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ABSTRACT

High Resolution Linkage and Association Study
of Quantitative Trait Loci. (August 2004 )
Jeesun Jung , B.S., Inje University, Korea;

M.A., Yonsei University, Korea

Chair of Advisory Committee: Dr. Ruzong Fan

As a large number of single nucleotide polymorphisms (SNPs) and micro-
satellite markers are available, high resolution mapping employing multiple markers or
multiple allele markers is an important step to identify quantitative trait locus (QTL)
of complex human disease. For many complex diseases, quantitative phenotype values
contain more information than dichotomous traits do.

Much research has been done on conducting high resolution mapping using in-
formation of linkage and linkage disequilibrium. The most commonly employed ap-
proaches for mapping QTL are pedigree-based linkage analysis and population-based
association analysis. As one of the methods dealing with multiple alleles markers,
mixed models are developed to work out family-based association study with the in-
formation of transmitted allele and nontransmitted allele from one parent to offspring.

For multiple markers, variance component models are proposed to perform associ-
ation study and linkage analysis simultaneously. Linkage analysis provides suggestive
linkage based on a broad chromosome region and is robust to population admixtures.
One the other hand, allelic association due to linkage disequilibrium (LD) usually
operates over very short genetic distance, but is affected by population stratification.
Combining both approaches plays a synergistic role in overcoming their limitations

and in increasing the efficiency and effectiveness of gene mapping.



To My parents

v



ACKNOWLEDGMENTS

As I have completed my Ph.D. in statistics at Texas A&M University, I would like
to express my gratitude to many people. I would never have been able to complete my
Ph.D. without their encouragement. My special appreciation goes to my advisor, Dr.
Ruzong Fan, who has led me to the new field of statistical genetics. I met him almost
three years ago when he came to Texas A&M University as an assistant professor. As
my mentor, he gave me the unique opportunity to gain much knowledge on genetic
mapping. I think that being his student was the best decision I have ever made.

I would like to thank Dr. P. Fred Dahm, Dr. Naisyin Wang and Dr. Sing-Hoi
Sze for serving on my dissertation committee and posing many insightful questions.
I appreciate that Dr. Michael T. Longnecker always gave me good advice about my
work.

I have lots of colleagues to express my thanks to, especially Kyeong Eun Lee,
Ho-jin Lee and Joon Jin Song for their friendship, and Gosia Leyk Williams and Iryna
Lobach for being my office mates and sharing such great times. There is one person,
Sunghoon Chung who deserves to get my sincere gratitude for endless support and
encouragement.

Finally, it would be impossible to have my research career without my parents’
love and support, as well as help from my sister and brother. This dissertation is
dedicated to them.

To all of you, thank you.



TABLE OF CONTENTS

CHAPTER

I INTRODUCTION . . . . ... oo oo

1.1. General Description of Genetic Mapping . . . . . . . . ..
1.1.1. Transmission Disequilibrium Test . . . . . . . . ..
1.1.2. Linkage Analysis . . . . . . .. ... ... ... ...
1.1.3. Linkage Disequilibrium Analysis . . . . . .. .. ..

1.2. Literature Review . . . . . . . . ... ... ... .....

1.3. Motivation and Overview of Dissertation . . . . . . . ..

II ASSOCTATION STUDIES FOR A MULTI-ALLELE MARKER*

2.1. Introduction . . . . . ... ... L
2.2. Methods . . . . .. ...
2.2.1. Heterozygous Parent Data . . . . . . .. ... ...
2.2.1.1. Mean and Variance-Covariance Structures . .

2.2.1.2. Parameter Reductions . . . . . ... ... ..

2.2.1.3. Mixed Model . . . . . ... ... ... ....

2.2.2. General Nuclear Family Data . . . . .. ... .. ..
2.2.2.1. Mean and Variance-Covariance Structures . .

2.2.2.2. Mixed Model . . . . .. ... ... ... ...

2.3. Test Statistics and Non-Centrality Parameter . . . . . . .
2.3.1. Heterozygous Parent Data . . . . . .. .. ... ..
2.3.2. General Nuclear Family Data . . . . .. ... .. ..

2.4. Power Comparison . . . . . . . . . .. .. ...
2.5. Application . . . . . ...
2.6. Discussion . . . . . . . . ...

ITI LINKAGE AND ASSOCIATION STUDY BASED ON SIB-
SHIP DATA* . . . .

3.1. Introduction . . . . . . ...
3.2. Methods . . . . ... ... ...
3.2.1.Linear Model . . . . . . . . . ... ... . .....
3.2.2. Trait Variance-Covariance Matrix . . . . . ... ..
3.3. Test Statistics and Non-Centrality Parameter . . . . . . .
3.3.1. Association Study . . . . ... ...

vi

DD WD ===

oo



vil

CHAPTER Page
3.3.2. Linkage Analysis . . . . . .. ... ... ... .. .. 42
3.4. Estimates of the Probability of Sharing 2 Alleles IBD
for Sibs . . . ... 47
3.5. Power Comparison . . . . . . ... ... ... ... .. .. 50
3.5.1. Comparisons with the “AbAw” Approach of Fulker 50
3.5.2. Comparisons of Sample Sizes and Power for LD
Mapping . . . . . . . . . 52
3.5.3. Comparisons of Sample Sizes and Power for Link-
age Analysis . . . . .. ... ... L. 59
3.6. Application . . . . . ... ... 62
3.7. Discussion . . . . . ... 63
IV LINKAGE AND ASSOCIATION MAPPING BY MULTI-
PLE MARKERS . . . .. . .. ... .. ... ... ... .. 65
4.1. Introduction . . . . .. ... .. oL 65
4.2. Model . . . . . . . 67
4.3. Parameter Estimation . . . . . . . ... ... .. ... .. 69
4.3.1. Regression Coefficients and Association Study . . . 69
4.3.2. Variance-Covariances . . . . . . . . . . . . . . ... 71
4.4. Test Statistics and Non-centrality Parameter . . . . . . . 72
4.4.1. Combined analysis of population and family data . 72
4.4.2.Nuclear family . . . . . ... ... .. ... ... .. 74
4.5. Type I Error Rates . . . . . . ... ... ... .. ... .. 75
4.6. Powers and Their Comparison . . . . . ... ... .. .. 7
4.6.1. Comparison with the “AbAw” approach . . . . . . . 7
4.6.2. Comparisons of Sample Size and Power of LD mapping 80
4.7. Application . . . . ... 89
4.8. Discussion . . . . .. . ... 90
\Y CONCLUSION . . . . . e 93
5.1. Summary and Discussion . . . . ... ... ... ..... 93
5.2. Open Problems . . . . ... ... ... ... ....... 95
5.2.1. Association Study by Mixed Model . . . . . .. .. 95
5.2.2. Association Study by Variance Component Model . 95
REFERENCES . . . . . . . . 98
APPENDIX A . . . . e 106



viil

Page
APPENDIX B . . . . . 108
APPENDIX C . . . . . 109
APPENDIX D . . . . . 110
APPENDIX E . . . . . 113
APPENDIX F . . . .o 115
APPENDIX G . . . . . 116
APPENDIX H . . . . . 118
APPENDIX T . . . . . 120
APPENDIX J. . . . . 121
APPENDIX K . . . . . 122
APPENDIX L . . . . 123
APPENDIX M . . . . . 125
APPENDIX N . . . o 126
APPENDIX O . . . . . 127
APPENDIX P . . . . 130
APPENDIX Q . . . . . . e 133



TABLE

IT

I1I

IV

LIST OF TABLES

Results of test statistics of asthma data. . . . . . . . . . .. ...

Joint distribution of g, m4 and 7p of a sib-pair. Here subscripts
ij are omitted from g, m;;4 and ;5. Prob. = Probability.

Interval estimates of AQ by w4, mp, A4 and Ap, for the flanking
markers separated by Aap = 20 ¢cM under Haldane’s mapping

function. . . . . . ..

Interval estimates of AQ by w4, mp, As and Ap, for the flanking
markers separated by Ay = 100 ¢cM under Haldane’s mapping

function. . . . . . ..

Empirical values vs. theoretical expectations of statistics, com-
pared with results of Table 5, Sham et al. (2000), when o7, =
0.2, agd = 0%, = 04, = 0. The reported values of statistics Fy,
and likelihood ratio test (LRT) are divided by 50 to make compar-
ison with results of Table 5, Sham et al. (2000), where the sim-
ulation results are averages of 100 replicate samples of 1,000 sib
pairs. Abbreviations. BP=Between Pairs, WP=Within Pairs.
LRT is calculated by 2[In L4 —In Ly], where L4 is maximum like-

lihood under Hu : avq # 0, and Ly is maximum likelihood under

Hp) [H(X™S LX)~ HT =Y (HA)(N-2 .
HN Ly = 0. F = (yf[)f;[lEf;le(X)Tifl)]()*gXli)f(fl]Y)’ n = (5,@14) )

and H = (0,1). (x), 36.52 in Sham et al. (2000), Table 5, should

be 33.52. . . ..

X

Page

29

46



TABLE

VI

VII

Type I Error Rates (%) at a 0.05 significant level. The parameters
are the same as those of Table 2 of Abecasis, Cardon, and Cookson
(2000). The total variance is fixed as 0? = 100 (see text for
explanation of Admixture case). Null: no major gene effect
or familial effect 03 = 0% = 0; Familiality: large familial effect
o = 50, but no major gene effect 07 = 0; Admixture: no major
gene effect or familial effect 07 = o = 0, but with population
admixture; Linkage: large linkage effect o2 = o7, = 30, 0,0 = 0,

ga
but no familial effect 0% = 0; Composite: large linkage effect
0} = 02, = 20,0, = 0, and large familial effect o7 = 30.

There is no linkage disequilibrium between QTL and marker M,

(Dario = 0)e o o oo

Power comparison with results of Table 4 of Abecasis, Cardon,
and Cookson (2000). In the columns of ACC, the power is taken
from Table 4 of Abecasis, Cardon, and Cookson (2000). In the
columns (F} 4, Flﬁa, LRT)", the power of F}, is calculated based
on approximation of non-centrality parameter \; , of test statistic
Fi ., at 0.001 significant level; the power of Fl,a and LRT are cal-
culated as the proportions of 1000 simulation data sets which give
significant result at 0.001 significant level based on F} , and likeli-
hood ratio test statistic, respectively. For each simulated dataset,
certain number nuclear families are simulated via LDSIMUL.

Page

79



X1

LIST OF FIGURES

FIGURE Page
1 A nuclear family with n offspring. Assume that the genotype of

the father at the marker locus is heterozygous M;M;, ¢ # j. More-

over, the father transmits allele M; to kids 1, - - -, k, and transmits

allele M; tokids k+1,---,m. . . . ... ... 12
2 Power curves of Fiet singicton,sivs f0r 2, 3 and 4 allele markers against

the heritability at 0.05 significant level, when ¢, = 0.25,0% =
0.75, A = 20,60 = 0.005 for a dominant trait a = d = 1.0, Graph
[; and a recessive trait a = 1.0 and d = —0.5, Graph II. For a 2
allele marker, p; = 0.50, k; = 60, k;; = 30,4, 7 = 1,2; For a 3 allele
marker, p; = 0.4,p = 0.3,k; = 60,k = ks = 30,k;; = 15,¢,5 =
1,2,3; For a 4 allele marker, p; = 0.25,k; = 30,k;; = 9,1,5 =
Lo sde o 23

3 Power curves of Fhet singieton for 2, 3 and 4 allele markers against
the heritability at 0.05 significant level, when ¢; = 0.25,0% =
0.75, A = 20,60 = 0.005 for a dominant trait a = d = 1.0, Graph
I; and a recessive trait a = 1.0 and d = —0.5, Graph II. For a
2 allele marker, p; = 0.50, k; = ko = 100; For a 3 allele marker,
p1 = 0.4,p, = 0.3, k; = 100, ks = k3 = 50; For a 4 allele marker,
P =025 k=50, 0=1,---,4. . . . ... 24

4 Power curves of Fen_Nuc,singleton,sivs fOr 2, 3 and 4 allele markers
against the recombination fraction at 0.05 significant level, when
q = 0.25,0% = 0.75,A = 20,h* = 0.25 for a dominant trait
a =d = 1.0, Graph I; and a recessive trait a = 1.0 and d = —0.5,
Graph II. For a 2 allele marker, p; = 0.50, k; = 60, k;; = 30,¢,7 =
1,2; For a 3 allele marker, p; = 0.4,py = 0.3, k; = 60, ky = k3 =
30,k;; = 15,4, = 1,2,3; For a 4 allele marker, p; = 0.25,k; =
30,ki; =90, =1,---,4 ... 26



FIGURE

10

11

Power curves of Fgen Nuc,singieton fOr 2, 3 and 4 allele markers
against the recombination fraction at 0.05 significant level, when
¢ = 0.25,0% = 0.75,A = 20,h* = 0.25 for a dominant trait
a = d = 1.0, Graph I; and a recessive trait a = 1.0 and d = —0.5,
Graph II. For a 2 allele marker, p; = 0.50, k; = ky = 100; For a 3
allele marker, p; = 0.4,py = 0.3, k; = 100, ky = k3 = 50; For a 4

allele marker, p;, = 0.25,k; =50,i =1,---,4. . . . .. . ... ...

Power curves of Fet singieton,sibs for 2, 3 and 4 allele markers against
the heritability at 0.05 significant level. For a 2 allele marker, p; =
0.90,p, = 0.10; For a 3 allele marker, p; = 0.5,py = 0.45,p3 =
0.05; For a 4 allele marker, p; = 0.45,p; = p3 = 0.25,p4 = 0.05.

All other parameters are the same as those in Figure 2. . . . . . .

Number of sib-pairs (Graphs I and II) or tri-sibships (Graphs III
and IV) of test statistics Fap aa, Fap.aFas.d, Faad, Faa, and Fu g
against the heritability A% at 0.01 significant level and 0.80 power.

Power of test statistics Fupad, FaBa,F'aB.ds Faads Faa, and Faq
against trait frequency ¢, or marker allele frequency P4 at 0.01 sig-
nificant level, when P4 = 0.5 (Graphs I and II), ¢; = 0.5 (Graphs

MLand IV). .. ..

Power of test statistics Fupad, FaBa,faB.d, Faads Faa, and Fag4

against LD coefficient D4¢ at 0.01 significant level. . . . . . . ..

Power of test statistics Fapad, FaBa,F'aB.ds Faads Faa, and Faq

against heritability h? at 0.01 significant level. . . . ... ... ..

Graphs I and II. Power of test statistics Fapad, FaB.a,FaB.d;
FAad, Faqa, and Fagq against position of trait locus @) at 0.01
significant level. Graphs III and IV. Power of test statistics
Fup 44 of different mutation ages against position of markers A
and B at 0.01 significant level. The trait locus @) locates at 10cM.
The two markers A and B flank the trait locus ). The other

parameters are the same as Graphs land II. . . . . ... ... ..

x1i

Page

27

28

o4



FIGURE

12

13

14

15

Power curves of the interval mapping by markers A and B with
or without dominant variances against the recombination fraction
040 at 0.05 significant level, when h? = 0.35, \ap = 10cM,m =
250,02, = 0.10, 0%, = 0.05,0% = 0, for a dominant trait a = d =

1.0,q; = 0.60; and a recessive trait a = 1.0,d = —0.9, ¢; = 0.40.

Marker A locates at 0cM, and marker B locates at 10cM. . . . . .

Power curves of test statistics Fyq, F3q, Foq, Fug, 34, and Foq
against the measure of LD between M; and () at a 0.01 significant
level, when ¢; = 0.50, Py, = 0.50,% = 1,2,3,4, Dy, = 0.08,1 =
2,3,4, Dy, = 0.05,1 # j, mag = 0.5,012¢ = 0.25, heritability
h? = 0.15, familial effect variance 0% = 0.10, and sample size n =
40, m = 30, s = 20 for a dominant mode of inheritance a = d = 1.0
(Graph I), and a recessive mode of inheritance a = 1.0,d = —0.5

(Graph II), respectively. . . . . . . ... ... ... ..,

Power of test statistics Fyq, F5q, Faa, Fia, F5q, and F; 4 against
the heritability h? at a 0.01 significant level, when ¢, = 0.5, Py, =
0.5, Drg = 0.1, D, = 0.05,4,5 = 1,2,3,4,1 # j, Taq =
0.5, 8120 = 0.25, 0%, = 0.1, and sample size n = 40, m = 30, s = 20
for a dominant mode of inheritance a = d = 1.0 (Graph I), and
a recessive mode of inheritance a = 1.0,d = —0.5 (Graph II),

respectively. . . . ...

Power of test statistics [} 4, F5 4, Fbq, and F} , against the trait al-
lele frequency ¢; (Graph I) or marker allele frequency Py, (Graph
IT) at a 0.01 significant level for an additive mode of inheritance
a =1.0,d = 0.0, when Py, = 0.5 or ¢ = 0.5, respectively. The
other parameters are given by h* = 0.15, Py, = 0.5, T2 = 0.5,
o129 = 0.25, 0%, = 0.1, Dy = [min(Pas,, 1) — Porr, 1] /2, Dy, =
[min( Py, Par,) — P Pag] /2,1 = 2,3,4 and Dy = 0.05,4,5 =

2,3,4,i # j and sample size n =40,m =30,s =20. . ... .. ..

xiil

Page



FIGURE

16

17

18

Power of test statistics Fio, Fiad, F3a, F5ad; Foa, and Fhaq
against location of QTL @ at a 0.01 significant level. The pa-
rameters are given by ¢ = 0.5, Py, = 0.5, Dp,0(0) = 0.15,
Day, = 0.05,6,5 = 1,---, 4,0 # j, mag = 0.5,0100 = 0.25,
familial effect variance % = 0.10, heritability h? = 0.15, and
sample size n = 100, m = 50,s = 30, mutation age T' = 60 for
a dominant mode of inheritance a« = d = 1.0 (Graph I), and a
recessive mode of inheritance a = 1.0,d = —0.5 (Graph II), re-
spectively. Marker M; locates at position 0cM, marker Ms locates
at position 1cM, marker M3 locates at position 2cM, and marker
M, locates at position 3cM. The location of QTL @ is along the

horizontal axis, i.e., it moves from OcM to 3cM. . . . . . .. .. ..

Power of test statistic F} 44 for mutation age 7" = 30, T' = 40, T' =
50, T' = 60, T' = 70 against position of markers M;,: = 1,---,4
at a 0.01 significant level. The QTL @ locates at position 10cM.
The four markers flank the trait locus @); two markers are on each
side of the QTL with equal distance to the each other as follows:
My =5+ M;/2, M3 =15— M;/2, My =20 — M. ¢1 = 0.5, Py, =
0.5, Daro(0) = 0.15, Dyrar, = 0.05,4,5 = 1,---,4,i # j, heri-
tability h? = 0.15, familial effect variance 0% = 0.1, and sample
size n = 40,m = 30,s = 20 for a dominant mode of inheri-
tance a = d = 1.0 (Graph I), and a recessive mode of inheritance

a=1.0,d = —0.5 (Graph II), respectively. . . .. ... ... ...

Sample size of test statistics [y ,, Fhq, F34, and Fy, against heri-
tability h? at a 0.01 significant level and 0.80 power for a dominant
mode of inheritance a = d = 1.0. For favorable case (Graph I and
Graph IIT), g1 = 0.5, Pyy, = 0.5, Dagar, = 0.05, Dasg = 0.1,4,j =
1,2,3,4,i # j; for less favorable case (Graph II and Graph IV),
g1 = 0.2, Py, = 0.8, Dasag, = 0.0, Do = 0.03,4,5 = 1,2,3, 4,7 #

j. In addition, the familial effect variance o% =0.1. . . . ... ..

Xiv

Page



CHAPTER I

INTRODUCTION

1.1. General Description of Genetic Mapping

There have been lots of efforts to develop methodologies in order to find locations
of Quantitative Trait Loci (QTL). For many human complex diseases, quantitative
phenotypic values contain more information than dichotomous traits do. They can
provide effective descriptions of diseases such as asthma, type II diabetes, learning
difficulties, and osteoporosis. Quantitative trait value is affected by more than one
gene as well as by environment effect. With this reason, it is not easy to localize
QTL on chromosome. The most commonly employed approaches for mapping QTL
of human complex diseases are pedigree-based linkage analysis and population-based

association study.

1.1.1. Transmission Disequilibrium Test

Transmission Disequilibrium Test (TDT) was first introduced by Spielman et al.
(1993) to test the presence of both linkage and linkage disequilibrium (LD) between
a marker and putative disease locus when the marker locus and the hypothetical
disease locus are linked or are in linkage disequilibrium. The TDT, as a model free
method, is based on the unequal probability of transmission of different marker allele
from parents to the affected offspring. This unequal pattern of transmission gives
the evidence that the marker and disease locus are tightly linked or in LD. With the

concept, lots of methods have been developed to test whether a marker allele exhibits

The format and style of this dissertation follows that of Biometrics.



transmission disequilibrium with a disease. But there are several possible drawbacks
of TDT. It is positive only if both linkage and linkage disequilibrium are present.
When the sibship observed are related, it is difficult to find out if there is evidence

for linkage disequilibrium in addition to linkage.

1.1.2.  Linkage Analysis

The most widely used method, linkage analysis, is developed from the methodology
of Haseman and Elston (1972), as a family-based method. Linkage analysis exploits
sharing allele identical-by-descent (IBD) which is a measure of genetic similarity be-
tween pairs of relatives. IBD is a function of recombination fraction which is a measure
of genetic distance. The idea of linkage analysis is that the smaller the amount of re-
combinations observed between genes, i.e. the more tightly linked they are, the more
possible they lie on a chromosome. Using the idea, lots of models such as variance
component model, Haseman and Elston method, have been proposed to conduct link-
age analysis. However, it is difficult to detect recombination events between closely
spaced (< 2.5cM) loci since there is a limited number of meiosis occurring. Therefore,
linkage analysis is usually proper for broad chromosome region mapping(< 10cM),

but is not appropriate for high resolution mapping(< 2.5¢M).

1.1.3. Linkage Disequilibrium Analysis

The other popular mapping tool is association analysis due to linkage disequilibrium
that is a tendency of alleles to be inherited together more often than would be ex-
pected under random segregation. It is also called linkage disequilibrium mapping
(LDM). LD mapping is based on both population data and pedigree data; it uses
historical recombination events between genetic loci when non-random association

of alleles at genetic loci was introduced into a population. LD can work over short



map distances, and can increase mapping precision in high resolution mapping. How-
ever the LD mapping largely depends on the level of LD, and its power to detect
the putative QTL decays rapidly as the distance between the marker and putative
QTL increases. Therefore, the allelic association study is useful to operate only over
very short distance of loci. The most serious disadvantage is that the level of LD is
sensitive to population stratification, although LD mapping can increase resolution
in dissecting genetic traits when the association between markers and trait loci is

introduced by events such as mutations at trait.

1.2. Literature Review

The Transmission Disequilibrium Test (TDT) developed by Spielman et al, (1993) is
a powerful family-based test of linkage and a test of association. Sham and Curtis
(1995) derived transmission probabilities for a logistic regression model with a multi-
allele marker locus linked to a single disease locus. Allison (1997) extended the TDT
method to quantitative traits by investigating the difference between average quan-
titative trait values of offspring with different alleles transmitted from heterozygous
parents. Rabinowitz (1997) developed the TDT without parametric assumptions on
the distribution of the quantitative traits. Xiong et al. (1998) generalized TDT which
is allowed for multi-allelic loci. A disadvantage of all TD'T methods is that they can
detect linkage between the marker locus and the disease trait only if there is an asso-
ciation between the disease locus and alleles at the linked locus. George et al. (1999)
proposed a regression-based TDT method which is based on regressing the trait on
the parental transmission of a marker allele with no restriction on either the family
structure sampled or the affected status of individuals in the pedigree. Zhu and El-

ston (2000,2001) also developed a TDT method for quantitative traits by defining a



linear transformation. Fan et al. (2002) explored linear regression models to detect
linkage in the presence of association between a multi-allele locus and a disease locus
for trio families. The methods are not valid for general nuclear families with more
than one offspring, because they do not consider the correlation of offspring’s trait
values which are not independent. Fan and Xiong (2003) proposed mixed model to
perform linkage and association studies for nuclear families with any number of off-
spring. The mean structure and variance-covariance structures in the mixed model
are applied for bi-allele markers. Fan and Jung (2003) extended the mixed model to
use a multiple alleles marker.

