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Abstract— Portfolio insurance strategies are designed to enable investors to limit downside risk while at the 

same time to gain profits from rising market. Among that, constant proportion portfolio insurance strategy (CPPI) 

and option-based portfolio insurance strategy (OBPI) are two typical strategies in portfolio insurance strategies. 

With the popularity of the portfolio insurance strategies, portfolio optimization problem receives plenty of 

publicity. Each investor has their own preference for return and risk, investment activities should follow a utility 

function of return and risk. Therefore, portfolio optimization problem can be modeled as expected utility 

maximization problems. It is well-known that in the Black-Scholes model, these strategies can be implemented as 

the optimal solution by forcing an exogenously given guarantee to maximize the expected utility of investors with 

constant relative risk aversion (CRRA) function. In this research, we combine CRRA utility maximization with 

the stylized strategies and bring these results together. In particular, we focus on the volatile market and consider 

the market is under the Constant Elasticity of Variance (CEV) model. In addition, we discuss the advantages and 

disadvantages of CPPI and OBPI strategies under the distribution of terminal wealth process and utility value in 

CEV model. 

  

Keywords: Portfolio insurance strategy, portfolio optimization, CPPI, OBPI, CRRA utility function, volatile market, CEV model.  

 

 

I. INTRODUCTION 

Portfolio insurance strategies are designed to enable 

investors to limit downside risk while at the same time to 

gain profits from rising market. Among that, constant 

proportion portfolio insurance strategy (CPPI) and option-

based portfolio insurance strategy (OBPI) are two typical 

strategies in portfolio insurance strategies. With the 

popularity of portfolio insurance, more and more people 

begin to consider the portfolio optimization problem. The 

problem of investment is that investors allocate their 

money between investment and consumption reasonably, 

i.e. to choose the optimal investment strategy to maximize 

the expected utility of the terminal wealth process. In 

general, we regard the optimization problem as Merton 

(1971) problem. It is widely believed that in the Black-

Scholes model and a constant relative risk aversion 

(CRRA) utility function, the trading rule of utility 

maximization problem is constant mix strategy (CM), i.e. 

the changes of stock price are always constant and there 

will be no jumps or discontinuities. The trading rule is very 

different from the portfolio insurance. If the price of the 

risky asset falls, the asset exposure will be decreased. 

Technically speaking, we could achieve CPPI and OBPI 

strategies as the optimal solution of a modified utility 

maximization problem based on an exogenously given 

guarantee. We refer to the literature of Merton (1969、
1971、1992), Black and Scholes (1973), Browne (1999), 

Longin (2001), El Karoui et al. (2005). In particular, 

Balder and Mahayni (2009) consider a modified 

optimization problem. The modifications which are 

imposed on the unconstraint optimization problem give 

interesting modifications for the payoffs. 

In the study of portfolio problem, many assume that the 

stock price follows a Geometric Brownian motion. For 

example, Browne (1997) focus on the financial market 

which only has one kind of risk asset and the price of risk 

asset is geometric Brownian motion. Jones (1984), 

Bardhan and Chao (1995) and Guo and Xu (2005) add the 

discrete jump process to the geometric Brownian motion 

model. However, Hobson and Rogers (1998) point out that 

in the real financial market, the volatility of risk assets is 

randomness. After that, some scholars begin to consider 

the risk asset model under different stochastic volatility. 

Hull and While (1987), Heston (1993) and Jonsson and 

Sircar (2002) use the mean regression model and adding 

the stochastic jump process. In particular, Cox and Ross 

(1976) propose a model called Constant Elasticity of 

Variance (CEV) model. CEV model is an extension of 

geometric Brownian motion (GBM) model. This model 

can explain the inclination of stochastic volatility in the 
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real market, and it is convenient to analyze the effect of 

volatility skew on investors' decision-making. 

