCT AI: 54.8+ 2.1; with 45 V, OCT AI: 58.7 + 2.6; with 

90V OCT AI: 58.3 + 2.2.  Since the 90V and 45V dishabituating shocks had equal 

effects, the milder of the two was selected.  Moreover the number of 45V shocks did not 

have a significant effect on dishabituating osmotaxis (1X 45V shock OCT AI: 58.7+ 2.3; 

2X 45V shock OCT AI: 59.4+ 2.8).  Therefore, dishabituation was attempted with a 

single 45 volt shock either prior, during, or at the end of pre-exposure and was followed 

immediately (within 15-20 seconds) by testing as described above.   

 

Electroshock avoidance  

Experiments were performed under the conditions described above.  Animals 

were placed in the choice point of T-maze and given a choice of a standard copper grid 

(Skoulakis and Davis, 1996) electrified 15 times for 1.25 seconds each during the 90 

second choice period with 45 Volts (unless indicated otherwise) versus an un-electrified 

grid.  The avoidance index (AI) was calculated as the percent of flies avoiding the 

electrified grid. 
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Habituation to electroshock   

Habituation to electric shock experiments were performed under the conditions 

described above.  For the “training phase” ~ 50 flies were sequestered in the upper arm 

of a standard T-maze lined with an electrifiable grid.  They were exposed to 1-11, 1.25-

second electric shocks at 45V or 60 V or 90V as indicated.  After a 30second rest, the 

flies were transferred to the lower part of the maze and tested by given a choice between 

an electrified and an inert grid.  The electrified grid was held at the same voltage (45, 60 

or 90V) as that the particular set of flies was exposed to previously.  During the 90-

second choice period 15, 1.25 second electric shocks were delivered to the electrified 

arm of the maze.  At the end of the choice period the flies in each arm were trapped, 

counted and a performance index was calculated as above.  Dishabituation was achieved 

by exposing the flies to benzaldehyde (500µl BNZ carried in an air stream at 500 ml/sec 

as described above for olfactory habituation) for 15 seconds immediately after the 

“training phase”.  For spontaneous recovery, a 6-minute resting period (REST) was 

allowed in the upper part of the maze between the training and testing phases.  The 

avoidance index (AI) was calculated as the percent of flies avoiding the electrified grid. 

 

Statistical analysis   

Untransformed (raw) data were analyzed parametrically with JMP3.1 statistical 

software package (SAS Institute Inc., Cary, NC).  To maintain a constant experiment 

wise error rate, initial ANOVA and planned multiple comparisons were performed as 

suggested by Sokal and Rolf (Appendix B). 
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CHAPTER V 

 

D14-3-3ε MUTANTS ARE NOT PROTECTED FROM PREMATURE 

HABITUATION IN DROSOPHILA 

 

INTRODUCTION 

 
Stereotypical animal responses to environmental stimuli are modified by 

experience and by extraction of relationships among them.  Temporal coincidence of 

stimuli often leads to associative learning, such that a strong stimulus (unconditioned 

stimulus-US) is predicted by presentation of a weak one (conditioned stimulus–CS) 

because they were presented concurrently.  Enhancement or decrement of a behavioral 

response precipitated by pre-experienced or repetitive stimuli are essential in ensuring 

appropriate attention and reaction to them and constitute forms of non-associative 

learning.  Such processes include habituation, desensitization, sensory fatigue and 

adaptation.   

Desensitization, sensory fatigue and adaptation involve physiological changes 

that decrease the sensitivity to a repeated or prolonged stimulus.  In contrast, habituation 

is also manifested as a gradual response decrement to a repetitive stimulus, but it does 

not appear to involve changes in sensitivity as the response will return after the 

presentation of a (often noxious) novel stimulus (dishabituation) (Thomson, 1966; 

Groves, 1970; Marcus et al., 1988; Rankin, 1992).  Therefore, habituation could act as a 

gating mechanism mediating decreased responsiveness to repetitive but meaningless 
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stimuli and consequently is thought to underlie selective attention (Thomson, 1966; Rose 

and Kemphues, 2001).  Defects in the gating and selective attention aspects of 

habituation are thought to underlie schizophrenia and attention disorders in humans 

(Freedman et al., 1991; Adler et al., 1999; Meincke et al., 2004; Slaats-Willemse et al., 

2003).  However, rapid habituation to prolonged or repeated stimuli is unlikely to permit 

associations with other more discrete stimuli, a condition necessary for associative 

learning.  In congruence, habituation appears to occur after exposure to a number of 

repetitive or prolonged stimuli (Thomson, 1966; Rose et al., 2001).  Therefore, processes 

protecting from premature habituation must operate within neuronal circuits and in fact I 

recently demonstrated this phenomenon in Drosophila (Acevedo and Skoulakis, 

submitted).  Prominent neuronal circuits known as mushroom bodies, essential for 

associative olfactory learning and memory (Roman and Davis, 2001; Heisenberg, 2003) 

appear indispensable for suppressing premature habituation to olfactory and footshock 

stimuli also.  

 Although the behavioral characteristics and parameters of habituation have been 

characterized extensively, little is known about the molecular mechanisms underlying 

the process.  In Drosophila, adenylyl cyclase (rutabaga) and cAMP-phosphodiesterase 

(dunce) mutants that alter the cAMP signaling and exhibit deficits in associative 

olfactory learning could habituate and dishabituate in a number of paradigms utilizing 

simple proprioceptive reflexes within the thoracic sensory neurons of the peripheral 

nervous system.  However, habituation occurred more quickly and was short lived for 

the rut and dnc mutants (Corfas and Dudai, 1989; Duerr and Quinn, 1982; Engel and 
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Wu, 1996). Habituation could be eliminated by targeted expression of calcium 

independent CaMKII in thoracic sensory neurons (Jin et al., 1998).  The fact that these 

mutants affect both habituation and associative olfactory learning suggests the two might 

be linked biochemically and/or associated with the same region of the brain.   

In this paper I report on the requirement for D14-3-3ε in processes that mediate 

protection from premature habituation.  D14-3-3ε is a member of the highly conserved 

14-3-3 family of small dimeric acidic proteins.  The seven members of the family in 

vertebrates comprise two conservation groups the typical (α, η, ζ, γ and τ) and atypical 

(ε and σ) isotypes (Skoulakis and Davis, 1998) of which 14-3-3ε is likely the ancestral 

protein since it is the most similar to the ancient plant and yeast 14-3-3 proteins (Wang 

and Shakes, 1996).  Structurally all family members are characterized by the common 

nine anti-parallel helices formed into U-shaped molecule with a negatively charged 

interior which binds phosphoproteins that contain the motifs RSxpS/TxP, or 

RxxxpS/TxP  (where x=any amino acid, pS/T=phosphoserine or phosphothreonine).  14-

3-3 binding may protect a target protein from dephosphorylation or proteolysis, 

modulate its activity, and alter its ability to interact with other partners, or modify its 

cytoplasmic/nuclear partition. Therefore, it is not unusual that 14-3-3 proteins have been 

implicated in a diverse number of processes and biochemical pathways (Tzivion et al., 

2002; Yaffe, 2002; Berg et al., 2003; Dougherty et al., 2004). 

Drosophila is a simpler yet representative model with one isotype from each 

group, 14-3-3ζ-LEONARDO and D14-3-3ε with 88 and 82% identity to their respective 

mammalian homologs (Skoulakis and Davis, 1998; Philip et al., 2001).  In adult flies, 



 218

LEO is preferentially distributed in the mushroom bodies (MBs) where it is acutely 

required for olfactory associative learning and memory (Skoulakis and Davis, 1996; 

Philip et al., 2001).  In addition to behavioral plasticity, while not essential for 

synaptogenesis and basal synaptic transmission LEO appears essential for physiological 

plasticity at the larval neuromuscular junction (Broadie et al., 1997).  In contrast, as for 

its vertebrate homolog (Baxter, 2002), D14-3-3ε mRNA is found in all stages of 

development and in all tissues examined and enriched in adult heads (Philip et al., 2001).  

However, although highly enriched in the vertebrate and the Drosophila nervous system 

other than a role in Drososphila eye development (Chang and Rubin, 1997), little was 

known regarding the role of this isotype in nervous system function.  The results of this 

study uncover a novel role for the Drosophila 14-3-3ε in protection from premature 

habituation. 

 

RESULTS AND DISCUSSION 

 
Characterization of new D14-3-3ε alleles 

Because the available mutant alleles at the onset of this work were an apparent 

hypomorhic P-element insertion and mis-sense mutations with complex phenotypes 

(Chang and Rubin, 1997), I characterized excision alleles of the transposon aiming to 

obtain null or strong hypomorphic alleles.  Southern and PCR analyses (not shown) 

established two classes of alleles.  Allele D14-3-3εex5 was classed as a revertant because 

it did not appear to harbor molecular lesions or transposon remnants, while in allele 
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D14-3-3εex4 exon 1 which harbors the transcription and translation start sites and half of 

intron 1 were deleted suggesting a null allele (Figure 33A).  Both D14-3-3εl(3)j2B10 and 

D14-3-3εex4 were semi-lethal, allowing 43% and 75% viability respectively and were not 

complementary.  Homozygotes did not exhibit gross morphological or behavioral 

abnormalities except their somewhat reduced size and sterility.  D14-3-3ε was totally 

absent in the heads of these animals and this deficit did not appear to affect the 

accumulation of the only other 14-3-3 protein in Drosophila, LEONARDO-14-3-3ζ 

(Figure 33B).    

 

Distribution of D14-3-3ε in the adult nervous system and structural analysis in the 

mutants  

Immunohistochemical investigation of the distribution pattern of D14-3-3ε in 

adult brains revealed accumulation of the protein throughout the neuropil of the central 

brain (Figure 34A.1-4), the optic lobes and thoracic ganglion (not shown). The protein 

appeared slightly enriched in the medulla (not shown), the fan shaped body (Figure 

34A.2) and antennal lobes (Figure 34A.4).  This broad distribution is not background 

staining confirmed by its total absence from mutant homozygote brains on the same slide 

(Figure 34A.5-8).  D14-3-3ε was characteristically absent from the somata as has been 

described for the vertebrate isoform, which is also distributed throughout the neuropil of 

the CNS (Baxter et al., 2002).  The D14-3-3ε distribution is in contrast with the 

preferential expression in the mushroom bodies (MBs) of one of the isotypes (LEOII) 
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Figure 33. Molecular map and protein expression in D14-3-3ε mutants   
 
(A) The genomic region, structure and mutations of the D14-3-3ε  gene.  Boxes 
represent exons, whereas lines represent introns and surrounding non-transcribed 
regions.  The stippled boxes indicate untranslated portions of exons.  The white circles in 
exon 4 represent polyadenylation sites.  The arrow indicates the location of the P-
element insertion in intron 1.  The extent of the deficiencies in D14-3-3ε ex4 and D14-3-
3εex24 are indicated by the black bars, whereas the region of uncertainty at the ends is 
indicated by the hatched bars. (Adapted from Chang and Rubin 1997).   
(B) A representative blot from adult head lysates used in acquisition of the data on Table 
16.  Genotypes: (1) D14-3-3ε ex5 homozygotes, (2) D14-3-3ε ex5/ D14-3-3ε l(3)j2B10 , (3) 
D14-3-3ε ex5/ D14-3-3ε ex4, (4) D14-3-3ε l(3)j2B10 / D14-3-3ε l(3)j2B10, (5) D14-3-3ε l(3)j2B10/ 
D14-3-3ε ex4, and (6) D14-3-3ε ex4/ D14-3-3ε ex4.   
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Figure 34. Distribution of D14-3-3ε and structural analysis of D14-3-3ε mutant brains 
 
(A) Distribution of D14-3-3ε in D14-3-3ε ex5 (1-4) and D14-3-3ε ex4 homozygotes (5-8) 
indicating ubiquitous distribution of the protein throughout adult brains. 1 and 5:  
mushroom body calyces (arrowhead) and lateral horn (arrow).  2 and 6: the fan-shaped 
body (arrowhead) and mushroom body pedunculi (arrow). 3 and 7:  the suboesophageal 
ganglion (arrowhead) and ellipsoid body (arrow).  4 and 8:  the mushroom body lobes 
(arrow) and suboesophageal ganglion (arrowhead). 
Structural analysis of brains from D14-3-3ε ex4 mutant homozygotes with antigenic 
markers demonstrating that lack of the D14-3-3ε protein does not precipitate gross 
neuroanatomical deficits except for a fusion at the tips of the β-lobes of the mushroom 
bodies (B).  (9-12) D14-3-3ε ex5 and (13-16) D14-3-3ε ex4 homozygotes.  9, 13: 
mushroom body calyces (arrowheads) stained with anti-LEO. 10, 14:  the fan-shaped 
body (arrowheads) and mushroom body pedunculi (arrows) stained with anti-DRK.  11, 
15:  the mushroom body lobes (arrows) stained with anti-DRK.  12, 16:  the antennal 
lobes (arrowheads) and stained with anti-JCD5.  
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Figure 34. (continued) 
 
(B) Fusion of the tips of the β-lobes of the mushroom bodies in D14-3-3ε ex4 
homozygotes indicated by anti-DRK (1-3) and anti-LEO (4-6) staining of different 
mutant animals indicating full penetrance of the phenotype. 1 and 4: mushroom body  β-
lobes in control animals; 2, 3, 5, 6 β-lobes in D14-3-3ε ex4 homozygotes.   The phenotype 
was not reversed with C155-Gal4 (7), tubulin-Gal4 (8), or 247-Gal4 (9) driven UAS-
mycD14-3-3ε transgenes. 
(C)  Accumulation of D14-3-3ε protein in D14-3-3ε ex4homozygotes expressed from 
UAS-mycD14-3-3ε transgenes and detected with the anti-D14-3-3ε antibody under the 
direction of the C155-Gal4 driver (1-4) and the tubulin-Gal4 driver (5-8).  Low level 
ubiquitous accumulation throughout the central nervous system was observed under the 
C155-Gal4 driver, but the protein was enriched as indicated by the arrows in the 
mushroom body calyces (1), mushroom body pedunculi and the fan shaped body (2), 
mushroom body pedunculi and ellipsoid body (3) and mushroom body lobes and 
antennal lobe glomeruli (4).  In contrast, transgenic D14-3-3ε under the tubulin-Gal4 
driver was found throughout the neuropil of the central nervous system (5-8).  All brain 
structures appear morphologically normal in D14-3-3ε ex4homozygotes, except the fused 
β -lobes of mushroom bodies as described above (B). 
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of the other 14-3-3 protein in Drosophila 14-3-3ζ-LEONARDO, which also accumulates 

in the MB perikarya.  The other LEO isoform appears to be distributed similarly to D14-

3-3ε throughout the CNS (Philip et al., 2001; Skoulakis and Davis, 1996). 

