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Abstract
Solid-state hydrogen storage materials that are
optimized for specific use cases could be a cru-
cial facilitator of the hydrogen economy transi-
tion. Yet the discovery of novel hydriding ma-
terials has historically been a manual process
driven by chemical intuition or experimental
trial-and-error. Data-driven materials’ discov-
ery paradigms provide an alternative to tradi-
tional approaches, whereby machine/statistical
learning (ML) models are used to efficiently
screen materials for desired properties and sig-
nificantly narrow the scope of expensive/time-
consuming first-principles modeling and exper-
imental validation. Here we specifically fo-
cus on a relatively new class of hydrogen stor-
age materials, high entropy alloy (HEA) hy-
drides, whose vast combinatorial composition
space and local structural disorder necessitates
a data-driven approach that does not rely on ex-
act crystal structures in order to make property
predictions. Our ML model quickly screens hy-
dride stability within a large HEA space and
permits down selection for laboratory valida-
tion based not only on targeted thermodynamic

properties, but also secondary criteria such as
alloy phase stability and density. To experi-
mentally verify our predictions, we performed
targeted synthesis and characterization of sev-
eral novel hydrides that demonstrate signifi-
cant destabilization (70x increase in equilib-
rium pressure, 20 kJ/molH2 decrease in des-
orption enthalpy) relative to the benchmark
HEA hydride, TiVZrNbHfHx. Ultimately, by
providing a large composition space in which
hydride thermodynamics can be continuously
tuned over a wide range, this work will enable
efficient materials selection for various appli-
cations, especially in areas such as metal hy-
dride based hydrogen compressors, actuators,
and heat pumps.

Introduction
A transition to cleaner fuel sources that drasti-
cally reduce or altogether eliminate the release
of harmful emissions is urgent.1 With an energy
density of 120 MJ/kg that is three times that
of gasoline, hydrogen is perhaps the ultimate
clean fuel. When used in a fuel cell, the only
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point-of-use emission product is water, thereby
avoiding emissions associated with fossil fuel
combustion (CO2, NOx, SOx, particulate mat-
ter, etc.).2 However, several technical barriers
have limited the roll-out of a hydrogen-powered
economy, several of the most prominent being
the difficulty of economically and safely storing,
pressurizing, and/or transporting H2.3
Metal hydrides have long been investigated

as promising candidates for hydrogen stor-
age, and their hydriding thermodynamics vary
widely.4–6 For example, TiFe hydrogenates re-
versibly near ambient conditions but, typical
of intermetallic compounds composed of heavy
3d transition metals, has a relatively low hy-
drogen weight capacity and is therefore bet-
ter suited for stationary (rather than vehicu-
lar) storage applications.7 Complex hydrides8,9

on the other hand are much lighter with much
larger enthalpies of desorption, typically re-
quiring extremely high temperatures (hundreds
of ◦C) for hydrogen release. While alloy-
ing/doping10–14 and nanoscaling15–18 can desta-
bilize these complex hydrides, it has generally
been difficult to design a metal hydride that sat-
isfies the delicate trade-off between appropriate
thermodynamic stability and sufficiently high
capacity (in addition to other desirable features
like fast kinetics of dehydrogenation, reversibil-
ity, etc.). A relatively new class of materials
known as high entropy alloys (HEAs), which
have demonstrated usefulness in many appli-
cations,19–25 have recently been investigated
as hydrogen storage materials, demonstrating
outstanding hydrogen-to-metal ratios (H/M >
2) and reversible weight capacities comparable
to TiFe.26 Combined, these properties portend
their usefulness in a variety of hydrogen stor-
age applications. Addressing their vast possi-
ble compositional space in the search of novel,
high-performing hydrides is therefore the focus
of this work.
Typically the search for new hydriding ma-

terials has been a manual one driven by the
chemical intuition, expert knowledge, and de-
sign rules acquired over decades of data col-
lection.27–29 An emerging alternative utilizes a
data-driven materials discovery approach fa-
cilitated by machine/statistical learning (ML)

