BERXFEFEHNHEEVURS FU

HOSET UMIVERSITY REPOSITORY

AraDIC : Arabic Document Classification using
Image-Based Character Embeddings and
Class-Balanced Loss

0ad Daif Mahmoud, lyatomi Hitoshi

aoodd OJ0ddoooboooooooon

journal or J0ddoooono. ooooooood
publication title

volume 62

page range 1-7

year 2021-03-24

URL http://doi.org/10.15002/00023952

AraDIC: Arabic Document Classification using
Image-Based Character Embeddings and Class-Balanced

Loss

Mahmoud Daif

Hitoshi Iyatomi

Major in Applied Informatics, Graduate School of Science and Engineering, Hosei University
{mahmoud.daif.8h@stu., iyatomi@}thosei.ac.jp

Abstract

Classical and some deep learning techniques for Ara-
bic text classification often depend on complex mor-
phological analysis, word segmentation, and hand-
crafted feature engineering. These could be elim-
inated by using character-level features. We pro-
pose a novel end-to-end Arabic document classifica-
tion framework, Arabic document image-based clas-
sifier (AraDIC), inspired by the work on image-based
character embeddings. AraDIC consists of an image-
based character encoder and a classifier. They are
trained in an end-to-end fashion using the class bal-
anced loss to deal with the long-tailed data distri-
bution problem. To evaluate the effectiveness of
AraDIC, we created and published two datasets, the
Arabic Wikipedia title (AWT) dataset and the Ara-
bic poetry (AraP) dataset. To the best of our knowl-
edge, this is the first image-based character embed-
ding framework addressing the problem of Arabic
text classification. We also present the first deep
learning-based text classifier widely evaluated on
modern standard Arabic, colloquial Arabic and clas-
sical Arabic. AraDIC shows performance improve-
ment over classical and deep learning baselines by
12.29% and 23.05% for the micro and macro F-score,
respectively.

1 Introduction

Arabic is one of the six official languages of the
United Nations and the official language of 26 states.
It is spoken by as many as 420 million people making
it the fifth most popular language worldwide. Ac-
cording to the Internet World Statistics, as of 2017,
Arab users represent 4.8% of internet users’.
Arabic can be classified into three different types
each having its own purpose and morphology. The
modern standard Arabic, the colloquial or dialectal

L Arabic Speaking Internet Users and Population Statis-
tics. https://www.internet-worldstats.com/stats19.html
Accessed: 16-Dec-2018,

Arabic and the classical or old Arabic. The mod-
ern standard Arabic is the official language used in
media, government, news papers and is taught in
schools. Colloquial Arabic varies between countries
and regions. Old or classical Arabic survives nowa-
days in religious scriptures and old poetry.

Arabic has 28 basic letters all are consonants ex-
cept three, which are long vowels. Arabic is written
from right to left. Most Arabic letters have more
than one written form depending on their position in
the word. For example, “ 7. ¢ 70¢ e, and

“ — 7 are all different forms of the letter “ 7 (sin).

In addition, diacritical marks/short vowels that con-
tribute to the phonology of Arabic, greatly alter the

“ ” [» 0 « R

character shape. Example, “ & 7, “ &7, “ O 7,

are combina-

IR A T L T T) « ”
A e and <

tion of the letter “ ”(ba’) with different diacritics.
This visual nature of the Arabic letters is the main
motivation for us to use image based embeddings.

The importance of text classification has increased
due to the increase of textual data on the internet as
a result of social networks and news sites. Common
examples of text classification are sentiment analy-
sis [1], spam detection [2] and news categorization [3].
Arabic text classification is particularly challenging
because of its complex morphological analysis.

Most research on Arabic text classification has
used classical techniques for feature extraction [4],
which require complex morphological analysis, such
as negation handling[5], part of speech tagging [6],
stemming [7], and segmentation [8]. Arabic segmen-
tation is especially complex because Arabic words
are not always separated by white spaces. It also
includes some hand-crafted features like document
term matrix with term frequency inverse document
frequency (TF-IDF) scores or word count.

