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ABSTRACT

High Resolution Linkage and Association Study

of Quantitative Trait Loci. (August 2004 )

Jeesun Jung , B.S., Inje University, Korea;

M.A., Yonsei University, Korea

Chair of Advisory Committee: Dr. Ruzong Fan

As a large number of single nucleotide polymorphisms (SNPs) and micro-

satellite markers are available, high resolution mapping employing multiple markers or

multiple allele markers is an important step to identify quantitative trait locus (QTL)

of complex human disease. For many complex diseases, quantitative phenotype values

contain more information than dichotomous traits do.

Much research has been done on conducting high resolution mapping using in-

formation of linkage and linkage disequilibrium. The most commonly employed ap-

proaches for mapping QTL are pedigree-based linkage analysis and population-based

association analysis. As one of the methods dealing with multiple alleles markers,

mixed models are developed to work out family-based association study with the in-

formation of transmitted allele and nontransmitted allele from one parent to offspring.

For multiple markers, variance component models are proposed to perform associ-

ation study and linkage analysis simultaneously. Linkage analysis provides suggestive

linkage based on a broad chromosome region and is robust to population admixtures.

One the other hand, allelic association due to linkage disequilibrium (LD) usually

operates over very short genetic distance, but is affected by population stratification.

Combining both approaches plays a synergistic role in overcoming their limitations

and in increasing the efficiency and effectiveness of gene mapping.
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1, 2, 3, 4, i 6= j; for less favorable case (Graph II and Graph IV),

q1 = 0.2, PMi
= 0.8, DMiMj

= 0.0, DMiQ = 0.03, i, j = 1, 2, 3, 4, i 6=
j. In addition, the familial effect variance σ2

H = 0.1. . . . . . . . . . 88



1

CHAPTER I

INTRODUCTION

1.1. General Description of Genetic Mapping

There have been lots of efforts to develop methodologies in order to find locations

of Quantitative Trait Loci (QTL). For many human complex diseases, quantitative

phenotypic values contain more information than dichotomous traits do. They can

provide effective descriptions of diseases such as asthma, type II diabetes, learning

difficulties, and osteoporosis. Quantitative trait value is affected by more than one

gene as well as by environment effect. With this reason, it is not easy to localize

QTL on chromosome. The most commonly employed approaches for mapping QTL

of human complex diseases are pedigree-based linkage analysis and population-based

association study.

1.1.1. Transmission Disequilibrium Test

Transmission Disequilibrium Test (TDT) was first introduced by Spielman et al.

(1993) to test the presence of both linkage and linkage disequilibrium (LD) between

a marker and putative disease locus when the marker locus and the hypothetical

disease locus are linked or are in linkage disequilibrium. The TDT, as a model free

method, is based on the unequal probability of transmission of different marker allele

from parents to the affected offspring. This unequal pattern of transmission gives

the evidence that the marker and disease locus are tightly linked or in LD. With the

concept, lots of methods have been developed to test whether a marker allele exhibits

The format and style of this dissertation follows that of Biometrics.
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transmission disequilibrium with a disease. But there are several possible drawbacks

of TDT. It is positive only if both linkage and linkage disequilibrium are present.

When the sibship observed are related, it is difficult to find out if there is evidence

for linkage disequilibrium in addition to linkage.

1.1.2. Linkage Analysis

The most widely used method, linkage analysis, is developed from the methodology

of Haseman and Elston (1972), as a family-based method. Linkage analysis exploits

sharing allele identical-by-descent (IBD) which is a measure of genetic similarity be-

tween pairs of relatives. IBD is a function of recombination fraction which is a measure

of genetic distance. The idea of linkage analysis is that the smaller the amount of re-

combinations observed between genes, i.e. the more tightly linked they are, the more

possible they lie on a chromosome. Using the idea, lots of models such as variance

component model, Haseman and Elston method, have been proposed to conduct link-

age analysis. However, it is difficult to detect recombination events between closely

spaced(< 2.5cM) loci since there is a limited number of meiosis occurring. Therefore,

linkage analysis is usually proper for broad chromosome region mapping(≤ 10cM),

but is not appropriate for high resolution mapping(≤ 2.5cM).

1.1.3. Linkage Disequilibrium Analysis

The other popular mapping tool is association analysis due to linkage disequilibrium

that is a tendency of alleles to be inherited together more often than would be ex-

pected under random segregation. It is also called linkage disequilibrium mapping

(LDM). LD mapping is based on both population data and pedigree data; it uses

historical recombination events between genetic loci when non-random association

of alleles at genetic loci was introduced into a population. LD can work over short
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map distances, and can increase mapping precision in high resolution mapping. How-

ever the LD mapping largely depends on the level of LD, and its power to detect

the putative QTL decays rapidly as the distance between the marker and putative

QTL increases. Therefore, the allelic association study is useful to operate only over

very short distance of loci. The most serious disadvantage is that the level of LD is

sensitive to population stratification, although LD mapping can increase resolution

in dissecting genetic traits when the association between markers and trait loci is

introduced by events such as mutations at trait.

1.2. Literature Review

The Transmission Disequilibrium Test (TDT) developed by Spielman et al, (1993) is

a powerful family-based test of linkage and a test of association. Sham and Curtis

(1995) derived transmission probabilities for a logistic regression model with a multi-

allele marker locus linked to a single disease locus. Allison (1997) extended the TDT

method to quantitative traits by investigating the difference between average quan-

titative trait values of offspring with different alleles transmitted from heterozygous

parents. Rabinowitz (1997) developed the TDT without parametric assumptions on

the distribution of the quantitative traits. Xiong et al. (1998) generalized TDT which

is allowed for multi-allelic loci. A disadvantage of all TDT methods is that they can

detect linkage between the marker locus and the disease trait only if there is an asso-

ciation between the disease locus and alleles at the linked locus. George et al. (1999)

proposed a regression-based TDT method which is based on regressing the trait on

the parental transmission of a marker allele with no restriction on either the family

structure sampled or the affected status of individuals in the pedigree. Zhu and El-

ston (2000,2001) also developed a TDT method for quantitative traits by defining a
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linear transformation. Fan et al. (2002) explored linear regression models to detect

linkage in the presence of association between a multi-allele locus and a disease locus

for trio families. The methods are not valid for general nuclear families with more

than one offspring, because they do not consider the correlation of offspring’s trait

values which are not independent. Fan and Xiong (2003) proposed mixed model to

perform linkage and association studies for nuclear families with any number of off-

spring. The mean structure and variance-covariance structures in the mixed model

are applied for bi-allele markers. Fan and Jung (2003) extended the mixed model to

use a multiple alleles marker.

One of the best known approaches of sib-pair analysis is Haseman and Elston

method (1972) which was developed to detect linkage between a quantitative trait

and a marker. Linkage approach of Haseman and Elston (1972) exploited sharing

allele identical-by-decent (IBD) to carry out regression of the squared trait differ-

ences of trait values between sib pairs. Haseman and Elston method (1972) was

extended to allow all pedigree members (Amos et al., 1989). Amos (1994) developed

a mixed-effects variance components approach for evaluating covariate effects, as well

as evidence for genetic linkage to a single trait-affecting locus from pedigrees.

A simple interval-mapping approach to linkage analysis of quantitative traits,

based on the sib-pair method of Haseman and Elston (1972), was proposed by Fulker

and Cardon (1994). This approach provided not only useful information regarding the

location of QTL, but also the valuable improvement in power over that of Haseman

and Elston. The sib-pair interval-mapping procedure of Fulker and Cardon (1994)

is extended to take account of all available markers information simultaneously on a

chromosome (Fulker et al., 1995). The multipoint interval mapping increases power

in dense mapping and is more accurate under conditions of variable marker informa-

tion. Almasy and Blangero (1998) carried out multipoint mapping based on general
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pedigrees. The variance component model proposed by Almasy and Blangero (1998)

is more powerful than Haseman-Elston regression. Pratt et al. (2000) proposed vari-

ance component model that accounts for both additive and dominant variances to

calculate covariance of trait between relatives in an exact multipoint quantitative

trait linkage analysis.

Linkage disequilibrium mapping was also suggested for genome-wide screens

(Xiong and Jin, 1997). Cardon (2000) proposed a multiple regression model to ana-

lyze very large number of SNPs. The International SNP Map Working Group (2001)

has led to a novel approach of linkage disequilibrium (LD) mapping. Xiong et al.

(1998) presented multiple regression for LD mapping and proposed two strategies to

increase the probability of detecting LD. Fan and Xiong (2002) proposed a linear

regression method based on population data in order to conduct LD analysis with

two flanking markers.

Recently, the interests in joint LD and linkage mapping have been occurring.

Almasy et al. (1999) proposed variance component models in QTL detection using

combined linkage and LD analysis. Fulker et al. (1999) also combined both ap-

proaches based on sib pairs using variance component methods. Sham et al. (2000)

performed analytical analyses of linkage versus association mapping of quantitative

traits for sibship data in terms of power. Abecasis et al. (2000, 2001) generalized the

method of Fulker et al. (1999) to apply for nuclear families and general pedigrees.

Wu et al. (2002) made use of mixture models in joint linkage and LD mapping. Al-

most all research has employed only one marker. Since dense marker maps such as

single nucleotide polymorphisms (SNPs) have been available, high resolution multi-

ple markers mapping is needed. Fan and Xiong (2002) used two flanking markers to

perform high resolution LD mapping with linear model, which applies to only data

of population. Variance component models are proposed to combine linkage and LD
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mapping based on both population and pedigree data. (Fan and Xiong, 2003; Fan

and Jung, 2003).

1.3. Motivation and Overview of Dissertation

As large numbers of dense markers such as single-nucleotide polymorphisms (SNPs)

and high resolution micro-satellite markers have been available, there is an urgent

need to develop methodologies which deal with dense markers.

In certain situation, one may have data of multiple allele markers to be ana-

lyzed. One may collapse a multiple allele marker to be a bi-allelic marker in his/her

study. However, this may not be a good idea since much information may be lost

by combining different alleles that may have different roles. Moreover, different ways

of collapsing multiple alleles can lead to different results which may cause different

interpretation. With these reasons, it is necessary to build multi-allele markers map-

ping. In chapter II, mixed model is utilized to fit multi-allele markers for association

study based on nuclear families with any number of offspring. Two types of nuclear

families are considered in terms of genotype of parents. Using the information of the

allele transmitted from parents to offspring for each type of nuclear families, mixed

models are presented.

In views of statistics, the more information available, the better the results. A

combined linkage and linkage disequilibrium analysis may give increased information

and potentially more power to detect QTL. Separate method of either linkage analysis

or LD mapping makes use of only one part of the available information and also have

its own drawbacks. As we put both approaches together, the combination plays a

synergistic role in overcoming their limitations and in increasing the efficiency and

effectiveness of gene mapping. In chapter III, the combined mapping strategy is
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introduced in the absence of parental information with two flanking markers. For

late-onset disease such as Alzheimer’s disease, heart disease, osteoporosis, and many

forms of cancer, it is difficult to recruit parental data. In this case, one may perform

sib pair or sibship analyses to study late-onset disorders. The new mapping method is

the variance component model which integrates the linkage information in variance-

covariance matrices and LD information in the mean coefficient of the linear model.

In chapter IV, we extend the combined mapping from two flanking markers

to multiple markers. The objective is to build models which may fully use marker

information for association mapping of QTL in the presence of prior linkage. Based

on the information of markers, a multi-point interval mapping method is provided

to build variance component model. The unified analysis in chapter IV is applied to

both family with parental data and population data.

Finally, chapter V discusses the conclusions of our research with some open

problems for further challenging investigation and discussion.
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CHAPTER II

ASSOCIATION STUDIES FOR A MULTI-ALLELE MARKER*

2.1. Introduction

There has been a considerable interest in association study using transmission dise-

quilibrium test (TDT) between a quantitative trait locus (QTL) and a marker locus.

The TDT of Spielman et al. (1993) was originally introduced to test linkage between

a qualitative trait and a marker. Allison (1997) and Xiong et al. (1998) extended

the TDT procedure to quantitative traits. George et al. (1999) presented linear re-

gression models for TDT by regressing the trait on the parental transmission of an

allele of interest. This method can be applied to general pedigree structures. Zhu

and Elston (2000, 2001) extended the method of George et al. (1999), and proposed

better test statistics in detecting linkage and association. Fan and Xiong (2003) ex-

plored mixed models to perform linkage and association studies. The mixed model

accommodated bi-allelic marker of nuclear families with any number of offspring. In

certain circumstances, one may encounter the data of multiple allele markers such as

micro-satellites. One may combine a multiple allele marker to be a bi-allelic marker as

the purpose of analysis, but this may not be a good method because it may cause loss

of much information. In addition, different ways to combine a multiple allele marker

can lead to different results which make different interpretation possible. With these

reasons, we need to develop methods to fit multi-allele markers in order to carry out

association study.

*Reprinted with permission from ”Association Studies of QTL for Multi-Allele Mark-
ers by Mixed Models” by Ruzong Fan, Jeesun Jung, 2002. Human Heredity, Vol. 54,
132–150. by S. Karger AG Basel.
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Fan et al. (2003) proposed models and their test to perform association and

linkage between a QTL and a multi-allele marker locus for trio families. Trio families

consist of two parents and one single offspring. The methods of Fan et al. (2003) are

not working for general nuclear families with more than one offspring, since the meth-

ods do not consider correlation of trait values of offspring that are not independent.

To construct valid test statistics and models, one needs to consider the variance-

covariance structure of trait values of offspring, as well as the mean structure under

the normal assumption.

In this chapter, mixed models are introduced to investigate the association be-

tween a QTL and a multiple allele marker in terms of two types of nuclear families

data. One is nuclear family with at least one heterozygous parent, the other is gen-

eral nuclear family with no restriction on genotypes of parents. The conditional mean

and conditional variance-covariance matrix of trait values of offspring for each type

of nuclear families are derived. The theoretic basis is the difference of conditional

means given information of a transmitted allele from heterozygous parents. The dif-

ferences would give evidence that the allele is associated with putatitive quantitative

trait locus. For a multiple allele marker, the number of parameters can be too large

in data of nuclear-family with at least one heterozygous parent. Under the assump-

tion of tight linkage between the trait locus and the interesting marker, the number

of parameters can be significantly reduced by approximations. Test statistics based

on the related conditional mean and conditional variance-covariance structures are

derived. The non-centrality parameters of their test statistics are calculated to show

the merits of the proposed methods in terms of power and sample size. The proposed

models are used to analyze chromosome 4 and 16 data of the Oxford asthma data

(Genetic Analysis Workshop 12)
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2.2. Methods

We consider one quantitative trait locus (QTL) Q which has two alleles Q1 and

Q2 with frequencies q1 and q2, respectively. Assume that the expected phenotypic

trait value of a person with genotype QrQs is ν + µrs, r, s = 1, 2, where ν is overall

mean and µrs is the effect of genotype QrQs, obviously µ12 = µ21. There are m

alleles M1, · · · ,Mm typed at the marker locus M , each Mi allele has frequency pi,

i = 1, · · · ,m. Suppose that a marker locus M is linked to the trait locus Q. Denote

the recombination fraction between the marker locus M and the trait locus Q by θ.

The haplotype frequency is denoted by hri for haplotype QrMi, r = 1, 2, i = 1, · · · ,m.

If hri = qrpi for all r and i, the trait locus Q and the marker M are in linkage

equilibrium. Otherwise, the trait locus Q and the marker M are in LD or association.

The measure of LD between the trait allele Q1 and the marker allele Mi is defined by

δi = h1i − q1pi, i = 1, · · · ,m. Since
∑m

i=1 δi = 0, one of δ1, · · · , δm can be expressed by

others, e.g.,δm = −∑m−1
i=1 δi.

Let Y be the phenotypic trait variable decomposed into Y = ν + g + G + e,

where ν is overall mean, g is random major gene effect. Polygenic effect G has

normal distribution with mean 0 and variance σ2
G, and sampling error e is dis-

tributed as normal N(0, σ2
e). These g, G, and e are independent. If an individ-

ual has genotype QsQr at the trait locus, then E (g|QsQr) = µrs. Let TQ de-

note the abbreviation of “transmitted quantitative trait allele”. We have the con-

ditional mean given information of transmitted allele as following E [Y |TQ = Qr] =

ν +
∑2

s=1 µrsqs = ν + µr. Let P (Mi,Mj) be the probability of an offspring who re-

ceives marker allele Mi from his/her heterozygous parent but not alleles Mj. That is

P (Mi,Mj) = P (Mj,Mi) = pipj. Let P (QrMi,Mj) be the probability of a child who

receives haplotype QrMi from his/her heterozygous parent but not alleles Mj. It can
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be shown as P (QrMi,Mj) = (1− θ)hripj + θhrjpi.

2.2.1. Heterozygous Parent Data

For a family with two parents and at least one offspring, we assume that at least one

parent is heterozygous at the marker locus M . Moreover, assume we may infer clearly

the transmission of parental marker alleles to the offspring. If both parents and an

offspring have the same genotype MiMj, i 6= j, it is impossible to tell which parent

transmits which allele to the offspring, and hence the data can not be used in analysis.

Actually, this is the only type of data which needs to be excluded. For a bi-allelic

marker, one needs to exclude the heterozygous offspring of a mating heterozygous

× heterozygous (Fan and Xiong 2002; George at al. 1999; Zhu and Elston 2000,

2001). For a multi-allelic marker, any offspring from a mating MiMi ×MjMk, j 6= k

or MiMj×MiMk, i 6= j, i 6= k, j 6= k or a mating MiMj×MlMk, i 6= j, i 6= l, i 6= k, j 6=
l, j 6= k, l 6= k can be included in analysis since one can infer clearly the transmission

of parental marker alleles to the offspring. Hence, a heterozygous offspring of a

mating heterozygous × heterozygous may not be necessarily excluded in case of multi-

allelic marker unless both parents and offspring have exactly the same heterozygous

genotype.

Let us look at a pedigree depicted in Figure 1. Assume that the genotype of

the father at the marker locus is heterozygous MiMj, i 6= j. Moreover, the father

transmits alleleMi to children 1, · · · , k, and transmits alleleMj to children k+1, · · · , n.

The quantitative trait value for offspring i is denoted by yi, i = 1, · · · , n. For the

mother, we can perform similar analysis. If the mother is homozygous MiMi, every

offspring receives an allele Mi from her and so she does not provide useful information

(Spielman et al. 1993). If the mother is heterozygous, one should examine if an allele

is transmitted to an offspring by the mother. Keeping all offspring with whom one
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may infer clearly the transmission of allele from the mother and father, we use those

data to develop following methods.

MiMj
½¼

¾»

Mi1
y1

· · ·
· · ·

Mik
yk

µ´
¶³
Mjk + 1
yk+1

· · ·
· · ·

Mjn
yn

Fig. 1. A nuclear family with n offspring. Assume that the genotype of the father at

the marker locus is heterozygous MiMj, i 6= j. Moreover, the father transmits

allele Mi to kids 1, · · · , k, and transmits allele Mj to kids k + 1, · · · , n.

2.2.1.1. Mean and Variance-Covariance Structures

Let TM denote the abbreviation of “transmitted marker allele”, and NM of “non-

transmitted marker allele”. Given that marker allele Mi is transmitted and allele Mj

is not transmitted from the heterozygous father for children 1, · · · , k, the conditional

expected mean can be calculated in the same way as equation (1) or (2) of Fan and

Xiong (2002)

αi,j = E [Y |TM = Mi, NM = Mj] = ν +
2∑

r=1

µr[(1− θ)hripj + θhrjpi]/[pipj]. (2.1)

With the same way, the conditional expected mean of the children k + 1, · · · , n in

Figure 1 is

αj,i = E [Y |TM = Mj, NM = Mi] = ν +
2∑

r=1

µr[(1− θ)hrjpi + θhripj]/[pipj]. (2.2)
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Using h2ipj−h2jpi = (pi−h1i)pj−(pj−h1j)pi = −h1ipj +h1jpi, we derive a difference

between αi,j and αj,i as following:

αi,j − αj,i = (1− 2θ)
2∑

r=1

µr(hripj − hrjpi)/(pipj)

= (1− 2θ)(µ1 − µ2)(h1ipj − h1jpi)/(pipj) (2.3)

= (1− 2θ)(µ1 − µ2)(δipj − δjpi)/(pipj).