models, provided an adequate quantity of train-
ing data has been generated or extracted from
the literature.30,31 Once sufficiently trained,
these models are many orders of magnitude
faster to execute than experiments and can be
used to quickly screen materials’ space and dis-
cover novel high-performing candidates. This
paradigm could greatly aid in the discovery
of novel HEAs for hydrogen storage for sev-
eral reasons. First, the HEA composition space
grows combinatorially with the number of pos-
sible principal elements in the alloy, and there-
fore presents an intractable number of mate-
rials for brute-force synthesis or even density
functional theory (DFT)-based screening. The
solid solution (SS) disorder in HEAs must be
sampled or accounted for, so DFT calculated
properties based on a single random distribu-
tion of elements on the lattice may not be suf-
ficiently accurate. Furthermore, prediction of
the equilibrium hydriding pressure requires sim-
ulating the system in an open ensemble, which
is rarely done at the DFT level of theory,32 let
alone for hundreds or thousands of materials.
Therefore, a model that does not explicitly de-
pend on crystal structure (so-called composi-
tional ML models33–35) that can rapidly predict
hydriding thermodynamics would greatly facil-
itate the rapid discovery of new HEA hydride
candidates.
Specifically, we focus on a synergistic ap-

proach to materials discovery, whereby we first
utilize ML-enabled high-throughput screening
to quickly predict hydride stability for a novel
dataset of HEA candidates. Since the inter-
pretability of our compositional-ML model has
recently elucidated a simple design rule,31 we
can even perform a priori selection of candi-
dates with a desired thermodynamic stability
simply based on features derived solely from
their proposed composition. This exercise re-
veals that the equilibrium pressure of the HEA
hydrides in the dataset spans many orders of
magnitude and signifies usefulness in a vari-
ety of applications, from H2-getters36 to storage
materials. Several of these novel HEA compo-
sitions were rationally selected (based on the
ML model-based design rule), synthesized, and
hydrogenated to demonstrate the large destabi-
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lization that can be induced through composi-
tional modifications within the dataset. Exten-
sive DFT calculations validate the same design
rule while adding additional physical insight, al-
beit at greater computational cost (i.e. requir-
ing significant time on high performance com-
puting resources, whereas the machine learn-
ing models applied herein can be trained and
executed with just a desktop machine). Ulti-
mately, this demonstrates that the thermody-
namic stability can be a priori predicted and
continuously tuned over a large window within
this HEA material set. Both are necessities, for
example, to enable technologies like metal hy-
dride hydrogen compressors.37,38

Methods
HEA synthesis. The alloys were synthesized
by melting lumps of Ti (Goodfellow, 99.99%
metals basis), V (ChemPur, 99.9% metals ba-
sis), Nb (Alfa Aesar, 99.95% metals basis),
Zr (Chempur, 99.8% metals basis, excluding
Hf), Hf (Chempur, 99.8% metals basis, max-
imum 4% Zr), Ta (Goodfellow, 99.9% met-
als basis), Cr (Alfa Aesar, 99.995% metals ba-
sis), Mo (Goodfellow, 99.9% metals basis), Al
(Gränges, 99.999% metals basis), Pd (Hereaus,
99.9% metals basis) in an electric arc furnace in
Ar atmosphere. Elements with low vapor pres-
sure (Al, Cr) were pre-alloyed before final syn-
thesis to avoid evaporation. To ensure chemi-
cal homogeneity, the samples were remelted five
times and flipped between each melting. The
mass losses were in all cases less than 0.1 wt%
and thus the resultant composition can be con-
sidered very close to the nominal. Some of the
ingots were then filed to powder with a metal
file for X-ray diffraction analysis and the rest
cut into smaller pieces for hydrogenation.

X-ray diffraction. Laboratory X-ray diffrac-
tion (XRD) was carried out on a Bruker
D8 advance with Cu Kα radiation equipped
with a LynxEye XE-T detector operating in
Bragg-Brentano geometry, with the powders
placed on zero-background Si-wafer sample
holders. The data was analyzed by the Ri-

etveld method implemented in the software
Topas v6 Academic.39 Peak shapes were mod-
elled by Thompson-Cox-Hastings pseudo Voigt
function40 and the background by a six-order
Chebyshev polynomial. Site occupancies were
fixed to the nominal composition in all cases.

Energy Dispersive X-Ray Spectroscopy.
A JEOL JSM-7600F Thermal Field Emission
Electron Microscope was used to obtain SEM
images, and an Oxford X-Max 80 detector with
Aztec Software was used to obtain Energy Dis-
persive X-Ray Spectroscopy (EDS) maps. The
conditions for both the SEM images and the
EDS maps were: HT = 15kV, WD(nominal) =
8mm, Probe setting = 6. The sample was de-
posited onto carbon tape on an Aluminum stub,
and no coating was applied. Areas chosen for
analysis were fairly level and flat for best imag-
ing results. This also pertains to obtaining the
best EDS detection (count rate), as dramatic
topography often results in shadowing that may
be interpreted as an area depleted in an ele-
ment.