One of the best known approaches of sib-pair analysis is Haseman and Elston
method (1972) which was developed to detect linkage between a quantitative trait
and a marker. Linkage approach of Haseman and Elston (1972) exploited sharing
allele identical-by-decent (IBD) to carry out regression of the squared trait differ-
ences of trait values between sib pairs. Haseman and Elston method (1972) was
extended to allow all pedigree members (Amos et al., 1989). Amos (1994) developed
a mixed-effects variance components approach for evaluating covariate effects, as well
as evidence for genetic linkage to a single trait-affecting locus from pedigrees.

A simple interval-mapping approach to linkage analysis of quantitative traits,
based on the sib-pair method of Haseman and Elston (1972), was proposed by Fulker
and Cardon (1994). This approach provided not only useful information regarding the
location of QTL, but also the valuable improvement in power over that of Haseman
and Elston. The sib-pair interval-mapping procedure of Fulker and Cardon (1994)
is extended to take account of all available markers information simultaneously on a
chromosome (Fulker et al., 1995). The multipoint interval mapping increases power
in dense mapping and is more accurate under conditions of variable marker informa-

tion. Almasy and Blangero (1998) carried out multipoint mapping based on general



pedigrees. The variance component model proposed by Almasy and Blangero (1998)
is more powerful than Haseman-Elston regression. Pratt et al. (2000) proposed vari-
ance component model that accounts for both additive and dominant variances to
calculate covariance of trait between relatives in an exact multipoint quantitative
trait linkage analysis.

Linkage disequilibrium mapping was also suggested for genome-wide screens
(Xiong and Jin, 1997). Cardon (2000) proposed a multiple regression model to ana-
lyze very large number of SNPs. The International SNP Map Working Group (2001)
has led to a novel approach of linkage disequilibrium (LD) mapping. Xiong et al.
(1998) presented multiple regression for LD mapping and proposed two strategies to
increase the probability of detecting LD. Fan and Xiong (2002) proposed a linear
regression method based on population data in order to conduct LD analysis with
two flanking markers.

Recently, the interests in joint LD and linkage mapping have been occurring.
Almasy et al. (1999) proposed variance component models in QTL detection using
combined linkage and LD analysis. Fulker et al. (1999) also combined both ap-
proaches based on sib pairs using variance component methods. Sham et al. (2000)
performed analytical analyses of linkage versus association mapping of quantitative
traits for sibship data in terms of power. Abecasis et al. (2000, 2001) generalized the
method of Fulker et al. (1999) to apply for nuclear families and general pedigrees.
Wu et al. (2002) made use of mixture models in joint linkage and LD mapping. Al-
most all research has employed only one marker. Since dense marker maps such as
single nucleotide polymorphisms (SNPs) have been available, high resolution multi-
ple markers mapping is needed. Fan and Xiong (2002) used two flanking markers to
perform high resolution LD mapping with linear model, which applies to only data

of population. Variance component models are proposed to combine linkage and LD



mapping based on both population and pedigree data. (Fan and Xiong, 2003; Fan
and Jung, 2003).

1.3. Motivation and Overview of Dissertation

As large numbers of dense markers such as single-nucleotide polymorphisms (SNPs)
and high resolution micro-satellite markers have been available, there is an urgent
need to develop methodologies which deal with dense markers.

In certain situation, one may have data of multiple allele markers to be ana-
lyzed. One may collapse a multiple allele marker to be a bi-allelic marker in his/her
study. However, this may not be a good idea since much information may be lost
by combining different alleles that may have different roles. Moreover, different ways
of collapsing multiple alleles can lead to different results which may cause different
interpretation. With these reasons, it is necessary to build multi-allele markers map-
ping. In chapter II, mixed model is utilized to fit multi-allele markers for association
study based on nuclear families with any number of offspring. Two types of nuclear
families are considered in terms of genotype of parents. Using the information of the
allele transmitted from parents to offspring for each type of nuclear families, mixed
models are presented.

In views of statistics, the more information available, the better the results. A
combined linkage and linkage disequilibrium analysis may give increased information
and potentially more power to detect QTL. Separate method of either linkage analysis
or LD mapping makes use of only one part of the available information and also have
its own drawbacks. As we put both approaches together, the combination plays a
synergistic role in overcoming their limitations and in increasing the efficiency and

effectiveness of gene mapping. In chapter III, the combined mapping strategy is



introduced in the absence of parental information with two flanking markers. For
late-onset disease such as Alzheimer’s disease, heart disease, osteoporosis, and many
forms of cancer, it is difficult to recruit parental data. In this case, one may perform
sib pair or sibship analyses to study late-onset disorders. The new mapping method is
the variance component model which integrates the linkage information in variance-
covariance matrices and LD information in the mean coefficient of the linear model.

In chapter IV, we extend the combined mapping from two flanking markers
to multiple markers. The objective is to build models which may fully use marker
information for association mapping of QTL in the presence of prior linkage. Based
on the information of markers, a multi-point interval mapping method is provided
to build variance component model. The unified analysis in chapter IV is applied to
both family with parental data and population data.

Finally, chapter V discusses the conclusions of our research with some open

problems for further challenging investigation and discussion.



CHAPTER II

ASSOCIATION STUDIES FOR A MULTI-ALLELE MARKER*

2.1. Introduction

There has been a considerable interest in association study using transmission dise-
quilibrium test (TDT) between a quantitative trait locus (QTL) and a marker locus.
The TDT of Spielman et al. (1993) was originally introduced to test linkage between
a qualitative trait and a marker. Allison (1997) and Xiong et al. (1998) extended
the TDT procedure to quantitative traits. George et al. (1999) presented linear re-
gression models for TDT by regressing the trait on the parental transmission of an
allele of interest. This method can be applied to general pedigree structures. Zhu
and Elston (2000, 2001) extended the method of George et al. (1999), and proposed
better test statistics in detecting linkage and association. Fan and Xiong (2003) ex-
plored mixed models to perform linkage and association studies. The mixed model
accommodated bi-allelic marker of nuclear families with any number of offspring. In
certain circumstances, one may encounter the data of multiple allele markers such as
micro-satellites. One may combine a multiple allele marker to be a bi-allelic marker as
the purpose of analysis, but this may not be a good method because it may cause loss
of much information. In addition, different ways to combine a multiple allele marker
can lead to different results which make different interpretation possible. With these
reasons, we need to develop methods to fit multi-allele markers in order to carry out
association study.

*Reprinted with permission from ” Association Studies of QTL for Multi-Allele Mark-

ers by Mixed Models” by Ruzong Fan, Jeesun Jung, 2002. Human Heredity, Vol. 54,
132-150. by S. Karger AG Basel.



Fan et al. (2003) proposed models and their test to perform association and
linkage between a QTL and a multi-allele marker locus for trio families. Trio families
consist of two parents and one single offspring. The methods of Fan et al. (2003) are
not working for general nuclear families with more than one offspring, since the meth-
ods do not consider correlation of trait values of offspring that are not independent.
To construct valid test statistics and models, one needs to consider the variance-
covariance structure of trait values of offspring, as well as the mean structure under
the normal assumption.

In this chapter, mixed models are introduced to investigate the association be-
tween a QTL and a multiple allele marker in terms of two types of nuclear families
data. One is nuclear family with at least one heterozygous parent, the other is gen-
eral nuclear family with no restriction on genotypes of parents. The conditional mean
and conditional variance-covariance matrix of trait values of offspring for each type
of nuclear families are derived. The theoretic basis is the difference of conditional
means given information of a transmitted allele from heterozygous parents. The dif-
ferences would give evidence that the allele is associated with putatitive quantitative
trait locus. For a multiple allele marker, the number of parameters can be too large
in data of nuclear-family with at least one heterozygous parent. Under the assump-
tion of tight linkage between the trait locus and the interesting marker, the number
of parameters can be significantly reduced by approximations. Test statistics based
on the related conditional mean and conditional variance-covariance structures are
derived. The non-centrality parameters of their test statistics are calculated to show
the merits of the proposed methods in terms of power and sample size. The proposed
models are used to analyze chromosome 4 and 16 data of the Oxford asthma data

(Genetic Analysis Workshop 12)
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2.2. Methods

We consider one quantitative trait locus (QTL) ¢ which has two alleles (); and
(> with frequencies ¢; and gq, respectively. Assume that the expected phenotypic
trait value of a person with genotype Q,Qs is v + 5,7, 5 = 1,2, where v is overall
mean and g, is the effect of genotype Q,.Qs, obviously p1o = po;. There are m
alleles My, ---, M, typed at the marker locus M, each M, allele has frequency p;,
t=1,---,m. Suppose that a marker locus M is linked to the trait locus (). Denote
the recombination fraction between the marker locus M and the trait locus ) by 6.
The haplotype frequency is denoted by h,; for haplotype Q,M;,r =1,2,i=1,---,m.
If h,; = q.p; for all r and i, the trait locus ) and the marker M are in linkage
equilibrium. Otherwise, the trait locus () and the marker M are in LD or association.
The measure of LD between the trait allele ()1 and the marker allele M; is defined by
0; = hy; — qipi,i =1,---,m. Since >, §; = 0, one of 41, ---,d,, can be expressed by
others, e.g.,0, = — >"7' 8.

Let Y be the phenotypic trait variable decomposed into Y = v+ g+ G + e,
where v is overall mean, g is random major gene effect. Polygenic effect G has
normal distribution with mean 0 and variance o%, and sampling error e is dis-
tributed as normal N(0,02). These g, G, and e are independent. If an individ-
ual has genotype QsQ, at the trait locus, then E (g|QsQ,) = prs. Let TQ de-
note the abbreviation of “transmitted quantitative trait allele”. We have the con-
ditional mean given information of transmitted allele as following E[Y|TQ = Q,] =
v+ Zgzl Ursqs = V + pi,. Let P(M;, M;) be the probability of an offspring who re-
ceives marker allele M; from his/her heterozygous parent but not alleles M;. That is
P(M;, M;) = P(M;, M;) = p;pj. Let P(Q,M;, M;) be the probability of a child who

receives haplotype @, M, from his/her heterozygous parent but not alleles M;. It can



11

be shown as P(Q,M;, M;) = (1 — 8)h.ip; + Oh,;p;.

2.2.1. Heterozygous Parent Data

For a family with two parents and at least one offspring, we assume that at least one
parent is heterozygous at the marker locus M. Moreover, assume we may infer clearly
the transmission of parental marker alleles to the offspring. If both parents and an
offspring have the same genotype M;M;, ¢ # j, it is impossible to tell which parent
transmits which allele to the offspring, and hence the data can not be used in analysis.
Actually, this is the only type of data which needs to be excluded. For a bi-allelic
marker, one needs to exclude the heterozygous offspring of a mating heterozygous
X heterozygous (Fan and Xiong 2002; George at al. 1999; Zhu and Elston 2000,
2001). For a multi-allelic marker, any offspring from a mating M;M; x M;My,j # k
or My M;x M;My,i # j,i # k,j # k or amating M;M; x MiMy, 1 # j,i # 1,1 # k,j #
l,5 # k,l # k can be included in analysis since one can infer clearly the transmission
of parental marker alleles to the offspring. Hence, a heterozygous offspring of a
mating heterozygous x heterozygous may not be necessarily excluded in case of multi-
allelic marker unless both parents and offspring have exactly the same heterozygous
genotype.

Let us look at a pedigree depicted in Figure 1. Assume that the genotype of
the father at the marker locus is heterozygous M;M;,i # j. Moreover, the father
transmits allele M; to children 1, - - -, k, and transmits allele M; to children k+1, - - -, n.
The quantitative trait value for offspring ¢ is denoted by y;,7 = 1,---,n. For the
mother, we can perform similar analysis. If the mother is homozygous M;M;, every
offspring receives an allele M; from her and so she does not provide useful information
(Spielman et al. 1993). If the mother is heterozygous, one should examine if an allele

is transmitted to an offspring by the mother. Keeping all offspring with whom one



12

may infer clearly the transmission of allele from the mother and father, we use those

data to develop following methods.

.

yl .. yk yk+1 DY yn

Fig. 1. A nuclear family with n offspring. Assume that the genotype of the father at
the marker locus is heterozygous M;M;,i # j. Moreover, the father transmits
allele M; to kids 1,---, k, and transmits allele M; to kids k£ +1,---,n.

2.2.1.1. Mean and Variance-Covariance Structures

Let T'M denote the abbreviation of “transmitted marker allele”, and NM of “non-
transmitted marker allele”. Given that marker allele M; is transmitted and allele M;
is not transmitted from the heterozygous father for children 1,-- -, k, the conditional
expected mean can be calculated in the same way as equation (1) or (2) of Fan and

Xiong (2002)
2
r=1

With the same way, the conditional expected mean of the children k£ + 1,---,n in

Figure 1 is

2
aj; =B[Y|[TM = Mj, NM = M| = v+ _ i, [(1 = O)hojpi + Ohipj) [ [pips].  (2:2)
r=1
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Using hoip; — hojpi = (pi — hi1i)p; — (pj — haj)pi = —h1ip; + hi,psi, we derive a difference

between «; ; and «;; as following:

2
ai,j - aj,i - 1 - 29 Z /vbr Tlpj rjpi)/(pipj)
r=1
= (1 - 29)(#1 MQ)(hlzPJ hlJPZ)/(pin) (2'3)

= (1 —=20)(p2 — p2)(ipj — 0;05)/ (Pipy).

Assume that the trait locus @ is linked to the marker locus M, i.e., 0 <6 < 1/2.
The difference between conditional means is induced by d;p; —d;p; # 0, which implies
at least one of J; and J; is not equal to 0. That shows the marker M is in LD with
trait locus (). Hence, one may construct statistics and models to test association in
the presence of linkage between the marker M and the trait locus ) based on the
difference (2.3).

To build valid test statistics and models, we need to calculate the variance-
covariances of the trait values of offspring in nuclear families. In a similar manner
as Appendix A of Fan and Xiong (2002), we may show that the conditional vari-

2

ance of trait value of the offspring 1,---,k is 07; = 07 + 0¢ + X7;, where X7, =

S22 (VA s — ij)?2qs P(Qr My, M)/ P(M;, M;). Likewise, the conditional vari-

ance of trait values of the offspring k + 1,---,n is 07, = 02 + 0¢ + X,

ji» Where

N5 =2 (VA s — a,)?qs P(Qr M, M;)/ P(M;, M;). For the conditional co-
variances, let us denote the expected conditional covariance between y; (I =1,---, k)
and y; (t #1,t =1,---,k) by X;;;;, the expected conditional covariance between y;
({=1,---k)and y (t =k+1,---,n) as 3;; ; = ¥j;;j, and the expected conditional
covariance between y; ({ =k+1,---,n)and y, (t # Lt =k+1,---,n) as Xy ji. Xijij

and X;; ;; are calculated in Appendix A.
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On the other hand, we need to build model under the null hypothesis of no
association in the presence of linkage. To do this, we need to calculate the mean
and variance-covariance parameters. Under the assumption of linkage equilibrium
between the marker locus and the trait locus, we show that o, ; = 32, (v + u,)q, =
V=07 = 0% Y55 = S and ¥y 5 = Xyg, which do not depend on subscripts

i and j in Appendix B.

2.2.1.2. Parameter Reductions

In Subsection 2.2.1.1, we work out the mean and variance-covariance structures of
siblings for a nuclear family. Although the structure is valid theoretically, the number
of parameters can be very large for a multi-allele marker M. The number of mean
parameters « ; is m(m — 1), and the number of variance-covariances o7, ¥, Lij ji
is b[m(m — 1)/2] for a marker M with m alleles. Hence, the total number of the
parameters is 7m(m — 1)/2. For a marker with 3 alleles, the number of parameters
is 21; for a marker with 4 alleles, the number of parameters is 42. One needs to
reduce the number of parameters to build valid models and obtain their robust test
statistics.

In a population, the presence of LD is usually the result of tight linkage between a
trait locus and a marker locus (Falconer and Mackay 1996; Fan et al. 2002; Sham and
Curtis 1995). Assume that the recombination fraction 6 ~ 0, i.e. there is tight linkage
between the trait locus and the marker. In Appendix C, we show that approximately

&i,j ~ Oéi, 0'2 ~ 02

o 7 and X;;,;; ~ X;,; only depend on subscript ¢, and the covariance

Yijji ~ Xi; = 2j,; depends on both ¢ and j. Therefore, the expected conditional

variance-covariance matrix of y;,/ = 1,---,n, in Figure 1 can be expressed as
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054 EWJ e EWJ El]dl e E@J,ﬂ 0; Ei,i T Em‘ Zi,j ce Ei,j
2 .. . 2 .. ..
Sijii iyt Oig o Siggi ot Siggi | o | i a0 0f 0 i Eij
Yjiij  Vjiag v Mgiig Ottt Mjigi i Xgioccc Xjio 05 Xy
EJMJ ZJMJ U EJMJ Eﬂm e 05 Ejﬂ Z]ﬂ Em Em 0;

With these parameter reductions, the number of mean parameters «; is m, and
the number of variance-covariance parameters o7, ¥, ;, 3, ; is 2m+m(m—1)/2. Hence,
the total number of the parameters is 3m + m(m — 1)/2. Such as in Fan and Xiong
(2002), the number of parameters for a bi-allele marker is 7. For a marker with 3
alleles, the number of parameters is 12, and for a marker with 4 alleles, the number of
parameters is 18. Therefore, the number of parameters can be significantly reduced

under the assumption of tight linkage between the trait locus and the marker.

2.2.1.3. Mized Model

Suppose that the data consist of nuclear families with I heterozygous parents. Each
of them has at least one offspring. For each family, suppose that genotypes of both
parents are typed at the marker locus M and at least one of the parents is heterozy-
gous. For the offspring of each heterozygous parent, assume that one may clearly
determine which allele at the marker locus M are transmitted from the heterozygous
parent. A quantitative trait value of each offspring is observed.

For the [-th heterozygous parent, assume that the genotype at the marker locus
is M;M;,i # j. Moreover, he/she has n; offspring, and the offspring’s trait values are
listed as Y1, - -, Yin,- Assume that the offspring consist of two parts: (1) k; offspring
have the fact that allele M; is transmitted and allele M; is not transmitted from their

heterozygous parent, and their trait values are listed as yi1, - - -, Yu,; (2) the rest of the




16

offspring have the fact that allele M; is not transmitted and allele M; is transmitted
from their heterozygous parent, and their trait values are listed as y; 41, , Yin,-
Under the null hypothesis of no association in the presence of linkage between

the trait locus ) and the marker locus M, one may use a multivariate linear model
Y =V + gru + G + €, u = 1,2, - -+ ny, reduced model, (2.4)

where ¥, are normal variables with mean « and n; X n; variance-covariance matrix

o B4 o N g o0 i
Vl _ D o? Xid o Bid
Yitd Lgd o Yid o2 - Dts
Yitd Ngd o Mid  Dts e o?

Under the alternative hypothesis of association in the presence of linkage, one may

use a full model

Yu = V+ glu|(TM:Mi,NM:Mj) + G+ e, u=1,2,-- Kk,

Yu = V- Gul@y=n; Nv=nr) + Gru + e u =k + 1, ny. (2.5)
Y, are normal variables with mean o; for u = 1,---,k and mean «; for v = k; +
1,---,ny, and a variance-covariance matrix
2
of Mg o i igooc Dig
Fl _ Zz,z Zi,i R ) zé] e 5
i i Mjao 05 o My
Yji Yy Yii  Xj; gj

Putting all data together, we may perform association studies based on reduced

model and full model. Denote n = S1_, n, % = (Y1, Yin) ¥ = (G, 97)7,
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V = diag(Vi, Vo, -, Vy) and T = diag(I'y, Ty, -+, T'y). Let I, be the identity n x n
matrix. In the reduced model, ¥ is normal with mean al, and variance-covariance
matrix V. In the full model, similarly ¥ is normal with mean X (aq,---, ;)" and

variance-covariance matrix I', where X is an n X m design matrix based on model

(2.5).

2.2.2.  General Nuclear Family Data
2.2.2.1. Mean and Variance-Covariance Structures

Consider a sample of general nuclear families which consist of two parents with no
restriction on parental genotype and at least one offspring each. For each parent-
offspring pair, one first determines which allele is transmitted from the parent to the
offspring. In the general nuclear family, we use a different approach from that in
Section 2.2.1. For instance, we simply assume that an allele M; is transmitted from
a homozygous parent M;M; to any of his/her offspring, and ignore which one it is. If
both parents and an offspring have the same genotype M;M;,7 # j, we assume that
one parent transmits M; to the offspring and the other parent transmits M; to the
offspring. In this way for each parent-offspring pair, we may define an transmission of
allele from the parent to the offspring. Putting all data together, we may arrange the
trait values of offspring in a way as Table 1 in Fan et al. (2002). Hence, all data from
a nuclear family can be used in analysis. Based on which marker allele is transmitted
from a parent, the conditional mean ; = E (Y|T'M = M;) is calculated in Appendix

D as following.

G = E|TM = M

= (1 - 9) {(V + Ml)hli + (V + ,UQ)hQi:| /pi + o
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Therefore,
Bi — a
8 = [(y + p1)hy + (v + ug)hm’}/pi — (v + ) + (v + p2)q)

= (1 — p2)0;i/pi-

The absence of association between trait locus ) and marker M, i.e., §; = 0, means
0B; = «. This constitutes the basis to build models and to construct appropriate
statistics to test the association between trait locus ) and marker M by comparing
the estimates of parameters 3; and «. To build models, we need variance covariance
structures of the trait values of offspring. In Appendix D, we calculate conditional
variance 2. = Var(Y|TM = M;). For two offspring of a nuclear family, let T M,
be the abbreviation of “transmitted marker allele for child 1”7, and let T'M5 be the
abbreviation of “transmitted marker allele for child 2”. For i # j, the conditional
covariance %; ;, = Cov(Yy,Ya|TM; = M;, TMy; = M;) = %;;j;. The conditional
covariance ¥, ;. = Cov(Yy, Ya|T' My = M;, T My = M;) is calculated.

2.2.2.2. Mized Model

In this Subsection, we are going to build models and construct their statistics to test
association between the trait locus () and marker M to analyze general nuclear family
data. We assume that there is at least one offspring for each nuclear family. For a
homozygous parent with genotype M;M; at the marker M and n; offspring, let the
trait values of the offspring be yi,- -, y,,. One may use a multivariate linear model

for data analysis

yu:V+gu‘(TM:Mi)+Gu+€u>u:1727"'7nla (26)
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where 3, are normal variables with mean [3; and n; x n; variance-covariance matrix

2
Oir Ei,ir T Ei7i7"
Ez,m’ Oir Ez,zr
. . .. ... 2
E'L,zr Ez,w O

For a heterozygous parent with genotype M;M;,7 # j at the marker M and ny
offspring, let the trait values of the offspring be yy,---,y,,. Suppose that: (1) k
offspring have the fact that allele M; is transmitted and allele M; is not transmitted
from their heterozygous parent, and their trait values are listed as yi, -, yk; (2)
the rest of the offspring have the fact that allele M; is not transmitted and allele
M; is transmitted from their heterozygous parent, and their trait values are listed as

Yky+1, "+ Yn,- One may use a model

Y = V‘l’gu’(TM:Mi) +Gu+euau = 172""7k17

Yo = V+Gulrm=ny) +Gute,u=Fk+1,---,n. (2.7)
Y, are normal variables with mean 3; for u = 1,---,k and mean 3; for u = k; +
1,---,n, and an n; X n; variance-covariance matrix
2
Oi  Digr v Xigr Xigr  ccc Migr
2
Diir  2igr ot Op Digr ccc e
3
Yjir  Mjar o gar o Of o Djgr
2
Yjar Ygar 0 gar Mjgr vt 05,

2.3. Test Statistics and Non-Centrality Parameter

2.3.1. Heterozygous Parent Data

Let &;, 62,3, % ; be the maximum likelihood estimators of parameters a;, 07, %, ;, %

of the full model (2.5). Then the estimate of v = (ay, -+, )" I8y = (a1, -+, Q)™ =
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A~ —1 A~
{X X } XTIy, Assume that the sample size is large. In Appendix E, we show
that the test statistic of the null hypothesis Hy : @y = -+ = «,,, is non-central

F(m — 1,n —m) defined by (details are given in Appendix E)

g HATHXTDIX) H Y (m = 1)
T = DX (X IX) X g/ (n = m)
, where
1 -1 0 0
1 0 -1 0
H = :
1 0 0 —1

Here H is a (m — 1) x m testing matrix. The non-centrality parameter of the test
statistic F' can be calculated by Ao ~ (Hy)"[H(X"T'X)"'H™|"'H~. If n; = 1 for
each family, then there is only one single child in each family and the above formula
can be simplified. Let k;,7 = 1,2,---,m be the number of offspring who receive allele
M; from their heterozygous parents. In Appendix F, we show that the non-centrality

parameter of the singleton test statistic Fet singteton 1S

)\het,singleton Z a1 — Oél k /U - [Z(al — Oél k’ /U } Zk /0’
=2 =2

Assume that the data consist of both singleton families and sib-pair families.
Suppose there are k; singleton offspring who receive allele M; from their heterozygous
parents, k;; (i = 1,2,---,m) sib pairs who receive allele M; from their heterozygous
parents, and k;; = kj;,i # j sib pairs whose one sib receives allele M; from his/her
heterozygous parent and the other receives allele M; from the same heterozygous

parent. In Appendix G, we obtain the matrix

_ . kl 2k'll k 2kmm _
XT71X =d —+ _ XTIl X
lag<0'% + U%—FZM 0'2 +afn+2m7m> + 373 3

where matrix X3, sub-variance-covariance matrix I's, and X7I';'X are given in Ap-
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pendix G. Inserting the above matrix to the formula M\,., one may calculate the
non-centrality parameter Apes singieton,sivs Of @ test statistic Fhet singieton,sivs- For a bi-

allele marker M, it is the same as that in Fan and Xiong (2002).

