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ABSTRACT

Estimation Algorithm for Autonomous Aerial Refueling

Using a Vision Based Relative Navigation System. (August 2005)

Roshawn Elizabeth Bowers, B.S., Texas A&M University

Chair of Advisory Committee: Dr. John Valasek

A new impetus to develop autonomous aerial refueling has arisen out of the grow-

ing demand to expand the capabilities of unmanned aerial vehicles (UAVs). With

autonomous aerial refueling, UAVs can retain the advantages of being small, inex-

pensive, and expendable, while offering superior range and loiter-time capabilities.

VisNav, a vision based sensor, offers the accuracy and reliability needed in order to

provide relative navigation information for autonomous probe and drogue aerial refu-

eling for UAVs. This thesis develops a Kalman filter to be used in combination with

the VisNav sensor to improve the quality of the relative navigation solution during

autonomous probe and drogue refueling. The performance of the Kalman filter is ex-

amined in a closed-loop autonomous aerial refueling simulation which includes models

of the receiver aircraft, VisNav sensor, Reference Observer-based Tracking Controller

(ROTC), and atmospheric turbulence. The Kalman filter is tuned and evaluated

for four aerial refueling scenarios which simulate docking behavior in the absence of

turbulence, and with light, moderate, and severe turbulence intensity. The docking

scenarios demonstrate that, for a sample rate of 100 Hz, the tuning and performance

of the filter do not depend on the intensity of the turbulence, and the Kalman filter

improves the relative navigation solution from VisNav by as much as 50% during

the early stages of the docking maneuver. For the aerial refueling scenarios modeled
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in this thesis, the addition of the Kalman filter to the VisNav/ROTC structure re-

sulted in a small improvement in the docking accuracy and precision. The Kalman

filter did not, however, significantly improve the probability of a successful docking

in turbulence for the simulated aerial refueling scenarios.
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CHAPTER I

INTRODUCTION

Aerial refueling is a critical capability for the United States military, enabling tactical

aircraft to reach distant theaters of operation and patrol aircraft to stay airborne for

extended periods of time. A new impetus to develop autonomous aerial refueling

(without a pilot or operator) has arisen out of the growing demand to expand the

capabilities of unmanned aerial vehicles (UAVs).

UAVs are becoming important elements in the military and homeland security

sectors because they are well-suited for missions that are dangerous or physically

demanding for a human pilot. UAVs can be inexpensive, “expendable” tools for

surveillance, reconnaissance, communications, and attack operations. UAVs are also

capable of performing a wide variety of missions in the civilian and commercial sectors.

Examples are search and rescue missions, disaster relief efforts, border patrol, traffic

monitoring, meteorological research, and land management.

The need to stay in the air longer has caused modern UAVs to increase in size

to accommodate larger amounts of fuel. These vehicles are not only more costly to

build and maintain, but the significant weight of fuel reduces the payload capacity

of the aircraft. Large UAVs also pose a greater risk to civilians when operating

over populated areas. Autonomous aerial refueling (AAR) is an economical and

technologically feasible way to increase the range and endurance of UAVs without

increasing their size. A UAV with the ability to refuel in-flight could loiter on-station

for two or more times as long as an un-refueled UAV, with room for additional payload

[1]. With AAR, UAVs could retain the advantages of being small, inexpensive, and

The journal model is IEEE Transactions on Automatic Control.
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expendable, while offering superior range and loiter time capabilities.

Currently there are two methods for aerial refueling used throughout the world:

the boom method and the probe and drogue method. The refueling technique consid-

ered in this research is modeled after the probe and drogue method currently used by

the United States Navy. During the refueling process, the tanker aircraft deploys a

long refueling hose with an aerodynamically stabilized receptacle called a drogue at-

tached to the end. The tanker aircraft maintains steady level flight while the receiver

aircraft maneuvers to dock its refueling probe with the drogue. With the need for

extremely precise movements and the susceptibility to pilot-induced oscillation, probe

and drogue refueling is widely considered to be the most challenging task required of

a human pilot. Many of the same difficulties must be addressed in the development

of a system for autonomous aerial refueling.

Thus far, the main obstacle in developing AAR has been the lack of adequate

sensors for measuring the relative position and orientation of the receiver vehicle.

The rapid control corrections needed for docking, especially in turbulence, require

navigation updates at a rate not yet achieved by current sensor technology. For ex-

ample, DGPS (Differential Global Positioning System) provides navigation updates

at a maximum of 10 Hz, and requires multiple satellite links which are subject to

dropouts. Optical sensors based on pattern recognition or visual servoing are even

slower because of the large computational burden required to obtain an accurate navi-

gation solution. VisNav, a new vision-based sensor, offers the accuracy and reliability

needed for a variety of relative navigation needs [2]. VisNav can provide measure-

ments more accurately (within 1cm or 0.25 deg at 30 meters away) at a rate ten times

that of DGPS. The VisNav sensor opens the door to a feasible AAR system. With

its small size and low power requirements, VisNav can be easily integrated onto most

UAV platforms.
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Detailed simulations of the VisNav sensor have shown that the navigation so-

lution is highly sensitive to the beacon configuration on the aircraft. Moreover, the

navigation solution may be degraded or lost in the event that one or more beacons

falls outside of the field of view of the sensor. This situation is most apparent at long

range, when even a small change in the attitude of the receiver causes the beacons

and the drogue to be lost from sight. In the event that the sensor fails to obtain

a navigation solution, the current VisNav hardware is programed to return the last

available estimate. In docking situations this can lead to problems when the controller

is being told that the relative position is constant, when in fact the two vehicles are

moving toward each other.

This situation can be improved with a Kalman filter, which may be able to offer

an updated estimate in the event no measurement from VisNav is available. It may

also allow the VisNav sensor to run at a slower rate (the current system updates

at 100 Hz), thus saving computation time and power. Another use for the Kalman

filter is to combine measurements from other sensors, such as DGPS or an IMU, with

VisNav to further improve the solution. At this point it is unclear which combination

of sensors is necessary to achieve successful docking. This will largely depend on the

controller that is used and the operating conditions during docking.

The goal of this research is to develop an estimation tool to be used in com-

bination with the VisNav sensor to improve the quality of the navigation solution

from VisNav. Initial simulations show that using a Kalman filter with VisNav can

improve the accuracy of the navigation solution by as much as 50%. In addition, it

is likely that improved controller designs will need estimates of relative velocity and

acceleration to ensure proper closing rate and engagement force. Finally, the Kalman

filter will add fault tolerance to the AAR system by giving an updated navigation

solution in the event that the VisNav sensor fails during docking.
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CHAPTER II

AERIAL REFUELING

Since the invention of the airplane in 1903, engineers and aviation enthusiasts have

sought ways to expand the role of aircraft in fulfilling a variety of transportation,

military, and scientific needs. The concept of in-flight refueling was proposed by the

some of the earliest aviators as a way to stay in the air longer. It has since become a

critical capability for military aircraft across the globe.

Air-to-air refueling is an important military technology for several strategic rea-

sons. The first is that it extends the combat radius of attack aircraft, fighters, and

bombers so they may reach distant theaters of operation. Air refueling also increases

the effectiveness of surveillance and patrol aircraft by allowing them to remain in the

air longer. In addition, these aircraft can carry more payload than would be possible

if they had to take off with fuel for an entire mission. Air refueling alleviates the need

for forward air bases stationed throughout the world that act as deployment centers

and filling stations.

This chapter will introduce and define the aerial refueling problem. Section

A describes historical and modern methods of in-flight refueling. Approaches to

modeling various aspects of air refueling are discussed in Section B. Finally, Section

C presents issues and considerations for autonomous aerial refueling.

A. Overview of In-Flight Refueling Methods

The first attempts at transferring fuel in flight were awkward and often dangerous.

In 1921, for example, one daring wing walker climbed from the wing of his Lincoln

Standard biplane onto the wing of a Curtiss Jenny with a five-gallon can of gasoline

strapped to his back. The first true air refueling took place in 1923 when Capt. Lowell
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Smith and Lt. John P. Richter refueled their De Havilland DH-4 fourteen times during

a flight over Southern California. Their refueling method was simple: a 40-foot hose

reinforced with steel cable was tossed out of the tanker and a crewman on the receiver

grabbed it as it whipped in the wind. The technique worked, but the crewman on the

receiver was often drenched with fuel when turbulence caused the hose to disengage

unexpectedly [3, 4].

Some of the first standard refueling equipment and techniques were developed

by Lt. Richard Atcherly of Britain’s Royal Air Force. In 1935 he patented the looped

hose method, in which both the tanker and receiver aircraft release cables that trail

behind them. As the tanker crosses from left to right above the receiver, the two

cables engage. A hose attached to the tanker’s cable is then reeled in by the receiver

crew, and refueling takes place. Another Englishman named Alan Cobham and his

company Flight Refueling, Ltd. later purchased the patent for the looped hose method

and made further improvements. The system worked well but was limited to low

speeds, so fighters could not be refueled. In addition, skilled operators were required

in both aircraft, and the refueling operator in the tanker was left completely exposed

to the elements [3, 4]. Although modern methods are vastly improved in terms of

performance, safety and reliability, aerial refueling remains one of the most challenging

operations required of a pilot and crew.

1. Flying Boom

The flying boom method was developed for the United States Air Force by the Boeing

Aircraft Company. In this technique a boom operator in the tanker aircraft maneuvers

an extendable pipe equipped with ruddervators into a refueling port on the receiver

(Figs. 1 and 2). The pilot of the receiver aircraft must maintain the relative posi-

tioning to the tanker during the refueling operation. When it was introduced in
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Fig. 1. KC-135 Stratotanker refuels an F-16 Fighting Falcon using the boom method.

(U.S. Air Force photo by Tech. Sgt. Mike Buytas)

the late 1940’s, the boom refueling system offered many advantages over the looped

hose method. Connection between the receiver and the boom could be established in

seconds, whereas the old system took at least four minutes under ideal conditions. In

addition, the large diameter of the boom permitted a high flow rate, enabling large

amounts of fuel to be transferred very quickly [4].

There are several drawbacks to the boom refueling method. The drag penalty on

the tanker due to the rigid boom is significant, and under certain flight conditions the

boom will experience buffet, a high frequency instability caused by flow separation.

In addition there are mechanical limits that do not allow the boom to move in certain

directions. [4] notes that “this narrows its operating envelope and requires a high

degree of pilot skill to maintain the required close formation, especially during the

latter portion of the refueling operation, when the receiver aircraft is reaching its

maximum weight and becomes sluggish in handling characteristics.”

Another problem with boom refueling has to do with the fact that the boom

acts as a rigid connection between the tanker and receiver. When the two aircraft

experience a gust, for instance, the relative motion must be accommodated by the

boom. The pressure and flow rate of the fuel can cause the boom to develop a
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Fig. 2. Boom operator prepares to transfer fuel to a KC-10 Extender during Operation

Iraqi Freedom. (U.S. Air Force photo by Master Sgt. Terry L. Blevins)

certain rigidity along the telescoping axis. In most cases this causes an inadvertent

disconnect and lengthens the time required to refuel. In the worst case, a gust can

cause structural failure of the boom or a collision between the two aircraft. To avoid

such accidents extensive emergency break-away procedures have been established and

both boom operators and pilots are required to undergo intensive training [4].

2. Probe and Drogue

The probe and drogue technique was introduced in 1949 by Flight Refueling, Ltd. as

an alternative to the flying boom. It is currently the refueling method of choice for the

United States Navy and armed forces around the world. During this refueling process,

the tanker aircraft deploys a long refueling hose with an aerodynamically stabilized

receptacle called a drogue attached to the end. The tanker aircraft maintains steady

level flight while the receiver maneuvers a refueling probe into the drogue (Fig. 3).

An automatic coupling mechanism is activated as the probe enters the drogue, and

fuel begins to flow. A reel take-up system maintains tension in the hose throughout
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Fig. 3. F/A-18E Super Hornet performs an in flight refueling evolution with an

F/A-18C Hornet over the Pacific Ocean using the probe and drogue technique.

(U.S. Navy photo by Lt. Perry Solomon)

the operation[4, 3].

The probe and drogue system is capable of higher operating speeds than the

flying boom; and because the hose is flexible, refueling in higher levels of turbulence

is also possible. The system is simpler in that it does not require a highly trained

operator in the tanker. The probe and drogue technique is well suited for agile aircraft

such as fighters and helicopters, whose pilots generally prefer it over the flying boom.

Although the larger diameter of the boom allows for a higher fuel flow rate, the

decreased number of inadvertent disconnects with probe and drogue refueling system

gives it almost the same average rate of transfer [4, 3]. The system has also made

possible the idea of multipoint refueling, where several aircraft refuel from the same

tanker simultaneously [5].

Although the flying boom and probe and drogue refueling systems are quite

different, some effort has been made to solve their compatibility issues. A tanker that
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Fig. 4. Navy F/A-18F Super Hornet is refueled by a KC-135R Stratotanker using a

boom-drogue adapter. (U.S. Air Force photo by Senior Airman Joshua Strang)

can refuel any Navy, Air Force, or Marine aircraft has obvious strategic value, so there

has been great interest in developing such an aircraft for the United States military.

Originally, some models of the boom-equipped KC-135 Stratotanker were modified

to accommodate a drogue adapter, enabling them to refuel Navy airplanes such as

the F/A-18 shown in Fig. 4. This fix is not ideal, however, because the conversion

must be made on the ground and afterward the tanker can only refuel probe-equipped

fighters. This problem was solved by Boeing when it designed the replacement for

the KC-135, the KC-10 Extender. The KC-10 comes equipped with both a boom and

refueling drogue so that it can refuel any airplane in the US military fleet [4, 3].

The flexibility of the refueling hose allows for safer docking without the need

for an operator in the tanker, opening the door to completely unmanned refueling
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operations, where both the tanker and receiver are uninhabited. In addition, it is

expected that the probe and drogue refueling method will better suit small agile

UAVs. For these reasons this research will only consider autonomous probe and

drogue refueling.

B. Modeling

Probe and drogue air refueling involves an inherently complex dynamic system, con-

sisting of the tanker, hose, drogue, receiver, and the aerodynamic interactions between

them. In addition to these component sub-systems, sensor noise and disturbances

such as gusts and atmospheric turbulence play a significant role in the performance

of the overall system. Although a comprehensive system model may not be practical

for control synthesis or simulation purposes, it is important to note the limitations

of a simplified model. This section will review work in the literature that has been

done in modeling various aspects of probe and drogue refueling.

Some of the earliest pertinent literature for aerial refueling involves the modeling

of the receiver aircraft. Many probe and drogue refueling operations involve a large

tanker aircraft and a relatively smaller, more agile receiver aircraft [3]. In such cases

the larger tanker produces a significant trailing vortex wake which influences the

translational and rotational velocity of the receiver. For example, an induced rolling

moment is created as the receiver is displaced sideways from the centerline of the

tanker because one wing experiences more downwash than the other [6]. [6] and [7]

demonstrate the importance of including the effects of the tanker wake in the receiver

model; however it is unclear whether these effects will be significant when the tanker

and receiver are of similar size. Further aerodynamic analysis is needed for cases

where a UAV refuels another UAV.
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Fig. 5. Two F/A-18 aircraft involved in NASA Dryden’s Automated Aerial Refueling

project fly over the California desert. (NASA photo by Carla Thomas)

Other important work on air refueling has focused on modeling the dynamics of

the refueling hose and drogue. It has been found that the forebody flowfield of the

receiver aircraft strongly influences the local flowfield around the drogue. This effect

is different for each type of receiver aircraft. In 2003 Hansen et al. performed a series

of 23 flight tests involving two F/A-18 aircraft and a conventional hose and drogue

refueling store at NASA Dryden Flight Research Center (Fig. 5). The data collected

was used to develop a parametric model to predict the drogue position based on

several independent variables, including flight condition, drogue type, hose condition

(empty or full), and the types of tanker and receiver. Using a video imaging system,

they were able to define the area of influence (AOI), or the area where the nose of the

receiver has a measurable effect on the drogue position, for several flight conditions

and closing speeds [8].

Hose dynamic instabilities are another important aspect of hose and drogue mod-

eling. Vassberg et al. investigated the effects of malfunctions in the reel take-up
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system of a KC-10 hose and drogue refueling system [9]. The reel take-up is used to

maintain adequate tension in the refueling hose during probe and drogue refueling.