Because mice deficient in 14-3-3ε exhibit defects in brain development 

associated with isolated lissencephaly sequence (ILS) and Miller-Dieker syndrome 

(Toyo-oka et al., 2003), the neuroanatomy of the central brain in D14-3-3ε homozygotes 

was examined using standard hematoxylin-eosin staining (not shown) and staining with 

MB antigenic markers (Crittenden et al., 1998).  The results obtained with the anti-LEO 

and anti-DRK antibodies are shown in Figures 35A.9-16 and 35B.1-6.  Compared to 

D14-3-3ε ex5controls (Figure 34A.9-12) the brain of D14-3-3εex4 homozygotes appeared 

normal with respect to structure, expression pattern and level of antigenic markers 

(Figure 34A.13-16), except for the overall reduced size and fusion of the β lobes of the 

mushroom bodies (Figure 34B.1-6). The horizontal lobes of the mushroom bodies in a 

hemisphere are separated from the contra-lateral lobes by the median bundle (Figure 

34B.1 and 34B.4).  However, in D14-3-3ε ex4homozygotes the median bundle was 

reduced or missing, the β lobes fused and appeared thickened and somewhat deformed 

(Figure 34B.2, 3, 5, 6).  Similar malformations of the MB β lobes have been reported in 

flies mutant for the linotte Receptor Tyrosine Kinase (Moreau-Fauvarque et al., 1998; 

Moreau-Fauvarque et al., 2002; Simon et al., 1998).  Interestingly, fusion of the lobes 

was not reversed either by pan-neural expression of D14-3-3ε transgenes throughout 

development of the nervous system (Figure 34B.7-8), conditions that rescue all other 

mutant phenotypes (see below), or by MB-specific expression (Figure 34B.9). Similar 
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results were obtained with D14-3-3ε l(3)j2B10 homozygotes (not shown).  These results 

indicate that fusion of the lobes is not causal of observed behavioral phenotypes. 

 

Experience dependent associative and non-associative deficits in D14-3-3ε mutants 

Because leonardo mutants exhibit deficits in associative learning and memory 

(Philip et al., 2001; Skoulakis and Davis, 1996), similar effects on the effects on 

behavioral plasticity precipitated by the total lack of D14-3-3ε were investigated in D14-

3-3εex4 and D14-3-3εl(3)j2B10 homozygotes.  Animals were trained and tested negatively 

reinforced olfactory classical conditioning paradigm which utilizes odors as conditioning 

stimuli (CS) and footshock as the unconditioned stimulus (US) (Philip et al., 2001; Tully 

and Quinn, 1985).   D14-3-3εex5control flies performed identically (not shown) to 

standard control strains such as outcrossed w1118 or yw (Philip et al., 2001), in contrast to 

both D14-3-3ε mutants which displayed large (approximately 50% reduction) 

impairments in immediate memory (Figure 35A).  However, both mutants and the D14-

3-3εex5control flies avoided the aversive odors used for training equivalently and 

furthermore their performance was identical to that of w1118 (Table 16A).  In addition, all 

strains were attracted equivalently to appetitive odors in T-maze experiments given the 

choice of odor and air (Table 16B).  In addition, two other members of the lab found that 

the mutants performed equally with controls in the qualitatively different olfactory trap 

assays where flies become attracted and navigate towards the source of dilute attractive 

odors (Table 16B).  This indicates that the mutants were able to perceive and respond to 

the odors properly and locomote towards or away from them. Similarly, the mutants
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Table 16.  Olfactory avoidance and attraction of D14-3-3ε mutants 
A 
Genotype 

 
OCT 

 
BNZ 

 
ETA 

D14-3-3ε ex5/D14-3-3εex5  56.40 + 2.02 59.00 + 1.98 -53.48 + 3.40 
D14-3-3εl(3)j2B10/D14-3-3εl(3)j2B10  51.09 + 2.88 55.47 + 3.19 -50.30 + 2.48 
D14-3-3εl(3)j2B10/D14-3-3εex4 51.73 + 2.63 56.35 + 3.39 -50.71 + 2.11 
D14-3-3εex4/D14-3-3εex4 50.56 + 1.25 56.28 + 3.54 -54.70 + 2.81 
w1118 52.50 + 1.48 53.15 + 1.59 -53.16 + 3.64 
B 
Genotype 

 
GER  

 
ETA 

 
BUT 

D14-3-3ε ex5/D14-3-3εex5  78.57 + 2.42 54.69 + 3.40 58.21 + 4.78 
D14-3-3εl(3)j2B10/D14-3-3εl(3)j2B10  88.23 + 3.22 67.78 + 4.00 62.50 + 4.52 
D14-3-3εl(3)j2B10/D14-3-3εex4 84.55 + 3.63 58.69 + 3.34 52.01 + 3.77 
D14-3-3εex4/D14-3-3εex4 77.61 + 3.42 55.83 + 3.98 59.17 + 3.55 
w1118 86.55 + 3.75 58.03 + 2.81 52.82 + 3.58 
C 
Genotype 

 
45 Volts  

D14-3-3ε ex5/D14-3-3εex5  34.49 + 1.18 
D14-3-3εl(3)j2B10/D14-3-3εl(3)j2B10  33.88 + 2.60 
D14-3-3εl(3)j2B10/D14-3-3εex4 33.32 + 1.56 
D14-3-3εex4/D14-3-3εex4 29.37 + 1.37 
w1118  32.04 + 1.23 
The mean performance indexes (PIs)  are shown + standard error of the mean (+ SEM).  Positive values 
indicate avoidance and negative values indicate attraction.   
(A)  Avoidance or attraction in a standard T-maze.  Positive values indicate avoidance and negative 
values indicate attraction.  ANOVA indicated no significant differences among the strains for OCT 
avoidance (F(4,41)=0.98 p<0.4354) or BNZ (F(4,41)=1.64 p<0.2014)  and ETA attraction (F(4,40)=0.99 
p<0.4337). 
(B) Performance in olfactory traps.  Positive values indicate attraction.  ANOVA indicated no significant 
differences among the strains for GER attraction (F(4,77)=2.95 p<0.0107), ETA attraction (F(4,74)=2.25 
p<0.0221) and BUT attraction (F(4,72)=2.22 p<0.0593). 
(C) Electric footshock avoidance.   ANOVA's indicated no significant differences among the strains for  
(F(4,51)=1.62 p<0.1852). 
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Figure 35. Deficits in olfactory associative learning and osmotactic deficits in D14-3-3ε  
mutant homozygotes 
 
Means + standard error of the mean (SEM) are shown SD: Significant differences, NSD: 
Non-significant differences. Positive values indicate avoidance and negative values 
indicate attraction. 
(A) Deficient associative learning in D14-3-3ε mutants.  Performance indices (PIs) for 
conditioned olfactory discrimination are shown + SEM for control D14-3-3ε ex5 (ex5) 
and mutant D14-3-3ε l(3)j2B10 (j2B10) and D14-3-3ε ex4 (ex4) homozygotes.  ANOVA 
indicated significant differences in performance (F(2,22)=41.52,  p<0.0001, SD).  
Subsequent planned comparisons (Dunnett’s) between ex5 and mutant strains revealed 
highly significant differences (p<0.0001) for all comparisons demonstrating a deficit in 
associative learning in the mutants.  
(B) Pre-exposure-dependent decline in Octanol (OCT) avoidance.  PIs for Octanol 
avoidance before (naïve-open bars) and after a 60-second pre-exposure (gray bars) to 
this odor are shown + SEM.  Avoidance without prior exposure to OCT was similar in 
control and mutant strains (ANOVA: F(2,23)=3.36 p<0.0177, NSD).  However, the 
performance of mutants after a 60 second pre-exposure was significantly different than 
that of controls (ANOVA: F(2,28)=28.39 p<0.0001, SD and subsequent Dunnett’s tests 
highly significant -p<0.0001- for all comparisons). 
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Figure 35. (continued) 
 
(C) Pre-exposure-dependent decline in Ethyl Acetate (ETA) attraction.  PIs for ETA 
attraction following a 60-second ETA pre-exposure is shown for ex5, j2B10 and ex4 
homozygotes (gray bars).  Attraction of naïve animals (open bars) was identical between 
control and mutants (ANOVA: F(2,21)=1.24 p<0.3100, NSD).  However, a marked 
decline in attraction to ETA was observed in the mutants, but not the control flies 
(ANOVA: F(2,24)=29.82 p<0.0001, SD; Dunnett’s p<0.0001 for all comparisons of 
mutants to control).   
(D) Pre-exposure to shock does not affect responses to an odor. OCT avoidance 
following pre-exposure to 11 X 90Volt footshocks for control and mutant flies. As in B, 
there were no significant differences (ANOVA: F(2,23)=5.63 p<0.0110, NSD) in OCT 
avoidance of naïve animals (open bars), or after pre-exposure (gray bars) to footshock 
(F(2,21)=3.27 p<0.0226, NSD). 
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Figure 35. (continued) 

(E) Pre-exposure to an aversive odor (benzaldehyde-BNZ) precipitates osmotactic 
deficits to a novel aversive odor (OCT).  Avoidance of OCT after 60 seconds of pre-
exposure to BNZ (light gray bars).  Avoidance of OCT by naïve animals (open bars) was 
not significantly different, irrespective of genotype (ANOVA: F(2,27)=2.38 p<0.1133, 
NSD).  However, OCT avoidance after pre-exposure to BNZ was significantly different 
in mutant homozygotes from controls (ANOVA: F(2,25=21.61 p<0.0001, SD and 
subsequent Dunnett’s tests-p<0.0001-for all comparisons). 
(F)  Pre-exposure to an aversive odor (OCT) precipitates osmotactic deficits to a novel 
attractive odor (ETA).  Attraction to ETA after 60 seconds of pre-exposure to OCT (light 
gray bars). Attraction to ETA by naïve animals (open bars) was not significantly 
different, irrespective of genotype (ANOVA: F(2,27)=0.95 p<0.7741, NSD).  However, 
ETA attraction was significantly different in mutant homozygotes and controls after pre-
exposure to OCT (F(2,25)=23.00  p<0.0001, SD and subsequent Dunnett’s tests-p<0.0001-
for all comparisons ). 
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avoid electric footshocks given the choice of an electrified and a non-electrified surface.  

Therefore, the mutants respond properly given the option between aversive or attractive 

non-pre-experienced stimuli and a neutral choice (air).  This data indicates that 

differential experience-independent (naive) perception or response to the stimuli cannot 

account for the observed learning deficits. 

Other than differential perception or response to the stimuli, there were two 

additional experience-dependent reasons that could give rise to the apparent learning 

deficits exhibited by the mutants.   A decrease in perception of the repetitive or 

prolonged stimuli used during conditioning due to fatigue or desensitization, or a 

decrease in responsiveness to the stimuli because of premature habituation. Either of 

these deficits would not allow normal information acquisition from the 11-12 CS/US 

pairings typically utilized for conditioning, or proper discrimination between the CS+ 

and CS- during testing.  I have shown that premature habituation to odor or footshock 

stimuli similar to the ones used in conditioning assays occurs within 10 seconds of 

exposure, or after a single shock if MB function is impaired (Acevedo and Skoulakis, 

submitted).   