2.3.2.  General Nuclear Family Data

For model introduced in Subsection 2.2.2.2, we may calculate the non-centrality pa-
rameter of statistic Fgen_nvue to test null hypothesis Hy : 31 = -+ = [3,, in a similar
manner. First, assume that each family has only one child. Let k;,;i =1,2,---,m be
the number of offspring who receive allele M; from their parents. We can show that the
corresponding non-centrality parameter of a singleton test statistic Fgen_ nue,singleton
i Aen_ Vue,singteton = s (81 — B:)?kif 0 — [Sia(By — B/ Ufr]Z/ (X kif o).
Second, the data consist of both singleton families and sib-pair families. Suppose
there are k; singleton offspring who receive allele M; from their parents, k; (i =
1,2,---,m) sib pairs who receive allele M, from their parents, and k;; = kj;, @ # j
sib pairs whose one sib receives allele M; from his/her heterozygous parent and the
other receives allele M; from the same heterozygous parent. We may calculate the
corresponding non-centrality parameter Agen_Nuc,singleton,sivs =~ (HB) [HIIT'HT]| " H3

of a statistic FGen,Nuc,singleton,sibsv where

. kl 2]{;11 km kam
I = dlag(TJrﬁ"w > 2 oy
O1r O1r + 11r Omr Omr + m,mr
> kiio?, k12X1 25 . kim 21, mr

) + II3, and

1#1 2 2 _yv2 T2 2 _y2 T2 2 32

# 01,05 =257 4y 01,03, — 27 o 1 Oinr =257

2

k1231 27 > koo, kom 22, mr

— 3 32 ~y2 i£2 T2 2 _y2 . —72 32 _v2

H _ 91r%r ZI,ZT # 957 %5y 22,1'7“ 951 %mr E2,'m'r

3 =

k1im > kom % kmio?

_ Im~1,mr _ 2m &2, mr R Z mi9

2 22 _y2 2 2 _y2 1£EMm 52 2 _y2

91 Tmr Zl,m'r 927 %mr E2,mr # TmrTip Emyi'r
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2.4. Power Comparison

Assume that v = 0, p11 = a, 12 = po1 = d, i = —a in terms of the standard theory
of quantitative genetics (Falconer and Mackay 1996). Let the additive variance be
02 = 2q1q2(a+d(q2—q1))?, and the dominant variance be 0% = (2¢1¢2d)?. Let the heri-
tability be denoted by A%, which is defined by 02 /(02+03+4¢2). In the history of a pop-
ulation, the disease genes are usually due to a mutation. Because of the evolutionary
process, the haplotype frequencies h,; change from generation to generation. The ex-
pected haplotype frequencies can be calculated by E [h,s] = h,;(0)e %A +piq, (1—e=%4),
where A is the age of the most recent mutation at the trait locus, h,;(0) is the initial
haplotype frequencies of haplotypes @), M; at the generation of occurrence of the mu-
tation at the trait locus. If there is only a single mutation in the population, one may
assume that h11(0) = ¢, h1;(0) = 0, and h91(0) = p1—q1 > 0, h9;(0) = ps, i =2,-- -, m.
Replacing h,; in P(Q,M;, M;) by E [h,;], we may calculate the approximations of the
non-centrality parameters using the non-centrality parameters given in Section 2.3.
To calculate the non-centrality parameters, we need parameter values such as the
marker allele frequencies p; and po, trait allele frequencies ¢; and ¢, heritability A2,

mutation age A, haplotype frequencies h,;, recombination fraction 6, additive effect

2

a, dominant effect d, polygenic variance ¢, and error variance .

Assume that the frequencies of marker alleles are evenly distributed. Figures 3
and 2 plot the power curves of Fiet singieton a0d Fhet singieton sivs @gainst the heritability
at 0.05 significant level, for dominant and recessive traits for 2, 3 and 4 allele markers,
respectively. In each graph of the two Figures, the total numbers of offspring for 2, 3
and 4 allele markers are the same. Hence, the comparison of the power is meaningful.

It is clear from the 4 graphs of the two Figures 3 and 2 that the power of the test

statistic using 4 allele marker is higher than that of the test statistic using 3 allele
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Fig. 2. Power curves of Fhet singieton,sivs fOr 2, 3 and 4 allele markers against the heri-

tability at 0.05 significant level, when ¢; = 0.25,02 = 0.75, A = 20,6 = 0.005

for a dominant trait ¢« = d = 1.0, Graph I; and a recessive
trait @« = 1.0 and d = —0.5, Graph II. For a 2 allele marker,
p1 = 050,k = 60,k; = 30,5,7 = 1,2; For a 3 allele marker,

P11 = 0.4,]?2 = O.?),k’l = 607]62 = kg = 3Oakij = 15,@7] = 1,2,3, For a 4
allele marker, p; = 0.25,k; = 30,k;; = 9,4,j = 1,---,4.
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Graph I: Dominant Trait
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Fig. 3. Power curves of Fjet singteton for 2, 3 and 4 allele markers against the heritability
at 0.05 significant level, when ¢; = 0.25,0% = 0.75, A = 20,0 = 0.005 for a
dominant trait a = d = 1.0, Graph I; and a recessive trait a = 1.0 and
d = —0.5, Graph II. For a 2 allele marker, p; = 0.50,k; = ky = 100; For a 3
allele marker, p; = 0.4, p, = 0.3, k1 = 100, ky = k3 = 50; For a 4 allele marker,
pi =0.25 k; =50,i=1,--- 4.
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marker, which in turn is higher than that of the test statistic using 2 allele marker.

Figures 5 and 4 plot the power curves of Feen_nuc,singteton a0d FGen_Nuc,singleton, sibs
against the recombination fraction at 0.05 significant level, for dominant and recessive
traits for 2, 3 and 4 allele markers, respectively. The four graphs in the two Figures
5 and 4 show that the power of the test statistic using 4 allele marker is higher than
that of the test statistic using 3 allele marker, which in turn is higher than that of
the test statistic using 2 allele marker. In addition, the power is high when the trait
locus is tightly linked to the marker (6 < 0.01); otherwise, the power decreases very
rapidly once the trait locus is getting far away from the marker (6 > 0.02).

Assume that the frequencies of marker alleles are not evenly distributed. Figure
6 plots the power curves of Fhet singleton,sivs against the heritability at 0.05 significant
level, for dominant and recessive traits for 2, 3 and 4 allele markers, respectively. In
each of two graphs in the Figure, the power of the test statistic using 3 allele marker
is higher than that of the test statistic using 4 allele marker, which in turn is higher

than that of the test statistic using 2 allele marker in general.

2.5. Application

The methods and models are applied to analyze the chromosomes 4 and chromosome
16 data of the Oxford asthma data, Genetic Analysis Workshop 12 (Cookson and
Abecasis 2001). The data consist of 80 nuclear family with a total of 203 offspring.
In these 80 families, 43 have two offspring, 31 have three offspring, and 6 have four
offspring. On chromosome 4, 18 markers are typed and each marker has 4 alleles. On
chromosome 16, 22 markers are typed and each marker has 4 alleles. In Daniel et al.
(1996), linkage to bronchial responsiveness to methacholine (slope) and other quan-

titative traits were tested by the Haseman-Elston sib-pair technique (Haseman and
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Fig. 4. Power curves of Fgen Nucsingletonsivs for 2, 3 and 4 allele mark-
ers against the recombination fraction at 0.05 significant level, when
q = 0.25,0% = 0.75,A = 20,h* = 0.25 for a dominant trait a = d = 1.0,
Graph I; and a recessive trait a = 1.0 and d = —0.5, Graph II. For a 2 al-
lele marker, p; = 0.50,k; = 60,k;; = 30,7,5 = 1,2; For a 3 allele marker,
p1 = 0.4,p2 = 0.3,ky = 60,ky = k3 = 30,k;; = 15,7,5 = 1,2,3; For a 4 allele
marker, p; = 0.25,k; = 30,k;; = 9,4, =1,---,4.
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Fig. 5. Power curves of Fgen Nucsingieton for 2, 3 and 4 allele markers

against the recombination fraction at 0.05 significant level, when
q = 0.25,0% = 0.75,A = 20,h* = 0.25 for a dominant trait a = d = 1.0,
Graph I; and a recessive trait « = 1.0 and d = —0.5, Graph II. For
a 2 allele marker, p; = 0.50,k; = ky = 100; For a 3 allele marker,
pr = 04,pp = 03,kf = 100,k = k3 = 50; For a 4 allele marker,
p; =025 k; =50,i =1,---,4.
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Fig. 6. Power curves of Fjet singteton,sibs for 2, 3 and 4 allele markers against the her-
itability at 0.05 significant level. For a 2 allele marker, p; = 0.90, p, = 0.10;
For a 3 allele marker, p; = 0.5,p; = 0.45,p3 = 0.05; For a 4 allele marker,
p1 = 0.45,p0 = p3 = 0.25,p4 = 0.05. All other parameters are the same as
those in Figure 2.
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Elston 1972). Two regions of potential linkage to autosomal markers were detected
with log . (slope) on chromosomes 4, and 16 (Daniel et al. 1996).

In the four alleles typed, the frequency of one allele is too low (around 3%).
When we use the four alleles in data analysis, the convergence is problematic and the
results are not stable. This may be due to large number of parameters for the data
set. To reduce the number of parameters and to make the results stable, we collapse
each of the 4 allele markers to be 3 allele marker. Table I shows the results of test
statistics Fper and Fgen_nue, the results from Fan and Xiong (2002), and Daniel et al.
(1996). Three markers, D451450, D16S515 and D16S289 show association with the
asthma phenotypic trait log slope at significant levels 0.05. The results confirms the

findings in Fan and Xiong (2002) and Daniel et al. (1996).

Table I. Results of test statistics of asthma data.

Marker | P-Values | P-Values of | P-Values of Fan P-Values of

Locus of Fre Fen Nue and Xiong (2002) | Daniel et al. (1996)

D451540 0.03 0.003 0.02 < 0.05
D16S515 | < 0.0001 < 0.0001 < 0.04 < 0.05
D165289 0.001 < 0.0001 < 0.0001 < 0.05

2.6. Discussion

Mixed models are explored to study association between a multiple allele and a QTL.
There are two types of nuclear families in terms of the information of transmission of

parental alleles. One is the data of offspring with manifest transmitted alleles from



30

at least one heterozygous parent. The association study is based on the difference
between the conditional mean of trait value given an allele is transmitted and that
of trait value given the allele is not transmitted from a heterozygous parent. The
other is the data of offspring from nuclear family including homozygous parents. In
this case, general association study is based on the difference between the conditional
mean of trait value given an allele is transmitted from a parent and the population
mean. Using these theoretical bases, mixed models and their test statistics are de-
rived to demonstrate advantage of the method proposed. By power calculation and
comparison, the proposed test statistics with a multiple alleles marker have higher
power than that with new collapsed bi-alleles marker if the marker allele frequencies
are evenly distributed. Therefore, it is more advantageous to use a multiple allele
marker for association study in the presence of linkage. It is shown that the power
is high when the trait locus is tightly linked to the marker (6 < 0); otherwise, the
power decreases very rapidly once the trait locus is getting far away from the marker
(# > 0.02). The proposed models are used to analyze chromosomes 4 and 16 data of
the Oxford asthma data, Genetic Analysis Workshop 12.

Fan and Xiong (2003) conducted both linkage analysis in the presence of asso-
ciation and the association study in the presence of linkage. However, it is not clear
how to conduct linkage analysis in the presence of association since the way to reduce
the number of parameters is not clear for a multiple-allelic marker. In this chapter
IT, we assume that data are available for all members in a nuclear family. It may not
be possible for late onset genetic diseases to obtain the parental data. It would be
interesting if the methods and models in this chapter can be extended to apply for

sibship data.
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CHAPTER III

LINKAGE AND ASSOCIATION STUDY BASED ON SIBSHIP DATA*

3.1. Introduction

Linkage and linkage disequilibrium mappings, two major approaches for genetic stud-
ies of human diseases, have been developing in the recent years. There have been
lots of interests in joint analyses of both mappings. Separate analysis of either LD
mapping or linkage analysis utilizes only part of the available information; LD map-
ping uses information of LD, on the other hand, linkage analysis uses information
of linkage. A combined analysis utilizes both LD and linkage information, and has
more power to find putative QTL. For qualitative traits, several studies have shown
that combination of LD and linkage mapping is advantageous over separate approach
(Goring and Terwillinger 2000; Xiong and Jin 2000). Almasy et al. (1999) propose
variance component models in quantitative trait locus (QTL) detection using com-
bined linkage and LD analysis. Fulker et al. (1999) present variance component
models to perform integrated linkage and LD mapping based on sibpairs data. Sham
et al. (2000) carried out theoretical analyses for power of linkage versus association
mapping of quantitative traits based on model in Fulker et al. (1999). Abecasis et al.
(2000,2001) generalized the method of Fulker et al. (1999) to analyze data of nuclear
families and general pedigrees. For natural populations, Wu et al. (2002) utilized
mixture models in joint linkage and LD mapping of QTL. In these studies for the
combined analysis, the investigators usually use only one marker in their analyses.
*Reprinted with permission from ”High Resolution Joint Linkage Disequilibrium and

Linkage Mapping of Quantitative Trait Loci Based on Sibship Data” by Ruzong Fan,
Jeesun Jung, 2003. Human Heredity, Vol. 56, 166-187. by S. Karger AG Basel.
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As the dense marker maps such as single nucleotide polymorphisms(SNPs) and high
resolution micro-satellite markers are available (The International SNP Map Work
Group, 2001; Broman et al. 1998; Kong et al. 2002), it is natural to generalize single
marker to multiple markers mapping. Using two flanking markers, Fan and Xiong
(2002) proposed a linear regression model to conduct high resolution LD mapping
based on population data. The linear regression model incorporated genetic effect
decomposed into additive and dominant effects. Fan and Xiong (2003) presented
a variance component model which combined linkage and LD mapping. The mod-
els employing two flanking markers consider a linear model and variance covariance
structure simultaneously to accommodate both population and nuclear family data.

For late-onset disorders such as Alzheimer’s disease, heart disease, many forms
of cancer, non-insulin dependent diabetes mellitus (NIDDM), and osteoporosis, it is
difficult to recruit parental data. One way to study late-onset disorders is to perform
sib-pair or sibship analyses (Cardon 2000; Horvath and Laird 1998; Schaid and Li
1997; Schaid and Rowland 1998; Spielman and Ewens 1998). This motivates us
to explore models in high resolution joint LD and linkage mapping of QTL based
on sibship data. Here, population data are included by treating an independent
individual as a single sibship.

In variance component model, a linear regression model and variance covariance
structures are introduced to describe a quantitative trait. Association test is based on
differences in mean coefficients of linear model. Linkage test is based on differences
in covariances according to the identical-by-decent (IBD) status between sib pairs at
a candidate locus. Hence, we simultaneously perform joint LD and linkage interval
mapping using two flanking markers. Until now, the interval mapping studies pub-
lished to date are mainly limited to use only the additive genetic variance. There is

no explicit formulas to include both additive and dominant genetic variances in the
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interval mappings. In this chapter, we derive formulas to calculate covariance of traits
between sibships including both additive and dominant variances. To investigate the
performance of the formulas, we calculate the numerical values via the formulas and
get satisfactory approximations. The non-centrality parameters of test statistics are
calculated to compare the power and sample size for cases of sibpairs and general
sibships. The non-centrality parameters for linkage analysis are derived based on
standard statistical theory, those for LD analysis are calculated by general theory
of linear model. Comparison of the power and sample size of LD mapping, and the
power of linkage mapping with or without dominant variance is performed. By sim-
ulation and theoretical analysis, we compare the results with those of an association
between family and association within family (“AbAw”) approach from Fulker et al.
(1999). The method is applied to Genetic Analysis Workshop (GAW) 12 German
asthma data (Meyers, Wjst and Aber, 2001).

3.2. Methods

3.2.1. Linear Model

Consider a quantitative trait which is influenced by a quantitative trait locus Q.
Assume that there are two alleles (); and Q5 at the trait locus with frequencies ¢
and ¢o. Suppose that trait locus () is flanked by two markers A and B in an order of
AQB. At the marker locus A, assume there are two alleles A and a with frequencies
P4 and P,, respectively; for the marker B, assume that there are two alleles B and
b with frequencies Pg and P,. Suppose that trait locus () and markers A and B are
individually in Hardy-Weinberg equilibrium. For sibship data, variance component
models can be used for high resolution joint LD and linkage mapping of QTL. For

a sibship of [ children, denote their quantitative traits by a vector y = (y1,---, %),
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genotypes at marker A by a vector (A, Ay, - -+, A;)7, and genotypes at marker B by
a vector (By, By, -+, B;)". Here y; is the trait value of the i-th offspring, A; is the
genotype of the i-th offspring at marker A, and B; is the genotype of the i-th offspring

at marker B. The log-likelihood function for these data is

I 1 1 _
L = =5 log (2m) — S log [Z] — Sy = Xp)"=7 (y — Xp), (3.1)

The notations of model (3.1) are defined as follows. X is a [ x [ variance-covariance
L pi2 -+ pu

_ par Lo | ) , s
matrix defined as ¥ = o, where 0° = o, + 05 + 05 + 0,

pn p2 -1

02 is the variance explained by the putative QTL @, ¢ is the polygenic variance,

2
9
o2 is the shared environment residual variance, and o2 is the error variance. The
2
g

2

2, and 0¢, = 04, + 03, are decomposed into additive

genetic variances o; = O'ga +o
and dominant components, respectively. py; = pji = (TijQ0., + AijqOoq + 06a/2 +
02,/4+02)/0? is the correlation between the i-th child and the j-th child, 7;;q is the
proportion of alleles sharing identical by descent (IBD) at putative QTL @ by the
i-th child and the j-th child, and A;jq is the probability that both alleles shared by
the i-th child and the j-th child at the putative QTL @ are IBD (Pratt et al. 2000;
Zhu and Elston 2000). To introduce the mean component Xy for log-likelihood (3.1),

we consider the following regression (Fan and Xiong 2002, 2003)
Yi = B+ wyy + Tajaa + Tpiap + 2404 + 2pi0p + Gi + H; + e, (3:2)

where (3 is the overall mean, w; is a row vector of covariates such as gender and age,
v is a column vector of regression coefficients of w;, G; is the polygenic effect, H; is
the shared environment residual effect, and e; is the error term. Assume that G; is

normal N (0,0%), H; is normal N(0,02), and e; is normal N(0,0?). Moreover, G;, H;
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and e; are independent. x4;,xpg;, 24; and zp; are dummy random variables that are

independent of G;, H;, and e; defined by

2P, it A, =AA —P? if Ay = AA
Tai =1 Po— Py itA;=Aa , za =< P,Py if A; = Aa
—2P4 if A; =aa P32 ifA;=aa
2P, if B = BB —P? if B;=BB
xp; =X P,—Pg ifB;=Bb , zp, =4 B,Pg if B;=DBb
—2Pp if B; = bb —P2%  if B; = bb

aa,0ap,04 and dp are the coefficients of the dummy variables x4;, xg;, z4; and zp;.
X is the design matrix based on regression (3.2), and = (5,77, s, ap,04,0p)7 is a
vector of coefficients.

Fan and Xiong (2002) provide an intuitive rationale for model (3.2) as follows. Let
(i; be the effect of genotype Q;Q;, %, 7 = 1,2, pt12 = p21. Denote the overall population
mean by pg = p11G7 + 2112q1q2 + po2qs, the average effect of gene substitution by
ag = @1+ (g2 —q1) 2 — @apt2a, and the dominant deviation by d¢g = 2pu19 — 11 — piaa-
Assume that marker A coincides with the trait locus ), marker allele A is trait
allele @)1 and marker allele a is trait allele Q3. Fan and Xiong (2002) show that
the trait value can be expressed as y; = o + Qg + 20i0g + €;, where xg; = x4,
and zg; = z4;. In practice, information about trait locus ) is unknown, but the
information at marker loci is available. This prompts us to propose regression model
(3.2) to describe the trait values. For the population data considered in Fan and
Xiong (2002), the trait values are independent of each other. However, the trait
values of a sibship are correlated to each other with variance covariance matrix .

Suppose there are [ sibships, in which some may contain only one offspring.
Denote their log-likelihoods as L1, - - -, L;, where L; is the log-likelihood of trait values

y; of the i-th sibship or individual. Let 3; be variance-covariance matrix of y;,
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and X; be its model matrix. Denote the total trait values y = (y7,---,y7)7, the
total variance-covariance matrix by ¥ = diag(Xq,- -+, %), and model matrix X =

(X7, -+, X7)". Combining all sibships together, the overall log-likelihood is

N 1 1 .
L=3 Li=—7log(2m) — S log [X] = S (y = Xp)"S" (y — Xp),

where N is the total number of individuals of the I sibships. The unknown parameters
are (1 = (3,7, 04,08,04,08)7, 004,004, 0ta, 0ta, 02, and o7, Likelihood ratio tests
(LRT) can be used to test significance of the parameters of interest.

Denote a = pi11 — (p11+p192) /2 and d = o — (11 + pi22) /2. In terms of traditional
quantitative genetics (Falconer and Mackay 1996), average effect of gene substitution
of QTL is ag = a + (¢ — ¢1)d and dominant deviation 6g = 2d. The additive
variance Uga = 2q1q20z2Q and the dominant variance O'gd = (q1q2)2(%. To test the
linkage of the trait locus to a particular position in the genome, the null hypothesis

is Hy : 0}, = 0oy = 0 and the alternative hypothesis is Hy : 0., > 0 or ozy > 0.
The corresponding LRT is a mixture of y? variables (Self and Liang 1987). If only
the additive variance aga (or dominant variance agd) is modeled, the null hypothesis

is Hy : 0, =0 (or Hy : 0y = 0), and the alternative hypothesis is Hy : 03, > 0 (or

o2y > 0). Then the corresponding LRT is a 3 : 3 mixture of xi and a point mass at
0 (Self and Liang 1987).

Denote the measure of LD between QTL @) and marker A by Dag = P(AQ4) —
¢1 P4, the measure of LD between QTL @ and marker B by Dgg = P(BQ1) — ¢1 P,
and the measure of LD between marker A and marker B by Dap = P(AB) — P4Pg
(Hartl and Clark 1989; Hedrick 1987; Lewontin 1964). Let the additive and dominant
variance-covariance matrices be

2P,Py 2Dap P2P; Dig
Vy= , and Vp = ) (3.3)
2Dap 2P,Pp D%p P}P}
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Like Fan and Xiong (2002), we can show that the coefficients of regression equation

QA 2D 40 oA D?
= VA_l aQ, = VD_l e 5Q. (34)
ap 2DQB 5B DCQQB

Equations (3.4) imply that regression (3.2) simultaneously accounts for the LD and

(3.2) are

the effects of the putative QTL @. The parameters of LD (i.e., Dag and Dgg) and
gene effect (i.e., ag and dg) are incorporated in the mean coefficients. In the presence
of linkage to a particular position, the association between the trait locus and the
markers can be tested based on equations (3.4). First, suppose that the presence of
linkage is verified by both crga > (0 and Usd > 0, which implies that both a¢ and d¢ are
not equal to 0. The existence of LD between markers and trait locus Q cab be tested
by Hy: oy = ag =04 = 0p = 0 vs Hy : at least one of ay, ap,d4, and dp is not 0.
The test shows the association between the trait locus and the markers. Notice that
this test will lead to 4 degrees of freedom, but the number of parameters D g and
Dgp is only 2. Hence, there should be only one or two coefficients of a4, ap,d4, and
dp, which is/are significantly different from 0 in the data analysis. Second, suppose
that the presence of linkage is verified by additive variance O';a > 0, but the dominant
variance sz is not significantly larger than 0. Then testing Hy: a4 =ap =0vs Hy :
at least one of oy and ap is not 0, shows the association between the trait locus and
the markers. In this case, it is possible that only one of a4y and ap is significantly
different from 0 in the data analysis. Third, suppose that the presence of linkage
is supported by the dominant variance agd > 0, but the additive variance aga is not
significantly larger than 0. Then testing Hy : 64 = dp = 0 vs H4 : at least one of 4
and dp is not 0, shows the association between the trait locus and the markers.
Suppose that only one marker A is used in the analysis. Then equations (3.4)

can be replaced by ay = Dagaq/(P.Pa),0a = D3o0q/(P;P%). Suppose that the
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presence of linkage is supported by both aga > 0 and aﬁd > (0. Then testing Hy :
g =04 =0vs Hy : at least one of a4 and d4 is not 0, shows the association between
the trait locus and marker A. Again, there should be only one coefficient of a4y and
04 which is significantly different from 0 in data analysis, since only one parameter

D 4¢ is being tested. Suppose that the presence of linkage is supported by additive

2

variance Uga

> 0, but the dominant variance agd is not significantly larger than 0.
Then a test of Hy: ay =0 vs Hy : ay # 0, shows the association between the trait
locus and marker A. On the other hand, if the presence of linkage is supported by the
dominant variance agd > 0, but the additive variance O';a is not significantly larger
than 0, then a test of Hy: 64 = 0 vs Ha : 64 # 0 shows the association between the
trait locus and the marker A.

