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ABSTRACT
With the advent of next-generation surveys and the expectation of discovering huge numbers of strong gravitational lens systems,
much effort is being invested into developing automated procedures for handling the data. The several orders of magnitude increase
in the number of strong galaxy–galaxy lens systems is an insurmountable challenge for traditional modelling techniques. Whilst
machine learning techniques have dramatically improved the efficiency of lens modelling, parametric modelling of the lens mass
profile remains an important tool for dealing with complex lensing systems. In particular, source reconstruction methods are
necessary to cope with the irregular structure of high-redshift sources. In this paper, we consider a convolutional neural network
(CNN) that analyses the outputs of semi-analytic methods that parametrically model the lens mass and linearly reconstruct
the source surface brightness distribution. We show the unphysical source reconstructions that arise as a result of incorrectly
initialized lens models can be effectively caught by our CNN. Furthermore, the CNN predictions can be used to automatically
reinitialize the parametric lens model, avoiding unphysical source reconstructions. The CNN, trained on reconstructions of lensed
Sérsic sources, accurately classifies source reconstructions of the same type with a precision P > 0.99 and recall R > 0.99. The
same CNN, without retraining, achieves P = 0.89 and R = 0.89 when classifying source reconstructions of more complex lensed
Hubble Ultra-Deep Field (HUDF) sources. Using the CNN predictions to reinitialize the lens modelling procedure, we achieve
a 69 per cent decrease in the occurrence of unphysical source reconstructions. This combined CNN and parametric modelling
approach can greatly improve the automation of lens modelling.
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1 IN T RO D U C T I O N

Galaxy–galaxy strong gravitational lensing is a unique tool for
investigating a wide variety of interesting astrophysical questions.
Strong lensing has been used to investigate the nature of dark matter,
such as placing lower bounds on neutrino masses in sterile neutrino
dark matter models (Vegetti et al. 2018). Strong lensing has been
effective in studying the mass profiles of elliptical galaxies both
in the local Universe and at cosmological scales (Koopmans &
Treu 2003; Lagattuta et al. 2010). The lensing of extended sources
allows for detailed analysis of galaxy density profiles that can
provide insights into the dark matter substructure of galaxies (Vegetti
& Koopmans 2009a,b). Combining strong lensing measurements
with other probes, such as spectroscopy, has led to an increased
understanding of the evolution of the mass profile in elliptical
galaxies over cosmic time (Sonnenfeld et al. 2013). Time delay
cosmography, where a variable background source such as a quasar
is multiply imaged by a lensing galaxy allows for the inference of
key cosmological parameters, such as the Hubble constant (Birrer
et al. 2020; Wong et al. 2020).

In addition to learning about massive elliptical galaxies, strong
lensing allows us to probe populations of high-redshift source
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galaxies (Richard et al. 2011; Dye et al. 2018). Spatially resolved
observations of strongly lensed star-forming galaxies enable the
study of kinematics on sub-kpc scales (Swinbank et al. 2009; Jones
et al. 2010; Rizzo et al. 2020). High-resolution interferometers such
as the Atacama Large Millimetre Array (ALMA) have made it
possible to study these sources in exquisite detail (Dye et al. 2015).

There have been several surveys with a focus on lensing, such
as the Sloan Lens ACS (SLACS) Survey (Bolton et al. 2006),
the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS)-
Strong Lensing Legacy Survey (SL2S; Cabanac et al. (2007), and
the Baryon Oscillation Spectroscopic Survey (BOSS) Emission-
Line Lens Survey (BELLS; Brownstein et al. 2012). To date, the
number of strong lensing systems we know of is still relatively small,
measuring in the hundreds. This is set to change in the coming years,
with two significant surveys coming online. Euclid (Laureijs et al.
2011), the European Space Agency’s telescope scheduled to launch
in 2022 will cover 15 000 deg2 over 6 yr and study the accelerated
expansion of the Universe out to a redshift of z = 2. Additionally,
the Vera Rubin Legacy Survey of Space and Time (LSST; Ivezic
et al. 2008), also focused on the study of dark energy and dark
matter, will commence science operations in 2023. LSST will cover
18 000 deg2 over 10 yr in six different filters (u, g, r, i, z, and y). It is
expected that these surveys will discover many tens of thousands of
lensing systems; 120 000 and 170 000 lenses for LSST and Euclid,
respectively (Collett 2015). For this reason, the development of fast,
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automated, and accurate pipelines for finding and modelling strong
lenses is of great importance.

Typical methods for finding strong gravitational lenses are based
upon visual inspection of candidate images that have been selected
using properties such as morphology, colour, and luminosity (Sygnet
et al. 2010; Pawase et al. 2014). Searches for high-redshift spectral
lines present in lower redshift galaxies have been used to find strong
gravitational lenses, such as in the SLACS Survey. Techniques
designed to identify arc-like structures and rings in images have
been developed and applied to surveys with some success (Seidel
& Bartelmann 2007; Gavazzi et al. 2014). Approaches based on
the quality of fit to the data achieved by lens modelling have been
developed (Marshall et al. 2009; Sonnenfeld et al. 2018), although
the speed and flexibility of such approaches are a challenge for
dealing with large amounts of data. Another approach to this problem
utilizes supervised machine learning algorithms, such as artificial
neural networks and Gaussian mixture models (Bom et al. 2017;
Ostrovski et al. 2017). Recently, there has been interest in developing
unsupervised machine learning algorithms to tackle the challenge of
lens finding (Cheng et al. 2020).