PCT data collection. Pressure composition-
temperature (PCT) isotherms were collected
using a Setaram PCTPro instrument. Samples
were loaded into high-pressure vessels, sealed
with stainless-steel gaskets, and put under vac-
uum before thermal activation at 753 K. The
thermocouple measuring the temperature is
located outside of the stainless-steel pressure
vessel in a thermocouple well to minimize the
thermal gradients between the samples and the
vessel exterior. The pressure transducers had
an accuracy of ±1%. The PCT experiments
were conducted isothermally between 562 to
609 K to ensure that the kinetics of hydro-
gen uptake are fast enough to reach chemical
equilibrium.

Computational methods. The machine
learning models, specifically gradient boost-
ing tree regressors and classifiers, presented
herein were implemented using the scikit-learn
library.41 The Jupyter notebooks to reproduce
all models and results exactly (using the same
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hyperparamters and random seeds) are pro-
vided in Section S4, and additional details on
the models are provided in Section S1 and Sec-
tion S2. All DFT calculations were performed
using the Vienna Ab initio Simulation Pack-
age,42 with additional details on DFT settings
summarized in Section S3.

Results and discussion
Enumerating the HEA design space.
HEAs based on refractory metals have shown
significant promise for hydrogen storage due
to their propensity for high H/M ratios, high
volumetric capacities, and reversibility,43,44 al-
though these properties depend significantly
on alloy synthesis techniques and activation
procedures.45 While lower in gravimetric ca-
pacity than typical complex hydrides, they
may prove practical for various applications
due to these aforementioned advantages. Fur-
thermore, the vast compositional tunability of
HEAs provides a wide space for chemical explo-
ration to further optimize their properties. We
enumerate all equimolar 4-, 5-, and 6-element
high entropy alloys from the set E = {Al, Ti,
V, Cr, Zr, Nb, Mo, Pd, Hf, Ta}. These are
mainly refractory metals (which tend to be
widely studied for use in hydrogen absorbing
HEAs46) with several other elements included
that have demonstrated solid solution HEA for-
mation with refractory metals.47 Off-equimolar
compositions could be identically incorporated
into this screening workflow, we simply omit
them for now since it would lead to an even
greater explosion of possible chemical space.
For convenience we will call this space of 672
compositions the refractory (rHEA) data set.

rHEA =

(
E

4

)
+

(
E

5

)
+

(
E

6

)
(1)

An improved ML model for hydride ther-
modynamics. In previous work31 we trained
gradient boosting tree (GBT)41,48 regressor
models to predict the thermodynamic proper-
ties of metal hydrides. The training data was
derived by thoroughly cleaning and curating

the HydPARK database, a historical reposi-
tory of ∼2700 entries for alloy and intermetal-
lic compositions and their experimental hydrid-
ing properties. Duplicate or incomplete entries
whose hydride dissociation enthalpy (∆H) and
entropy (∆S) could not be ascertained were
discarded, leaving only ∼400 materials for the
“ML-ready” HydPARK database.31 We then
computed the equilibrium pressure, ln(Peq/Po),
as our ML target property via

ln (Peq/Po) = −∆H

RT
+

∆S

R
. (2)

Po is the reference pressure of 1 bar, and, as-
suming temperature independence of ∆H and
∆S, we standardize our target property at 25
◦C across all materials, denoted by ln(P o

eq/Po).
Note that the GBT model cannot predict val-
ues outside the range of the target property ob-
served in the training set. The fixed-length fea-
ture vector, x ∈ R145, used to describe each
material was computed using Magpie33 and de-
rives solely from the alloy composition. The
ability to make these thermodynamic predic-
tions without knowing the exact crystal struc-
ture is paramount given the solid solution char-
acter of HEAs and since rigorous computational
prediction of an open ensemble observable like
ln(P o

eq/Po) using an ab initio potential energy
surface for hundreds of materials is infeasible.
Before proceeding with the rHEA screening,

we improve upon the aforementioned model.
First, we add two new training examples
to the HydPARK database, corresponding to
two rHEA alloys (TiVZrNbHf and TiVZrNb)
whose hydriding thermodynamics were previ-
ously reported in the literature.46 We refer
to this slightly expanded training set as the
HydPARK+ database. As discussed in Sec-
tion S1.3, these materials introduce additional
examples to the training data in a low frequency
regime of the feature that is most important
to the model, which heuristically explains why
a model trained on HydPARK+ produces sys-
tematically shifted predictions (see Figure 1).
The only way to validate the model’s accu-
racy for this unlabeled dataset is to experimen-
tally synthesize and obtain novel rHEA ther-
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modynamic data, the ultimate objective of this
work. The second model improvement comes
from the addition of new composition-derived
features. For all X elements contained across
all HydPARK+ compositions, we extract the
Materials Project computed49,50 formation en-
thalpy per atom of the most stable binary hy-
dride structure, ∆Hbh,X . For each HydPARK+
composition, we then compute the composition-
weighted average binary hydride formation en-
thalpy per atom,