The following paper is based on study of the paper of 

Balder and Mahayni (2009) ‘How good are portfolio 

insurance strategies?’ We apply the optimal strategies of 

each expected utility maximization given in Balder and 

Mahayni (2009) for the Black-Scholes model to the CEV 

model and check their applicability under the model risk. 

To start with, we elaborated these three optimization 

problems which imply constant mix, CPPI and OBPI 

strategies as optimal. We use the well-known results of the 

optimization problems to explain the main differences of 

the mechanism of these three strategies. Then, we compare 

the terminal payoffs of these three strategies. Especially, 

we focus the volatile market and consider the Constant 

Elasticity of Variance (CEV) model and apply Euler-

Maruyama method to CEV model in order to simulate the 

sample path of the stock price process. In the case of the 

CEV model, the optimal strategies of portfolio insurance 

are not obtained mathematically. As a result, we use the 

optimal strategies for the Black-Scholes model and check 

their applicability in the CEV model. In addition, we 

consider the distribution of terminal wealth process and 

utility value under the volatile market. 

 

II. METHODS 

A. Theoretical method  

   We will throughout the thesis assume that there exists 

a probability space (Ω, ℱ, (ℱ𝑡)𝑡∈[0,𝑇∗],𝑃) where Ω is the 

sample space. Now, we consider two assets. The risk-free 

bond 𝐵 evolves according to  

 

              𝑑𝐵𝑡 = 𝐵𝑡𝑟𝑑𝑡  where 𝐵0 = 𝑏.          (1)  

The dynamics of the market value of the risky asset 𝑆, 

a stock or benchmark index, is given by a geometric 

Brownian motion  

 

               𝑑𝑆𝑡 = 𝑆𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡) , 𝑆0 = 𝑠.       (2)  

 

Let 𝜋𝑡 denotes the proportion of the portfolio value 

at time t which is invested in the risky asset 𝑆. Let 𝑉 =
(𝑉𝑡)𝑜≤𝑡≤𝑇 denote the portfolio value process related to 

the strategy 𝜋, the dynamics of 𝑉 are given by 

 

              𝑑𝑉𝑡(𝜋) = 𝑉𝑡(𝜋𝑡
𝑑𝑆𝑡

𝑆𝑡
+ (1 − 𝜋𝑡)

𝑑𝐵𝑡

𝐵𝑡
),      (3) 

 

The relevant optimization problem is given by 

 

                        supπ∈Π𝔼𝑝 = [𝑢(𝑉𝑇(𝜋))]          (4) 

 

From Balder and Mahayni (2009), we recall the well-

known optimization problems which justify three 

basics strategies  

 

              ΠCM = {𝜋 ∈ Π | 𝜋𝑡 = 𝑚,  𝑚 ≥ 0}.       (5) 

 

            ΠCPPI = {𝜋 ∈ Π | 𝜋𝑡 = 𝑚
𝑉𝑡−𝑒

−𝑟(𝑇−𝑡)𝐺𝑇

𝑉𝑡
,  𝑚 ≥ 0}.    (6) 

ΠOBPI =

{
 
 

 
 π ∈ Π | 𝜋𝑡 =

𝛥𝑡𝑆𝑡

𝑉𝑡
, 𝛥𝑡 =

𝜕

𝜕𝑆𝑡
𝔼𝑝∗ [𝑒

−𝑟(𝑇−𝑡)(ℎ(𝑆𝑇) − 𝐺𝑇)
+|ℱ𝑡]] ,

ℎ ∈ 𝐶2,  (
𝜕𝑃∗

𝜕𝑃
)
𝑇
= 𝑒−

1
2
(
𝜇−𝑟
𝜎
)2𝑇−

𝜇−𝑟
𝜎
𝑊𝑇

}
 
 

 
 

 . 

(7)  

where 𝐺𝑇 is the present value of the guarantee. 