Finding strong gravitational lenses is only one aspect of the
challenge; they must also be modelled. When dealing with the lensing
of an extended source, we wish to reconstruct both the source’s
intrinsic brightness distribution and model the mass distribution of
the lens galaxy. One such method is that of semilinear inversion
(Warren & Dye 2003), a technique that reconstructs the pixelized
source in a linear step for a given lens model. This technique
has been placed within a Bayesian framework for optimizing the
model evidence (Suyu et al. 2006) and more recent implementations
reconstruct the source on an irregular grid of pixels that can adapt to
the lens magnification or the source surface brightness (Nightingale
& Dye 2015; Nightingale, Dye & Massey 2018). Another method
for reconstructing the intrinsic source makes use of the family of
polynomials known as shapelets (Birrer, Amara & Refregier 2015).
An analytical reconstruction of the source can be formed using a
small subset of these polynomials, leading to a reduced number of
source parameters (Tagore & Jackson 2016). Convolutional neural
networks (CNNs) have been used to reliably and automatically
recover the mass-model parameters of galaxy–galaxy strong lenses in
orders of magnitude less time than traditional parametric techniques
(Hezaveh, Perreault Levasseur & Marshall 2017; Pearson, Li & Dye
2019). Furthermore, advancements have been made in the application
of neural networks for reconstructing the background source of a
strongly lensed system (Morningstar et al. 2019).

Techniques that model the lens mass with a parametric density
profile remain a necessary and indispensable tool. There are sig-
nificant difficulties involved in creating unbiased and sufficiently
varied training sets for CNNs to learn from. This is a particular
problem in the case of lensed high-redshift sources, where the source
light is likely to be highly irregular. In addition, contamination of a
lens data set by objects such as galaxy mergers and ring galaxies
poses a problem for CNN-based methods. In these circumstances,
a CNN will produce a set of lens model parameters without any
indication of failure, whilst parametric modelling techniques will
fail to fit the data since they operate within the context physically
motivated density profiles and are bound by the multiple imaging
constraints of a real lens. Typically, it has been necessary to
rely upon parametric techniques to obtain a robust measure of
uncertainties on the lens parameters. Recently, however, methods
for obtaining the uncertainties on CNN predicted parameters have
been developed (Levasseur, Hezaveh & Wechsler 2017; Park et al.
2020).

A particular issue for methods based on the pixelized source
reconstruction is the existence of unphysical solutions (see Section 2
for details). Such solutions are perfectly valid, providing excellent
fits to the data and can be challenging for sampling algorithms to
avoid. An unsupervised modelling run can spend large amounts
of time exploring the parameter space around these solutions and
never converge towards the true parameter values. These solutions
can be avoided with careful tuning of the model parameters, but
this represents a significant investment of time for each system being
modelled. For this reason, we have developed a CNN-based approach
to recognize these unwanted solutions and a simple prescription for
updating the priors in our model to aid convergence towards the true
solution. In this manner, we can iteratively improve our lens model
by identifying and avoiding reconstructions that correspond to under-
and overmagnified solutions.

The paper is organized as follows. Section 2 describes the
occurrence of unphysical solutions in the modelling process and
their properties. Section 3 discusses the methodology for simulating
the required images of strongly lensed galaxies, and the processes
involved to create source reconstructions from these images. Addi-
tionally, an overview of the CNN architecture is provided with details
on how the network was trained and the manner in which the CNN
was used in conjunction with our modelling process. The results of
applying this technique to our testing set of data are presented in
Section 4. Finally, the results in this work are discussed along with
our conclusions in Section 5. Throughout this paper we assume a
flat � cold dark matter (�CDM) cosmology using the 2015 Planck
results (Planck Collaboration XIII 2016), with Hubble parameter h
= 0.677 and matter density parameter �m = 0.307.

2 ER RO N E O U S S O L U T I O N S A N D T H E I R
I N V E R S I O N S

One of the key motivations for using the semilinear inversion method
is the reduced computational complexity of the lens modelling
process. Using analytic profiles to model the complex source light of
a lensed galaxy can require exploring a highly multidimensional
parameter space. Not only does this increase the likelihood of
inferring a solution corresponding to a local maximum in evidence,
but can also lead to biasing of the lens model due to constraints on
the light profiles. Semilinear inversion allows us to reconstruct the
source light distribution in a linear step and since this distribution is
pixelized, it is not constrained by an analytic profile. It does however
introduce a new set of problems for the modelling process, namely
under- and overmagnified solutions.

These so-called under- and overmagnified solutions can be
understood in terms of the inferred amount of mass in the model lens
galaxy. Here, we use the Einstein radius as a proxy for the mass in
a galaxy. Ideally, the modelling process will converge upon the true
value of the Einstein radius, along with the other model parameters,
and the reconstructed source will reproduce the unlensed features of
the source galaxy. If however, the modelling process converges upon
a solution with too small an Einstein radius, the resultant deflection
angles will also be underestimated. This leads to the formation of an
undermagnified image of the observation itself. Similarly, a model
with too large an Einstein radius will overestimate the deflection
due to the lens. This will lead to an overmagnified, but this time,
parity inverted image of the source. Fig. 1 illustrates this point with
stylized ray diagrams for each class of source reconstruction we are
considering.