Assume that the trait locus Q is linked to the marker locus M , i.e., 0 ≤ θ < 1/2.

The difference between conditional means is induced by δipj−δjpi 6= 0, which implies

at least one of δi and δj is not equal to 0. That shows the marker M is in LD with

trait locus Q. Hence, one may construct statistics and models to test association in

the presence of linkage between the marker M and the trait locus Q based on the

difference (2.3).

To build valid test statistics and models, we need to calculate the variance-

covariances of the trait values of offspring in nuclear families. In a similar manner

as Appendix A of Fan and Xiong (2002), we may show that the conditional vari-

ance of trait value of the offspring 1, · · · , k is σ2
i,j = σ2

e + σ2
G + Σ2

ij, where Σ2
ij =

∑2
r=1

∑2
s=1(ν + µrs − αi,j)

2qsP (QrMi,Mj)/P (Mi,Mj). Likewise, the conditional vari-

ance of trait values of the offspring k + 1, · · · , n is σ2
j,i = σ2

e + σ2
G + Σ2

ji, where

Σ2
ji =

∑2
r=1

∑2
s=1(ν + µrs − αj,i)

2qsP (QrMj,Mi)/P (Mj,Mi). For the conditional co-

variances, let us denote the expected conditional covariance between yl (l = 1, · · · , k)
and yt (t 6= l, t = 1, · · · , k) by Σij,ij, the expected conditional covariance between yl

(l = 1, · · · , k) and yt (t = k+ 1, · · · , n) as Σij,ji = Σji,ij, and the expected conditional

covariance between yl (l = k+ 1, · · · , n) and yt (t 6= l, t = k+ 1, · · · , n) as Σji,ji. Σij,ij

and Σij,ji are calculated in Appendix A.
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On the other hand, we need to build model under the null hypothesis of no

association in the presence of linkage. To do this, we need to calculate the mean

and variance-covariance parameters. Under the assumption of linkage equilibrium

between the marker locus and the trait locus, we show that αi,j =
∑2

r=1(ν + µr)qr =

ν + µ = α, σ2
i,j = σ2,Σij,ij = Σts and Σij,ji = Σtd, which do not depend on subscripts

i and j in Appendix B.

2.2.1.2. Parameter Reductions

In Subsection 2.2.1.1, we work out the mean and variance-covariance structures of

siblings for a nuclear family. Although the structure is valid theoretically, the number

of parameters can be very large for a multi-allele marker M . The number of mean

parameters αi,j is m(m− 1), and the number of variance-covariances σ2
i,j,Σij,ij,Σij,ji

is 5[m(m − 1)/2] for a marker M with m alleles. Hence, the total number of the

parameters is 7m(m − 1)/2. For a marker with 3 alleles, the number of parameters

is 21; for a marker with 4 alleles, the number of parameters is 42. One needs to

reduce the number of parameters to build valid models and obtain their robust test

statistics.

In a population, the presence of LD is usually the result of tight linkage between a

trait locus and a marker locus (Falconer and Mackay 1996; Fan et al. 2002; Sham and

Curtis 1995). Assume that the recombination fraction θ ≈ 0, i.e. there is tight linkage

between the trait locus and the marker. In Appendix C, we show that approximately

αi,j ≈ αi, σ
2
i,j ≈ σ2

i and Σij,ij ≈ Σi,i only depend on subscript i, and the covariance

Σij,ji ≈ Σi,j = Σj,i depends on both i and j. Therefore, the expected conditional

variance-covariance matrix of yl, l = 1, · · · , n, in Figure 1 can be expressed as
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


σ2
i,j Σij,ij · · · Σij,ij Σij,ji · · · Σij,ji

...
...

...
...

...
...

...
Σij,ij Σij,ij · · · σ2

i,j Σij,ji · · · Σij,ji

Σji,ij Σji,ij · · · Σji,ij σ2
j,i · · · Σji,ji

...
...

...
...

...
...

...
Σji,ij Σji,ij · · · Σji,ij Σji,ji · · · σ2

j,i




≈




σ2
i Σi,i · · · Σi,i Σi,j · · · Σi,j
...

...
...

...
...

...
...

Σi,i Σi,i · · · σ2
i Σi,j · · · Σi,j

Σj,i Σj,i · · · Σj,i σ2
j · · · Σj,j

...
...

...
...

...
...

...
Σj,i Σj,i · · · Σj,i Σj,j · · · σ2

j




.

With these parameter reductions, the number of mean parameters αi is m, and

the number of variance-covariance parameters σ2
i ,Σi,i,Σi,j is 2m+m(m−1)/2. Hence,

the total number of the parameters is 3m +m(m− 1)/2. Such as in Fan and Xiong

(2002), the number of parameters for a bi-allele marker is 7. For a marker with 3

alleles, the number of parameters is 12, and for a marker with 4 alleles, the number of

parameters is 18. Therefore, the number of parameters can be significantly reduced

under the assumption of tight linkage between the trait locus and the marker.

2.2.1.3. Mixed Model

Suppose that the data consist of nuclear families with I heterozygous parents. Each

of them has at least one offspring. For each family, suppose that genotypes of both

parents are typed at the marker locus M and at least one of the parents is heterozy-

gous. For the offspring of each heterozygous parent, assume that one may clearly

determine which allele at the marker locus M are transmitted from the heterozygous

parent. A quantitative trait value of each offspring is observed.

For the l-th heterozygous parent, assume that the genotype at the marker locus

is MiMj, i 6= j. Moreover, he/she has ni offspring, and the offspring’s trait values are

listed as yl1, · · · , ylnl
. Assume that the offspring consist of two parts: (1) kl offspring

have the fact that allele Mi is transmitted and allele Mj is not transmitted from their

heterozygous parent, and their trait values are listed as yl1, · · · , ylkl
; (2) the rest of the
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offspring have the fact that allele Mi is not transmitted and allele Mj is transmitted

from their heterozygous parent, and their trait values are listed as yl,kl+1, · · · , ylnl
.

Under the null hypothesis of no association in the presence of linkage between

the trait locus Q and the marker locus M , one may use a multivariate linear model

ylu = ν + glu +Glu + elu, u = 1, 2, · · · , nl, reduced model, (2.4)

where ylu are normal variables with mean α and nl × nl variance-covariance matrix

Vl =




σ2 Σts · · · Σts Σtd · · · Σtd
...

...
...

...
...

...
...

Σts Σts · · · σ2 Σtd · · · Σtd

Σtd Σtd · · · Σtd σ2 · · · Σts
...

...
...

...
...

...
...

Σtd Σtd · · · Σtd Σts · · · σ2




.

Under the alternative hypothesis of association in the presence of linkage, one may

use a full model

ylu = ν + glu|(TM=Mi,NM=Mj) +Glu + elu, u = 1, 2, · · · , kl,

ylu = ν + glu|(TM=Mj ,NM=Mi) +Glu + elu, u = kl + 1, · · · , nl. (2.5)

ylu are normal variables with mean αi for u = 1, · · · , kl and mean αj for u = kl +

1, · · · , nl, and a variance-covariance matrix

Γl =




σ2
i Σi,i · · · Σi,i Σi,j · · · Σi,j
...

...
...

...
...

...
...

Σi,i Σi,i · · · σ2
i Σi,j · · · Σi,j

Σj,i Σj,i · · · Σj,i σ2
j · · · Σj,j

...
...

...
...

...
...

...
Σj,i Σj,i · · · Σj,i Σj,j · · · σ2

j




.

Putting all data together, we may perform association studies based on reduced

model and full model. Denote n =
∑I

l=1 nl, ~yl = (yl,1, · · · , ylnl
)τ ,~y = (~yτ

1 , · · · , ~yτ
I )τ ,
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V = diag(V1, V2, · · · , VI) and Γ = diag(Γ1,Γ2, · · · ,ΓI). Let In be the identity n × n

matrix. In the reduced model, ~y is normal with mean αIn and variance-covariance

matrix V . In the full model, similarly ~y is normal with mean X(α1, · · · , αm)τ and

variance-covariance matrix Γ, where X is an n × m design matrix based on model

(2.5).

2.2.2. General Nuclear Family Data

2.2.2.1. Mean and Variance-Covariance Structures

Consider a sample of general nuclear families which consist of two parents with no

restriction on parental genotype and at least one offspring each. For each parent-

offspring pair, one first determines which allele is transmitted from the parent to the

offspring. In the general nuclear family, we use a different approach from that in

Section 2.2.1. For instance, we simply assume that an allele Mi is transmitted from

a homozygous parent MiMi to any of his/her offspring, and ignore which one it is. If

both parents and an offspring have the same genotype MiMj, i 6= j, we assume that

one parent transmits Mi to the offspring and the other parent transmits Mj to the

offspring. In this way for each parent-offspring pair, we may define an transmission of

allele from the parent to the offspring. Putting all data together, we may arrange the

trait values of offspring in a way as Table 1 in Fan et al. (2002). Hence, all data from

a nuclear family can be used in analysis. Based on which marker allele is transmitted

from a parent, the conditional mean βi = E (Y |TM = Mi) is calculated in Appendix

D as following.

βi = E [Y |TM = Mi]

= (1− θ)
[
(ν + µ1)h1i + (ν + µ2)h2i

]
/pi + θα
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Therefore,

βi − α

1− θ
=

[
(ν + µ1)h1i + (ν + µ2)h2i

]
/pi − [(ν + µ1)q1 + (ν + µ2)q2]

= (µ1 − µ2)δi/pi.

The absence of association between trait locus Q and marker M , i.e., δi = 0, means

βi = α. This constitutes the basis to build models and to construct appropriate

statistics to test the association between trait locus Q and marker M by comparing

the estimates of parameters βi and α. To build models, we need variance covariance

structures of the trait values of offspring. In Appendix D, we calculate conditional

variance σ2
ir = Var(Y |TM = Mi). For two offspring of a nuclear family, let TM1

be the abbreviation of “transmitted marker allele for child 1”, and let TM2 be the

abbreviation of “transmitted marker allele for child 2”. For i 6= j, the conditional

covariance Σi,jr = Cov(Y1, Y2|TM1 = Mi, TM2 = Mj) = Σij,ji. The conditional

covariance Σi,ir = Cov(Y1, Y2|TM1 = Mi, TM2 = Mi) is calculated.

2.2.2.2. Mixed Model

In this Subsection, we are going to build models and construct their statistics to test

association between the trait locus Q and marker M to analyze general nuclear family

data. We assume that there is at least one offspring for each nuclear family. For a

homozygous parent with genotype MiMi at the marker M and nl offspring, let the

trait values of the offspring be y1, · · · , ynl
. One may use a multivariate linear model

for data analysis

yu = ν + gu|(TM=Mi) +Gu + eu, u = 1, 2, · · · , nl, (2.6)
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where yu are normal variables with mean βi and nl × nl variance-covariance matrix




σ2
ir Σi,ir · · · Σi,ir

Σi,ir σ2
ir · · · Σi,ir

...
...

...
...

Σi,ir Σi,ir · · · σ2
ir


.

For a heterozygous parent with genotype MiMj, i 6= j at the marker M and nl

offspring, let the trait values of the offspring be y1, · · · , ynl
. Suppose that: (1) kl

offspring have the fact that allele Mi is transmitted and allele Mj is not transmitted

from their heterozygous parent, and their trait values are listed as y1, · · · , ykl
; (2)

the rest of the offspring have the fact that allele Mi is not transmitted and allele

Mj is transmitted from their heterozygous parent, and their trait values are listed as

ykl+1, · · · , ynl
. One may use a model

yu = ν + gu|(TM=Mi) +Gu + eu, u = 1, 2, · · · , kl,

yu = ν + gu|(TM=Mj) +Gu + eu, u = kl + 1, · · · , nl. (2.7)

yu are normal variables with mean βi for u = 1, · · · , kl and mean βj for u = kl +

1, · · · , nl, and an nl × nl variance-covariance matrix




σ2
ir Σi,ir · · · Σi,ir Σi,jr · · · Σi,jr
...

...
...

...
...

...
...

Σi,ir Σi,ir · · · σ2
ir Σi,jr · · · Σi,jr

Σj,ir Σj,ir · · · Σj,ir σ2
jr · · · Σj,jr

...
...

...
...

...
...

...
Σj,ir Σj,ir · · · Σj,ir Σj,jr · · · σ2

jr




.

2.3. Test Statistics and Non-Centrality Parameter

2.3.1. Heterozygous Parent Data

Let α̂i, σ̂
2
i , Σ̂i,i, Σ̂i,j be the maximum likelihood estimators of parameters αi, σ

2
i ,Σi,i,Σi,j

of the full model (2.5). Then the estimate of γ = (α1, · · · , αm)τ is γ̂ = (α̂1, · · · , α̂m)τ =
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[
Xτ Γ̂−1X

]−1
Xτ Γ̂−1~y. Assume that the sample size is large. In Appendix E, we show

that the test statistic of the null hypothesis H0 : α1 = · · · = αm, is non-central

F (m− 1, n−m) defined by (details are given in Appendix E)

Fhet =
(Hγ̂)τ [H(Xτ Γ̂−1X)−1Hτ ]−1Hγ̂/(m− 1)

~yτ [Γ̂−1 − Γ̂−1X(Xτ Γ̂−1X)−1Xτ Γ̂−1]~y/(n−m)

, where

H =




1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
... · · · ...

1 0 0 · · · −1


 .

Here H is a (m − 1) × m testing matrix. The non-centrality parameter of the test

statistic F can be calculated by λhet ≈ (Hγ)τ [H(XτΓ−1X)−1Hτ ]−1Hγ. If ni = 1 for

each family, then there is only one single child in each family and the above formula

can be simplified. Let ki, i = 1, 2, · · · ,m be the number of offspring who receive allele

Mi from their heterozygous parents. In Appendix F, we show that the non-centrality

parameter of the singleton test statistic Fhet,singleton is

λhet,singleton ≈
m∑

i=2

(α1 − αi)
2ki/σ

2
i −

[ m∑

i=2

(α1 − αi)ki/σ
2
i

]2
/[

m∑

i=1

ki/σ
2
i ].

Assume that the data consist of both singleton families and sib-pair families.

Suppose there are ki singleton offspring who receive allele Mi from their heterozygous

parents, kii (i = 1, 2, · · · ,m) sib pairs who receive allele Mi from their heterozygous

parents, and kij = kji, i 6= j sib pairs whose one sib receives allele Mi from his/her

heterozygous parent and the other receives allele Mj from the same heterozygous

parent. In Appendix G, we obtain the matrix

XτΓ−1X = diag
(k1

σ2
1

+
2k11

σ2
1 + Σ1,1

, · · · , km

σ2
m

+
2kmm

σ2
m + Σm,m

)
+Xτ

3 Γ−1
3 X3,

where matrix X3, sub-variance-covariance matrix Γ3, and XτΓ−1
3 X are given in Ap-
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pendix G. Inserting the above matrix to the formula λhet, one may calculate the

non-centrality parameter λhet,singleton,sibs of a test statistic Fhet,singleton,sibs. For a bi-

allele marker M , it is the same as that in Fan and Xiong (2002).

2.3.2. General Nuclear Family Data

For model introduced in Subsection 2.2.2.2, we may calculate the non-centrality pa-

rameter of statistic FGen Nuc to test null hypothesis H0 : β1 = · · · = βm in a similar

manner. First, assume that each family has only one child. Let ki, i = 1, 2, · · · ,m be

the number of offspring who receive alleleMi from their parents. We can show that the

corresponding non-centrality parameter of a singleton test statistic FGen Nuc,singleton

is λGen Nuc,singleton ≈ ∑m
i=2(β1 − βi)

2ki/σ
2
ir −

[∑m
i=2(β1 − βi)ki/σ

2
ir

]2
/[

∑m
i=1 ki/σ

2
ir].

Second, the data consist of both singleton families and sib-pair families. Suppose

there are ki singleton offspring who receive allele Mi from their parents, kii (i =

1, 2, · · · ,m) sib pairs who receive allele Mi from their parents, and kij = kji, i 6= j

sib pairs whose one sib receives allele Mi from his/her heterozygous parent and the

other receives allele Mj from the same heterozygous parent. We may calculate the

corresponding non-centrality parameter λGen Nuc,singleton,sibs ≈ (Hβ)τ [HΠ−1Hτ ]−1Hβ

of a statistic FGen Nuc,singleton,sibs, where

Π = diag
( k1

σ2
1r

+
2k11

σ2
1r + Σ1,1r

, · · · , km

σ2
mr

+
2kmm

σ2
mr + Σm,mr

)
+ Π3, and

Π3 =




∑
i 6=1

k1iσ
2
ir

σ2
1rσ2

ir−Σ2
1,ir

− k12Σ1,2r

σ2
1rσ2

2r−Σ2
1,2r

· · · − k1mΣ1,mr

σ2
1rσ2

mr−Σ2
1,mr

− k12Σ1,2r

σ2
1rσ2

2r−Σ2
1,2r

∑
i 6=2

k2iσ
2
ir

σ2
2rσ2

ir−Σ2
2,ir

· · · − k2mΣ2,mr

σ2
2rσ2

mr−Σ2
2,mr

...
...

...
...

− k1mΣ1,mr

σ2
1rσ2

mr−Σ2
1,mr

− k2mΣ2,mr

σ2
2rσ2

mr−Σ2
2,mr

· · · ∑
i6=m

kmiσ
2
ir

σ2
mrσ2

ir−Σ2
m,ir




.
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2.4. Power Comparison

Assume that ν = 0, µ11 = a, µ12 = µ21 = d, µ22 = −a in terms of the standard theory

of quantitative genetics (Falconer and Mackay 1996). Let the additive variance be

σ2
a = 2q1q2(a+d(q2−q1))2, and the dominant variance be σ2

d = (2q1q2d)
2. Let the heri-

tability be denoted by h2, which is defined by σ2
a/(σ

2
a+σ

2
d+σ

2
e). In the history of a pop-

ulation, the disease genes are usually due to a mutation. Because of the evolutionary

process, the haplotype frequencies hri change from generation to generation. The ex-

pected haplotype frequencies can be calculated by E [hri] = hri(0)e−θA+piqr(1−e−θA),

where A is the age of the most recent mutation at the trait locus, hri(0) is the initial

haplotype frequencies of haplotypes QrMi at the generation of occurrence of the mu-

tation at the trait locus. If there is only a single mutation in the population, one may

assume that h11(0) = q1, h1i(0) = 0, and h21(0) = p1−q1 ≥ 0, h2i(0) = pi, i = 2, · · · ,m.

Replacing hri in P (QrMi,Mj) by E [hri], we may calculate the approximations of the

non-centrality parameters using the non-centrality parameters given in Section 2.3.

To calculate the non-centrality parameters, we need parameter values such as the

marker allele frequencies p1 and p2, trait allele frequencies q1 and q2, heritability h2,

mutation age A, haplotype frequencies hri, recombination fraction θ, additive effect

a, dominant effect d, polygenic variance σ2
G, and error variance σ2

e .

Assume that the frequencies of marker alleles are evenly distributed. Figures 3

and 2 plot the power curves of Fhet,singleton and Fhet,singleton,sibs against the heritability

at 0.05 significant level, for dominant and recessive traits for 2, 3 and 4 allele markers,

respectively. In each graph of the two Figures, the total numbers of offspring for 2, 3

and 4 allele markers are the same. Hence, the comparison of the power is meaningful.