Since in the training and testing phases of conditioning experiments, differential 

responses to pre-experienced stimuli are either established or tested, non-associative 

experience dependent responses were investigated in the mutants.  Initially the effect of 

pre-experiencing electric footshock on subsequent response to a novel odor stimulus was 

examined. Footshocks used as US in the conditioning experiments did not affect 

avoidance of OCT (Figure 35B), BNZ or attraction to ETA (not shown).  To investigate 
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the effect of odor pre-exposure on subsequent olfactory responses, mutants and control 

animals were exposed to OCT for 60 seconds and their subsequent avoidance of this 

odor was tested.  Compared to their naïve response, mutants displayed a large reduction 

in OCT avoidance after pre-exposure to this odor.  In contrast, avoidance the pre-

experienced odor was not different from the naïve response in control animals (Figure 

35C).  Similar responses were obtained if the animals were pre-exposed to the attractive 

odor ETA (Figure 35D), or the aversive BNZ (not shown).  Furthermore, pre-exposure 

to one aversive odor (BNZ) affected subsequent avoidance of a novel aversive odor 

(OCT) (Figure 35E). The same deficit was observed with pre-exposure to an attractive 

odor decreasing subsequent avoidance of a novel aversive odor (Figure 35F), or pre-

exposure to an attractive odor diminishing the response to a novel attractive odor (not 

shown).  Since these odors are perceived by different olfactory receptors and processed 

in different antennal lobe glomeruli (deBruyne et al., 2001) and naïve avoidance or 

attraction to the odors was normal, this cross odor experience dependent deficit was 

likely a centrally mediated phenomenon.  Therefore, lack of D14-3-3ε precipitated overt 

deficits in experience dependent responses to stimuli consistent with desensitization, 

fatigue and premature habituation. 

 

Physiological neuroplasticity at the larval neuromuscular junction is normal in 

D14-3-3ε mutants 

Total lack of 14-3-3ζ-LEO does not affect synaptogenesis or basic synaptic 

function, but plasticity is compromised at the neuromuscular junction (NMJ) because of 
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apparent failure in synaptic vesicle mobilization (Broadie et al., 1997).  Therefore, to 

investigate whether loss of D14-3-3ε affects synaptic function and plasticity, which may 

underlie the observed behavioral deficits, synaptic function was measured at the larval 

NMJ.  Morphologically the NMJ appeared normal in both D14-3-3εex4 and D14-3-

3εl(3)j2B10 homozygous larvae (not shown). 

    Therefore, our collaborator performed voltage clamp recordings of synaptic 

currents were performed on muscle 6 of the third abdominal segment (Jan and Jan, 1976; 

Stimson et al., 1998) and the amplitude of evoked excitatory junctional currents (EJCs) 

were investigated as an initial measure of normal synaptic function.  Amplitudes of a 

single EJC were measured at two external Ca2+ concentrations, 0.5 mM, which results in 

low probability of release and small EJCs, and 1.5 mM, which produces high probability 

of release and concomitantly large EJCs.  In both conditions, EJC amplitude was 

indistinguishable between D14-3-3εex5control larvae and both D14-3-3εex4 and D14-3-

3εl(3)j2B10  mutant homozygotes, whether raw data or normalized to muscle capacitance 

(because of the slightly smaller size of the mutants) were plotted (Figure 36A). 

Furthermore, because the relationship between external Ca2+ and transmitter release was 

unaffected in the D14-3-3ε mutant larvae, the sensitivity of the Ca2+ sensor appeared 

normal as well. 

Although baseline EJC amplitude is normal in D14-3-3ε mutants, alterations in 

neurotransmitter release could be masked by compensatory changes in muscle sensitivity 

to glutamate (Davis and Goodman, 1998).  Such changes are detectable in the amplitude 

of spontaneous miniature EJCs (mEJCs), which correspond to exocytosis of single 
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synaptic vesicles.  mEJC amplitude was essentially identical among control and mutant 

larvae (Figure 36B; D14-3-3εex5: 0.585 + 0.039; D14-3-3εex4: 0.583 + 0.043; D14-3-

3εl(3)j2B10 : 0.592 + 0.049).  Therefore, glutamate receptor sensitivity is normal in the 

mutants.  Furthermore, when the number of these spontaneous events per unit time was 

measured, vesicles appeared to be fusing with the presynaptic membrane at normal rates 

(Figure 36C), providing further evidence that presynaptic function is not compromised.  

Therefore, in D14-3-3ε mutants all critical components of basic synaptic function, 

including excitation, Ca2+ influx, vesicle fusion, and glutamate receptor sensitivity and 

current appeared normal.   

        Although basic synaptic function appeared intact, defects in synaptic function could 

be detected under the more strenuous repetitive stimulation potentially approximating 

the conditions of prolonged or repeated odor or footshock exposure.  10 were compared 

with that of the first 10 responses.  All genotypes showed significant augmentation, with 

no significant differences between mutants and the control (p=0.36) last EJC in the train 

was depressed to approximately 40% of initial EJC amplitude in all genotypes (p = 

0.81).  All genotypes depressed to identical levels.  Repetitive stimulation recruits 

additional pathways, such as those mediating Ca2+ sequestration and vesicle recycling.  

In 0.5 mM Ca2+, the response to a train of stimuli is a mix of facilitation and 

augmentation, which are distinguished by their time courses (Magleby and Zengel, 

1982).  Neurons were stimulated with a train of 250 stimuli at 40 Hz in the presence of 

0.5 mM Ca2+and the average amplitude of the final 10 was compared with that of the 

first 10 responses.  The ratio of the final EJCs to those at the beginning was similar in
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Figure 36. Effect of epsilon mutations on physiology of the larval neuromuscular junction 
  
Means + standard error of the mean (SEM) are shown, with sample sizes below each bar. 
(A)Baseline EJC amplitude.  Amplitude of the first EJC in a train of stimuli, normalized to muscle 
capacitance to compensate for possible differences in muscle size.  In external Ca2+ concentrations of 1.5 
mM and 0.5 mM representing conditions of low and high release probability, EJC amplitude is statistically 
(1.5 mM Ca2+ p=0.25, 0.5 mM Ca2+ p=0.25, p=0.15) indistinguishable between control (ex5) and epsilon 
mutants.   
(B)  Amplitude of spontaneous mEJCs.  Each data point represents all mEJCs recorded in a 50 s sample.  
Amplitudes for controls and mutants were indistinguishable (p=0.62). 
(C)  Frequency of spontaneous mEJCs.  Number of spontaneous events occurring in a 50-second sample, 
plotted as mEJCs/s (Hz).  D14-3-3εex4 and D14-3-3εj2b10 exhibited slightly, but not significantly (p=0.13) 
elevated increases in mEJC frequency.   
(D) Augmentation of EJC amplitude.  Neurons were stimulated with a train of 250 stimuli at 40 Hz in the 
presence of 0.5 mM Ca2+, and the average amplitude of the final.  
(E) Depression of EJC amplitude.  Axons were stimulated with trains of 250 stimuli at 40 Hz, under 
conditions of high glutamate release (1.5 mM Ca2+).  The amplitude of the control and mutant NMJs 
(Figure 36D) indicating normal synaptic facilitation.  At 10 Hz, control and mutant synapses showed more 
modest levels of facilitation that did not differ from one another (not shown).  Furthermore, under 
conditions of high glutamate release (1.5 mM Ca2+), the neuromuscular synapse undergoes depression 
when stimulated repeatedly.  Axons were stimulated with trains of 250 stimuli at 40 Hz, in 1.5 mM Ca2+ 

and the depression was measured as the ratio of the first EJC to the amplitude of the last current.  Under 
these conditions, all genotypes behaved identically, with synaptic currents becoming depressed to 
approximately 40% of initial amplitude (Figure 36E). 
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Therefore, in addition to processes required for basal synaptic function, 

mechanisms involved in maintained neurotransmitter output, such as Ca2+ sequestration 

and synaptic vesicle recycling which are essential for synaptic modulation appeared 

unaffected by the loss of D14-3-3ε.  This indicates that unlike LEO, D14-3-3 does not 

appear to play an essential role in synaptogenesis and synaptic function at least at the 

NMJ.  Importantly, these results indicate that D14-3-3ε mutants do not suffer from a 

generalized malfunction of their nervous system likely to underlie the behavioral 

phenotypes.  If synapses of the adult CNS are similarly unaffected by the lack of D14-3-

3ε, then the observed normal synaptic transmission under strong stimulation would be 

inconsistent with premature fatigue or desensitization.  These could have been 

manifested as neurotransmitter depletion resulting in depression instead of facilitation.  

It is then possible that D14-3-3ε mutants may exhibit reduced experience-dependent 

responses because they habituate to them prematurely. 

 

The behavioral deficits of D14-3-3 mutants conform to premature habituation 

Given that D14-3-3ε mutants did not appear to harbor apparent deficits in 

synaptic physiology and function, I investigated whether the behavioral deficits conform 

to the classically defined habituation parameters (Thomson and Spencer, 1966). Animals 

were pre-exposed to an odor for different lengths of time and 30 seconds later their 

response to this odor given a choice of air was tested.  Control animals habituate to an 

odor after 150-180 seconds of continuous exposure (Acevedo and Skoulakis, submitted).  

In congruence, 120 seconds of exposure to OCT did not diminish subsequent OCT 
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avoidance in D14-3-3εex5control flies.  However, OCT avoidance of D14-3-3εex4 and 

D14-3-3εl(3)j2B10 homozygotes declined significantly after 20 seconds of pre-exposure to 

this odor and was asymptotic after 40 seconds (Figure 37A).  Similar results were 

obtained with pre-exposure to BNZ and ETA (not shown).  To investigate whether the 

pre-exposure dependent response decrement recovered spontaneously, the animals were 

allowed rest periods prior to testing following 60 seconds of odor exposure.  The deficit 

in OCT avoidance recovered spontaneously to control levels after about 12 minutes of 

rest (Figure 37B). The rather slow spontaneous recovery is consistent with the 

predictions for habituation, fatigue and desensitization (Groves and Thomson, 1970; 

Rose and Rankin, 2001; Thomson and Spencer, 1966).       

To differentiate among these possibilities, because fatigue and desensitization 

would only recover spontaneously given adequate time, I attempted to eliminate the pre-

exposure dependent decrement in avoidance acutely, by brief application of an unrelated 

noxious stimulus (dishabituation) (Groves and Thomson, 1970; Thomson and Spencer, 

1966).  The nature, strength and number of potentially dishabituating stimuli required 

were determined previously (Acevedo and Skoulakis submitted).  Control and mutant 

flies were exposed to OCT for 60 seconds as before, but prior to testing a single 45 Volt 

footshock was administered.  Surprisingly, this single footshock was able to fully reverse 

the osmotactic deficit such that after pre-exposure, the mutants avoided the test odor 

equally with D14-3-3εex5controls, or naïve animals (Figure 37C).  The result indicated 

that decreased OCT avoidance was in fact the result of premature habituation.  
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Figure 37. Osmotactic decline onset, spontaneous recovery and reversal in D14-3-
3ε mutants 
 
Means + standard error of the mean (SEM) are shown SD: Significant differences, NSD: 
Non-significant differences.  Positive values indicate avoidance and negative values 
indicate attraction. 
 (A) Time course of osmotactic decline for controls (open symbols) and j2B10 and ex4 
homozygotes (filled symbols).  The PI for OCT avoidance after pre-exposure for the 
indicated times (0-120 seconds) is shown.  ANOVA indicated significant effects of pre-
exposure times and genotype (F(17,140)=26.03 p<0.0001).  Compared to naïve (0 time), 
there was no significant effect of pre-exposure time on subsequent OCT avoidance of 
ex5 animals (F(5,46)=0.85 p<0.5219).  However, compared to naïve j2B10 and ex4 
homozygotes, all avoidances after 20 seconds of pre-exposure remained significantly 
different (p<0.0001).  Cross genotype comparisons demonstrated significant differences 
(p<0.0001) between ex5 and j2B10 or ex4 at 20, 40, 60 or 120 seconds of pre-exposure.  
A pre-exposure dependent decline in osmotaxis in mutant homozygotes occurred 
between 10 and 20 seconds of pre-exposure to an odor. 
(B)  Spontaneous recovery of the pre-exposure-dependent osmotactic decline within 9 
minutes. Recovery of OCT avoidance to naïve levels by j2B10 and ex4 homozygotes 
(filled symbols) after the indicated rest interval following 60 seconds of OCT pre-
exposure.  The performance of ex5 (open symbols) did not change.  However, the 
performance of OCT pre-exposed mutants changed in a rest interval-dependent time 
(ANOVA: F(14,130)=12.65 p<0.0001, SD).  Planned comparisons indicated that compared 
to ex5, both j2B10 and ex4 homozygotes were still deficient in osmotaxis (p<0.0001) 
after 1, 3 and 6 minutes, but not after longer rest times. 
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Figure 37. (continued) 
 
(C) Reversal of the pre-exposure dependent osmotactic decline with electric shock.  
Animals were tested for OCT avoidance either naïve (open bars), after 60 seconds of 
OCT pre-exposure (gray bars), or after a single 45Volt footshock following 60 seconds 
of OCT pre-exposure delivered 30 seconds prior to testing (striped bars).  OCT 
avoidance of naïve animals was not significantly different (ANOVA: F(2,24)=0.92 
p<0.4130, NSD).  In contrast, 60 seconds of pre-exposure to OCT precipitated 
significant differences (ANOVA: F(2,28)=43.67 p<0.0001, SD) between ex5 and j2B10 
and ex4 (Dunnett’s, p<0.0001 for all comparisons).  However, the avoidances of naïve 
and OCT pre-exposed mutants followed by a footshock were not significantly different 
(ANOVA: F(2,23)=1.22 p<0.0.3141, NSD), indicating that a single 45-Volt footshock 
restored normal OCT avoidance.   
(D) Reversal of the osmotactic decline depends on the time of footshock delivery.  OCT 
avoidance after 60 seconds of pre-exposure to this odor.  A single 45 Volt footshock was 
delivered either prior to pre-exposure (0 seconds), during pre-exposure at 30 seconds and 
45 seconds, or immediately after (60 seconds).  ANOVA indicated significant 
differences (F(11.96)=34.25 p<0.0001, SD).  Subsequent planned comparisons indicted 
significant performance differences (p<0.0001) between controls and mutants when the 
footshock was delivered in the beginning or 30 seconds after pre-exposure onset., but not 
when it was delivered at 45 seconds or the end of the 60second pre-exposure. 
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Figure 37. (continued) 