Arabic text classification have been often done us-
ing classical algorithms like support vector machines
(SVMs) or Naive Bayes [4]. Despite advances of text
classification using deep learning techniques, little
work has been done on Arabic. [9] introduced Ar-

aVec, which is a pretrained distributed word em-
beddings [10]. They trained their model using the
skip-gram and continuous bag of words techniques.
They used data from different sources like Wikipedia
and Twitter. More recently, [11] used AraVec’s
pretrained word embeddings with sentence convolu-
tional neural network (CNN) originally proposed by
[12] for Arabic document classification. This method
still did not mitigate the problem of Arabic word seg-
mentation.

Those combinations left two major issues unad-
dressed. First, performance highly depends on mor-
phological analysis and word segmentation, which
is difficult for Arabic. The same problem has been
addressed for languages such as Japanese and Chi-
nese [13]. Second, obtaining appropriate embedding
(i.e. building hand-crafted features) is difficult.

To solve these problems, character-based ap-
proaches utilizing deep learning methods mainly
used in image processing have been proposed [14,
15, 16].

[14] introduced a character-level CNN (CLCNN)
that treats text as a raw signal at character level.
The CNN then learns the language morphology and
extracts appropriate features for text classification.
Their method mitigated the issue of complex mor-
phological analysis.

After that, [15] proposed image-based character
embeddings for Japanese and Chinese text classifica-
tion. Their model was composed of a convolutional
auto-encoder (CAE) [17] and a CLCNN. They were
the first to handle a character as an image and ob-
tained character-embedding with their CAE. They
also introduced wild card training as a data aug-
mentation technique, which is dropout [18] on the
embedding space.

Later, [19] used image-based character embeddings
learned through a character encoder (CE) to train a
gated recurrent unit (GRU) for Japanese, Chinese,
and Korean text classification.

[16] proposed CE-CLCNN that concatenated [19]’s
CE with CLCNN as an end-to-end system and in-
troduced random erasing on image domain as a
data augmentation method. These models using
character-level features learn language morphology
eliminating the need for complex morphological anal-
ysis and word segmentation.

Another problem is that large text classification
datasets usually suffer from long tailed data distri-
bution problem. This means that few classes make
up majority of data. This problem often reduces
the model’s accuracy on the minority classes making
more biased towards majority classes.

This problem can be addressed by either re-
sampling [20, 21, 22, 23, 24] or re-weighting the cost
function [25, 26, 27, 28, 29].

[29] noticed that re-weighting the cost function by
inverse class frequency as used in vanilla schemes
[27, 30, 31] could lead to poor performance on ma-
jority classes. They proposed class-balanced (CB)
loss based on the effective number of classes which
re-weights the loss by the inverse of the effective num-
ber of classes.

Our contributions can be summarized as follows:

e We propose AraDIC which is a framework for
Arabic text classification. AraDIC is an end-to-
end model of a character encoder and a classifier
trained using CB loss.

e CB loss was originally intended for object de-
tection tasks. We show that it can solve class-
imbalance problems for text classification tasks.

e We introduce two datasets in the hope of becom-
ing bench marking datasets for Arabic text clas-
sification tasks as well. The Arabic Wikipedia
title (AWT) dataset and the the Arabic poetry
(AraP) dataset. These two datasets contain the
three types of Arabic language.

To the best of our knowledge, this is the first time
an image-based character embedding model is used
for Arabic text classification. Also, the first time a
deep-learning based model is tested on datasets con-
taining the three types of Arabic. This shows that
our method could be used to overcome Arabic’s com-
plicated morphological analysis and word segmenta-
tion for all types of Arabic. The code and datasets
are released at https://github.com/mahmouddaif/
AraDIC

2 Datasets

Arabic text classification lacks bench marking
datasets. This is because it is expensive and time
consuming to annotate a large dataset to be used
for text classification using deep learning algorithms.
We created two large datasets that do not require
manual annotation and can be used as benchmarks
for Arabic text classification. The AWT and the
AraP datasets. Sections 2.1 and 2.2 describe how
we constructed these datasets.