In practice, it may be reasonable to start with a variance component model which
includes the covariates, but does not include the dummy variables x 4;, T 5;, 24; and
zp;. That is, to fit a reduced model y; = 3 4+ w;y + G; + H; + e;, instead of model
(3.2) directly (Pratt et al. 2000). This can achieve the initial objective of identifying
linkage of trait values to a particular position in a region. Then, the dummy variables
T Ai, TBi, 24; and zp; of markers A and B in the region can be included in the model to
fit regression (3.2) for high resolution joint LD and linkage mapping. In this second
step, the significant variables among aga,ogd,a A,ap,04 and dp can be identified.
Keeping only the significant variables in the final model, the likelihood ratio test
of the final model against the model which assumes neither linkage nor association
between the trait values and the markers can be calculated. By performing the
analysis in this way, both linkage and LD information are used simultaneously to get

a joint mapping of QTL.
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3.2.2.  Trait Variance-Covariance Matriz

For two siblings ¢ and j in a sibship of size [, their trait covariance, conditional on
the information of markers A and B, is Cov(yi, y2|la, Ip) = frianga + Aiangd +
0%,/2 4 0k,/4+ 02 = pijo?, where ;0 = E(mijolla, I5), mijo is the proportion of
allele IBD at putative QTL Q, Ao = E(Ayolla, Ig) and Ayjq is the probability
that both alleles at the locus @) are IBD in the two offspring. The notations /4 and
I represent the information on marker A and marker B. In the following paragraph,
we use the interval mapping method given by Fulker and Cardon (1994) to estimate
mijo- In addition, we provide methods to estimate A;;g by the information on marker
loci, which is not available in the literature.

Denote the recombination fraction between trait locus ) and marker A by 604q,
the recombination fraction between trait locus ) and marker B by 6gp, and the
recombination fraction between marker A and marker B by #45. Fulker and Cardon
(1994) propose calculating the proportion 7;;o of alleles which are IBD at putative
QTL Q for a sib-pair ¢ and j by 7;j9 = ax + BraTija + BxpTijp, Where m;;4 and 7;;p
are the proportions of IBD alleles sharing at marker A and marker B by sib-pair ¢
and j, respectively. The coefficients o, 3,4 and B;p are functions of 04¢,0op and

Oap given by

(1 —2040)* — (1 —2045)*(1 — 2005)*

fra = 1— (1 —2045)*
(1 =20gp)* — (1 —2045)*(1 — 2040)*
ﬁwB - 1— (1 — 2‘9AB)4 (35)
o _ 1- /Bﬂ‘A - BTI’B'

2

Let Ajja, Aijp be the probability of sharing 2 alleles IBD at markers A and B for the
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sib-pair ¢ and j, respectively. We propose to estimate A;;o by

~

Ajjg = a+ Bamija + Bpmijp + 1alija + relijp. (3.6)

In Appendices H, I and J, we show that under the assumption of no interference,

(1 —2040)* — (1 —2005)* (1 — 204p)*

A= 1= (1—204p)
B (1— 29Q3)4 —(1- 26’AQ)4(1 — 204p)*
5= 1— (1—2045)
Ba = Bra—71a,B8 =078 (3.7)
. (12201 — )’

[Wap + (1 —1pa)(1 —p)]*

where (3,4, Oxp are given in equations (3.5) (Fulker and Cardon 1994), ¥4 = 65, +
(1—=040)* and ¥ = 035+ (1 —Ogp)*. When we assume that the positions of marker
A and marker B are known, #45 can be calculated through a Haldane’s function

0 = [1 — exp(—2))]/2 under assumption of no interference, where \ is map distance.

3.3. Test Statistics and Non-Centrality Parameter

3.8.1.  Association Study

We assume that the data are composed of three sub-samples: n independent indi-
viduals, m independent sib-pairs, and k independent tri-sibships, each having 3 sibs.
Moreover, we assume that n, m and k are sufficiently large, so that large sample
theory applies. In practice, the sizes n and m of individuals and sib-pairs are likely
to be large. The size k of tri-sibships can be large. However, it is difficult to collect
a large sample of sibships each having more than 3 sibs. In the event that a large
sample of sibships each having more than 3 sibs is available, the following principle is

still valid, but the corresponding formulas must be calculated accordingly. Assuming
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that there are no covariates, the regression coefficients are u = (8, a4, p,d4,05)".
Consider the overall log-likelihood L = 7, L;;I = n +m + k. Denote the total
number of individuals by N, i.e., N = n + 2m + 3k. Let 3,4, d5,04,05, 5, be
the maximum likelihood estimators of 3, a4, ap,d4, 0p,2%;, 2. The estimate of y is
= [xXrSx] XSy = [YL, XX 5L, X781 Let H be a g x5 test

< 5). By Graybill (1976), Chapter 6, the test statistic of a

matrix of rank ¢ (g

hypothesis Hyu = 0 is non-central F'(q, N — 5) defined by

Hp)'[H(X™S'X)"'"HT]"Y(Hj) N -5

Y7[E-l - SIX(XTEIX)CIXTRAY ¢

b
Il

-1
with the non-centrality parameter A = (HM)T[H[XTE_IX]*HT} Hp. Under the
assumption of large sample sizes n, m and k, we show in Appendix L that

n+m+k
> XTE7'X; & diag(ar, asVa, a3Vp) /o, (3.8)

where ay,ay and agz are constants given by equations (L.4) in Appendix L.
In the presence of an additive effect, i.e., a > 0 or ag # 0, we may test the

null hypothesis Hap, : a4 = ap = 0 or Dyg = Dgp = 0. The test matrix H is
01 0 00
defined by H = ( ) . Let us denote the corresponding F'-test statistic

001 0O
by Fap,a, and the non-centrality parameter by Aap,. Then we have from (3.4) and

(3.8) that
1 @A
AMBa R ?CZQ(O&A ag)Va
ap
2662 2

= —aQ[PbPBDAQ 2D gD apDqp + PuPaDp )/ (PuPAP,Pg — D)

a
= UZ 09alfhq — 2RagRapRap + Ropl/(1 - Rip),

where Rap = Dap/v/ PaPaPyPp, Rag = Daq//PaPaq1q2, and Rop = Do/ 4142 P, Pp
are three ratios (Almasy et al. 1999; Fan and Xiong 2002, 2003; Sham et al. 2000).
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In the presence of a dominant effect, i.e., agd > 0 or dg # 0, we may test the null
hypothesis Hapq : 04 = 6p = 0 or Dyg = Dgp = 0. The test matrix H is defined

000 10
by H = ( ) . Denote the corresponding F-test statistic by Fap 4, and
00 0 01

the non-centrality parameter by Aap 4. Then we have from (3.4) and (3.8) that

dp
= S[PIP3DAG — 2D%g DA Dy + PIPiDy) | (P2PIPIP — D)

B (54 05V, g
/\AB,d% ; A B)VD

as
= gaﬁd[RiQ - QRQAQR,%xBRéB + R4QB]/(1 — Rip).

In the presence of both additive and dominant effects, i.e., Jga > 0 and o2, > 0,

g

we may test the null hypothesis Hapoqa @ au = ap = 64 = dp = 0. The test
0

0 1 0 0
001 00
matrix H is defined by H = . Denote the corresponding F-test
000 10
0 0 0 0 1

statistic by F4pq.q, and the non-centrality parameter by Aap .. Then, Aapqa =
AB.a + Aapa. Assume that only one marker A is used in the analysis. The non-
centrality parameter is A 44 & [1/0?] [GQUSCLR%Q +asoz,R}q|, for the null hypothesis
Hypoa : a4 = 04 = 0. Correspondingly, we denote the F-test statistic by Fl4 44.
Similarly, A\a, =~ [as/ JZ]UgaRiQ is the non-centrality parameter of the test statistic
F4 o for the null hypothesis Hy, : @4 = 0. The non-centrality parameter of the test

statistic Fiy ¢ for the null hypothesis Haq: 04 = 0is Aaa = [as/0?]o2, R}

3.3.2.  Linkage Analysis

To calculate the non-centrality parameters of likelihood ratio tests, we follow an idea
of Sham et al. (2000) according to the general statistical theory (Stuart and Ord

1991). Under the null or alternative hypothesis, the maximum-likelihood estimates
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of the parameters can be calculated. Taking the expectations of the log-likelihoods,
the non-centrality parameters are then calculated as twice the difference between the
log-likelihoods under the null and alternative hypotheses.

Consider a sib-ship of [ children. Under the null hypothesis of no linkage between

2 2
the trait locus and the markers, the correlation of each sib-pair is p = ;% + 2% +

C;% % Z—z Hence, we have twice the expected log-likelihood
1 p ... p
1 - p
E(2Lyw) = —1—llog[2m0?] —log det
p p e 1

= —l—llog[2n0?] — log [(1 + (- 1)p)(1 - p)lil]'

Under the alternative hypothesis of linkage between the trait locus and marker A,

the correlation between the sib-pair ¢ and j is Coy,;, given by

Cr = Cov(yi yjlmija = k/2)/0% = (054 + 059) P(mijq = Llmija = k/2)/0”
2

‘I’%P(Wij(g =1/2|m;j4 = k’/2)/o’2 + [géa/z + Uéd/4 i 03]/02’ k=012

From Haseman and Elston (1972), Table IV, or Sham et al. (2000), Table 1, we have

Co = (02 + 0204 + 0%0a(l = a) + 08,/2 + 044/4 + 02] /0
¢y = [(U§a+03d>¢A(1_¢A)+U§a[1_21/}14(1_¢A)]/2+O-éa/2+Uéd/4+gf}/02

Co = [(Uga + 0o (L= a)® + 0oga(l — a) + 08, /2 + 04/4 + Uﬂ o®.
We have twice the expected log-likelihood under the alternative hypothesis of linkage

E (2Lrandom,A) =—l- llOg [27T0-2]
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1 0271'12,4 o C27ruA
0271'21,4 1 e CQﬂ'QlA
_Z..- Z P(’]T12A)“‘P(7Tl_17lA>log det . . . )
T12A T—1,lA : . cee :
C27|'11A CQﬂzzA e 1

where P(mj;a = 0) = P(mjja = 1) = 1/4 and P(m;;4 = 1/2) = 1/2. From Stuart

and Ord (1991), the non-centrality parameter for linkage of the family is equal to

Ninkage,A = B (2Lrandom,a) — E (2L ). If the sibship consists of two offspring, then
2

Ninkage.a = log [1 — p?] — ];OP(ngA =k/2)log[1 — C}. (3.9)

Under the alternative hypothesis of linkage between the trait locus and markers A

and B, the correlation between the sib-pair ¢ and j is Cor,; 4 2m,; iven by

Crke = Cov(ys, y;|mija = k1/2,mijp = ko/2)/0?

= [(O’Sa + U;d)P(ﬂ-ijQ = 1‘7TijA = k1/277rijB = k2/2) (310)
2

O4a
+%P(7TMQ = 1/2‘71'@']'14 = k1/277rijB = /{32/2) + aéa/Q +Uéd/4 + 0'3}/0'2.

To calculate the quantities C,1,, we need the joint distribution of m;;4, ;o and m;;p
of a sib-pair ¢ and j under the alternative hypothesis of linkage. Based on Table II,
we can calculate Cj;, 4,7 = 0,1, 2, which are given in Appendix K. We have twice the

expected log-likelihood under the alternative hypothesis of linkage

E (2Lrandom,AB) = —l—- llog [271'02]
- Z Z T Z Z P(W12A)P(7T123) T P(”lfl,lA)P(ﬂ'lfl,lB)
T124 T12B T—1,lA TI—1,lB
1 0271’12141277123 T 02W1ZA727|'1ZB
C27|'21A»27|'21B 1 T C27|'2ZA727"21B

log det ' ' ' ,

C27F11A,27FZ1B 02W12A127TZ2B T 1
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where P(m;;p = 0) = P(mjp = 1) = 1/4 and P(m;p = 1/2) = 1/2. From Stuart

and Ord (1991), the non-centrality parameter for linkage of the sibship is equal to

Niinkage,AB = E (2Lrandom,aB) —E (2L nyy). If the sibship consists of two offspring, then
2

Nlinkage,AB = 108 {1 - Pﬂ - "Zo P(mi24 = i/2)P(mi2p = j/2)log [1 - ij} (3.11)
i

The correlation quantitative Cl,, between the sibpair ¢« and j are derived in

Appendix K.
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T v/1 e/l v/1 "qoag
[ejo0T,
v/ (4 —1)(Vh — 1) + dpVap) L (p—1)d0 (dh—1)
¥/ g/ (Yo — 1)V Y/ —=1) | 0
o/l(dp —1)Vh+dp(Vi —1)] | (dp—1)40g | (pe+dpg—1) | (dp—1)d0g 0
(= 1) (Ve — 1) + V] A.w\ma : .NA\GS — )V .immwa -1) | &/1
i —1)- gip — 1) iz
pl(ed —Dva+aatva -] | p/ -0V | pVé-1 | 1
o/l — 1)V 4 dp(Vip — 1)) L (A —1)dch- AT —1)-
[dp—D(Vp—1) +dpvp] | g/(Ve—DVp | g/(3pe+ Ve —1) | g/(Vp—T1)V¢ | 0
o/ [0 — D¥e + da(va — D] | (8¢ - Dade: | (Uhe+ dhg —1)- | (90— 1) e/t
t+l(T0 = D)(h — 1) + dava]| | g/(vi— Ve | g/ (e + Yo — 1) | &/ (v — DV | T/
o/l(dh — 1)V + dp(Var — 1)] (dh —T1)- (8 — 1)dch- -
[(p—1)(Vp—1) +dpvqp] | g/ (Ve -1V | g/(Rpe+ Ve —1) | g/(Vp—DVP | 1
v/ (A — )V + dp(Vih — 1)] 2 (4 — 1) (4R —T1)
Y/ (Vi — 1) o/ (Vo — 1)V ¥/ % 0
o/l(dp —1)Vh+dp(Vi —1)] | (dp—1)d0g | (Lpe+dphg—1) | (dp—1)d0g I
(= 1) (Ve — 1) + V] /(Y — 1) o/ (Y —T1)V ¥/ % /1
(e —1)- (dp — 1)dap- L
v/ (@ —1)(Vp —1) +davp] | 3/ (Vi —1) g/ (Vi — 1)V v/ Y I
Anpiqeqord 0=Ou o/1="0x 1 =0 dy | Vi
e1ol, SNJOT ed], SISNIRIN

ANpqeqold = qoad
gy pue V0y 0%y woay peyyrwo oxe (1 sjduosqns o1 cared-qis ® Jo dy pue Vi ‘Ox jo UONNGLIISIP JUIO[L ] O[qR],
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3.4. Estimates of the Probability of Sharing 2 Alleles IBD for Sibs

Tables III and IV give the interval estimates of AQ by ma, 75, A4 and Ap under
Haldane’s function. Table III takes a map distance A\yg = 20 c¢M, and Table IV
takes Ayp = 100 cM (i.e., marker A and marker B are unlinked). In each table, the
interval is divided to be four equally spaced sub-intervals. This gives five equally
spaced locations for the trait locus. In each table, the estimates of AQ are equal to
A4 on the first location. Hence, A4 can fully estimate AQ on the first location. On
the other hand, the estimates of AQ are equal to Ap on the fifth location. Hence, Apg
can fully estimate A on the fifth location. In both tables, the estimates of A on the
second location are intermediates between location 1 and location 3. The estimates
of Ag on the forth location are intermediates between location 3 and location 5. In
Table III, the estimates of AQ on the third location are close to the average of A4 and
Ap (see the discussion in the following paragraph). In Table IV, the estimates AQ
on the third location tends to the expected value 0.25 since the location is unlinked
to both markers.

Assume the two markers A and B are close, for instance < 20 cM as suggested

in Fulker and Cardon (1994). By taking the first order approximation (1 — z)" =~

o (1-42040)—(1-42005)(1-4-2045) ,_
~ 1—(1—-8204p) ~

1 — nx for small x, we have an approximation 74

(1-804@)—(1-80gp—80aB) ., —0agt+lgr+(0ag+ion) __ 0gB
160AB ~ 29AB o HAB

. Similarly, we can show that rg ~
040/0ap. Combining these results with equation (10) in Fulker and Cardon (1994), we
have that §4 =~ 0 and B =~ 0. Using the small map interval approximations to replace
the recombination fraction, we have 84 = 0, Op = 0,74 & A\gp/AaB, "B = Aag/Aas,
where )\;; is the map distance between locus 7 and locus j. When the two markers
A and B are close, 14 ~ 1 and ¥ ~ 1, which implies that a ~ 0. Therefore, the

estimates AQ on the third location in Table III are approximately equal to the average
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Table III. Interval estimates of AQ by ma, g, Aa and Ap, for the flanking markers

separated by Aap = 20 ¢cM under Haldane’s mapping function.

Parameters Locations

TA AA B AB 1 2 3 4 5
1 1 1 1 [1.00 094 0.93 094 1.00
1 1 1/2 1/2|1.00 0.83 0.70 0.59 0.50
1 1 1/2 1/4]1.00 0.79 0.60 0.43 0.25
1 1 1/2 0 |1.00 0.75 0.51 0.27 0.00
1 1 1/4 0 |[100 0.73 0.49 0.25 0.00
1 1 0 0 |1.00 0.72 046 0.23 0.00
1/2 1/2 1 1 1050 059 0.70 0.83 1.00
1/2 1/2 1/2 1/2 (050 047 046 0.47 0.50
1/2 1/2 1/2 1/4|0.50 043 0.37 0.31 0.25
1/2 1/2 1/2 0 | 050 0.39 0.28 0.16 0.00
1/2 1/2 1/4 0 |0.50 037 0.26 0.14 0.00
1/2 1/2 0 0 |050 036 0.23 0.11 0.00
1/2 1/4 1 1 1025 043 0.60 0.79 1.00
1/2 1/4 1/2 1/2 025 031 0.37 043 0.50
1/2 1/4 1/2 1/4|0.25 0.27 0.28 0.27 0.25
1/2 1/4 1/2 0 |0.25 023 0.18 0.11 0.00
1/2 1/4 1/4 0 |0.25 0.21 0.16 0.09 0.00
1/2 1/4 0 0 |0.25 020 0.14 0.07 0.00
1/2 0 1 1 10.00 027 051 0.75 1.00
/2 0 1/2 1/2|0.00 0.16 0.28 0.39 0.50
/2 0 1/2 1/4|0.00 0.11 0.18 0.23 0.25
/2 0 1/2 0 |0.00 0.07 0.09 0.07 0.00
/2 0 1/4 0 |0.00 0.06 0.07 0.05 0.00
1/2 0 0 0 | 0.00 0.04 0.05 0.03 0.00
1/4 0 1 1 1000 025 049 0.73 1.00
1/4 0 1/2 1/2(0.00 0.14 0.26 0.37 0.50
1/4 0 1/2 1/4|0.00 0.09 0.16 0.21 0.25
1/4 0 1/2 0 |0.00 0.05 0.07 0.06 0.00
1/4 0 1/4 0 |0.00 0.04 0.05 0.04 0.00
1/4 0 0 0 |0.00 0.02 0.02 0.01 0.00
0 0 0 0 | 0.00 0.00 0.00 0.00 0.00
A 1.00 0.64 0.37 0.17 0.00
B 0.00 0.17 0.37 0.64 1.00
Ga 0.00 0.08 0.09 0.05 0.00
OB 0.00 0.05 0.09 0.08 0.00
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Table IV. Interval estimates of AQ by 74, g, Aa and Ap, for the flanking markers

separated by Aap = 100 ¢cM under Haldane’s mapping function.

Parameters Locations

TA AA B AB 1 2 3 4 5
1 1 1 1 |1.00 0.50 0.40 0.50 1.00
1 1 1/2 1/2|1.00 0.48 0.33 0.31 0.50
1 1 1/2 1/4]1.00 048 0.33 0.28 0.25
1 1 1/2 0 |1.00 047 0.33 0.25 0.00
1 1 1/4 0 |100 0.46 030 0.19 0.00
1 1 0 0 |1.00 045 0.27 0.13 0.00
1/2 1/2 1 1 1050 031 033 048 1.00
1/2 1/2 1/2 1/2 (050 0.29 0.27 0.29 0.50
1/2 1/2 1/2 1/4|0.50 0.29 0.26 0.26 0.25
1/2 1/2 1/2 0 |[050 0.29 0.26 0.22 0.00
1/2 1/2 1/4 0 | 050 028 0.23 0.17 0.00
1/2 1/2 0 0 | 050 0.27 020 0.11 0.00
1/2 1/4 1 1 1025 0.28 0.33 048 1.00
/2 1/4 1/2 1/2 025 026 0.26 0.29 0.50
1/2 1/4 1/2 1/410.25 026 0.26 0.26 0.25
1/2 1/4 1/2 0 |0.25 026 0.25 0.22 0.00
1/2 1/4 1/4 0 |0.25 0.25 0.23 0.17 0.00
1/2 1/4 0 0 1025 024 0.20 0.11 0.00
1/2 0 1 1 10.00 025 0.33 047 1.00
/2 0 1/2 1/2|0.00 0.22 0.26 0.29 0.50
/2 0 1/2 1/4|0.00 0.22 0.25 0.26 0.25
/2 0 1/2 0 |0.00 0.22 0.25 0.22 0.00
/2 0 1/4 0 [0.00 0.21 0.22 0.17 0.00
1/2 0 0 0 | 000 0.20 0.19 0.11 0.00
1/4 0 1 1 /000 019 030 0.46 1.00
1/4 0 1/2 1/2(0.00 0.17 0.23 0.28 0.50
1/4 0 1/2 1/4|0.00 0.17 0.23 0.25 0.25
/4 0 1/2 0 [0.00 0.17 0.22 0.21 0.00
/4 0 1/4 0 |0.00 0.16 0.19 0.16 0.00
1/4 0 0 0 |0.00 0.15 0.16 0.10 0.00
0 0 0 0 | 000 0.09 014 0.09 0.00
A 1.00 0.14 0.02 0.00 0.00
B 0.00 0.00 0.02 0.14 1.00
Ga 0.00 0.23 0.12 0.04 0.00
OB 0.00 0.04 0.12 0.23 0.00
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of Ay and Ag.