(E) Reversal of the pre-exposure dependent osmotactic decline to a novel odor with 
electric shock.  Animals were tested for OCT avoidance either naïve (open bars), after 
60 seconds of BNZ pre-exposure (light gray bars), or after a single 45Volt footshock 
following 60 seconds of BNZ pre-exposure delivered 30 seconds prior to testing (striped 
gray bars).  OCT avoidance of naïve animals was not significantly different (ANOVA: 
F(2,24)=2.38 p<0.1133, NSD).  However, compared to controls, avoidance of OCT was 
significantly decreased in the mutants after BNZ pre-exposure (ANOVA: F(2,25)=21.61 
p<0.0001, SD and subsequent Dunnett’s, p<0.0001 for all comparisons).  This pre-
exposure dependent difference in avoidance between mutants and controls was 
eliminated after a single 45 Volt footshock delivered 30 seconds prior to testing 
(ANOVA: F(2,23)=0.01 p<0.9857, NSD). 
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If the electric footshock was indeed a dishabituating stimulus, then it should not 

be effective prior to odor pre-exposure which would be characteristic of sensitization.  A 

single 45 Volt footshock was delivered either prior to OCT pre-exposure, in the middle, 

or at 45 seconds of the 60 second odor exposure.  It is apparent from Figure 37D that 

both mutants dishabituated readily when the footshock was delivered at the end, but not 

prior to pre-exposure.  Interestingly, a footshock delivered after 45 seconds of a 60 

second pre-exposure dishabituated the response fully.  This indicates that delivery of the 

footshock 15 seconds prior to termination of odor pre-exposure effectively re-sets the 

time necessary to obtain a habituated response which is 20-30 seconds (Figure 37A), 

thus blocking or disallowing habituation.  Qualitatively and quantitatively similar results 

were obtained with animals pre-exposed to BNZ and ETA (not shown).   

Finally, a single 45 Volt footshock reversed fully the reduced OCT avoidance 

after prior exposure to BNZ (Figure 37E).  This indicates that the observed cross-odor 

habituation (Figure 35E, 38F and Figure 37E) is likely generalization of habituation 

(Groves and Thomson, 1970; Mackintosh, 1974; Thomson and Spencer, 1966) to all 

odors regardless of their quality as attractive or aversive stimuli.  Consistent with this the 

mutants displayed decreased responses to all aversive and attractive odors tested against 

but only after pre-exposure to another odor (not shown).  Because the odors used in 

these assays are processed in distinctly different antennal lobe glomeruli (de Bruyne et 

al., 2001), it seemed likely that lack of D14-3-3ε compromises a general mechanism 

operating in higher order brain centers and required to prevent premature habituation.  

This would be consistent with the broad distribution of the protein in adult brains.  In 
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addition lack of apparent synaptic deficits and the acute reversal with a mild footshock 

strongly indicate that the experience-dependent osmotactic deficits of D14-3-3ε mutants 

are the result of premature habituation to odor stimuli. 

 

Transgenic rescue of the premature olfactory habituation deficits of D14-3-3ε 

mutants 

In a recent study, I determined that the MBs are essential in protecting wild-type 

Drosophila from premature habituation to olfactory and footshock stimuli.  Moreover, it 

appeared that neurons in the Lateral Horn (LH) likely play an important role in 

protection from habituation (Acevedo and Skoulakis, submitted).  Because D14-3-3ε is 

distributed throughout the adult brain including the MBs and LH (Figure 34A), initially I 

attempted rescue of the behavioral phenotype with UAS-mycD14-3-3ε transgenes driven 

by the c155-Gal4 (elav) and tub-Gal4 (β-tubulin) drivers expressed broadly in the 

nervous system (Yao and White, 1994).    

Both weak (mycεL) and strong (mycεH) transgenes directed accumulation of the 

transgenic protein in heads of animals that contained both the transgene and the driver as 

expected (Figure 38A).  It must be noted that the level of transgenic protein at least from 

the mycεH transgene approached or was greater than that of the native D14-3-3ε as 

demonstrated in the Western blots on Figure 38.  This is particularly important when 

transgene expression was restricted to a small set of neurons, suggesting that the protein 

accumulated to very high levels within them.  The distribution of the transgenic protein 

in the brain of D14-3-3εex4 homozygotes is shown in Figure 34C.  Under the c155-Gal4 
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driver low levels of the protein accumulated throughout the neuropil of the adult head 

and it appeared strikingly enriched throughout the MBs with somewhat lesser amounts 

in the fan shaped and ellipsoid bodies and the antennal lobe (Figure 34A.1-4).  In 

contrast, under the tub-Gal4 driver the transgenic protein accumulated nearly evenly 

throughout the brain neuropil with somewhat elevated accumulation in the calyces of the 

MBs, fan shaped body and antennal lobes (Figure 34A.5-8).   

Upon 60 second pre-exposure to OCT, homozygous mutant animals 

accumulating the transgenic protein under the c155-Gal4 driver did not habituate 

prematurely.  However, animals merely carrying either the transgenes or the Gal4 

drivers alone in a homozygous mutant background displayed strong premature 

habituation (Figure 38A).   

The weak (mycεL) transgene was sufficient to fully rescue the deficit of D14-3-

3ε l(3)j2B10 homozygotes, whereas for D14-3-3εex4 homozygotes rescue with this  transgene 

was significant, albeit slightly less than rescue obtained with the mycεH transgene 

(Figure 38A).  This is consistent with reports suggesting that D14-3-3εl(3)j2B10 is a 

hypomorphic allele.  Therefore, I focused mostly on rescue of the D14-3-3ε ex4 deletion 

allele.  Interestingly, only partial rescue was obtained under the tub-Gal4 driver despite 

the nearly equal transgenic protein accumulation (Figure 38A) and broad neuropil 

distribution in the brain (Figure 34A.5-8).  Similar results were obtained with pre-

exposure to BNZ and ETA.  It appears then that although abundant, D14-3-3ε under the 

tub-Gal4 driver was not sufficiently enriched in neurons required to protect from 
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Figure 38. Rescue of olfactory premature habituation in D14-3-3ε mutants  
 
Means + standard error of the mean (SEM) are shown SD: Significant differences, NSD: Non-significant 
differences 
(A) Rescue of premature olfactory habituation in D14-3-3εl(3)j2B10  and D14-3-3εex4 mutant homozygotes 
by c155-Gal4 and tub-Gal4 driven UAS-mycD14-3-3ε  transgenes.  Two independent D14-3-3ε transgenic 
lines were used, which based on protein accumulation levels were classed as high (mycεH) and low 
(mycεL).  The level of either the native D14-3-3ε or the slightly larger transgenic mycD14-3-3ε  for all 
genotypes utilized is shown beneath the graphs.  The level of the ubiquitous protein β-tubulin is shown as 
a semi-quantitative control. 
Octanol avoidance following 60 seconds of OCT pre-exposure is shown for j2B10 and ex4 homozygotes 
with and without transgenically supplied D14-3-3ε as indicated.  Naïve animals (open bars) avoided OCT 
equally (F(12,104)=0.53 p<0.8904, NSD).  In contrast, 60 seconds of OCT pre-exposure precipitated 
significant differences among the genotypes.  Group 1- c155-Gal4 driven transgenes.  ANOVA: 
F(8,65)=23.75 p<0.0001, SD.  Subsequent planned comparisons revealed significant differences (p<0.0001) 
between c155-Gal4/+ ;+ and all  j2B10 and ex4 homozygotes that did not carry both the UAS-mycD14-3-
3ε transgenes and the c155-Gal4driver demonstrating that the premature habituation deficit of D14-3-3ε 
mutants was not reverted by the presence of these transgenes alone.  In contrast, there were no significant 
differences in performance after pre-exposure between c155-Gal4/+ ;+ and c155-Gal4/+  ; j2B10, 
mycεL/+, or c155-Gal4/+ ; ex4, mycεH/+ and c155-Gal4/+ ; ex4, mycεL/+,  indicating that accumulation 
of D14-3-3ε specifically in the nervous system can revert the premature habituation deficit.  Group 2- tub-
Gal4 driven transgenes.  ANOVA: F(3,31)=9.86 p<0.0001, SD. Planned comparisons indicated significant 
differences between controls (tub-Gal4/+) and ex4/ex4,tub-Gal4, but also with ex4, mycD14-3-3εH/ex4, 
tub-Gal4 and ex4, mycD14-3-3L/ex4, tub-Gal4 (p<0.0001).  Because the latter were also significantly 
different from the mutant (ex4/ex4,tub-Gal4), the results suggest partial rescue of the phenotype with  this 
driver. 
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Figure 38. (continued) 
 
(B) Restricted expression of the UAS-mycD14-3-3ε transgenes in the mushroom bodies 
and iACT does not rescue the premature habituation deficit of D14-3-3ε mutants.  
Mushroom body specific expression was achieved with the 247-Gal4 driver, while iACT 
specific expression was directed by the GH146-Gal4 driver. Naïve avoidance of OCT 
was not significantly different among along genotypes tested (ANOVA: F(7,61)=0.79 
p<0.5969, NSD).  In contrast, 60 seconds of OCT pre-exposure precipitated significant 
differences. Group 1-247-Gal4 driven transgenes: ANOVA: F(3,30)=17.81 p<0.0001, SD.  
Subsequent Dunnett’s tests revealed that the performance of mutants with or without 
transgene expression were significantly different from controls (p<0.0001) and not 
different from each other indicating lack of rescue.  Group2- GH146-Gal4 driven 
transgenes: ANOVA: F(3,32)=11.74 p<0.0001, SD.  Again, subsequent Dunnett’s tests 
revealed that the differences were wholly attributable to differences of all genotypes 
with the control, indicating lack of rescue. 
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Figure 38. (continued) 
 
(C) Rescue of odor generalization in premature habituation in D14-3-3εl(3)j2B10  and D14-
3-3εex4 mutant homozygotes by c155-Gal4 and tub-Gal4 and tissue restricted UAS-
mycD14-3-3ε  transgenes.  Octanol avoidance following 60 seconds of benzaldehyde 
pre-exposure is shown for j2B10 and ex4 homozygotes mutants with and without mycεH 
and mycεL transgenes.  There were no significant differences in OCT avoidance for all 
naïve (open bars) genotypes (ANOVA: F(15.133)=0.49 p<0.9311, NSD).  In contrast, BNZ 
pre-exposure precipitated significant differences. Group 1- c155-Gal4 driven transgenes.  
ANOVA: F(2,23)=17.64 p<0.0001, SD.  Subsequent Dunnett’s tests revealed that the 
differences (p<0.0001) arose only between control (c155-Gal4/+) and mutants without 
transgenically supplied mycD14-3-3ε indicating complete rescue of the phenotype.  
Group 2- tub-Gal4 driven transgenes.  ANOVA: F(2.22)=11.70 p<0.0001, SD. Dunnett’s 
tests revealed that transgene expression restored the phenotype partially since both 
mutants and mutants expressing the transgene were significantly different (p<0.0001) 
than control.  Group 3-247-Gal4 driven transgenes.  ANOVA: F(2,23)=24.98 p<0.0001, 
SD. The difference arose because mutants either expressing the transgene or not were 
significantly (p<0.0001) different from controls indicating lack of rescue.  Group 4- 
GH146-Gal4 driven transgenes.  ANOVA: F(2,23)=31.80 p<0.0001, SD.  Again, the 
differences arose between control and mutants either expressing or not expressing the 
transgene indicating lack of rescue.  
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habituation (MBs for instance) resulting in significant but nor complete rescue of the 

phenotype.   

 I attempted rescue of the behavioral phenotype of the D14-3-3εex4 deletion allele 

with restricted transgenic protein accumulation in the MBs for two reasons.  First, 

because the transgenic protein appears to accumulate preferentially in the MBs under the 

c155-Gal4 driver and rescue completely the premature habituation phenotype; and 

second because of previous work implicating the MBs in protection from habituation 

(Acevedo and Skoulakis, submitted). Given that transgene expression is restricted to a 

comparatively small number of cells in the Drosophila brain under the 247-Gal4 driver, 

significant amounts accumulated at least from the mycεH transgene (Figure 38B).  

However, the premature habituation phenotype was not rescued or even slightly 

improved in animals expressing the transgene in their MBs.  These results strongly 

suggest that with respect to D14-3-3ε, accumulation in the mushroom bodies is not 

sufficient for protection from habituation and the protein is apparently required in 

additional neurons to mediate this effect.  

 Because the olfactory information is transmitted to the MBs and the LH 

primarily via the iACT (Marin et al., 2002; Stocker et al., 1997; Tanaka et al., 2004), and 

D14-3-3 accumulates in these neurons, I investigated whether restoring the protein in 

these cells was sufficient to recover protection from premature habituation.  However, 

animals expressing the transgene in iACT neurons under the GH146-Gal4 driver 

habituated prematurely despite high accumulation of the transgenic protein (Figure 38B).  
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Therefore, D14-3-3ε activity in iACT neurons is not sufficient to mediate protection 

from habituation. 