∆H̄bh =
∑
i

fi∆Hbh,i, (3)

where fi is the composition fraction of element
i. This is combined with the Magpie features
and helps improve the model’s ability to pre-
dict ∆S, for example (see Section S1). The
mean absolute error (MAE) of the ln(P o

eq/Po)
and ∆H predictions of the original model are
1.5 and 6.1 kJ/molH2, respectively. Our new
model trained on HydPARK+ with this feature
addition modestly decreases the error to 1.4 and
5.5 kJ/molH2, respectively. More model train-
ing details and comparisons to the accuracy of
previous models are provided in Section S1.

Wide ranging stability of rHEA hydrides.
Using the new HydPARK+ ML model, Fig-
ure 1a plots the predictions of ln(P o

eq/Po) and
∆H for all rHEA hydrides versus the fea-
ture identified as most important by the GBT
model,

ν̄pa =
∑
i

fiνpa,i. (4)

Here νpa,i is the ground state volume per atom
of the elemental solid (see Ref. 31 for more
discussion on physical interpretation of feature
importance). Each material is color coded
by its molecular weight. Star markers indi-
cate previously reported HEA hydrides,43 al-
though measurement of ∆H and ∆S have only
been reported for a few structures, which is
why we plot their ML predicted values in Fig-
ure 1a. The original benchmark HEA hydride,
TiVZrNbHfHx, actually corresponds to one of
the most stable hydrides in the rHEA dataset,
and so we target novel, destabilized hydrides

with square markers in this work. While this
GBT model is significantly more complex (and
accurate, see Section S1) than a simple lin-
ear model with ν̄pa as the sole feature, we
can generally target novel HEA hydrides with
greater destabilization by considering composi-
tions with smaller ν̄pa. Such insights can only
be derived when utilizing ML techniques that
afford some degree of interpretability. The pre-
dictions of a ∆H model are also shown in Fig-
ure 1a vs. ν̄pa, demonstrating the rHEA dataset
spans a stability window of ∼35 kJ/molH2.
Figure 1b shows that the rHEA predicted

thermodynamics are systematically affected by
the additional data in HydPARK+. Specifi-
cally, the original model under-predicts hydride
stability (low ln(P o

eq/Po), high∆H, low∆S ma-
terials) relative to the HydPARK+ model. In
Section S1.3 we rationalize this systematic shift
as a consequence of these additional materials
occupying a low-frequency region of ν̄pa space
in the training data. After synthesizing and
collecting the thermodynamic properties of the
materials proposed in Figure 1a (the objective
of this work), we can anticipate successively im-
proved general accuracy of the ML thermody-
namics model for future materials selection.
Figure 1c summarizes a global view of the

SHapley Additive exPlanations (SHAP) val-
ues51,52 for the ln(P o

eq/Po) model. Briefly, a
SHAP value is computed for each feature of
each material instance; this specifies how an in-
stance’s feature value “forces” the model’s pre-
diction to deviate from a baseline value. In
this case, the baseline value is just the mean
of the target value predictions across the en-
tire dataset. The top and bottom plots show
the SHAP values for the model trained on ei-
ther the original HydPARK or HydPARK+
with additional features, respectively. Each
marker represents a SHAP value (given by the
x-coordinate) for a given feature (y-axis label)
and rHEA instance. In other words, there are
672 SHAP values plotted per row, correspond-
ing to the total number of rHEAs in the dataset.
Each SHAP value is color-coded by its corre-
sponding feature value. Note that only 9 out of
the 145 most important features (as quantified
by the sum of all SHAP values for each feature)
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Figure 1: (a) ML-predicted ln(P o
eq/Po) and ∆H vs. ν̄pa for the rHEA dataset. Stars represent

materials previously synthesized and tested for H2 uptake while squares represent new candidates
identified in this work. (b) Parity plots between rHEA thermodynamic predictions when using a
model trained on the original HydPARK dataset vs. the HydPARK+ dataset (dashed black line
corresponds to y = x). Enthalpy change, ∆H, is in units of [kJ/molH2] and entropy change, ∆S,
is in units of [J/(molH2 K)]. (c) SHAP values for ln(P o

eq/Po) predictions on the rHEA dataset for
models trained on the original HydPARK (top) and HydPARK+ (bottom) datasets. Note that for
Magpie features not explicitly defined here, a detailed explanation can be found in Ref. 33.