3.5. Power Comparison

3.5.1.  Comparisons with the “AbAw” Approach of Fulker

To compare the method developed in this paper with the “AbAw” approach developed
by Fulker and Abecasis et al., we present the theoretical expectations of the statistics
for LD mapping of 1000 sib-pairs in Table V. The results of “AbAw” approach by
Fulker and Abecasis et al. are directly taken from Table 5, p1625, Sham et al. (2000).
The QTL is assumed to be additive with o7, = 0.2. The shared residual environment
variance, 02, is set to be either 0 or 0.4, such as those in Tables 3 and 5, Fulker et al
(1999), or Table 5, Sham et al. (2000). The error variance is set to be either 0.8 or
0.4, correspondingly. Moreover, it is assumed that there is no polygenic effects, and
there is no putative dominant variance; thus, the total variance is 1. The QTL @
and marker A are assumed to be bi-allelic with equal allele frequencies. The measure
D s of LD varies from complete disequilibrium, 0.25, to weak disequilibrium, 0.025.
In Table V, the statistic Fia, is approximately distributed as non-central y*(1), since
the sample size of 1000 sib-pairs is large enough for asymptotic property to hold. The
theoretical expectations of the y? statistics are the non-centrality parameters plus 1,
i.e., Ao +1. To perform simulation studies, samples of 50,000 sib-pairs are generated
by simulation program Ldsimul. The reported values of statistics F4 , and LRT are
divided by 50 to be comparable with the results of Table 5, Sham et al. (2000), where
the simulation results are averages of 100 replicate samples of 1,000 sib pairs. From
the results of Table V, it is clear that either Fy , or LTR is more powerful than any
of between-pairs and within-pairs approaches of Fulker and Abecasis et al. “AbAw”

approach (Fulker et al. 1999; Sham et al. 2000).
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The empirical estimates, a4, of the parameter a4 are fairly close. In the presence
of strong disequilibrium D 4o > 0.20, both LRTs and F' statistics tend to overestimate
the theoretical expectations of the x? statistics. In the weak disequilibrium Do <
0.10, both LRTs and F' statistics tend to underestimate the theoretical expectations

of the x? statistics.

3.5.2.  Comparisons of Sample Sizes and Power for LD Mapping

In the sample size and power calculations, we take an additive polygenic variance

o2, = 0.10, polygenic dominant variance o2, = 0.05, and shared environment residual

2
s

ma =7 =04 = Ap = 0.5 for sib-pair 1 and 2; 74 = 715 = A = 0.5, A4 = 0.25 for

variance o = 0. For sib-pairs, 714 = mg = Ax = Ap = 0.5. For tri-sibships,
sib-pair 1 and 3; and 74 = 1 = 0.5, A4 = Ag = 0.25 for sib-pair 2 and 3. Suppose
that py1 = a, 12 = por = d and pgs = —a. Denote heritability by h? which is
defined by h* = o7, /0*. Let Aap be the map distance between marker A and marker
B. Under the assumption of no interference, we may calculate the recombination
fraction 04 = [1 — exp(—2Aap)]/2. Similarly, we may calculate the recombination
fractions 64¢ and 0gp by the map distances Ayg and Agp.

Figure 7 gives the required number of sib-pairs (Graphs I and II) and tri-sibships
(Graphs IIT and IV) of test statistics Fap.ads Fap.a» Fap.das Faad Faa, and Fa g against
the heritability h? at 0.01 significant level and 0.80 power, for a mode of dominant
inheritance a« = d = 1.0 (Graphs I and II), and a mode of recessive inheritance
a =1.0,d = —0.5 (Graphs III and IV), respectively. In the figure, we take equal allele
frequencies q; = Py = Pp = 0.50, LD coefficients Dap = 0.10, D = Dgp = 0.15,
and map distances Aap = 5cM, Aag = Ao = 2.5¢M. We can see the following: (1)
For both dominant and recessive traits, the required number of sib-pairs or tri-sibships

is reasonable for test statistics Fap ad, FaBa, Flaad, and Fu, if the heritability h? is
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larger than 0.1 (Graphs I and III); (2) For dominant traits, the required number of
sib-pairs is less than 150 for each of test statistics Fapad, FaBa, Faad, and Fa, if
the heritability h? is large than 0.1 (Graph I); the required number of sib-pairs of
test statistic Fapqq is similar to that of Fup,, and the required number of sib-pairs
of test statistic F 44 is similar to that of F,; (3) For recessive traits, the required
number of tri-sibships is less than 100 for each of test statistics Fup aa; FaB.as FA ad,
and F4 , if the heritability h? is larger than 0.15 (Graph I1I); (4) The required number
of sib-pairs or tri-sibships of test statistics Flup 4 and F4 4 is much bigger, especially
for recessive trait (Graphs II and IV).

Figure 8 shows power curves for the test statistics Fapad, FaBas Fap.d, Faads
F4 o, and Fy 4 against trait frequency allele ¢; and marker allele frequency P4 at 0.01
significant level, when P4, = 0.5 (Graphs I and II), ¢ = 0.5 (Graphs III and IV),
Pg =0.50,n = 60, m = 30,k = 20, Aap = bcM, Aag = Agp = 2.5cM, and h? = 0.25,
for a mode of dominant inheritance a = d = 1.0, and a mode of recessive inheritance
a = 1.0,d = —0.5, respectively. The LD coefficients are Dap = (min(Py, Pg) —
P4Pg)/2, Dag = (min(Pya, q1) — Paqr1)/2 and Dgp = (min(Pp,q1) — Ppq1)/2. The
power of the statistic Flup qq is lower than that of Fup,, and the power of Fy .4 is
slightly lower than that of Fy 4; this is due to the larger degrees of freedom of Fap 44
and F4 4q. The power of the statistics Fiup 4 and Fy 4 are very low, which confirms the
findings in Figure 7. Interestingly, the power of statistics Flap.q and Fap, depends
heavily on the trait allele frequency ¢; (Graphs I and II), but not so much on the
marker allele frequency P4 (Graphs III and IV). The power of the statistics Fla qq
and F , depends heavily on both the trait allele frequency ¢; and the marker allele
frequency Pjy.

Figure 9 shows the power of test statistics Fapaa, £aBa,FaB.d, FAad, Faq, and

Fyq against LD coefficient Dsg at 0.01 significant level, when ¢z = P4 = Pp =
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0.50, Dgp = 0.15,n = 60,m = 30,k = 20, Aap = 5cM,Aag = Ao = 2.5cM, and
h? = 0.15, for a mode of dominant inheritance a = d = 1.0, and a mode of recessive
inheritance a = 1.0,d = —0.5, respectively. We can see that the power of Fyp ¢ and
Fap . is high. In the absence of LD between two markers A and B, the power of
Fupaa and Fup, is symmetric with Dag = 0 (Graphs I and II). If LD measure Dap
is highly positive (Graphs III and IV, Dsp = 0.10), the power of Fap o4 and Fap, is
high for large negative D4q. If the LD between trait locus Q and marker A is weak
(|Dag| < 0.10), the power of Fy4 44 and F4, is minimal. Hence, two marker analysis
is advantageous over one marker analysis. For dominant traits, the power of Fap 4
and Fly 4 is low except for the presence of high LD between trait locus Q and marker
A (|Dag| > 0.20, Graphs I and III). For recessive traits, the power of Fap 4 and Fa 4
is very low (Graphs II and IV).

Figure 10 shows the power of test statistics Fup ada, FaB.a,F'aB.ds Faad, Fa,q, and
Fa 4 against heritability h* at 0.01 significant level, when ¢; = P4 = Pg = 0.50,n =
60,m = 30,k = 20, Aup = 5cM, a9 = Ao = 2.5cM, for a mode of dominant
inheritance a = d = 1.0, and a mode of recessive inheritance a = 1.0,d = —0.5,
respectively. In the presence of high LD (Graphs I and II, Dap = 0.10,Daqg =
Dgp = 0.15), the power of test statistics Fapad, FaBas Faad, and Fa, is high if the
heritability 22 > 0.15. If the LD are lower (Graphs IIT and IV, Dag = 0.05, Dag =
Dgp = 0.08), the power is lower as expected.

Assume that the LD is due to historical mutations at QTL () which occurred T’
generations ago. Denote the frequency of haplotype AQ) at the generation when the
mutations occurred by P(AQ)(0). Then the LD coefficient is D (0) = P(AQ)(0) —
q1 P4 for the generation when the mutations occurred. For the following generations,
the disequilibrium coefficient is reduced by a factor 1 —6,¢ in each generation (Hartl

and Clark 1989). Then the LD coefficient is Dag(T) = Dag(0)(1 — 0ag)”. Sim-
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ilarly, the other LD coefficients are Dag(T) = Dag(0)(1 — 04p)" and Dgg(T) =
Dgp(0)(1 — 6gg)T. In Figure 11, Graphs I and II show the power of test statistics
FaBad, FaBa,FaBda, Faad, Faa and Fy,4 against position of trait locus @ at 0.01
significant level, when ¢; = Py = Pg = 0.50,n = 60, m = 30,k = 20, Ay = 4.5¢M,
and h? = 0.15, for a mode of dominant inheritance a = d = 1.0, and a mode of
recessive inheritance a = 1.0,d = —0.5, respectively. The initial LD coefficients are
Dap(0) = 0.20, Dag(0) = Dgp(0) = 0.25, and the mutation age is 7' = 45. Marker A
is located at OcM, and marker B is located at 4.5cM. The power of Flup qq and Fap,
is similar to the power of Fy ¢ and Fy,, when the trait locus @ is close to marker
A (i.e, trait locus @ locates in the region which is less than 1.5¢M from marker A).
When trait locus @) locates in the region which is larger than 1.5¢M from marker A,
the power of Fy .4 and Fy , decrease as the recombination fraction 64¢ increases. The
power of Fupqq and Fap, is high as long as the trait locus is close to either marker
A or marker B. Hence, multiple marker LD mappings have advantages in performing
fine gene mappings. Graphs III and IV of Figure 11 show the power of test statistics
FAp qq for different mutation ages against the position of markers A and B at 0.01
significant level. In the two graphs, the trait locus @) locates at 10cM; markers A and
B flank the trait locus ). One marker is on each side of the QTL with equal distance
to the QTL. The power decreases quickly when the age of the mutation increases.
For a mutation which is 30 generations old, one should expect very low power if the

markers locate 2.5¢cM away from the QTL.

3.5.3.  Comparisons of Sample Sizes and Power for Linkage Analysis

To explore the linkage interval mapping and investigate the influence of the dominant
variance of the quantitative trait, we take a sample of m = 250 sib pairs. Multiply-

ing Minkage,ap Of (3.11) given in Appendix D by m, we calculate the non-centrality



Fig. 11.

|. Dominant Inheritance

1.0

—— F_{ABad}
—————— F_{AB,a}
— —- F_{Aad}
— — F_{Ag}
—- F_{AB,d}
—-- F_{Ad}

0.8
I

0.6
Il
-

Power

31\
\\ \
W\
o \\\ . /
o \‘ \\\ /
\ DR
\\\ \\\
AN T =
ol T/ ==
o
T T T T
0 1 2 3
Location of Trait Locus Q (cM)
Ill. Dominant Inheritance
o |
—
@
o
© |
o
@
2
o
[N
<
o
-
o
o |
o

0 5 10 15

Position of Markers A and B (cM)

Power

Power

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1. Recessive Inheritance

—— F_{ABad}
N F_{AB,a}
iy -~ F{Aad}
N — - F{Aa
A
—-- FAAd)

\ W\

\\\\ NN //
\ \ \ \ \

0 1 2 3 4

Location of Trait Locus Q (cM)

IV. Recessive Inheritance

0 5 10 15 20

Position of Markers A and B (cM)

60

Graphs I and II. Power of test statistics Fupada, Fapa,F'aBds Faad, Faa,

and F4 4 against position of trait locus @) at 0.01 significant level. Graphs

ITI and IV. Power of test statistics Fiap 44 of different mutation ages against

position of markers A and B at 0.01 significant level.

The trait locus @

locates at 10cM. The two markers A and B flank the trait locus (). The other

parameters are the same as Graphs I and II.



61

I. Dominant Inheritance Il. Recessive Inheritance

< <

- —

o | o |

o o

N\ /
N\ /
AN 7/
S ] AN v S 7
~N s
~ -~
~ -
T 9]
= =
o o
o o
——— Mapping by Markers A&B ——— Mapping by Markers A&B

< | — — Mapping by Markers A&B: < | — — Mapping by Markers A&B:

o No Dom Variances o No Dom Variances

o~ ~

o o 7

o | o |

o o

T T T T T T T T T T T T
0.0 0.02 0.04 0.06 0.08 0.10 0.0 0.02 0.04 0.06 0.08 0.10
Location of Trait Locus Q (cM) Location of Trait Locus Q (cM)

Fig. 12. Power curves of the interval mapping by markers A and B with or without
dominant variances against the recombination fraction 64¢ at 0.05 significant
level, when h? = 0.35, A\ap = 10cM, m = 250, 0%, = 0.10,0%, = 0.05,02 = 0,
for a dominant trait a« = d = 1.0,q; = 0.60; and a recessive trait
a = 10,d = —0.9,¢q1 = 0.40. Marker A locates at OcM, and marker B
locates at 10cM.
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parameters for the linkage interval mapping using markers A and B. Assume that
the heritability is h? = 0.35 and the genetic distance is Ayp = 10cM. Marker A
locates at OcM, and marker B locates at 10cM. Figure 12 gives the power curves of
the linkage interval mapping by markers A and B with or without dominant variance
against the location of trait locus ). For a mode of dominant inheritance in Graph I,
we assume a = d = 1.0. For a mode of recessive inheritance in Graph II, we assume
a=1.0,d = —0.9. By assuming there is no dominance variance at the putative trait
locus @), we include Uga but not O';d in calculating the correlation of sib-pairs. The
power without dominant variance is apparently less than that with dominant vari-
ance. Hence, including both additive and dominant variances in the model has an
advantage in linkage mapping. In the presence of dominant variance, one may lose

power by excluding it.

3.6. Application

We apply the method in this chapter to the Genetic Analysis Workshop 12 German
asthma data (Meyers, Wjst and Ober 2001). The data consist of 97 nuclear families,
including 415 persons. Seventy-four families have 2 children, 19 have three children,
and 4 have four children. In Wjst et al. (1999), linkage to total serum IgE was
tested by the nonparametric statistic of MAPMAKER/SIBS 2.1. On chromosome
1, marker D15221 at position 146.7cM and marker D15S502 at position 151.2cM are
shown to be linked with IGE level. By the method proposed in this paper, we find
that dominant variance of log(IGE) is significantly higher than 0 at position 149.85¢cM
(p-value, 0.01). On this basis, we treat allele 8 at marker D1S221 as allele A, and
collapse other alleles as allele a. At marker D1S502, we collapse alleles 7, 8, and 13

as allele B, and others as allele b. Then, we find that covariate Z, is significantly
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A

different from 0 at position 149.85cM (04 = 1.16, with a p-value 0.0475 by LRT and
a p-value 0.0484 by F' test). Hence, we are able to confirm the result of Wjst et al.
(1999), and find that marker D1S221 is associated with log(IGE).

3.7. Discussion

Variance component models are explored to perform the combined linkage and LD
mapping based on sibship data with no parental data. The models simultaneously
incorporate both linkage information in variance covariance structure of sibship and
LD information in the mean coefficients. The mean coefficients account for both LD
and the genetic effects such as additive and dominant effects. The linear model of
high resolution LD mapping method of Fan and Xiong (2002) is generalized from
population to pedigree data, as we consider the variance covariance of pedigree in
the model (Fan and Xiong, 2003). In this chapter, we develop the method to ac-
commodate sibship data and population. In the presence of linkage to a particular
chromosome region, test of association between QTL and markers is based on coeffi-
cient of linear equations. By power and sample size comparisons, generally the power
of test statistics for two markers is higher than that for one markers. Furthermore,
the power of testing additive genetic effect is higher than that of testing both ad-
ditive and dominant genetic effect because of an increase of degrees of freedom. In
theoretical and simulation study, powers of the proposed model are higher than any
of between-pairs and within-pairs (“AbAw”) approaches of Fulker et al. (1999) if
only one marker is used in analysis. Moreover, the methods are applied to GAW 12
German asthma data and find some effective results.

Fulker and Cardon (1994) suggested the interval mapping approach which has

an advantage in detecting the exact location QTL. We propose a way to calculate the
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probability of sharing both trait alleles IBD for sibships conditional on the information
of flanking markers. Using the formulas of Fulker and Cardon (1994) and the proposed
formulas of the probability of sharing both allele IBD in this chapter, we can calculate
the trait covariance which is decomposed into additive and dominant genetic variances
weighted by IBD status. By numerical calculation and power comparisons, including
both additive and dominant variances in the models has a merit in linkage interval
mapping when dominant variances exist.

It would be interesting to generalize the proposed method in terms of several
views. We generalize the method to use multiple bi-allele markers in the next chapter.
It is worthwhile that multi-allelic markers such as micro-satellites or haplotype block
could be applied to these models. Since LD mapping is affected very heavily by
population subdivisions and admixtures, there is a need to develop methodologies
which can deal with the problem in joint LD and linkage mapping. The proposed

methods can be applied to general pedigree data.
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CHAPTER IV

LINKAGE AND ASSOCIATION MAPPING BY MULTIPLE MARKERS

4.1. Introduction

In linkage disequilibrium (LD) mapping or association study, it is interesting in devel-
oping models which use multiple markers simultaneously for high resolution mapping
of genetic traits. Usually, mapping single marker on chromosome has low resolution
and methods utilizing different markers may lead to different results which make the
interpretation complicated. The models using multiple markers may give a consistent
result, and lead to greater resolution. Moreover, as large numbers of single nucleotide
polymorphisms (SNPs) are available and high throughput genotyping approaches are
emerging, there is a need to work out high resolution mapping.

In chapter III, variance component models using two markers are proposed for
high resolution mapping of quantitative trait loci (QTL) based on population and
pedigree data (Fan and Jung 2003; Fan and Xiong 2002, 2003; Zhao et al. 2001).
The genetic effects are orthogonally decomposed into summation of additive and
dominant effects. In Abecasis et al. (2000, 2001), Cardon 2000, Fulker et al. (1999)
and Sham et al. (2000), an association between-family and association within-family
(“AbAw”) approach is proposed to decompose the genetic association into effects
of between-pairs and within-pairs. The models in chapter III differ from “AbAw”
approach in the following views: (1) The “AbAw” approach uses only one marker in
analysis, but we use two bi-allelic markers; (2) The way of modeling mean coefficients
is different. Fan and Jung (2003) compare our method with the “AbAw” approach,
and find that our method is more advantageous for sib-pair data. One may want to

notice that it is not clear how to extend the “AbAw” approach to use more than one
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markers in analysis (Dr. Fan’s communications with Dr. Abecasis and Dr. Sham).

Models in this chapter extend those of the previous chapter, and investigate
variance component models in fine association QTL mapping using multiple bi-allelic
markers. The models jointly take linkage and linkage disequilibrium information into
account. The linkage information is modeled in the variance covariance matrix, and
the linkage disequilibrium information is modeled in mean coefficients of trait values
like the “ AbAw” approach does. By modeling the linkage information in the variance
covariance matrix, we may take the advantage of much research of variance component
models (Almasy and Blangero 1998; Amos 1994; Amos et al. 1989; Fulker et al. 1995;
George et al. 1999; Goldgar and Oniki 1992; Haseman and Elston 1972; Pratt et al.
2000). In the mean time, the linkage disequilibrium information is incorporated into
the mean coefficients through indicator variables of marker genotypes, whose validity
can be justified intuitively (Fan and Xiong 2000, pages 608-609).

Using the models developed in this chapter, test statistics can be derived for high
resolution association mapping. The procedure is to perform appropriate linkage anal-
ysis based on a sparse genetic map for prior linkage evidence. Then association study
can be worked out using a dense genetic map in the presence of prior linkage informa-
tion. Likelihood ratio tests (LRT) can be carried out in high resolution association
study. For large sample data, likelihood ratio criteria are accurate. Based on the
general theory of linear models, F-test statistics can be built to test the association
between trait locus and markers in the presence of prior linkage evidence (Graybill
1976). The analytical formulae for the non-centrality parameter approximations are
derived for the F'-test statistics. The merits of the proposed method are investigated
in terms of power and sample size comparison. Using simulation program LDSIMUL
kindly provided by Dr. Abecasis, simulation study is performed to explore the power

and type I error rates of the proposed test statistics. The proposed methods are com-
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pared with the “ AbAw” approach (Abecasis, Cardon, and Cookson 2000). Moreover,
the method is applied to the Genetic Analysis Workshop (Gaw) 12 German asthma
data (Meyers, Wjst and Ober 2001; Wjst et al. 1999).

4.2. Model

Assume that k bi-allelic markers M;,j = 1,---,k are typed in a region of one chro-
mosome. Suppose a quantitative trait locus @) is located in the region, which has two
alleles )1 and )2 with frequencies ¢; and go, respectively. For marker M, there are
two alleles M; with frequency Py, and m; with frequency P, respectively. For a
nuclear family of { children and two parents, let y = (Y7, Ym, y1,- - -, %)7 be their quan-
titative traits vector, let G; = (Gyj, Gpj, G1j, - -+, Gi;) be genotypes at j-th marker
locus M;. Here y; is a trait value of the father, G; is the genotype of the father
at j-th marker. Likewise, the mother and the i-th child with subscript m and i,

respectively. The log-likelihood function for these data is

[+2
L=t

1 1 e
l%@ﬂ—§MMH—§W—Xm21W—Xm- (4.1)

The components of model (4.1) are defined as follows.

I 0 po po -+ po

0 1 po po - po

po po 1 pr2 - opu | ,
X = po po par L o py |9

po po pi pi2z o1

is a (I+2) x (I 4 2) variance-covariance matrix, where 0* = o, 4 03, + 02. Here o is
variance explained by the putative QTL Q, o% is the variance of familial effects which

include shared environment variance and half of the additive polygenic variance, and

2:
g

2

02 is error variance. The genetic variance o p

aga + 07, is decomposed into additive
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and dominant components. py = (0,/2 + 0%)/0? is correlation between parents and
children, pi; = pji = (Tij0s, + Aijooay + 0F)/0” is the correlation between the
i-th child and the j-th child, ;o is the proportion of alleles sharing identical by
descent (IBD) at putative QTL @ by the i-th child and the j-th child, and A;;q is
the probability that both alleles shared by the i-th child and the j-th child at the
putative QTL @ are IBD (Cotterman 1940; Lange 2002; Pratt et al. 2000; Zhu and
Elston 2000). For the mean component X of log-likelihood (4.1), we consider
k k
yi = Brwy+ ) xija;+ Y 20+ Hi + e (4.2)
i=1 j=1
where 3 is overall mean, w; is a row vector of covariates such as gender and age,
v is a column vector of regression coefficients of w;, and e; is error term. Assume
that e; is normal N(0,02). H; is the familial effect. Assume that H; is normal
N(0,0%). Moreover, H; and e; are independent. For j = 1,--- k, «; and §; are
regression coefficients of the dummy variables z;; and z;;, respectively. Hence, n =
(6,47, -+, 01, - -+, 0)T is a vector of regression coefficients and X is model
matrix. Here z;; and z;; are indicator variables, and are defined as follows
2Py, if G;; = M; M, —Pij if G;j = M;M;
xij = Pm;, — Py, i Gij = Mymy; and  z; = P Puy it Gy = Mym;
—2Pyy, it Gi; = m;m,; —Pfjj if G;; = m;m,
Regression (4.2) uses multiple markers and is a natural generalization of model
of our previous work. The objective is to fully use marker information for fine high

resolution mapping of QTL.
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4.3. Parameter Estimation

4.8.1.  Regression Coefficients and Association Study

Denote the measure of LD between trait locus () and marker M; by Dy,0 = P(M;0Q1)—
Pr,qi, @ = 1,---,k, and the measure of LD between marker M; and marker M; by
Dy, = P(MiM;) — Py, Py, < joi,j = 1,--+, k. Let the additive and dominant

variance-covariance matrices be

PMlpml DM1M2 DMle P]%41P2 D%Wl]\gZ D]zwle

DM1M2 PMQPm2 o DMQMk; DM1M2 PMQP e DMQMk;
Va=2 . : . Vp = ,

Durov,  Duvon, - Pug Py DJQ\/[le D]2W2Mk e PM;VPWQM

In Appendix M, the coefficients of regression (4.2) are derived as

o 2D, o1 D? e
=V,! : agand | i [ =Vt : do- (4.3)

a, 2D, Ok Do
Equations (4.3) show that the parameters of LD (i.e., Dysq and Diy,ag,) and gene
effect (i.e., g and d¢) are contained in the mean coefficients. Model (4.2) simulta-
neously takes care of the LD and the effects of the putative trait locus ). The gene
substitution effect ag is contained in «a;; and the dominant effect d¢p is contained
in §;,4 = 1,---, k. Therefore, regression (4.2) orthogonally decomposes genetic effect

into summation of additive and dominant effects.

Assume that all markers M; and M; are in linkage equilibrium (i.e., Dy, =

0,i,7 =1,--+,k,i # j). The coefficients of additive and dominant effects are given

_ Dwmyq _ Dma D?MQ o D?VIQ
by a; = PMllljmlaQ’ NN TS ﬁa(g and 6, = P Py 5Q, 0 = 7, 5 6Q
That means markers My, - - -, M}, independently contrlbute to the analysis of the trait

values. Usually, the markers M; can be in LD, especially when they are locate in

a narrow chromosome region. Equations (4.3) rightly use the LD information of
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markers M; in the analysis.