 Finally to investigate whether loss of D14-3-3ε is actually required for the 

observed generalization of premature habituation across odors, the transgenic animals 

and control strains described above were pre-exposed for 60 seconds to BNZ and 

subsequently were tested for OCT avoidance.  All naïve transgenic and control strains 

avoided BNZ equally (Table 17).  The results (Figure 38C) were identical to the ones 

described above.  The premature habituation was fully eliminated with transgenic 

protein accumulation under the c155-Gal4 driver, partial rescue was obtained under the 

tub-Gal4 driver and the deficit remained when the transgenic protein accumulated only 

in the MBs or the iACT neurons.  

 Collectively, the data indicate that D14-3-3ε is essential for processes that protect 

animals from premature habituation to prolonged or repetitive olfactory stimuli.  

Although present in the MBs and the iACT, restricted activity of the protein in these 

neurons is not sufficient to protect from premature habituation to olfactory stimuli.  

Finally, transgene-mediated restoration of normal protection from habituation in D14-3-

3ε null mutants demonstrates that the behavioral deficit is the result of the genetic 

lesions in this locus.  Interestingly, the fused MB β-lobe phenotype of mutant 

homozygotes was still observed in transgenic animals with complete recovery of the 

premature habituation phenotype (c155-Gal4/+ ; ex4, mycεH/ ex4, Figure 34B.6), partial 
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Table 17.  Olfactory avoidance in rescued D14-3-3ε mutants 

D14-3-3ε Allele UAS GAL4 BNZ 
D14-3-3εl(3)j2B10 UAS mycD14-3-3ε L + 52.70 + 2.20 
D14-3-3εl(3)j2B10 + C155 54.23 + 1.35 
D14-3-3εl(3)j2B10 UAS mycD14-3-3ε L C155 55.60 + 1.43 

D14-3-3εex4 UAS mycD14-3-3ε H + 54.46 + 2.32 
+ + C155 53.47 + 1.32 

D14-3-3εex4 + C155 54.01 + 1.96 
D14-3-3εex4 UAS mycD14-3-3ε H C155 52.12 + 1.54 

+ + TUB 54.84 + 2.23 
D14-3-3εex4 + TUB 51.60 + 2.19 
D14-3-3εex4 UAS mycD14-3-3ε H TUB 56.40 + 2.28 

+ + 247 49.74 + 1.84 
D14-3-3εex4 + 247 50.52 + 2.85 
D14-3-3εex4 UAS mycD14-3-3ε H 247 54.81 + 2.60 

+ + GH146 52.18 + 1.37 
D14-3-3εex4 + GH146 53.77 + 2.70 
D14-3-3εex4 UAS mycD14-3-3ε H GH146 58.14 + 2.82 

The mean performance index (PI) for olfactory acuity are shown + standard error of the mean (+ SEM).   
ANOVA’s for olfactory acuity indicated no significant differences among the strains for BNZ avoidance 
(F(15,130)=1.08 P<0.3839) indicate not significant difference in olfactory avoidance. 
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 rescue ( mycD14-3-3εH/ex4, tub-Gal4 Figure 34B.8), or no rescue ( 247-Gal4/+ ; ex4, 

mycεH/ ex4, Figure 34B.9).  This indicates that the structural deficit is not causal of the 

premature habituation.  Moreover, since D14-3-3ε transgenes under the c155-Gal4driver 

were expressed throughout nervous system development, it is unlikely that the deficit is 

actually caused by the lack of D14-3-3ε. 

     

Defective protection from premature habituation to footshock in D14-3-3ε mutants   

To determine whether D14-3-3ε mutants are generally deficient in protection 

from habituation or specifically in protection from habituation to olfactory stimuli, I 

employed a second habituation paradigm I developed recently, habituation to electric 

footshock stimuli (Acevedo and Skoulakis, submitted).  Control animals habituate to and 

decrease their avoidance of 45-Volt footshocks after pre-exposure to 8 and 11 such 

stimuli, but animals with compromised MB function habituate prematurely after a single 

footshock (Acevedo and Skoulakis, submitted).  Similarly, D14-3-3ε mutants exhibited 

approximately a 45% decline in 45Volt footshock avoidance after pre-exposure to a 

single stimulus (Figure 39A).  However, naïve mutant animals avoided the stimuli 

indistinguishably from controls (Table 16 and Figure 39A). Similar to the olfactory 

paradigm, the pre-exposure-dependent decline in footshock avoidance conforms to 

habituation parameters by spontaneously recovering to naïve levels within 10 minutes 

(not shown) and a full reversal of the deficit (dishabituated) with a 15-second exposure 

to BNZ delivered immediately after pre-exposure and prior to testing (Figure 39A). 



 249

To investigate whether lack of D14-3-3ε precipitated the premature habituation 

to footshock, transgenic rescue of the deficit was attempted.  The nervous system 

specific c155-Gal4 driver, the ubiquitous tub-Gal4 driver and since the mushroom 

bodies are essential for protection from footshock habituation (Acevedo and Skoulakis, 

submitted), the MB-specific 247-Gal4 driver were utilized.  The premature habituation 

phenotype was fully reversed with D14-3-3ε transgene expression under the c155-Gal4 

driver and nearly completely rescued with the tub-Gal4 driver.  As with osmotactic 

habituation, rescue was not observed with the MB-specific driver (Figure 39B).  

Therefore in addition to olfactory stimuli, D14-3-3ε mutants are not protected from 

premature habituation to footshocks as well and since the deficit is reversed with D14-3-

3ε transgene expression, the deficit maps to this locus.  Furthermore, as for olfactory 

stimuli, D14-3-3ε accumulation in the MBs is not sufficient to protect the mutants from 

premature habituation.  

Collectively the results indicate that D14-3-3ε mutants habituate prematurely to 

two different types of stimuli, olfactory and footshock.  Thus, it is likely that they harbor 

a general defect and habituate prematurely to many sensory stimuli.  If so, D14-3-3ε 
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Figure 39.  Premature habituation to footshock of D14-3-3ε mutants and transgenic 
rescue 
 
Means + standard error of the mean (SEM) are shown SD: Significant differences, NSD: 
Non-significant differences 
(A) Habituation to 45Volt footshock in D14-3-3ε mutants.  Avoidance of 4, 45Volt 
electric   footshocks in naïve flies (open bars) was not significantly different among 
genotypes (ANOVA: F(2,25)=2.06 p<0.1496, NSD).  In contrast, pre-exposure to a single 
45 Volt footshock (dark gray bars) decreased subsequent avoidance 4, 45Volt footshocks 
significantly (ANOVA: F(2,23)=40.08 p<0.0001, SD).  Subsequent Dunnett’s tests 
revealed a significant decrease (p<0.0001) in the avoidance of j2B10 and ex4 compared 
to controls (ex5).  Allowing 6 minutes of rest (thickly hatched bars) between pre-
exposure and testing did not result in significant differences in 4, 45Volt footshock 
avoidance (ANOVA: F(2,23)= 1.16 p<0.3300, NSD) indicating full recovery of the effect 
within 6 minutes.  Similarly, the response was fully dishabituated to naïve or control 
levels (light gray bars) with brief exposure to an odor after shock pre-exposure, but prior 
to testing (ANOVA: F(2,23)=3.26 p<0.0586, NSD). 
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Figure 39. (continued) 
 
(B) Transgenic rescue of premature habituation to footshock in j2B10 and ex4 mutants 
with the indicated Gal4 drivers crossed to UAS-mycD14-3-3ε transgenes.  45volt (45V) 
shock avoidance following pre-exposure to a single 45Volt footshock is shown for j2B10 
and ex4 homozygotes mutants with and without transgenically supplied D14-3-3ε.  All 
naïve flies (open bars) performed similarly (ANOVA: F(12.101)=0.53 p<0.8869, NSD).  In 
contrast, a single 45Volt pre-exposure (gray bars) precipitated significant differences 
(F(12,102)=8.20 p<0.0001, SD).  Subsequent planned comparisons revealed significant 
differences (p<0.0001) between c155-Gal4/+ ; ex4  and c155-Gal4/+  ; j2B10, mycD14-
3-3εL/+, or c155-Gal4/+ ; ex4, mycD14-3-3εH/+, but not between c155-Gal4/+ ;+  and 
c155-Gal4/+  ; j2B10, mycD14-3-3εL/+, or c155-Gal4/+ ; ex4, mycD14-3-3εH/+,  
suggesting transgenic rescue of the deficit.   Furthermore, the difference between 
ex4/ex4,tub-Gal4 and ex4, mycD14-3-3εH/ ex4,tub-Gal4 was significantly different, but 
is was also different from controls (+/,tub-Gal4) indicating partial rescue of the 
phenotype.  In contrast, the performance of 247/+ ; ex4, mycD14-3-3εH/ex4 was not 
significantly different than that of 247/+ ; ex4/ex4 and was significantly different that 
that of controls (247/+) suggesting lack of rescue. 
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mutants comprise a novel class of behavioral mutants in Drosophila.  Moreover, the 

results from the transgenic rescue experiments and the broad distribution of the protein 

in the adult brain indicate that D14-3-3ε function is required in more than one particular 

class of neurons and neuronal networks to mediate protection from premature 

habituation in the adult CNS.  Previous work identified the MBs as essential for 

protection from premature habituation based on structural and functional ablation studies 

(Acevedo and Skoulakis, submitted).  Interestingly, elevated accumulation in the MBs 

was observed under the c155-Gal4 driver, which mediated complete rescue of the 

mutant phenotype.  In contrast, MB-restricted D14-3-3ε accumulation was not sufficient 

to protect from premature habituation.  These results refine the proposed model and 

strongly suggest that although the MBs are essential, they are not sufficient for 

protection from premature habituation.  However, because of the broad distribution of 

the protein it is not possible to define with precision additional parts of the adult brain 

involved in the process.  The lateral horn has been proposed to be involved in the 

protection from premature habituation (Acevedo and Skoulakis, submitted) and in fact 

D14-3-3ε is found in this brain region in normal animals (Figure 34A) and accumulates 

there albeit at low levels under the c155-Gal4 driver.  Additional areas of the brain likely 

involved in protection from premature habituation are neurons with prominent D14-3-3ε 

accumulation under the c155-Gal4 driver such as the fan shaped and ellipsoid bodies, 

which will constitute the focus of future work. 
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Transgenic rescue of the associative learning deficit of D14-3-3ε mutants 

Given the behavioral rescue of D14-3-3ε mutants, I wondered whether animals 

rescued from premature habituation would also be rescued from the initially observed 

learning deficit.  Habituation has been proposed to constitute the basis for selective 

attention (Mackintosh, 1974; Rose and Rankin, 2001) and it is likely that premature 

habituation to a stimulus would not permit formation of the proper CS/US association 

and lead to deficient, or little associative learning.  Furthermore, premature habituation 

may underlie human learning disabilities linked to Attention Deficit Hyperexcitability 

Disorder (Gillberg, 2003; Slaats-Willemse et al., 2003). 

Therefore, to test the hypothesis that the defective protection from habituation to 

the odor and shock stimuli was the underlying cause of the learning deficit observed 

initially in D14-3-3ε mutants I investigated associative learning in animals fully and 

partially rescued from the deficit by D14-3-3ε transgene expression.  In accord with the 

hypothesis, animals fully rescued from premature habituation appeared to learn normally 

an associative olfactory task (Figure 40).  Conversely, D14-3-3ε mutants partially 

rescued from premature habituation with the tub-Gal4 driver displayed a proportionally 

small but significant improvement in olfactory learning (Figure 40).  In contrast directed 

expression of same strongly expressing D14-3-3ε transgenes in the mushroom bodies did 

not yield any significant improvement in learning over the performance of mutant 

homozygotes (Figure 40).  Since the MBs are unequivocally essential for olfactory 

learning and memory (Heisenberg, 2003; Roman and Davis, 2001), the results suggest 

that protection from premature habituation, which requires at least in part these neurons, 
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Figure 40. Transgenic rescue of associative olfactory learning in D14-3-3ε mutants 
 
Means + standard error of the mean (SEM) are shown SD: Significant differences, NSD: 
Non-significant differences.  
Performance after associative olfactory learning is shown for controls and j2B10 and ex4 
homozygous mutants with and without transgenically supplied D14-3-3ε mycε  (mycεH  
and mycε L ).  Significant differences in performance following associative olfactory 
learning were uncovered (F(12,99)=52.00 p<0.0001, SD).  Subsequent planned 
comparisons revealed significant differences (p<0.0001) between the performance of the 
control c155-Gal4/+ strain (dark gray bar) and all j2B10 and ex4 homozygotes that do 
not express transgenically supplied protein (white bars) indicating learning deficits in 
strains not expressing the transgene.  In contrast, the performance of j2B10 or ex4 
homozygous mutant strains expressing the transgene (light gray bars) was not 
significantly different than that of controls suggesting complete reversal of the olfactory 
learning deficit.  However, although significantly higher than that of ex4, tub-Gal4/ex4, 
the performance of ex4, tub-Gal4/ ex4, mycD14-3-3εH remained significantly lower 
(p<0.0001) than that of the respective control +/ ex4, tub-Gal4 indicating partial rescue 
of the deficit with this Gal4 driver.  In contrast, the performance of 247/+; ex4,mycD14-
3-3εH/ex4 remained at the level of 247/+; ex4/ex4 indicating that accumulation of the 
transgenic protein only in the mushroom bodies was not sufficient to support normal 
olfactory learning. 
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is essential for normal learning and memory.  Our experiments suggest that premature 

habituation to odor and footshock stimuli is unlikely to permit CS+/US associations can 

be formed.  However, currently I cannot distinguish that from habituation to the test 

odors, which would not permit conditioned response dependent CS+ vs. CS- 

discrimination during testing.    