Whilst these erroneous source reconstructions are obviously not
the physical solution we are looking for, they exist nevertheless and
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Catching unphysical lensed source reconstructions 2231

Figure 1. From left to right: original observation, observer, lens galaxy, source galaxy, and reconstructed source. From top to bottom: undermagnified solution,
correct solution, and overmagnified solution. Note the similarities in structure between the undermagnified solution and the original observation. Both images
have similar morphology, but different angular extents. It is more challenging to see the similarities between the overmagnified solution and the original
observation, but it is clear that the extended arc in the north of the observation is being reproduced in the south of the reconstruction, illustrating the parity
inverted nature of the solution.

can provide excellent fits to the data, thus posing a challenge for
sampling algorithms to avoid them. Fig. 2 shows an example of
another set of source reconstructions for a simulated observation.
Here, we also show the residual and chi-squared maps for each
reconstruction, showing the quality of the fit to the data. The Bayesian
evidence is comparable for the undermagnified solution and the
correct solution, whilst it is significantly lower for the overmagnified
case. Generally speaking, we find that the undermagnified solution
is much more probable to occur than the overmagnified one. This is
likely due to the regularization employed in the semilinear inversion
process. Regularization serves to penalize overly complex solutions,
which is certainly a characteristic of the overmagnified solution. In
addition to regularization reducing the likelihood of this solution, it
can often be excluded by sufficiently accurate masking of the lens
system. Provided the mask used when modelling the system does not
extend considerably farther than the image separation, it can be used
to set the upper bound on the Einstein radius prior.

It is usually clear to the experienced modeller when something
has gone wrong and an erroneous source reconstruction has been
produced. It is not however so easy to discriminate between these
solutions programmatically due to the high evidences they can
achieve, as shown in Fig. 3. Multiple techniques can be employed
to avoid these solutions; careful tuning of the prior distributions
on the lens model parameters is effective but time-consuming. For
this reason, it is not a suitable method for dealing with the large
numbers of lensed galaxies we expect to encounter in the coming
years. Another possibility, which has the benefit of being automatic,
is to create a pipeline of models that first fits an analytic light profile
to the source galaxy and then uses the results of this fit to initialize
the priors in the inversion process (Nightingale et al. 2018). By

requiring a compact source in the initial phase of modelling, the
aim is to infer a lens model sufficiently accurately to effectively rule
out regions of parameter space that would correspond to under- or
overmagnified solutions. This lens model, along with new priors on
its parameters, is then used in the inversion process to refine the
lens model and more accurately fit the source galaxy’s light. The
complex morphology of high-redshift sources poses a challenge for
fitting the data with an analytic light profile, which can lead to a
poorly constrained or entirely wrong lens model. If the inferred lens
parameters used to initialize the model in the inversion process are
of poor quality, then the modelling can once again fail at this step.
Even if a fit with an analytic source profile provides a reasonable
initialization for the inversion process, it is challenging to constrain
the width of the subsequent prior distributions such that erroneous
source reconstructions are ruled out but feasible lens models that fit
the more complex source are not. Our approach to this challenge is
to use a CNN that can accurately classify source reconstructions
as successful or undermagnified/overmagnified. In this way, we
completely remove the need to assume an analytic light profile for the
source since we can throw away unwanted solutions in the inversion
process that do not correspond to a compact reconstructed source.
Furthermore, we have developed a simple method for updating the
model to move away from these unwanted solutions towards the
correct parameters. This technique requires no human intervention
and the CNN classification step is extremely fast (<1 s).

3 M E T H O D O L O G Y

The CNN described in this work requires training data consisting
of labelled source reconstructions and residual images. To produce
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Figure 2. Column 1 contains a simulated observation of a lensed galaxy. Column 2 contains the source reconstructions for three classes of solution
(undermagnified: row 1; correct: row 2; overmagnified: row 3). Column 3 contains the residual maps (model image – observation) for each class of solution.
Column 4 contains the chi-squared maps (the squared significance of the residuals) for each class of source reconstruction.

this data, it was first necessary to create a large number of simulated
strong gravitational lens images. We used the lens modelling software
PYAUTOLENS1 (Nightingale & Dye 2015; Nightingale et al. 2018;
Nightingale & Hayes 2020) to produce our simulated images and
to perform the source reconstruction. MULTINEST (Feroz, Hobson &
Bridges 2009) was used for the exploration of parameter space where
a full analysis of the data was carried out. The modelling process
produces the residual images between the simulated observations and
the reconstructed model image that we need for training the CNN. In
Section 3.1, we describe our procedures for generating the simulated
strongly lensed images. Section 3.2 details our method for generating
the source reconstructions and residual images required for training
our neural network. We then describe the CNN architecture used
in this work in Section 3.4. The process used to update the prior
distributions on the model, based on the CNN predictions, is then
detailed in Section 3.5.

3.1 Lensing simulations

In this work, we have assumed that all of the foreground deflectors are
early-type galaxies, and so we have adopted the singular isothermal
ellipsoid (SIE) mass profile (Keeton 2001). For the light profile of the

1https://github.com/Jammy2211/PyAutoLens

background lensed galaxies, we have opted to use the Sérsic profile
since it can represent a wide variety of galaxy morphologies.

The data sets generated for this work were simulated to have
distributions of parameters similar to those observed in the SLACS
Survey (Bolton et al. 2006). The Einstein radius θE and axial ratio
q of our lensing galaxies were drawn from distributions fitted to
the measurements of 131 strongly lensed galaxies observed in the
SLACS Survey (Bolton et al. 2008), whilst the orientation φ was
allowed to vary uniformly over the full range. The Einstein radii of
our lenses were drawn from a normal distribution with mean μ= 1.16
and a standard deviation σ = 0.42. The axis ratios of our SIE profiles
were randomly sampled from a normal distribution with mean μ

= 0.80 and standard deviation σ = 0.16, in close agreement with
empirical studies (Koopmans et al. 2006). In all cases, the centroid
of the lens was placed in the centre of the image. In this work, we
did not include light from the lens galaxies in the simulations.