It is clear from the 4 graphs of the two Figures 3 and 2 that the power of the test

statistic using 4 allele marker is higher than that of the test statistic using 3 allele
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Graph I: Dominant Trait

Heritability

P
ow

er

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F_{het,singleton,sibs,4 allele mrk}
F_{het,singleton,sibs,3 allele mrk}
F_{het,singleton,sibs,2 allele mrk}

Graph II. Recessive Trait
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Fig. 2. Power curves of Fhet,singleton,sibs for 2, 3 and 4 allele markers against the heri-

tability at 0.05 significant level, when q1 = 0.25, σ2
G = 0.75, A = 20, θ = 0.005

for a dominant trait a = d = 1.0, Graph I; and a recessive

trait a = 1.0 and d = −0.5, Graph II. For a 2 allele marker,

p1 = 0.50, ki = 60, kij = 30, i, j = 1, 2; For a 3 allele marker,

p1 = 0.4, p2 = 0.3, k1 = 60, k2 = k3 = 30, kij = 15, i, j = 1, 2, 3; For a 4

allele marker, pi = 0.25, ki = 30, kij = 9, i, j = 1, · · · , 4.
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Graph I: Dominant Trait
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Graph II. Recessive Trait
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Fig. 3. Power curves of Fhet,singleton for 2, 3 and 4 allele markers against the heritability

at 0.05 significant level, when q1 = 0.25, σ2
G = 0.75, A = 20, θ = 0.005 for a

dominant trait a = d = 1.0, Graph I; and a recessive trait a = 1.0 and

d = −0.5, Graph II. For a 2 allele marker, p1 = 0.50, k1 = k2 = 100; For a 3

allele marker, p1 = 0.4, p2 = 0.3, k1 = 100, k2 = k3 = 50; For a 4 allele marker,

pi = 0.25, ki = 50, i = 1, · · · , 4.
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marker, which in turn is higher than that of the test statistic using 2 allele marker.

Figures 5 and 4 plot the power curves of FGen Nuc,singleton and FGen Nuc,singleton,sibs

against the recombination fraction at 0.05 significant level, for dominant and recessive

traits for 2, 3 and 4 allele markers, respectively. The four graphs in the two Figures

5 and 4 show that the power of the test statistic using 4 allele marker is higher than

that of the test statistic using 3 allele marker, which in turn is higher than that of

the test statistic using 2 allele marker. In addition, the power is high when the trait

locus is tightly linked to the marker (θ < 0.01); otherwise, the power decreases very

rapidly once the trait locus is getting far away from the marker (θ > 0.02).

Assume that the frequencies of marker alleles are not evenly distributed. Figure

6 plots the power curves of Fhet,singleton,sibs against the heritability at 0.05 significant

level, for dominant and recessive traits for 2, 3 and 4 allele markers, respectively. In

each of two graphs in the Figure, the power of the test statistic using 3 allele marker

is higher than that of the test statistic using 4 allele marker, which in turn is higher

than that of the test statistic using 2 allele marker in general.

2.5. Application

The methods and models are applied to analyze the chromosomes 4 and chromosome

16 data of the Oxford asthma data, Genetic Analysis Workshop 12 (Cookson and

Abecasis 2001). The data consist of 80 nuclear family with a total of 203 offspring.

In these 80 families, 43 have two offspring, 31 have three offspring, and 6 have four

offspring. On chromosome 4, 18 markers are typed and each marker has 4 alleles. On

chromosome 16, 22 markers are typed and each marker has 4 alleles. In Daniel et al.

(1996), linkage to bronchial responsiveness to methacholine (slope) and other quan-

titative traits were tested by the Haseman-Elston sib-pair technique (Haseman and
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Graph I: Dominant Trait
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Fig. 4. Power curves of FGen Nuc,singleton,sibs for 2, 3 and 4 allele mark-

ers against the recombination fraction at 0.05 significant level, when

q1 = 0.25, σ2
G = 0.75, A = 20, h2 = 0.25 for a dominant trait a = d = 1.0,

Graph I; and a recessive trait a = 1.0 and d = −0.5, Graph II. For a 2 al-

lele marker, p1 = 0.50, ki = 60, kij = 30, i, j = 1, 2; For a 3 allele marker,

p1 = 0.4, p2 = 0.3, k1 = 60, k2 = k3 = 30, kij = 15, i, j = 1, 2, 3; For a 4 allele

marker, pi = 0.25, ki = 30, kij = 9, i, j = 1, · · · , 4.
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Graph I: Dominant Trait
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Graph II: Recessive Trait
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Fig. 5. Power curves of FGen Nuc,singleton for 2, 3 and 4 allele markers

against the recombination fraction at 0.05 significant level, when

q1 = 0.25, σ2
G = 0.75, A = 20, h2 = 0.25 for a dominant trait a = d = 1.0,

Graph I; and a recessive trait a = 1.0 and d = −0.5, Graph II. For

a 2 allele marker, p1 = 0.50, k1 = k2 = 100; For a 3 allele marker,

p1 = 0.4, p2 = 0.3, k1 = 100, k2 = k3 = 50; For a 4 allele marker,

pi = 0.25, ki = 50, i = 1, · · · , 4.
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Graph I: Dominant Trait
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Graph II. Recessive Trait
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Fig. 6. Power curves of Fhet,singleton,sibs for 2, 3 and 4 allele markers against the her-

itability at 0.05 significant level. For a 2 allele marker, p1 = 0.90, p2 = 0.10;

For a 3 allele marker, p1 = 0.5, p2 = 0.45, p3 = 0.05; For a 4 allele marker,

p1 = 0.45, p2 = p3 = 0.25, p4 = 0.05. All other parameters are the same as

those in Figure 2.
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Elston 1972). Two regions of potential linkage to autosomal markers were detected

with log e(slope) on chromosomes 4, and 16 (Daniel et al. 1996).

In the four alleles typed, the frequency of one allele is too low (around 3%).

When we use the four alleles in data analysis, the convergence is problematic and the

results are not stable. This may be due to large number of parameters for the data

set. To reduce the number of parameters and to make the results stable, we collapse

each of the 4 allele markers to be 3 allele marker. Table I shows the results of test

statistics Fhet and FGen Nuc, the results from Fan and Xiong (2002), and Daniel et al.

(1996). Three markers, D4S1450, D16S515 and D16S289 show association with the

asthma phenotypic trait log eslope at significant levels 0.05. The results confirms the

findings in Fan and Xiong (2002) and Daniel et al. (1996).

Table I. Results of test statistics of asthma data.

Marker P-Values P-Values of P-Values of Fan P-Values of

Locus of FHet FGen Nuc and Xiong (2002) Daniel et al. (1996)

D4S1540 0.03 0.003 0.02 < 0.05

D16S515 < 0.0001 < 0.0001 < 0.04 < 0.05

D16S289 0.001 < 0.0001 < 0.0001 < 0.05

2.6. Discussion

Mixed models are explored to study association between a multiple allele and a QTL.

There are two types of nuclear families in terms of the information of transmission of

parental alleles. One is the data of offspring with manifest transmitted alleles from
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at least one heterozygous parent. The association study is based on the difference

between the conditional mean of trait value given an allele is transmitted and that

of trait value given the allele is not transmitted from a heterozygous parent. The

other is the data of offspring from nuclear family including homozygous parents. In

this case, general association study is based on the difference between the conditional

mean of trait value given an allele is transmitted from a parent and the population

mean. Using these theoretical bases, mixed models and their test statistics are de-

rived to demonstrate advantage of the method proposed. By power calculation and

comparison, the proposed test statistics with a multiple alleles marker have higher

power than that with new collapsed bi-alleles marker if the marker allele frequencies

are evenly distributed. Therefore, it is more advantageous to use a multiple allele

marker for association study in the presence of linkage. It is shown that the power

is high when the trait locus is tightly linked to the marker (θ < 0); otherwise, the

power decreases very rapidly once the trait locus is getting far away from the marker

(θ > 0.02). The proposed models are used to analyze chromosomes 4 and 16 data of

the Oxford asthma data, Genetic Analysis Workshop 12.

Fan and Xiong (2003) conducted both linkage analysis in the presence of asso-

ciation and the association study in the presence of linkage. However, it is not clear

how to conduct linkage analysis in the presence of association since the way to reduce

the number of parameters is not clear for a multiple-allelic marker. In this chapter

II, we assume that data are available for all members in a nuclear family. It may not

be possible for late onset genetic diseases to obtain the parental data. It would be

interesting if the methods and models in this chapter can be extended to apply for

sibship data.
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CHAPTER III

LINKAGE AND ASSOCIATION STUDY BASED ON SIBSHIP DATA*

3.1. Introduction

Linkage and linkage disequilibrium mappings, two major approaches for genetic stud-

ies of human diseases, have been developing in the recent years. There have been

lots of interests in joint analyses of both mappings. Separate analysis of either LD

mapping or linkage analysis utilizes only part of the available information; LD map-

ping uses information of LD, on the other hand, linkage analysis uses information

of linkage. A combined analysis utilizes both LD and linkage information, and has

more power to find putative QTL. For qualitative traits, several studies have shown

that combination of LD and linkage mapping is advantageous over separate approach

(Göring and Terwillinger 2000; Xiong and Jin 2000). Almasy et al. (1999) propose

variance component models in quantitative trait locus (QTL) detection using com-

bined linkage and LD analysis. Fulker et al. (1999) present variance component

models to perform integrated linkage and LD mapping based on sibpairs data. Sham

et al. (2000) carried out theoretical analyses for power of linkage versus association

mapping of quantitative traits based on model in Fulker et al. (1999). Abecasis et al.

(2000,2001) generalized the method of Fulker et al. (1999) to analyze data of nuclear

families and general pedigrees. For natural populations, Wu et al. (2002) utilized

mixture models in joint linkage and LD mapping of QTL. In these studies for the

combined analysis, the investigators usually use only one marker in their analyses.

*Reprinted with permission from ”High Resolution Joint Linkage Disequilibrium and
Linkage Mapping of Quantitative Trait Loci Based on Sibship Data” by Ruzong Fan,
Jeesun Jung, 2003. Human Heredity, Vol. 56, 166–187. by S. Karger AG Basel.
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As the dense marker maps such as single nucleotide polymorphisms(SNPs) and high

resolution micro-satellite markers are available (The International SNP Map Work

Group, 2001; Broman et al. 1998; Kong et al. 2002), it is natural to generalize single

marker to multiple markers mapping. Using two flanking markers, Fan and Xiong

(2002) proposed a linear regression model to conduct high resolution LD mapping

based on population data. The linear regression model incorporated genetic effect

decomposed into additive and dominant effects. Fan and Xiong (2003) presented

a variance component model which combined linkage and LD mapping. The mod-

els employing two flanking markers consider a linear model and variance covariance

structure simultaneously to accommodate both population and nuclear family data.

For late-onset disorders such as Alzheimer’s disease, heart disease, many forms

of cancer, non-insulin dependent diabetes mellitus (NIDDM), and osteoporosis, it is

difficult to recruit parental data. One way to study late-onset disorders is to perform

sib-pair or sibship analyses (Cardon 2000; Horvath and Laird 1998; Schaid and Li

1997; Schaid and Rowland 1998; Spielman and Ewens 1998). This motivates us

to explore models in high resolution joint LD and linkage mapping of QTL based

on sibship data. Here, population data are included by treating an independent

individual as a single sibship.

In variance component model, a linear regression model and variance covariance

structures are introduced to describe a quantitative trait. Association test is based on

differences in mean coefficients of linear model. Linkage test is based on differences

in covariances according to the identical-by-decent (IBD) status between sib pairs at

a candidate locus. Hence, we simultaneously perform joint LD and linkage interval

mapping using two flanking markers. Until now, the interval mapping studies pub-

lished to date are mainly limited to use only the additive genetic variance. There is

no explicit formulas to include both additive and dominant genetic variances in the
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interval mappings. In this chapter, we derive formulas to calculate covariance of traits

between sibships including both additive and dominant variances. To investigate the

performance of the formulas, we calculate the numerical values via the formulas and

get satisfactory approximations. The non-centrality parameters of test statistics are

calculated to compare the power and sample size for cases of sibpairs and general

sibships. The non-centrality parameters for linkage analysis are derived based on

standard statistical theory, those for LD analysis are calculated by general theory

of linear model. Comparison of the power and sample size of LD mapping, and the

power of linkage mapping with or without dominant variance is performed. By sim-

ulation and theoretical analysis, we compare the results with those of an association

between family and association within family (“AbAw”) approach from Fulker et al.

(1999). The method is applied to Genetic Analysis Workshop (GAW) 12 German

asthma data (Meyers, Wjst and Aber, 2001).

3.2. Methods

3.2.1. Linear Model

Consider a quantitative trait which is influenced by a quantitative trait locus Q.

Assume that there are two alleles Q1 and Q2 at the trait locus with frequencies q1

and q2. Suppose that trait locus Q is flanked by two markers A and B in an order of

AQB. At the marker locus A, assume there are two alleles A and a with frequencies

PA and Pa, respectively; for the marker B, assume that there are two alleles B and

b with frequencies PB and Pb. Suppose that trait locus Q and markers A and B are

individually in Hardy-Weinberg equilibrium. For sibship data, variance component

models can be used for high resolution joint LD and linkage mapping of QTL. For

a sibship of l children, denote their quantitative traits by a vector y = (y1, · · · , yl)
τ ,
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genotypes at marker A by a vector (A1, A2, · · · , Al)
τ , and genotypes at marker B by

a vector (B1, B2, · · · , Bl)
τ . Here yi is the trait value of the i-th offspring, Ai is the

genotype of the i-th offspring at marker A, and Bi is the genotype of the i-th offspring

at marker B. The log-likelihood function for these data is

L = − l
2

log (2π)− 1

2
log |Σ| − 1

2
(y −Xµ)τΣ−1(y −Xµ). (3.1)

The notations of model (3.1) are defined as follows. Σ is a l × l variance-covariance

matrix defined as Σ =




1 ρ12 · · · ρ1l

ρ21 1 · · · ρ2l

...
... · · · ...

ρl1 ρl2 · · · 1




σ2, where σ2 = σ2
g + σ2

G + σ2
s + σ2

e ,

σ2
g is the variance explained by the putative QTL Q, σ2

G is the polygenic variance,

σ2
s is the shared environment residual variance, and σ2

e is the error variance. The

genetic variances σ2
g = σ2

ga + σ2
gd and σ2

G = σ2
Ga + σ2

Gd are decomposed into additive

and dominant components, respectively. ρij = ρji = (πijQσ
2
ga + ∆ijQσ

2
gd + σ2

Ga/2 +

σ2
Gd/4+σ2

s)/σ
2 is the correlation between the i-th child and the j-th child, πijQ is the

proportion of alleles sharing identical by descent (IBD) at putative QTL Q by the

i-th child and the j-th child, and ∆ijQ is the probability that both alleles shared by

the i-th child and the j-th child at the putative QTL Q are IBD (Pratt et al. 2000;

Zhu and Elston 2000). To introduce the mean component Xµ for log-likelihood (3.1),

we consider the following regression (Fan and Xiong 2002, 2003)

yi = β + wiγ + xAiαA + xBiαB + zAiδA + zBiδB +Gi +Hi + ei, (3.2)

where β is the overall mean, wi is a row vector of covariates such as gender and age,

γ is a column vector of regression coefficients of wi, Gi is the polygenic effect, Hi is

the shared environment residual effect, and ei is the error term. Assume that Gi is

normal N(0, σ2
G), Hi is normal N(0, σ2

s), and ei is normal N(0, σ2
e). Moreover, Gi, Hi
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and ei are independent. xAi, xBi, zAi and zBi are dummy random variables that are

independent of Gi, Hi, and ei defined by

xAi =





2Pa if Ai = AA

Pa − PA if Ai = Aa

−2PA if Ai = aa

, zAi =





−P 2
a if Ai = AA

PaPA if Ai = Aa

−P 2
A if Ai = aa

,

xBi =





2Pb if Bi = BB

Pb − PB if Bi = Bb

−2PB if Bi = bb

, zBi =





−P 2
b if Bi = BB

PbPB if Bi = Bb

−P 2
B if Bi = bb

.

αA, αB, δA and δB are the coefficients of the dummy variables xAi, xBi, zAi and zBi.

X is the design matrix based on regression (3.2), and µ = (β, γτ , αA, αB, δA, δB)τ is a

vector of coefficients.

Fan and Xiong (2002) provide an intuitive rationale for model (3.2) as follows. Let

µij be the effect of genotype QiQj, i, j = 1, 2, µ12 = µ21. Denote the overall population

mean by µ0 = µ11q
2
1 + 2µ12q1q2 + µ22q

2
2, the average effect of gene substitution by

αQ = q1µ11+(q2−q1)µ12−q2µ22, and the dominant deviation by δQ = 2µ12−µ11−µ22.

Assume that marker A coincides with the trait locus Q, marker allele A is trait

allele Q1 and marker allele a is trait allele Q2. Fan and Xiong (2002) show that

the trait value can be expressed as yi = µ0 + xQiαQ + zQiδQ + ei, where xQi = xAi

and zQi = zAi. In practice, information about trait locus Q is unknown, but the

information at marker loci is available. This prompts us to propose regression model

(3.2) to describe the trait values. For the population data considered in Fan and

Xiong (2002), the trait values are independent of each other. However, the trait

values of a sibship are correlated to each other with variance covariance matrix Σ.

Suppose there are I sibships, in which some may contain only one offspring.

Denote their log-likelihoods as L1, · · · , LI , where Li is the log-likelihood of trait values

yi of the i-th sibship or individual. Let Σi be variance-covariance matrix of yi,



36

and Xi be its model matrix. Denote the total trait values y = (yτ
1 , · · · ,yτ

I )
τ , the

total variance-covariance matrix by Σ = diag(Σ1, · · · ,ΣI), and model matrix X =

(Xτ
1 , · · · , Xτ

I )τ . Combining all sibships together, the overall log-likelihood is

L =
I∑

i=1

Li = −N
2

log (2π)− 1

2
log |Σ| − 1

2
(y −Xµ)τΣ−1(y −Xµ),

where N is the total number of individuals of the I sibships. The unknown parameters

are µ = (β, γ, αA, αB, δA, δB)τ , σ2
ga, σ

2
gd, σ

2
Ga, σ

2
Gd, σ

2
s , and σ2

e . Likelihood ratio tests

(LRT) can be used to test significance of the parameters of interest.

Denote a = µ11−(µ11+µ22)/2 and d = µ12−(µ11+µ22)/2. In terms of traditional

quantitative genetics (Falconer and Mackay 1996), average effect of gene substitution

of QTL is αQ = a + (q2 − q1)d and dominant deviation δQ = 2d. The additive

variance σ2
ga = 2q1q2α

2
Q and the dominant variance σ2

gd = (q1q2)
2δ2

Q. To test the

linkage of the trait locus to a particular position in the genome, the null hypothesis

is H0 : σ2
ga = σ2

gd = 0 and the alternative hypothesis is HA : σ2
ga > 0 or σ2

gd > 0.

The corresponding LRT is a mixture of χ2 variables (Self and Liang 1987). If only

the additive variance σ2
ga (or dominant variance σ2

gd) is modeled, the null hypothesis

is H0 : σ2
ga = 0 (or H0 : σ2

gd = 0), and the alternative hypothesis is HA : σ2
ga > 0 (or

σ2
gd > 0). Then the corresponding LRT is a 1

2
: 1

2
mixture of χ2

1 and a point mass at

0 (Self and Liang 1987).

Denote the measure of LD between QTL Q and marker A by DAQ = P (AQ1)−
q1PA, the measure of LD between QTL Q and marker B by DQB = P (BQ1)− q1PB,

and the measure of LD between marker A and marker B by DAB = P (AB)− PAPB

(Hartl and Clark 1989; Hedrick 1987; Lewontin 1964). Let the additive and dominant

variance-covariance matrices be

VA =




2PaPA 2DAB

2DAB 2PbPB


 , and VD =



P 2

aP
2
A D2

AB

D2
AB P 2

b P
2
B


 . (3.3)
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Like Fan and Xiong (2002), we can show that the coefficients of regression equation

(3.2) are



αA

αB


 = V −1

A




2DAQ

2DQB


αQ,



δA

δB


 = V −1

D



D2

AQ

D2
QB


 δQ. (3.4)

Equations (3.4) imply that regression (3.2) simultaneously accounts for the LD and

the effects of the putative QTL Q. The parameters of LD (i.e., DAQ and DQB) and

gene effect (i.e., αQ and δQ) are incorporated in the mean coefficients. In the presence

of linkage to a particular position, the association between the trait locus and the

markers can be tested based on equations (3.4). First, suppose that the presence of

linkage is verified by both σ2
ga > 0 and σ2

gd > 0, which implies that both αQ and δQ are

not equal to 0. The existence of LD between markers and trait locus Q cab be tested

by H0 : αA = αB = δA = δB = 0 vs HA : at least one of αA, αB, δA, and δB is not 0.