Importantly, leo mutants which exhibit a robust learning and memory deficit 

(Philip et al., 2001; Skoulakis and Davis, 1996) are not deficient in protection from 

premature habituation (not shown and Philip et al., 2001).  Since D14-3-3ε function is 

ostensibly required at least in part within the MBs to protect from premature habituation 

and LEO is preferentially distributed within these same neurons, it is interesting that the 

two Drosophila 14-3-3 proteins co-localize but apparently function in distinctly different 

processes.  The biochemical processes that engage the D14-3-3ε to mediate protection 

from premature habituation such that olfactory learning and memory can occur are 

currently unknown but of much interest.  The identification and characterization of D14-

3-3ε as the first mutant in this process provides a new avenue for investigating the 

signaling mechanisms and molecules that serve protection from premature habituation to 

stimuli.  The availability of the two recently developed simple and efficient habituation 

paradigms are expected to facilitate the identification of novel mutants in the process. 
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EXPERIMENTAL PROCEDURES 
 

Drosophila strains 
 
 Drosophila were cultured in standard cornmeal sugar food supplemented with 

soy flour and CaCl2.  The genetic background of all D14-3-3ε alleles was normalized to 

that of Cantonized w1118 (w1118 backcrossed to Canton S for 10 generations).  The control 

strain utilized in all experiments was a w1118 -bearing strain derived by excision of the 

l(3)j2B10 transposon (ex5).  The performance of ex5 homozygotes was identical to that 

of Cantonized w1118 in all behavioral assays tested (Acevedo and Skoulakis submitted).  

The D14-3-3εl(3)j2B10 mutant allele has been described previously (Chang and Rubin, 

1997).  Alleles D14-3-3εex5 and D14-3-3εex4 generated by mobilization of the transposon 

in D14-3-3εl(3)j2B10 were a gift of Dr. Henry Chang.  The Gal4 “driver” strains containing 

the transgenes tubP-Gal4 (BL#5138) and C155-Gal4 (BL#458) were provided by the 

Bloomington Stock Center.  The inner Anteno-Cerebral Tract and Mushroom body 

specific GAL4 lines GH146-Gal4 and 247-Gal4 were described previously (Stocker, 

1997; Zars, 2000).  Animals carrying the UAS-mycD14-3-3ε transgene in a Cantonized 

w1118 genetic background were generated by standard methods.  Of the six independent 

transformants, one with strong expression and one with weak expression were selected 

for further analyses based on eye color and verified by crossing to tubP-Gal4 and 

performing Western blot analyses.  To facilitate ease of genetics and husbandry the 

transgenes were recombined into the D14-3-3εex4 carrying chromosome.  Since it is 
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inserted on the third chromosome, the tubP-Gal4 driver was also recombined onto the 

D14-3-3εex4 carrying chromosome. 

Larvae for electrophysiology were reared on standard cornmeal molasses 

medium in 50 ml vials at low density.  Female wandering third instar larvae were used 

for all experiments.  Consistent staging of early wandering larvae was facilitated by the 

use of 0.05% bromophenol blue in the food (Maroney, 1983). 

D14-3-3ε transgenic strains were generated by injecting wild type D14-3-3ε, and 

myc-tagged D14-3-3ε cDNAs sub-cloned pUAST (Brand and Perrimon, 1993) into w1118 

embryos.  Multiple independent transformant lines were obtained and the ones with the 

darkest or lightest w+ eye color were used for this analysis.   

 

Generation of anti-D14-3-3ε antibodies   

The D14-3-3ε -pRSET expression vector was a kind gift of Dr. Chien (Tien et 

al., 1999).  Recombinant D14-3-3 protein was purified from bacterial cultures by virtue 

of the hexahistidine tag and injected into hens (Charles River laboratories).  IgY was 

purified from eggs using standard protocols (Charles River laboratories).  The specificity 

of the anti-D14-3-3ε antibodies was tested with recombinant D14-3-3ε and LEO proteins 

and fly head lysates by western blots (see below). 

 

Western blot analysis 

Fly heads from control and mutant animals were homogenized in 10 µl of 

modified radioimmunoprecipitation assay (RIPA) buffer as previously described (Philip 
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et al., 2001).  Extracts equivalent of three heads per lane were run on 18% acrylamide 

gels.  Blots were probed at room temperature with rabbit anti-LEO (1:40,000), or 

chicken anti-D14-3-3ε (1:5000).  Anti-β-tubulin (Developmental Hybridoma Studies 

Bank, University of Iowa, Iowa City, IA) at 1:500 dilution was used to control the blots 

quantitatively.  Secondary antibodies were used at 1:15,000 for anti-rabbit, 1:5,000 for 

anti-chicken and 1:4000 for anti-mouse and the results were visualized with enhanced 

chemiluminescense (Pierce).  

 

Histology 

 Frontal paraffin sections (5nm) of heads were prepared for 

immunohistochemistry or histology as described previously (Crittenden et al., 1998; 

Skoulakis and Davis, 1996).  Anti-D14-3-3ε (1:300) was used to reveal the distribution 

of D14-3-3ε.  The anti-LEO antibody (1:4500) was used to investigate the structure of 

mushroom bodies and ellipsoid body and the anti-DRK (1:2000) to specifically focus on 

the structure of the horizontal lobes (Crittenden et al., 1998; Mershin et al., 2004; 

Skoulakis and Davis, 1996).  The anti-SH3PX1 antibody that identifies antennal lobe 

glomeruli was provided by Dr. J. Dixon and used at 1:1000 dilution (Worby et al., 

2001).   

 

Electrophysiology   

Dissections and recordings were carried out in HL3 saline (in mM 70 NaCl, 5 

KCl,, 20 MgCl2, 10 NaHCO3, 5 trehalose, 115 sucrose, 5 HEPES; pH 7.2; (Stewart et 
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al., 1994)).  To reduce movement during dissections, chilled Ca2+-free HL3 saline with 

0.5 mM EGTA was used.  When Ca2+ was varied, no alterations were made to offset the 

small changes in divalent ion concentration.  Each preparation was tested in a single 

concentration of Ca2+.  Stimuli and solution changes were controlled and data were 

acquired using pClamp 8.1 (Axon Instruments).  All recordings were performed at 

approximately 23ºC. 

          Voltage clamp recordings of synaptic currents were performed on muscle 6 of the 

third abdominal segment as previously described (Jan and Jan, 1976; Stimson et al., 

1998).  Synaptic currents were monitored using 2-electrode voltage clamp (Axoclamp 

2B, Axon Instruments), held at –70 mV.  To avoid the potential contribution of 

stimulation to the frequency of spontaneous mEJCs, these were recorded in separate 

experiments.  mEJC frequency was calculated from the same 50 second sample.  EJCs 

were evoked by stimulation of the cut end of the segmental nerve (SN) via a glass-tipped 

suction electrode.  Each sample consisted of 50 seconds of data.  For each preparation, 

amplitude data were plotted as a frequency histogram and a gaussian mean was 

calculated (Robinson, 1976).  Responses to stimulus trains were calculated as the ratio of 

the average of the last 10 stimuli of a train to that of the first 10.    

 
Olfactory trap assays 

 Olfactory traps were made from 1.5 ml and 0.5 ml Eppendorf tubes cut at the 

tips.  The cut end of the 0.5 ml tube was inserted tightly into the cut end of the larger 

tube.  200µl of a 1% agarose solution containing either 0.05% geraniol (GER-Sigma), 

0.1% ethyl acetate (ETA-Sigma) or 0.5% butanedione (BUT-Acros) was placed in the 
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cavity of the inner part of the lid of the 1.5 ml tube, allowed to solidify and the tube was 

closed.  Eight male flies were placed into a 100 X 15mm petri dish with a damp piece of 

filter paper and the olfactory trap.  All experiments were performed at 23-24ºC in the 

dark for 48 hours.  An Attraction Index was calculated as the fraction of flies inside the 

trap. 

 

Osmotaxis 

Behavioral experiments were performed under red light at 23-24ºC and 65% 

humidity.   All animals used in behavioral assays were 2-6 days old, collected the day 

before the day prior to testing nd kept in food vials in groups of 50-60 at room 

temperature.   Odor avoidance and attraction were quantified by exposing ~50 flies at the 

choice point of a standard T-maze (Philip et al., 2001; Tully and Quinn, 1985) to an air-

stream (500 ml/min) carrying the odor in one arm and fresh air in the other.  The odors 

utilized for these experiments were 1000µl (1X) of undiluted 3-Octanol (OCT) (Fluka), 

110µl (1X) of undiluted benzaldehyde (BNZ) (Sigma) and 10µl of a 1/10 dilution in 

water (1X) of ethyl acetate (ETA) (Sigma).  The amounts of odors used were adjusted to 

yield similar osmotactic responses. Flies were given 90 seconds to choose between 

aversive odors and air, but 180 seconds for the choice between attractive odors and air 

(determined in control experiments, Acevedo and Skoulakis, submitted).  At the end of 

the choice period flies in each arm were trapped and counted.  The Performance Index 

(PI) was calculated as the fraction of flies that avoid or are attracted to an odor minus the 

fraction of flies that do not.  A PI of 100 indicates that the flies avoid the odor 
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completely (or -100 complete attraction), whereas a PI of 0 indicates equal distribution 

between the arms of the maze and therefore no avoidance or attraction. 

 

Osmotactic habituation  

Osmotactic habituation experiments were performed under the conditions 

described above.  For the “training phase”, approximately 50 flies were exposed to either 

attractive (ETA) or aversive odors (OCT, BNZ) for 60 seconds unless otherwise 

indicated, in the upper chamber of a standard T-maze.  After a 30 second rest period 

(unless indicated otherwise), the flies were lowered to the center of the maze for the 

“testing phase”.   The flies were tested for their avoidance or attraction to odors by a 

choice of Air versus either the previously experienced, or a novel odor.  At the end of the 

choice period (90 seconds for aversive and 180 for attractive odors) the number of flies 

in each arm were trapped, counted and the performance index (PI) calculated as 

described above. To examine spontaneous recovery, flies were given a rest period for 

various lengths of time (6 minutes being the experimentally derived standard recovery 

period) in the upper arm of the maze after they were given the odor pre-exposure.  

Subsequently they were tested against the odor they were pre-exposed to versus air and a 

PI was calculated as described above.  To determine the conditions for dishabituation 

with electric shock, control experiments were performed first to determine the stimulus 

strength and test number required. 

Dishabituation of the control strain D14-3-3ε ex5 was attempted at different 

footshock stimulus strengths.  OCT PI for naïve D14-3-3ε ex5: 59.2 + 2.3.  Dishabituation 
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with 30 V, OCT PI: 54.8+ 2.1; with 45 V, OCT PI: 58.7 + 2.6; with 90V OCT PI: 58.3 + 

2.2.  Since the 90V and 45V dishabituating shocks had equal effects, the milder of the 

two was selected.  Moreover the number of 45V shocks did not have a significant effect 

on dishabituating osmotaxis (1X 45V shock OCT PI: 58.7+ 2.3; 2X 45V shock OCT PI: 

59.4+ 2.8).  Therefore, dishabituation was attempted with a single 45 volt shock either 

prior, during, or at the end of pre-exposure and was followed immediately (within 15-20 

seconds) by testing as described above.  

 

Habituation to footshock   

Footshock avoidance was assessed as described previously (Philip et al., 2001; 

Skoulakis and Davis, 1996; Skoulakis, 1993).  Footshock habituation conditions were 

modified from those used previously with both Cantonized w1118 and ex5 (Acevedo and 

Skoulakis submitted).  Briefly, for control strains 11, 1.25-second electric shocks at 

45Volts were required for their footshock avoidance response to become habituated.  

After a 30-second rest, the flies were transferred to the lower part of the maze and tested 

by a choice between an electrified (45 Volts) and an inert grid. During the 90-second 

choice period 15, 1.25 second electric shocks were delivered to the electrified arm of the 

maze.  However, these conditions were modified because in preliminary experiments, 

D14-3-3ε mutant animals appeared to habituate maximally after the first footshock.  

Therefore, for the “training phase” of habituation to electric footshock ~ 50 flies were 

sequestered in the upper arm of a standard T-maze lined with an electrifiable grid.  They 

were exposed to 1, 1.25-second footshock at 45V.  After a 30-second rest, the flies were 
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transferred to the lower part of the maze and tested with a choice between an electrified 

and an inert grid.  During the 90-second choice period 4, 1.25 second electric shocks 

were delivered to the electrified arm.  At the end of the choice period the flies in each 

arm were trapped, counted and a performance index was calculated as above.  

Dishabituation was achieved by exposing the flies to benzaldehyde (500µl BNZ carried 

in an air stream at 500 ml/sec as described above for olfactory habituation) for 15 

seconds immediately after the “training phase”.  For spontaneous recovery, a 6-minute 

resting period (REST) was allowed in the upper part of the maze between the training 

and testing phases. 