In this work the hose was numerically modeled as a chain of discrete elements in a

flowfield defined by a linear panel method. It was found that among other factors,

closure rates greater than 10 ft/sec resulted in dramatic hose oscillations and “whip-

ping” of the drogue. These results show the need to ensure proper closing rates in

both manned and autonomous refueling operations.

In addition to the physical systems, the refueling mission has also been modeled.

Venkataramanan and Dogan divided the mission into four phases: approach, dock-

ing/capture, station-keeping, and fly-away [10]. Different modeling considerations

come into play for each phase. During the station-keeping phase, for example, the

transfer of fuel causes the mass and inertia of the receiver to change significantly.

Venkataramanan and Dogan created an extensive model of the receiver aircraft that

accounts for the effects of the tanker’s wake, atmospheric turbulence, and changes in

the mass, center of mass, and inertia matrix throughout the phases of refueling.

C. Autonomous Aerial Refueling

This section will outline previous work on autonomous probe and drogue aerial refu-

eling. Docking the probe with the drogue is essentially a tracking task, performed by

the pilot in manned refueling and the receiver’s flight control system in unmanned

refueling. An AAR flight control system must have adequate measurements of the

position of the drogue from a sensor, and be able to relate them to commands to the

aircraft through a set of control laws. Section 1 presents several sensors that have

been proposed for AAR, and a survey of AAR control schemes is presented in Section

2.
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1. Sensors

The ability of any controller to track and dock with a moving drogue in turbulence is

conditional upon precise measurements at a rate fast enough to adequately capture the

drogue dynamic behavior. This section presents several instruments and methods for

relative navigation which have been proposed for autonomous aerial refueling. These

include a form of GPS, passive vision sensors, active vision sensors, and combinations

of sensors using estimation methods. Each system has advantages and disadvantages

for in flight refueling that will be discussed.

The Differential Global Positioning System, or DGPS, is an existing technology

capable of fulfilling requirements for many relative navigation applications. DGPS

works by using reference stations on the ground to provide a correction to signals

from GPS satellites. It is generally more accurate than GPS alone, with a typical

position error of one to three meters [11]. Errors in the vertical direction (altitude)

are usually larger than those in latitude and longitude. Most commercially available

DGPS receivers provide an updated navigation solution at a rate of once per second

(1 Hz), although some sources claim up to 10 Hz [12, 13]. DGPS can operate at

great distances, giving it an advantage over vision-based sensors. Disadvantages of

DGPS include problems with multipath effects, satellite drop-out, geometric dilution

of precision, integer ambiguity resolution, and cycle slip [14].

If DGPS is used for the final docking phase of refueling, the only way to capture

the drogue movement would be to install the antenna directly on to the refueling

drogue. [8] notes that this situation poses many integration and safety problems. In

addition, the tanker wing, empennage, or receiver aircraft may block signals from the

GPS satellites. Finally, the accuracy and update rate required for proximity naviga-

tion, especially for small UAVs in turbulence, are beyond the capabilities of existing
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DGPS hardware. For these reasons, several researchers have proposed combining

DGPS with vision-based sensors for air refueling [13, 12, 15]. DGPS offers accuracy

at long range, while vision sensors can provide more precise measurements during the

final docking phase.

The engineering community has long studied the concept of machine vision for a

wide range of applications, from manufacturing techniques to formation flying. The

idea of using machine vision for navigation of unmanned vehicles has become very

popular in the last decade. Vision sensors have been proposed for many aspects of

UAV operation, including navigation, terrain avoidance, and landing [16, 17].

Most vision sensors work by processing 2D images from one or more cameras. To

determine 3D information from 2D images, some sort of mapping is required. This

involves relating some key markers, such as light beacons or patterned decals, in an

image to their known positions on the target. At this point a distinction should be

made between active and passive vision systems. A passive system does not require

the cooperation of the target in any way, and can therefore be used for applications

such as obstacle avoidance and detection. The difficulty with passive systems comes

from distinguishing key points in the 2D image. Often significant computational

burden is incurred to discern the identifying markers from background clutter under

varying lighting conditions. In contrast, active systems communicate and coordinate

with the target in some way, making the identification process much easier.

Pollini et al. proposed a passive vision sensor for AAR which processes images of

infrared (IR) light-emitting diodes (LEDs) mounted to the drogue [18, 19]. The LEDs

are mounted in a co-planar configuration, at the vertices of a regular polygon. Images

taken with an IR camera mounted on the receiver vehicle are passed to a modified

version of the estimation algorithm created by Lu, Hager and Mjolsness (LHM). The

LHM algorithm determines the relative position and attitude based on minimizing the
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object space collinearity error. The symmetry of the beacon configuration eliminates

the need for uniquely identifiable markers. However, this leads to the relative roll

angle becoming unobservable. The estimation algorithm is shown to converge within

ten iterations in simulation and experiment, but no mention is made of the update

rate, which is critical for refueling in turbulence.

Although recent advances in micro processors have made pattern recognition

software a viable technology for many navigation applications, the update rate is still

too slow to track a refueling drogue in light turbulence. In addition, many small

UAVs may be unable to accommodate the weight and power requirements for image

processing hardware. Because AAR involves two cooperating (friendly) vehicles, an

active system offers significant advantages over a passive sensor.

VisNav is an active vision-based sensor developed by Junkins, Schaub, and

Hughes at Texas A&M University [20]. Its ability to generate highly accurate mea-

surements with an update rate of up to 100 Hz makes it an ideal sensor for autonomous

refueling operations. VisNav is capable of producing six degree-of-freedom relative

navigation information without the need for a computationally intensive image pro-

cessing system [2]. The VisNav system is primarily composed of a set of structured

light beacons and a sensor box. The VisNav sensor is mounted to the receiver aircraft

and the beacons are attached to the refueling drogue, similar to Pollini’s sensor [18].

However, instead of a camera, VisNav calculates line of sight vectors to each beacon

using voltage measurements from a light sensitive diode. A controller on the receiver

orchestrates the sequence and timing of the active beacon array through a wireless

data link. This assures correspondence between each measurement and the known

position of the beacon on the target, eliminating the marker identification problem.

VisNav sensor is described in detail in Chapter III.

One of the drawbacks of an active sensor is that it may be susceptible to inter-
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ception or jamming in hostile environments. Because the sensor is active only at close

range, however, a relatively weak IR or radio signal may be employed to communicate

with the beacons. Aerial refueling operations typically occur at high altitude, making

such a signal difficult to detect from the ground.

For autonomous operations such as formation flying and air refueling, both long

range and proximity measurements are needed at various phases during the mission.

For AAR, the receiver aircraft must first find the tanker and get within range of

the vision sensor. During the final phase of docking, very accurate, high frequency

relative measurements are needed. The receiver may be equipped with an inertial

measurement unit (IMU), GPS or DGPS receiver, air data probes, and a vision sensor

of some kind. One way to take advantage of all of the available information is to the

fuse measurements from these instruments.

In 2002 Williamson et al. proposed an instrument that uses a combination of

GPS and and INS (inertial navigation system) called the Formation Flight Instru-

mentation System (FFIS). Measurements from Differential Carrier Phase GPS and an

onboard INS are transmitted via wireless data links between aircraft flying in forma-

tion. An extended Kalman filter (EKF) is used to blend the measurements from each

aircraft to provide estimates of relative position, velocity, and attitude. The authors

developed a method to resolve integer ambiguity from DGPS measurements, however

this algorithm has not been proven to converge in all situations. The state estimates

are available to the control system at a rate of 40 Hz. Early flight test results showed

fairly accurate position estimates with a mean error of 7 cm and a standard deviation

of 13 cm. The attitude estimates, however, were poor due to larger than expected

noise in the IMU during flight testing [21].

More recently Awalt et al. developed a Multi-Model Adaptive extended Kalman

filter (MM EKF) to combine data from several sources for autonomous formation
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flight [15]. The MM EKF fuses transmitted state information from the wingman (the

lead vehicle), GPS/INS measurements, an unspecified vision sensor, and a choice of

several a priori models of the wingman and its control laws. The MM EKF then

provides the ownship (the follower) with an optimal estimate of the wingman state

for its guidance laws. The adaptive component of the EKF allows the system to be

robust to modeling errors due to turbulence effects, erroneous communication data,

noisy vision sensor data, and rate gyro failure. The price for increased robustness,

however, is a decrease in overall tracking performance. The MM EKF was demon-

strated through nonlinear simulation using simple vehicle dynamics, but the system

has yet to be tested in flight [15].

Table I summarizes the sensors and instruments discussed in this section. The

advantages and disadvantages for the autonomous aerial refueling application are

briefly listed for each system.

2. Control

Autonomous aerial refueling is a relatively nascent area of research; most of the

previous work has been done within the past three years. Several approaches to the

control aspects of AAR have been investigated in combination with the various sensor

systems discussed in Section 1. Controllers have been developed for both probe and

drogue and boom refueling methods, although the requirements for these two methods

of refueling are quite different. The primary task of the receiver during boom refueling

is to maintain a constant relative position to the tanker. [22] discusses a design for

automatic boom refueling. Probe and drogue refueling requires the receiver to track

and maneuver to the refueling drogue, a much more demanding control problem. This

section will discuss controllers which have been developed for the probe and drogue

refueling task.
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Table I. Summary of navigation systems for autonomous aerial refueling
SYSTEM ADVANTAGES DISADVANTAGES

DGPS [11] Long range measurements Low update rate (10 Hz max)
Existing technology Low accuracy (1 m)

Reliability issues
Installation on drogue difficult
Susceptible to jamming

Pattern Not susceptible to jamming Low update rate
Recognition Weight and power requirements
[18] Sensitive to visibility conditions
VisNav [2] High accuracy (about 3 cm) May be susceptible to jamming

High update rate (100 Hz) Sensitive to visibility conditions
Low weight, size and power Has not been flight tested

FFIS [21] Commercially available hard-
ware

Accuracy about 20 cm

Moderate update rate (40 Hz) Susceptible to jamming
Reliability issues

MM EKF [15] Robust to sensor failure Susceptible to jamming
High accuracy Has not been flight tested
High update rate

Some of the first work in AAR was a result of the development of applications for

the VisNav sensor at Texas A&M University. Valasek, Kimmett, Hughes, Gunnam,

and Junkins first proposed a system for AAR using the VisNav sensor and the Nonzero

Set Point (NZSP) control structure [23]. This work considered the case where the

refueling drogue is stationary relative to the steady-state flight path of the receiver

vehicle. NZSP is an optimal time-domain tracking control structure which assumes

full-state feedback. A general block diagram is shown in Fig. 6.

The objective of the NZSP controller design is to find the optimal gain K, and

the matrices X12 and X22 such that the actual output y tracks the desired output

ym. Perfect tracking can be achieved when ym is a known constant value. For air

refueling, the desired output is the inertial position that the receiver aircraft must
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Fig. 6. Nonzero Set Point (NZSP) control structure

achieve in order for it to dock with the drogue. In some cases the heading angle may be

commanded as well, but it is not required. The authors modified the control structure

by adding a proportional integral filter (PIF) and control rate weighting (CRW) in

order to avoid control saturation, resulting in the PIF-NZSP-CRW controller. In a

subsequent publication, Kimmett, Valasek, and Junkins added a variational Kalman

filter (VKF) to estimate full state feedback [24, 25]. This control/estimation structure,

also known as a linear quadratic Gaussian (LQG) system, provides estimates of the

states which are not measured and filters exogenous inputs and measurement noise.

Kimmett, Valasek and Junkins then extended this work for cases where the

drogue position is no longer constant by using a command generator tracker (CGT)

controller [26]. CGT (Fig. 7) is a model-following control structure which is similar

to NZSP, but instead of tracking a constant value, CGT can track a time-varying

reference trajectory that is generated with an a priori model. For perfect tracking

the input to the model must be constant, otherwise the controller will lag the ref-

erence signal. The most challenging aspect of designing the CGT controller is the

selection of the reference model. For aerial refueling Kimmett et al. [26] proposed a

dynamic model of the drogue as the reference model system. The authors were able

to show successful docking with the moving drogue in still air, however performance
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was degraded in the presence of light atmospheric turbulence. This was mainly due

to the fact that there is no direct correspondence in the controller between the model

drogue and the actual drogue. Specifically, when the actual drogue experienced tur-

bulence the controller tracked the model of the drogue in still air, leading to degraded

performance.

The main limitation with applying a model-following controller such as CGT to

air refueling is that the trajectory of the drogue must be known a priori. In practice,

the desired or reference states need to be estimated based on the measured aircraft

states and the estimated relative position and orientation of the drogue. In [27]

Tandale, Bowers, and Valasek solved this problem by modifying the Nonzero Set Point

control structure so that it does not require a drogue model or presumed knowledge

of its position. The modified control structure is called the Reference Observer-based

Tracking Controller (ROTC). Relative measurements from the VisNav sensor are fed

forward into an estimator, which determines what the receiver states and controls

need to be in order to track the drogue. A trajectory generation module creates

a feasible trajectory for the receiver to follow to achieve successful docking. The

trajectory tracking controller has been shown to be robust to errors in the model and

disturbances due to turbulence. Additionally, this work considered cases where the

navigation solution from VisNav is affected by factors such as the loss of one or more
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beacons as they fall outside of the field of view. This thesis will use the ROTC to

examine the closed-loop performance of an autonomous aerial refueling system. The

control structure is discussed in detail in Chapter V.

Campa et al. [13] and Fraviolini et al. [12] proposed a robust H∞ controller

which tracks a reference signal from a fuzzy fusion of measurements from GPS and an

unspecified artificial vision sensor. They included a finite element model of a flexible

“boom-drogue” in Dryden moderate turbulence. Accurate tracking performance was

demonstrated using nonlinear simulation, however, the resulting 24th order controller

may be difficult to implement in practice.

Stepanyan et al. considered the problem of autonomous air refueling autopilot

design using techniques from differential games and adaptive control [28]. The per-

formance of this controller was demonstrated in simulation assuming the availability

of ideal measurements of the drogue position, i.e. no sensor model was incorporated

in the design. Bounded random inputs to the drogue dynamic model were considered,

but turbulence effects were not modeled explicitly.
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CHAPTER III

THE VISNAV SYSTEM

The VisNav sensing system measures the relative position and orientation between

two vehicles or objects. It works by measuring the line of sight (LOS) vectors between

the sensor, which is mounted on one vehicle, and a set of structured light beacons

attached to the second vehicle. Once LOS measurements from several beacons have

been collected, VisNav uses an estimation algorithm to determine relative position

and attitude. This chapter will describe some important aspects of the VisNav system

and how it works. The interested reader should consult [2] and [14] for further details.

A. System Description

This section will give a brief description of some of the major components of VisNav.

It is not intended to be a comprehensive description of VisNav hardware, rather,

an introduction to the basic parts and their functions. Fig. 8 shows a schematic

of the VisNav System architecture. The main components discussed here are the

sensor, beacon controller, and beacon array. [2] contains a more detailed description

of VisNav hardware.

The sensor part of the system (Fig. 9) contains a photodiode or position sensing

diode (PSD), a wide angle lens, and a digital signal processor (DSP). For this research,

it is assumed that the sensor components are located on the receiver aircraft. While

this configuration is not required, it was chosen because the AAR controller, which

uses VisNav measurements, is assumed to be on board the receiver vehicle. This

avoids having to transmit the navigation solution from one vehicle to the other, which

introduces latency and degrades controller performance.

It is important for the estimation algorithm to associate each LOS measurement
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Fig. 8. VisNav system architecture (Reprinted with permission from “Vision-Based

Sensor and Navigation System for Autonomous Air Refueling” by J. Valasek,

K. Gunnam, J. Kimmett, M. Tandale, J.L. Junkins and D. Hughes, 2005.

Journal of Guidance, Control, and Dynamics (accepted)).
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Fig. 9. The VisNav sensor

with the specific beacon which produced it. The beacon controller orchestrates the

sequence and timing of the beacons’ activation through an infrared or radio data

link. Feedback from the controller is used to hold the beacon light intensity at about

70% of the saturation level of the PSD, preventing damage to the photodiode and

maintaing an optimal signal-to-noise ratio throughout operation [2].

When VisNav is operating, the DSP commands the the beacon controller to

signal each beacon to activate in turn. As each beacon turns on, light comes through

the wide angle lens and is focused onto the PSD. The focused light creates a centroid,

or spot, on the photodiode, which causes a current imbalance in the four terminals on

each side of the PSD. The closer the light centroid is to one side of the photodiode, the

higher the current in the nearest terminal (see Fig. 10). By measuring the voltage at

each terminal, the 2-D position of the light centroid on the PSD can be found with a

nonlinear calibration function, which is determined experimentally for each sensor[2].