The test shows the association between the trait locus and the markers. Notice that

this test will lead to 4 degrees of freedom, but the number of parameters DAQ and

DQB is only 2. Hence, there should be only one or two coefficients of αA, αB, δA, and

δB, which is/are significantly different from 0 in the data analysis. Second, suppose

that the presence of linkage is verified by additive variance σ2
ga > 0, but the dominant

variance σ2
gd is not significantly larger than 0. Then testing H0 : αA = αB = 0 vs HA :

at least one of αA and αB is not 0, shows the association between the trait locus and

the markers. In this case, it is possible that only one of αA and αB is significantly

different from 0 in the data analysis. Third, suppose that the presence of linkage

is supported by the dominant variance σ2
gd > 0, but the additive variance σ2

ga is not

significantly larger than 0. Then testing H0 : δA = δB = 0 vs HA : at least one of δA

and δB is not 0, shows the association between the trait locus and the markers.

Suppose that only one marker A is used in the analysis. Then equations (3.4)

can be replaced by αA = DAQαQ/(PaPA), δA = D2
AQδQ/(P

2
aP

2
A). Suppose that the
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presence of linkage is supported by both σ2
ga > 0 and σ2

gd > 0. Then testing H0 :

αA = δA = 0 vs HA : at least one of αA and δA is not 0, shows the association between

the trait locus and marker A. Again, there should be only one coefficient of αA and

δA which is significantly different from 0 in data analysis, since only one parameter

DAQ is being tested. Suppose that the presence of linkage is supported by additive

variance σ2
ga > 0, but the dominant variance σ2

gd is not significantly larger than 0.

Then a test of H0 : αA = 0 vs HA : αA 6= 0, shows the association between the trait

locus and marker A. On the other hand, if the presence of linkage is supported by the

dominant variance σ2
gd > 0, but the additive variance σ2

ga is not significantly larger

than 0, then a test of H0 : δA = 0 vs HA : δA 6= 0 shows the association between the

trait locus and the marker A.

In practice, it may be reasonable to start with a variance component model which

includes the covariates, but does not include the dummy variables xAi, xBi, zAi and

zBi. That is, to fit a reduced model yi = β + wiγ + Gi + Hi + ei, instead of model

(3.2) directly (Pratt et al. 2000). This can achieve the initial objective of identifying

linkage of trait values to a particular position in a region. Then, the dummy variables

xAi, xBi, zAi and zBi of markers A and B in the region can be included in the model to

fit regression (3.2) for high resolution joint LD and linkage mapping. In this second

step, the significant variables among σ2
ga, σ

2
gd, αA, αB, δA and δB can be identified.

Keeping only the significant variables in the final model, the likelihood ratio test

of the final model against the model which assumes neither linkage nor association

between the trait values and the markers can be calculated. By performing the

analysis in this way, both linkage and LD information are used simultaneously to get

a joint mapping of QTL.
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3.2.2. Trait Variance-Covariance Matrix

For two siblings i and j in a sibship of size l, their trait covariance, conditional on

the information of markers A and B, is Cov(y1, y2|IA, IB) = π̂ijQσ
2
ga + ∆̂ijQσ

2
gd +

σ2
Ga/2 + σ2

Gd/4 + σ2
s = ρ̂ijσ

2, where π̂ijQ = E (πijQ|IA, IB), πijQ is the proportion of

allele IBD at putative QTL Q, ∆̂ijQ = E (∆ijQ|IA, IB) and ∆ijQ is the probability

that both alleles at the locus Q are IBD in the two offspring. The notations IA and

IB represent the information on marker A and marker B. In the following paragraph,

we use the interval mapping method given by Fulker and Cardon (1994) to estimate

πijQ. In addition, we provide methods to estimate ∆ijQ by the information on marker

loci, which is not available in the literature.

Denote the recombination fraction between trait locus Q and marker A by θAQ,

the recombination fraction between trait locus Q and marker B by θQB, and the

recombination fraction between marker A and marker B by θAB. Fulker and Cardon

(1994) propose calculating the proportion π̂ijQ of alleles which are IBD at putative

QTL Q for a sib-pair i and j by π̂ijQ = απ + βπAπijA + βπBπijB, where πijA and πijB

are the proportions of IBD alleles sharing at marker A and marker B by sib-pair i

and j, respectively. The coefficients απ, βπA and βπB are functions of θAQ, θQB and

θAB given by

βπA =
(1− 2θAQ)2 − (1− 2θAB)2(1− 2θQB)2

1− (1− 2θAB)4

βπB =
(1− 2θQB)2 − (1− 2θAB)2(1− 2θAQ)2

1− (1− 2θAB)4
(3.5)

απ =
1− βπA − βπB

2
.

Let ∆ijA,∆ijB be the probability of sharing 2 alleles IBD at markers A and B for the
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sib-pair i and j, respectively. We propose to estimate ∆ijQ by

∆̂ijQ = α + βAπijA + βBπijB + rA∆ijA + rB∆ijB. (3.6)

In Appendices H, I and J, we show that under the assumption of no interference,

rA =
(1− 2θAQ)4 − (1− 2θQB)4(1− 2θAB)4

1− (1− 2θAB)8

rB =
(1− 2θQB)4 − (1− 2θAQ)4(1− 2θAB)4

1− (1− 2θAB)8

βA = βπA − rA, βB = βπB − rB (3.7)

α =
(1− ψA)2(1− ψB)2

[ψAψB + (1− ψA)(1− ψB)]2
,

where βπA, βπB are given in equations (3.5) (Fulker and Cardon 1994), ψA = θ2
AQ +

(1− θAQ)2 and ψB = θ2
QB +(1− θQB)2. When we assume that the positions of marker

A and marker B are known, θAB can be calculated through a Haldane’s function

θ = [1− exp(−2λ)]/2 under assumption of no interference, where λ is map distance.

3.3. Test Statistics and Non-Centrality Parameter

3.3.1. Association Study

We assume that the data are composed of three sub-samples: n independent indi-

viduals, m independent sib-pairs, and k independent tri-sibships, each having 3 sibs.

Moreover, we assume that n, m and k are sufficiently large, so that large sample

theory applies. In practice, the sizes n and m of individuals and sib-pairs are likely

to be large. The size k of tri-sibships can be large. However, it is difficult to collect

a large sample of sibships each having more than 3 sibs. In the event that a large

sample of sibships each having more than 3 sibs is available, the following principle is

still valid, but the corresponding formulas must be calculated accordingly. Assuming



41

that there are no covariates, the regression coefficients are µ = (β, αA, αB, δA, δB)τ .

Consider the overall log-likelihood L =
∑I

i=1 Li, I = n + m + k. Denote the total

number of individuals by N , i.e., N = n + 2m + 3k. Let β̂, α̂A, α̂B, δ̂A, δ̂B, Σ̂i, Σ̂ be

the maximum likelihood estimators of β, αA, αB, δA, δB,Σi,Σ. The estimate of µ is

µ̂ =
[
Xτ Σ̂−1X

]−1
Xτ Σ̂−1~y =

[∑I
i=1X

τ
i Σ̂−1

i Xi

]−1 ∑I
i=1X

τ
i Σ̂−1

i ~yi. Let H be a q× 5 test

matrix of rank q (q ≤ 5). By Graybill (1976), Chapter 6, the test statistic of a

hypothesis Hµ = 0 is non-central F (q,N − 5) defined by

F =
(Hµ̂)τ [H(Xτ Σ̂−1X)−1Hτ ]−1(Hµ̂)

Y τ [Σ̂−1 − Σ̂−1X(Xτ Σ̂−1X)−1Xτ Σ̂−1]Y

N − 5

q

with the non-centrality parameter λ = (Hµ)τ
[
H[XτΣ−1X]−1Hτ

]−1
Hµ. Under the

assumption of large sample sizes n, m and k, we show in Appendix L that

n+m+k∑

i=1

Xτ
i Σ−1

i Xi ≈ diag(a1, a2VA, a3VD)/σ2, (3.8)

where a1, a2 and a3 are constants given by equations (L.4) in Appendix L.

In the presence of an additive effect, i.e., σ2
ga > 0 or αQ 6= 0, we may test the

null hypothesis HAB,a : αA = αB = 0 or DAQ = DQB = 0. The test matrix H is

defined by H =




0 1 0 0 0

0 0 1 0 0


 . Let us denote the corresponding F -test statistic

by FAB,a, and the non-centrality parameter by λAB,a. Then we have from (3.4) and

(3.8) that

λAB,a ≈ 1

σ2
a2 (αA αB )VA



αA

αB




=
2a2

σ2
α2

Q[PbPBD
2
AQ − 2DAQDABDQB + PaPAD

2
QB]/(PaPAPbPB −D2

AB)

=
a2

σ2
σ2

ga[R
2
AQ − 2RAQRABRQB +R2

QB]/(1−R2
AB),

whereRAB = DAB/
√
PaPAPbPB, RAQ = DAQ/

√
PaPAq1q2, andRQB = DQB/

√
q1q2PbPB

are three ratios (Almasy et al. 1999; Fan and Xiong 2002, 2003; Sham et al. 2000).
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In the presence of a dominant effect, i.e., σ2
gd > 0 or δQ 6= 0, we may test the null

hypothesis HAB,d : δA = δB = 0 or DAQ = DQB = 0. The test matrix H is defined

by H =




0 0 0 1 0

0 0 0 0 1


 . Denote the corresponding F -test statistic by FAB,d, and

the non-centrality parameter by λAB,d. Then we have from (3.4) and (3.8) that

λAB,d ≈ a3

σ2
( δA δB )VD



δA

δB




=
a3

σ2
δ2
Q[P 2

b P
2
BD

4
AQ − 2D2

AQD
2
ABD

2
QB + P 2

aP
2
AD

4
QB]/(P 2

aP
2
AP

2
b P

2
B −D4

AB)

=
a3

σ2
σ2

gd[R
4
AQ − 2R2

AQR
2
ABR

2
QB +R4

QB]/(1−R4
AB).

In the presence of both additive and dominant effects, i.e., σ2
ga > 0 and σ2

gd > 0,

we may test the null hypothesis HAB,ad : αA = αB = δA = δB = 0. The test

matrix H is defined by H =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




. Denote the corresponding F -test

statistic by FAB,ad, and the non-centrality parameter by λAB,ad. Then, λAB,ad =

λAB,a + λAB,d. Assume that only one marker A is used in the analysis. The non-

centrality parameter is λA,ad ≈ [1/σ2]
[
a2σ

2
gaR

2
AQ +a3σ

2
gdR

4
AQ

]
, for the null hypothesis

HA,ad : αA = δA = 0. Correspondingly, we denote the F -test statistic by FA,ad.

Similarly, λA,a ≈ [a2/σ
2]σ2

gaR
2
AQ is the non-centrality parameter of the test statistic

FA,a for the null hypothesis HA,a : αA = 0. The non-centrality parameter of the test

statistic FA,d for the null hypothesis HA,d : δA = 0 is λA,d ≈ [a3/σ
2]σ2

gdR
4
AQ.

3.3.2. Linkage Analysis

To calculate the non-centrality parameters of likelihood ratio tests, we follow an idea

of Sham et al. (2000) according to the general statistical theory (Stuart and Ord

1991). Under the null or alternative hypothesis, the maximum-likelihood estimates
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of the parameters can be calculated. Taking the expectations of the log-likelihoods,

the non-centrality parameters are then calculated as twice the difference between the

log-likelihoods under the null and alternative hypotheses.

Consider a sib-ship of l children. Under the null hypothesis of no linkage between

the trait locus and the markers, the correlation of each sib-pair is ρ =
σ2

ga

2σ2 +
σ2

gd

4σ2 +

σ2
Ga

2σ2 +
σ2

Gd

4σ2 + σ2
s

σ2 . Hence, we have twice the expected log-likelihood

E (2LNull) = −l − l log [2πσ2]− log det




1 ρ · · · ρ

ρ 1 · · · ρ

...
... · · · ...

ρ ρ · · · 1




= −l − l log [2πσ2]− log
[(

1 + (l − 1)ρ
)
(1− ρ)l−1

]
.

Under the alternative hypothesis of linkage between the trait locus and marker A,

the correlation between the sib-pair i and j is C2πijA
given by

Ck = Cov(yi, yj|πijA = k/2)/σ2 = (σ2
ga + σ2

gd)P (πijQ = 1|πijA = k/2)/σ2

+
σ2

ga

2
P (πijQ = 1/2|πijA = k/2)/σ2 + [σ2

Ga/2 + σ2
Gd/4 + σ2

s ]/σ
2, k = 0, 1, 2.

From Haseman and Elston (1972), Table IV, or Sham et al. (2000), Table 1, we have

C2 =
[
(σ2

ga + σ2
gd)ψ

2
A + σ2

gaψA(1− ψA) + σ2
Ga/2 + σ2

Gd/4 + σ2
s

]
/σ2

C1 =
[
(σ2

ga + σ2
gd)ψA(1− ψA) + σ2

ga[1− 2ψA(1− ψA)]/2 + σ2
Ga/2 + σ2

Gd/4 + σ2
s

]
/σ2

C0 =
[
(σ2

ga + σ2
gd)(1− ψA)2 + σ2

gaψA(1− ψA) + σ2
Ga/2 + σ2

Gd/4 + σ2
s

]
/σ2.

We have twice the expected log-likelihood under the alternative hypothesis of linkage

E (2Lrandom,A) = −l − l log [2πσ2]
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− ∑
π12A

· · · ∑
πl−1,lA

P (π12A) · · ·P (πl−1,lA) log det




1 C2π12A
· · · C2π1lA

C2π21A
1 · · · C2π2lA

...
... · · · ...

C2πl1A
C2πl2A

· · · 1




,

where P (πijA = 0) = P (πijA = 1) = 1/4 and P (πijA = 1/2) = 1/2. From Stuart

and Ord (1991), the non-centrality parameter for linkage of the family is equal to

λlinkage,A = E (2Lrandom,A)− E (2LNull). If the sibship consists of two offspring, then

λlinkage,A = log [1− ρ2]−
2∑

k=0

P (π12A = k/2) log [1− C2
k ]. (3.9)

Under the alternative hypothesis of linkage between the trait locus and markers A

and B, the correlation between the sib-pair i and j is C2πijA,2πijB
given by

Ck1k2 = Cov(yi, yj|πijA = k1/2, πijB = k2/2)/σ2

=
[
(σ2

ga + σ2
gd)P (πijQ = 1|πijA = k1/2, πijB = k2/2) (3.10)

+
σ2

ga

2
P (πijQ = 1/2|πijA = k1/2, πijB = k2/2) + σ2

Ga/2 + σ2
Gd/4 + σ2

s

]
/σ2.

To calculate the quantities Ck1k2 , we need the joint distribution of πijA, πijQ and πijB

of a sib-pair i and j under the alternative hypothesis of linkage. Based on Table II,

we can calculate Cij, i, j = 0, 1, 2, which are given in Appendix K. We have twice the

expected log-likelihood under the alternative hypothesis of linkage

E (2Lrandom,AB) = −l − l log [2πσ2]

− ∑
π12A

∑
π12B

· · · ∑
πl−1,lA

∑
πl−1,lB

P (π12A)P (π12B) · · ·P (πl−1,lA)P (πl−1,lB)

log det




1 C2π12A,2π12B
· · · C2π1lA,2π1lB

C2π21A,2π21B
1 · · · C2π2lA,2π2lB

...
... · · · ...

C2πl1A,2πl1B
C2πl2A,2πl2B

· · · 1




,
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where P (πijB = 0) = P (πijB = 1) = 1/4 and P (πijB = 1/2) = 1/2. From Stuart

and Ord (1991), the non-centrality parameter for linkage of the sibship is equal to

λlinkage,AB = E (2Lrandom,AB)−E (2LNull). If the sibship consists of two offspring, then

λlinkage,AB = log
[
1− ρ2

]
−

2∑

i,j=0

P (π12A = i/2)P (π12B = j/2) log
[
1− C2

ij

]
. (3.11)

The correlation quantitative Ck1k2 between the sibpair i and j are derived in

Appendix K.
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3.4. Estimates of the Probability of Sharing 2 Alleles IBD for Sibs

Tables III and IV give the interval estimates of ∆̂Q by πA, πB,∆A and ∆B under

Haldane’s function. Table III takes a map distance λAB = 20 cM, and Table IV

takes λAB = 100 cM (i.e., marker A and marker B are unlinked). In each table, the

interval is divided to be four equally spaced sub-intervals. This gives five equally

spaced locations for the trait locus. In each table, the estimates of ∆̂Q are equal to

∆A on the first location. Hence, ∆A can fully estimate ∆̂Q on the first location. On

the other hand, the estimates of ∆̂Q are equal to ∆B on the fifth location. Hence, ∆B

can fully estimate ∆̂Q on the fifth location. In both tables, the estimates of ∆̂Q on the

second location are intermediates between location 1 and location 3. The estimates

of ∆̂Q on the forth location are intermediates between location 3 and location 5. In

Table III, the estimates of ∆̂Q on the third location are close to the average of ∆A and

∆B (see the discussion in the following paragraph). In Table IV, the estimates ∆̂Q

on the third location tends to the expected value 0.25 since the location is unlinked

to both markers.

Assume the two markers A and B are close, for instance ≤ 20 cM as suggested

in Fulker and Cardon (1994). By taking the first order approximation (1 − x)n ≈
1 − nx for small x, we have an approximation rA ≈ (1−4·2θAQ)−(1−4·2θQB)(1−4·2θAB)

1−(1−8·2θAB)
≈

(1−8θAQ)−(1−8θQB−8θAB)

16θAB
≈ −θAQ+θQB+(θAQ+θQB)

2θAB
=

θQB

θAB
. Similarly, we can show that rB ≈

θAQ/θAB. Combining these results with equation (10) in Fulker and Cardon (1994), we

have that βA ≈ 0 and βB ≈ 0. Using the small map interval approximations to replace

the recombination fraction, we have βA ≈ 0, βB ≈ 0, rA ≈ λQB/λAB, rB ≈ λAQ/λAB,

where λij is the map distance between locus i and locus j. When the two markers

A and B are close, ψA ≈ 1 and ψB ≈ 1, which implies that α ≈ 0. Therefore, the

estimates ∆̂Q on the third location in Table III are approximately equal to the average



48

Table III. Interval estimates of ∆̂Q by πA, πB,∆A and ∆B, for the flanking markers

separated by λAB = 20 cM under Haldane’s mapping function.

Parameters Locations
πA ∆A πB ∆B 1 2 3 4 5
1 1 1 1 1.00 0.94 0.93 0.94 1.00
1 1 1/2 1/2 1.00 0.83 0.70 0.59 0.50
1 1 1/2 1/4 1.00 0.79 0.60 0.43 0.25
1 1 1/2 0 1.00 0.75 0.51 0.27 0.00
1 1 1/4 0 1.00 0.73 0.49 0.25 0.00
1 1 0 0 1.00 0.72 0.46 0.23 0.00

1/2 1/2 1 1 0.50 0.59 0.70 0.83 1.00
1/2 1/2 1/2 1/2 0.50 0.47 0.46 0.47 0.50
1/2 1/2 1/2 1/4 0.50 0.43 0.37 0.31 0.25
1/2 1/2 1/2 0 0.50 0.39 0.28 0.16 0.00
1/2 1/2 1/4 0 0.50 0.37 0.26 0.14 0.00
1/2 1/2 0 0 0.50 0.36 0.23 0.11 0.00
1/2 1/4 1 1 0.25 0.43 0.60 0.79 1.00
1/2 1/4 1/2 1/2 0.25 0.31 0.37 0.43 0.50
1/2 1/4 1/2 1/4 0.25 0.27 0.28 0.27 0.25
1/2 1/4 1/2 0 0.25 0.23 0.18 0.11 0.00
1/2 1/4 1/4 0 0.25 0.21 0.16 0.09 0.00
1/2 1/4 0 0 0.25 0.20 0.14 0.07 0.00
1/2 0 1 1 0.00 0.27 0.51 0.75 1.00
1/2 0 1/2 1/2 0.00 0.16 0.28 0.39 0.50
1/2 0 1/2 1/4 0.00 0.11 0.18 0.23 0.25
1/2 0 1/2 0 0.00 0.07 0.09 0.07 0.00
1/2 0 1/4 0 0.00 0.06 0.07 0.05 0.00
1/2 0 0 0 0.00 0.04 0.05 0.03 0.00
1/4 0 1 1 0.00 0.25 0.49 0.73 1.00
1/4 0 1/2 1/2 0.00 0.14 0.26 0.37 0.50
1/4 0 1/2 1/4 0.00 0.09 0.16 0.21 0.25
1/4 0 1/2 0 0.00 0.05 0.07 0.06 0.00
1/4 0 1/4 0 0.00 0.04 0.05 0.04 0.00
1/4 0 0 0 0.00 0.02 0.02 0.01 0.00
0 0 0 0 0.00 0.00 0.00 0.00 0.00

rA 1.00 0.64 0.37 0.17 0.00
rB 0.00 0.17 0.37 0.64 1.00
βA 0.00 0.08 0.09 0.05 0.00
βB 0.00 0.05 0.09 0.08 0.00
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Table IV. Interval estimates of ∆̂Q by πA, πB,∆A and ∆B, for the flanking markers

separated by λAB = 100 cM under Haldane’s mapping function.