are displayed here.
The new model’s qualitative structure re-

mains relatively unchanged for the most impor-
tant features; the change in equilibrium pres-
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sure predictions observed in Figure 1b mainly
arises from a re-scaling of the model’s depen-
dence on ν̄pa. This arises since the equilib-
rium pressure is a function of ∆H and ∆S, and
∆H subsequently depends strongly on ν̄pa (Sec-
tion S1). The model’s predictions change more
subtly with respect to some of the less impor-
tant features. The additional feature’s value be-
comes evident with the emergence of ∆H̄bh, the
second most important feature in the prediction
of ∆S (Section S1). S̄G# =

∑
i fiSG#i, where

SG#i is the space group number of ground state
elemental solid i, is also highlighted in Figure 1c
since it is the most important feature in the pre-
diction of ∆S (Figure S1).

Phase selection from explainable clas-
sifiers. Synthesis of single-phase, body-
centered cubic (BCC) SS alloys is an attractive
starting point for designing high capacity hy-
drides.53 Therefore, an additional model that
predicts whether a given HEA composition
forms a thermodynamically stable single-phase
SS could be a useful filter before testing its
hydriding properties. One approach involves
high-throughput CALPHAD calculations based
on experimental data, yet the expected accu-
racy decreases with increasing number of ele-
ments due to the expansive amount of exper-
imental data required.54,55 SS forming ability
could be calculated from ab initio MD/MC,56

but this again quickly becomes intractable (i.e.
computing free energies of disordered, many-
component solids) for more than just a handful
of materials.
A simpler approach to deal with many com-

ponent HEAs involves learning directly from
experimental data such as the database com-
piled by Miracle et al.,47 which includes all
HEAs studied before 2015. The authors
compiled ∼400 literature reported composi-
tions and whether the given compound forms
an intermetallic (IM), an impure mixture of
IM+SS, or a single-phase SS. Deriving empiri-
cal rules56–58 or training statistical models59 to
predict the SS forming ability based on these
literature reports presents a more computation-
ally feasible approach.
We train a GBT classifier and an Aver-

aged Weights for Explainable Machine Learn-
ing (AWE-ML) classifier60 to predict whether
a given composition is likely to exhibit a sta-
ble SS, SS+IM, or IM phase using the Mira-
cle et al. database.47 Details of the classifiers’
training and performance are provided in Sec-
tion S2. We then classify the rHEA dataset
with both models, and Figure 2a shows the con-
fusion matrix between the AWE-ML and GBT
class predictions. Rows correspond to a GBT
prediction, while columns correspond to AWE-
ML predictions; therefore, 74% of rHEA mate-
rials are jointly predicted as having single-phase
SS by the two models. This indicates both
higher confidence in these predictions and that
a significant portion of the rHEA dataset forms
a stable SS phase, which has also been typi-
cal in experimental observations.43,46 While the
rHEA compounds represent a new, unlabeled
dataset due to their lack of overlap with the
Miracle et al. training data, a small scale valida-
tion can be performed using the more recently
synthesized compounds (highlighted by stars in
Figure 1a). All 10 of these alloys show an ex-
perimentally validated single-phase SS, and the
GBT vs. AWE-ML confusion matrix is shown
again in Figure 2b for these 10 compounds.
Thus, the GBT and AWE-ML models have a
classification accuracy of 80% and 70%, respec-
tively, within this limited hold out set. We can
therefore further down-select HEA candidates
for hydrogenation experiments based on addi-
tional requirements, such as SS forming ability,
with reasonable accuracy.