2.1 Arabic Wikipedia Title Dataset
(AWT)

[19] introduced the Wikipedia title dataset for
Japanese, Chinese and Korean by making use of
Wikipedia’s recursive hierarchical structure to crawl
12 different Wikipedia categories and using the cat-
egory as a label to all article titles under this cat-
egory, and its subcategories. He assumed that an

100000 -

80000
60000
40000
20000
o = " " " " " .|

Freauency

&
7 & ¢ G @ & < QOC& & @é
B 2 & O e S G
RPN P Al
& e
> <
&
Category
(a)
20000
17500
15000
g
512500
= 10000
o
2 7500
B
5000
(]
O " g "
ok o&é o""&\ oé'gx o?“d:\
2 2 < bQ LQ
) o o
& e"é o""’@ ’5\6 \’f?{o
© & oF @6‘ I
v9 o) &
Category

(b)

Figure 1: The category distribution for the (a) AWT
and (b) AraP datasets.

article only exists in one category. If an article ex-
isted in more that one category, it was randomly
assigned to only one of them. This created some
noisy annotations, however, categories were chosen
as distinctive in nature as possible to reduce this
problem. We crawl 11 different categories from the
Arabic Wikipedia using the same method. A total
of 444911 different titles with a total of 4,196,127
different words were crawled. This dataset contains
mostly modern standard Arabic. The dataset cate-
gory distribution can be found in Figure 1la.

2.2 Arabic Poetry Dataset (AraP)

The AraP dataset was crawled from the Adab Web-
site? It contains Arabic poetry from the 6th to 21st
centuries and consists of 41,264 poems from five eras.
This dataset contains mostly colloquial and old Ara-
bic. AraP’s Category distribution details can be
found in Figure 1b.

2 Adab website for Arabic poetry from 6th to 21st centuries.
http://www.adab.com/.

Layer Configuration
Conv2D (c=1, k = 3x3, {=32) + ReLU
Max-Pool2D (k=2x2)
Conv2D (¢=32, k = 3x3, {=32) + ReLU
Max-Pool2D (k=2x2)
Conv2D (¢=32, k = 3x3, =32) + ReLU
FC (800,128) + ReLU
FC (128,128) + ReLU

(a) Character encoder architecture.

Layer Configuration
ConvlD (c= 128, k = 3, {=512) + ReLU
Max-Pool1D (k=3)
ConvlD (c=512, k=3, {=512) + ReLU
Max-Pool1D (k=3)
ConviD (c=512, k = 3, £=512) + ReLU

ConvlD (¢=512, k = 3, {=512) 4+ ReLU
FC (1024,1024) + ReLU
FC (1024,nc) + ReLU
(b) CLCNN architecture.
Layer Configuration
BiGRU (input = 128, hidden = 128, layer = 3)
+ BN
FC (256,nc¢)

(c) BiGRU architecture.

Table 1: AraDIC’s architectural configuration, c is
input channels, k is kernel size, f is feature maps,
nc is number of classes and BN is Batch Normaliza-
tion [32].

3 Methodology

AraDIC is an end-to-end framework of a character
encoder (CE) and a classifier. We choose two classi-
fiers for our framework. A character CNN (CLCNN)
similar to [16], but tuned to Arabic language, and
a bidirectional gated recurrent unit (BiGRU) [33]
based classifier. The outline of our framework is
shown in Figure 2. We use wildcard training in-
troduced by [15] for data augmentation. Wildcard
training is dropout on the embedding space so that
the data changes a little every training iteration. In
that sense it acts as a data augmentation technique.
We use CB softmax loss to deal with class imbalance
problem.

3.1 Character Encoder

The CE is a CNN where convolution is performed in
a depth-wise manner. It learns to encode each input

F-score

Model
Arabic Wikipedia Title Arabic Poetry
Embedding Classifier Micro [%] Macro [%] Micro [%] Macro [%)]
Majority Class 21.67 2.97 47.06 5.33
Word Unigram SVM 45.47 26.60 52.80 34.83
level AraVec CNN 45.02 25.05 69.28 41.95
Character One-hot CLCNN 42.76 18.71 68.24 37.72
level AraDIC CLCNN (— CB loss) 47.47 26.85 74.86 45.61
CLCNN (4 CB loss) 49.49 30.55 74.03 48.65
BiGRU (— CB loss) 55.71 39.04 78.93 59.88
BiGRU (+ CB loss) 57.76 44.54 79.53 65.00

Table 2: Classification results of our model and other baselines. Majority Class: Due to high class-imbalance
in both of our datasets, we examine the performance of majority class classifier. CNN + AraVec: Sentence

classifier CNN [11, 12] using AraVec’s word embeddings [9].