Linkage analysis can be performed by considering a reduced variance component
model y; = B + w;y + H; + ;. This initial study can identify prior linkage evidence
of the trait values to a specific chromosome region based on a sparse genetic map.
Suppose that prior linkage evidence is provided by an initial linkage study. Based
on a dense genetic map, high resolution association mapping of the QTL can be
carried out by fitting the full model (4.2). First, assume that linkage is confirmed
in a chromosome region by the significant presence of both the gene substitution
and dominant effects, ie., ag # 0 and dg # 0. Based on equations (4.3), the
existence of LD between markers M; (i = 1,---, k) and trait locus @) can be tested by
Hy:ap=--=a,=0 =---=909, =0. Second, assume that linkage is supported
by the significant presence of the gene substitution effect, but not the dominant effect,
ie., ag # 0and dg = 0. The existence of LD can be tested by H, : a1 = -+ = oy, = 0.
Third, assume that linkage is supported by the significant presence of the dominant
effect, but not the gene substitution effect, i.e., ag = 0 and d¢g # 0. The existence of
LD can be tested by Hy : 0 = --- = 0 = 0.

Evidence of association can be evaluated by likelihood ratio test (LRT) proce-
dure. For instance, let L,q be the log-likelihood under the alternative hypothesis of
H,;, and Ly be the log-likelihood under the null hypothesis H,;. Then, the quan-
tity 2[Lqq — Lo] is asymptotically distributed as y?. Notice that there are only k
measures of LD, Dy, -, Dum,q, under the alternative hypothesis H,4. In data
analysis, the number of coefficients «;, d;,7 =,1-- -, k, which are significantly different
from 0, should be less than or equal to k. This number is the degrees of freedom of
the likelihood ratio test 2[L,q — Lo]. For large sample data, the likelihood ratio test
is accurate based on the statistical theory. In this paper, we will develop a F-test

procedure based on linear model theory (Graybill 1976). Before that, we will discuss
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the variance-covariance first.

4.83.2. Variance-Covariances

Denote the recombination fraction between trait locus ) and marker M; by 0a,¢,1 =
1,---, k. Likewise, the recombination fraction between markers M; and M; are defined
by O, Following Fulker et al. (1995)) and Alamsy and Blangero (1998), we
propose a multi-point interval mapping method to estimate the proportion ;o of

allele sharing IBD at a putative QTL @ for a sib-pair ¢ and j by

ﬁ-ijQ = E (ﬂ-ijQHMU IM2> T 7]Mk)

= p + BreanTijnn + BrestsTija, + -+ + Brag, TigMy » (4.4)
where ;5 is the proportions of alleles sharing IBD at the marker M; for{ =1,--- k.

The coefficients o, Brary, - - 5 Brm, are derived in Appendix N as follows
By 1 (1= 20aa5)* -+ (1 =200,00)%\ 7 [ (1= 20a1,0)°
BWMQ (1 - 291\/111\/12)2 1 T (1 - 29M2Mk)2 (1 - QHMQQ)Q
B, (1 =20aar)® (1= 200m00)° - 1 (1 —20r,0)°
And «; is estimated as ax =1 — Beay — Beaty — + - — Brna,,- If marker M; coincides

with QTL @, it can be shown that By, = 1 and o, = 0, By, = 0,7 # [. Hence
mijo = Tijm,- 1o estimate A;;o of the probability of sharing 2 alleles IBD for a
sib-pair, consider

~

AUQ = E (AijQuMl’ Ingy, - 7]Mk)

= o+ BMlﬂ'ile + 4 ﬁM,ﬂTiij -+ ?”MlAile + e 4 TMkAz’ij; (45)



72

where A;;y;, is the probability of sharing 2 allele IBD at marker M; for [ =1,--- k.

The coefficients (rag,, -+, 7ar )" are derived in Appendix O as follows
Ty 1 (1=20aa5)" -+ (1=20an0)*\ " /(1= 20a1,0)*
My . (1 - 2‘9M1M2)4 1 T (1 - 20M2Mk)4 (1 - 20M2Q)4
M, (1 =20a0r)* (1= 20000,)* -+ 1 (1—200,0)"
B Brny M,
.. . . . . ﬁMz 57rM2 T My
The remaining coefficients are given in Appendix O by i = } — )
/BMk ﬁﬂ'Mk TM]C
The « in equation (4.5) is o = 1—fBpy, — -+ - — Bag, — Ty, — -+ - — g, - Again, if marker

M; coincides with QTL @, it can be shown that AijQ = Ajjng,-

4.4. Test Statistics and Non-centrality Parameter

4.4.1.  Combined analysis of population and family data

We assume that the data are composed of three sub-sample: n individuals of a pop-
ulation, m trio families with both parents and a single child, and s nuclear families
each has both parents and two offspring. Furthermore, we assume that n,m and s
are sufficiently large, so that large sample theory applies. We may include data of
nuclear families with both parents and more than two offspring. The principle of the
following paragraphs can be extended to such families if the number of the families
is large enough to apply the large sample theory.

The coefficients of regression (4.2) can be written asn = (3, g, -+, g, 01, -+, Ox)”
if there are no covariates. Consider the overall log-likelihood L = S0 L; I =
n + m + s, where L; is the log-likelihood of trait value y; of the i-th family or
individual. Let 3; be the variance-covariance matrix of trait value y;, and X; be its

design matrix. Denote the all trait values by y = (y7,---,y7)", the total variance-

covariance matrix by ¥ = diag(3, - - -, X;), and model matrix by X = (X7,---, X7)".
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Let N = n + 3m + 4s be the total number of individuals. The estimate of 7 is
= [xsx] xRy = [, XX S XS

The non-centrality parameters of appropriate test statistics of genetic effects and
LD coeflicients can be calculated as like subsection 3.3.1. First, one may construct
test statistic for each of three hypotheses: Hyy: oy = -+ =ap =901 = -+ = o = 0;
H,:a1=---=aq,=0; Hy: 61 = --- = 6, = 0. The non-centrality parameter of each
hypothesis can be calculated using the theory in Chapter 6, Graybill (1976). Let H

be ¢ x (2k + 1) matrix of rank g. The test statistic for hypothesis Hnp = 0 is

b H)HXTSX) T HT T (H) (N =2k —1)
y‘r(zfl _ Ele(XTZflx)leTZfl)y q

with non-central F(q, N — (2k 4 1)) distribution. The non-centrality parameter is
A= (Hn)"[H(X™S'X)"'HT|"'(Hn). Under the assumption of large sample sizes
n,m and s, we show in Appendix P that
ntm+s
X'2'X = Y X/37'X; & diag(ar, asVa, azVp) /o, (4.6)
i=1
where ay,ay and agz are constants given by equations (P.7) in Appendix P.

The additive variance o7, = 2¢1¢20, and the dominant variance o}, = (q1¢2)*0
are expressed in terms of the average effect of gene substitution a and the dominance
deviation d¢q. Let I and Iy, be k and 2k dimension identity matrices. Moreover, let
Opx1 be k x [ zero matrix. To test hypothesis H, : a; = --- = a; = 0, the test matrix

H = (Okx1, Ir, Ogxi). Let us denote the test statistic as Fy,. The non-centrality

parameter is approximated by

aq DMlQ
"y : 4@2 2 —1

Ma 2 (o a)Val o = —gag(Ding - Dang)Va

Q. DMkQ
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DMlQ
2
4204, -1
= Uququ (Dangs > D) (Va/2)
DMkQ
To test hypothesis Hy : §; = - -+ = 0, = 0, the test matrix H = (Ogx1, Opx, Ix). Let

us denote the test statistic as I}, 4. The non-centrality parameter is approximated by

(51 D]2\/[1Q
as . as —
>\k7d ~ ;(51,“',51&‘@ : = ;%(D?\@QM",D%@Q)VDl
Dinq
2
3044 2 2 -1
= — L5 (Diro Do)V
PR M M.Q) VD
D3,
kQ
To test hypothesis Hyy : 0 = -+ = ag = 01 = -+ = 0 = 0, the test matrix H =

(Oskx1, Iax). Let us denote the test statistic as F, .. The non-centrality parameter is
Akad = Aa+Ad, 1.€., Ak qq 15 decomposed into the summation of additive and dominant

non-centrality parameters.

4.4.2.  Nuclear family

To make comparison with the results of Table 4 of Abecasis, Cardon, and Cookson
(2000), we consider I families each has both parents and [ offspring. Let N = I(I+2)
be the total number of individuals. The other notations are defined in a similar way
as above. Suppose that variance-covariance matrices of the I families are the same,
ie, Y = -- =Y. Denote X7 = %(’Y}U‘)(l+2)x(l+2). If the sample sizes N is large
enough, we show in Appendix Q that

I
XTETX/T =3 X787 X /1 = diag(D ymg, biVa, baVi) /o, (4.7)
i=1

h?j
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where b; and by are constants given by equations (Q.1) in Appendix Q. The approx-

imation of non-centrality parameter of statistic Fj, is

DMlQ
bIIO'Q
Mew & 22258 D0 oo Doy o) (Va/2)™
k, 02q1q2( MiQ @) (Va/2)
DMkQ

4.5. Type I Error Rates

To evaluate the type I error rates of the proposed method, nuclear families are gener-
ated by simulation program LDSIMUL provided by Dr. Abecasis. Five test cases are
considered in type I error rate calculation, which are taken from Table 2 of Abecasis,
Cardon, and Cookson (2000). Trait values are constructed by normal distribution

2

with mean 0 and total variance o = 100 except test case of Admixture. Here

0 = 02, + 03 + o is the summation of the additive major gene effect o7,, the
variance of familial effects 0%, and the error variance o2. In each model except the
Admixture, a bi-allelic marker M is simulated with allele frequency Py, = 0.5. In
the test cases of Null, Familiality, and Admixture, no major gene effect is as-
sumed, i.e., O';a = 0. In the test cases of Linkage and Composite, major gene effect
is assumed, and marker M; coincides with the QTL (@), i.e., recombination fraction
Orr,@ = 0; in the meantime, linkage equilibrium is assumed between QTL () and the
marker M, ie., Dy, = 0. In the test case of Admixture, population admixture
is generated by mixing families equally drawn from one of the two sub-populations
A and B. In both sub-populations A and B, no major gene effect or familial effect is
assumed, i.e., aga = 0%, = 0. However, the trait mean of sub-population A is fixed as
10 and the variance is fixed as 100, and the marker allele frequency Py, is taken as

0.7 in sub-population A.

The trait mean of sub-population B is fixed as 0 and the variance is fixed as 100,
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Table VI. Type I Error Rates (%) at a 0.05 significant level.

are the same as those of Table 2 of Abecasis, Cardon, and Cookson

The parameters

(2000). The total variance is fixed as o = 100 (see text for explana-

tion of Admixture case). Null: no major gene effect or familial effect

2 _ 42
o, =0f =

gene effect 03 = 0; Admixture: no major gene effect or familial effect

2 _
O'g—

effect 07 = o, = 30,00, = 0, but no familial effect 07, = 0; Compos-

0; Familiality: large familial effect 0% = 50, but no major
0% = 0, but with population admixture; Linkage: large linkage

ite: large linkage effect 03 = O'ga = 20,0r,0 = 0, and large familial effect

0% = 30. There is no linkage disequilibrium between QTL and marker M;

(DMlQ = O)
Offspring Error Rates When
in Test Total No. of Offspring is
Each Case 120 240 480

family LRT | Fio | LRT | F1 4 | LRT | F1,
1 Null 6.5 | 70 | 51 | 6.5 | 58 | 6.9
Familiality | 54 | 83 | 5.2 | 81 | 53 | 9.5
Admixture | 6.4 | 9.7 | 52 | 93 | 53 | 89
2 Null 46 | 29 | 48 | 28 | 45 | 29
Familiality | 4.2 | 44 | 3.6 | 3.8 | 4.7 | 4.2
Admixture | 5.0 | 5.2 | 6.1 | 54 | 4.9 | 4.3
Linkage 55 | 49 | 5.0 | 39 | 5.0 | 4.6
Composite | 5.6 | 7.0 | 5.8 | 6.2 | 5.6 | 5.5
4 Null 49 | 1.7 | 43 | 1.5 | 3.6 | 1.2
Familiality | 5.2 | 48 | 42 | 34 | 4.8 | 3.3
Admixture | 5.5 | 3.2 | 54 | 3.5 | 42 | 2.6
Linkage 53 | 3.6 | 54 | 3.7 | 49 | 3.8
Composite | 5.3 | 4.9 | 53 | 34 | 41 | 2.6
8 Null 42 | 14 | 50 | 1.0 | 47 | 1.0
Familiality | 4.7 | 45 | 5.1 | 4.8 | 44 | 3.6
Admixture | 3.5 | 26 | 55 | 3.2 | 44 | 3.1
Linkage 6.1 | 3.7 | 43 | 28 | 46 | 2.8
Composite | 5.8 | 4.5 | 55 | 3.8 | 3.7 | 2.8
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and the marker allele frequency Py, is taken as 0.3 in sub-population B. Therefore,
the total variance in the mixing population is 02 = 125. The admixture contributed
to (10 — 0)?/[4] = 0.20 of the total variance. The other related parameters are given
in the legend of Table V1.

Table VI presents type I error rates of likelihood ratio tests and F-test statistics.
The type I error rates are calculated as the proportions of 1000 simulation data sets
which give significant result at a 0.05 significant level based on F7 , and likelihood ratio
test statistic, respectively. The results show that the type I error rates of likelihood
ratio tests are around the 0.05 nominal significant level in most cases. Hence, the
proposed model works well. The type I error rates of trio families (i.e., family with
only one offspring) are usually higher than those of nuclear family data which contain
multiple offspring. In particular, the type I error rates of F-test are high for trio
families. For nuclear family data which contain multiple offspring, the type I error
rates of F-test are similar or smaller than those of the likelihood ratio tests. In an
association study, false positives due to population stratifications are usually a big
issue. From the results of Table VI, the type I error rates in the Admixture case are
reasonable for nuclear family data which contain multiple offspring. For trio families,

the type I error rates of F-test in the Admixture case are high.

4.6. Powers and Their Comparison

4.6.1.  Comparison with the “AbAw” approach

Denote the heritability by h?, which is defined as h* = o7, /0* (Falconer and Mackay
1996). To compare the method proposed in this paper with the “AbAw” approach of
Abecasis, Cardon, and Cookson (2000), we present power comparison in Table VII.

The parameters are the same as those of Table 4 of Abecasis, Cardon, and Cookson
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(2000): ¢1 = Py, = 05,h% = 0.1,0% = 100,0§a = 10,02 = 30,02 = 60. Besides,
D" = Dy, o/ Dimax and Do = min(Puy,, ¢1) — Puyqa. In the columns of ACC, the
results are taken from Table 4 of Abecasis, Cardon, and Cookson (2000). In the
columns (Fy 4, FM,LRT)T, the power of [, is calculated based on approximation
of non-centrality parameter \;, of test statistic F7, at a 0.001 significant level; the
power of F 1. and LRT are calculated as the proportions of 1000 simulation data sets
which give significant result at the 0.001 significant level based on F} , and likelihood
ratio test statistic, respectively. For each simulated dataset, certain number nuclear
families are simulated via LDSIMUL. For instance, for one sib per family, 480 trio
families are simulated in each simulated dataset.

The results of Table VII clearly show that the proposed F-tests F} , and likeli-
hood ratio tests are much more powerful than the “AbAw” approach. When D’ =
Dt/ Dmaz > 25%, it is possible to achieve considerable power. When D' =
D,/ Dmaz > 50%, the statistic Fy, is powerful since the power is higher than
(Fiq, FLQ, LRT) = (0.560,0.333,0.322) for a sample with a total number of 480 sibs.
Moreover, the power to detect association decreases as the size of sibship increases.
Hence, families of large sibship sizes contain less LD information than families of
small sibship sizes. The readers may want to notice that this result is consistent with
findings in Fan and Xiong (2003). In Figure 3 of Fan and Xiong (2003), p131, popu-
lation based method is shown to be more powerful than the family based method for
the same number of individuals.

In addition, the results of Table VII show that the empirical power of FLG is
similar to that of likelihood ratio test. This implies that in large sample, the two
tests provide similar power. For nuclear families of small sibship size (i.e., number of
sibs is < 4), the empirical power of FLG and likelihood ratio test (LRT) is similar to

the power based on the theoretical approximations A; , of F .
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For nuclear families of large sibship size (i.e., number of sibs is > 5), the empirical
power of F, and likelihood ratio test (LRT) is smaller than the power based on the
theoretical approximations A; , of F} ,. Hence, the approximations of non-centrality
parameter \;, is accurate in the case of small sibship size, but less accurate in the

case of large sibship size.

4.6.2.  Comparisons of Sample Size and Power of LD mapping

Power and sample size calculations are performed to investigate the merits of the
proposed method. Figure 13 shows the power curves of the test statistics Fy,, F3,,
F5 0 Fyq,F5 4, and I, 4 against the linkage disequilibrium coefficient Dy, at a 0.01
significant level for a dominant mode of inheritance (a = d = 1.0) and a recessive
mode of inheritance (a = 1.0,d = —0.5). The related parameters are given in the
legend of the figure. Generally, the power of F,, using 4 markers in the model is
higher than that of F3, using 3 markers, which in turn is higher than that of F5,
using 2 markers. Hence, multiple marker analysis is advantageous. The power of Fj 4
is usually minimal unless the LD between locus ) and marker M; is very strong for
the dominant mode of inheritance. Figure 14 provides the power of the test statistics
Fyo, F34,F5q, Fya, F5 4, and F; 4 against heritability h? at a 0.01 significant level for
a dominant mode of inheritance (¢ = d = 1.0) and a recessive mode of inheritance
(a = 1.0,d = —0.5), respectively. In addition to the merits shown in Figure 13, the
power of the test statistics Fy,, F34, Fo, is high when heritability h? is larger than
0.10 for both modes of inheritance.

Figure 15 shows the power of test statistics Fiyq, F5q4, Fh,, and Fj, against the
trait allele frequency ¢, (Graph I) or marker allele frequency Py, (Graph II) at a 0.01
significant level for an additive mode of inheritance a = 1.0,d = 0.0, respectively.

The other parameters are given in the legend of the figure. From Graph I of the
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Fig. 13. Power curves of test statistics Fi,, F3q, Foa, Faa, F3q4, and Fy4 against
the measure of LD between M; and () at a 0.01 significant level, when
q1 = 0.50, Py, = 0.50,7 = 1,2,3,4, Dy = 0.08,1 = 2,3,4, Dy, = 0.05,1 # j,
Tag = 0.5,0129 = 0.25, heritability h? = 0.15, familial effect variance
0% = 0.10, and sample size n = 40,m = 30,s = 20 for a dominant mode
of inheritance a = d = 1.0 (Graph I), and a recessive mode of inheritance
a =1.0,d = —0.5 (Graph II), respectively.
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@ = 05,Py, = 05, Dyg = 0.1, Dpn; = 0.05,4,5 = 1,2,3,4,0 # 7,
T12g = 0.5, 8120 = 0.25, 0% = 0.1, and sample size n = 40,m = 30, s = 20 for
a dominant mode of inheritance a = d = 1.0 (Graph I), and a recessive mode

of inheritance a = 1.0,d = —0.5 (Graph II), respectively.
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Dy, = 0.05,4,5 = 2,3,4,4 # j and sample size n = 40, m = 30, s = 20.
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figure 15, it can be seen that the power of Fy, , increases as the trait allele frequency
¢1 increases. Graph II of the figure 15 shows that the power of F} , and Fj3, is almost
constant; besides, the power of F;, increases slowly, and the power of [, increases
as the marker allele frequency Py, increases. In general, the power of Fy, and Fj,
heavily depends on the trait allele frequency ¢;, but not on the marker allele frequency
Py,

Assume that the LD is due to historical mutations of T generations ago at
QTL @. At the initial generation when the mutation occurred, the LD coefficient
is Dy,o(0) = P(M;Q)(0) — g1 P, where P(M;Q)(0) is frequency of haplotype M;(Q).
The LD coefficient is reduced by a factor 1 — 87, in each subsequent generation.
The LD between marker M; and @ is Dus,o(T) = Daso(0)(1 — Oa,0)" at the cur-
rent generation. Assume that the marker M; locates at position OcM, marker M,
locates at position 1cM, marker M;z locates at position 2cM, and marker M, locates
at position 3cM. Under the assumption of no interference, we may calculate the re-
combination fraction Ora;;, = [1 — exp(—2Q,1,)]/2 by Haldane’s map function,
where M; 1s map distance between marker M; and marker M;. Similarly, the
recombination fraction 0y, can be calculated by the distance €27, between QTL
@ and marker M;, 1 = 1,---,4. Suppose that the QTL @ is located along the hor-
izontal axis, i.e., it moves from OcM to 3cM. Figure 16 shows the power curves of
the test statistics Fuq, Fuad, F3.a; F3,0d, P20, and Fy 44 against the location of QTL Q)
for a dominant mode of inheritance (¢ = d = 1) and a recessive mode of inheritance
(a =1.0,d = —0.5), respectively. The powers of Fy, and Fj .4 with 4 markers in the
model are generally high across the location of QTL @), since at least one marker is
close to the QTL ). The power of F3, and Fj3,4 using 3 markers in the model is
similar to that of 4 markers, except that QTL @ locates far above from marker Mj,

ie., A = 2.3cM. The power of I, , and F .4 using two markers in the model is
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high when the QTL is close to markers M; and M,. However, once the QTL is far
above from marker M, (i.e., Ay > 1.3¢M), the power of Fy, and Fb .4 using two
markers in the model decreases very quickly. Figure 16 implies that multiple marker
LD analysis has high power in fine mapping of QTL. Moreover, the power of test
statistics F},, which only tests additive effect is higher than that of Fj, .4 which tests
both additive and dominant effect through the proposed model. The reason is the
number of degrees of freedom of test statistics increases if dominant effect is added
to the test statistics. Figure 17 shows the power curves of test statistic £} .4 against
position of markers My, ---, My for different mutation age at a 0.01 significant level.
The trait locus @ locates at position 10cM. The four markers flank the trait locus Q;
two markers are on each side of the QTL with equal distance to the each other as
follows: My =5+ M;/2, My = 15 — M, /2, My = 20 — M;. Here M; also denotes the
location in ¢M of marker M;. As age of mutation is getting old, the power decreases
and the power can be high only when the markers are close to the trait locus.
Figure 18 shows that the required number of trio families or families with both
parents and 2 offspring for the test statistics F o, F3 4, F2 o and F , against heritability
h? at a significant level 0.01 and power 0.8. For a favorable case (Graphs I and III),
the parameters are given by ¢ = Py, = 0.5, Dy, = 0.05 and Dy, = 0.1 for
i,j=1,---,4,i # j. For a less favorable case (Graphs II and IV), the parameters are
given by ¢1 = 0.2, Py, = 0.8, Dy, = 0.0 and Dy = 0.03 for 4,5 = 1,--- 4,1 # j.
For the favorable case, the required number of families of test statistics Fy, and F3,
is less than 200 and that of Fy, is less than 600 if heritability h? is larger than 0.1. For
the less favorable case, the required number of families of test statistics Fy, and F3,
is less than 500 and that of Fy, is less than 700 if heritability h? is larger than 0.1.
The required number of families of test statistics Fj , is very large for both favorable

and less favorable cases.
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Fig. 16. Power of test statistics Fyq, Faad, F3.a; F3ad, Foa, and Fh,.q against loca-

tion of QTL @ at a 0.01 significant level.