Synthesis of novel HEA hydrides. Novel
rHEA compositions were selected for alloy syn-
thesis and hydriding experiments based on ML
predictions of the alloy’s single-phase SS sta-
bility and the hydride’s thermodynamic stabil-
ity (using the HydPARK+ augmented model).
Final candidates include AlTiVNbTa and Al-
TiVCr due to their predicted destabilization,
i.e. higher ln(P o

eq/Po), relative to the bench-
mark TiVZrNbHf system and since they con-
veniently include lighter-weight, lower-cost alu-
minum. AlTiVNbTa was chosen for synthesis
due to predicted modest destabilization (∆H ∼
50 kJ/molH2) and AlTiVCr due to significant
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Figure 2: (a) Confusion matrix between AWE-
ML and GBT predicted classes for the rHEA
dataset, normalized over all 672 compositions.
(b) Confusion matrix between AWE-ML and
GBT predicted classes for the 10 previously
synthesized compounds highlighted in Fig-
ure 1a, all of which have experimentally vali-
dated SS phases.

destabilization (∆H ∼ 40 kJ/molH2) in com-
parison to TiVZrNbHf (∆H ∼ 60 kJ/molH2).
All alloys are synthesized as single-phase BCC
SS (Figure 3a). Energy Dispersive X-Ray Scat-
tering (EDS) maps of the as-synthesized and
post-hydrided AlTiVNbTa sample are shown in
Figure 3b. These EDS maps and the atomic
fractions of elements shown in Table 1 indicate
that elemental segregation is not observed post
hydriding. Section S5.2.2 contains the complete
spectra and experimental details.
Figure 3c shows absorption pressure-

composition-temperature (PCT) data for
TiVZrNbHf, AlTiVNbTa, and AlTiVCr. The
measured plateau pressures for these new com-
positions immediately demonstrates the pre-
dicted destabilization trend, with c.a. two
orders of magnitude increase in equilibrium
pressure for AlTiVCr relative to TiVZrNbHf.

Table 1: Atomic percents of the as synthesized
alloy and post-hydrided sample for AlTiVNbTa
and AlTiVCr corresponding to the complete
spectra in Section S5.2.2.

AlTiVNbTa AlTiVCr
Element Alloy Post-H2 Alloy Post-H2

Al 20.8 21.1 25.7 29.6
Ti 20.4 20.0 23.3 24.0
V 20.4 20.0 22.0 24.3
Cr - - 28.8 22.1
Nb 22.4 22.5 - -
Ta 16.0 16.4 - -

For each material, a van’t Hoff analysis (Sec-
tion S5.3.2) was used to obtain ∆H and
∆S, which can in turn be used to com-
pute ln(P o

eq/Po). Experimental measurements
vs. ML-predicted values are shown in the left
column of Figure 3d (note that we also in-
cluded recent thermodynamic measurements
on TiVCrNb from Ref. 61 for comparison).
Most importantly, the ML model correctly pre-
dicts the experimentally observed destabiliza-
tion trend in ln(P o

eq/Po). Examination of the
models that individually predict ∆H and ∆S
further confirms the higher performance of the
former, as foreshadowed by their validation
MAEs (Section S1).
In the right column of Figure 3d, the same

thermodynamic quantities are plotted vs. their
most important feature as identified by their
individual GBT models. As anticipated from
the interpretability analysis (Figure 1c and Sec-
tion S1), linear regression of ln(P o

eq/Po) and
∆H with ν̄pa yields large coefficients of deter-
mination with R2 > 0.9. This specifically val-
idates the first order design rules elucidated
by the ML model and signifies that the great-
est future improvements in model accuracy will
come from improved ∆S predictions; however,
this may require utilizing more sophisticated
ML methods, accounting for specific crystallo-
graphic information in the featurization, relax-
ing the assumed temperature independence of
∆S, and/or obtaining more experimental train-
ing data. For example, the error on the ML
predicted ∆S of AlTiVCr is larger than other
compositions and could be due to the lack of
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Figure 3: (a) XRD patterns of the as synthesized benchmark TiVZrNbHf and the novel compo-
sitions, AlTiVCr and AlTiVNbTa, synthesized in this work. (b) 10000x SEM/EDS maps for Al-
TiVNbTa. (c) Absorption PCT isotherms at 578 K, 561 K, and 571 K for TiVZrNbHf, AlTiVNbTa,
and AlTiVCr, respectively. (d) Experimental hydriding thermodynamics vs. ML predictions (left
column) and vs. the most important feature for each model (right column) with color-coding con-
sistent with (c). Thermodynamic values for TiVCrNb were computed from the PCT data reported
in Ref. 61 and included for comparison as black stars where the central temperature for the van’t
Hoff analysis was 100 ◦C.

training data in this region; we expect such pre-
dictions could be further improved when more
experimental training data becomes available.
The final database of all rHEA property predic-
tions is provided in the Supplementary Files.