As with the lenses, the parameters describing our source galaxy
Sérsic profiles were randomly sampled from fitted distributions. In
this case, we used the inferred Sérsic parameters from the parametric
source reconstructions of a subset of the SLACS lenses (Newton
et al. 2011). The Sérsic indices n, of our sources, were randomly
drawn from an exponentially modified Gaussian distribution with
scale parameter λ = 0.723, mean μ = 0.71, and standard deviation σ

= 0.97. The effective radii reff of our sources were randomly sampled
from an exponential distribution with scale parameter λ = 6.64. We
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Catching unphysical lensed source reconstructions 2233

Figure 3. A one-dimensional slice through Einstein radii values (normalized by the true Einstein radius), with all other mass-model parameters fixed to their
true values. Shown below from left to right: undermagnified source reconstruction, successful source reconstruction, and overmagnified source reconstruction.

Figure 4. A selection of simulated images produced for this work, used for
creating pixelized source reconstructions to train a CNN. All images have
a pixel scale of 0.1 arcsec pixel−1 and each image’s colour scale has been
normalized to the peak signal of the image.

allowed the axial ratio of the sources qs to vary uniformly over the
range [0.3, 1]. The overall intensity normalization I of the sources
was drawn from a uniform distribution I ∼ U[10, 20] electrons s−1,
allowing for a wide variety of signal-to-noise ratios in our training
data. The centroid of each source was uniformly distributed in the
source plane, with the requirement that it lay inside the Einstein
radius of the lens (i.e. that there are multiple images).

In the production of our simulated images, we opted to use the pixel
scale of the Visible (VIS) instrument for Euclid (0.1 arcsec pixel−1)
and the characteristic exposure time of 565 s (Cropper et al. 2016).
The lensed image was then convolved with a Gaussian point spread
function with a full width at half-maximum of 0.17 arcsec. A
background sky of 1 electron s−1 and Poisson noise due to the
background sky and source light photon counts were added to the
images, thus completing the simulation procedure. Some examples
of our simulated images are shown in Fig. 4.

3.2 Training data

The CNN was not trained directly on the simulated images, but
rather the pixelized source reconstructions and residual images
obtained from the modelling process. Before the modelling began,
each simulated image needed to be masked to ensure that only
the area of interest was reconstructed in the source plane and to
reduce the computational load. Because of the large number of
simulated images, an automated masking scheme was used. First, the
images were thresholded using the minimum cross-entropy approach
(Li & Lee 1993). Then, the centroid of this thresholded image
was found through calculating its moments. A circular annular
mask centred on the centroid of the image was then fitted to the
thresholded pixels. For the inner radius of the annulus, the largest
radius circle that did not contain any unmasked pixels was found,
and 90 per cent of this value was used. Similarly, for the outer
radius, the smallest circle containing all of the unmasked pixels
was computed, and 110 per cent of this value was used. These
adjusted values for the inner and outer radii of the mask were used
to minimize the chances of masking out faint emission from the
source.

These masked images were then modelled using PYAUTOLENS

to produce the pixelized source reconstructions and residual images
that we need for training our CNN. In all cases, we adopted the
SIE mass profile to model the lens galaxy. We reconstructed the
background source on a pixelized grid that adapts to the magnification
of the system. For each simulated lensed image, we created three
source reconstructions and three residual images, corresponding
to the undermagnified, overmagnified, and correct solutions. This
resulted in approximately 300 000 images to be used as training data
for our network. To deal with such a large computational task, it
was necessary to employ some approximate methods in the source
reconstruction/lens modelling process.
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Figure 5. The relationship between the true value of θE and the predicted
value θ̂E follows a predictable pattern for each class of source reconstruction.
In each case, the coefficients of a linear fit are shown. These are used to
construct the transformation of the prior distribution on θE to converge upon
the correct solution.

For 250 of our simulated images, we performed a full analysis
of the data, optimizing the lens model and source parameters in the
inversion process. In each case, the analysis had to be repeated three
times, to produce the undermagnified, correct, and overmagnified
source reconstructions. When modelling each of these systems we
allowed the mass-model parameters to vary uniformly over the full
range of parameter space with the exception of the Einstein radius. To
produce an undermagnified source reconstruction, we set a uniform
prior distribution on the Einstein radius with an upper limit of
0.9 times the true value for the system, thus forcing PYAUTOLENS to
find the undermagnified solution. To produce source reconstructions
corresponding to the correct model, we allowed the Einstein radius
to vary over a small range centred on its true value, guaranteeing
that a sensible source reconstruction is produced. Finally, to produce
overmagnified source reconstructions, we allowed the Einstein radius
to vary over a range of 1.1 times the true value up to 3 times this
value, again forcing PYAUTOLENS to find the overmagnified solution.
In this manner, we built up an understanding of the properties of each
class of source reconstruction.

In these tests, we observed that the mean fractional error in Einstein
radius when producing an undermagnified source reconstruction is
f̂θE ≈ −0.5. As expected, we observed no significant bias in the
Einstein radius, or any of the other parameters, when using a model
with priors accurately centred on the true parameter values. The mean
fractional error in Einstein radius when producing overmagnified
reconstructions was f̂θE ≈ 2. A scatter plot of the true value of
Einstein radius versus the inferred value for each class of source
reconstruction is shown in Fig. 5 along with the coefficients of a
linear fit to the data. These fitted parameters allowed us to define
an approximate transformation of the Einstein radius taking us from
one class of source reconstruction to another. We found that the
Einstein radius was the key parameter in controlling which class of
source reconstruction was obtained. Fig. 6 shows that in both cases of
erroneous source reconstructions, the axial ratio of the lens is most
often underestimated, but it does not follow an easily predictable
pattern in the same way as the Einstein radius. Fig. 7 shows that
there is no apparent relationship between the inferred orientation of
the mass profile and its true value when either the undermagnified or
overmagnified solution is found.

Figure 6. The relationship between the true axial ratio of the lens q and
the inferred value q̂ for each class of source reconstruction. For successful
source reconstructions, q and q̂ are directly proportional to one another, but
in the case of undermagnified/overmagnified solutions there is no obvious
trend aside from a tendency for q̂ to underestimate q.