 

Olfactory associative learning 

 The olfactory associative learning paradigm originally described by Tully and 

Quinn, (Tully and Quinn, 1985) which couples aversive olfactory cues (conditioned 

stimulus) with electric shock (unconditioned stimulus) with the modifications described 

previously (Mershin et al., 2004; Philip et al., 2001)were used to assess learning.  

Because the earliest possible time that I can test the animals past the CS+ and US 

presentation is 180-200 seconds, our measurements cannot differentiate between 

“acquisition” and “3-minute memory”.  This earliest performance assessment will be 

referred to as “learning”.  Performance was measured by calculating a Performance 

Index (PI), which is the average of the half-learning indexes for each of two groups of 

animals trained to complementary conditioning stimuli as previously described (Philip et 

al., 2001). 
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Statistical analysis   

Untransformed (raw) data were analyzed parametrically with JMP3.1 statistical 

software package (SAS Institute Inc., Cary, NC).   For electrophysiological data values 

presented are means + SEM.  Differences between means were compared with one way 

ANOVA.  For behavioral data, to maintain a constant experiment wise error rate, initial 

ANOVA and planned multiple comparisons (Dunnett’s tests) were performed as 

suggested by Sokal and Rolf (Appendix B) (Sokal and Rohlf, 1981). 
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CHAPTER VI 

 

CONCLUSION 

 
  

Previous work with 14-3-3 proteins led to the suggestion that all isoforms or 

isotypes of this protein family are equivalent (Rosenquist et al., 2000).  My hypothesis is 

that both isoform-specific and overlapping functions mediated through tissue specific 

expression, co-localization and dimerization of 14-3-3 proteins occur in vivo.  It is a 

requirement of this hypothesis that 14-3-3 isotypes or isoforms are dynamically 

expressed through development and within different tissues.  Another requirement is 

homo and heterodimer formation, or even selective heterodimerization when isotypes 

co-localize in the same cells.   

Previous experiments determined a role for 14-3-3ζ, in Drosophila development 

(Kockel et al., 1997, Li et al., 1997) and associative learning and memory (Skoulakis and 

Davis, 1996; Philip et al., 2001).  Therefore, the primary focus of this research was on 

the other Drosophila 14-3-3, D14-3-3ε. To examine the functional equivalence of 14-3-

3s in Drosophila, first I determined the temporal and spatial expression of each isotype 

and described the phenotypes of mutations in D14-3-3ε and compared them with those 

in 14-3-3ζ (leo). This led to the discovery of two unique D14-3-3ε phenotypes.  Then 

using a largely genetic approach the functional equivalence of LEOI and LEOII with 

D14-3-3ε was examined.   
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D14-3-3ζ 

 
Temporal and spatial expression of D14-3-3ζ (leonardo, leo) 

In Drosophila, the two LEO proteins are essential for embryonic, eye and oocyte 

development as well as synaptic activity, and learning and memory (Skoulakis and 

Davis, 1998, Kockel et al., 1997, Broadie et al., 1997).  Using RT-PCR the temporal and 

spatial patterns of the RNAs that encode them was determined.  leoI RNA was found to 

be expressed in early embryos (0-3 hour), late embryos (20-22 hour), all larval stages, 

and in adult heads.  In 12-14 hour embryos when the nervous system is developing, leoI 

is absent.  leoI appears to be present throughout the head and enriched in ellipsoid body 

(Philip et al., 2001).  In contrast, leoII appears to be adult mushroom body specific and 

found in all embryonic stages including 12-14 hour embryos, larval stages, thorax, 

abdomen, and adults heads (Philip et al, 2001).  In larval brains both leoI and leoII are 

present.  One larval tissue where leoII is absent is the larval wing disc.  This evidence 

suggests that there is differential expression of leoI and leoII throughout development.   

 

LEOI versus LEOII in vital embryonic functions. 

leonardo is an essential gene, therefore homozygous null alleles are lethal.  The 

equivalence of the two LEO isoforms in vital functions was examined by transgenic 

rescue.   To determine whether indeed LEOI and LEOII are equivalent in rescuing vital 

functions, the LEOI and LEOII transgenics were crossed into the homozygous lethal 

leo12X, a deletion mutant, into leoP1188 a strong P-element mutant, and leoP1375, a weaker 

allele.  Both LEOI and LEOII were able to rescue the weaker leoP1375 allele, which still 
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has low levels of endogenous LEO transcription.  In contrast, only LEOI transgenes 

were able to rescue the strong leoP1188 insertion and leo12X deletion that lack LEO protein 

(Broadie et al 1997).  This result leads to the conclusion that LEOI and LEOII are not 

equivalent in their ability to support embryonic development, although they only differ 

by five amino acids.  The differences occur within the target-binding domain, which 

likely mediates the protein interactions necessary for survival.  This is consistent with 

our hypothesis that the two LEO isoforms are functionally distinct, perhaps in 

compensation of LEOs apparent inability to become phosphorylated like the ζ/δ pair in 

vertebrates.  

 

Novel role for 14-3-3s in pole cell development 

At first look LEO and 14-3-3ε appear to function redundantly with respect to 

sterility, but on further examination, I found that they affect pole cell development 

differently.  The rare escapers homozygous or heteroallelic with the weak leoP1375 allele 

and leoP1188 homozygotes or leoP1375/leo12X heteroallelics rescued from lethality by 

maternal leoI transgene expression were sterile.  Partial sterility was observed with 

rescued leoP1375 homozygotes that retain low levels of LEO throughout development.  

These mutant animals were observed mating and devoid of gross morphological 

aberrations of their genitalia.  The lack of LEO appears to affect both the germ-line and 

somatic gonadal development.   

To examine the cause of sterility, sections of adult leoP1188 homozygous females 

rescued from lethality by induction of the hsleoI transgene were examined.  The number 
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of ovarioles was severely reduced with few cell cysts per ovariole compared to controls.  

Initial division of pole cells (stage 5) in leo mutant homozygous embryos appeared 

normal likely due to perdurance of maternal LEO, but their numbers declined through 

stage 8 and 11 to 22-23 cells.  These results suggested that pole cell survival declined 

concomitantly with the level of LEO protein in mutant homozygotes.  The hsleoII (LII) 

transgenic lines were excluded from this analysis though tested in preliminary tests, 

because they did not rescue lethality.  Therefore, the functional equivalence between 

LEOI and LEOII with respect to germ-line development is currently unknown.   

Homozygous D14-3-3ε mutants are completely sterile.  D14-3-3εex4 and D14-3-

3εl(3)j2B10 females did not appear to have ovaries.  Histological sections of D14-3-3εex4 

homozygotes revealed disorganized internal reproductive structures and decreased egg 

and sperm cells. Consistent with this in D14-3-3εex4 and D14-3-3εl(3)j2B10 homozygous 

mutant  embryos, 8 to 10 pole cells differentiated in the pole plasm at the posterior tip of 

the embryo (Williamson and Lehman,1996) and after apparently reduced divisions, 

many pole cells failed to migrate properly and were lost, leading to a reduction in oocyte 

and sperm production. 

Complete rescue was obtained with UAS-D14-3-3ε transgenes driven with 

GAL4 (Brand and Perrimon 1993) under the direction of the beta tubulin promoter (tub-

GAL4), but not the cytoplasmic actin 5C promoter (act5C-GAL4).  Although tub-GAL4 

and act5C GAL4 drivers apparently are equivalently strong, only tub-GAL4, which 

directs expression in the germ-line was able to rescue sterility. In addition, the data 

demonstrate that the observed homozygous mutant sterility was indeed precipitated by 
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the lack of D14-3-3ε in the germ-line cells.  In contrast, similarly expressed hsleo 

transgenes could not rescue the sterility deficit in D14-3-3ε mutant homozygotes, 

suggesting that with respect to germ-line development LEO is not equivalent to D14-3-

3ε.  

Germ-line cells, named pole cells in Drosophila or promodial germ cells (PGCs) 

in mice, express unique genes and undergo a differentiation program unlike any other 

type of cells (Wei and Mahowald, 1994).  Currently a limited number of mutants have 

been described that effect germ-line migration (Starz-Gaiano and Lehman, 2001).  These 

mutants completely halt migration at specific stages, do not allow mesoderm migration, 

attachment or alignment (Starz-Gaiano and Lehman, 2001; Ribero et al., 2003), in all 

cases, inhibiting final gonadal coalescence.  Therefore, the leo and D14-3-3ε mutants are 

part of a novel class of mutants that effect germ-line migration of pole cells, but allow 

mesoderm migration, attachment and alignment and normal gonad coalescence.  

Therefore, it is unknown why some pole cells in LEO and D14-3-3ε migrate normally 

while others do not.  Most of the known Drosophila migration mutants inhibit or alter 

the formation of attractant or repellent guidance cues similar to that of zebrafish or mice 

(Starz-Gaiano and Lehman, 2001).  This may also be true for leo and D14-3-3ε mutants, 

although the role of 14-3-3s may be specific to Drosophila suggested by the fact that 

mouse PGCs differ from Drosophila pole cells in what attracts them to their target (Wei 

and Mahowald, 1994).  Regardless, further work is needed to understand the role of 14-

3-3s in germ-line development.   
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D14-3-3ε 

 
Temporal and spatial expression of D14-3-3ε 
 

D14-3-3ε is ubiquitously expressed in all tissues, stages of development, and 

cells examined (Philip et al., 2001).  This expression is suggestive of the importance of 

the protein for basic cellular functions.  Head sections of wild type Drosophila indicate 

D14-3-3ε accumulation throughout the head similar to the pattern of expression seen in 

murine brains (Baxter et al., 2002).  There is also co-localization with LEO in the 

mushroom bodies, the centers for learning and memory and in various other tissues.   

 

Role of D14-3-3ε in embryonic development 

 To investigate the D14-3-3ε loss of function phenotypes, novel deficiency alleles 

of the gene were characterized.  Given that the pattern of expression is established, I 

investigated the phenotypes associated with D14-3-3ε mutants and determined whether 

they are the same as in LEO mutants.  Genetic complementation was used to determine 

that null mutations in D14-3-3ε are semi-lethal.  Dissection and staining of embryos 

indicates that death occurs because embryos are unable to hatch similar to leoP1188 

mutants.  leoP1188 mutants have deficits in neurotransmission at the larval Neuromuscular 

Junction (NMJ) (Broadie et al., 1997).  However, physiological recordings at the NMJ of 

D14-3-3ε homozygous mutant larvae did not reveal deficits in synaptic transmission as 

seen in leo mutants (Broadie et al., 1997).  This suggests that in the larva, although D14-

3-3ε is present it is not required for neurotransmission. Alternatively, since these 
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recordings were performed in larvae that were able to hatch as embryos it is formally 

possible that a compensatory mechanism was activated which allowed them to hatch and 

survive and exhibit normal NMJ function without D14-3-3ε.  However, full rescue of 

this lethality was achieved with the nervous system specific GAL 4 driver (elav-GAL4, 

C155), suggesting a role for D14-3-3ε in the embryonic nervous system, possibly 

required as a heterodimer with LEO for neurotransmission in embryonic development 

necessary for hatching.  Thus supporting the hypothesis that in different life stages there 

are isoform-specific and overlapping functions among the 14-3-3s. 

 

Functional complementation of the vital functions of D14-3-3ε in embryos with 

LEOI and LEOII  

In homozygous D14-3-3ε null embryos, there was a highly significant increase in 

the amount of LEO compared to that in heterozygotes, or control animals.  This appears 

to be due to a significant increase specifically in accumulation of leoII transcripts. This 

suggests that with respect to developmental processes it is LEOII that is at least partially 

redundant with D14-3-3ε as previously proposed (Chang and Rubin, 1997).  However, 

high levels of LEOII are necessary to compensate for the loss of D14-3-3ε.  It is possible 

that large abundance of LEOII homodimers functionally compensates for LEOII/D14-3-

3ε potential heterodimers, or even for D14-3-3ε homodimers for processes essential for 

embryonic development.  The fact that both are capable of binding signaling molecules 

such as Raf and are both expressed in embryos suggest that LEO and D14-3-3ε may 

work together as heterodimers to regulate signaling in these tissues.  This is consistent 
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with the removal of a single copy of leo completely abolishing recovery of either D14-3-

3εex4 or D14-3-3εl(3)j2B10 homozygous adults (Chang and Rubin, 1997).  This 

interpretation is further supported by the fact that transgenically supplied LEOII can 

completely rescue the D14-3-3ε homozygous lethality, whereas high LEOI expression 

could only do so partially.  

The mechanism of over-accumulation of LEO in D14-3-3ε null embryos is 

unknown.  I propose that this may be a manifestation of the known function of 14-3-3s 

in nuclear/cytoplasmic partition of transcription factors (Muslin and Xing, 2000; 

Rittinger et al., 1999; Tzivion and Avruch, 2002).  In this model, wild type D14-3-3ε 

modulates the level of leoII mRNA either by exclusion of transcription factors from the 

nucleus, or by keeping factors necessary for its transcription in an inactive conformation.  