Parameters Locations
πA ∆A πB ∆B 1 2 3 4 5
1 1 1 1 1.00 0.50 0.40 0.50 1.00
1 1 1/2 1/2 1.00 0.48 0.33 0.31 0.50
1 1 1/2 1/4 1.00 0.48 0.33 0.28 0.25
1 1 1/2 0 1.00 0.47 0.33 0.25 0.00
1 1 1/4 0 1.00 0.46 0.30 0.19 0.00
1 1 0 0 1.00 0.45 0.27 0.13 0.00

1/2 1/2 1 1 0.50 0.31 0.33 0.48 1.00
1/2 1/2 1/2 1/2 0.50 0.29 0.27 0.29 0.50
1/2 1/2 1/2 1/4 0.50 0.29 0.26 0.26 0.25
1/2 1/2 1/2 0 0.50 0.29 0.26 0.22 0.00
1/2 1/2 1/4 0 0.50 0.28 0.23 0.17 0.00
1/2 1/2 0 0 0.50 0.27 0.20 0.11 0.00
1/2 1/4 1 1 0.25 0.28 0.33 0.48 1.00
1/2 1/4 1/2 1/2 0.25 0.26 0.26 0.29 0.50
1/2 1/4 1/2 1/4 0.25 0.26 0.26 0.26 0.25
1/2 1/4 1/2 0 0.25 0.26 0.25 0.22 0.00
1/2 1/4 1/4 0 0.25 0.25 0.23 0.17 0.00
1/2 1/4 0 0 0.25 0.24 0.20 0.11 0.00
1/2 0 1 1 0.00 0.25 0.33 0.47 1.00
1/2 0 1/2 1/2 0.00 0.22 0.26 0.29 0.50
1/2 0 1/2 1/4 0.00 0.22 0.25 0.26 0.25
1/2 0 1/2 0 0.00 0.22 0.25 0.22 0.00
1/2 0 1/4 0 0.00 0.21 0.22 0.17 0.00
1/2 0 0 0 0.00 0.20 0.19 0.11 0.00
1/4 0 1 1 0.00 0.19 0.30 0.46 1.00
1/4 0 1/2 1/2 0.00 0.17 0.23 0.28 0.50
1/4 0 1/2 1/4 0.00 0.17 0.23 0.25 0.25
1/4 0 1/2 0 0.00 0.17 0.22 0.21 0.00
1/4 0 1/4 0 0.00 0.16 0.19 0.16 0.00
1/4 0 0 0 0.00 0.15 0.16 0.10 0.00
0 0 0 0 0.00 0.09 0.14 0.09 0.00

rA 1.00 0.14 0.02 0.00 0.00
rB 0.00 0.00 0.02 0.14 1.00
βA 0.00 0.23 0.12 0.04 0.00
βB 0.00 0.04 0.12 0.23 0.00
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of ∆A and ∆B.

3.5. Power Comparison

3.5.1. Comparisons with the “AbAw” Approach of Fulker

To compare the method developed in this paper with the “AbAw” approach developed

by Fulker and Abecasis et al., we present the theoretical expectations of the statistics

for LD mapping of 1000 sib-pairs in Table V. The results of “AbAw” approach by

Fulker and Abecasis et al. are directly taken from Table 5, p1625, Sham et al. (2000).

The QTL is assumed to be additive with σ2
ga = 0.2. The shared residual environment

variance, σ2
s , is set to be either 0 or 0.4, such as those in Tables 3 and 5, Fulker et al

(1999), or Table 5, Sham et al. (2000). The error variance is set to be either 0.8 or

0.4, correspondingly. Moreover, it is assumed that there is no polygenic effects, and

there is no putative dominant variance; thus, the total variance is 1. The QTL Q

and marker A are assumed to be bi-allelic with equal allele frequencies. The measure

DAQ of LD varies from complete disequilibrium, 0.25, to weak disequilibrium, 0.025.

In Table V, the statistic FA,a is approximately distributed as non-central χ2(1), since

the sample size of 1000 sib-pairs is large enough for asymptotic property to hold. The

theoretical expectations of the χ2 statistics are the non-centrality parameters plus 1,

i.e., λA,a +1. To perform simulation studies, samples of 50,000 sib-pairs are generated

by simulation program Ldsimul. The reported values of statistics FA,a and LRT are

divided by 50 to be comparable with the results of Table 5, Sham et al. (2000), where

the simulation results are averages of 100 replicate samples of 1,000 sib pairs. From

the results of Table V, it is clear that either FA,a or LTR is more powerful than any

of between-pairs and within-pairs approaches of Fulker and Abecasis et al. “AbAw”

approach (Fulker et al. 1999; Sham et al. 2000).
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The empirical estimates, α̂A, of the parameter αA are fairly close. In the presence

of strong disequilibrium DAQ ≥ 0.20, both LRTs and F statistics tend to overestimate

the theoretical expectations of the χ2 statistics. In the weak disequilibrium DAQ ≤
0.10, both LRTs and F statistics tend to underestimate the theoretical expectations

of the χ2 statistics.

3.5.2. Comparisons of Sample Sizes and Power for LD Mapping

In the sample size and power calculations, we take an additive polygenic variance

σ2
Ga = 0.10, polygenic dominant variance σ2

Gd = 0.05, and shared environment residual

variance σ2
s = 0. For sib-pairs, πA = πB = ∆A = ∆B = 0.5. For tri-sibships,

πA = πB = ∆A = ∆B = 0.5 for sib-pair 1 and 2; πA = πB = ∆B = 0.5,∆A = 0.25 for

sib-pair 1 and 3; and πA = πB = 0.5,∆A = ∆B = 0.25 for sib-pair 2 and 3. Suppose

that µ11 = a, µ12 = µ21 = d and µ22 = −a. Denote heritability by h2 which is

defined by h2 = σ2
ga/σ

2. Let λAB be the map distance between marker A and marker

B. Under the assumption of no interference, we may calculate the recombination

fraction θAB = [1 − exp(−2λAB)]/2. Similarly, we may calculate the recombination

fractions θAQ and θQB by the map distances λAQ and λQB.

Figure 7 gives the required number of sib-pairs (Graphs I and II) and tri-sibships

(Graphs III and IV) of test statistics FAB,ad, FAB,a, FAB,d, FA,ad, FA,a, and FA,d against

the heritability h2 at 0.01 significant level and 0.80 power, for a mode of dominant

inheritance a = d = 1.0 (Graphs I and II), and a mode of recessive inheritance

a = 1.0, d = −0.5 (Graphs III and IV), respectively. In the figure, we take equal allele

frequencies q1 = PA = PB = 0.50, LD coefficients DAB = 0.10, DAQ = DQB = 0.15,

and map distances λAB = 5cM, λAQ = λQB = 2.5cM . We can see the following: (1)

For both dominant and recessive traits, the required number of sib-pairs or tri-sibships

is reasonable for test statistics FAB,ad, FAB,a, FA,ad, and FA,a if the heritability h2 is
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larger than 0.1 (Graphs I and III); (2) For dominant traits, the required number of

sib-pairs is less than 150 for each of test statistics FAB,ad, FAB,a, FA,ad, and FA,a if

the heritability h2 is large than 0.1 (Graph I); the required number of sib-pairs of

test statistic FAB,ad is similar to that of FAB,a, and the required number of sib-pairs

of test statistic FA,ad is similar to that of FA,a; (3) For recessive traits, the required

number of tri-sibships is less than 100 for each of test statistics FAB,ad, FAB,a, FA,ad,

and FA,a if the heritability h2 is larger than 0.15 (Graph III); (4) The required number

of sib-pairs or tri-sibships of test statistics FAB,d and FA,d is much bigger, especially

for recessive trait (Graphs II and IV).

Figure 8 shows power curves for the test statistics FAB,ad, FAB,a, FAB,d, FA,ad,

FA,a, and FA,d against trait frequency allele q1 and marker allele frequency PA at 0.01

significant level, when PA = 0.5 (Graphs I and II), q1 = 0.5 (Graphs III and IV),

PB = 0.50, n = 60,m = 30, k = 20, λAB = 5cM, λAQ = λQB = 2.5cM, and h2 = 0.25,

for a mode of dominant inheritance a = d = 1.0, and a mode of recessive inheritance

a = 1.0, d = −0.5, respectively. The LD coefficients are DAB = (min(PA, PB) −
PAPB)/2, DAQ = (min(PA, q1) − PAq1)/2 and DQB = (min(PB, q1) − PBq1)/2. The

power of the statistic FAB,ad is lower than that of FAB,a, and the power of FA,ad is

slightly lower than that of FA,a; this is due to the larger degrees of freedom of FAB,ad

and FA,ad. The power of the statistics FAB,d and FA,d are very low, which confirms the

findings in Figure 7. Interestingly, the power of statistics FAB,ad and FAB,a depends

heavily on the trait allele frequency q1 (Graphs I and II), but not so much on the

marker allele frequency PA (Graphs III and IV). The power of the statistics FA,ad

and FA,a depends heavily on both the trait allele frequency q1 and the marker allele

frequency PA.

Figure 9 shows the power of test statistics FAB,ad, FAB,a,FAB,d, FA,ad, FA,a, and

FA,d against LD coefficient DAQ at 0.01 significant level, when q1 = PA = PB =
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Fig. 7. Number of sib-pairs (Graphs I and II) or tri-sibships (Graphs III and IV) of

test statistics FAB,ad, FAB,a,FAB,d, FA,ad, FA,a, and FA,d against the heritability

h2 at 0.01 significant level and 0.80 power.
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Fig. 8. Power of test statistics FAB,ad, FAB,a,FAB,d, FA,ad, FA,a, and FA,d against trait

frequency q1 or marker allele frequency PA at 0.01 significant level, when

PA = 0.5 (Graphs I and II), q1 = 0.5 (Graphs III and IV).
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I. Dominant Inheritance, D_AB=0.0
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Fig. 9. Power of test statistics FAB,ad, FAB,a,FAB,d, FA,ad, FA,a, and FA,d against LD

coefficient DAQ at 0.01 significant level.
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0.50, DQB = 0.15, n = 60,m = 30, k = 20, λAB = 5cM, λAQ = λQB = 2.5cM, and

h2 = 0.15, for a mode of dominant inheritance a = d = 1.0, and a mode of recessive

inheritance a = 1.0, d = −0.5, respectively. We can see that the power of FAB,ad and

FAB,a is high. In the absence of LD between two markers A and B, the power of

FAB,ad and FAB,a is symmetric with DAQ = 0 (Graphs I and II). If LD measure DAB

is highly positive (Graphs III and IV, DAB = 0.10), the power of FAB,ad and FAB,a is

high for large negative DAQ. If the LD between trait locus Q and marker A is weak

(|DAQ| < 0.10), the power of FA,ad and FA,a is minimal. Hence, two marker analysis

is advantageous over one marker analysis. For dominant traits, the power of FAB,d

and FA,d is low except for the presence of high LD between trait locus Q and marker

A (|DAQ| > 0.20, Graphs I and III). For recessive traits, the power of FAB,d and FA,d

is very low (Graphs II and IV).

Figure 10 shows the power of test statistics FAB,ad, FAB,a,FAB,d, FA,ad, FA,a, and

FA,d against heritability h2 at 0.01 significant level, when q1 = PA = PB = 0.50, n =

60,m = 30, k = 20, λAB = 5cM, λAQ = λQB = 2.5cM , for a mode of dominant

inheritance a = d = 1.0, and a mode of recessive inheritance a = 1.0, d = −0.5,

respectively. In the presence of high LD (Graphs I and II, DAB = 0.10, DAQ =

DQB = 0.15), the power of test statistics FAB,ad, FAB,a, FA,ad, and FA,a is high if the

heritability h2 ≥ 0.15. If the LD are lower (Graphs III and IV, DAB = 0.05, DAQ =

DQB = 0.08), the power is lower as expected.

Assume that the LD is due to historical mutations at QTL Q which occurred T

generations ago. Denote the frequency of haplotype AQ at the generation when the

mutations occurred by P (AQ)(0). Then the LD coefficient is DAQ(0) = P (AQ)(0)−
q1PA for the generation when the mutations occurred. For the following generations,

the disequilibrium coefficient is reduced by a factor 1− θAQ in each generation (Hartl

and Clark 1989). Then the LD coefficient is DAQ(T ) = DAQ(0)(1 − θAQ)T . Sim-
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Fig. 10. Power of test statistics FAB,ad, FAB,a,FAB,d, FA,ad, FA,a, and FA,d against her-

itability h2 at 0.01 significant level.
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ilarly, the other LD coefficients are DAB(T ) = DAB(0)(1 − θAB)T and DQB(T ) =

DQB(0)(1 − θQB)T . In Figure 11, Graphs I and II show the power of test statistics

FAB,ad, FAB,a,FAB,d, FA,ad, FA,a, and FA,d against position of trait locus Q at 0.01

significant level, when q1 = PA = PB = 0.50, n = 60,m = 30, k = 20, λAB = 4.5cM,

and h2 = 0.15, for a mode of dominant inheritance a = d = 1.0, and a mode of

recessive inheritance a = 1.0, d = −0.5, respectively. The initial LD coefficients are

DAB(0) = 0.20, DAQ(0) = DQB(0) = 0.25, and the mutation age is T = 45. Marker A

is located at 0cM, and marker B is located at 4.5cM. The power of FAB,ad and FAB,a

is similar to the power of FA,ad and FA,a, when the trait locus Q is close to marker

A (i.e, trait locus Q locates in the region which is less than 1.5cM from marker A).

When trait locus Q locates in the region which is larger than 1.5cM from marker A,

the power of FA,ad and FA,a decrease as the recombination fraction θAQ increases. The

power of FAB,ad and FAB,a is high as long as the trait locus is close to either marker

A or marker B. Hence, multiple marker LD mappings have advantages in performing

fine gene mappings. Graphs III and IV of Figure 11 show the power of test statistics

FAB,ad for different mutation ages against the position of markers A and B at 0.01

significant level. In the two graphs, the trait locus Q locates at 10cM; markers A and

B flank the trait locus Q. One marker is on each side of the QTL with equal distance

to the QTL. The power decreases quickly when the age of the mutation increases.

For a mutation which is 30 generations old, one should expect very low power if the

markers locate 2.5cM away from the QTL.

3.5.3. Comparisons of Sample Sizes and Power for Linkage Analysis

To explore the linkage interval mapping and investigate the influence of the dominant

variance of the quantitative trait, we take a sample of m = 250 sib pairs. Multiply-

ing λlinkage,AB of (3.11) given in Appendix D by m, we calculate the non-centrality



60

I. Dominant Inheritance

Location of Trait Locus Q (cM)

P
o

w
e

r

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F_{AB,ad}
F_{AB,a}
F_{A,ad}
F_{A,a}
F_{AB,d}
F_{A,d}

II. Recessive Inheritance

Location of Trait Locus Q (cM)

P
o

w
e

r

0 1 2 3 4
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

F_{AB,ad}
F_{AB,a}
F_{A,ad}
F_{A,a}
F_{AB,d}
F_{A,d}

III. Dominant Inheritance

Position of Markers A and B (cM)

P
o

w
e

r

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

T=20
T=30
T=40
T=50
T=60

IV. Recessive Inheritance

Position of Markers A and B (cM)

P
o

w
e

r

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

T=20
T=30
T=40
T=50
T=60

Fig. 11. Graphs I and II. Power of test statistics FAB,ad, FAB,a,FAB,d, FA,ad, FA,a,

and FA,d against position of trait locus Q at 0.01 significant level. Graphs

III and IV. Power of test statistics FAB,ad of different mutation ages against

position of markers A and B at 0.01 significant level. The trait locus Q

locates at 10cM. The two markers A and B flank the trait locus Q. The other

parameters are the same as Graphs I and II.
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Fig. 12. Power curves of the interval mapping by markers A and B with or without

dominant variances against the recombination fraction θAQ at 0.05 significant

level, when h2 = 0.35, λAB = 10cM,m = 250, σ2
Ga = 0.10, σ2

Gd = 0.05, σ2
s = 0,

for a dominant trait a = d = 1.0, q1 = 0.60; and a recessive trait

a = 1.0, d = −0.9, q1 = 0.40. Marker A locates at 0cM, and marker B

locates at 10cM.
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parameters for the linkage interval mapping using markers A and B. Assume that

the heritability is h2 = 0.35 and the genetic distance is λAB = 10cM . Marker A

locates at 0cM, and marker B locates at 10cM. Figure 12 gives the power curves of

the linkage interval mapping by markers A and B with or without dominant variance

against the location of trait locus Q. For a mode of dominant inheritance in Graph I,

we assume a = d = 1.0. For a mode of recessive inheritance in Graph II, we assume

a = 1.0, d = −0.9. By assuming there is no dominance variance at the putative trait

locus Q, we include σ2
ga but not σ2

gd in calculating the correlation of sib-pairs. The

power without dominant variance is apparently less than that with dominant vari-

ance. Hence, including both additive and dominant variances in the model has an

advantage in linkage mapping. In the presence of dominant variance, one may lose

power by excluding it.

3.6. Application

We apply the method in this chapter to the Genetic Analysis Workshop 12 German

asthma data (Meyers, Wjst and Ober 2001). The data consist of 97 nuclear families,

including 415 persons. Seventy-four families have 2 children, 19 have three children,

and 4 have four children. In Wjst et al. (1999), linkage to total serum IgE was

tested by the nonparametric statistic of MAPMAKER/SIBS 2.1. On chromosome

1, marker D1S221 at position 146.7cM and marker D1S502 at position 151.2cM are

shown to be linked with IGE level. By the method proposed in this paper, we find

that dominant variance of log(IGE) is significantly higher than 0 at position 149.85cM

(p-value, 0.01). On this basis, we treat allele 8 at marker D1S221 as allele A, and

collapse other alleles as allele a. At marker D1S502, we collapse alleles 7, 8, and 13

as allele B, and others as allele b. Then, we find that covariate ZA is significantly
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different from 0 at position 149.85cM (δ̂A = 1.16, with a p-value 0.0475 by LRT and

a p-value 0.0484 by F test). Hence, we are able to confirm the result of Wjst et al.

(1999), and find that marker D1S221 is associated with log(IGE).

3.7. Discussion

Variance component models are explored to perform the combined linkage and LD

mapping based on sibship data with no parental data. The models simultaneously

incorporate both linkage information in variance covariance structure of sibship and

LD information in the mean coefficients. The mean coefficients account for both LD

and the genetic effects such as additive and dominant effects. The linear model of

high resolution LD mapping method of Fan and Xiong (2002) is generalized from

population to pedigree data, as we consider the variance covariance of pedigree in

the model (Fan and Xiong, 2003). In this chapter, we develop the method to ac-

commodate sibship data and population. In the presence of linkage to a particular

chromosome region, test of association between QTL and markers is based on coeffi-

cient of linear equations. By power and sample size comparisons, generally the power

of test statistics for two markers is higher than that for one markers. Furthermore,

the power of testing additive genetic effect is higher than that of testing both ad-

ditive and dominant genetic effect because of an increase of degrees of freedom. In

theoretical and simulation study, powers of the proposed model are higher than any

of between-pairs and within-pairs (“AbAw”) approaches of Fulker et al. (1999) if

only one marker is used in analysis. Moreover, the methods are applied to GAW 12

German asthma data and find some effective results.