Figure 7. Successful source reconstructions accurately recover the lens
orientation, φ, whilst undermagnified/overmagnified solutions infer a value
φ̂ that appears to have no relationship to φ.

The relationship between the unphysical reconstructions and the
correct solution allowed us to rapidly generate source reconstructions
without the need for a full optimization of the lens model. Fig. 5
shows how the predicted value of the Einstein radius relates to the
true value in each of the three classes of source reconstruction we are
considering here. The coefficients of a linear fit to the data allow us
to construct an approximate transformation of the predicted Einstein
radius to the true value for a given system. As expected, in the case of
successful source reconstructions, the inferred value for the Einstein
radius very closely matches the true value. The undermagnified
solutions have inferred Einstein radii θ̂U that can be approximated
as θ̂U ≈ 0.46θE − 0.08, where θE is the true value for the system.
Similarly, in the case of overmagnified solutions, the inferred Einstein
radii θ̂O can be approximated as θ̂0 ≈ 2.11θE + 0.16. Using these
approximate transformations, along with the true parameters de-
scribing the lens, we identified the regions of parameter space where
we expect each class of source reconstruction to occur. Keeping the
position, axial ratio, and orientation of the lens fixed to the truth, we
varied the Einstein radius around its expected value and computed
the linear inversion for each sample. The inversion achieving the
highest evidence is considered to be the solution and we record the
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Figure 8. A selection of simulated SIE lenses with HUDF background
sources, used to test the performance of the CNN on complex reconstructions.
All images have a pixel scale of 0.1 arcsec pixel−1 and each image’s colour
scale has been normalized to the peak signal of the image.

source reconstruction and residual image for our catalogue of training
data.

3.3 Testing data

A portion of the training data, produced as described in Section 3.2,
was set aside for evaluating the CNN’s performance after training.
These simple source reconstructions allowed us to test the network
on a set of images with similar properties to the training data. In
addition, to explore whether our CNN trained on reconstructions
of simple parametric sources would be capable of classifying the
reconstructions of more complex lensed sources, we produced SIE-
lensed images of high-redshift galaxies extracted from the Hubble
Ultra-Deep Field (HUDF; Beckwith et al. 2006). For this, we used
the Pipeline for Images of Cosmological Strong lensing (PICS; Li
et al. 2016), simulating images to have the expected properties of
Euclid VIS data (Niemi 2015; Cropper et al. 2016). A sample of these
simulated images is displayed in Fig. 8. For each of these simulated
images, we produced a source reconstruction corresponding to the
undermagnified, overmagnified, and accurate solution, following the
same full analysis procedure described in Section 3.2. These source
reconstructions, along with the residual images of the models that
produced them, were used to test the CNN’s classification ability on
significantly more complex images than it was trained on. A sample
of the accurate HUDF source reconstructions is shown in Fig. 9.

3.4 CNN architecture

Deep neural networks are a class of artificial neural networks, consist-
ing of multiple interconnected layers of nodes. The output of a node
depends upon the weights of the connections made by the previous
layer, as well as the bias of the current node. This information is fed
into a non-linear activation function, controlling the strength of the
output. CNNs are a further subset of neural networks built around
multidimensional data. Convolutional filters, also known as kernels,
are applied to the input to extract features from the data.

The network we built to classify our source reconstructions has
a forked design, with two input paths. Each path consists of three
convolutional layers and three max-pooling layers. The outputs of
both paths are concatenated, before being flattened and fed into two
fully connected layers. Dropout is employed between each layer
to improve the network’s resistance to overfitting and the Leaky
Rectified Linear Unit (Leaky ReLU) activation (Nair & Hinton 2010)
function is used everywhere except for the final layer that employs

the sigmoid activation function. The Leaky ReLU activation function
allows a small positive gradient for negative input values.

The tuneable hyperparameters for our network, such as the number
of convolutional layers, the size of the kernels, and the dropout
rates, were set by a process of hyperparameter optimization. We
opted to use TALOS (Autonomio 2019) to automate the evaluation
of model performance. In order to explore the very large parameter
space, it was necessary to downsample and look at a small fraction
of combinations of parameter values. Once a rough estimate of
hyperparameters had been obtained, a more thorough search was
carried out in a smaller region of parameter space.

The network aims to predict the category of source reconstruction
that a given input belongs to. To train the network, pairs of source
reconstructions and the corresponding residual images are fed into
the network in batches. The error on a prediction is determined via
the categorical cross-entropy loss function (LOSS),

LOSS = −
3∑

i=1

yi log ŷi , (1)

where yi is the target value and ŷi the predicted value. The network
optimization used the Nadam optimizer, which is a combination of
stochastic gradient descent and Nesterov momentum (Dozat 2015).
The CNN was trained and tested on a GPU machine, vastly improving
the time taken to process large numbers of images. The training took
place over 50 epochs, using 120 000 pairs of images.

The weights and biases of the network are summarized as follows.

(i) Convolutional layer. For an input image of height x1 and width
x2, the input is an (x1, x2, 1) matrix. The output of a convolutional
layer is an (x1, x2, N) matrix, where N is the number of output filters
applied in the convolution. Training adjusts the biases and weights
for each filter, but their values remain fixed during each iteration.
Each kernel of dimension (k1, k2) has an associated bias, giving a
total of k1 × k2 × N weights and N biases for each convolutional
layer. The exact dimensions of each kernel are given in Fig. 10.

(ii) Max-pooling layer. Pooling applies a 2 × 2 kernel with a stride
of two, resulting in an output of dimension (�x1/2�, �x2/2�) for an
input of (x1, x2).

(iii) Concatenate. After the three convolutional layers in each
input path of the network, the outputs are concatenated to form a
tensor with dimensions (13, 13, 256).