In the set-up of the Black-Scholes model, it is possible 

to impose an exogenously given guarantee on the problem 

of maximizing the expected utility of an investor with a 

CRRA utility function. From Balder and Mahayni (2009), 

the optimal payoffs which are suited to the three strategy 

classes are summarized as follows 

        𝑉𝑇,𝐶𝑀
∗ = 𝜙(𝑉0

𝐶𝑀,𝑚∗)𝑆𝑇
𝑚∗              (8) 

           𝑉𝑇,𝐶𝑃𝑃𝐼
∗ = 𝐺𝑇 +

𝑉0−𝑒
−𝑟𝑇𝐺𝑇

𝑉0
𝑉𝑇,𝐶𝑀

∗        (9) 

         𝑉𝑇,𝑂𝐵𝑃𝐼
∗ =

�̃�0

𝑉0
 𝑉𝑇,𝐶𝑀

∗ + [𝐺𝑇 −
�̃�0

𝑉0
 𝑉𝑇,𝐶𝑀

∗]
+

(10) 

where set 𝜙(𝑥, 𝑦 ) ≔ 𝑥 (
1

𝑆0
)
𝑦
𝑒
(1−𝑦)(𝑟+

1
2
𝑦𝜎2)𝑇

  

and  𝑉𝑇
𝐶𝑀 = 𝑉0

𝐶𝑀𝑒(𝑚
(𝜇−𝑟)+𝑟−

1
2 
𝑚2𝜎2)𝑇−𝑚(𝜇−

1
2 
𝜎2)𝑇 (

𝑆𝑇

𝑆0
)
𝑚

. 

𝑚∗ =
𝜇−𝑟

𝛾𝜎2 
 represents the Merton investment quote and 𝑉0 

is the initial investment. For more details, see Balder an 

Mahayni (2009). 

 

Volatility is a very significant factor that influences the 

selection of investors in portfolio insurance strategies. As 

a consequence, we introduce a model called Constant 

Elasticity of Variance (CEV) model. The standard CEV 

model assumes that share price 𝑆𝑡 of risky asset evolves 

according to the stochastic differential equation 

 

                     𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝛿𝑆𝑡
𝛽

2𝑑𝑊𝑡, (𝑡 > 0 )     (11) 

 
where 𝜇 is an expected instantaneous rate of return. 𝜇 

and 𝛿 are constants with initial condition 𝑊0 =0. 𝛽 

is a positive constant and 𝑊𝑡  is a Brownian motion. 

When 𝛽 =2, the CEV model is the same as the Black-

Scholes model with 𝜎 = 𝛿.   

B. Numerical method 

  In order to get the approximate numerical solution of a 

stochastic differential equation (SDE), the solution can be 

approximated by using the Euler-Maruyama Method. 

The Euler-Maruyama method is demonstrated on the 

following stochastic differential equation: 

 

                 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝛿𝑆𝑡
𝛽

2𝑑𝑊𝑡, (𝑡 > 0 )     (12) 
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Applying the Euler-Maruyama Method to simulate the 

CEV Model gives the following discrete stock price 

relationship 

   

                𝑆𝑡 = 𝑆𝑡−1 + 𝜇𝑆𝑡−1𝛥𝑡 + 𝛿(𝑆𝑡−1)
𝛽
2𝛥𝑊𝑡     (13) 

 

When β>2 in the CEV model, the solution of the SDE 

has the possibility to explode to infinity before maturity. In 

our simulations, we avoid the scenario that numerical 

solutions explode for β>2. 

 

III. RESULTS 

We provide some numerical examples to illustrate the 

dynamic behavior of the optimal investment strategy with 

CRRA utility function. We assume the volatile market is 

under the CEV model and the optimization problems is 

still obtained by Black-Sholes model. In these examples, 

we consider three investment horizons: Short-term 

investment ( 𝑇 = 1  year), Mid-term investment ( 𝑇 =
5 years) and Long-term investment (𝑇 = 10 years). Here, 

we take the distribution of terminal wealth process and 

utility value in 𝑇 = 5 years as examples. For more details 

and examples, please refer to the thesis. 