Fulker and Cardon (1994) suggested the interval mapping approach which has

an advantage in detecting the exact location QTL. We propose a way to calculate the
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probability of sharing both trait alleles IBD for sibships conditional on the information

of flanking markers. Using the formulas of Fulker and Cardon (1994) and the proposed

formulas of the probability of sharing both allele IBD in this chapter, we can calculate

the trait covariance which is decomposed into additive and dominant genetic variances

weighted by IBD status. By numerical calculation and power comparisons, including

both additive and dominant variances in the models has a merit in linkage interval

mapping when dominant variances exist.

It would be interesting to generalize the proposed method in terms of several

views. We generalize the method to use multiple bi-allele markers in the next chapter.

It is worthwhile that multi-allelic markers such as micro-satellites or haplotype block

could be applied to these models. Since LD mapping is affected very heavily by

population subdivisions and admixtures, there is a need to develop methodologies

which can deal with the problem in joint LD and linkage mapping. The proposed

methods can be applied to general pedigree data.
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CHAPTER IV

LINKAGE AND ASSOCIATION MAPPING BY MULTIPLE MARKERS

4.1. Introduction

In linkage disequilibrium (LD) mapping or association study, it is interesting in devel-

oping models which use multiple markers simultaneously for high resolution mapping

of genetic traits. Usually, mapping single marker on chromosome has low resolution

and methods utilizing different markers may lead to different results which make the

interpretation complicated. The models using multiple markers may give a consistent

result, and lead to greater resolution. Moreover, as large numbers of single nucleotide

polymorphisms (SNPs) are available and high throughput genotyping approaches are

emerging, there is a need to work out high resolution mapping.

In chapter III, variance component models using two markers are proposed for

high resolution mapping of quantitative trait loci (QTL) based on population and

pedigree data (Fan and Jung 2003; Fan and Xiong 2002, 2003; Zhao et al. 2001).

The genetic effects are orthogonally decomposed into summation of additive and

dominant effects. In Abecasis et al. (2000, 2001), Cardon 2000, Fulker et al. (1999)

and Sham et al. (2000), an association between-family and association within-family

(“AbAw”) approach is proposed to decompose the genetic association into effects

of between-pairs and within-pairs. The models in chapter III differ from “AbAw”

approach in the following views: (1) The “AbAw” approach uses only one marker in

analysis, but we use two bi-allelic markers; (2) The way of modeling mean coefficients

is different. Fan and Jung (2003) compare our method with the “AbAw” approach,

and find that our method is more advantageous for sib-pair data. One may want to

notice that it is not clear how to extend the “AbAw” approach to use more than one
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markers in analysis (Dr. Fan’s communications with Dr. Abecasis and Dr. Sham).

Models in this chapter extend those of the previous chapter, and investigate

variance component models in fine association QTL mapping using multiple bi-allelic

markers. The models jointly take linkage and linkage disequilibrium information into

account. The linkage information is modeled in the variance covariance matrix, and

the linkage disequilibrium information is modeled in mean coefficients of trait values

like the “ AbAw” approach does. By modeling the linkage information in the variance

covariance matrix, we may take the advantage of much research of variance component

models (Almasy and Blangero 1998; Amos 1994; Amos et al. 1989; Fulker et al. 1995;

George et al. 1999; Goldgar and Oniki 1992; Haseman and Elston 1972; Pratt et al.

2000). In the mean time, the linkage disequilibrium information is incorporated into

the mean coefficients through indicator variables of marker genotypes, whose validity

can be justified intuitively (Fan and Xiong 2000, pages 608-609).

Using the models developed in this chapter, test statistics can be derived for high

resolution association mapping. The procedure is to perform appropriate linkage anal-

ysis based on a sparse genetic map for prior linkage evidence. Then association study

can be worked out using a dense genetic map in the presence of prior linkage informa-

tion. Likelihood ratio tests (LRT) can be carried out in high resolution association

study. For large sample data, likelihood ratio criteria are accurate. Based on the

general theory of linear models, F -test statistics can be built to test the association

between trait locus and markers in the presence of prior linkage evidence (Graybill

1976). The analytical formulae for the non-centrality parameter approximations are

derived for the F -test statistics. The merits of the proposed method are investigated

in terms of power and sample size comparison. Using simulation program LDSIMUL

kindly provided by Dr. Abecasis, simulation study is performed to explore the power

and type I error rates of the proposed test statistics. The proposed methods are com-
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pared with the “ AbAw” approach (Abecasis, Cardon, and Cookson 2000). Moreover,

the method is applied to the Genetic Analysis Workshop (Gaw) 12 German asthma

data (Meyers, Wjst and Ober 2001; Wjst et al. 1999).

4.2. Model

Assume that k bi-allelic markers Mj, j = 1, · · · , k are typed in a region of one chro-

mosome. Suppose a quantitative trait locus Q is located in the region, which has two

alleles Q1 and Q2 with frequencies q1 and q2, respectively. For marker Mj, there are

two alleles Mj with frequency PMj
and mj with frequency Pmj

, respectively. For a

nuclear family of l children and two parents, let y = (yf , ym, y1, · · · , yl)
τ be their quan-

titative traits vector, let Gj = (Gfj, Gmj, G1j, · · · , Glj) be genotypes at j-th marker

locus Mj. Here yf is a trait value of the father, Gfj is the genotype of the father

at j-th marker. Likewise, the mother and the i-th child with subscript m and i,

respectively. The log-likelihood function for these data is

L = − l + 2

2
log (2π)− 1

2
log |Σ| − 1

2
(y −Xη)τΣ−1(y −Xη). (4.1)

The components of model (4.1) are defined as follows.

Σ =




1 0 ρ0 ρ0 · · · ρ0

0 1 ρ0 ρ0 · · · ρ0

ρ0 ρ0 1 ρ12 · · · ρ1l

ρ0 ρ0 ρ21 1 · · · ρ2l
...

...
...

... · · · ...
ρ0 ρ0 ρl1 ρl2 · · · 1




σ2

is a (l+ 2)× (l+ 2) variance-covariance matrix, where σ2 = σ2
g + σ2

H + σ2
e . Here σ2

g is

variance explained by the putative QTL Q, σ2
H is the variance of familial effects which

include shared environment variance and half of the additive polygenic variance, and

σ2
e is error variance. The genetic variance σ2

g = σ2
ga + σ2

gd is decomposed into additive
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and dominant components. ρ0 = (σ2
ga/2 + σ2

H)/σ2 is correlation between parents and

children, ρij = ρji = (πijQσ
2
ga + ∆ijQσ

2
gd + σ2

H)/σ2 is the correlation between the

i-th child and the j-th child, πijQ is the proportion of alleles sharing identical by

descent (IBD) at putative QTL Q by the i-th child and the j-th child, and ∆ijQ is

the probability that both alleles shared by the i-th child and the j-th child at the

putative QTL Q are IBD (Cotterman 1940; Lange 2002; Pratt et al. 2000; Zhu and

Elston 2000). For the mean component Xη of log-likelihood (4.1), we consider

yi = β + wiγ +
k∑

j=1

xijαj +
k∑

j=1

zijδj +Hi + ei. (4.2)

where β is overall mean, wi is a row vector of covariates such as gender and age,

γ is a column vector of regression coefficients of wi, and ei is error term. Assume

that ei is normal N(0, σ2
e). Hi is the familial effect. Assume that Hi is normal

N(0, σ2
H). Moreover, Hi and ei are independent. For j = 1, · · · , k, αj and δj are

regression coefficients of the dummy variables xij and zij, respectively. Hence, η =

(β, γτ , α1, · · · , αk, δ1, · · · , δk)τ is a vector of regression coefficients and X is model

matrix. Here xij and zij are indicator variables, and are defined as follows

xij =





2Pmj
if Gij = MjMj

Pmj
− PMj

if Gij = Mjmj

−2PMj
if Gij = mjmj

and zij =





−P 2
mj

if Gij = MjMj

Pmj
PMj

if Gij = Mjmj

−P 2
Mj

if Gij = mjmj

.

Regression (4.2) uses multiple markers and is a natural generalization of model

of our previous work. The objective is to fully use marker information for fine high

resolution mapping of QTL.
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4.3. Parameter Estimation

4.3.1. Regression Coefficients and Association Study

Denote the measure of LD between trait locusQ and markerMi byDMiQ = P (MiQ1)−
PMi

q1, i = 1, · · · , k, and the measure of LD between marker Mi and marker Mj by

DMiMj
= P (MiMj) − PMi

PMj
, i < j, i, j = 1, · · · , k. Let the additive and dominant

variance-covariance matrices be

VA = 2




PM1Pm1 DM1M2 · · · DM1Mk

DM1M2 PM2Pm2 · · · DM2Mk

...
... · · · ...

DM1Mk
DM2Mk

· · · PMk
Pmk


 , VD =




P 2
M1
P 2

m1
D2

M1M2
· · · D2

M1Mk

D2
M1M2

P 2
M2
P 2

m2
· · · D2

M2Mk

...
... · · · ...

D2
M1Mk

D2
M2Mk

· · · P 2
Mk
P 2

mk



.

In Appendix M, the coefficients of regression (4.2) are derived as




α1

...

αk




= V −1
A




2DM1Q

...

2DMkQ



αQ and




δ1
...

δk




= V −1
D




D2
M1Q

...

D2
MkQ



δQ. (4.3)

Equations (4.3) show that the parameters of LD (i.e., DMiQ and DMiMj
) and gene

effect (i.e., αQ and δQ) are contained in the mean coefficients. Model (4.2) simulta-

neously takes care of the LD and the effects of the putative trait locus Q. The gene

substitution effect αQ is contained in αi; and the dominant effect δQ is contained

in δi, i = 1, · · · , k. Therefore, regression (4.2) orthogonally decomposes genetic effect

into summation of additive and dominant effects.

Assume that all markers Mi and Mj are in linkage equilibrium (i.e., DMiMj
=

0, i, j = 1, · · · , k, i 6= j). The coefficients of additive and dominant effects are given

by α1 =
DM1Q

PM1
Pm1

αQ, · · ·, αk =
DMkQ

PMk
Pmk

αQ and δ1 =
D2

M1Q

P 2
M1

P 2
m1

δQ, · · · , δk =
D2

MkQ

P 2
Mk

P 2
mk

δQ.

That means markers M1, · · · ,Mk independently contribute to the analysis of the trait

values. Usually, the markers Mi can be in LD, especially when they are locate in

a narrow chromosome region. Equations (4.3) rightly use the LD information of
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markers Mi in the analysis.

Linkage analysis can be performed by considering a reduced variance component

model yi = β + wiγ + Hi + ei. This initial study can identify prior linkage evidence

of the trait values to a specific chromosome region based on a sparse genetic map.

Suppose that prior linkage evidence is provided by an initial linkage study. Based

on a dense genetic map, high resolution association mapping of the QTL can be

carried out by fitting the full model (4.2). First, assume that linkage is confirmed

in a chromosome region by the significant presence of both the gene substitution

and dominant effects, i.e., αQ 6= 0 and δQ 6= 0. Based on equations (4.3), the

existence of LD between markers Mi (i = 1, · · · , k) and trait locus Q can be tested by

Had : α1 = · · · = αk = δ1 = · · · = δk = 0. Second, assume that linkage is supported

by the significant presence of the gene substitution effect, but not the dominant effect,

i.e., αQ 6= 0 and δQ = 0. The existence of LD can be tested by Ha : α1 = · · · = αk = 0.

Third, assume that linkage is supported by the significant presence of the dominant

effect, but not the gene substitution effect, i.e., αQ = 0 and δQ 6= 0. The existence of

LD can be tested by Hd : δ1 = · · · = δk = 0.

Evidence of association can be evaluated by likelihood ratio test (LRT) proce-

dure. For instance, let Lad be the log-likelihood under the alternative hypothesis of

Had, and L0 be the log-likelihood under the null hypothesis Had. Then, the quan-

tity 2[Lad − L0] is asymptotically distributed as χ2. Notice that there are only k

measures of LD, DM1Q, · · · , DMkQ, under the alternative hypothesis Had. In data

analysis, the number of coefficients αi, δi, i =, 1 · · · , k, which are significantly different

from 0, should be less than or equal to k. This number is the degrees of freedom of

the likelihood ratio test 2[Lad − L0]. For large sample data, the likelihood ratio test

is accurate based on the statistical theory. In this paper, we will develop a F -test

procedure based on linear model theory (Graybill 1976). Before that, we will discuss
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the variance-covariance first.

4.3.2. Variance-Covariances

Denote the recombination fraction between trait locus Q and marker Mi by θMiQ, i =

1, · · · , k. Likewise, the recombination fraction between markersMi andMj are defined

by θMiMj
. Following Fulker et al. (1995)) and Alamsy and Blangero (1998), we

propose a multi-point interval mapping method to estimate the proportion πijQ of

allele sharing IBD at a putative QTL Q for a sib-pair i and j by

π̂ijQ = E (πijQ|IM1 , IM2 , · · · , IMk
)

= απ + βπM1πijM1 + βπM2πijM2 + · · ·+ βπMk
πijMk

, (4.4)

where πijMl
is the proportions of alleles sharing IBD at the marker Ml for l = 1, · · · , k.

The coefficients απ, βπM1 , · · · , βπMk
are derived in Appendix N as follows




βπM1

βπM2

...

βπMk




=




1 (1− 2θM1M2)
2 · · · (1− 2θM1Mk

)2

(1− 2θM1M2)
2 1 · · · (1− 2θM2Mk

)2

...
...

...
...

(1− 2θM1Mk
)2 (1− 2θM2Mk

)2 · · · 1




−1 


(1− 2θM1Q)2

(1− 2θM2Q)2

...

(1− 2θMkQ)2




.

And απ is estimated as απ = 1 − βπM1 − βπM2 − · · · − βπMk
. If marker Ml coincides

with QTL Q, it can be shown that βπMl
= 1 and απ = 0, βπMi

= 0, i 6= l. Hence

π̂ijQ = πijMl
. To estimate ∆ijQ of the probability of sharing 2 alleles IBD for a

sib-pair, consider

∆̂ijQ = E (∆ijQ|IM1 , IM2 , · · · , IMk
)

= α + βM1πijM1 + · · ·+ βMk
πijMk

+ rM1∆ijM1 + · · ·+ rMk
∆ijMk

, (4.5)



72

where ∆ijMl
is the probability of sharing 2 allele IBD at marker Ml for l = 1, · · · , k.

The coefficients (rM1 , · · · , rMk
)τ are derived in Appendix O as follows




rM1

rM2

...
rMk


 =




1 (1− 2θM1M2)
4 · · · (1− 2θM1Mk

)4

(1− 2θM1M2)
4 1 · · · (1− 2θM2Mk

)4
...

...
...

...
(1− 2θM1Mk

)4 (1− 2θM2Mk
)4 · · · 1




−1 


(1− 2θM1Q)4

(1− 2θM2Q)4
...

(1− 2θMkQ)4


.

The remaining coefficients are given in Appendix O by




βM1

βM2

...
βMk


 =




βπM1

βπM2

...
βπMk


−




rM1

rM2

...
rMk


 .

The α in equation (4.5) is α = 1−βM1−· · ·−βMk
− rM1−· · ·− rMk

. Again, if marker

Ml coincides with QTL Q, it can be shown that ∆̂ijQ = ∆ijMl
.

4.4. Test Statistics and Non-centrality Parameter

4.4.1. Combined analysis of population and family data

We assume that the data are composed of three sub-sample: n individuals of a pop-

ulation, m trio families with both parents and a single child, and s nuclear families

each has both parents and two offspring. Furthermore, we assume that n,m and s

are sufficiently large, so that large sample theory applies. We may include data of

nuclear families with both parents and more than two offspring. The principle of the

following paragraphs can be extended to such families if the number of the families

is large enough to apply the large sample theory.

The coefficients of regression (4.2) can be written as η = (β, α1, · · · , αk, δ1, · · · , δk)τ

if there are no covariates. Consider the overall log-likelihood L =
∑I

i=1 Li, I =

n + m + s, where Li is the log-likelihood of trait value yi of the i-th family or

individual. Let Σi be the variance-covariance matrix of trait value yi, and Xi be its

design matrix. Denote the all trait values by y = (yτ
1 , · · · ,yτ

I )
τ , the total variance-

covariance matrix by Σ = diag(Σ1, · · · ,ΣI), and model matrix byX = (Xτ
1 , · · · , Xτ

I )τ .
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Let N = n + 3m + 4s be the total number of individuals. The estimate of η is

η̂ =
[
Xτ Σ̂−1X

]−1
Xτ Σ̂−1y =

[∑I
i=1X

τ
i Σ̂−1

i Xi

]−1 ∑I
i=1X

τ
i Σ̂−1

i yi.

The non-centrality parameters of appropriate test statistics of genetic effects and

LD coefficients can be calculated as like subsection 3.3.1. First, one may construct

test statistic for each of three hypotheses: Had : α1 = · · · = αk = δ1 = · · · = δk = 0;

Ha : α1 = · · · = αk = 0; Hd : δ1 = · · · = δk = 0. The non-centrality parameter of each

hypothesis can be calculated using the theory in Chapter 6, Graybill (1976). Let H

be q × (2k + 1) matrix of rank q. The test statistic for hypothesis Hη = 0 is

F =
(Hη̂)τ [H(Xτ Σ̂−1X)−1Hτ ]−1(Hη̂)

yτ (Σ̂−1 − Σ̂−1X(Xτ Σ̂−1X)−1Xτ Σ̂−1)y

(N − 2k − 1)

q

with non-central F (q,N − (2k + 1)) distribution. The non-centrality parameter is

λ = (Hη)τ [H(XτΣ−1X)−1Hτ ]−1(Hη). Under the assumption of large sample sizes

n,m and s, we show in Appendix P that

XτΣ−1X =
n+m+s∑

i=1

Xτ
i Σ−1

i Xi ≈ diag(a1, a2VA, a3VD)/σ2, (4.6)

where a1, a2 and a3 are constants given by equations (P.7) in Appendix P.

The additive variance σ2
ga = 2q1q2α

2
Q and the dominant variance σ2

gd = (q1q2)
2δ2

Q

are expressed in terms of the average effect of gene substitution αQ and the dominance

deviation δQ. Let Ik and I2k be k and 2k dimension identity matrices. Moreover, let

Ok×l be k× l zero matrix. To test hypothesis Ha : α1 = · · · = αk = 0, the test matrix

H = (Ok×1, Ik, Ok×k). Let us denote the test statistic as Fk,a. The non-centrality

parameter is approximated by

λk,a ≈ a2

σ2
(α1, · · · , αk)VA




α1

...

αk




=
4a2

σ2
α2

Q(DM1Q, · · · , DMkQ)V −1
A




DM1Q

...

DMkQ



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=
a2σ

2
ga

σ2q1q2
(DM1Q, · · · , DMkQ)(VA/2)−1




DM1Q

...

DMkQ



.

To test hypothesis Hd : δ1 = · · · = δk = 0, the test matrix H = (Ok×1, Ok×k, Ik). Let

us denote the test statistic as Fk,d. The non-centrality parameter is approximated by

λk,d ≈ a3

σ2
(δ1, · · · , δk)VD




δ1
...

δk




=
a3

σ2
δ2
Q(D2

M1Q, · · · , D2
MkQ)V −1

D




D2
M1Q

...

D2
MkQ




=
a3σ

2
gd

σ2q2
1q

2
2

(D2
M1Q, · · · , D2

MkQ)V −1
D




D2
M1Q

...

D2
MkQ



.

To test hypothesis Had : α1 = · · · = αk = δ1 = · · · = δk = 0, the test matrix H =

(O2k×1, I2k). Let us denote the test statistic as Fk,ad. The non-centrality parameter is

λk,ad ≈ λa+λd, i.e., λk,ad is decomposed into the summation of additive and dominant

non-centrality parameters.

4.4.2. Nuclear family

To make comparison with the results of Table 4 of Abecasis, Cardon, and Cookson

(2000), we consider I families each has both parents and l offspring. Let N = I(l+2)

be the total number of individuals. The other notations are defined in a similar way

as above. Suppose that variance-covariance matrices of the I families are the same,

i.e., Σ1 = · · · = ΣI . Denote Σ−1
i = 1

σ2 (γhj)(l+2)×(l+2). If the sample sizes N is large

enough, we show in Appendix Q that

XτΣ−1X/I =
I∑

i=1

Xτ
i Σ−1

i Xi/I ≈ diag(
∑

h,j

γhj, b1VA, b2VD)/σ2, (4.7)



75

where b1 and b2 are constants given by equations (Q.1) in Appendix Q. The approx-

imation of non-centrality parameter of statistic Fk,a is

λk,a ≈
b1Iσ

2
ga

σ2q1q2
(DM1Q, · · · , DMkQ)(VA/2)−1




DM1Q

...