(iv) First fully connected layer. The input is a flattened 43 264-
node array, whilst the output is a 512-node array. Accordingly, there
are 43, 264 × 512 weights and 512 biases.

(v) Final layer. The input is an array with 512 nodes, whilst the
output is a three-node array (one node for each class of source
reconstruction), hence there are 512 × 3 weights and three biases.

(vi) There is a total of 5820 323 trainable parameters.

3.5 Combining CNN and lens modelling

The trained CNN is capable of taking a source reconstruction
and a residual image, both of which are outputted in the lens
modelling process, and returning an accurate prediction of whether
the correct lens model has been found, or whether an undermag-
nified/overmagnified solution has been identified. This prediction,
along with the knowledge of how the inferred Einstein radius
relates to each class of solution, allows us to automatically correct
the modelling process when erroneous solutions are found. Using
the approximate transformations given in Table 1, we can update
the model’s prior distribution on θE for subsequent modelling.
In this way, we aim to improve the robustness of our modelling
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2236 J. Maresca, S. Dye and N. Li

Figure 9. A selection of accurate source reconstructions of SIE-lensed HUDF galaxies. These reconstructions were used to test CNN performance on more
complicated sources than the simple parametric sources used to create its training sample.

Figure 10. Structure of the CNN used in this work, showing the two input images and their respective paths in the network. There are six convolutional layers,
each with max-pooling and dropout. A concatenation and flatten layer is included to join the outputs of the dual convolution pathways and connect this tensor
with a 1D dense layer. LeakyReLU is used throughout the network, except for the activation of the final layer, which uses the sigmoid activation function. The
types of layers in the network at each step are given, along with the size of the kernel in pixels. The output dimensions are indicated above each block. A more
detailed description can be found at the end of Section 3.4.

process against unwanted solutions and reduce the amount of human
intervention required to produce accurate lens models and source
reconstructions. When considering the predictions of our CNN, we
will use the abbreviation UM to refer to a predicted undermagnified
solution, OM for a predicted overmagnified solution, and C for when
the network predicts a correct reconstruction.

To test this hybrid approach to lens modelling, we simulated a
new set of 100 lensed images, following the approach detailed in
Section 3.1. We used PYAUTOLENS to model each system, conduct-
ing a full analysis, allowing all the SIE mass-model parameters to
vary and reconstructing the background source on a magnification-
based Voronoi grid. For all of the mass-model parameters, as well
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Table 1. Summary of the approximate transformations of Einstein
radius linking the inferred values in a given class of solution to the
true value.

CNN prediction Transformation Updated prior

Under θ = 1
0.46 (θ̂U + 0.08) θE ∼ U[θ ± 0.25]

Recon θ = θR θE ∼ U[θ ± 0.25]
Over θ = 1

2.11 (θ̂O − 0.15) θE ∼ U[θ ± 0.5]

as the source plane pixelization parameters, we opted to use uniform
distributions covering a suitable range of parameter space. We chose
a uniform prior distribution for the position of the lens centroid,
centred on the true value with a width of 0.6 arcsec. In the case
of the orientation φ of the lens, we allowed the full range of
values φ ∼ U[0, π] rad. The axial ratio of the lens, q, was able
to vary over the full range of values included in the simulations
q ∼ U[0.25, 0.999]. Again, the prior distribution of the Einstein
radius θE followed a uniform distribution constrained only by the
dimensions of the annular mask (computed according to the criteria
detailed in Section 3.2, θE ∼ U[rmin, rmax]. Such an approach to
modelling the data was taken to show the extremes of how things can
go wrong without some tuning of the priors before modelling begins.
Furthermore, this serves to illustrate the problems experienced by
sampling algorithms when exploring large and complex parameter
spaces.

Once this initial round of modelling was completed, the source
reconstruction and residual images were fed into our CNN to obtain
a prediction on whether the modelling had been successful or not.
The next step in the process depends on the prediction of the CNN
as follows.

(i) UM prediction. The modelling process is repeated with an
updated prior distribution on the Einstein radius. This new prior is
defined in Table 1. The prior distributions on the other free parameters
were left unchanged.

(ii) C prediction. In this instance, we choose to repeat the mod-
elling process with a decreased evidence tolerance and a narrowed
uniform prior distribution centred on the inferred values from the
previous modelling run. The goal of this repeated run is to more
thoroughly explore the parameter space around the accepted solution
and improve the accuracy of the model.

(iii) OM prediction. The modelling process is repeated with an
updated prior distribution on the Einstein radius, whilst leaving
everything else unchanged. This new prior is defined in Table 1.

After this additional stage of modelling, the updated source recon-
structions and residual images were fed into the CNN once more,
providing a new prediction for each system. With this information,
we proceeded similarly to before, but now we take into account the
history of results for each system.

(i) UM prediction

(a) If the previous prediction was also UM, then the system
is flagged for manual intervention at a later time. This indicates
that the process for updating the priors was unable to move
the model away from this solution, or that the CNN has
misclassified a reconstruction.

(b) If the previous prediction was OM, this indicates that the
prior update has ‘overshot’ the C solution and so a uniform prior
on the Einstein radius is chosen to lie between the two previous
values. The width of the prior was set such that it excludes the

regions of parameter space that corresponded to the previous
under- and overmagnified solutions.

(ii) C prediction

(a) If the previous prediction was UM, as before, we chose
to repeat the modelling process with a decreased evidence
tolerance and use narrowed uniform prior distributions centred
on the inferred values from the previous modelling run.

(b) if the previous prediction was C, no further action
required.

(c) If the previous prediction was OM, again, we choose
to repeat the modelling process with a decreased evidence
tolerance and use narrowed uniform prior distributions centred
on the inferred values from the previous modelling run.