For AAR the active beacon array is located on the refueling drogue and/or the

tanker aircraft. Each beacon is made of a cluster of infrared light emitting diodes.

The beacons currently come in three sizes, as shown in Fig. 11. Although only four
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Fig. 10. Illustration of VisNav operation

beacons are required to obtain a unique six degree-of-freedom navigation solution, a

configuration of eight beacons has been shown to give good results for AAR [29]. The

extra beacons provide redundancy in case a beacon falls outside of the field of view,

and additional measurements improve the convergence performance of the estimation

routine.

The configuration of the beacons on the target vehicle is an important parameter

which affects VisNav’s ability to obtain a solution accurately and quickly. At long

range, it is desirable to have a large beacon array, however at close range these beacons

may fall outside the field of view. Thus a second, smaller beacon array may be used

for proximity navigation. [2] states that a desirable configuration would ensure that

the lateral extent of the beacon array takes up at least 10% of the sensor field of view

within the range of interest.
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Fig. 11. VisNav active beacons in three sizes

B. Measurement Model

The measurement model used by VisNav is based on the collinearity equations. These

equations assume that the beacon, the center of the lens, and the light centroid on

the PSD lie along the same line (see Fig. 12). This is sometimes referred to as the

ideal pin-hole model because it does not take into account distortions due to the lens

and the PSD detector. These departures from the ideal case are accounted for in the

calibration process [2].

In Fig. 12 there are two coordinate frames of interest. The first is image space,

a body-fixed coordinate frame attached to the sensor with origin at the center of the

lens. The focal length f lies along the image space x-axis, and the y-z plane is aligned

with the surface of the PSD. The second frame, object space, is fixed to the target

vehicle. The mounting location for beacon i on the target vehicle is known, thus

the beacon’s position in the object space frame, Bi, is known. The objective is now

to develop equations for the measured quantities yi and zi in terms of the unknown

sensor position in the object space, o, and the transformation between image space

and object space, C.
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The unknown coordinates of the sensor in object space are defined as

o =


Xc

Yc

Zc

 (3.1)

and the known location of the ith beacon in object space is defined as

Bi =


Xi

Yi

Zi

 (3.2)

The unknown direction cosine matrix which transforms object space to image space,

C, will be parameterized with the Modified Rodrigues Parameters, or MRPs. MRPs

are a set of three attitude parameters which can be related to the Euler parameters.

In terms of the principal rotation vector, e, and the principal rotation angle Φ, the
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MRP (3× 1) vector p is defined as

p = tan
Φ

4
e (3.3)

A detailed explanation of attitude parameters may be found in [30]. The direction

cosine matrix in terms of p is

C = I +
8 [p×]2 − 4

(
1− pTp

)
[p×]

(1 + pTp)2 (3.4)

where

[p×] =


0 −p3 p2

p3 0 −p1

−p2 p1 0


The unit LOS vector to beacon i in image space coordinates is

bi =
1√

f 2 + y2
i + z2

i


f

−yi

−zi

 (3.5)

The unit LOS vector to beacon i in object space coordinates is

ri =
1√

(Xi −Xc)2 + (Yi − Yc)2 + (Zi − Zc)2


(Xi −Xc)

(Yi − Yc)

(Zi − Zc)

 (3.6)

Thus the unit vector form of the collinearity equations may be written as

bi = Cri (3.7)
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Solving for the measured image space coordinates gives

yi = −f C21(Xi −Xc) + C22(Yi − Yc) + C23(Zi − Zc)

C11(Xi −Xc) + C12(Yi − Yc) + C13(Zi − Zc)
(3.8)

zi = −f C31(Xi −Xc) + C32(Yi − Yc) + C33(Zi − Zc)

C11(Xi −Xc) + C12(Yi − Yc) + C13(Zi − Zc)
(3.9)

The collinearity equations represent the nonlinear relationship between the measured

image space coordinates, yi and zi, and the six unknowns, Xc, Yc, Zc, p1, p2, and

p3. Measurements from each beacon contribute two equations, therefore at least

three beacons are needed to obtain a solution. Some configurations of three beacons,

however, can give more than one viable solution. At least four measurements are

needed to find a unique solution, causing the problem to be overdetermined, with

more equations than unknowns. The overdetermined problem is solved using the

linear least squares method described in the next section.

C. Gaussian Least Squares Differential Correction Algorithm

Once measurements of the image space coordinates of at least four beacons are col-

lected, the information is processed by a digital signal processor, or DSP. Inside the

DSP, a Gaussian Least Squares Differential Correction (GLSDC) algorithm is used

to estimate the position and attitude of the sensor relative to the beacons. The idea

behind GLSDC is to determine some unknown parameters, such as relative position

and attitude, given 1) a measurement model and 2) a set of measured data. These

two are combined to produce an estimate of the unknown parameters which is optimal

with respect to a specified amount of measurement noise [31].

To begin, a state vector consisting of the unknown parameters to be estimated is

defined. In the case of VisNav, these are the relative position, o, and relative attitude,
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p, as defined in (3.1) and (3.3).

x =

 p

o

 (3.10)

It is assumed that a set of measurements from n beacons has been collected, where

n ≥ 4,

b̃ =



b̃1

b̃2

...

b̃n


(3.11)

The measurement model for the ith beacon derived in Section B is

bi = Cri = hi (x) (3.12)

When measurement noise νi is present, the model becomes

b̃i = hi (x) + νi (3.13)

The measurement noise is assumed to have a Gaussian distribution with zero mean

and covariance Ri = E{νiν
T
i }∗. The measurement error covariance matrix for the set

of n measurements is thus

R =



R1 0 0 0

0 R2 0 0

0 0
. . . 0

0 0 0 Rn


(3.14)

∗E represents the expectation operator. The expected value of a function f(x)
of a discrete random variable x is defined as E {f(x)} =

∑
j f(x(j))p(x(j)), where

p(x(j)) is the probability of occurrence of x(j).
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It is desired to find an estimate x̂ which minimizes the residual error

∆b =



b̃1 − h1(x̂)

b̃2 − h2(x̂)

...

b̃n − hn(x̂)


(3.15)

To do this a cost function J is defined as the weighted sum of squares of the residual

error

J =
1

2
∆bTW∆b (3.16)

where W is a matrix of weighting parameters. For a maximum likelihood estimate,

the weights are chosen as the reciprocal of the measurement error covariance matrix,

W = R−1. The minimum cost is found by setting the derivative of J with respect to

x̂ to zero and solving for the estimated state. Because h is a nonlinear function of x̂,

however, an explicit solution for the estimate cannot be found. Instead, an iterative

approach may be used under the assumption that a current estimate, xc, is available.

The estimate is thus defined as the current value plus a differential correction:

x̂ = xc + ∆x (3.17)

Assuming that ∆x is small, the nonlinear measurement model may be linearized

about the current estimate:

h(x̂) ≈ h(xc) + H̄∆x (3.18)

where H̄ is the (3n × 6) measurement sensitivity matrix evaluated at the current
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estimate. H̄ is found by differentiating the measurement model with respect to x:

H̄ =



H̄1

H̄2

...

H̄n


, H̄i =

∂hi

∂x
=

[
∂hi

∂p
:
∂hi

∂o

]
(3.19)

where

∂hi

∂p
=

4

(1 + pTp)2 [Cri×]
{(

1− pTp
)
I3×3 − 2 [p×] + 2ppT

}
(3.20)

∂hi

∂o
= −C

{
I3×3 − rir

T
i

}
/
√

(Xi −Xc)2 + (Yi − Yc)2 + (Zi − Zc)2

Let ∆bc represent the residual error for the current estimate (before the correction):

∆bc ≡ b̃− h(xc) (3.21)

The residual error may now be approximated as

∆b ≈ b̃− h(xc)− H̄∆x = ∆bc − H̄∆x (3.22)

and the cost function in terms of the linearly predicted residuals becomes

Jp =
1

2

(
∆bc − H̄∆x

)T
W

(
∆bc − H̄∆x

)
(3.23)

To minimize (3.23), the following necessary and sufficient conditions must be satisfied:

Necessary: ∇∆xJ = H̄TWH̄∆x− H̄TW b̃c = 0 (3.24)

Sufficient: ∇2
∆xJ = H̄TWH̄ > 0 (3.25)

Solving (3.24) for the differential correction gives

∆x = (H̄TWH̄)−1H̄TW∆bc (3.26)
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Fig. 13. Gaussian Least Squares Differential Correction (GSLDC) algorithm

The quantity (H̄TWH̄)−1 is generally referred to as the estimation error covariance

matrix. A large error covariance matrix is an indication that the solution has not

converged to an acceptable value. Once the correction is calculated from (3.26),

the estimate is updated and the process begins again until some stopping criteria is

reached. One stopping condition given in [31] consists of evaluating the change in the

cost function between iterations:

|Ji − Ji−1|
Ji

<
ε

‖W‖
(3.27)

where ε is a prescribed small value. Other stopping conditions may include simi-

lar evaluations of the change in the residual or the differential correction between

iterations. A flowchart for GLSDC is shown in Fig. 13.
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CHAPTER IV

VISNAV KALMAN FILTER

The VisNav sensor provides a six degree-of-freedom navigation solution consisting

of the relative position and attitude between two vehicles or bodies. This chapter

will define how the measurements from VisNav may be passed into a linear Kalman

filter to improve the navigation solution and obtain additional estimates of relative

velocity and acceleration. Section A develops the theory behind the discrete-time

linear Kalman filter. Section B discusses how the theory is applied to the relative

navigation problem using measurements from VisNav. Finally, Section C details the

process of tuning the Kalman filter for the air refueling application.

A. Discrete-Time Linear Kalman Filter

One purpose of an estimator is to obtain estimates of the states of a dynamic system,

given a model of the system and the known inputs and measured outputs over some

time interval. The Kalman filter is a specific type of estimation process in which

the poles of the estimator are placed based upon assumed stochastic properties of

the measurement error and model error. This section closely follows the development

and uses the notation of the discrete-time linear Kalman filter in [31].

To begin, a discrete linear model of the dynamic system of interest is specified

as

xk+1 = Φkxk + Γkuk + Υkwk (4.1)

where xk ∈ <n is the state vector, uk ∈ <m is the control vector, and wk ∈ <p is the

vector of process noise, all at time step k. The process noise represents an unknown

forcing input to the system, such as a disturbance or unmodeled dynamics. The state
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transition matrix, Φk, control distribution matrix, Γk, and disturbance matrix, Υk,

are real matrices of appropriate dimensions. The discrete measurement equation is

defined as

ỹk = Hkxk + vk (4.2)

where yk ∈ <r represents the measured output at time step k, and vk represents the

measurement noise. It is assumed that both the process noise wk and the measure-

ment noise vk are zero-mean Gaussian† white-noise processes, where

E
{
vkv

T
j

}
=

 0, k 6= j

Rk, k = j
(4.3)

and

E
{
wkw

T
j

}
=

 0, k 6= j

Qk, k = j
(4.4)

It is further assumed that wk and vk are uncorrelated for all k, or E
{
vkw

T
k

}
= 0.

Because the initial condition of the state, x0, is unknown, the estimation process

must begin with an initial guess, or prediction, of the state:

x̂ (t0) = x̂0 (4.5)

After the initial time, it is the job of the estimator to update the current estimate

of the state, x̂k, and to obtain the estimate at the next time step, x̂k+1, based upon

the measured and predicted output at time k. The estimator works through the

dual processes of prediction and correction. The current estimate is first updated (or

†The Gaussian or Normal probability density function is typically denoted by
p(x) ∼ N(µ,R), where p(x) is the probability of the vector x, µ is the mean, and R
is the covariance matrix.
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corrected) based upon measured and predicted quantities using the update equation:

x̂+
k = x̂−k︸︷︷︸

model prediction

+ Kk

[
ỹk −Hkx̂

−
k

]︸ ︷︷ ︸
residual error

(4.6)

where the (̂ ) denotes an estimated quantity and the superscripts − and + denote the

predicted state before and after the update. The difference between the measured

output and the estimated output at time step k is referred to as the residual error. The

time-varying gain, Kk, affects the updated estimate by amplifying or attenuating the

effect of the residual error. A large gain means that the measurement will dominate

the update, whereas a smaller gain places more emphasis on the model prediction.

Once the estimate is updated with (4.6), the estimate is propagated forward in time

using the model for the system and the known input at time k:

x̂−k+1 = Φkx̂
+
k + Γkuk (4.7)

This value is then used as the model prediction in the update equation at the next

time step, and the process repeats.

The selection of Kk is what sets the Kalman filter apart from other observers

which have the form given in (4.6) and (4.7). For example, Luenberger’s observer

determines Kk using pole placement methods to specify the eigenvalues of the es-

timator. Not only is this process difficult for higher-order systems, but there is no

rigorous method to determine where the estimator poles should be placed. Kalman

developed a theoretical approach to optimally place the poles of the estimator based

on the assumed stochastic properties of the process and measurement noise. By as-

suming that wk and vk are zero-mean uncorrelated Gaussian processes, it is possible

to develop an expression for Kk which minimizes the estimation error at each time

step.
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The estimation error, denoted with a (̃ ), is defined as the estimated state minus

the true state:

x̃k ≡ x̂k − xk (4.8)

The key to Kalman’s solution is the estimation error covariance matrix, which is

defined as the expectation of the squared sum of the estimation errors

Pk ≡ E
{
x̃kx̃

T
k

}
(4.9)

Like the estimated state, it is necessary to define an initial value for the estimation

error covariance at time zero

P0 = E
{
x̃ (t0) x̃ (t0)

T
}

(4.10)

Using (4.6) and (4.7) and the assumed stochastic properties of wk and vk, it is possible

to derive the following expressions for the estimation error covariance before and after

the update

P+
k = [I −KkHk]P

−
k (4.11)

P−k+1 = ΦkP
+
k ΦT

k + ΥkQkΥ
T
k (4.12)

The cost function for optimization can be defined as the trace of the error covariance

after the update

J(Kk) = tr(P+
k ) (4.13)

To find the gain which minimizes the cost function, the derivative of J with respect

to Kk is set to zero and solved for Kk. Using properties of the trace function, as well

as the fact that P−k and Rk are symmetric, the following expression can be found:

∂J

∂Kk

= −2 (I −KkHk)P
−
k H

T
k + 2KkRk = 0 (4.14)
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Solving (4.14) for the gain yields

Kk = P−k H
T
k

[
HkP

−
k H

T
k +Rk

]−1
(4.15)

A summary of the discrete-time linear Kalman filter is presented in Table II.

Table II. Discrete-time linear Kalman filter [31]

MODEL xk+1 = Φkxk + Γkuk + Υkwk

ỹk = Hkxk + vk

NOISE wk ∼ N (0, Qk)

vk ∼ N (0, Rk)

INITIALIZE x̂ (t0) = x̂0

P0 = E
{
x̃ (t0) x̃ (t0)

T
}

GAIN Kk = P−k H
T
k

[
HkP

−
k H

T
k +Rk

]−1

UPDATE x̂+
k = x̂−k +Kk

[
ỹk −Hkx̂

−
k

]
P+

k = [I −KkHk]P
−
k

PROPAGATION x̂−k+1 = Φkx̂
+
k

P−k+1 = ΦkP
+
k ΦT

k + ΥkQkΥ
T
k
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B. Kalman Filter Design for Relative Navigation

The first step in designing a Kalman filter is to develop a system model and measure-

ment equation. For the relative navigation problem, the dynamic system model will

represent the relative translational and rotational motion between the VisNav sensor

and the target. The continuous state vector is defined as

x (t) ≡


z (t)

ż (t)

z̈ (t)

 (4.16)

where

z (t) ≡

 o (t)

p (t)

 (4.17)

The relative position o (t) and attitude p (t) are defined in (3.1) and (3.3). The

state vector x (t) is an (18 × 1) vector consisting of the relative position, attitude,

translational velocity, rotational velocity, translational acceleration, and rotational

acceleration.