The up-regulation of leoII compared to leoI may be due to the fact that one of the leoII 

transcripts has a unique promoter (Kockel et al., 1997).  In either case, loss of D14-3-3ε 

in null embryos allows elevated transcription of leoII specifically.  This is consistent 

with the hypothesis of isoform-specific functions, although additional work is necessary 

to understand why there is isoform-specific up-regulation and if normal embryonic 

development requires co-localization and dimerization of LEO and D14-3-3ε.    

 

Novel role for D14-3-3ε in wing cross-vein development  

D14-3-3ε exhibit a unique wing phenotype that varies based on the strength of 

mutant allele.  The ex4, j2B10, and ex24 mutant homozygotes and transheterozygotes 

(except when crossed to ex5 revertants) had partial posterior cross-veins.  Examination 
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of third instar larval wing disk, suggested that D14-3-3ε accumulates in folds of the wing 

disk which appeared to have organizational defects in homozygous D14-3-3εex4 mutants.  

Although LEOI is expressed and co-localizes with D14-3-3ε, leo null mutants did not 

display any wing disk or wing vein defects.  However, leoI transgenes were able to 

rescue the anterior cross-vein malformation, but neither leoI nor leoII transgenes can 

rescue posterior cross-vein malformation, suggesting that LEO is not fully functionally 

equivalent with respect to wing cross-vein development.  It is not clear whether LEO 

normally participates in wing vein formation altogether, but as for embryonic 

development, when the proper isoform is over-expressed it appears to function at least 

partially like D14-3-3ε. 

D14-3-3ε mutants which were first isolated as dominant suppressors of activated 

Ras (Karim et al., 1996) are known to regulate Ras signaling through their interactions 

with Raf (Morrison, 1994; Michaud et al. 1995; Morrison and Cutler, 1997).  

Constitutive activated Ras1 expressed in developing wing disk using dpp-GAL4 (Prober 

and Edgar, 2000), affects anterior cross-vein formation producing similar aberrations to 

that seen in D14-3-3ε mutants.  The aberrations of D14-3-3ε mutants can be completely 

rescued by expressing UAS-mycD14-3-3ε transgenes with the dpp-GAL4 driver.  This 

suggests that the loss of D14-3-3ε in the wing disk where dpp is expressed may lead to 

over-activation of the RAS-RAF pathway, which may cause aberrant anterior cross-

veins as suggested by the Ras1-dpp experiments.  The mechanism of posterior cross-vein 

formation is currently unknown, primarily due to the fact there are no known mutants 

with similar aberrations. 
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Novel behavioral deficit associated with lack of D14-3-3ε  

Viable leonardo mutants that lack LEO in the mushroom bodies appear to have a 

deficit in associative olfactory learning and memory (Philip et al., 2001).  Similarly, 

D14-3-3ε mutants have a deficit in associative olfactory learning, which in fact is more 

severe than that in leo mutants. Behavioral experiments demonstrated that all D14-3-3ε 

mutants were capable of proper responses to aversive and attractive odors equally with 

controls (ex5).  However, they exhibited a strong deficit in responding properly to an 

odor after they had been pre-exposed to it or another odor. In fact, the mutants have a 

general pre-exposure defect, not only toward an aversive second odor, but toward 

attractive odors as well.  This deficit is not apparent if flies are pre-exposed to shock 

prior to testing odor responses suggesting that the deficit is stimulus specific.  

Behavioral investigation of the deficit indicated that: a minimum of twenty seconds pre-

exposure was necessary to cause the deficit, suggesting desensitization, fatigue or 

habituation during pre-exposure, which renders mutants incapable of responding to 

subsequent olfactory stimuli.  The non-associative pre-exposure phenotype is 

independent of odor quality, but depends on the strength of the stimulus and is 

spontaneously recoverable.  Using presentation of a novel stimulus, in this case 

footshock, resulted in recovery of the response.  The fact the deficit could be 

dishabituated, suggested the mechanism was not desensitization or fatigue, but 

premature habituation. 
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In addition, D14-3-3ε null mutants exhibit a deficit in response to repetitive 

footshock stimulation after pre-exposure.  This deficit appears to be stimulus specific 

and can recover spontaneously and a pulse of strong odor can dishabituate the deficit.  

This suggests that the flies are not paralyzed and can feel the footshock, but simply 

habituated with increased numbers of repetitive presentations.  This rapid habituation is 

consistent with the olfactory deficit, suggesting that habitation to footshock and odor 

may involve the same neurons. 

Therefore, D14-3-3ε mutants suffer from a distinctly rapid habituation to odor or 

footshock.  This effect is not observed in LEO mutants or any other mutants previously 

tested (data not shown).  Therefore, the D14-3-3ε mutants define a new and 

uncharacterized class of behavioral mutants.  This deficit in the ability to be "protected 

from premature habituation", may account for olfactory conditioning deficit of D14-3-3ε 

mutants.  It is likely that the mutants are unable to establish the CS+/US (CS+: odor and 

US: shock) relationship because of rapid habituation. 

In wild type animals, olfactory habituation occurred after 3 minutes of pre-

exposure to aversive or attractive odor.  However, odor avoidance did not change if the 

animals were pre-exposed to different equally aversive odor, indicating odor specificity 

in the pre-exposure dependent osmotactic decrement and argues against generalized 

olfactory fatigue or sensory adaptation both predicted to have poor odor specificity.  

Interestingly, in all experiments I observed a 3-minute refractory period when animals 

appeared to respond to the pre-exposed odor as if they were naïve we term a period 

when they are “protected from premature habituation”.  This pre-exposure dependent 
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decline in osmotaxis was olfactory habituation and not sensory desensitization or fatigue 

because the effect was eliminated (dishabituation) by brief application of an unrelated 

noxious stimulus, footshock  

Structural and functional ablation analysis was applied to define brain areas 

involved in protection from premature habituation.  Mushroom body ablated animals 

exhibited a dramatic decline in osmotaxis after 10 seconds, the shortest pre-exposure we 

could deliver reliably.  This drastically reduced refractory period suggested that HU-

treated animals lack either all or part of the neuronal circuitry requisite for a normal 

refractory period and therefore habituated prematurely. The same phenotypes were 

exhibited by mushroom body miniature (mbm1) mutants with severely perturbed but not 

totally absent MBs, and constitutive (Tetanus Light Chain-UASTNT), or conditional 

(shibirets- UAS-shi5ts) neurotransmission blockade of the mushroom bodies with the 

MB-specific GAL4 driver line 247. These data confirm that the mushroom bodies are 

necessary for evaluation of experience dependent olfactory information and protection 

from premature habituation.  

Similar to that exhibited by MB manipulated flies, inhibition of 

neurotransmission via the iACT and the mACT using the UAS-TNT and UAS-shits 

transgenes precipitated deficits in osmotactic response following a minimum of 10 

seconds pre-exposure to an odor.  The deficit was likely the result of inhibiting 

neurotransmission and therefore information flow to the MBs and LH via the mACT and 

iACT and not because these tracks are themselves essential for the process.   
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The mushroom bodies are essential for protection from premature habituation to 

electric footshocks, the non-olfactory stimulus that also caused D14-3-3� mutants to 

habituate prematurely.  As for olfactory habituation, avoidance of repetitive footshocks 

declined after pre-exposure to multiple stimuli and conformed to habituation parameters, 

suggesting that the animals were protected from premature habituation.  Functional 

mushroom bodies are necessary to protect from habituation to repetitive mild footshock.  

Importantly, unlike for olfactory habituation, inhibition of neurotransmission in the 

iACT and mACT did not result in premature habituation.  This supports the hypothesis 

that as for olfaction the mushroom bodies are essential neural centers mediating 

responses to pre-experienced footshock stimuli.  Furthermore, the data suggest that these 

areas of the fly brain are essential for stimulus evaluation likely to underlie the refractory 

period when animals are protected from habituation. 

Based on the results of the mapping experiments, UAS rescue constructs were 

used to restore D14-3-3ε in the mutants to investigate whether replacement allowed 

rescue of the premature habituation and therefore the olfactory learning deficit.  Because 

protection from habituation requires the mushroom bodies, iACT and mACT, and 

probably the LH it was not surprising that restricted expression in any one of these 

tissues was unsuccessful.  Complete rescue of olfactory habituation and the olfactory 

learning deficit was only possible using general expression in the nervous system.  This 

supports the notion that D14-3-3ε is minimally required in the MBs, iACT, mACT and 

probably the LH for normal protection from premature habituation.  If D14-3-3ε is not 

present, the flies habituate rapidly, are unable to form the appropriate CS+/US 
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relationships and thus learning deficient.  The inability of D14-3-3ε mutants to protect 

from premature habituation is likely the cause of the deficit seen in the associative 

olfactory learning paradigm.  leo mutants are deficient in olfactory learning,  but do not 

suffer from rapid habituation.  Thus LEO is not functionally redundant with D14-3-3ε in 

respect to nervous system functions.   

A number of studies over the last 20 years have established that Drosophila 

habituate to a number of stimuli using various experimental protocols such as 

habituation of the landing response (Rees and Spatz, 1989; Asztalos et al., 1993), the 

proboscis extension reflex (Duerr and Quinn, 1982), the cleaning reflex (Corfas and 

Dudai, 1989), visual startle reflex (Engel and Wu, 1996; Engel et al., 2000) and leg 

position (Jin et al., 1998).  I have established two simple paradigms of habituation to 

olfactory and electric footshock stimuli, which appear to involve the mushroom bodies 

of the adult brain.  The simplicity of both paradigms makes them suitable to conduct 

genetic screens aiming to elucidate the molecular basis of habituation.  Within the 

Drosophila CNS it is unclear what may interact with D14-3-3ε to regulate habituation, 

however there is evidence that the Drosophila 14-3-3s complex with the calcium 

dependent potassium channel Slowpoke via Slowpoke binding protein (Slob), which is 

expressed in the adult central nervous system in Drosophila (Zhou et al., 1999; Zhou et 

al., 2001).  Therefore, one possibility is that habituation may involve D14-3-3ε 

regulation of channel activity by mediating phosphorylation of the receptor/channel or 

coupling them with other proteins or signaling complexes (Sugita et al., 2001; Zhou et 

al., 1999; Zhou et al., 2003).   
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It is also unclear whether associative learning and habituation are dependent or 

independent processes.   In the conditioned avoidance assay, used to study olfactory 

learning and memory, the conditioned stimulus (odor-CS+) paired to an unconditioned 

stimulus (footshock-US) elicits a conditioned response to the CS+, but no such response 

to an unconditioned odor stimulus, the CS- (Tully and Quinn, 1985).  During training in 

this olfactory associative paradigm, premature habituation to the CS+ and/or the US 

would not permit CS/US association that leads to CS+ vs. CS- discrimination.  Given my 

results and the documented involvement of the MBs in olfactory learning and memory 

(Roman and Davis, 2001; Waddell and Quinn, 2001; Heisenberg, 2003), it would appear 

that during training, the MBs/LH protect from premature habituation to the odor and 

footshock stimuli such that associations between them may be formed.  Since structural 

and functional ablation of the MBs precipitated profound premature habituation to odor 

and footshock stimuli it is unlikely that such associations can be formed.  Therefore, 

mutants that habituate prematurely should not be labeled as defective in associative 

olfactory learning.  Therefore, the habituation assay is necessary as a control to separate 

mutants that have deficit in forming the CS+/US association or “true learning mutants” 

from those with non-associative learning deficits. Because this assay has not been 

included in previous publications of reported associative olfactory learning and memory 

mutants, only those of which were screened by other members of the lab (drk, leo, 

rutabaga and dunce) which do not appear to prematurely habituate should be classified 

as "true learning mutants".   
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ARE THE DROSOPHILA 14-3-3’S FUNCTIONALLY REDUNDANT? 

 
Although there is 66% sequence identity among LEO and D14-3-3ε isotypes 

(Table 4) and only a five amino acid difference between LEOI and LEOII, this work 

uncovered functional difference among isotypes in Drosophila development and nervous 

system functions.  Overall, despite the high homology among the 14-3-3 isotypes in 

Drosophila the data suggests that the isoforms/isotypes are not functionally redundant in 

most biological processes examined.  This appears to be contrary to what previous 

studies suggested.  This is particularly evident in the adult central nervous system where, 

although LEO and D14-3-3ε co-localize in the MBs the two proteins appear to be 

involved in distinctly different processes. 

With respect to functional redundancy I found that: 

1.  LEOI can rescue lethality in leonardo mutants, therefore LEOI is not redundant with 

LEOII in processes that support embryonic development.   

2.  Both LEOI and LEOII can rescue the homozygous lethality of D14-3-3ε mutants with 

LEOII more efficient at rescue, therefore LEOII is redundant with D14-3-3ε and LEOI 

partially so, in processes that support embryonic development.  

3.  Both LEOI and LEOII cannot rescue posterior wing cross-vein deficits in D14-3-

3ε mutants, therefore LEO is not redundant with D14-3-3ε in processes that support 

posterior wing cross-vein development. 
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4.  LEOI can completely rescue anterior cross-vein malformations, therefore LEOI is 

redundant with D14-3-3ε in processes that support anterior wing cross-vein 

development. The potential contribution of LEOII is yet unknown. 

5.  Both LEOI and LEOII cannot rescue the germ cell deficit of D14-3-3ε mutants, 

therefore LEO is not redundant with D14-3-3ε in processes that support germ cell 

development. 

6.  D14-3-3ε and LEO appear to have functionally distinct roles within the mushroom 

bodies. 
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