 

The basic parameters: 𝑆0 = 1, 𝜎 = 0.15, 𝑟 = 0.03,
𝜇 = 0.085,  𝑉0 = 1, �̃�0 = 0.56, 𝛾 = 0.8, 𝑚 = 𝑚∗ =
2.037 and 𝐺𝑇 = 1. The results of the comparison of the 

terminal wealth are given by 

 

Fig 1. The distribution of terminal wealth 𝑉𝑇 for CPPI with 𝛽 =
1.5 and investment horizon 𝑇 = 5 years.  

 

 

 

 

 

 

Fig 2. The distribution of terminal wealth 𝑉𝑇 for CPPI with 𝛽 =
2 and investment horizon 𝑇 = 5 years. 

 

 

 

 

 

 

Fig 3. The distribution of terminal wealth 𝑉𝑇 for CPPI with 𝛽 =
2.5 and investment horizon 𝑇 = 5 years. 
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Fig 4. The distribution of terminal wealth 𝑉𝑇 for OBPI with 𝛽 =
1.5 and investment horizon 𝑇 = 5 years  

 

 

Fig 5. The distribution of terminal wealth 𝑉𝑇 for OBPI with 𝛽 =
2 and investment horizon 𝑇 = 5 years. 

 

Fig 6. The distribution of terminal wealth 𝑉𝑇 for CPPI with 𝛽 =

2.5 and investment horizon 𝑇 = 5 years. 

 

When the market fluctuates, the terminal wealth for 

CPPI strategy is not changed so much. It reflects that CPPI 

strategy is relatively stable and the accompanying risk is 

relatively small. OBPI strategy is different from CPPI 

strategy. On the one hand, the impact of terminal wealth 

for OBPI strategy is relatively large under the volatile 

market. On the other hand, in the turbulent market, OBPI 

is more likely to obtain high returns but also take risks. 

 

Then, we calculate the rankings frequency of terminal 

wealth w.r.t CM, CPPI and OBPI strategy for each 

scenario. “1” represents the best, “3” is the worst. The 

results are given in Table 1. 

 

Table 1. The rankings frequency of terminal wealth w.r.t CM, 

CPPI and OBPI strategy for each scenario when 𝛽 = 2.5. The 

investment horizon is T=5 years.  

      Rank CM  CPPI      OBPI 

1 362 108 530 

2 284 259 457 

3 354 633 13 

 

In terms of the frequency with rankings of terminal 

wealth, OBPI gives a better result than CPPI. Even under 

a high volatility, OBPI approach always gives a higher 

return than CPPI. 

 

Besides, we consider the frequency of terminal wealth 

for three strategies in different range. The results are given 

as follows 

 

Table 2. The frequency of terminal wealth w.r.t CM, CPPI and 

OBPI strategy for each range when 𝛽 = 2.5. The investment 

horizon is T=5 years. 

𝑉𝑇 CM  CPPI      OBPI 

<1 285 0 67 

<0.75 158 0 6 

<0.5 52 0 0 

<0.25 6 0 0 

 

It reflects that OBPI approach is risky and more likely 

to lose money. In other words, CPPI approach is more 

stable than OBPI. 
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 In the meanwhile, the comparison of the utility value in 

shown in Table 3. 

 

Table 3. Utility value of terminal wealth w.r.t CM, CPPI and 

OBPI strategy with varying parameter 𝛽 . The investment 

horizon is T=5 years. 

𝛽 CM CPPI OBPI 

1.5 5.61277042 3.7286536 5.64541546 

2 5.61461423 3.7281509 5.67788783 

2.5 5.53486282 3.67579598 5.68242807 

 

The utility value of CPPI is decreased when market is 

volatiles. To compare with CPPI strategy, OBPI gives a 

better result in utility value under the volatile market. 

When market is volatiles, the utility value of OBPI 

strategy is increased. CPPI strategy is more vulnerable to 

market volatility. The characteristics are more obvious in 

long-term investment. 