DMkQ



.

4.5. Type I Error Rates

To evaluate the type I error rates of the proposed method, nuclear families are gener-

ated by simulation program LDSIMUL provided by Dr. Abecasis. Five test cases are

considered in type I error rate calculation, which are taken from Table 2 of Abecasis,

Cardon, and Cookson (2000). Trait values are constructed by normal distribution

with mean 0 and total variance σ2 = 100 except test case of Admixture. Here

σ2 = σ2
ga + σ2

H + σ2
e is the summation of the additive major gene effect σ2

ga, the

variance of familial effects σ2
H , and the error variance σ2

e . In each model except the

Admixture, a bi-allelic marker M1 is simulated with allele frequency PM1 = 0.5. In

the test cases of Null, Familiality, and Admixture, no major gene effect is as-

sumed, i.e., σ2
ga = 0. In the test cases of Linkage and Composite, major gene effect

is assumed, and marker M1 coincides with the QTL Q, i.e., recombination fraction

θM1Q = 0; in the meantime, linkage equilibrium is assumed between QTL Q and the

marker M1, i.e., DM1Q = 0. In the test case of Admixture, population admixture

is generated by mixing families equally drawn from one of the two sub-populations

A and B. In both sub-populations A and B, no major gene effect or familial effect is

assumed, i.e., σ2
ga = σ2

H = 0. However, the trait mean of sub-population A is fixed as

10 and the variance is fixed as 100, and the marker allele frequency PM1 is taken as

0.7 in sub-population A.

The trait mean of sub-population B is fixed as 0 and the variance is fixed as 100,
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Table VI. Type I Error Rates (%) at a 0.05 significant level. The parameters

are the same as those of Table 2 of Abecasis, Cardon, and Cookson

(2000). The total variance is fixed as σ2 = 100 (see text for explana-

tion of Admixture case). Null: no major gene effect or familial effect

σ2
g = σ2

H = 0; Familiality: large familial effect σ2
H = 50, but no major

gene effect σ2
g = 0; Admixture: no major gene effect or familial effect

σ2
g = σ2

H = 0, but with population admixture; Linkage: large linkage

effect σ2
g = σ2

ga = 30, θM1Q = 0, but no familial effect σ2
H = 0; Compos-

ite: large linkage effect σ2
g = σ2

ga = 20, θM1Q = 0, and large familial effect

σ2
H = 30. There is no linkage disequilibrium between QTL and marker M1

(DM1Q = 0).

Offspring Error Rates When
in Test Total No. of Offspring is

Each Case 120 240 480
family LRT F̂1,a LRT F̂1,a LRT F̂1,a

1 Null 6.5 7.0 5.1 6.5 5.8 6.9
Familiality 5.4 8.3 5.2 8.1 5.3 9.5
Admixture 6.4 9.7 5.2 9.3 5.3 8.9

2 Null 4.6 2.9 4.8 2.8 4.5 2.9
Familiality 4.2 4.4 3.6 3.8 4.7 4.2
Admixture 5.0 5.2 6.1 5.4 4.9 4.3

Linkage 5.5 4.9 5.0 3.9 5.0 4.6
Composite 5.6 7.0 5.8 6.2 5.6 5.5

4 Null 4.9 1.7 4.3 1.5 3.6 1.2
Familiality 5.2 4.8 4.2 3.4 4.8 3.3
Admixture 5.5 3.2 5.4 3.5 4.2 2.6

Linkage 5.3 3.6 5.4 3.7 4.9 3.8
Composite 5.3 4.9 5.3 3.4 4.1 2.6

8 Null 4.2 1.4 5.0 1.0 4.7 1.0
Familiality 4.7 4.5 5.1 4.8 4.4 3.6
Admixture 3.5 2.6 5.5 3.2 4.4 3.1

Linkage 6.1 3.7 4.3 2.8 4.6 2.8
Composite 5.8 4.5 5.5 3.8 3.7 2.8
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and the marker allele frequency PM1 is taken as 0.3 in sub-population B. Therefore,

the total variance in the mixing population is σ2 = 125. The admixture contributed

to (10− 0)2/[4] = 0.20 of the total variance. The other related parameters are given

in the legend of Table VI.

Table VI presents type I error rates of likelihood ratio tests and F-test statistics.

The type I error rates are calculated as the proportions of 1000 simulation data sets

which give significant result at a 0.05 significant level based on F1,a and likelihood ratio

test statistic, respectively. The results show that the type I error rates of likelihood

ratio tests are around the 0.05 nominal significant level in most cases. Hence, the

proposed model works well. The type I error rates of trio families (i.e., family with

only one offspring) are usually higher than those of nuclear family data which contain

multiple offspring. In particular, the type I error rates of F-test are high for trio

families. For nuclear family data which contain multiple offspring, the type I error

rates of F-test are similar or smaller than those of the likelihood ratio tests. In an

association study, false positives due to population stratifications are usually a big

issue. From the results of Table VI, the type I error rates in the Admixture case are

reasonable for nuclear family data which contain multiple offspring. For trio families,

the type I error rates of F-test in the Admixture case are high.

4.6. Powers and Their Comparison

4.6.1. Comparison with the “AbAw” approach

Denote the heritability by h2, which is defined as h2 = σ2
ga/σ

2 (Falconer and Mackay

1996). To compare the method proposed in this paper with the “AbAw” approach of

Abecasis, Cardon, and Cookson (2000), we present power comparison in Table VII.

The parameters are the same as those of Table 4 of Abecasis, Cardon, and Cookson
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(2000): q1 = PM1 = 0.5, h2 = 0.1, σ2 = 100, σ2
ga = 10, σ2

s = 30, σ2
e = 60. Besides,

D′ = DM1Q/Dmax and Dmax = min(PM1 , q1) − PM1q1. In the columns of ACC, the

results are taken from Table 4 of Abecasis, Cardon, and Cookson (2000). In the

columns (F1,a, F̂1,a, LRT )τ , the power of F1,a is calculated based on approximation

of non-centrality parameter λ1,a of test statistic F1,a at a 0.001 significant level; the

power of F̂1,a and LRT are calculated as the proportions of 1000 simulation data sets

which give significant result at the 0.001 significant level based on F1,a and likelihood

ratio test statistic, respectively. For each simulated dataset, certain number nuclear

families are simulated via LDSIMUL. For instance, for one sib per family, 480 trio

families are simulated in each simulated dataset.

The results of Table VII clearly show that the proposed F-tests F1,a and likeli-

hood ratio tests are much more powerful than the “AbAw” approach. When D′ =

DM1Q/Dmax > 25%, it is possible to achieve considerable power. When D′ =

DM1Q/Dmax > 50%, the statistic F1,a is powerful since the power is higher than

(F1,a, F̂1,a, LRT ) = (0.560, 0.333, 0.322) for a sample with a total number of 480 sibs.

Moreover, the power to detect association decreases as the size of sibship increases.

Hence, families of large sibship sizes contain less LD information than families of

small sibship sizes. The readers may want to notice that this result is consistent with

findings in Fan and Xiong (2003). In Figure 3 of Fan and Xiong (2003), p131, popu-

lation based method is shown to be more powerful than the family based method for

the same number of individuals.

In addition, the results of Table VII show that the empirical power of F̂1,a is

similar to that of likelihood ratio test. This implies that in large sample, the two

tests provide similar power. For nuclear families of small sibship size (i.e., number of

sibs is ≤ 4), the empirical power of F̂1,a and likelihood ratio test (LRT) is similar to

the power based on the theoretical approximations λ1,a of F1,a.
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For nuclear families of large sibship size (i.e., number of sibs is ≥ 5), the empirical

power of F̂1,a and likelihood ratio test (LRT) is smaller than the power based on the

theoretical approximations λ1,a of F1,a. Hence, the approximations of non-centrality

parameter λ1,a is accurate in the case of small sibship size, but less accurate in the

case of large sibship size.

4.6.2. Comparisons of Sample Size and Power of LD mapping

Power and sample size calculations are performed to investigate the merits of the

proposed method. Figure 13 shows the power curves of the test statistics F4,a, F3,a,

F2,a,F4,d,F3,d, and F2,d against the linkage disequilibrium coefficient DM1Q at a 0.01

significant level for a dominant mode of inheritance (a = d = 1.0) and a recessive

mode of inheritance (a = 1.0, d = −0.5). The related parameters are given in the

legend of the figure. Generally, the power of F4,a using 4 markers in the model is

higher than that of F3,a using 3 markers, which in turn is higher than that of F2,a

using 2 markers. Hence, multiple marker analysis is advantageous. The power of Fk,d

is usually minimal unless the LD between locus Q and marker M1 is very strong for

the dominant mode of inheritance. Figure 14 provides the power of the test statistics

F4,a, F3,a, F2,a, F4,d, F3,d, and F2,d against heritability h2 at a 0.01 significant level for

a dominant mode of inheritance (a = d = 1.0) and a recessive mode of inheritance

(a = 1.0, d = −0.5), respectively. In addition to the merits shown in Figure 13, the

power of the test statistics F4,a, F3,a, F2,a is high when heritability h2 is larger than

0.10 for both modes of inheritance.

Figure 15 shows the power of test statistics F4,a, F3,a, F2,a, and F1,a against the

trait allele frequency q1 (Graph I) or marker allele frequency PM1 (Graph II) at a 0.01

significant level for an additive mode of inheritance a = 1.0, d = 0.0, respectively.

The other parameters are given in the legend of the figure. From Graph I of the
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Fig. 13. Power curves of test statistics F4,a, F3,a, F2,a, F4,d, F3,d, and F2,d against

the measure of LD between M1 and Q at a 0.01 significant level, when

q1 = 0.50, PMi
= 0.50, i = 1, 2, 3, 4, DMiQ = 0.08, i = 2, 3, 4, DMiMj

= 0.05, i 6= j,

π12Q = 0.5, δ12Q = 0.25, heritability h2 = 0.15, familial effect variance

σ2
H = 0.10, and sample size n = 40,m = 30, s = 20 for a dominant mode

of inheritance a = d = 1.0 (Graph I), and a recessive mode of inheritance

a = 1.0, d = −0.5 (Graph II), respectively.
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Fig. 14. Power of test statistics F4,a, F3,a, F2,a, F4,d, F3,d, and F2,d

against the heritability h2 at a 0.01 significant level, when

q1 = 0.5, PMi
= 0.5, DMiQ = 0.1, DMiMj

= 0.05, i, j = 1, 2, 3, 4, i 6= j,

π12Q = 0.5, δ12Q = 0.25, σ2
H = 0.1, and sample size n = 40,m = 30, s = 20 for

a dominant mode of inheritance a = d = 1.0 (Graph I), and a recessive mode

of inheritance a = 1.0, d = −0.5 (Graph II), respectively.
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Fig. 15. Power of test statistics F4,a, F3,a, F2,a, and F1,a against the trait al-

lele frequency q1 (Graph I) or marker allele frequency PM1 (Graph

II) at a 0.01 significant level for an additive mode of inheri-

tance a = 1.0, d = 0.0, when PM1 = 0.5 or q1 = 0.5, respec-

tively. The other parameters are given by h2 = 0.15, PMi
= 0.5,

π12Q = 0.5, δ12Q = 0.25, σ2
H = 0.1, DMiQ = [min(PMi

, q1) − PMi
q1]/2,

DM1Mi
= [min(PM1 , PMi

) − PM1PMi
]/2, i = 2, 3, 4 and

DMiMj
= 0.05, i, j = 2, 3, 4, i 6= j and sample size n = 40,m = 30, s = 20.
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figure 15, it can be seen that the power of Fk,a increases as the trait allele frequency

q1 increases. Graph II of the figure 15 shows that the power of F4,a and F3,a is almost

constant; besides, the power of F2,a increases slowly, and the power of F1,a increases

as the marker allele frequency PM1 increases. In general, the power of F4,a and F3,a

heavily depends on the trait allele frequency q1, but not on the marker allele frequency

PM1 .

Assume that the LD is due to historical mutations of T generations ago at

QTL Q. At the initial generation when the mutation occurred, the LD coefficient

is DMiQ(0) = P (MiQ)(0)− q1PMi
, where P (MiQ)(0) is frequency of haplotype MiQ.

The LD coefficient is reduced by a factor 1 − θMiQ in each subsequent generation.

The LD between marker Mi and Q is DMiQ(T ) = DMiQ(0)(1 − θMiQ)T at the cur-

rent generation. Assume that the marker M1 locates at position 0cM, marker M2

locates at position 1cM, marker M3 locates at position 2cM, and marker M4 locates

at position 3cM. Under the assumption of no interference, we may calculate the re-

combination fraction θMiMj
= [1 − exp(−2ΩMiMj

)]/2 by Haldane’s map function,

where ΩMiMj
is map distance between marker Mi and marker Mj. Similarly, the

recombination fraction θMiQ can be calculated by the distance ΩMiQ between QTL

Q and marker Mi, i = 1, · · · , 4. Suppose that the QTL Q is located along the hor-

izontal axis, i.e., it moves from 0cM to 3cM. Figure 16 shows the power curves of

the test statistics F4,a, F4,ad, F3,a, F3,ad, F2,a, and F2,ad against the location of QTL Q

for a dominant mode of inheritance (a = d = 1) and a recessive mode of inheritance

(a = 1.0, d = −0.5), respectively. The powers of F4,a and F4,ad with 4 markers in the

model are generally high across the location of QTL Q, since at least one marker is

close to the QTL Q. The power of F3,a and F3,ad using 3 markers in the model is

similar to that of 4 markers, except that QTL Q locates far above from marker M3,

i.e., λM1Q ≥ 2.3cM . The power of F2,a and F2,ad using two markers in the model is
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high when the QTL is close to markers M1 and M2. However, once the QTL is far

above from marker M2 (i.e., λM1Q ≥ 1.3cM), the power of F2,a and F2,ad using two

markers in the model decreases very quickly. Figure 16 implies that multiple marker

LD analysis has high power in fine mapping of QTL. Moreover, the power of test

statistics Fk,a which only tests additive effect is higher than that of Fk,ad which tests

both additive and dominant effect through the proposed model. The reason is the

number of degrees of freedom of test statistics increases if dominant effect is added

to the test statistics. Figure 17 shows the power curves of test statistic F4,ad against

position of markers M1, · · · ,M4 for different mutation age at a 0.01 significant level.

The trait locus Q locates at position 10cM. The four markers flank the trait locus Q;

two markers are on each side of the QTL with equal distance to the each other as

follows: M2 = 5 +M1/2,M3 = 15−M1/2,M4 = 20−M1. Here Mi also denotes the

location in cM of marker Mi. As age of mutation is getting old, the power decreases

and the power can be high only when the markers are close to the trait locus.

Figure 18 shows that the required number of trio families or families with both

parents and 2 offspring for the test statistics F4,a, F3,a, F2,a and F1,a against heritability

h2 at a significant level 0.01 and power 0.8. For a favorable case (Graphs I and III),

the parameters are given by q1 = PMi
= 0.5, DMiMj

= 0.05 and DMiQ = 0.1 for

i, j = 1, · · · , 4, i 6= j. For a less favorable case (Graphs II and IV), the parameters are

given by q1 = 0.2, PMi
= 0.8, DMiMj

= 0.0 and DMiQ = 0.03 for i, j = 1, · · · , 4, i 6= j.

For the favorable case, the required number of families of test statistics F4,a and F3,a

is less than 200 and that of F2,a is less than 600 if heritability h2 is larger than 0.1. For

the less favorable case, the required number of families of test statistics F4,a and F3,a

is less than 500 and that of F2,a is less than 700 if heritability h2 is larger than 0.1.

The required number of families of test statistics F1,a is very large for both favorable

and less favorable cases.
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Fig. 16. Power of test statistics F4,a, F4,ad, F3,a, F3,ad, F2,a, and F2,ad against loca-

tion of QTL Q at a 0.01 significant level. The parameters are given by

q1 = 0.5, PMi
= 0.5, DMiQ(0) = 0.15, DMiMj

= 0.05, i, j = 1, · · · , 4, i 6= j,

π12Q = 0.5, δ12Q = 0.25, familial effect variance σ2
H = 0.10, heritability

h2 = 0.15, and sample size n = 100,m = 50, s = 30, mutation age T = 60 for

a dominant mode of inheritance a = d = 1.0 (Graph I), and a recessive mode

of inheritance a = 1.0, d = −0.5 (Graph II), respectively. Marker M1 locates

at position 0cM, marker M2 locates at position 1cM, marker M3 locates at

position 2cM, and marker M4 locates at position 3cM. The location of QTL

Q is along the horizontal axis, i.e., it moves from 0cM to 3cM.
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Fig. 17. Power of test statistic F4,ad for mutation age T = 30, T = 40, T = 50, T = 60,

T = 70 against position of markers Mi, i = 1, · · · , 4 at a 0.01 significant

level. The QTL Q locates at position 10cM. The four markers flank the trait

locus Q; two markers are on each side of the QTL with equal distance to the

each other as follows: M2 = 5 + M1/2,M3 = 15 − M1/2,M4 = 20 − M1.

q1 = 0.5, PMi
= 0.5, DMiQ(0) = 0.15, DMiMj

= 0.05, i, j = 1, · · · , 4, i 6= j,

heritability h2 = 0.15, familial effect variance σ2
H = 0.1, and sample size

n = 40,m = 30, s = 20 for a dominant mode of inheritance a = d = 1.0

(Graph I), and a recessive mode of inheritance a = 1.0, d = −0.5 (Graph II),

respectively.
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Fig. 18. Sample size of test statistics F1,a, F2,a, F3,a, and F4,a against heritability

h2 at a 0.01 significant level and 0.80 power for a dominant mode of

inheritance a = d = 1.0. For favorable case (Graph I and Graph III),

q1 = 0.5, PMi
= 0.5, DMiMj

= 0.05, DMiQ = 0.1, i, j = 1, 2, 3, 4, i 6= j;

for less favorable case (Graph II and Graph IV),

q1 = 0.2, PMi
= 0.8, DMiMj

= 0.0, DMiQ = 0.03, i, j = 1, 2, 3, 4, i 6= j.

In addition, the familial effect variance σ2
H = 0.1.
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4.7. Application

The proposed method is applied to the Genetic Analysis Workshop 12 German asthma

data (Meyers, Wjst and Ober 2001). The data consist of 97 nuclear families, including

415 persons. Seventy-four families have 2 children, 19 have three children, and 4 have

four children. Wjst et al. (1999) perform linkage analysis for total serum IgE by

nonparametric statistic of MAPMAKER/SIBS 2.1. Three markers on chromosome

1 are shown to be linked with IGE level, i.e., marker D1S207 at position 118.1cM,

marker D1S221 at position 146.7cM and marker D1S502 at position 151.2cM. In Fan

and Jung (2003), we analyze the data using sib-ships, and confirm the result of Wjst

et al. (1999). By the method proposed in this paper, we analyze the data again. The

dominant variance of log(IGE) is significantly higher than 0 at position 149.85cM

(p-value, 0.00075; compared with the p-value 0.01 in Fan and Jung 2003). On this

basis, we collapse alleles 6, 8 and 10 as allele M1 at marker D1S207, and others as

allele m1. At marker D1S221, alleles 5, 6 and 7 are collapsed as allele M2, and other

alleles as allele m2. At marker D1S502, we collapse alleles 7, 8, and 12 as allele M3,

and others as allele m3. Then, we find that coefficient δ2 is significantly different from

0 at position 149.85cM, with a p-value 0.034 by likelihood ratio test (compared with

the p-value 0.0475 in Fan and Jung 2003) and a p-value 0.034 by F test (compared

with the p-value 0.0484 in Fan and Jung 2003). The estimation is δ̂2 = 0.76. Hence,

we are able to confirm the result of Wjst et al. (1999), and find that marker D1S221

is associated with log(IGE).

Compared with the results in the previous chapter, the evidence in the above

paragraph is stronger since the p-values are smaller. There are two reasons for this.