To develop the relative equations of motion, one simplifying assumption will be

made. It is assumed that the relative translational and rotational accelerations are

constant, or
...
z (t) = 0. This is a relatively acceptable assumption in the case of aerial

refueling because ideally the closing rate and acceleration between the receiver and

drogue will be small. Since there is still some error in this assumption, however,

process noise w (t) will be added to the
...
z (t) equation only. In this case the process

noise represents dynamics which are present in the real system but not in the model.
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The continuous dynamic model for the Kalman filter is

ẋ (t) =


ż (t)

z̈ (t)

...
z (t)

 =


0 I 0

0 0 I

0 0 0




z (t)

ż (t)

z̈ (t)

 +


0

0

I

w (t) (4.18)

where I is a (6× 6) identity matrix. Note that the model does not include a control

input u (t) to the system. The kinematic relationships between position, velocity, and

acceleration in (4.18) are modeled exactly. All of the error in the model comes from

the assumption that the relative acceleration is constant. In discrete time, (4.18)

becomes

xk+1 = Φkxk + Υkwk (4.19)

where

Φk =


I (tk+1 − tk) I

1
2
(tk+1 − tk)

2 I

0 I (tk+1 − tk) I

0 0 I

 and Υk =


0

0

I


The VisNav sensor takes discrete measurements of the line of sight vectors to

each beacon and estimates the relative position and attitude using the nonlinear least

squares algorithm described in Chapter III. In the discrete-time form of the Kalman

filter formulation, it is assumed that measurements are available at each time step.

This corresponds to an integration step size of (tk+1 − tk) = 0.01 sec with a VisNav

update rate of 100 Hz. The six degree-of-freedom relative navigation solution from

VisNav at time step k is the measured output of the system,

ỹk =

[
I 0 0

] 
zk

żk

z̈k

 + vk = Hkxk + vk (4.20)
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where vk represents the error in the VisNav solution. The measurement error co-

variance Rk = E
{
vkv

T
k

}
is required for the Kalman filter formulation. The VisNav

sensing system provides a time-varying measurement error covariance matrix from

the GLSDC algorithm, which may be passed to the Kalman filter as

Rk =
(
H̄T

k WH̄k

)−1
(4.21)

Recall from Chapter III that H̄ is the measurement sensitivity matrix defined in (3.19)

and W is the weighting matrix in GLSDC. When the output from VisNav has a high

degree of error, Rk will be large and the dynamic model in the filter will improve the

estimate by enforcing the kinematic relationships in the system. As the estimates

from VisNav improve, the value of Rk will decrease, and the filter will rely more

heavily on the measurements. Disruptions in the solution due to beacon drop-out or

loss of lock will cause Rk to increase in magnitude, and the Kalman gain in (4.15) will

be reduced to place less emphasis on the measurements from VisNav. The relative

weighting between Qk (modeling error) and Rk (measurement error) determines the

convergence behavior of the filter estimated states. The selection of Qk is discussed

in the next section.

C. Tuning the Kalman Filter for Aerial Refueling

The process of tuning the Kalman filter is application-dependent, and must therefore

involve simulations involving realistic aerial refueling scenarios. The value of Qk,

which quantifies the degree to which the constant acceleration assumption is true, is

used as the tuning parameter. Qk is a symmetric positive-definite matrix, defined in

Section B as

Qk = E
{
wkw

T
k

}
(4.22)
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It is necessary to simulate the estimation process in order to find appropriate

values for Qk. This is due to the fact that the process noise wk represents modeling

error, which is not a random or uncorrelated process. During the tuning process

the estimation error, defined in (4.8), is typically plotted versus time, along with

the so-called 3σ bounds. The 3σ bounds are calculated by multiplying the square

root of the diagonal elements Pk by a factor of three. For a Gaussian process, the

probability of any sample lying within the 3σ bounds is 99.7% [32]. Although wk is

not a true Gaussian process in this case, the 3σ bounds remain good indicators of the

performance of the Kalman filter. While the estimation error may only be calculated

in simulation (where the true state is known), the estimation error covariance Pk can

be used in practice to give an indication of the error in the estimate and thus the

performance of the filter. The tuning process is used to ensure that the estimation

error covariance is consistent with the estimation error for realistic docking scenarios.

An example of tuning the Kalman filter is shown in Fig. 14. In the topmost

graph, the estimation error exceeds the 3σ bounds in several places, indicating that

the magnitude of Qk is too small. The middle plot shows an example of a well-tuned

Kalman filter, where the estimation error touches, but does not exceed the bounds

over the entire simulation. The bottom graph shows a noticeable gap between the

estimation error and the 3σ bounds, meaning that Qk is too large.

The value of Qk for the Kalman filter described in Section B will be determined

through a series of simulations of closed-loop docking maneuvers. It will be repre-

sented as a constant matrix,

Qk =

 q1I 0

0 q2I

 (4.23)

where q1 and q2 are scalars corresponding to the relative translational and rotational
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Fig. 14. Sample tuning parameters for the Kalman filter

acceleration, respectively. Two scalars were chosen to account for differences in the

order of magnitude of the rotational and translational acceleration terms. The process

of selecting q1 and q2 is described in Chapter VII.
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CHAPTER V

REFERENCE OBSERVER-BASED TRACKING CONTROLLER

The Reference Observer-based Tracking Controller (ROTC) was developed for au-

tonomous aerial refueling in [27] by Tandale, Bowers and Valasek. This chapter de-

scribes the controller structure, as shown in Fig. 15. The control objective is defined

in Section A. Sections B, C, and D describe the main components of the controller:

the reference trajectory generation module, the observer, and the feedback control

law. Lastly, a robustness analysis is presented in Section E.

A. Control Objective

This section will describe the aerial refueling scenario and define the control problem.

To begin, it is assumed that the receiver aircraft has located the refueling drogue, and

has adjusted its heading angle to match that of the tanker aircraft. Both vehicles are

assumed to be traveling at constant velocity VP when the docking maneuver begins.

An inertial coordinate frame N : {XN , YN , ZN} is defined such that the steady-state

heading of the receiver aircraft is oriented along the XN axis, and the gravity vector

acts along the ZN axis. A body-fixed coordinate system B : {XB, YB, ZB} is attached

to the receiver aircraft at the center of gravity. Both frames are shown in Fig. 16.

The inertial coordinates of the receiver aircraft and the drogue at time t are defined

as (X(t), Y (t), Z(t)) and (Xd(t), Yd(t), Zd(t)), respectively.

The controller presented in this chapter is developed assuming that the receiver

aircraft is modeled as a linear time-invariant system. To obtain a linear model,

the general airplane equations of motion must linearized about a steady-state flight

condition. The states of this model represent perturbations of the motion variables

from their steady-state (or equilibrium) values. It is therefore most useful to define
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Fig. 16. Autonomous aerial refueling coordinate frames

the control objective in terms of perturbed motion variables. Thus the trajectory of

the receiver aircraft will be defined as

X(t) = X1(t) + x(t)

Y (t) = Y1(t) + y(t) (5.1)

Z(t) = Z1(t) + z(t)

where the (1) subscript denotes the steady-state trajectory of the receiver, and (x, y, z)

represent perturbations, or deviations, from the steady-state trajectory. The steady-

state trajectory is defined by steady, level, 1g flight, where there is no net translational

acceleration or angular velocity. The inertial coordinates of the drogue may be simi-

larly defined as

Xd(t) = X1(t) + xd(t)

Yd(t) = Y1(t) + yd(t) (5.2)

Zd(t) = Z1(t) + zd(t)

The inertial positions of the receiver and the drogue relative to the steady-state flight
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path are thus defined as

y(t) =


x(t)

y(t)

z(t)

 and yd(t) =


xd(t)

yd(t)

zd(t)

 (5.3)

The control objective is to drive the inertial position of the receiver aircraft to the

inertial position of the drogue , or y(t) → yd(t) over a specified finite time interval

(t0, tf ).

B. Reference Trajectory Generation

The purpose of the reference trajectory generation module is to produce a feasible

trajectory that drives the probe of the receiver aircraft to the drogue. The docking

maneuver is performed over the time interval (t0, tf ). To ensure that the reference

trajectory is feasible and does not cause control saturation, tf must be chosen judi-

ciously as a function of the initial offset between the receiver and the drogue. There

are several ways to do this, depending on the constraints on the receiver aircraft states

and controls. For this research, the final time is determined by

tf = 10 ∗ ceil

(
|x̄d|+ |ȳd|+ |z̄d|

γf

)
(5.4)

where the “ceil” function rounds the argument up to the nearest integer, and γf is

a design parameter which is chosen such that the closing rate between the receiver

and the drogue is sufficiently small. The closing rate is typically less than 4 ft/s,

depending on the specifications of the refueling equipment.

Because the tanker and the receiver aircraft have the same initial speed and
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orientation, the offset at time t0 is constant. This initial displacement is defined as

xd(t0) = x̄d

yd(t0) = ȳd

zd(t0) = z̄d

The range in XN is gradually reduced using a reference trajectory that is generated

with a smooth 7th order polynomial. The reference trajectory is defined from t0 to tf

as

xref (t) = f(t)ax (5.5)

where ax ∈ <4 and

f(t) ≡
[
t4 t5 t6 t7

]
(5.6)

The four coefficients in ax are found by enforcing the final position, x̄d, and zero

velocity, acceleration, and jerk at tf :

ax =



f(tf )

f
′
(tf )

f
′′
(tf )

f
′′′
(tf )



−1 

x̄d

0

0

0


(5.7)

The YN and ZN components of the reference trajectory, yref and zref , are defined

for two stages during the docking maneuver, as shown in Fig. 17. In the first stage

from time t0 to t1, a smooth 7th order polynomial reference trajectory is designed

to overcome the initial offsets ȳd and z̄d. In the second stage from t1 to tf , another

reference trajectory is designed to track small changes in yd and zd as the range

(xd − x) decreases in the end game.
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Fig. 17. Reference trajectory design

1. Stage I: Initial Alignment

The purpose of the first stage of the docking maneuver is to align the receiver aircraft

in the YN and ZN directions. Stage I lasts from t0 to t1, which is determined as a

fraction of the total time

t1 = γ1tf (5.8)

The design parameter γ1 is selected to ensure that the trajectory is not too aggressive,

i.e. the receiver aircraft has enough control effectiveness to track the reference. Similar

to (5.5), yref and zref are defined as

yref (t) = f(t)ay (5.9)

zref (t) = f(t)az (5.10)
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where ay and az are determined by enforcing the final position at t1, as well as zero

velocity, acceleration, and jerk:

ay =



f(t1)

f
′
(t1)

f
′′
(t1)

f
′′′
(t1)



−1 

ȳd

0

0

0


, az =



f(t1)

f
′
(t1)

f
′′
(t1)

f
′′′
(t1)



−1 

z̄d

0

0

0


(5.11)

2. Stage II: End Game Precision Tracking

Once the receiver aircraft is aligned with the drogue, it must track small changes

in position laterally and vertically during Stage II, which lasts from t1 to tf . The

position of the drogue during this stage is represented as

yd(t) = ȳd + ∆yd(t) (5.12)

zd(t) = z̄d + ∆zd(t) (5.13)

The reference trajectory after t1 is defined as

yref (t) = ȳd +Kref (t)∆yd(t) (5.14)

zref (t) = z̄d +Kref (t)∆zd(t) (5.15)

The gain Kref (t) is determined by

Kref (t) =

 10
(

t−t1
t2−t1

)3

− 15
(

t−t1
t2−t1

)4

+ 6
(

t−t1
t2−t1

)5

for t ≤ t2

1 for t > t2

(5.16)

The definition of Kref allows for a smooth transition from the first stage to the second

stage, so there is not a discontinuity in the reference. The gain is gradually increased
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from 0 at time t1 to 1 at time t3 using a 5th order polynomial. The time at which the

gain becomes 1 is determined by

t2 = γ2tf (5.17)

where the parameter γ2 is selected by the designer.

C. Observer Design

The reference trajectory in Section B is defined in terms of the three receiver aircraft

position states: x, y, and z. The controller designed in Section D, however, is full-state

and requires references for all of the states and controls. This section will develop an

observer that is used to estimate the full reference state and control vectors based on

the reference trajectory. In essence, the observer will determine what the states and

controls of the receiver must be in order to follow the reference trajectory.

The receiver aircraft equations of motion are represented as a linear time-invariant

system,

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) (5.18)

where x(t) ∈ <n is the state vector, u(t) ∈ <m is the control vector, y(t) ∈ <r is

the output vector, and A, B, and C are real, constant matrices of the appropriate

dimension. The output vector is defined as

y(t) =


x(t)

y(t)

z(t)

 (5.19)

where x(t), y(t), and z(t) are defined in (5.1). Let y∗(t) represent the desired output,
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defined as

y∗(t) =


xref (t)

yref (t)

zref (t)

 (5.20)

where xref , yref , and zref are defined in Section B. For the output to follow the

desired output, or y(t) → y∗(t), there must exist states x∗(t) and controls u∗(t) such

that

ẋ∗(t) = Ax∗(t) +Bu∗(t)

y∗(t) = Cx∗(t) (5.21)

An output injection observer may now be designed to estimate x∗(t) and u∗(t)

from y∗(t). To do this, first an augmented state vector is defined as

X∗ =

[
x∗ u∗

]T

(5.22)

Taking the derivative, it is seen that

Ẋ∗ = AX∗ + Bu̇∗

y∗ = CX∗ (5.23)

where

A =

 A B

0 0

 , B =

 0

I

 , C =

[
C 0

]
(5.24)

The augmented observer state vector is defined as

X̂ =

[
x̂ û

]T

(5.25)
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where the (ˆ) denotes an estimated quantity. The observer dynamics are specified as

˙̂
X = AX̂ + LC

(
X∗ − X̂

)
ŷ = CX̂ (5.26)

where L ∈ <(n+m)×r is observer gain. The observer error e is defined as the difference

between the desired state and the estimated state:

e = X∗ − X̂ (5.27)

The observer error dynamics are found by taking the time derivative of (5.27) and

substituting (5.23) and (5.26):

ė = (A− LC) e + Bu̇∗ (5.28)

Here it is seen that the error dynamics are determined by the poles of (A − LC) as

well as a bounded disturbance Bu̇∗. Assuming that (A, C) is observable, the observer

gain L may be selected using the dual of the Linear Quadratic Regulator theory [33]

as

L = PoCTR−1
o (5.29)

where Po is a solution to the steady-state algebraic Riccati equation

0 = APo + PoAT +Qo − PoCTR−1
o CPo (5.30)

Qo, a positive semi-definite weighting matrix, and Ro, a positive definite weighting

matrix, are both selected by the designer. When the bounded disturbance Bu̇∗ be-

comes zero, the estimation error tends to zero asymptotically.
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D. Trajectory Tracking Controller Design

The trajectory tracking controller is a variation of the Nonzero Set Point control

structure from [23, 24, 25]. In NZSP, x∗ and u∗ represent the desired states and

controls which will cause the output y to approach the desired output y∗ as t→∞.

Because the desired output is assumed to be both known and constant, the desired

states and controls may be found off-line using analytical methods. However, in the

ROTC formulation, the desired output is not perfectly known or constant, hence the

desired states and controls must be estimated on-line using the observer described in

Section C. The controller is designed so that the plant states and controls track the

desired states and controls. The derivation of the continuous controller is presented

in Subsection 1, and a sampled-data version is presented in Subsection 2.