(iii) OM prediction

(a) If the previous prediction was also OM, then the system
is flagged for manual intervention at a later time. This indicates
that the process for updating the priors was unable to move
the model away from this solution, or that the CNN has
misclassified a reconstruction.

(b) If the previous prediction was UM, this indicates that the
prior update ‘overshot’ the correct solution and so a uniform
prior on the Einstein radius is chosen lying between the two
previous values. The width of the prior is set such that it excludes
the regions of parameter space that corresponded to the previous
UM and OM solutions.

This process can be repeated many times until an acceptable
fraction of the CNN’s predictions are that the correct model has
been found. In practice, due to the crude nature of the prior-updating
routine, there are diminishing returns on repeated cycles. The systems
that become manually flagged during this process will need human
intervention to guide the modelling to a suitable solution, but the
overall load on the modeller is greatly reduced.

4 R ESULTS

In this section, we present the results of testing our CNN on the
reserved data set, evaluating its performance on a per-class basis.
We show that the CNN performs exceptionally well at the task
of classifying source reconstructions. Additionally, we show the
result of modelling 100 simulated observations using the procedure
outlined in Section 3.5. This set of images was simulated according
to the procedures outlined in Section 3.1. Here, we opted to apply
our iterative approach three times, observing good progress towards
a complete sample of successfully modelled lenses with each step.

4.1 CNN performance

The CNN was trained on 130 000 pairs of source reconstructions and
residual images, for 50 epochs. 10 000 pairs of source reconstructions
and residual images were used as validation data throughout the
training process. To further increase the variety in the training data,
augmentation techniques were employed. Each pair of images was
randomly reflected horizontally, vertically, or rotated through an
angle. The remaining 6928 pairs of images were reserved as a testing
set to evaluate the performance of the network on never before seen
images once training had completed.

Fig. 11 shows the confusion matrixC for the CNN evaluated on the
testing data set. The elements of this matrix are defined such that Ci, j

contains the number of true objects of class i predicted to be in class
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Figure 11. Confusion matrix for the CNN when tested on 6928 never seen
before pairs of source reconstructions and residual images for a simple Sérsic
source. The confusion matrix has been normalized over its rows.

Table 2. Summary of key performance statistics for our
CNN applied to testing data.

Precision Recall F1 score Support

UM 0.9996 1.000 0.9998 2277
C 1.0000 0.9991 0.9996 2341
OM 0.9996 1.0000 0.9998 2310

j. Thus the diagonal elements of C represent the correctly labelled
instances and the off-diagonals where the network has incorrectly
labelled an observation. The values displayed in C are normalized
over the rows. The CNN’s recall or ability to find all samples of a
particular class is above 99.9 per cent in all cases and performed
perfectly on our test set for both under- and overmagnified source
reconstructions. Similarly, our CNN’s precision, or ability to not
label a sample of Y as X is greater than 99.9 per cent in all cases, with
a perfect score in the case of successful source reconstructions, i.e.
only successful source reconstructions were labelled as such. These
results are summarized in Table 2.

As a further test of the CNN’s ability to accurately classify
source reconstructions, we applied it to the more complex HUDF
source reconstructions described in Section 3.3. Here, the CNN
gave predictions on 100 each of undermagnified, overmagnified, and
accurately reconstructed sources. We found that our CNN correctly
classified 87 per cent of the undermagnified reconstructions, whilst
misclassifying them as correctly reconstructed 8 per cent of the time,
and incorrectly classifying 5 per cent of them as overmagnified.
The CNN gave accurate predictions for 87 per cent of the correctly
reconstructed sources, whilst incorrectly labelling 10 per cent as
undermagnified, and 3 per cent as overmagnified. Finally, the CNN
correctly labelled 93 per cent of the overmagnified reconstructions,
with just 3 per cent incorrectly labelled as undermagnified, and 4
per cent mislabelled as accurate reconstructions. These results are
summarized in Fig. 12. The performance of the CNN on this complex
data set is remarkably good, given the simplicity of the reconstructed
sources in the training data.

Figure 12. Confusion matrix for the CNN when trained on reconstructions of
Sérsic sources and tested on reconstructions of HUDF sources. The confusion
matrix has been normalized over its rows.

4.2 Performance of PYAUTOLENS combined with CNN

Here, we describe the results of applying our CNN to blindly
modelled data. For this, we have used our simulated images of Sérsic
sources. We describe the process of using our CNN predictions to
automatically adjust the prior distributions on the Einstein radius in
three subsequent rounds of modelling.

The results of this are presented in Fig. 13. The initial modelling
of this set of 100 lenses was carried out with no prior information
on the lens model parameters and as such, undermagnified solutions
have dominated the output. The bottom-right histogram in Fig. 13
shows how the proportion of different source reconstructions changes
with each iteration of modelling according to our CNN predictions.
Initially, our CNN identifies 88 models as UM, 11 as OM, and just
one is identified as C. This is reflected in the error distributions
for the key SIE mass-model parameters. The top-left distribution in
Fig. 13 shows the fractional error in Einstein radius fθ for all 100
systems. There is a very significant peak in the initial data at fθ =
−0.45, representing the large number of undermagnified solutions,
and thus underestimated Einstein radii. We also see in the top-right
distribution of Fig. 13 the significant bias towards underestimating
the axial ratio of the lens. The bottom-left distribution, showing the
absolute error on the inferred orientation of the lens, reflects the
seemingly random relationship between the erroneous models and
the true lens orientation. Labelled as rerun 1, rerun 2, and rerun
3, we show that the application of our CNN and prior updating
routine to these results leads to a huge improvement in recovering
the true lens parameters for the sample. After rerun 1 has been
completed, much of the bias in the Einstein radii fractional error
distributions is removed, though there is still significant density in
regions indicating under- and overestimation of its value. Similarly,
in the case of the axial ratio, a clear peak around fq = 0 has been
formed, removing much of the probability mass in the underestimate
region of before. The inference of the orientation of the lens has
also been greatly improved, as we would expect by increasing
the number of successfully modelled systems. These results are
reflected in the bottom-right histogram of Fig. 13, showing that
the proportion of successful source reconstructions has increased
from 1 to 52, according to our CNN predictions. The number of
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Figure 13. Top row: fractional error distributions for the SIE mass-model parameters, θE and q after successive rounds of modelling. Bottom-left: absolute
error distribution for the SIE mass-model parameter φ after successive rounds of modelling. Bottom-right: histogram of the CNN’s predictions for how the
fraction of successful source reconstructions changes with successive rounds of modelling.