SVM: an SVM with unigrams, stemming, and

document term matrix with TF-IDF scores as features. CLCNN: character level CNN with one hot encoding as
inputs[14]. AraDIC: our proposed end-to-end framework of character encoder, CLCNN and BiGRU classifiers,
trained with and without class-balanced softmax loss (CB loss). We report two evaluation metrics, the macro

and micro F-scores.

character image of size 36 x 36 pixels into a 128-
dimension vector. The architectural configuration is
shown in Table 1a.

3.2 Classifier

For classification we use two classifiers. The first one
is a CLCNN, and the second is a BiIGRU. Input text
is represented as an array of character images each
encoded into a 128 dimension vector using the CE.
Those character embeddings are the input features
for both the CLCNN and the BiGRU.

The CLCNN is a character-level CNN whose ar-
chitectural details can be found in Table 1b.

The BiGRU takes those characters embeddings
and computes a sentence level embedding. The sen-
tence embedding is the average of all the hidden
layers outputs of the BiGRU. These sentence level
features are then passed to a fully connected layer
followed by a softmax for class prediction. Detailed
architecture of the BiGRU can be found in Table 1c.

3.3 Class-Balanced Loss

Both of our datasets suffer from the long tailed
distribution problem as shown in Figure la and
1b. To deal with this problem, we use state-of-
the-art method, the class balanced loss [29]. The
class-balanced loss could be applied by re-weighting
the loss function by the inverse effective number of
classes. We apply it to softmax cross entropy loss as

follows:

_1-B o exp (Zy)
1—fm o8 (ch:l eXP(Zj)> , .

where is the inverse effective number of

classes. Z; is the model output (j = 1,2,...C), y
is class label for the input sample, n, is number of
samples per class y and (is a training hyper param-
eter. This will assign adaptive weights to the cost
function for classes with higher samples and classes
with lower samples, effectively re-weighting the cost
function based on effective number of classes. This
method was originally intended for object detection,
we show that it can be applied to text classification
as well.

4 Experiments

To train our classifier both datasets are divided into
80% training data and 20% testing data®.

4.1 AraDIC

The maximum character length or each document
is set to 60 characters for the AWT dataset and 128
characters for the AraP dataset. That’s for using the
CLCNN classifiers. As for the BiGRU classifier we
don’t set a maximum character length, instead the

3Hyperparameters were tuned with a validation set split
from the training set, and reported the predicted results of
the evaluation set.

Input Text
L_;L’gc_,ol:ﬁ_).ij el dele Jas Wile Sl

sabeuw Jajoeiey)

Character
Encoder

Wild Card Training

sbBuippaquwa
1810BIBYD paseq-abew|

~
Classifier
+

— Class Balanced loss

b
=g S
S o — [
(SR T
T _.-f"” \
e} — ~
~® T] |

3 ! Class 1 Class2 | | ClassC

Figure 2: AraDIC’s architecture outline.

whole text is used. Each character was encoded into
a 128 dimension vector using the CE. Adam opti-
mizer [35] with a batch size of 64 and a learning rate
of 0.001 was chosen as the optimization method. As
for the CB loss we set 8 to 0.99 for both datasets.
Wildcard training ratio is set to 10%. The training
loss converged after approximately 150 epochs for
AraP dataset and 500 epochs for AWT dataset.

4.2 Baselines

We use several word-based and character-based base-
lines to evaluate our method. They include both
classical and deep learning baselines as follows:

e Due to high class imbalance in both our datasets,
a majority class classifier is chosen as our first
baseline.

o A classical Support Vector Machine (SVM) with
a document-term matrix (DTM) of TF-IDF
scores for unigrams as input was used as word-
based baseline. Terms occurring only once and
terms appearing in more than 90% of documents

were omitted from the DTM. We performed pre-
processing in the form of stop words, non-Arabic
characters, diacritics removal. Then, text is
stemmed using Khoja stemmer [6]. Farasa seg-
menter [8] was used for word segmentation.

e We also used [11]’s method of using AraVec’s
word embeddings as input features and sentence
CNN originally introduced by [12] for classifica-
tion. This is another word-based baseline.

e Another baseline is a character-level CNN
(CLCNN) introduced by [14]. In this baseline,
input characters were one-hot encoded.