Corroborating rHEA thermodynamic
trends with DFT. While compositional ML
models are highly efficient for screening HEA
phase behavior and hydride stability, DFT cal-

culations can provide additional insight into
the HEA hydriding reaction, in particular by
probing local structure and favorable hydrogen
binding sites. A “low-throughput” screening of
HEA hydriding can be achieved for a handful
of compositions to obtain similar qualitative in-
sight as the compositional ML model, as well as
more advanced mechanistic insight. For a given
composition and BCC and FCC lattices, this
workflow consists of relaxing a large number
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Figure 4: DFT calculated hydride desorption enthalpy as a function of hydrogen loading (H/M
ratio) for different HEA compositions in either the BCC or FCC lattice. In order to probe the
effect of metal distribution on calculated enthalpies, two alloy starting configurations were chosen
(Γ1 and Γ2) as previously described. Dashed purple lines indicate the saturation H/M loading found
for AlTiVCr, AlTiVNbTa, and TiVZrNbHf (Figure 3c) and for TiVCrNb (Ref. 61).

(∼100-300) of configurations with random SS
site ordering. The configuration with the lowest
formation energy Γ1 and that with the median
formation energy, Γ2, are selected for hydrid-
ing. For a given Γ and a specified minimum
possible H-H distance, dmin = 1.8 Å (chosen
to be less than the Switendick criteria62 while
greater than experimentally measured excep-
tions to this rule63), hydrided structures at
varying H/M ratios are produced as follows.
All tetrahedral sites are identified and sorted
from lowest to highest mean electronegativity of
the surrounding lattice atoms. Hydrogen atoms
are sequentially placed at these sites unless it
is within dmin of an already placed H, in which
case the site is skipped. After all tetrahedral
sites are exhausted, the same procedure is re-
peated for octahedral holes that do not violate
the dmin constraint. The hydrided structures
are then relaxed, and the DFT energy of the
hydrided lattice, EHEA+H2 , the original alloy,
EHEA, and the gas phase H2 molecule, EH2 , can
be used to approximate the desorption enthalpy
at 0K for a structure with N hydrogen atoms,

∆H =
1

(N/2)
(EHEA + (N/2)EH2 − EHEA+H2) .

(5)
Additional details on the DFT calculation set-
tings are provided in Section S3.42,64–67

The results for TiVZrNbHf, TiVCrNb, Al-

TiVNbTa, and AlTiVCr are summarized in Fig-
ure 4 and reveal several important mechanis-
tic insights. First, the binding of hydrogen at
low H/M concentrations is extremely favorable
across the entire HEA series. Secondly, based
on this screening procedure, the desorption en-
thalpy of Γ1 and Γ2 configurations for a given
lattice type as a function of H/M remains simi-
lar, with the exception of the FCC lattice of Al-
TiVNbTa. So, to first approximation, a higher
energy starting configuration (Γ2) does not have
a significant impact on conclusions drawn from
these computational predictions. Third, all
HEAs here are synthesized as single-phase BCC
SS alloys (Figure 3a and Ref. 61) and TiVCrNb
and TiVZrNbHf were shown to exhibit a BCC
to FCC transition upon hydriding.43 This is
reproduced by DFT since, beyond some criti-
cal concentration typically around H/M=1, the
stability of the FCC lattice is significantly in-
creased (higher desorption enthalpy) relative to
the BCC lattice. This implies that the hydrid-
ing enthalpy is the thermodynamic driving force
for the experimentally observed BCC to FCC
phase transition. Finally, regardless of lattice
type or configuration, the DFT-predicted ∆H
exhibits the same qualitative trend of increased
stability across TiVZrNbHf > AlTiVNbTa >
AlTiVCr. For two materials like AlTiVNbTa
and TiVCrNb that have very similar experi-
mentally measured ∆H but significantly dif-
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ferent capacities, Figure 4 effectively illustrates
that the FCC hydride remains much more sta-
ble at higher H/M than that of AlTiVNbTa,
which continues to decrease in stability as H/M
increases.
Next, we show the DFT calculated forma-

tion energies (in meV/atom) of alloys and hy-
drides (with H/M=2) with respect to elemental
reference in Figure 5. These calculations are
for the Γ1 configuration. For the HEAs lack-
ing Al, the formation energies of the metal al-
loys are positive, indicating that entropic con-
tributions stabilize the SS phase. The forma-
tion energies of the FCC hydride (at H/M=2)
are lower than that of the BCC hydride phase,
again a qualitative signature for the BCC to
FCC phase transition upon hydrogenation as
observed experimentally in several of the HEA
compositions.46 Most importantly, we observe
the general trend of less stable alloys leading
to more stable hydrides across all HEA compo-
sitions considered, which follows the common
rule of alloy-hydride reversed stability discussed
extensively in experimental and computational
studies on intermetallic hydrides.31,68 Such cor-
relation, in combination with the ML models
which we discussed earlier, provides qualitative
design trends to target HEAs with desired hy-
driding thermodynamics.