1. Continuous Controller

The errors between the plant states and controls and the desired states and controls

are defined as

x̃(t) ≡ x(t)− x∗(t) (5.31)

ũ(t) ≡ u(t)− u∗(t) (5.32)

Differentiating with respect to time and substituting the system dynamics from (5.18)

gives

˙̃x = Ax̃ +Bũ (5.33)

Assuming that all of the states are available for feedback, the errors may be driven

to zero using the control law

ũ = −Kx̃ (5.34)
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Assuming that (A,B) is controllable, the feedback gain K may be calculated using

Linear Quadratic Regulator theory [33] as

K = R−1BTPc (5.35)

where Pc is determined from the steady-state Riccati equation

0 = ATPc + PcA+Q− PcBR
−1BTPc (5.36)

The positive semi-definite state weighting matrix Q and the positive definite control

weighting matrix R are selected by the designer. The selection of Q and R is an itera-

tive process which involves simulation of the closed-loop system. The weight elements

are typically adjusted to give the best tracking performance without saturating the

controls. The closed-loop system is

˙̃x = (A−BK) x̃ (5.37)

Expressed in terms of the plant states and controls

u = u∗ +K(x∗ − x) (5.38)

If the desired states and controls x∗ and u∗ are replaced by the estimated state and

control, x̂ and û, the control law becomes

u = û +Kx̂−Kx (5.39)

The tracking error dynamics using the estimated state and control are given by

˙̃x = Ax̃ +Bû +BKx̂−BKx−Bu∗ (5.40)
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Adding and subtracting BKx∗ from the right hand side of (5.40) gives

˙̃x = (A−BK) x̃ +

[
BK B

] x̂− x∗

û− u∗

 (5.41)

Using the definition of the estimation error e from (5.27), the combined controller

and estimator error dynamics are ˙̃x

ė

 =

 A−BK [BK B]

0 A− LC


 x̃

e

 +

 0

B

 u̇∗ (5.42)

The eigenvalues of the combined controller and observer system are the union of the

eigenvalues of (A− BK) and (A− LC). This is proved using the following property

of block diagonal matrices: If T, U, V,W are arbitrary matrices of the appropriate

dimensions,

det

 T U

V W

 = det(TW )− det(UV ) (5.43)

det(TW ) = det(T ) det(W ) (5.44)

This property allows the controller and observer gains to be designed separately. If

both sets of gains are stabilizing, the combined system will also be stable with a

bounded disturbance from the term u̇∗.
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2. Sampled-Data Controller

In order to implement the control law on a digital computer, the control input may

be defined as a piecewise constant function of time

ũ(t) = ũ(tk) = ũk for tk ≤ t ≤ (tk + T ) (5.45)

where T is the sample rate of the controller. This is equivalent to a zero-order hold

acting on the sampled control input. Assuming that all of the states are available for

feedback and are sampled at the discrete time points tk, let the control law be given

by,

ũk = −Kx̃(tk) for tk ≤ t ≤ (tk + T ) (5.46)

Assuming that (A,B) is controllable, the sampled-data regulator of [34] may be used

to find the optimal gain K that minimizes the cost function

J =
1

2

∞∑
k=0

[
x̃kQ̂x̃k + ũkR̂ũk + 2x̃kM ũk

]
dt (5.47)

where

Q̂ =
∫ T

0

(
eAT tQeAt

)
dt (5.48)

M =
{∫ T

0

[
eAT tQ

(∫ t

0
eAsds

)]
dt

}
B (5.49)

R̂ = RT +BT
{∫ T

0

[(∫ T

0
eAT tsds

)
Q

(∫ t

0
eAτdτ

)]
dt

}
B (5.50)

The positive semi-definite state weighting matrix Q and the positive definite control

weighting matrix R are selected by the designer.

Let (Φ,Γ) be the discrete-time equivalents of the continuous system matrices

(A,B) in (5.18) with sample period T . The sampled-data optimal gain is given
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by[35]

K =
(
R̂ + ΓTP−1

c Γ
)−1 (

ΓTPcΦ +MT
)

(5.51)

where Pc is the solution to the steady-state Riccati equation

Pc = ΦTPcΦ + Q̂−
(
ΓTPcΦ +MT

)T
(
R̂ + ΓTPcΓ

)−1 (
ΓTPcΦ +MT

)
(5.52)

The zero-order hold adds latency to the system, which grows as the sample period

is increased. The controller is designed to track the output of the observer, therefore

the frequency of the output signal of the observer is determined by the modeled

aircraft dynamics. It is therefore necessary for the controller sample rate to be at

least twice as fast as the fastest mode in the observer.

E. Frequency Domain Analysis

This section presents a frequency domain analysis of the continuous Reference Observer-

based Tracking controller. The following analysis is used to give insight into the

robustness properties of the closed-loop system, which includes the plant dynamics

for the UCAV6 aircraft and the designed observer and controller gains (see Chapter

VI). It is noted that the closed-loop robustness properties depend upon the selection

of the weighting matrices in the observer and the controller, as well as the receiver

aircraft model. Performance specifications and criteria depend upon the specified

drogue dynamics and the noise properties of VisNav and the sensors on board the

receiver aircraft.

The four exogenous input terms illustrated in Fig. 15, η1, η2, η3, and wg are

considered. The sources of these inputs are sensor noise, estimation error, and at-

mospheric disturbances. A fifth exogenous input, ∆, is defined here to represent

unmodeled plant dynamics. The effects of each term on the output of the system are
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examined in this Section using a frequency domain analysis. The closed-loop system

response is written in the frequency domain as

y(s) = T1(s)y
∗ + T1(s) (η3 − η1) + T2(s)η2 + T3(s) (Ggwg(s) +Gd∆(s)) (5.53)

where s is the Laplace variable s = jω and

T1(s) = CCL (sI − ACL)−1 L (5.54)

T2(s) = CCL (sI − ACL)−1K (5.55)

T3(s) = CCL (sI − ACL)−1 (5.56)

and

ACL =


(A− L1C) B 0

−L2C 0 0

BK B (A−BK)

 CCL =

[
0 0 C

]

L =


L1

L2

0

K =


0

0

−BK

 Gg =


0

0

G

Gd =


0

0

I


The terms L1 and L2 are submatrices of the observer gain L in (5.29)

L =

 L1

L2

 (5.57)

such that L1 ∈ <(n×r) affects the estimated state x̂ and L2 ∈ <(m×r) affects the

estimated control û. Singular-value decompositions (SVD) of the transfer functions

(5.54)-(5.56) are used to give insight to the stability and performance robustness of

the closed-loop system. For MIMO (multi-input multi-output) systems, the maximum
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Fig. 18. Singular values of T1(s)

and minimum singular values, denoted by σ and σ are plotted versus frequency ω.

The transfer function T1(s) in (5.54) characterizes the closed-loop system re-

sponse to the reference signal y∗ and to measurement noise (η3 − η1). For perfect

tracking performance, the singular values of T1(s) should be 0 dB for low frequen-

cies. At high frequencies, a small maximum singular value σ(T1) is desired in order

to attenuate noise η1 from the VisNav sensor and η3 from the output feedback. The

VisNav noise has a nominal frequency of 100 Hz, or 628 rad/sec (the update rate of

the sensor). The maximum and minimum singular values of T1(s) are plotted versus

frequency in Fig. 18.

It can be seen in Fig. 18 that for input frequencies between 0.3 and 6 rad/sec, the

singular values of T1(s) surpass 0 dB, indicating that the reference signal is amplified

by the system. The best tracking is achieved when the singular values equal 0 dB,

which is true when the reference signal has a frequency below 0.3 rad/sec (about
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1 Hz). Perfect tracking may be achieved in the first stage of docking because the

reference signal comes from the 7th order spline, which has a frequency well below

0.3 rad/sec. The frequency of reference signal during the second stage of the docking

maneuver is characterized by the full motion of the drogue, therefore the dynamics of

the drogue will determine the highest frequency in the reference signal. The fastest

mode in the drogue model defined in Chapter VI is 0.387 rad/sec, so in this case the

tracking performance is good. If faster drogue dynamics are specified, the weighting

matrices Q and R should be adjusted to achieve better tracking at higher frequencies.

Fig. 18 also shows that input signals greater than 10 rad/sec are attenuated by at

least a factor of 10 dB. VisNav sensor noise is attenuated by a factor of 140 dB.

The transfer function T2(s) characterizes the response of the closed-loop system

to noise η2 in the full-state feedback. The frequency of η2 depends on the type of sen-

sors (or observers) which are used to measure (or estimate) the states. The maximum

and minimum singular values of T2(s) are plotted versus frequency in Fig. 19. The

plot shows that the system amplifies low-frequency noise and attenuates noise with

frequency greater than 100 rad/sec by at least a factor of 10 dB. It may be concluded

that the system is robust to noise in the feedback loop as long as it has a frequency

higher than 100 rad/sec.

In addition to sensor noise, the closed-loop system experiences disturbances due

to exogenous inputs from turbulence, wg, and a disturbance ∆ which represents un-

modeled dynamics. The transfer function T3(s) characterizes the closed-loop response

to these two types of inputs. Fig. 20 presents the singular values of T3(s) versus fre-

quency. It may be concluded from the figure that low frequency disturbances are

amplified by the system. Low frequency disturbances may be caused by parametric

uncertainty in the plant, indicating that the the receiver aircraft must be modeled

well to achieve performance robustness. Disturbances with frequencies greater than
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about 16 rad/sec, however, are attenuated by at least a factor of 10. If the system

has been modeled properly (i.e. all low-frequency modes are accurately represented),

high-frequency unmodeled dynamics will be attenuated by the system.

Disturbances from atmospheric turbulence occur at low frequencies. Fig. 21

shows the minimum and maximum singular values of the transfer function T3(s)Gg

and the singular values of the spectral density function for Dryden moderate turbu-

lence. In the frequency range of the Dryden wind gusts, the maximum singular value

of T3(s)Gg is slightly below 0 dB, indicating that inputs from gusts are attenuated,

however the effects of the gusts will most likely be visible in the output of the system.

In summary, the robustness analysis shows that the designed closed-loop system

has good tracking performance for the specified drogue dynamics. If different drogue

dynamics are specified, the controller gains should be adjusted such that the singular

values of T1(s) are 0 dB for all frequencies in the drogue dynamics. Measurement noise
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from the VisNav sensor is attenuated by a factor of 140 dB. The system is robust to

noise in the full-state feedback as long as it has a frequency higher than 100 rad/sec.

Although the low frequency gust disturbances are slightly attenuated by the system,

turbulence effects will still be present in the output of the system. Lastly, performance

robustness depends upon the parametric uncertainty in the receiver aircraft model.

Previously published results have shown that the system performs well with as much

as 10% error in the A matirx [27].
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CHAPTER VI

AUTONOMOUS AERIAL REFUELING SIMULATION

Thus far all of the components of the AAR system have been developed independently.

In order to examine the performance of the combined system, a medium fidelity sim-

ulation was developed that includes the receiver aircraft, VisNav sensor, the Kalman

filter, controller, drogue, and atmospheric turbulence effects. The Kalman filter and

controller were developed in Chapters IV and V. This chapter will describe the mod-

eling of the remaining sub-systems in the simulation. In Section A, a mathematical

model of the receiver aircraft is developed. Next, Section B discusses how repre-

sentative drogue dynamics were selected for the simulation. Section C describes the

model used to generate realistic atmospheric turbulence. Finally, a description of the

detailed VisNav simulation model is presented in Section D.

A. Receiver Linear Aircraft Model

The receiver aircraft modeled in the simulation is called UCAV6 (Unmanned Combat

Aerial Vehicle 6). It was constructed using a nonlinear batch simulation process

developed at Texas A&M University in [36]. UCAV6 represents a 60% scale AV-8B

Harrier (Fig. 22) with the pilot and associated equipment removed. The UCAV6 linear

model was generated by linearizing the six degree-of-freedom airplane equations of

motion about a steady-state flight condition. [37] describes this method of modeling

aircraft flight dynamics. The steady, level 1g trim flight conditions for the model are

listed in Table III.

The receiver aircraft equations of motion are represented as a linear time-invariant
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Fig. 22. AV-8B Harrier during probe and drogue refueling

Table III. UCAV6 steady, level 1g trim states

Altitude 20,000 ft

Pitch attitude, Θ1 4 deg

Forward speed, U1 421 ft/s

Vertical speed, W1 32 ft/s

Throttle setting, δt1 55 %

Elevator deflection, δe1 7 deg

state-space system,

ẋ(t) = Ax(t) +Bu(t) +Gwg(t)

y(t) = Cx(t) (6.1)

where x ∈ <12 is the state vector, u ∈ <4 is the control vector, y ∈ <3 is the output

vector, and wg ∈ <3 is the input to the system due to atmospheric turbulence,

discussed in Section C. The matrices A, B, C, and G, given in Appendix A, are of
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Table IV. Receiver aircraft linear model states and controls

States Definition Units

(x, y, z) Inertial position relative to steady-state

flight path

ft

(U, V,W ) Body-axis velocity components ft/s

(P,Q,R) Body-axis angular rates rad/s

(Ψ,Θ,Φ) 3-2-1 Euler Attitude Angles rad

Control Definition Units

δe Elevator deflection angle deg

δT Throttle setting %

δa Aileron deflection angle deg

δr Rudder deflection angle deg

the appropriate dimension. The model states and controls are given in Table IV.

All model state variables are in expressed in terms of the body-fixed axis system

with the exception of x, y, and z, which are expressed in the inertial frame (see

Fig. 16) . The output vector is composed of the three inertial coordinates (x, y, z).

The full receiver aircraft model is presented in Appendix A.

The UCAV6 control position and rate limits for UCAV6 are given in Table V.

The throttle control (not listed in Table V has a minimum value of 0% and a maximum

value of 100%. Although no specifications on the throttle rate limits are given in [29],

a maximum throttle rate of 30% per second is assumed here. This throttle rate limit is

representative of a high-performance aircraft engine. The position limits are enforced

directly in the simulation code, but the rate limits are not. Selection of low controller

gains will prevent rate saturation. The controls are sampled at a rate of 10 Hz using
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Table V. UCAV6 control position and rate limits [29]

Position(+) (deg) Position(-) (deg) Rate (deg/s)

Elevator, δe 13 -10 ±40

Aileron, δa 27 -27 ±100

Rudder, δr 15 -15 ±56

a zero-order hold for signal reconstruction. For this sample rate the performance of

the closed-loop sampled-data system is very close to that of the continuous system.

B. Drogue Model

There is no existing drogue dynamic model based on empirical data, so a method of

modeling representative drogue behavior was created. The movement of the drogue

is modeled after a three degree-of-freedom spring mass damper system. The stiffness

and damping coefficients were selected such that the drogue moves in a realistic

manner as compared to video taken during flight test in [38]. The drogue is modeled

as a linear time-invariant system,

ẋd(t) = Adxd(t) +Bdwg(t) (6.2)

ẏd(t) = Cdxd(t) (6.3)

with the drogue state vector defined as

xd =

[
∆xd ∆yd ∆zd ∆ẋd ∆ẏd ∆żd

]T

(6.4)

where the quantities ∆xd, ∆yd, and ∆zd are defined in (5.12). The input wg is an

exogenous input representing a disturbance due to atmospheric turbulence, defined
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in Section C. The state matrix Ad was selected as

Ad =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−kx 0 0 −cx 0 0

0 −ky 0 0 −cy 0

0 0 −kz 0 0 −cz


(6.5)

where the k and c parameters are listed in Table VI. Bd and Cd in (6.2) are

Bd =



0 0 0

0 0 0

0 0 0

0.01 0 0

0 0.3 0

0 0 0.3


Cd =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (6.6)

Table VI. Drogue dynamic model parameters

Parameter Value Units

kx 0.15 1/s2

ky 0.06 1/s2

kz 0.10 1/s2

cx 0.50 1/s

cy 0.04 1/s

cz 0.05 1/s
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C. Atmospheric Turbulence Model

The turbulence model in the AAR simulation is based on the Dryden turbulence

model given in the Military Specification for Flying Qualities of Piloted Airplanes,

MIL-F-8785C [39]. The Dryden turbulence model is based on a stochastic process

defined by velocity spectra. For the three body-axis velocity components u, v, and

w, the Dryden forms of the spectra are

Φug(Ω) = σ2
u

2Lu

π

1

1 + (LuΩ)2
(6.7)

Φvg(Ω) = σ2
v

Lv

π

1 + 3(LvΩ)2

[1 + (LvΩ)2]2
(6.8)

Φwg(Ω) = σ2
w

Lw

π

1 + 3(LwΩ)2

[1 + (LwΩ)2]2
(6.9)

where Ω is the spatial frequency of the turbulence field, Lu, Lv, and Lw are the

turbulence scale lengths, and σu, σv, and σw are the root-mean-square (RMS) turbu-

lence intensities. For medium to high altitudes, Lu = Lv = Lw = 1, 750 ft and the

turbulence intensity is selected from Fig. 23.

Coloring filters derived from (6.7) through (6.9) may be used to simulate velocity

disturbances from inputs consisting of unit variance, band-limited white noise, ξ.