 

It is worth noticing that the utility value of CPPI 

strategy is always smaller that the OBPI strategy. In 

particular, the reduction of CPPI strategy in the expected 

utility can be interpreted as the utility loss arising from the 

guarantee component 𝐺𝑇 > 0. 

 

IV. DISCUSSION 

The following paper is based on study of the paper of Balder 

and Mahayni (2009) ‘How good are portfolio insurance 

strategies?’ We recall the well-known optimization problems 

which imply constant mix, CPPI and OBPI strategies as optimal 

solution. On this basis, we consider the volatile market and 

introduce another model called the Constant Elasticity of 

Variance (CEV) model. Then we use Euler-Maruyama method to 

approximate numerical solution of a stochastic differential 

equation (SDE). In the case of the CEV model, the optimal 

strategies of portfolio insurance are not obtained mathematically. 

As a result, we use the optimal strategies for the Black-Scholes 

model and check their applicability in the CEV model. Through 

numerical experiments, those strategies are still effective for the 

CEV model even if we have model risk. We assume the volatile 

market is under the CEV model and the optimization problems is 

still obtained by Black-Sholes model. Then we observe the 

distribution of terminal wealth w.r.t CPPI and OBPI for different 

volatile case and different investment horizons. Especially, we 

calculate the frequency of rankings and utility value of CPPI and 

OBPI approach. All of these results help us better understand the 

advantages and disadvantages of CPPI and OBPI under the 

volatile market from multiple angles. OBPI approach gives a 

better result than CPPI approach with respect to a utility function 

which favors the CM strategy. However, if the market is 

volatility, OBPI approach faces greater risks and has more 

possibility to lose money than CPPI strategy. In the contrast, 

CPPI strategy is relatively robust with lower payoffs. 

 

 

V. CONCLUSION 

In this research, we recall the well-known modified 

optimization problems to help us to better understand the 

operation mechanisms of typical portfolio insurance 

strategies: CPPI and OBPI. We combine CRRA utility 

maximization with the stylized strategies and bring these 

results together. In terms of optimal payoffs, both payoffs 

for CPPI and OBPI are higher that CM for low terminal 

asset price. OBPI approach gives a better result that CPPI 

approach with respect to a CRRA utility function which 

favors the CM strategy with portfolio weight  𝑚∗ . As a 

result, investors can buy and hold more CM strategies in 

the case of the OBPI approach. 

 

In the meanwhile, we focus the volatile market and 

consider the market is under the Constant Elasticity of 

Variance (CEV) model in different investment horizon 

and resulting payoffs. In the case of the CEV model, the 

optimal strategies of portfolio insurance are not obtained 

mathematically. As a result, we use the optimal strategies 

for the Black-Scholes model and check their applicability 

in the CEV model. Through numerical experiments, those 

strategies are still effective for the CEV model even if we 

have model risk. The study of the whole distribution 

associated with payoffs and utility value imply that OBPI 

approach gives a better result than CPPI approach with 

respect to a utility function which favors the CM strategy. 

This is a major advantage in OBPI approach. However, the 

kinked payoffs-profile of OBPI approach shows that the 

OBPI strategy is greatly affected by market volatility. If 

the market is volatility, OBPI approach faces greater risks 

and has more possibility to lose money than CPPI strategy. 

The characteristic is more obvious with the investment 

horizon increased. It means that investors should pay more 

attention to the risks when consider the OBPI strategy. To 

compare with OBPI strategy for different investment 

horizon, the payoffs of CPPI approach is less affected by 

the market fluctuations. It turns out that the CPPI strategy 

is relatively robust with lower payoffs. 

 

VI. FUTURE WORK 

Firstly, we consider the maximization problems suited 

to the CEV model. Secondly, we think about the loss rates 

with strategies due to the utility problem. Thirdly, if the 

portfolio insurance strategies are impeded by market 

frictions, it is necessary to consider utility loss caused by 

trading restrictions in the sense of discrete-time trading and 

transaction costs. 
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