undermagnified reconstructions has been decreased by 68, down to
just 20. The frequency of overmagnified solutions has increased,
however, suggesting that our scheme for updating the Einstein radius
prior has ‘overshot’ the correct solution in some cases. Rerun 2
increases the number of successful reconstructions by a small margin,
but mostly results in moving solutions from the overmagnified
category into the undermagnified category. Significant improvements
are made in the final round of modelling, rerun 3, by considering the
history of models for each case. For a system that has models that have
previously been classified as undermagnified and overmagnified,
we can search parameter space between the inferred Einstein radii
values and hopefully converge upon the correct solution. In all
of the error distributions for the mass-model parameters, we see
improvements, i.e. taller, narrower peaks centred on zero. After the
final round of modelling, we achieved a decrease of 69 per cent
in the occurrence overall of unphysical source reconstructions. The
final count of successful source reconstructions stands at 70, with
17 undermagnified and 13 overmagnified solutions. In principle,
we could continue with this process until we no longer see any
improvement in the number of successful source reconstructions

being identified by the CNN, or all systems that have not been labelled
as C become flagged for manual inspection.

5 C O N C L U S I O N S

Strong gravitational lensing allows us to probe the mass distributions
of the lensing galaxy and the properties of the background sources.
Upcoming surveys such as LSST and Euclid are expected to observe
in excess of 100 000 strong gravitational lenses. To deal with this
huge amount of data, it is necessary to develop fast, robust, and
automatic lens modelling pipelines that do not require significant
time investment from humans for each system. For this reason, we
constructed a CNN to detect when the modelling process has gone
awry and developed a simple scheme for automatically adjusting the
prior distribution on the Einstein radius to guide the sampler to the
correct solution. Simulated images with the resolution and expected
seeing characteristics of the Euclid VIS instrument were created, to
be used as inputs for the production of source reconstructions. We
chose to simulate all of our lenses as SIEs and used Sérsic profiles for
our sources. In both cases, we used realistic distributions of param-
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eters that matched those observed in the SLACS Survey. From these
simulated images, we produced three source reconstructions for each
observation corresponding to the undermagnified/overmagnified so-
lution and the correct solution. These source reconstructions, along
with the residual images for the model, were used to train a CNN
to classify source reconstructions. We then blindly modelled 100
strong lenses, reconstructing the background sources on a Voronoi
grid. The CNN was used to detect the kind of source reconstruction
that had been produced, and this information coupled with a simple
scheme for updating the prior distribution on the Einstein radius
was used to improve upon the fraction of successfully modelled
systems.

We find that our CNN is capable of extremely accurate identifica-
tion of undermagnified, successful and overmagnified reconstructed
sources. The network achieves a precision and recall over 99.9 per
cent, as well as an F1 score, or harmonic mean of the precision and
recall, greater than 0.99 across all classes of source reconstruction.
In addition to identifying the class of solution that has been found,
we have shown that a simple procedure for updating the model based
on its predicted class can lead to significant improvements in the
outcomes of blind modelling without the need for human intervention
throughout the process.

The success of our CNN in this task suggests that our proce-
dure for generating the source reconstructions, omitting the full
exploration of parameter space, has not negatively impacted its
ability to perform the task. The axial ratio of the SIE mass model
corresponding to an erroneous solution tends to be underestimated.
Our network is trained on source reconstructions produced by
fixing the axial ratio to its true value. This leads to the network
being trained on images produced by less elliptical lens models
than it might encounter when being tested upon a freely varied
model.

It is possible that incorporating the information regarding erro-
neous source reconstructions tendency to have an underestimated
lens axial ratio could lead to improvements in our procedure for
updating the model priors. An approach that uses a Gaussian prior to
bias towards higher values of q, but with a standard deviation large
enough to easily allow the exploration of the lower end of parameter
space is something that could be investigated.

We have also tested our CNN, trained on reconstructions simple
Sérsic sources, on reconstructions of images generated using real
sources extracted from the HUDF. The CNN continued to perform
well, showing that it can generalize to a more complex data set
without any retraining. There is however an obvious detriment to
the performance of the network, and so the construction of a more
complex training set would likely be beneficial. Before this technique
can be applied to real data, further investigations into how our
simplifications affect the network’s performance are needed. One
such simplification that we made was to omit lens light from our
simulated images. Even in the best possible scenario of lens light
removal, its presence will affect the noise characteristics of the
image, which can impact the source reconstruction. Realistic features
in our simulated images such as cosmic rays and hot pixels were
not considered. Increased complexity of the sources in our training
data would be required to deal with the variety of real images that
might be observed and to minimize the performance decrease due
to an overly simplified training set. Furthermore, a wider variety
of mass models, the inclusion of substructure and deflectors along
the line of sight would be required to create more realistic lensing
scenarios. The question of how well this method of applying CNN
predictions to parametric models generalizes to real data requires
further investigation.
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