These filters are transfer functions with inputs of white noise and outputs of the

three body-axis gust velocity components:

Hu(s) ≡ ugust(s)

ξ(s)
(6.10)

Hv(s) ≡ vgust(s)

ξ(s)
(6.11)

Hw(s) ≡ wgust(s)

ξ(s)
(6.12)

where s is the Laplace variable s = jω. For an aircraft traveling through the turbu-
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lence field at speed VP , these filters are given by [40]

Hu(s) = σu

√
2Lu

πVP

1

1 + Lu

VP
s

(6.13)

Hv(s) = σv

√
Lv

πVP

1 +
√

3Lv

VP
s

(1 + Lv

VP
s)2

(6.14)

Hw(s) = σw

√
Lw

πVP

1 +
√

3Lw

VP
s

(1 + Lw

VP
s)2

(6.15)

The state-space realizations of (6.13) through (6.15) may be combined to form a single
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time-domain model

ẋg(t) = Agxg(t) +Bgug(t) (6.16)

wg(t) = Cgxg(t) +Dgug(t) (6.17)

where xg ∈ <3 is a state vector, ug ∈ <3 is a vector of unit variance band-limited

white noise, and wg ∈ <3 is the output vector of body-axis velocity disturbances due

to atmospheric turbulence,

wg =

[
ugust vgust wgust

]T

(6.18)

This vector of disturbances is an input to the aircraft model described in Section

A. Atmospheric turbulence itself is independent of aircraft states, although clearly a

large aircraft will respond differently than a small UAV to a given gust disturbance.

This effect is captured by G in (6.1), which defines how gust disturbances act upon a

particular aircraft. Appendix A gives the G matrix for the UCAV6, which is chosen

as the negative of the columns of A corresponding to the body-axis velocities.

D. VisNav Sensor Model

A model of the VisNav sensor was developed for the AAR simulation to determine the

behavior of the sensor in a closed-loop docking environment. A flowchart of the sensor

model is presented in Fig. 24. The inputs to the simulated sensor are the positions

and attitudes of the receiver and the drogue, the beacon arrangement on the drogue,

and the previous estimate or initial guess for the GLSDC routine. Once the states

(position and attitude) of the receiver and drogue are passed in, the “truth” relative

position and orientation are calculated. These truth values are used to calculate the

ideal line-of-sight (LOS) vectors to each beacon. The ideal LOS vectors are corrupted
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Fig. 24. VisNav sensor simulation diagram

with zero-mean Gaussian noise. To emulate optical distortion effects, measurements

closer to the periphery of the sensor receive noise with a larger variance than those

in the center. Beacon tests are performed to check the validity of the measurements.

Measurements from a particular beacon are discarded if the light centroid does not fall

within the calibrated area of the photodiode, or when a beacon is not in the sensor’s

field of view (forward model and geometric field-of-view tests). When measurements

from a beacon fail one or both of the field-of-view tests, it is said that the beacon

has dropped out, and those measurements are not given to the estimation routine.

GLSDC is capable of producing an updated estimate with as few as four beacons.

The sensor software is programmed to return the last available estimate when less

than four beacons are available.

The detailed VisNav sensor model which was the basis for the simulation in
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Fig. 24 is described in [41]. The main difference between the simulation used for

this thesis and the code developed in [41] is a representation of the sensor calibration

process. The real VisNav sensor undergoes a nonlinear calibration to establish the

relationship between the measured PSD voltages and the image-space LOS coordi-

nates. The calibration function, which is slightly different for each individual sensor,

accounts for departures from the ideal pin-hole camera model due to small defects in

the sensor hardware as well as the optical distortion due to the wide-angle lens. Of

these two sources, the optical distortion produces the most significant nonlinearity.

A flowchart of the sensor model with calibration is shown in Fig. 25. Here the

ideal line-of-sight measurements are passed through an inverse calibration function,

which gives the ideal PSD voltages. These voltages are then corrupted with Gaussian

white noise to obtain simulated measurements. The measured voltages are then

passed through the calibration function to obtain the measured line-of-sight vector.

Because the calibration function is highly nonlinear (especially away from the center

of the PSD), the simulated measurement noise no longer has a Gaussian distribution.

The measurements undergo field-of-view tests before and after the calibration process.

Because the optical distortion decreases the field-of-view of the sensor, beacons are

much more likely to fail a field-of-view test in the simulation which includes the

calibration model.
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The difference between the VisNav output using the simulation without calibra-

tion (Fig. 24) and with calibration (Fig. 25) is shown in Fig. 26. Although the sensor

errors in both simulations have about the same magnitude, it is noted that the fre-

quency of the two signals are quite different. The high-frequency errors in the sensor

without calibration are a result of the sensor noise being added directly to the ideal

LOS measurements. Because the GLSDC formulation assumes these type of noise

characteristics, the 3σ bounds fit very well around the measurement error. In the

simulation results which include the calibration model, it can be seen that the range

errors in Xc are higher than those in the lateral and vertical directions, Yc and Zc.

The high-frequency sensor noise is somewhat attenuated in the calibration process,

however new low-frequency errors are introduced. The low-frequency error dynam-

ics are a result of the Gaussian noise being passed through the nonlinear calibration

function. Also, the fit of the calibration is dependent upon range, which introduces

range-dependent errors if the sensor is calibrated for only one range. The overall

performance of both versions is very similar as long as the beacons stay within the

field of view.

The beacon configuration used in the AAR simulation is illustrated in Figs. 27

and 28. The arrangement is intented to give adequate depth-of-field in each dimension

(i.e. no set of 3 or more beacons lie in the same plane) to improve the quality of the

navigation solution from VisNav. The axis labels in the figure represent a drogue-

fixed reference frame, with the the center of the refueling port at coordinates (5, 0, 0)

ft. The beacons are placed around the perimeter of the refueling drogue. The array

has an outer radius of 1.5 feet in the Y − Z plane, and a depth of 3 feet along the

X-axis.

The performance of the VisNav sensor is highly dependent on the geometry of

the beacon array. The operating range and susceptibility to beacon drop-out are the
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Fig. 26. Comparison of VisNav sensor simulation a) without calibration model and b)

with calibration model

primary, conflicting concerns in the selection of beacon configuration. The beacon

configuration in Figs. 27 and 28 was chosen to reduce beacon drop-out. As a result

the operating range of the simulated sensor is about 100 ft. For operation at greater

range, a larger array must be chosen, however this will most likely result in some

beacons falling outside of the field of view at close range. Another limitation on

the choice of beacon arrangement is the availability of space on the refueling drogue

and/or tanker aircraft. Physical constraints such as moving control surfaces will most

likely drive the placement of the beacons on the tanker aircraft. It is also noted that

if the beacons move relative to each other (when they are placed on both the tanker

and the drogue, for example) the VisNav navigation solution will be degraded.
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CHAPTER VII

EXPERIMENT DESIGN

This chapter defines the experiment that is used to demonstrate the performance of

the combined sensor and controller for autonomous aerial refueling and to tune the

Kalman filter. The autonomous aerial refueling simulation described in Chapter VI is

the testing platform. Four test cases using VisNav and the Reference Observer-based

Tracking Controller are simulated to evaluate the closed-loop docking performance

under varying degrees of turbulence intensity. Once results from these simulations

are obtained, they are used to tune the Kalman filter. Further simulations are then

run to determine the closed-loop performance of the system with the tuned Kalman

filter. The questions answered by the experiment are:

1. What is the closed-loop docking performance of the combined VisNav sensor and

ROTC in still air, light turbulence, moderate turbulence, and severe turbulence?

2. How is the Kalman filter tuned for aerial refueling? Does the selection of the

tuning parameters depend on the level of turbulence intensity?

3. How well does the tuned Kalman filter improve the navigation solution from

VisNav in the refueling scenarios?

4. Does the combination of VisNav and Kalman filter result in improved closed-

loop docking performance over VisNav alone?

The refueling scenario for the four cases is described in Section A, along with

docking criteria and other measures of merit. The selection of the weighting matrices

and other design parameters for the ROTC is detailed in Section B. Section C

discusses the tuning criteria for the Kalman filter. After the Kalman filter is tuned,
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several additional simulations are run to determine how the Kalman filter affects the

closed-loop performance of the autonomous aerial refueling system. These simulations

are described in Section D. The purpose of these simulations is to determine if the

combination of the Kalman filter and VisNav improves the docking success rate in

turbulence over VisNav alone.

A. Autonomous Aerial Refueling Scenario

The simulated autonomous aerial refueling takes place at an altitude of 20,000 feet,

corresponding to the trim flight condition of the UCAV6 receiver aircraft. In each

case the refueling drogue begins 100 feet ahead, 50 feet to the side, and 50 feet above

the receiver aircraft, corresponding to an initial offset of

( x̄d, ȳd, z̄d ) = ( 100, 50, −50 ) ft

The values of root-mean-squared (RMS) turbulence amplitude for each case are

selected from Fig. 23 for the altitude of 20,000 feet (see Table VII). The magnitudes

of the three body-axis turbulence intensities are chosen to be equal for simplicity. It

is noted that in reality the vertical and lateral gusts σw and σw may have greater

magnitude than the axial gusts σu.

The simulated drogue is given a small initial velocity so that it oscillates slightly

in the YN − ZN plane, even in the absence of atmospheric turbulence. As the value

of RMS turbulence intensity is increased, the oscillations of the drogue become larger

in magnitude. The final docking error is calculated when x− xd = 0 as

docking error =
√

(y − yd)2 + (z − zd)2 (7.1)

Successful docking is achieved when the docking error is less than 0.3 feet (about 4
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Table VII. Kalman filter tuning cases for autonomous aerial refueling

RMS Turbulence Amplitudes Probability of

at 20,000 ft (ft/sec) Exceedance [39]

Case 1 σu = σv = σw = 0 (None) 1/1

Case 2 σu = σv = σw = 1 (Light) 1/10

Case 3 σu = σv = σw = 5 (Moderate) 1/100

Case 4 σu = σv = σw = 10 (Severe) 1/10000

in), and the controls and control rates of receiver aircraft do not exceed the values

given in Table V at any point during the simulation. After a successful docking, the

receiver aircraft and the drogue are constrained to move together until the simulation

ends at t = 60 seconds. If the receiver aircraft fails to dock with the refueling drogue

when x− xd = 0, the simulation is stopped.

B. Selection of ROTC Design Parameters

The trajectory generation module in the Reference Observer-based Tracking Con-

troller designs a reference trajectory in two stages. The design parameters and critical

times for the reference trajectory are listed in Table VIII. The design parameters γ1,

γ2, and γf are chosen such that the average closing rate between the receiver aircraft

and the drogue is around 2 ft/sec. The critical times are a function of the initial

offset and the design parameters.

The first stage of the maneuver takes place from time t0 = 0 to t1 = 25 seconds.

During this stage, a reference trajectory is generated to overcome the 50-foot offsets ȳd

and z̄d. Because the gross initial offset is assumed to be known from a different sensor

such as GPS, measurements from the VisNav sensor are not used during Stage I. The
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Table VIII. Reference trajectory design parameters and critical times

Equation Design Parameter Value (sec)

Initial time, t0 — — 0

End of Stage I, t1 (5.8) γ1 = 0.5 25

Time when Kref = 1, t2 (5.17) γ2 = 0.8 40

Projected docking time, tf (5.4) γf = 45 50

second stage, or end game maneuver, begins at t1 = 25 seconds. At this time the

measurements from VisNav are used to track the position of the drogue. The sensor

is active during the first stage so that a converged navigation solution is available at

immediately at t1. The reference gain in (5.14) is gradually increased from zero to

one between t1 and t2. After t2, the receiver aircraft tracks the full motion of the

drogue. The trajectory is designed so that docking between the receiver aircraft and

the refueling drogue occurs at approximately tf = 50 seconds. After docking, the

receiver aircraft and the drogue are constrained to move together in the simulation.

The weighting matrices used to calculate the observer gain are

Qo =



Qo1 0 0 0

0 Qo2 0 0

0 0 Qo3 0

0 0 0 Qo4


Ro =


0.1 0 0

0 0.1 0

0 0 0.1

 (7.2)
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where

Qo1 = 0.1


1 0 0

0 1 0

0 0 1

 Qo3 = 0.001



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Qo4 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


and Qo2 ∈ <9×9 ≡ 0 array of zeros. The weighting matrices for the controller gain are

Q =

 Q1 0

0 Q2

 R =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(7.3)

where

Q1 = 10000


1 0 0

0 1 0

0 0 1

 Q2 = 100I13 (7.4)

and I13 ∈ <13×13 ≡ 1 is the identity matrix.

C. Kalman Filter Tuning Criteria

The tuning parameters q1 and q2 (see Section C of Chapter IV), are selected for each

case to give the best performance of the Kalman filter, defined by

1. The degree to which the relative position and orientation estimation errors fit

closely inside the Kalman filter 3− σ bounds (see Fig. 14).

2. The ability of the estimate to track realistic variations in the relative position

and orientation for each value of turbulence intensity.
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D. Evaluation of Closed-loop Performance with Combined VisNav and Kalman Fil-

ter

The performance of the Kalman filter in combination with VisNav for autonomous

aerial refueling is evaluated through a series of simulations with and without the

Kalman filter in the loop. The location of the Kalman filter in the ROTC/VisNav

structure is shown in Fig. 29. The docking scenario described in Section A is run 30

times with the Kalman filter and 30 times without the Kalman filter for each level of

turbulence intensity from Table VII. The measures of merit for each simulation are

the docking success and the final docking error.
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CHAPTER VIII

NUMERICAL EXAMPLES

This chapter presents the results of several docking scenarios performed with the

autonomous aerial refueling simulation described in Chapter VI. Sections A through

D present four cases that are used to tune the Kalman filter for various levels of

turbulence intensity. The first tuning case is a docking maneuver in the absence of

turbulence. Case 2 illustrates docking performance in Dryden light turbulence, and

case 3 presents results for Dryden moderate turbulence. The final case illustrates

docking performance in severe turbulence. Sections E presents results of simulations

with the tuned Kalman filter in the control loop. Section F gives a summary of all

results.

A. Tuning Case 1: No Turbulence

Case 1 simulates an autonomous aerial refueling scenario in the absence of turbulence,

with σu = σv = σw = 0. The two stages of the receiver aircraft trajectory and the

trajectory of the drogue are illustrated in Fig. 30. The first stage of the receiver

aircraft maneuver, the initial alignment phase, is shown in blue. The second stage,

when the receiver aircraft tracks the drogue movement using measurements from the

VisNav sensor, is shown in red. The path of the drogue is shown in green. It can be

seen that the drogue movement is relatively small compared to that of the receiver

aircraft.

Fig. 31 shows the drogue’s inertial position and velocity relative to the steady-

state flight path of the receiver aircraft. Because the drogue is given a small initial

velocity, it oscillates in the YN − ZN plane, moving about 3 feet in each direction.

When docking is achieved after approximately 46 seconds, the probe of the receiver
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Fig. 32. Tracking error (case 1, no turbulence)

aircraft pushes into the drogue, causing it to move about 1 foot in the XN direction.

Fig. 32 shows the tracking error between the receiver and the drogue over the

entire maneuver. Successful docking is achieved at t = 46.05 seconds, with a docking

error of less than 1 inch. Docking is achieved sooner than the projected docking time

of tf = 50 seconds. The difference is due to the fact that the reference trajectory is

based only on the initial constant offset between the receiver aircraft and the drogue,

and does not take into account the fact that the drogue moves from its initial position

during the maneuver. The controller has no trouble tracking the movements, however,

even with noisy measurements from the VisNav sensor.

The receiver aircraft states are shown in Fig. 33. The inertial coordinates x,

y, and z each converge to the position of the drogue. The z coordinate is negative,

indicating an increase in altitude because the inertial axis is defined with ZN pointing

down, or in the direction of gravity. The pitch attitude angle Θ increases from its
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steady-state value by about half of a degree as the receiver aircraft climbs 50 feet.

The bank angle Φ shows that the aircraft banks to align itself during the first stage

of the maneuver. After t = 25 seconds, the second stage of the maneuver begins.

During the second stage the body-axis velocities and angular rates increase due to

the noisy measurements from the VisNav sensor. It can be seen that deviations from

the steady-state values for all of the states are small. This is desirable because large

excursions of the aircraft states are an indication that the linear model may no longer

be valid.

The receiver control inputs are presented in Fig. 34. During the alignment phase

in the first 25 seconds of the maneuver, the control inputs are low in magnitude

and frequency. The aileron (δa) and rudder (δr) have small defections during the

first few seconds of Stage I, when the receiver aircraft aligns itself laterally with the

drogue. The elevator (δe) inputs during the first stage are more drawn out, lasting

the full duration of the first stage. The throttle setting (δT ) increases by about 2%

during the first stage to maintain speed during the climb. When the second stage

begins after 25 seconds, the control inputs increase in frequency as the controller

tracks the drogue using measurements from VisNav. The control inputs that occurr

after 46 seconds happen because the control law is modified after docking so that the

receiver and the drogue move together. This is done only for simulation purposes; in

reality physical constraints would keep the two systems together. The receiver control

positions and rates remain well below the limits specified in Table V throughout the

docking maneuver. The aileron control surface has the highest rate, about 10 deg/s,

which is well below the 100 deg/s limit. Consideration of the control rate limits

is particularly imporant because of pilot-induced osciallation, an instability which

occurrs when a pilot or flight control system demand unachievable control rates.
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Fig. 35 shows the error in the navigation solution from VisNav, along with the

3σ bounds from the GLSDC algorithm. The initial estimation error begins at about

3 ft in position, and converges to zero as the sensor moves closer to the beacon array,

and more measurements are taken. By the time measurements from VisNav are used

in the control law at t = 25, the position estimate is within 1 ft of the true value.