5 Results and Discussion

Classification results can be found in Table 2. It
is noted that AraDIC outperforms both word based
and character based deep learning and classical base-
lines. Performance improvement is shown over clas-
sical SVM without the need for preprocessing, word
segmentation, stemming and feature engineering as-
sociated with classical methods. It was also able
to beat [11] method of using sentence CNN with
AraVec’s word embeddings as input features with-
out the need for word segmentation. This makes
character level representations a better choice for
Arabic language avoiding segmentation and feature
engineering problems. It’s also shown that using
AraDIC’s image-based character embeddings outper-
forms CLCNN with one-hot encoded characters as
input features. Therefore, we can conclude as well
that image-based character embeddings are useful for
Arabic language due to the property of the language
as discussed in the introduction section of this paper.

As for the classifier part of AraDIC, it can be
noticed that the BiGRU significantly outperforms
CLCNN for both classification tasks. This suggests
that sequence-to-sequence models are more suitable
for text classification using image-based character-
based embeddings, especially in Arabic document
classification.

Also, using CB loss improves the macro F-score of
classifiers for both datasets. It can be also noted that
the improvement in the macro F-score is achieved
when using a CLCNN and a BiGRU. This shows that
CB loss can be useful to solve class imbalance prob-
lems for text classification tasks.

Figure 3 shows character embeddings visualization
using t-distributed stochastic neighbor embedding
(t-SNE) method [34]. As shown, embedding for re-
lated characters having similar shapes like “ “ moen,

« ‘w

,and “ j ” are clustered in the embedding space.

a

Figure 3: Character embeddings visualization using t-SNE [34].

E

"‘F:I‘ [L

%
.
3 - ¥

Sections circled in green show clusters of

related characters with similar shapes, which was the majority of cases. Sections encircled in red show clusters

of unrelated characters which was rare.

This is the majority of cases. Other unrelated char-
acters are also clustered which is rare. This however
shows that using image based character embeddings
gives an extra layer of visual information. Another
reason why it is useful is because both the CE and
the classifier are trained as an end-to-end system.
This means that the CE learns the best embeddings
suitable for the classifier.

6 Conclusion

In this paper, we proposed a novel end-to-end Ara-
bic text classification framework AraDIC. We also
published two large scale Arabic text classification
datasets that contain the three types of Arabic lan-
guage, the AWT and the AraP datasets. AraDIC’s
image-based character embedding strategy elimi-
nated the need for complicated preprocessing, seg-
mentation and morphological analysis, and achieved
much better performance than conventional deep and
classical text classification techniques that use word
and character-based embeddings. We have shown
also that class-balanced loss is useful for text classi-
fication tasks with long tailed distribution datasets.

References

[1] H. S. Ibrahim, S. M. Abdou, and M. Gheith, “Sentiment
analysis for modern standard arabic and colloquial,” CoRR
preprint arXiww:1505.03105, 2015.

[2] A. M. El-Halees, “Filtering spam e-mail from mixed ara-
bic and english messages: A comparison of machine learn-
ing techniques.” Fliltering Spam E-Mail from Mixed Arabic
and English Messages: A Comparison of Machine Learning
Techniques., vol. 6, no. 1, 2009.

[3] M. A. Shehab, O. Badarneh, M. Al-Ayyoub, and Y. Jarar-

weh, “A supervised approach for multi-label classification of
arabic news articles,” in Proc. of CSIT. IEEE, 2016, pp.
1-6.

4]

(10]

(11]

(12]

(13]

(14]

16]

S. A. Salloum, A. Q. AlHamad, M. Al-Emran, and
K. Shaalan, “A survey of arabic text mining,” in Intelli-
gent Natural Language Processing: Trends and Applica-
tions. Springer, 2018, pp. 417-431.

N. Al-Twairesh, H. Al-Khalifa, and A. Al-Salman, “Arasenti:
Large-scale twitter-specific arabic sentiment lexicons,” in
Proc. of ACL, 2016, pp. 697-705.

S. Khoja, “Apt: Arabic part-of-speech tagger,” in Proc. of
the Student Workshop at NAACL, 2001, pp. 20-25.

M. N. Al-Kabi, S. A. Kazakzeh, B. M. A. Ata, S. A. Al-
Rababah, and I. M. Alsmadi, “A novel root based arabic
stemmer,” Journal of King Saud University-Computer and
Information Sciences, vol. 27, no. 2, pp. 94-103, 2015.

A. Abdelali, K. Darwish, N. Durrani,
“Farasa: A fast and furious segmenter for arabic,”
of NAACL, 2016, pp. 11-16.

and H. Mubarak,
in Proc.