The parameters are given by

¢ = 0.5, Py, = 0.5, Darg(0) = 0.15, Dyrag, = 0.05,4,5 = 1,---,4,0 # 7,

mi2g = 0.5,012¢9 = 0.25, familial effect variance o? = 0.10, heritability

h? = 0.15, and sample size n = 100, m = 50, s = 30, mutation age 7' = 60 for

a dominant mode of inheritance a = d = 1.0 (Graph I), and a recessive mode

of inheritance a = 1.0,d = —0.5 (Graph II), respectively. Marker M; locates

at position OcM, marker M, locates at position 1cM, marker M;z locates at

position 2cM, and marker M, locates at position 3cM. The location of QTL

@ is along the horizontal axis, i.e., it moves from OcM to 3cM.
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Fig. 17. Power of test statistic F} 4 for mutation age 7' = 30, T = 40, T = 50, T" = 60,
T = 70 against position of markers M;,i = 1,---,4 at a 0.01 significant
level. The QTL @ locates at position 10cM. The four markers flank the trait
locus @Q; two markers are on each side of the QTL with equal distance to the
each other as follows: My = 5+ M,/2, My = 15 — M,/2, M, = 20 — M.
¢ = 0.5, Py, = 0.5, Dao(0) = 0.15, Dyyar, = 0.05,4,5 = 1,---, 4,0 # 7,
heritability h? = 0.15, familial effect variance 0% = 0.1, and sample size
n = 40,m = 30,s = 20 for a dominant mode of inheritance a = d = 1.0
(Graph I), and a recessive mode of inheritance a = 1.0,d = —0.5 (Graph II),

respectively.
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In addition, the familial effect variance 0% = 0.1.
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4.7. Application

The proposed method is applied to the Genetic Analysis Workshop 12 German asthma
data (Meyers, Wjst and Ober 2001). The data consist of 97 nuclear families, including
415 persons. Seventy-four families have 2 children, 19 have three children, and 4 have
four children. Wijst et al. (1999) perform linkage analysis for total serum IgE by
nonparametric statistic of MAPMAKER/SIBS 2.1. Three markers on chromosome
1 are shown to be linked with IGE level, i.e., marker D1S207 at position 118.1cM,
marker D1S221 at position 146.7cM and marker D1S502 at position 151.2cM. In Fan
and Jung (2003), we analyze the data using sib-ships, and confirm the result of Wjst
et al. (1999). By the method proposed in this paper, we analyze the data again. The
dominant variance of log(IGE) is significantly higher than 0 at position 149.85cM
(p-value, 0.00075; compared with the p-value 0.01 in Fan and Jung 2003). On this
basis, we collapse alleles 6, 8 and 10 as allele M; at marker D1S207, and others as
allele my. At marker D1S221, alleles 5, 6 and 7 are collapsed as allele M, and other
alleles as allele my. At marker D1S502, we collapse alleles 7, 8, and 12 as allele M3,
and others as allele ms. Then, we find that coefficient d, is significantly different from
0 at position 149.85¢M, with a p-value 0.034 by likelihood ratio test (compared with
the p-value 0.0475 in Fan and Jung 2003) and a p-value 0.034 by F' test (compared
with the p-value 0.0484 in Fan and Jung 2003). The estimation is by = 0.76. Hence,
we are able to confirm the result of Wjst et al. (1999), and find that marker D15221
is associated with log(IGE).

Compared with the results in the previous chapter, the evidence in the above
paragraph is stronger since the p-values are smaller. There are two reasons for this.
In the method of this chapter, all family members are used with three markers in

analysis, while sibships are analyzed with only two markers in the previous chapter.



90

Hence, the proposed model improves the performance of the methods in the chapter

I1I.

4.8. Discussion

Based on multiple bi-allelic markers, variance component models are proposed for
high resolution linkage disequilibrium mapping of QTL in the presence of prior linkage
evidence. The models are extended by method using two bi-allele markers in analysis,
and incorporate genetic-marker information into the models (Fan and Jung 2003;
Fan and Xiong 2002, 2003). With analytical derivation, it is shown that linkage
disequilibrium measures and genetic effects are incorporated in the mean coefficients.
Using the information of sharing IBD of multiple markers, a multi-point interval
mapping method is provided to estimate the proportion of allele sharing IBD and
probability of sharing 2 allele IBD at a putative QTL for a sib-pair. It is shown that
recombination fractions, i.e., linkage information, are contained in variance covariance
matrices. Therefore, the proposed methods model both association and linkage in a
unified model.

After comparing with the “AbAw” approach, it is found that the method pro-
posed in this chapter is more powerful and advantageous in terms of simulation study
and power calculation. By power and sample size comparison, it is shown that models
which use more markers may have higher power than models which use less markers.
The multiple marker analysis can be more advantageous, and has high power in fine
mapping QTL.

Type I error calculations are performed in this chapter. We allow for the very
extreme form of population admixture, in which each family is drawn from a different

stratum (Abecasis, Cardon, and Cookson 2000). Type I error rates of the proposed
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test statistics are calculated to investigate the behaviors of the test statistics under
the null distribution. Five test cases including population admixture are considered
to investigate the type I error rates, which leads to reasonable result. The likelihood
ratio tests are less likely to be influenced by population admixture.

In a QTL mapping study, a strategy may be taken as follows. First, linkage
analysis can be carried out using a sparse genetic map. Then, association study can
be performed using a dense genetic map for high resolution mapping. The basic
idea is to take the advantage of linkage analysis for a prior linkage information. In
the meantime, the advantage in high resolution of association study can be taken
for fine mapping a genetic trait. It is well known that linkage analysis is robust,
i.e., the false positive rates are not high. However, the resolution of linkage analysis
can be low. On the other hand, the resolution of association study is high. But,
association study is prone to false positives caused by population stratifications. Using
the method proposed in this chapter, it is more likely to avoid high false positive rates
by performing association study in the presence of prior linkage. The low resolution of
a prior linkage analysis can be remedied by the follow-up high resolution association
study.

So far, only one trait locus @) is assumed to be located in the chromosome region.
Suppose that there are multiple QTL in the region. The regression equation (4.2) can
still be used in QTL mapping. Besides, suppose that the trait value is influenced by
unlinked trait loci in different regions. Then model (4.1) needs to be generalized to use
markers from different regions in analysis (Hoh and Ott 2003). If multiple trait loci
are present, other issues such as epistasis need more in depth investigation. For IBD
estimation, we follow the method proposed by Fulker et al. (1995) and Alamsy and
Blangero (1998). If there is LD between the trait and markers, LD among markers

would also be expected, and needs to be incorporated in estimating proportion of
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sharing IBD. However, it is not clear how to achieve this. This is a very interesting
and important research area for future study. Better estimates of the proportion of
allele sharing IBD would lead to a fitted variance covariance structure which is a
better approximation of the true variance covariance structure. This would improve

the performance of the proposed models.
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CHAPTER V

CONCLUSION

5.1. Summary and Discussion

In a QTL mapping study, one may carry out both linkage analysis and association
study. Linkage analysis is based on family data, and is useful in localizing a genetic
trait locus in a broad chromosome region. Therefore, linkage analysis can provide
suggestive linkage between a putative trait locus and a marker locus based on a sparse
marker map. In addition, linkage analysis is robust to the population stratification
which heavily affects the results of population-based association study. Association
study, on the other hand, is useful in fine gene mapping of genetic trait locus since the
allelic association due to LD usually operates over very short genetic distance. Hence,
association study can provide high resolution in genetic trait mapping. However,
association study is prone to false positive caused by population stratifications. As
we develop methods proposed in chapters III and IV, it is more likely to avoid high
false positive rates by performing association study in the presence of prior linkage.
The low resolution of a prior linkage analysis can be remedied by the follow-up high
resolution association study.

In the recent years, there has been great interest in association study of quanti-
tative trait loci (QTL). Allison (1997) proposed various Transmission Disequilibrium
(TD)-type tests which accommodate either selected sampling or sampling based on
selection of extreme phenotypes among the offspring. George et al. (1999) proposed
a TDT in pedigree data by multiple regression. Zhang and Zhao (2001) propose a
quantitative similarity-based test to identify association between a bi-allelic marker

and a quantitative. Using a bi-allelic marker, Fan and Xiong (2003) proposed mixed



94

models to perform both linkage analysis in the presence of association and association
study in the presence of linkage. For multiple allele marker, only association study
in the presence of linkage is conducted by mixed model in the chapter II because the
way to reduce the number of parameter is not clear. The association study shows that
the method employing a multiple allele has higher power than that using a bi-alleles
marker if the marker allele frequencies are evenly distributed.

“AbAw” approach, a combined linkage and association mapping, is developed to
decompose association effect into within and between family components (Abecasis
et al. 2000, 2001; Cardon 2000; Fulker et al. 1999; Sham et al. 2000). Xiong and
Jin (2000) proposed a maximum likelihood based linkage and linkage disequilibrium
analysis for genome-wide screens that can be applied to general pedigrees. Wu et al.
(2002) made use of mixture models in joint linkage and LD mapping. However, most
research limits on using one bi-allelic marker at a time to model the combined study.
The methods presented in chapters III and IV propose to use multiple markers in
order to model the association and linkage together. Both chapters show that models
which use more markers may have higher power than models which use less markers.
The multiple marker analysis can be more advantageous, and has high power and
better effect in fine mapping QTL.

In association study, population stratification can lead to high false positives
(Ewens and Spielman, 1995). Zhao and Xiong (2002) presented unbiased quantitative
population association tests to investigate the issue. In the chapter IV, we calculate
type I error rate of the proposed test statistics to investigate the behavior of test
statistics under the null hypothesis. Then we compare the results with those of
“AbAw“ in Abecasis et al. (2000) and find that the method proposed in chapter IV

is more likely to avoid high false positive rates.
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5.2. Open Problems

5.2.1.  Association Study by Mized Model

In chapter II, we assume that all members of nuclear family are available. With
the information of transmitted and non-transmitted alleles from parents, the mixed
model is built in order to study association. But there are some situations which
parental information is not available with several reasons such as late onset diseases
and financial problems. It would bring an interest if the methods proposed in chapter
IT can be extended to study the data without parental data.

The mixed models in the chapter II do not take interactions into account. There
may exist an interaction between genetic effects and environments in the certain
situation. Van den Oord and Sneider (2002) proposed a general model to study
an interaction of the multiple etiological factors and other genetic effects such as
age dependency. It would be interesting if the proposed model can be extended to

consider the interaction between genetic effects and environment effects.

5.2.2.  Association Study by Variance Component Model

Genotyping information is usually given in a genetics study. The methods devel-
oped in chapters III and IV can be directly used in analyzing quantitative trait and
genotyping data of nuclear families by combining linkage and association information
together. One may insist on using haplotype data to map QTL which can be con-
structed based on genotyping data. We may be interested in comparing our approach
with an approach of haplotype data.

The potential problem of the method using multiple markers in chapters I1I and
IV is that degrees of freedom of test statistics can be large as we add the number of

markers, and the large numbers of degree of freedom may cause power to decrease.
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Moreover, the number of LD measures can be large. The selection of appropriate
markers for analysis is one of important problems to be carefully considered. The
optimal number of markers needed depends on not only specific trait in a study, but
also the LD measures among the QTL and the markers. It would not be a good idea
to use many bi-allelic markers in the model. More markers will lead to higher degrees
of freedom which cause lower power. Usually, using three or four relevant markers
in analysis would be worthwhile, since it may not only have higher power than one
or two marker analysis, but also have lower degrees of freedom and number of LD
measures than more than four markers.

The other problem is the existence of dominant trait effect. If the dominant
effect is present, one may lose power by excluding it from the models, (Fan and
Xiong, 2002). However, one may get low power during simultaneous test of additive
and dominant effect, if the dominant effect is not significantly present to influence
the trait values, due to the increase of degrees of freedom of test statistics.

Only one trait locus @) is assumed to be considered in order to localize it on a
chromosome region until now. Suppose that there are multiple quantitative trait loci
(QTL) in the region. The regression equation in chapter IV can still be used in QTL
mapping. Besides, suppose that the trait value of interest is influenced by unlinked
trait loci in different regions. Then model proposed in chapter IV needs to be general-
ized to use markers from different regions in analysis (Hoh and Ott 2003). If multiple
trait loci are present, other issues such as epistasis are needed to be considered. For
estimation of proportion of sharing IBD, we follow the method proposed by Fulker
et al. (1995) and Alamsy and Blangero (1998). If there is LD between the trait and
markers, LD among markers would also be expected, and needs to be incorporated
in estimating IBD. However, it is not clear how to achieve them. This is a very in-

teresting and important research area for future study. Better estimated proportion
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of sharing IBD would lead to a fitted variance covariance structure which is a better
approximation of the true variance covariance structure. This would improve the

performance of the proposed models.
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APPENDIX A

Without loss of generality, assume that £ = 2 and n = 3 in Figure 1. Let T'M;
be the abbreviation of the “transmitted marker allele for child 1”7, and N M; be the
abbreviation of the “non-transmitted marker allele for child 1”7, from the heterozygous
mother M;M; in Figure 1. Similarly, we define the notations T'M;, NM;, i = 2, 3.
Denote A = (T'My = M;, NMy = M;,TMy = M;, NM, = M;). Let S be the state
where two offspring share two identical trait alleles x and @); by descent, and @); is
from the heterozygous father and )y is from the mother; Sgy;,- be the state where two
offspring share one identical trait allele ), by descent, and the other two alleles @),
and @), are not identical by descent; and Sgx,.;s be the state where two offspring share
no identical trait alleles by descent, and two alleles @);, Q) are from the heterozygous

father, and the other two alleles @y, @), are from the mother. Then

Yijij = [Z Z pin P(AN So) + Z Z Z Lk foier P (A N Sspar)
+ Z Z Z Z [t pes P(A D Sgkrls)} /(pip;/2) — (v — aiy)® + 04/2,

where
" 1—01—0 00
P(AN Swy) = 5(2hlipj?? 2hljp12§) = qk (hh'pj(l —0)* + hz;'pﬁz) /4
g 1—01—0 00
P(AN Ssprr) = 5 (QhkipjTT Qhkgsz 2)

+%’“(hlihﬁ + hyihy)20(1 — ) /4
= qqr (hkz‘pj(l - 0)2 + hkjpiQQ) /4 -+ Qk(hlz‘hrj + h”»hlj)e(l — 9)/4

P(AN Sops) = q"“q’" (hushsj + haihiy)20(1 — 0)/4 = qray (hushsj + haih)0(1 — 6) /4.




107

Similarly, denote B = (T'M; = M;, NMy = M;,TM; = M;, NM; = M;). We can

calculate the conditional covariance of offspring 1 and 3 in Figure 1

Yiisi = iy = Cov(yi,ys)
_ [Xk: Xl: p P(B N S7y) + zkj le Z pt ik P(B 0 Ssiay)
+> ) ZT: zs: fripirs P(B N SrilS)} /(pip;/2)
—(’i —lai,j)(’/ — i) + 0%/2,

where

P(B N S?kl) = %(2}112}?] + 2hljpl)9(1 — 9)/4 = (qk (hlipj + hljpl)e(l — 0)/4

P(B N SSklr) = q12QT <2hk@pj + 2hk]pz>€(1 — 9)/4
0>+ (1-0)
+q5’“(hlihrj + hnh,j)(él)

= qqr (hkipj + hkjpi)9(1 —0)/4

0? 1 —0)2

+qr(huihyj + hrihlj)—i—(S)
. 0% + (1 —6)?
P(BN o) = Lo (huihes + hsimj)ﬂl)
0% + (1 —0)*

= qrqr(hiihsj + hsihug) 3
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APPENDIX B

Assume that the marker locus and the trait locus are in linkage equilibrium, i.e.,
h,; = q,p; for all r,i. Then we have
2
aij = Y (Vtm)g=r+p=a
r=1
2 2
Jij = 03 + a?; + Z Z(l/ + s — oa)zqrqs = o

r=1s=1

Sijii = 22 a@e@l(L =02 +021/24 >3 prapterarigr /2
k l k l T
3Dttt @ @igs9(1 — 0) — (v — @)® + 08/2 = 5y,
k [ T S
Sigi = 22 @@ (L =00+ >3 tastnr qequgr /2
k l k l T

+ Z Z Z ZuklﬂrsquTQqu[62 + (1 — 9)2]/2 — (]/ — a)2 + 0?;/2 — Etd-
k I 17 s

Notice that «, 02,3, and ¥,y do not depend on subscripts i and j.
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APPENDIX C

Assume that the recombination fraction € ~ 0, i.e. there is tight linkage between
the trait locus and the marker. Then P(Q,M;, M;) ~ h,;p;. Therefore, we have
2
iy =Y (V)i /pi = o

r=1

2 2
o~ 03 + Ué + Z Z(l/ + lps — ai)quhri/pi = 03 + ‘7?; + Z? = Uz‘2-
r=1s=1

Note that o; and X? only depend on subscript i. Besides, the covariances ¥;;,; and

2j,ji can be approximated by

Yijij R [Z Spdahi >3 Nkl,uerIQThkz} /(2p) — (v — ;)® + 05/2 = %y
k l k l r

Sigi D000 twnattnr @i (huihng + hrihu;)
k l r

+ Z Z Z Z ,Ukl,UTSQer<hlihsj + hsihlj)} /(4p1pﬂ)
k L 7T s

—(v— ) (v —a;) +05/2=3;; = 5j.

Notice that ¥, ; only depends on subscript 7, but 3; ; = X, ; depends on both ¢ and j.
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APPENDIX D

Let TH denote abbreviation of “transmitted haplotype”. Then P(TH = Q,M;)
= (1 —0)h,; + 0q,p;. Notice that he; — gop; = —h1; + @1p; = —9;. Like Appendix A of

Fan, Floros and Xiong (2002), one may show that
= |E[Y|TH = QuM]P(TH = Q:M;) + E[Y|TH = Q:M]P(TH = Q;M,)| /p;

- (1 - 9) {(V + ,ul)hlz' + (V + ,LLQ)hQi] /pi + O

Therefore,
Bi —a
T - [(V + p1) b + (v + N2)h2i}/pi —[(v+ m)a + (v + p2)g]

= (Ml - M2)5z‘/pi.
To calculate the conditional variance, we first notice the conditional variances
oo = Var(Y[TQ = Q) = 02 + 05 + (per — i) a1 + (pna — p1x) g2, k = 1,2,
The conditional variance
2
ol = Var(Y|TM = M;) Z an + (v + g — ﬁl) |P(TH = Qi M,;)/p;.
For two different alleles M; and Mj, ¢ # j, the conditional covariance
Ei,jr = COV(Y&, }/QITMI = Mi,TMQ = MJ> = Ez],jz

Let Oz = (TMl = MZ‘,TMQ = Mz)



111

The probability of C; is P(Cj) = ;4 2pzp]22 +p?-1-1=pi(1+p;)/2. Let
S7rt, Ssrir and Sops be similar notations as those in Appendix A. Then
Yiir = Cov(Y1,Ya|TM, = M;, TMy = M)
= [Z Z 1 P(Ci N Szi) + Z Z Z e P(Ci O Sgiar)
+ZZZZN’MNT$ C mS9leS>}/P< ) (V—ﬁi)z—l—gé/Q,

where
—01—-40 040 1—-4086
P(CiN S) = (thz 5 5 T 26]11912 5T 2h12pzT§2>
= qk(hm —0)” + qpit® + 2huipi6(1 — 0)) /4
Q4 1—-601-06 06 01—40
P(C. — .
(C’L N SSklr) 9 [zhkl 9 9 + 2Qkpz2 9 + thlpzz 9 2}
0% + (1 —0)?
%k [Qhuhm—i_() + 2R @b (1 — 0) /4 + 2hyq.0(1 — 9)/4}
= g [Pi(1 = 0)” + qupit® + 2hxapi6(1 — 6)| /4
i [ Puiheil07 + (1= 0)%] + (hyiqy + huigr)0(1 — 0)] /4
QkQT ‘92 + (1 - 0)2
P(Ci0 Sokrts) = =5 [2hiihai———— + 2hyiqs0(1 — 0) /4 + 2hequ0(1 — 0) /4]

= Qkqr [hlihsi 0% + (1 — 0)%] + (hiigs + hsiq)0(1 — 9)}/4-

Assume that the marker M and the trait locus ) are in linkage equilibrium, i.e,

hyi = qp; for r=1,2,4=1,---,m. Then 3; = a, 0. = 0%, &, j, = ¥4q and

+(1—0)?+2p6(1 -6
zzr ZZNM%QZ ( ) 4 ( ) + Zzzuklﬂk’”q’f@qr/z
2(1+pi) E 1 T
62 + (1 —0)%p; +260(1 — 6
+ZZZZMMMT5%CHW]3[ ( 2()1va) ( )_(l/—ﬁi)2+0'é‘/2.
k 1l T s 7

Assume that there is tight linkage between the trait locus and the marker, i.e., § ~ 0.
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~ 2 o 2 ~
Then g; ~ o4, o o7, Xijr ~ X, ; and

. N
wr

Vi R~ [Z S pdiach + 3> i [ b 4 qehuihed)
ko1 ko1 or

+ Z Z Z Z Nk:lﬂrsq}f(bhlihsi} /[4P(Cz>] - (V - ai)2 + Ué/Q

kL T
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APPENDIX E

The loglikelihood function of model (2.5) is | = —2log (27) — 3 X1_; log || —
%Zle (yj — Xﬁ)TF i 1(@ — X{y). Assume that the data consist of both singleton
families and sib-pair families. Suppose there are k; singleton offspring who receive
allele M; from their heterozygous parents, k;; (i = 1,2,---,m) sib pairs in each of
them both sibs receive allele M; from their heterozygous parents, and k;; = kj;, @ # j
sib pairs in each of them one sib receives allele M; from his/her heterozygous parent
and the other receives allele M; from the same heterozygous parent.

Let us denote p™ = (p1 = 0},p2 = 05, . pm = Sy Pl = 211, " Pom =
oy P2ma1 = 51,2, Pam—1 = Sl s P2amtm(m—1)/2 = Sm—1,m). We may get the

following expected second partial derivatives for i, j,k =1,--- ,m,1 # j,i # j,j # k

o XT'X,E o1y _
3782?7 0?1 <878£T) kil(07)? 4+ %3] kij(03)?
B(52) = Blo@p) = s (oo mp S o sp
2(5) = Blozg) =~ Tapr-sat B oss) = i
 (ga) = Pl = st e
E(apza;;u) B E((%?;lzi’i N [(22]?;0—?22@;]2’ aﬂ?;lzj,j):E(&f;;lEm):O’
() = E ) ~ e B gses) ~ E () =0
E(ama;lzw) = E(%):E(azizzm):o,(z,j)#(k,l).

Assume that k;, k;;, kij — o00,4,j = 1,---,m. To make it simple, assume k,,, =

min{k;, ki, ki;}. Then we can show that — 63;7 and — T E ( Br?;;l) T) are positive
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definite. Now we are in a position to use the method in Miller (1977) and Pinheiro
(1994) according to the theory of Weiss (1971, 1973). Actually, taking k,,,, to replace
v; we can see that the key condition, i.e., Assumption 3.1.7 of Pinheiro (1994), p28,
holds. Then by the same arguments in Pinheiro (1994), Chapter 3, we can show that
VEmm? converges to normal in distribution. This implies that the test statistic Fjq
is asymptotically F,,,_1 ,—m, by considering the denominator of Fje; as the estimate of
mean squared error, which is independent of the numerator of Fj; (Pinheiro 1994,
pp28-29; Graybill 1976).