Noise from the sensor shows up at a frequency of 100 Hz, which is the rate at which

GLSDC produces and updated estimate. No beacons drop out of the field of view

during the maneuver.

The Kalman filter was tuned using the simulation results discussed above. The

values of the tuning parameters which give the best fit are

q1 = 1

q2 = 0.01

The tuned Kalman filter results are shown in Fig. 36. The Kalman filter decreases

both the magnitude and the frequency of the estimation error from VisNav. It takes

about 10 seconds for the Kalman filter estimation error to converge within the 3σ

bounds. Compared to GLSDC alone, the estimation error in position is reduced by

almost half. A direct comparison of the estimation error is shown in Fig. 37.
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B. Tuning Case 2: Light Turbulence

Case 2 simulates an autonomous aerial refueling scenario in light turbulence, with

turbulence intensity σu = σv = σw = 1 ft/s true airspeed (TAS). The two stages

of the receiver aircraft trajectory and the trajectory of the drogue are illustrated in

Fig. 38. The first stage of the receiver aircraft maneuver, the initial alignment phase,

is shown in blue. The second stage, when the receiver aircraft tracks the drogue

movement using measurements from the VisNav sensor, is shown in red. The path of

the drogue is shown in green. As in case 1, the drogue movement is relatively small

compared to that of the receiver aircraft.
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Fig. 38. Receiver aircraft and drogue trajectories (case 2, light turbulence)

Fig. 31 shows the drogue’s inertial position and velocity relative to the steady-

state flight path of the receiver aircraft. The drogue is given a small initial velocity

so that it oscillates in the YN − ZN plane, moving about 3 feet in each direction.

When docking is achieved after about 47 seconds, the probe of the receiver aircraft
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Fig. 39. Drogue position and velocity (case 2, light turbulence)

pushes into the drogue, causing it to move about 1 foot in the XN direction. The

disturbances due to light turbulence may be seen in the velocity time histories of the

drogue on the right hand side of Fig. 39. The light turbulence, however, does not

significantly change the overall behavior of the drogue compared to case 1.

Fig. 40 shows the tracking error between the receiver and the drogue over the

entire maneuver. Successful docking is achieved at t = 47.13 seconds, with a docking

error of less than 1 inch. Docking is achieved sooner than the projected time of

tf = 50 seconds which was used to design the reference trajectory. As in case 1, the

difference is due to the fact that the reference trajectory does not take into account

the fact that the drogue moves from its initial position during the maneuver. The

controller is able to track the drogue movements and achieve a successful docking

within the specified design time.
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Fig. 40. Tracking error (case 2, light turbulence)

The receiver aircraft states are plotted in in Fig. 41. The inertial coordinates x,

y, and z each converge to the position of the drogue. The z coordinate is negative,

indicating an increase in altitude because the inertial axis is defined with ZN pointing

down, or in the direction of gravity. The pitch attitude angle Θ increases from its

steady-state value by about half of a degree as the receiver aircraft climbs 50 feet.

The bank angle Φ shows that the aircraft banks to align itself during the first stage

of the maneuver.
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After t = 25 seconds, the second stage of the maneuver begins. During the

second stage the body-axis velocities and angular rates increase due to the noisy

measurements from the VisNav sensor. The angular rates, roll rate P in particular,

increase slightly from case 1, with no turbulence. It can be seen that deviations from

the steady-state values for all of the states are small for the light turbulence case.

The receiver control inputs are presented in Fig. 42. The effects of light turbu-

lence are visible in the time histories of the controls and control rates. Compared to

the case with no turbulence, case 2 has increased control activity, especially during

Stage I of the maneuver. The additional inputs represent small corrections and ad-

justments that the receiver aircraft must make as it is perturbed from the reference

trajectory by turbulence. The overall magnitudes and rates of the controls are simi-

lar to those in the case with no turbulence. When the second stage begins after 25

seconds, the control inputs increase in magnitude as the receiver aircraft tracks the

drogue using measurements from VisNav. The control positions and rates are well

below the limits specified in Table V. The aileron control surface has the highest rate,

about 15 deg/s, which is well below the limit of 100 deg/s.
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Fig. 41. Receiver aircraft states (case 2, light turbulence)
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Fig. 43 shows the error in the navigation solution from VisNav, along with the

3σ bounds from the GLSDC algorithm. The initial estimation error begins at about

3 ft in position, and converges to zero as the sensor moves closer to the beacon array,

and more measurements are taken. By the time measurements from VisNav are used

in the control law at t = 25, the position estimate is within 1 ft of the true value.

Noise from the sensor shows up at a frequency of 100 Hz, which is the rate at which

GLSDC produces and updated estimate. No beacons drop out of the field of view

during the maneuver.

The Kalman filter was tuned using the simulation results discussed above. The

values of the tuning parameters which give the best fit are

q1 = 1

q2 = 0.01

The tuning parameters are the same as those determined for case 1. The tuned

Kalman filter results are shown in Fig. 44. Although there are more places where

the estimation error exceeds the 3σ bounds in the first few seconds of case 2, the

performance is about the same as case 1 after the solution converges. It takes about

10 seconds for the Kalman filter estimation error to converge within the 3σ bounds.

The Kalman filter decreases both the magnitude and the frequency of the estimation

error from VisNav. Compared to GLSDC alone, the estimation error in position is

reduced by almost half. A direct comparison of the estimation error is shown in

Fig. 45.
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Fig. 43. VisNav error and 3σ bounds from GLSDC (case 2, light turbulence)
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C. Tuning Case 3: Moderate Turbulence

Case 3 simulates an autonomous aerial refueling scenario in Dryden moderate tur-

bulence, with turbulence intensity σu = σv = σw = 5 ft/s true airspeed (TAS).

The two stages of the receiver aircraft trajectory and the trajectory of the drogue

are illustrated in Fig. 46. The first stage of the receiver aircraft maneuver, the initial

alignment phase, is shown in blue. The second stage, when the receiver aircraft tracks

the drogue movement using measurements from the VisNav sensor, is shown in red.

The path of the drogue is shown in green. The variation in the position of the drogue

is much larger than in previous cases, due to the increased turbulence intensity level.
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Fig. 47 shows the drogue’s inertial position and velocity relative to the steady-

state flight path of the receiver aircraft. The time history of xd shows that the drogue

moves closer to the receiver aircraft as it approaches, resulting in a docking time

of about 42 seconds, which is 8 seconds before the projected docking time. When

docking is achieved, the probe of the receiver aircraft pushes into the drogue, causing

it to move about 6 inches in the XN direction. The disturbances due to moderate

turbulence may be seen in the velocity time histories of the drogue on the right hand

side of Fig. 47. The drogue movements are much larger than in cases 1 and 2, but

the controller is still able to track the movements and achieve successful docking.
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Fig. 47. Drogue position and velocity (case 3, moderate turbulence)
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Fig. 48. Tracking error (case 3, moderate turbulence)

Fig. 48 shows the tracking error between the receiver and the drogue over the

entire maneuver. Successful docking is achieved at t = 41.96 seconds, with a docking

error of 2.4 inches.
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The receiver aircraft states are plotted in in Fig. 49. The inertial coordinates

x, y, and z each converge to the position of the drogue. The effect of moderate

turbulence can be seen most clearly in the body axis forward velocity, which has a

much smoother time history in cases 1 and 2. The bank angle Φ is much higher in

case 3, especially after the docking time of t = 41.96 sec. This is due to large aileron

inputs that are needed to keep the receiver and the drogue together after docking.

Roll rate P and yaw rate R are also much higher in for moderate turbulence. Even in

moderate turbulence, however, deviations from the steady-state values for all of the

states are small.

The receiver aircraft control inputs are presented in Fig. 50. The effects of mod-

erate turbulence are apparent in the time histories of the controls and control rates.

Compared to the case with cases 1 and 2, case 3 has significantly more control ac-

tivity. The additional inputs represent corrections and adjustments that the receiver

aircraft must make as it is perturbed from the reference trajectory. When the second

stage begins after 25 seconds, the control inputs increase in magnitude as the receiver

aircraft tracks the drogue using measurements from VisNav. The control positions

and rates remain well below the limits specified in Table V. Again, the aileron con-

trol surface has the highest rate, about 12 deg/s, which is well below the limit of 100

deg/s.
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Fig. 51 shows the error in the navigation solution from VisNav, along with the

3σ bounds from the GLSDC algorithm. The initial estimation error begins at about

3 ft in position, and converges to zero as the sensor moves closer to the beacon array,

and more measurements are taken. By the time measurements from VisNav are used

in the control law at t = 25, the position estimate is within 1 ft of the true value.

Noise from the sensor shows up at a frequency of 100 Hz, which is the rate at which

GLSDC produces and updated estimate. No beacons drop out of the field of view

during the maneuver.

The Kalman filter was tuned using the simulation results discussed above. The

values of the tuning parameters which give the best fit are

q1 = 1

q2 = 0.01

The tuning parameters are the same as those determined for cases 1 and 2. The

tuned Kalman filter results are shown in Fig. 52. Although there are more places

where the estimation error exceeds the 3σ bounds in the first few seconds of case 3,

the performance is about the same as cases 1 and 2 after the solution converges. It

takes about 10 seconds for the Kalman filter estimation error to converge within the

3σ bounds. The Kalman filter decreases both the magnitude and the frequency of

the estimation error from VisNav. Compared to GLSDC alone, the estimation error

in position is reduced by almost half. A direct comparison of the estimation error is

shown in Fig. 53.
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Fig. 51. VisNav error and 3σ bounds from GLSDC (case 3, moderate turbulence)
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D. Tuning Case 4: Severe Turbulence

Case 4 simulates an autonomous aerial refueling scenario in severe turbulence, with

turbulence intensity σu = σv = σw = 10 ft/s true airspeed (TAS) ft/s. The two stages

of the receiver aircraft trajectory and the trajectory of the drogue are illustrated in

Fig. 54. The first stage of the receiver aircraft maneuver, the initial alignment phase,

is shown in blue. The second stage, when the receiver aircraft tracks the drogue

movement using measurements from the VisNav sensor, is shown in red. The path

of the drogue is shown in green. The variation in the position of the drogue is much

larger than in previous cases due to the increased turbulence intensity level.
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Fig. 55. Drogue position and velocity (case 4, severe turbulence)

Fig. 55 shows the drogue’s inertial position and velocity relative to the steady-

state flight path of the receiver aircraft. The drogue moves about 30 feet vertically

and laterally during the maneuver with much larger oscillations than in the previous

cases. It is noted that piloted refueling under these conditions would not be attempted

according to established criteria for manned probe and drogue refueling [42]. The

disturbances due to severe turbulence may be seen in the velocity time histories of

the drogue on the right hand side of Fig. 55. The simulation is stopped after the

receiver aircraft’s probe tip passes the drogue without docking at around t = 44

seconds.

Fig. 56 shows the tracking error between the receiver and the drogue over the

entire maneuver. The docking error is 0.75 feet, or about 9 inches. Although this

value is larger than the requirement for successful docking defined in Chapter VII, the
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docking performance is very good considering the aircraft and drogue are experiencing

severe turbulence.

The receiver aircraft states are plotted in in Fig. 57. The effects of severe tur-

bulence can be seen most clearly all of the states. The magnitude of the control

inputs for overcoming the turbulence and for tracking the drogue is about the same,

making it difficult to see the difference between Stage I and Stage II of the maneuver.

The body-axis velocities U , V , and W , and the angular rates P , Q, and R are larger

than previous cases, deviations from the steady-state values remain within acceptable

values.

The receiver aircraft control inputs are presented in Fig. 58. The effects of severe

turbulence are apparent in the time histories of the controls and control rates. Case

4 has the most control activity and the highest control rates of all the cases. The

aileron control surface has the highest rate, about 15 deg/s, which is still well below
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the limit of 100 deg/s.

Fig. 59 shows the error in the navigation solution from VisNav, along with the

3σ bounds from the GLSDC algorithm. The initial estimation error begins at about

3 ft in position, and converges to zero as the sensor moves closer to the beacon array,

and more measurements are taken. By the time measurements from VisNav are used

in the control law at t = 25, the position estimate is within 1 ft of the true value.

Noise from the sensor shows up at a frequency of 100 Hz, which is the rate at which

GLSDC produces and updated estimate. No beacons drop out of the field of view

during the maneuver. The severe turbulence does not appear to affect the ability of

VisNav to obtain a solution in this case.

The Kalman filter was tuned using the simulation results discussed above. The

values of the tuning parameters which give the best fit are

q1 = 1

q2 = 0.01

The tuning parameters are the same as those determined for all cases. The tuned

Kalman filter results are shown in Fig. 60. Although there are several places where

the estimation error exceeds the 3σ bounds in the first few seconds of case 4, the

performance is about the same as cases 1, 2, and 3 after the solution converges. It

takes about 10 seconds for the Kalman filter estimation error to converge within the

3σ bounds. The Kalman filter decreases both the magnitude and the frequency of

the estimation error from VisNav. Compared to GLSDC alone, the estimation error

in position is reduced by almost half. A direct comparison of the estimation error is

shown in Fig. 61.
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Fig. 59. VisNav error and 3σ bounds from GLSDC (case 4, severe turbulence)
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E. Closed-loop Performance with the Kalman Filter

This section presents results of the closed-loop simulations with the tuned Kalman

filter in the loop. The values of the tuning parameters for all of the results presented

in this section are

q1 = 1

q2 = 0.01

Subsection 1 presents the results of one simulated aerial refueling in moderate tur-

bulence with the Kalman filter in the loop. Subsection 2 summarizes a series of

simulations with and without the Kalman filter in no turbulence, and in light, mod-

erate, and severe turbulence.

1. Moderate Turbulence with Kalman Filter

The refueling scenario simulated for this case is identical to tuning case 3 in Section

C, with the exception that the output of the Kalman filter is included in the loop

(see Fig. 29). Figs. 62 through 65 present the trajectories, Kalman filter output, and

the receiver aircraft states and controls for this case. The random nature of the gust

inputs and sensor noise cause the results to be slightly different than case 3, however

the results are in general very similar. This is due to the fact that when the second

stage of the maneuver begins, the errors from VisNav have already converged to very

small values, and the improvement from the Kalman filter is not as significant as it is

in the beginning of the simulation. The receiver aircraft does not achieve a successful

docking in this case, however the final docking error is 4.01 inches, just above the

criteria of 4 inches. The receiver states have small excursions from their steady-state

values, and the controls do not exceed position or rate limits.
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2. Tuned Kalman Filter Simulation Results

In order to determine the performance improvement afforded by including the Kalman

filter after VisNav, a series of simulations was run with and without the filter in the

loop for varying levels of turbulence. Tables IX through XII summarize the results

of these simulations. The mean error is calculated as the mean of the final docking

error over all simulations, evaluated when (x− xd) = 0 as

docking error =
√

(y − yd)2 + (z − zd)2 (8.1)

Successful docking is achieved when the docking error is less than four inches. The

level of turbulence intensity (none, light, moderate, and severe) corresponds to the

root-mean-square turbulence amplitudes listed in Table VII.