AlTiVCr AlTiVNbTa TiVCrNb TiVZrNbHf

−300

−200

−100

0

100

∆
E
f

[m
eV

/a
to

m
]
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FCC alloy

BCC hydride

FCC hydride

Figure 5: DFT calculated formation energies
(in meV/atom) of alloys and hydrides (with
H/M=2) with respect to elemental reference.
Calculations are for the Γ1 configuration.

Ultimately, these calculations can be utilized
as a first-order screening method to reproduce
ML and experimental stability trends and to

gain atomistic understanding of preferred hy-
drogen binding sites and energies. Moreover,
while our ML models currently only support
thermodynamic property predictions, this DFT
analysis adds qualitative insights in hydriding
capacity. To achieve rigorous and quantita-
tive prediction of hydride stability, i.e. equi-
librium pressure, at the DFT level of accuracy
for a large number of HEAs, however, will re-
quire significant computational efficiency ad-
vancements. A link is provided in Section S4
to our toolkit that generates the HEA hydride
structures used in the DFT analysis above.

Conclusions
The wide ranging tunability of HEAs presents
an intractably large design/composition
space for brute force experimentation or
high-throughput calculation of expensive-to-
compute properties (i.e., the hydriding equi-
librium pressure at an ab initio theory level).
With the goal of efficiently predicting and syn-
thesizing novel HEA hydrides that are desta-
bilized relative to TiVZrNbHf, a different ap-
proach is clearly needed. We therefore trained
an explainable ML model on the HydPARK
database of metal hydride thermodynamic
properties, and, through additional data and
features, systematically improved the model in
order to high-throughput screen the hydrid-
ing thermodynamics of 672 rHEA materials.
After applying secondary selection criteria, in-
cluding a separate model that predicted the
alloy’s single-phase SS formation, several novel
compositions were experimentally synthesized.
The measured hydriding thermodynamics not
only reproduced the predicted trend in hy-
dride destabilization, but also validated the
simple, first-order design rules elucidated by
the explainable ML model. With AlTiVCr, a
∆H decrease in 20 kJ/molH2 was both pre-
dicted and observed relative to TiVZrNbHf,
leading to a ∼ 70x increase in the plateau
pressure. In addition to these fundamental in-
sights, this work provides practically important
knowledge: namely, a large, open-source HEA
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dataset where the desired equilibrium pressure
spans orders of magnitude but can be finely
and continuously tuned. This type of informa-
tion is a necessity to enable technologies like
metal hydride hydrogen compressors, for exam-
ple, which require a series of hydrides exhibit-
ing specifically targeted, increasing equilibrium
pressures across a wide range.
Significant opportunities remain to improve

the search for optimal HEAs for hydrogen stor-
age across different applications. For exam-
ple, continued experimentation is required to
provide more ML training data on composi-
tions beyond the current scope of the rHEA
dataset.69 Predictive power over a wider HEA
compositional space could lead to the discovery
of materials that simultaneously exhibit ther-
modynamic destabilization without sacrificing
capacity, a trade-off that was clearly observed
with TiVZrNbHf, AlTiVCr, and AlTiVNbTa
and elsewhere.43 We additionally performed a
DFT screening procedure to probe ∆H of HEA
hydrides. Importantly, this DFT screening pro-
cedure is computationally tractable and repro-
duced the destabilization trend predicted by
ML and shown by experiments, while simulta-
neously providing more atomistic insight into
the hydriding process. If HEA hydride ther-
modynamic data can be continually collected
(either experimentally or computationally) and
stored in centralized, standardized reposito-
ries,70 the quality of ML thermodynamic mod-
els will be further improved. This will lead to
rapid progress in the nascent search for lighter,
destabilized HEA hydrides with higher gravi-
metric delivery at milder conditions. In this
spirit, the code and data to retrain all ML mod-
els, as well as the final database of rHEA pre-
dicted properties, is provided open source.

Supporting Information
The Supporting Information is available free of
charge.

• Thermodynamic model details (Sec-
tion S1); Phase prediction model details
(Section S2); DFT settings (Section S3);

Code availability (Section S4); Experi-
mental methods (Section S5)
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