In above discussion, we assume that there are sufficiently large data which include

both trio families and sib-pair families. In addition, suppose we have nuclear families

2
L0l and —

. . 2
with any number children. We can show that — — 1 OL_) are
k’fﬂ m 6787 k'"L”Vl apap

positive definite. Then, we can keep on using the method of Pinherio (1994), chap-
ters 2-3, to show that v/k,.,»7y is asymptotically normal. Hence, the statistic Fj; is

asymptotically F'(m — 1,n — m)-distributed.
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If n; = 1 for each family, then there is only one child in each family. Let

ki,i =1,2,---,m be the number of offspring who receive allele M; from their heterozy-

gous parents. Let [ be identity £ x k matrix. The design matrix and the variance-

1 0

1 0

0 1
covariance matrix can be written as X =

0 1

0 0

0 0

Then we have XTI X = diag(ky /o2, ks /02, - --

0

1

,I = diag(o?l},,- -,

O'rznfkm).

km/02). Using a fact of inverse ma-

trix (A+ab”) ' =A"1 — (A7 1a)(b" A7) /(1 + 0" A ta), we can calculate

otk 0
(HXT'X]'HT) =
i 0 02 [km
kQ/U% 0
0 oo ko2

km/arzn

-1

(k2/0-%7"'7km/0-72n)
% "‘+§T: ’

Therefore, the non-centrality parameter Apet singteton = (HY)"[H(XT ' X)1HT|"'H

= Y7 — ai)?hifo? — [Sa(ar — ag)ki/o?] [0 ki/o?).
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APPENDIX G

Such as in Appendix F, let us denote the variance-covariance matrix of the -7 | k;
singleton offspring by I'y, and the related design matrix by X;. Now let I'; denote the
variance-covariance matrix of the > ", k;; sib-pairs, in each of them both sibs receive
the same allele from their heterozygous parents, and X, the related design matrix.
Then the form of Xj is similar to X; given in Appendix F with different numbers of

rows and I'y =

diag 0% 2171 e O-% 2171 ce 0-%1 Em’m ce 0727L 2m,m
21’1 U% , ’ 2171 0% ’ ’ Em,m 072n ’ ’ Em,m Ugn '

Let I'3 denote the variance-covariance matrix of the >71", 37, ; k;; sib pairs, in
each of them one sib receives one allele (i.e., M;,i = 1,2,--- m, respectively) from
his/her heterozygous parent and the other receives the other allele (i.e., M;,j #i,j =
1,2,---,m, respectively) from the same heterozygous parent, and X3 be the related

design matrix. The variance-covariance matrix I3 is

2 2 2 2
. g1 Z1,2 o7 Z1,2 Om—1 mel,m Om—1 mel,m
diag ) 2 sty E 2 y Ty 2 sty 2 .
1,2 (5] 1,2 5 Em—l,'m Om 2:m—l,m O
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10 0 0
0 1 0 O
1 0 0 0
0 1 0 O
The related design matrix is X3 = | : : --- : i |. In the same manner
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1
of Appendix F, we may obtain that
ki k k
-1 . 1 2 m
X1F1 X1 = dlag (0’%’0’%”0‘3)@)
_ . 2k 2kao 2kpm,
XJr'X, = d e :
272 8 <0%+21,1703+22,2’ 02, 4+ Zm

After some calculation, one may obtain that

S ko2 _ k12¥10 . k1imZ1,m
i#1 afaf—zii J%U%—E%z 010'2 22
- leZl% Zz;ﬁQ 2k§i0i22 Tt k2?22 ¥
X;)—Fngg — 0102 2y 030; _22,1‘ 020 5 m
_ kimX1m k2m¥2.m Y kmio?
o202, 22 T o202, 22 i#m J?nU?—an,i



118

APPENDIX H

To simplify notations, we omit subscripts ¢j from Ao, mija, TijB, Dija, Aijp in

the following appendices H, I, and J. Taking the variance-covariance for equation

(3.6), we have the following matrix equation to calculate the coefficients

(ma,ma)  (7,ma) (Aa,ma) (Ap,7a) Ba (Aq,ma)
(ma,7m8) (7,7m8) (Aa,7B) (Ap,7B) Bp (A, m5)

Cov = Cov (H.1)
(ma,An) (m3,84) (As,A4) (A, Ax) TA (AQ, Ay)
(ma,Ap) (75,Ap) (Aa,Ap) (Ap,Ap)) \rp (Aq, Ap)

From Elston and Keats (1985) and Almasy and Blangero (1998), we have the following

Cov(ma,ma) = Cov(mp,ng)=1/8,Cov(mg,m4) = (1— 20AB)2/8,
Cov(A4,Ayx) = Cov(Ap,Ap) = fG,Cov(AB,AA) = 136p(AA,AB),

3 3
COV(AA,AQ> = 16 (AA,AQ) COV(AQ,AB> 16,0(AQ,AB),

where p(A;, Aj) =1 —220;; + 262 — 220% 4+ 2067,. In Appendix I, we will show that

Cov(Aa,ma) = Cov(Ap,mp) =1/8,Cov(Ap,ma) = Cov(Au,75) = (1 —2045)?/8,

COV(AQ, 7TA) = (1 — 29AQ)2/8, COV(AQ, 7TB) = (1 — 29@3)2/8. (HQ)

Plugging the above results into the equation (H.1), we have a sub-matrix block equa-

tion
Ba (1 —204q)
A A Or (1 —20gp)?
(A B) ra || 30(2a, Ag)/2 |
B 3p(Aq, Ap)/2
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where
A:( 1 (1—29AB)2),B:3( 1 p(AA,AB)).
(1 —204p)> 1 2\ p(A4,Ap) 1
Therefore, we have from Harville (1997)
fa (1-2040)
B A AN (1 -20g8)?
| (A B) 30(Aa A0) 2
B 3p(Ag, Ap)/2

(1 20.40)>

A+ (B-A)1t —(B-A (1—20gp)
( —(B-A)"  (B-A) ) 3p(Aa,Aq)/2
3p(Aq: Ap)/2

2

The equation 3p(A;,A;)/2 — (1 —26;;)* = (1 — 80, + 249% — 329% + 169;1]»)/2 =
(1 —26,;)*/2 leads to

(TA) » <3P(AA7 Ag)/2—(1 - 29AQ)2)
— (B-A) |
B 30(Aq, Ap)/2 = (1 - 20gp)*

1 (1=204p)" 29AB) —1 , (1-2040)*
2
B ( (1-204p)" 1 ) ((129623))
2 2
(1= 2040)* — (1 — 2005)*(1 — 2045)*
(1= 2005)" — (1 — 2040)*(1 — 2045)" )

11— 1—29AB

Moreover, we have
(ﬁA) _ e ((1 — 29,4@)2) (B (Bp(AA, Ag)/2—(1— 29AQ>2) |
BB (1 - 29@3)2 3p<AQ, AB)/2 _ (1 _ 29@3)2
/67TA A
- (/67'('3) - (T’B> ‘

Hence, we have shown the first four coefficients in (3.7) are valid.
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APPENDIX I

Consider a sib-pair with trait values y; and y;. First, we have the following
equation from Haseman (1970) (also see Amos 1994, equation (5) on p537 or Amos

et al. 1989, p437)

1 1
Cov(yi, yjlma, Aa) = §Ué~a + Zaéd + 05+ (1= Ya)og +ba(a — 1)y,

+[—(1 = 2¢a)o; — (1 = 2¢a)°0glma + (1 — 204) 00 A u.

Comparing the above equation with Cov(y;, y;|ma, As) = ﬂQaza + AQagd - %aéa +

1
4

o2, + o2, we find
Ag=(1—=1a)—[(1—=20a) + (1 —2¢04)*|ma + (1 — 2t04)° A4 (L.1)
Taking covariances on both sides of above equation with A4, we get

COV(AQ, AA) = —[(1 - 21/),4) + (1 - 2¢A)2] COV(?TA, AA) + (1 — 2@/],4)2 COV(AA, AA)

Replacing Cov(Ag, Ax) = p(As, Ag) and Cov(As, Ay) = £ in the above equa-

tion (Almasy and Blangero 1998), we find that Cov(A4,m4) = 1/8. Then taking

covariance of both sides of equation (I.1) with 74, we find

Cov(Ag,ma) = —[(1—2t4)+ (1 —2¢4)?] Var(ra) + (1 — 21h4)*> Cov(Aa, 74)

= (1 204)/8 = (1 - 20.0)°/8.

Similarly, we can show the other equations in (H.2).
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To calculate the intercept « in (3.7), we consider the joint distribution of mg, 74
and 7p for a sib-pair. Assume that there is no interference for disjoint chromosome

regions. Then

P(Tija = ia,Tijq = iQ, TijB = iB)
= P(mija = ia,mijQ = iQ) P(mijp = iB|Tija = ia, Tijq = iq) (J.1)

= P(mija = ialmijq = iq) P(mijq = iQ) P(mijs = islmijq = iq)-

From Haseman and Elston (1972), Table IV, we construct the joint distribution of
TijQ, mija and m;;p by equation (J.1); the results are presented in Table II. Consider

a sib-pair with trait values y; and y;. Then from Table II we have

1 1
Cov(yi, yjlma = 0,75 = 0) — baéa + Zo-é*d + 03}
2

o
= (O‘sa + Usd)P(ﬂ'Q =1lra=0,75=0) + ;aP(TFQ =1/2|7r4 =0,75 =0)

_ (1 —4a)(1 —1p) o2 4 (1 —4a)*(1 —¢p)* 52
Vatp+ (1 —va) (1 —vp) % avp+ (1 —va)(1 — )2 9

Therefore, we have the intercept « in (3.7) since it is the coefficient of o7, in above

equation.



122

APPENDIX K

2 2
For simplicity, let us assume o2 = 1 and define K = % + % + o2, From Table

IT and equation (3.10), we may calculate

Yap g VavE
st + (1 — pa)(1 — pp)]?

_ 2
I ryv e T T

Tou Yatp Ya(l —¢5)
O =5 [wAwB T — 01 —vm) | Gall—vm) + (1 wa
Vivp(1l —vp) LK
[Wabp + (1 = va)(1 —¥p)][Ya(l —¥p) + (1 — ¥a)p]
G = o Ya(l —¥p) e P3(1 = ¢p)?
’ Pl —1pp) + (1 —va)s ' [ha(l —¥p) + (1 — Pa)s)
Cy = 0—92a|: Yatp n (1 —9a)¥p }
2 Wap+ (1 —va)(1—=vp)  Ya(l —4p)+ (1 —va)Yp
Ya(l —Ya)vp
[batp + (1 —¥a)(1 — ¥p)l[a(l —¥p) + (1 —1a)¥s]
O = %4a g 2¢4(1 = ¢Ya)¥p(1 - ¢¥p)
2 9 ahp + (1= pa)(1 — ¢p)2 + [ba(l — ¥p) + (1 — a)Yp]
Cho = 0-92(1[ (1 —va)(1 —¥p) n Ya(l —¢p) }
2 Wpap+ (1 —=va)(1 —vp)  Ya(l —vp)+(1—va)Ys
Va(l —va)(1 - ¢¥p)?
[hatp + (1 —¥a)(1 — ¥p)l[va(l —¥p) + (1 — 1a) 5]
Cow = o (1 —va)vs g (1 —va)*p
a1 —vp) + (1 —va)p  “[a(l —vp) + (1 —ha)s)
Cop = Usa[ L—va)l—¥s) | (1 —va)vp ]
2 Wap+ (1 —va)1—vp)  Ya(l —vp)+ (1 —va)vs
(1 —1a)*Yp(l —1p)
[Wabp + (1 = va)(1 = ¥p)][Ya(l —¥p) + (1 — ¥a)p]
(1 —9a)(1 —¢p) 5 (1—94)*(1 —¢p)°

_ 2
COO = 0 +Ugd

Y 9ap + (1 —1a)(1 — ¥p)

+ K

2
+Ugd

+ K

+0§d + K

2+K

+ K

2
+agd

2+K

+o2, + K

Gatos + (L— o)L —dmP T
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For each y; of the n individuals, ¥; = 0% and X; = (1 w4 B 2ai 2Bi),0 =

1,2,---,n. From formulas in Fan and Xiong (2002), Appendix A, we show that

1 1 X 1
N XX, = — Y XTX; ~ —diag(1, Va4, Vp), L.1
; it} no ; 7 o2 Za’g( A D) ( )

n .z

where V4 and Vp are additive and dominant variance-covariance matrices of (3.3). For

L pi2
each of the m sib-pairs, the variance-covariance matrix ¥; = o (

Loy oy 2 zféi) (Xz-
Loaly oy an zp) X
1 —pP12
Notice 3; ! = [072/(1—p%,)] . From Fan and Xiong (2003), Appendix
—p12 1
C, we have E[X] X;s] = E[XLX1| = diag(1,V4/2,Vp/4). By above formulas and

) and the
P12 1

modelmatrixXi:( ),@':n+1,2,-~-,n+m.

the formulas in Fan and Xiong (2002), Appendix A, we have the following

1 n+m
— ) XENTXim s
m, (1 —piz)o

|diag(1,Va, V) — pradiag(1, Va/2,Vp/4)]. (L.2)

1 pi2 pi3

For each of the k tri-sibships, the variance-covariance matrix 3; = 02 | p1a 1 pas

A _ A , Pz pa3 1
Loaly o 24 s X;

and the model matrix X; = | 1 x% x%)Q z% zg% =X |, i=n+m+
Loaly ay oz X;

1,2,---,n+m+k. Notice X, = [072/C4]

- P%g P13P23 — P12 P12P23 — P13
P13P23 — P12 1—p2, P12p13 — P23 |,

P12P23 — P13 P12P13 — P23 1—pf
where C3 = 1 — p2y — p2s — p2s + 2p12p13p23. From Fan and Xiong (2003), Appendix C,
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we have E [X] X] = E[X], Xy] = diag(1,Va/2,Vp/4),j,k = 1,2,3,5 # k. Denote
Cs1 = 3 — ply — pls — P33, and Csz = 2[p1ap13 + p1apas + pr3pas — prz — p1s — pas). By
the above formulas, constants, and the formulas in Fan and Xiong (2002), Appendix

A, we have

1 n+m-+k ' -
Ty XEXim 5 |Cardiag(1,Va, Vi) + Caadiag(1,Va/2, Vi /4)|.  (L.3)
i=n+m+1 30

Combine the n individuals, m sib-pairs, and k tri-sibships. Denote

ar = n+2m(l—pl,) (1 — pr12) + k[Cs1 + Csy] /Cs,
s = N + 2m(1 — p%Q)il(l — p12/2) + k[Cgl + 032/2]/03, <L4)

az = n+2m(l—piy) " (1= pia/4) + k[Co1 + Ca /4] / Cs.

Then equations (P.1), (P.3) and (L.3) lead to equation (3.8).
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Taking variance-covariance among w;;, z;;, y; of regression (4.2) leads to the fol-

lowing variance-covariance equations

a (yi,xi1)
a2 (yiaxiQ)
(i1, xi1) (w2, 261) -+ (Tak,2a1)  (zin,xa1) -0 (Zik, T41)
(i1, wi2)  (Tiz, zi2) -+ @ik, zi2)  (zi,®i2) - (Zik, Ti2) : :
COV . . . . . g = COV (yi» Tik) M.l)
: : : : : 51 (i, zi1)
(i1, 2zik)  (Ti2, zik) 0 (Taks 2zik)  (zin, zik) o0 (Ziks Zik) )
Ok (i, zik)

In a similar way as Appendix A, Fan and Xiong (2002), the following expecta-
tions, variance and covariances can be derived accordingly: Fz;; = 0, FEz; = 0,
E(.Q?ZQ]) = Cov(xij,:v,-j) = QPMJPmJ,E(Z%) = COV(Zi]’,ZU) = P]%/[jpyijaE(l‘ijxil) =
COV(J]Z'J',ZL’H) = 2DMJ-MZ, E(szzzl) = COV(Zij,ZZ'l> = D%/[le, E(I”le) = COV(ZL’ij,ZZ'l) =
O, COV(yi,iL'ij) = E(yl.f”) = 2DMjQC(Q, COV(yi7 Zij) = E(ylzw) = D%%Q(SQ for

J,l=1,--- k,j #l. Plugging the above quantities into (M.1) gives

2PM1 Pm1 2D1Wl My ¢ 2D1\41 My, 0 s 0 a1 2D]y[1QOLQ
2Dny vy, 2Dmiony, 0 2P, Py, ) 0 , 20 ap | | 2Dmpaq
0 0 0 Py Py o Dy, 0 | Dy, gd%a
: : : : e : =
0 0 0 D, o Pir Pa Ok D3y g%

Therefore, the coefficients of (4.3) are being derived.
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To simplify notations, we omit subscripts ¢j from 70, Tijnn -+, Tijas,, Dijary -+ Dija,
in the appendices B and C. Taking variance-covariance among mq, 7y, , ¥; of equation

(4.4) leads to

(7TM177TM1) (WM177TM2> T (TI—M177TMI€) BNM1 (WQ77TM1)
(T‘-Ml ’ 7TM2) (7TM27 7TM2> e <7TM27 ﬂ-Mk) 57TM2 (ﬂ-Qv 7TM2)

Cov . = Cov . (N.1)
<7TM177TMk) <7TM277TMk) T (ﬂ-Mk77TMk) BTer (ﬂ—Qvﬂ-Mk>

From Elston and Keats (1985) and Almasy and Blangero (1998), we have the following

Cov(my,,mar,) = 1/8,i=1,--- k,
Cov(ma,,mag,) = (1—=2000,)°/8,i#j=1,--+,k,

Cov(mg,mar,) = (1—20a,0)%/8,i=1,---, k.

Plugging above quantities into equation(N.1) gives

1 ) (1—206,01,)% -+ (1— 29Mle)§ Brdry (1—260h1,0)2
(1 _29M1M2) 1 (1 —QeMng) :87r1\/12 (1 7291\42@)2

ool =

1
8

(1 =200, 01,)% (1 —20p1500,,)% -+ 1 Bry, (1—20p,0)?
which leads to

Brm, 1 (1 =206, 015)% -+ (1= 200, 01,,)3 -1 (1—-20n,0)?
By (1= 20n1, m5)° 1 coo (1= 20ns50,, )2 (1—20p1,0)2

By, (1=20p,m,)2 (1 —20p1500,)% - 1 (1—20p,0)>
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Taking variance-covariance among Aq, may,, Ay, of equation (4.5) leads to

Cov

= Cov

<7TM177TM1>

<7TM177TMk)

(T‘-M17 A1\/[1)

(WM17 AMk)
(Ag, Tar,)

(AQv ﬂ.Mk)
(Aq,Aw,)

(AQ> AMk)

<7TM/977TM1> (AM177TM1) (AMk77TM1) ﬁMl
(ﬂ-Mk’Ter) (AM177TMI@) (AMk’WMk) ﬂMk
(T‘-MIN AMI) (AMN AMI) (AMk7 AMI) My
(T‘-MIN AMk) (AM17 AMk) (AMIN AMk) T My,
(0.1)

As in Appendix N, the following covariances are from Elston and Keats (1985), Al-

masy and Blangero (1998) and Fan and Jung (2003)

COV(AMN ﬂ-Mi) =

COV(AMZ., ﬂ—Mj) =

COV(AMN AMz) =

COV(AM“ AM]) =

Cov/(

AQ’WMi) =

COV<AQa AM;) =

1/8,i=1,---,k,

COV(AMJW’NMJ = (1 - 29M1M])2/8727.7 =1, '7kai 7&]7
3
T
3

Ep(AMi’AM]’)JiMj - 1""7k7i 7é]

(1 —20h,0)%/8i =1, k,

3 )
Ep(AQ’ Apy,),i=1,---k,

1, k,



128

where p(A, Ay) =1 — E—Gﬁij + %ij — %6’% + ?Hfj. Plugging the above results into

the equation (O.1), we have a sub-matrix block equation

ﬁM1 (1 - 29M1Q>2
A A\ | By, (1 —2011,0)?
A B) | ra | | 3080.80)/2 |
"M, 3p(An, Ag)/2
where
1 (1 =20hr20,)* -+ (1= 20h01,)°
(1 - 291\/111\42>2 1 e (1 - 29M2Mk)2
A = )
(1 =20a00)* (1= 200,00,)* - 1
1 p(AMnAMz) p(AM17AMk)
o 3| PG Ban) 1 o p(Ban, Ay,
9 . .
p(AMNAMk) p(AMzaAMk) Y 1
Therefore, we have from Harville (1997) that
B, (1= 20a,0)°
ﬁMk A A - (1 - 29MkQ)2
mo | \A B) | 39w 802

M, 3p(An,, Ag)/2
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(1 —20h,0)?

(Al +(B-A)" —(B- A)1> (1 —20a,0)°
3p(AM¢7AQ)/2

3p(AMk7 AQ)/2
The equation 3p(A;, A;)/2 — (1 — 20,;)2 = (1 — 80;; + 2462 — 3263 + 160%)/2 =
(1 —26;;)*/2 leads to

My 3p(Ansy, Ag) /2 — (1 —20),0)?
T My Bp(AMm AQ)/2 - (1 - 29M2Q)2
= (B—A)"!
T My, Bp(AMk7 AQ)/2 - (1 - 29MkQ>2
1 (1 - 29M1M2)4 T (1 - 29M1Mk)4 - (1 - 291\/[1@)4
(1 —200,00,)" 1 o (1= 2000,)" (1 —20a0)*
(1—200,00,)" (1= 2001,00,)" - 1 (1 —20a,0)*

Moreover, we have

ﬂMl (1 - 29M1Q)2 3P(AM1’ AQ)/2 - (1 - 20M1Q)2
B, (1 = 20aq)° 3p(Any; Dg) /2 — (1 = 20h1,0)°
. = A7 . —(B-A)" .
ﬁMk (1 - 29MkQ)2 3p(AMk’ AQ)/2 - (1 - 20MkQ)2
/87TM1 T'rn

/BWMQ TMQ

@er 'y,
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To derive ay,as,as in approximation (4.6), we assume three sub-samples of a
population: n individuals, m trio families each has both parents and a single child,

and s nuclear families each has both parents and two offspring.

(a) For each y; of the n individuals, 3; = 0% and X; = (1,241, , Tig, Zit,  * * 5 Zik), 0 =
1,---,n. When the sample size n of individuals is large, the large number law leads
to

n i1 Li2 o Tk Zil T Zik
2
T T Tigix - Tiklql ATy 0 Zikdal
1, 1 & 9
-X'X = - Z Lig  Tiliz Ty o Tikli2 Ziadi2 o Rikdi2
n n
=1
2
ik Tilkik  Ti2Zik o TikRik  Zil%ik Zik
2
Exy Exj Expry -+ FErgray FEzprg - Ezgaa
~ 2
~ Exyp Erjprg ECEZQ o Brgxp Ezpxg oo Ezgxp
2
Ezy FExpziy FErpzy - Ergze FEzazg - EZZ-k

= dzag(l, VA7 VD)
Therefore, we have the following approximation
1iXTz—1X ! iXTX L i (1,V4, Vp) (P.1)
- ] Y ; N R aa ’ ) ) .
n ~ i < no2 P % o2 g Ay VD

where V4 and Vp are additive and dominant variance-covariance matrices defined by

(77).
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(b) For i-th trio family, let (yfi, Yms, yi1)™ be the trait values, and X; = (X, Xoni, Xin)™

be the related model matrix, i =n+1,---,n + m. In the same way as Appendix A
of Fan and Xiong (2003), the covariance matrix between parents and their offspring

can be shown to be

(P.2)

VA/2 Ok
E X;c-lXﬂ == E X;-uXﬂ - )

Or Oy

where O is zero k x k matrix. For each of the m trio families, the variance-

L 0 po
covariance matrix ¥; = 02| 0 1 po |. The inverse matrix of 3; is X o
) ) po po 1
1= Po —Po
W pi 1—p3 —po | . By above formulae, we can show the following
—Po —Po 1
3 —4pg 0 0
L nin XTSI a2 0 (3-2 202)V, 0 (P.3)
- IXTX & — 2P0 — 4Pp)VA :
m,; (1 —2p5)0? °
0 0 (3 —2p3)Vp

(c) For the i-th family which composes of both parents and two offspring, let
(Yfi, Ymis Yir, Yiz)” be the trait values, and X; = (X, Xy, Xi1, Xi2)” be the related
model matrix, i =n+m+1,---,n+ m+ s. In the same way as Appendix C of Fan

and Xiong (2003), it can be shown that

E X/ X = . (P.4)
Or Vp/4
For each of the s families, the inverse variance-covariance matrix
14 2poC 2poC —-C —C
- 1 2poC 14 2poC —-C —-C P5)
1 C(1-2p) C(p12—2p2) '
—C —C Po(l—plz) - Po(l—ng
—-C —C _ C(p12—203) C(1-2p3)

po(1—p12) po(1—p12)
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where C' = po(1 — p12)/[(1 — 2p2)* — (p12 — 2p3)?]. Using (P.2), (P.4) and (P.5), we
can show
1 n+m-+s
— Z XZ—E,L_lXZ ~ diag(dll, deVA, d44VD) (PG)
S i=n+m+1
where the constants are given by dy; = 2[1+4Cpg—4C+C/pol, daa = 2+4C(po—1)+
C(2=p12=203)/[po(1=p12)], daa = 2(14+2Cpo) +C[4(1=2p5) — (p12—205)] / [2p0 (1 —p12)]-
Combining the n individuals, m trio families, and s families with two offspring, the

equations (P.1), (P.3) and (P.6) lead to /4" X737 X; ~ diag(ay, a;Va, a3Vp)/o?,

where

ay = n+m(l—2p3)"1(3—4p) + sdyy,
az = n+m(l—2p0)7" (3= 2po — 2p5) + sda, (P.7)

a3 = n-+ m(l - 2,0(2))—1(3 - 2pg) + Sd44.



133

APPENDIX Q

Using (P.2) and (P.4), we can show approximation (4.7). The constants b; and

by are given by

142 142 142
bi = Y i+ (st rse) F Oes o Fv2ua2) F O DL s
= h=3 j=h+1

I+2 +2 142

by = E'ij+z > /2. (Q.1)

h=3 j=h+1



134

VITA

Jeesun Jung was born in Busan, Korea on September 7, 1972. She is the second
daughter of Hongsuk Jung and Kunhae Kim. She graduated from Inje University in
Kimhae, Korea in February 1995 with a Bachelor of Science degree in statistics. On
August 1998, she received a Master of Art degree in statistics under the supervision
of Dr. Sangun Yun from Yonsei University in Seoul, Korea. She completed her Ph.D.
in Statistics at Texas A&M University in August 2004. Her speciality is statistical
genetics focused on quantitative trait loci mapping.

Her permanent address is :

34-17 Yonji Dong Busanjin Gu

Busan, Republic of Korea