A. B. Soliman, K. Eissa, and S. R. El-Beltagy, “Aravec: A
set of arabic word embedding models for use in arabic nlp,”
Procedia Computer Science, vol. 117, pp. 256-265, 2017.

T. Mikolov,
J. Dean,
and their compositionality,”
3111-3119.

I. Sutskever, K. Chen, G. S. Corrado, and
“Distributed representations of words and phrases
in Proc. of NIPS, 2013, pp.

D. Sagheer and F. Sukkar, “Arabic sentences classification
via deep learning,” International Journal of Computer Ap-
plications, vol. 182, no. 5, pp. 40-46, 2018.

Y. Kim, “Convolutional neural networks for sentence classi-
fication,” CoRR preprint arXiv:1408.5882, 2014.

F. Peng, X. Huang, D. Schuurmans, and S. Wang, “Text
classification in asian languages without word segmentation,”
in Proc. IRAL workshop, 2003, pp. 41-48.

X. Zhang, J. Zhao, and Y. LeCun,
lutional networks for text classification,”
2015, pp. 649-657.

“Character-level convo-
in Proc. of NIPS,

D. Shimada, R. Kotani, and H. Iyatomi, “Document classifi-
cation through image-based character embedding and wild-
card training,” in Proc. of IEEE Big Data. IEEE, 2016,
pp. 3922-3927.

S. Kitada, R. Kotani, and H. Iyatomi, “End-to-end text clas-
sification via image-based embedding using character-level
networks,” in Proc. of IEEE AIPR Workshop. IEEE, 2018,
pp. 1-4.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

3]

J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber,
“Stacked convolutional auto-encoders for hierarchical feature
extraction,” in International conference on artificial neural
networks. Springer, 2011, pp. 52-59.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929-1958, 2014.

F. Liu, H. Lu, C. Lo, and G. Neubig, “Learning character-
level compositionality with visual features,” in Proc. of ACL,
2017, pp. 2059-2068.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-sampling tech-
nique,” Journal of artificial intelligence research, vol. 16,
pp. 321-357, 2002.

L. Shen, Z. Lin, and Q. Huang, “Relay backpropagation for
effective learning of deep convolutional neural networks,” in
Proc. of ECCV. Springer, 2016, pp. 467-482.

Y. Geifman and R. El-Yaniv, “Deep active learning over the
long tail,” CoRR preprint arXiv:1711.00941, 2017.

M. Buda, A. Maki, and M. A. Mazurowski, “A systematic
study of the class imbalance problem in convolutional neural
networks,” Neural Networks, vol. 106, pp. 249-259, 2018.

Y. Zou, Z. Yu, B. Kumar, and J. Wang, “Domain adaptation
for semantic segmentation via class-balanced self-training,”
arXiv preprint arXiv:1810.07911, 2018.

K. M. Ting, “A comparative study of cost-sensitive boosting
algorithms,” in Proc. of ICML. Citeseer, 2000.

Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural
networks with methods addressing the class imbalance prob-
lem,” IEEE Transactions on knowledge and data engineer-
ing, vol. 18, no. 1, pp. 63—77, 2005.

C. Huang, Y. Li, C. Change Loy, and X. Tang, “Learning
deep representation for imbalanced classification,” in Proc.
of CVPR, 2016, pp. 5375-5384.

S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and
R. Togneri, “Cost-sensitive learning of deep feature repre-
sentations from imbalanced data,” IEEE transactions on
neural networks and learning systems, vol. 29, no. 8, pp.
3573-3587, 2017.

Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-
balanced loss based on effective number of samples,” in Proc.
of CVPR, 2019, pp. 9268-9277.

C. Huang, Y. Li, C. L. Chen, and X. Tang, “Deep imbalanced
learning for face recognition and attribute prediction,” IEEE
transactions on pattern analysis and machine intelligence,
2019.

Y.-X. Wang, D. Ramanan, and M. Hebert, “Learning to
model the tail,” in Advances in Neural Information Pro-
cessing Systems, 2017, pp. 7029-7039.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
arXiv preprint arXiv:1502.03167, 2015.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling,” in Proc. of NIPS Workshop on Deep Learning,
2014.

L. v. d. Maaten and G. Hinton, “Visualizing data using t-
sne,” Journal of machine learning research, vol. 9, no. Nov,
pp. 2579-2605, 2008.

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR preprint arXw:1412.6980, 2014.