Table IX. Simulation results, no turbulence

Number of Number of Mean error Std. deviation

runs successes (inches) (inches)

VisNav Only 30 30 0.066 0.027

VisNav with 30 30 0.061 0.024

Kalman filter

Table X. Simulation results, light turbulence

Number of Number of Mean error Std. deviation

runs successes (inches) (inches)

VisNav Only 30 30 1.213 0.663

VisNav with 30 30 0.838 0.483

Kalman filter
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Table XI. Simulation results, moderate turbulence

Number of Number of Mean error Std. deviation

runs successes (inches) (inches)

VisNav Only 30 12 5.417 3.517

VisNav with 30 13 4.335 2.779

Kalman filter

Table XII. Simulation results, severe turbulence

Number of Number of Mean error Std. deviation

runs successes (inches) (inches)

VisNav Only 30 4 11.033 5.205

VisNav with 30 1 12.749 4.994

Kalman filter

In the absence of turbulence, and in light turbulence, the closed-loop system

achieves docking for all cases, both with and without the Kalman filter. Tables IX

and X show that the mean docking error and standard deviation of the docking error

are slightly smaller when the Kalman filter is used in combination with VisNav. Table

XI indicates that in moderate turbulence the mean and standard deviation of the final

docking error with the Kalman filter are also smaller than with VisNav alone. Without

the Kalman filter, successful docking is achieved in 40% of the moderate turbulence

cases. This increases to 43% when the Kalman filter is included. Successful docking

is rarely achieved in severe turbulence. Four cases of successful docking were achieved

with VisNav alone, and only one case of successful docking was achieved with VisNav

and the Kalman filter. The mean docking error and standard deviation are roughly

the same with and without the Kalman filter in severe turbulence.
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F. Summary of Results

This section presents a summary of the simulation results presented in this chapter.

Table XIII presents the outcome of each of the four tuning cases. Successful docking

was demonstrated for aerial refueling in the cases with no turbulence, light turbulence,

and moderate turbulence. The system did not meet the docking criteria for the

severe turbulence case, however the final docking error was small. It was found that

increasing the value of turbulence intensity results in an increase in the magnitude and

frequency of the control inputs and their rates. Even in severe turbulence, however,

the controls and control rates of the receiver aircraft remained within the limits

specified in Table V. The receiver aircraft state variables remained near steady-state

values, confirming the appropriateness of a linear model and linear control methods

for this analysis.

The VisNav system performed well in each case, with errors less than 1 foot in

relative position over the final stage of the maneuver. No beacons dropped out of the

field of view in any of the cases, primarily due to the chosen beacon configuration.

Because the beacons were close together, they remained in the field of view of the

sensor over the entire range of interest.

The tuning parameters for the Kalman filter were chosen to be the same for each

case. The value of RMS turbulence intensity did not significantly affect the tuning or

performance of the filter. The Kalman filter improved the navigation solution from

VisNav by as much as 50% in the early stages of the maneuver, however the errors

from the sensor and the filter both converged to zero as the simulation progressed.

The docking performance of the system with and without the Kalman filter was

examined through a series of two-hundred and fourty simulations, summarized in Ta-

bles IX through XII. These results showed a slight improvement in the accuracy (as
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Table XIII. Summary of tuning cases

σ (ft/s) Docking Time (s) Docking Error (ft) q1 q2

Case 1 0 46.05 0.007 1 0.01

Case 2 1 47.13 0.070 1 0.01

Case 3 5 41.96 0.205 1 0.01

Case 4 10 — 0.756 1 0.01

measured by the mean final docking error) and precision (as measured by the stan-

dard deviation of the final docking error) of the closed-loop system with the Kalman

filter. The addition of the Kalman filter did not, however significantly improve the

probability of a successful docking with any level of turbulence.
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CHAPTER IX

CONCLUSIONS

This thesis described the development and simulation of a system intended to enable

unmanned aerial vehicles to perform autonomous aerial refueling. The system uses a

novel vision based sensor called VisNav, which is capable of providing six degree-of-

freedom relative navigation information with an update rate of 100 Hz. A Kalman

filter was developed to improve the quality of the navigation solution from VisNav in

the presence of measurement noise and sensor errors due to beacon drop-out.

To examine the behavior of VisNav and the Kalman filter in realistic aerial refu-

eling scenarios, a simulation was developed which uses the Reference Observer-based

Tracking Controller (ROTC) to achieve autonomous aerial refueling. ROTC includes

a trajectory generation module, an observer to estimate the reference states and

controls, and a trajectory tracking optimal controller. Simulation results show that

VisNav and the ROTC can achieve successful docking in the absence of turbulence,

and in Dryden light to moderate turbulence. The Kalman filter was tuned using data

from four docking scenarios with varying levels of turbulence intensity. The value of

turbulence intensity did not significantly affect the tuning or performance of the filter.

The Kalman filter improved the navigation solution from VisNav by as much as 50%

in the early stages of the docking scenarios, however the errors from the sensor and

the filter both converged to zero as the simulation progressed. The beacon drop-out

phenomemon was not observed in the simulation due to the judicious choice of beacon

configuration.

A series of closed-loop simulations was performed to compare the docking per-

formance of ROTC with VisNav alone to the performance of ROTC with VisNav and

the Kalman filter. Thirty simulated dockings were performed for each of four values
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of turbulence intensity without the Kalman filter, and then repeated with the Kalman

filter. The mean and standard deviation of the final docking error were compared for

each set of simulations with and without the Kalman filter in the loop.

The following conclusions may be made in light of the results presented in this

thesis:

1. The value of turbulence intensity did not significantly affect the tuning or per-

formance the Kalman filter. This is most likely due to the chosen sample rate

of 100 Hz for the Kalman filter. Because the Kalman filter samples much faster

than the relative dynamics, the constant relative acceleration assumption turned

out to be good, even in cases with severe turbulence. If the sample rate of the

Kalman filter is decreased, the tuning parameters may need to be adjusted

based on turbulence intensity. For a sample rate of 100 Hz, however, it may be

concluded that the filter only needs to be tuned once for operation in a wide

range of turbulence intensity levels. This is significant because the filter may

be tuned with a minimal amount of simulation and testing.

2. Post filtering the VisNav sensor with a Kalman filter provides up to a 50%

improvement in accuracy in the early stages of the docking scenario, and reduces

high-frequency noise from VisNav. In later stages of docking, however, the

estimate from VisNav is already very good, and the Kalman filter does not

make a significant difference.

3. For the aerial refueling scenarios modeled in this thesis, the addition of the

Kalman filter to the VisNav/ROTC structure resulted in a small improvement

in the docking accuracy and precision. The Kalman filter did not, however,

significantly improve the probability of a successful docking in turbulence.
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4. The Reference Observer-based tracking controller achieves successful docking

in the presence of sensor noise, modeling uncertainties, and atmospheric turbu-

lence. Unlike the PIF-NSZP-CRW and PIF-CGT-CRW in [23, 24, 25, 26, 43,

29], the ROTC controller does not need a priori knowledge of the position or

model of the refueling drogue. Even in cases with severe turbulence, the receiver

aircraft controls did not exceed position or rate limits, and the aircraft states

remained close to steady-state values.

5. The VisNav sensing system’s highly accurate relative navigation solution pro-

vides excellent tracking capabilities for the autonomous aerial refueling system

using the ROTC controller. The VisNav solution is updated at 100 Hz, a rate

which is fast enough to track a refueling drogue in moderate to severe tur-

bulence. Spacing the beacons in a compact, asymmetric array with no three

beacons in the same plane helps to prevent beacon drop-out in the final stages

of docking.
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CHAPTER X

RECOMMENDATIONS

This chapter presents recommendations for the VisNav sensor, the ROTC controller,

and the autonomous aerial refueling simulation. The VisNav sensor system offers the

best solution to the sensor problem in autonomous probe and drogue aerial refueling.

There are, however, several issues which must be investigated before the sensor is

ready to be used in flight. Several recommendations are made here with the goal of

preparing VisNav for realistic flight operations:

1. A way to integrate several sensors such as VisNav, inertial measurement unit

(IMU), GPS, and rate gyros should be developed. This may be done using an

extended Kalman filter formulation, as in [15]. Such a system would be able to

fuse measurements from several sources to obtain a better navigation solution.

2. An investigation into the effects of beacon drop-outs during aerial refueling

should be performed. Beacon drop-out is an important factor which affects the

tracking performance of any system that uses the VisNav sensor. The beacon

arrangement chosen for this research consists of eight beacons concentrated

inside a small area on the refueling drogue. Some refueling applications may

require a more scattered array, with beacons on the wingtips or empennage

of the tanker, for example. This is done to improve the range of the VisNav

sensor, however it dramatically increases the chance of beacon drop-outs in the

final seconds of the docking maneuver. Although the VisNav simulation in this

thesis did not take into account the nonlinear calibration function which is used

to map the measured PSD voltages into image-space coordinates, it is noted

that this will limit the field of view of the sensor and increase the number of
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drop-outs. The optical distortion from the wide angle lens (which is accounted

for in the calibration function) can wreak havoc on the GLSDC solution, which

assumes an ideal pin-hole camera measurement model.

3. As a solution to the beacon drop-out problem, a new Kalman filter used as a

pre-filter should be designed to estimate the position of beacons which are no

longer in the field of view. This will avoid discontinuities in the solution from

VisNav and improve its performance in the event beacons move out of the field

of view.

4. A study of the effects of uncertainty in the locations of the beacons in the

target frame should be conducted. In an ideal world, the target-frame beacon

locations will be known, but it is not clear what will happen if a beacon is

moved inadvertently. In some applications the beacons may move relative to

each other during flight; for instance, if some are mounted on the refueling

drogue and some on the tanker aircraft itself. It is not known what level of

uncertainty is tolerable before the relative navigation solution is not accurate

enough for control purposes.

The simulated air refueling scenarios in this thesis demonstrated the ability of the

Reference Observer-based Tracking controller to achieve successful docking between

the receiver aircraft and the refueling drogue. This was done assuming that the full

state vector of the receiver aircraft is available for feedback, and all of the measured

and estimated quantities in the simulation are available at the same update rate (100

Hz). In light of these facts, there are several issues concerning the implementation of

the controller which are recommended for future work:
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1. The effects of estimating the state vector using an observer or Kalman filter

in the feedback loop should be investigated. It is expected that this will add

latency and affect the robustness properties of the controller.

2. The effect of multi-rate sampling on the controller should be explored and mod-

eled, considering realistic sensor sample rates and measurement noise.

Finally, it is recommended that the autonomous air refueling simulation devel-

oped for this thesis be further developed to act as a tool for the evaluation of future

improvements to the AAR system. The simulation should include:

1. A supervisory system to coordinate rendezvous and refueling sequences for mul-

tiple UAVs. Designs for aerial refueling supervisory systems are proposed in [43]

and [44].

2. An improved drogue model based on empirical data or an analytical model.

This is especially important because the tracking performance of the controller

was shown to depend on the drogue dynamics. A more accurate drogue model

will allow for more realistic design gains to be chosen in the simulation stage of

development.

3. The aerodynamic interactions and wake effects from the tanker aircraft on the

refueling drogue and the receiver aircraft.
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APPENDIX A

UCAV6 LINEAR MODEL

The six degree-of-freedom aircraft motion variables for building a linear model con-

sist of the three body-axis components of the airplane velocity vector (U, V,W ), the

body-axis components of angular velocity (P,Q,R), and the attitude of the aircraft

relative to the inertial frame, expressed as 3-2-1 Euler attitude angles, (Ψ,Θ,Φ). Each

independent motion variable may be expressed as the sum of a steady-state value and

a perturbation:

U = U1 + u

V = V1 + v

W = W1 + w

P = P1 + p

Q = Q1 + q

R = R1 + r

Ψ = Ψ1 + ψ

Θ = Θ1 + θ

Φ = Φ1 + φ

(A.1)

The steady-state flight condition considered in this research is steady, level 1g trim.

In this equilibrium state, the aircraft experiences no net translational acceleration or

rotational velocity. In terms of the motion variables, steady, level 1g trim means that

V1 = 0

P1 = 0

Φ1 = 0

Q1 = 0

Ψ1 = 0

R1 = 0
(A.2)

and the steady-state values of U1, W1, Θ1, are known constants.

The six degree-of-freedom aircraft equations of motion may be linearized about

the steady-state flight condition, as described in [37]. The UCAV6 equations of motion

are thus represented as

ẋ(t) = Ax(t) + Bu(t) + Gwg(t) (A.3)



141

where the state vector x ∈ <9 is composed of the perturbed motion variables

x =

[
u v w p q r φ θ ψ

]T

(A.4)

and the control vector u ∈ <4 are the perturbed control variables

u =

[
δe δt δa δr

]T

(A.5)

The exogenous input is composed of disturbances to the three body-axis velocities

from gusts:

wg =

[
ugust vgust wgust

]T

(A.6)

The state matrix A and control distribution matrix B, which were found using the

simulation described in [36], are given as

A =



−0.0343 0 0.1618 0 −32.00 0 0 −32.02 0
0 −0.3326 0 32.00 0 −418.1 32.02 0 0
−0.0658 0 −1.347 0 409.5 0 0 −2.434 0
0 −0.0192 0 −3.643 0 1.725 0 0 0
−0.0007 0 −0.0225 0 −0.7782 0 0 0 0
0 0.0178 0 −0.2158 0 −1.192 0 0 0
0 0 0 1 0 0.0760 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1.003 0 0 0



B =



0.0081 0.2559 0 0
0 0 −0.2945 0.4481
0.2772 0.2286 0 0
0 0 0.5171 0.0704
0.1164 0.0143 0 0
0 0 0.0239 −0.0895
0 0 0 0
0 0 0 0
0 0 0 0


and the disturbance distribution matrix G is given as

G =



0.0343 0 −0.1618
0 0.3326 0
0.0658 0 1.347
0 0.0192 0
0.0007 0 0.0225
0 −0.0178 0
0 0 0
0 0 0
0 0 0


For control purposes, the inertial coordinates of the receiver aircraft relative to

the steady-state flight path (x, y, z) are added as states. To do this, the relationship
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between the inertial coordinate frame and the body-fixed coordinate frame is utilized.

The inertial coordinates of the aircraft are defined as (X, Y, Z); thus the components

of the airplane’s velocity in inertial coordinates are (Ẋ, Ẏ , Ż). The 3-2-1 Euler angles

(Ψ,Θ,Φ) represent the attitude of the body-fixed frame B with respect to the inertial,

or earth-fixed, frame N . The velocity of the aircraft in inertial frame coordinates is

related to the velocity expressed in the body frame coordinates with
Ẋ

Ẏ

Ż

 =


cΘcΨ sΦsΘcΨ− cΦsΨ cΦsΘcΨ + sΦsΨ

cΘsΨ sΦsΘsΨ + cΦcΨ cΦsΘsΨ− sΦcΨ

−sΘ sΦcΘ cΦcΘ



U

V

W

 (A.7)

where the trigonometric functions sin and cos have been abbreviated as s and c. (A.7)

may also be linearized about the steady-state flight condition. Using the assumptions

in (A.2) and neglecting higher-order terms, the following approximations are obtained:

Ẋ ≈ Ẋ1 + ẋ (A.8)

Ẏ ≈ Ẏ1 + ẏ (A.9)

Ż ≈ Ż1 + ż (A.10)

where the known steady-state flight path is given by

Ẋ1 = U1 cos Θ1 +W1 sin Θ1 (A.11)

Ẏ1 = 0 (A.12)

Ż1 = −U1 sin Θ1 +W1 cos Θ1 (A.13)
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and the perturbations from steady-state are

ẋ = cos Θ1u+ sin Θ1w + (W1 cos Θ1 − U1 sin Θ1)θ (A.14)

ẏ = v + (U1 cos Θ1 +W1 sin Θ1)ψ −W1φ (A.15)

ż = − sin Θ1u+ cos Θ1w − (U1 cos Θ1 +W1 sin Θ1)θ (A.16)

Equations (A.14) through (A.16) represent the trajectory of the receiver relative to

the steady-state flight path expressed in inertial coordinates. They are linear in terms

of the perturbed state variables u, w, v, ψ, θ, and φ. The inertial coordinates x, y,

and z may be included as states in the linear model in (A.3). The augmented state

vector is

x =

[
x y z u v w p q r φ θ ψ

]T

(A.17)

and the new state equation is

ẋ(t) = Ax(t) +Bu(t) +Gwg(t) (A.18)

where

A =

 0 A1

0 A

B =

 0

B

G =

 0

G


and A1 is formed from (A.14)-(A.15) using the steady-state values for UCAV6 from

Table III

A1 =


0.9971 0 0.0759 0 0 0 0 0 0

0 1 0 0 0 0 −32.06 0 422.3

−0.0759 0 0.9971 0 0 0 0 −422.3 0

 (A.19)

The output of the system is chosen as the three position states

y =

[
x y z

]T

(A.20)
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Thus the output equation may be written as

y = Cx (A.21)

where

C =


1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0


The linear time-invariant UCAV6 model which is used in the control design and

simulation for this thesis is given by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) (A.22)
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