In the method of this chapter, all family members are used with three markers in

analysis, while sibships are analyzed with only two markers in the previous chapter.
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Hence, the proposed model improves the performance of the methods in the chapter

III.

4.8. Discussion

Based on multiple bi-allelic markers, variance component models are proposed for

high resolution linkage disequilibrium mapping of QTL in the presence of prior linkage

evidence. The models are extended by method using two bi-allele markers in analysis,

and incorporate genetic-marker information into the models (Fan and Jung 2003;

Fan and Xiong 2002, 2003). With analytical derivation, it is shown that linkage

disequilibrium measures and genetic effects are incorporated in the mean coefficients.

Using the information of sharing IBD of multiple markers, a multi-point interval

mapping method is provided to estimate the proportion of allele sharing IBD and

probability of sharing 2 allele IBD at a putative QTL for a sib-pair. It is shown that

recombination fractions, i.e., linkage information, are contained in variance covariance

matrices. Therefore, the proposed methods model both association and linkage in a

unified model.

After comparing with the “AbAw” approach, it is found that the method pro-

posed in this chapter is more powerful and advantageous in terms of simulation study

and power calculation. By power and sample size comparison, it is shown that models

which use more markers may have higher power than models which use less markers.

The multiple marker analysis can be more advantageous, and has high power in fine

mapping QTL.

Type I error calculations are performed in this chapter. We allow for the very

extreme form of population admixture, in which each family is drawn from a different

stratum (Abecasis, Cardon, and Cookson 2000). Type I error rates of the proposed
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test statistics are calculated to investigate the behaviors of the test statistics under

the null distribution. Five test cases including population admixture are considered

to investigate the type I error rates, which leads to reasonable result. The likelihood

ratio tests are less likely to be influenced by population admixture.

In a QTL mapping study, a strategy may be taken as follows. First, linkage

analysis can be carried out using a sparse genetic map. Then, association study can

be performed using a dense genetic map for high resolution mapping. The basic

idea is to take the advantage of linkage analysis for a prior linkage information. In

the meantime, the advantage in high resolution of association study can be taken

for fine mapping a genetic trait. It is well known that linkage analysis is robust,

i.e., the false positive rates are not high. However, the resolution of linkage analysis

can be low. On the other hand, the resolution of association study is high. But,

association study is prone to false positives caused by population stratifications. Using

the method proposed in this chapter, it is more likely to avoid high false positive rates

by performing association study in the presence of prior linkage. The low resolution of

a prior linkage analysis can be remedied by the follow-up high resolution association

study.

So far, only one trait locus Q is assumed to be located in the chromosome region.

Suppose that there are multiple QTL in the region. The regression equation (4.2) can

still be used in QTL mapping. Besides, suppose that the trait value is influenced by

unlinked trait loci in different regions. Then model (4.1) needs to be generalized to use

markers from different regions in analysis (Hoh and Ott 2003). If multiple trait loci

are present, other issues such as epistasis need more in depth investigation. For IBD

estimation, we follow the method proposed by Fulker et al. (1995) and Alamsy and

Blangero (1998). If there is LD between the trait and markers, LD among markers

would also be expected, and needs to be incorporated in estimating proportion of
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sharing IBD. However, it is not clear how to achieve this. This is a very interesting

and important research area for future study. Better estimates of the proportion of

allele sharing IBD would lead to a fitted variance covariance structure which is a

better approximation of the true variance covariance structure. This would improve

the performance of the proposed models.
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CHAPTER V

CONCLUSION

5.1. Summary and Discussion

In a QTL mapping study, one may carry out both linkage analysis and association

study. Linkage analysis is based on family data, and is useful in localizing a genetic

trait locus in a broad chromosome region. Therefore, linkage analysis can provide

suggestive linkage between a putative trait locus and a marker locus based on a sparse

marker map. In addition, linkage analysis is robust to the population stratification

which heavily affects the results of population-based association study. Association

study, on the other hand, is useful in fine gene mapping of genetic trait locus since the

allelic association due to LD usually operates over very short genetic distance. Hence,

association study can provide high resolution in genetic trait mapping. However,

association study is prone to false positive caused by population stratifications. As

we develop methods proposed in chapters III and IV, it is more likely to avoid high

false positive rates by performing association study in the presence of prior linkage.

The low resolution of a prior linkage analysis can be remedied by the follow-up high

resolution association study.

In the recent years, there has been great interest in association study of quanti-

tative trait loci (QTL). Allison (1997) proposed various Transmission Disequilibrium

(TD)-type tests which accommodate either selected sampling or sampling based on

selection of extreme phenotypes among the offspring. George et al. (1999) proposed

a TDT in pedigree data by multiple regression. Zhang and Zhao (2001) propose a

quantitative similarity-based test to identify association between a bi-allelic marker

and a quantitative. Using a bi-allelic marker, Fan and Xiong (2003) proposed mixed
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models to perform both linkage analysis in the presence of association and association

study in the presence of linkage. For multiple allele marker, only association study

in the presence of linkage is conducted by mixed model in the chapter II because the

way to reduce the number of parameter is not clear. The association study shows that

the method employing a multiple allele has higher power than that using a bi-alleles

marker if the marker allele frequencies are evenly distributed.

“AbAw” approach, a combined linkage and association mapping, is developed to

decompose association effect into within and between family components (Abecasis

et al. 2000, 2001; Cardon 2000; Fulker et al. 1999; Sham et al. 2000). Xiong and

Jin (2000) proposed a maximum likelihood based linkage and linkage disequilibrium

analysis for genome-wide screens that can be applied to general pedigrees. Wu et al.

(2002) made use of mixture models in joint linkage and LD mapping. However, most

research limits on using one bi-allelic marker at a time to model the combined study.

The methods presented in chapters III and IV propose to use multiple markers in

order to model the association and linkage together. Both chapters show that models

which use more markers may have higher power than models which use less markers.

The multiple marker analysis can be more advantageous, and has high power and

better effect in fine mapping QTL.

In association study, population stratification can lead to high false positives

(Ewens and Spielman, 1995). Zhao and Xiong (2002) presented unbiased quantitative

population association tests to investigate the issue. In the chapter IV, we calculate

type I error rate of the proposed test statistics to investigate the behavior of test

statistics under the null hypothesis. Then we compare the results with those of

“AbAw“ in Abecasis et al. (2000) and find that the method proposed in chapter IV

is more likely to avoid high false positive rates.
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5.2. Open Problems

5.2.1. Association Study by Mixed Model

In chapter II, we assume that all members of nuclear family are available. With

the information of transmitted and non-transmitted alleles from parents, the mixed

model is built in order to study association. But there are some situations which

parental information is not available with several reasons such as late onset diseases

and financial problems. It would bring an interest if the methods proposed in chapter

II can be extended to study the data without parental data.

The mixed models in the chapter II do not take interactions into account. There

may exist an interaction between genetic effects and environments in the certain

situation. Van den Oord and Sneider (2002) proposed a general model to study

an interaction of the multiple etiological factors and other genetic effects such as

age dependency. It would be interesting if the proposed model can be extended to

consider the interaction between genetic effects and environment effects.

5.2.2. Association Study by Variance Component Model

Genotyping information is usually given in a genetics study. The methods devel-

oped in chapters III and IV can be directly used in analyzing quantitative trait and

genotyping data of nuclear families by combining linkage and association information

together. One may insist on using haplotype data to map QTL which can be con-

structed based on genotyping data. We may be interested in comparing our approach

with an approach of haplotype data.

The potential problem of the method using multiple markers in chapters III and

IV is that degrees of freedom of test statistics can be large as we add the number of

markers, and the large numbers of degree of freedom may cause power to decrease.
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Moreover, the number of LD measures can be large. The selection of appropriate

markers for analysis is one of important problems to be carefully considered. The

optimal number of markers needed depends on not only specific trait in a study, but

also the LD measures among the QTL and the markers. It would not be a good idea

to use many bi-allelic markers in the model. More markers will lead to higher degrees

of freedom which cause lower power. Usually, using three or four relevant markers

in analysis would be worthwhile, since it may not only have higher power than one

or two marker analysis, but also have lower degrees of freedom and number of LD

measures than more than four markers.

The other problem is the existence of dominant trait effect. If the dominant

effect is present, one may lose power by excluding it from the models, (Fan and

Xiong, 2002). However, one may get low power during simultaneous test of additive

and dominant effect, if the dominant effect is not significantly present to influence

the trait values, due to the increase of degrees of freedom of test statistics.

Only one trait locus Q is assumed to be considered in order to localize it on a

chromosome region until now. Suppose that there are multiple quantitative trait loci

(QTL) in the region. The regression equation in chapter IV can still be used in QTL

mapping. Besides, suppose that the trait value of interest is influenced by unlinked

trait loci in different regions. Then model proposed in chapter IV needs to be general-

ized to use markers from different regions in analysis (Hoh and Ott 2003). If multiple

trait loci are present, other issues such as epistasis are needed to be considered. For

estimation of proportion of sharing IBD, we follow the method proposed by Fulker

et al. (1995) and Alamsy and Blangero (1998). If there is LD between the trait and

markers, LD among markers would also be expected, and needs to be incorporated

in estimating IBD. However, it is not clear how to achieve them. This is a very in-

teresting and important research area for future study. Better estimated proportion
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of sharing IBD would lead to a fitted variance covariance structure which is a better

approximation of the true variance covariance structure. This would improve the

performance of the proposed models.
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APPENDIX A

Without loss of generality, assume that k = 2 and n = 3 in Figure 1. Let TM1

be the abbreviation of the “transmitted marker allele for child 1”, and NM1 be the

abbreviation of the “non-transmitted marker allele for child 1”, from the heterozygous

mother MiMj in Figure 1. Similarly, we define the notations TMi, NMi, i = 2, 3.

Denote A = (TM1 = Mi, NM1 = Mj, TM2 = Mi, NM2 = Mj). Let S7kl be the state

where two offspring share two identical trait alleles Qk and Ql by descent, and Ql is

from the heterozygous father and Qk is from the mother; S8klr be the state where two

offspring share one identical trait allele Qk by descent, and the other two alleles Ql

and Qr are not identical by descent; and S9krls be the state where two offspring share

no identical trait alleles by descent, and two alleles Ql, Qs are from the heterozygous

father, and the other two alleles Qk, Qr are from the mother. Then

Σij,ij =
[∑

k

∑

l

µ2
klP (A ∩ S7kl) +

∑

k

∑

l

∑
r

µklµkrP (A ∩ S8klr)

+
∑

k

∑

l

∑
r

∑
s

µklµrsP (A ∩ S9krls)
]
/(pipj/2)− (ν − αi,j)

2 + σ2
G/2,

where

P (A ∩ S7kl) =
qk
2

(
2hlipj

1− θ

2

1− θ

2
+ 2hljpi

θ

2

θ

2

)
= qk

(
hlipj(1− θ)2 + hljpiθ

2
)
/4

P (A ∩ S8klr) =
qlqr
2

(
2hkipj

1− θ

2

1− θ

2
+ 2hkjpi

θ

2

θ

2

)

+
qk
2

(hlihrj + hrihlj)2θ(1− θ)/4

= qlqr
(
hkipj(1− θ)2 + hkjpiθ

2
)
/4 + qk(hlihrj + hrihlj)θ(1− θ)/4

P (A ∩ S9krls) =
qkqr
2

(hlihsj + hsihlj)2θ(1− θ)/4 = qkqr(hlihsj + hsihlj)θ(1− θ)/4.
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Similarly, denote B = (TM1 = Mi, NM1 = Mj, TM3 = Mj, NM3 = Mi). We can

calculate the conditional covariance of offspring 1 and 3 in Figure 1

Σij,ji = Σji,ij = Cov(y1, y3)

=
[∑

k

∑

l

µ2
klP (B ∩ S7kl) +

∑

k

∑

l

∑
r

µklµkrP (B ∩ S8klr)

+
∑

k

∑

l

∑
r

∑
s

µklµrsP (B ∩ S9krls)
]
/(pipj/2)

−(ν − αi,j)(ν − αj,i) + σ2
G/2,

where

P (B ∩ S7kl) =
qk
2

(
2hlipj + 2hljpi

)
θ(1− θ)/4 = qk

(
hlipj + hljpi

)
θ(1− θ)/4

P (B ∩ S8klr) =
qlqr
2

(
2hkipj + 2hkjpi

)
θ(1− θ)/4

+
qk
2

(hlihrj + hrihlj)
θ2 + (1− θ)2

4

= qlqr
(
hkipj + hkjpi

)
θ(1− θ)/4

+qk(hlihrj + hrihlj)
θ2 + (1− θ)2

8

P (B ∩ S9krls) =
qkqr
2

(hlihsj + hsihlj)
θ2 + (1− θ)2

4

= qkqr(hlihsj + hsihlj)
θ2 + (1− θ)2

8
.
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APPENDIX B

Assume that the marker locus and the trait locus are in linkage equilibrium, i.e.,

hri = qrpi for all r, i. Then we have

αi,j =
2∑

r=1

(ν + µr)qr = ν + µ = α

σ2
i,j = σ2

e + σ2
G +

2∑

r=1

2∑

s=1

(ν + µrs − α)2qrqs = σ2

Σij,ij =
∑

k

∑

l

µ2
klqkql[(1− θ)2 + θ2]/2 +

∑

k

∑

l

∑
r

µklµkrqkqlqr/2

+
∑

k

∑

l

∑
r

∑
s

µklµrsqkqrqlqsθ(1− θ)− (ν − α)2 + σ2
G/2 = Σts

Σij,ji =
∑

k

∑

l

µ2
klqkql(1− θ)θ +

∑

k

∑

l

∑
r

µklµkrqkqlqr/2

+
∑

k

∑

l

∑
r

∑
s

µklµrsqkqrqlqs[θ
2 + (1− θ)2]/2− (ν − α)2 + σ2

G/2 = Σtd.

Notice that α, σ2,Σts and Σtd do not depend on subscripts i and j.
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APPENDIX C

Assume that the recombination fraction θ ≈ 0, i.e. there is tight linkage between

the trait locus and the marker. Then P (QrMi,Mj) ≈ hripj. Therefore, we have

αi,j ≈
2∑

r=1

(ν + µr)hri/pi = αi

σ2
i,j ≈ σ2

e + σ2
G +

2∑

r=1

2∑

s=1

(ν + µrs − αi)
2qshri/pi = σ2

e + σ2
G + Σ2

i = σ2
i .

Note that αi and Σ2
i only depend on subscript i. Besides, the covariances Σij,ij and

Σij,ji can be approximated by

Σij,ij ≈
[∑

k

∑

l

µ2
klqkhli +

∑

k

∑

l

∑
r

µklµkrqlqrhki

]
/(2pi)− (ν − αi)

2 + σ2
G/2 = Σi,i

Σij,ji ≈
[∑

k

∑

l

∑
r

µklµkrqk(hlihrj + hrihlj)

+
∑

k

∑

l

∑
r

∑
s

µklµrsqkqr(hlihsj + hsihlj)
]
/(4pipj)

−(ν − αi)(ν − αj) + σ2
G/2 = Σi,j = Σj,i.

Notice that Σi,i only depends on subscript i, but Σi,j = Σj,i depends on both i and j.
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APPENDIX D

Let TH denote abbreviation of “transmitted haplotype”. Then P (TH = QrMi)

= (1− θ)hri + θqrpi. Notice that h2i − q2pi = −h1i + q1pi = −δi. Like Appendix A of

Fan, Floros and Xiong (2002), one may show that

βi = E [Y |TM = Mi]

=
[
E [Y |TH = Q1Mi]P (TH = Q1Mi) + E [Y |TH = Q2Mi]P (TH = Q2Mi)

]
/pi

= (1− θ)
[
(ν + µ1)h1i + (ν + µ2)h2i

]
/pi + θα

Therefore,

βi − α

1− θ
=

[
(ν + µ1)h1i + (ν + µ2)h2i

]
/pi − [(ν + µ1)q1 + (ν + µ2)q2]

= (µ1 − µ2)δi/pi.

To calculate the conditional variance, we first notice the conditional variances

σ2
Qk = Var(Y |TQ = Qk) = σ2

e + σ2
G + (µk1 − µk)

2q1 + (µk2 − µk)
2q2, k = 1, 2.

The conditional variance

σ2
ir = Var(Y |TM = Mi) =

2∑

k=1

[σ2
Qk + (ν + µk − βi)

2]P (TH = QkMi)/pi.

For two different alleles Mi and Mj, i 6= j, the conditional covariance

Σi,jr = Cov(Y1, Y2|TM1 = Mi, TM2 = Mj) = Σij,ji.

Let Ci = (TM1 = Mi, TM2 = Mi).
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The probability of Ci is P (Ci) =
∑

j 6=i 2pipj
1
2

1
2

+ p2
i · 1 · 1 = pi(1 + pi)/2. Let

S7kl, S8klr and S9krls be similar notations as those in Appendix A. Then

Σi,ir = Cov(Y1, Y2|TM1 = Mi, TM2 = Mi)

=
[∑

k

∑

l

µ2
klP (Ci ∩ S7kl) +

∑

k

∑

l

∑
r

µklµkrP (Ci ∩ S8klr)

+
∑

k

∑

l

∑
r

∑
s

µklµrsP (Ci ∩ S9krls)
]
/P (Ci)− (ν − βi)

2 + σ2
G/2,

where

P (Ci ∩ S7kl) =
qk
2

(
2hli

1− θ

2

1− θ

2
+ 2qlpi

θ

2

θ

2
+ 2hlipi

1− θ

2

θ

2
2
)

= qk
(
hli(1− θ)2 + qlpiθ

2 + 2hlipiθ(1− θ)
)
/4

P (Ci ∩ S8klr) =
qlqr
2

[
2hki

1− θ

2

1− θ

2
+ 2qkpi

θ

2

θ

2
+ 2hkipi

θ

2

1− θ

2
2
]

+
qk
2

[
2hlihri

θ2 + (1− θ)2

4
+ 2hriqlθ(1− θ)/4 + 2hliqrθ(1− θ)/4

]

= qlqr
[
hki(1− θ)2 + qkpiθ

2 + 2hkipiθ(1− θ)
]
/4

+qk
[
hlihri[θ

2 + (1− θ)2] + (hriql + hliqr)θ(1− θ)
]
/4

P (Ci ∩ S9krls) =
qkqr
2

[
2hlihsi

θ2 + (1− θ)2

4
+ 2hliqsθ(1− θ)/4 + 2hsiqlθ(1− θ)/4

]

= qkqr
[
hlihsi[θ

2 + (1− θ)2] + (hliqs + hsiql)θ(1− θ)
]
/4.

Assume that the marker M and the trait locus Q are in linkage equilibrium, i.e,

hri = qrpi for r = 1, 2, i = 1, · · · ,m. Then βi = α, σ2
ir = σ2, Σi,jr = Σtd and

Σi,ir =
∑

k

∑

l

µ2
klqkql

θ2 + (1− θ)2 + 2piθ(1− θ)

2(1 + pi)
+

∑

k

∑

l

∑
r

µklµkrqkqlqr/2

+
∑

k

∑

l

∑
r

∑
s

µklµrsqkqlqrqs
[θ2 + (1− θ)2]pi + 2θ(1− θ)

2(1 + pi)
− (ν − βi)

2 + σ2
G/2.

Assume that there is tight linkage between the trait locus and the marker, i.e., θ ≈ 0.
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Then βi ≈ αi, σ
2
ir ≈ σ2

i , Σi,jr ≈ Σi,j and

Σi,ir ≈
[∑

k

∑

l

µ2
klqkhli +

∑

k

∑

l

∑
r

µklµkr[qlqrhki + qkhlihri]

+
∑

k

∑

l

∑
r

∑
s

µklµrsqkqrhlihsi

]
/[4P (Ci)]− (ν − αi)

2 + σ2
G/2.
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APPENDIX E

The loglikelihood function of model (2.5) is l = −n
2

log (2π) − 1
2

∑I
i=1 log |Γi| −

1
2

∑I
i=1

(
~yi − Xiγ

)τ
Γ−1

i

(
~yi − Xiγ

)
. Assume that the data consist of both singleton

families and sib-pair families. Suppose there are ki singleton offspring who receive

allele Mi from their heterozygous parents, kii (i = 1, 2, · · · ,m) sib pairs in each of

them both sibs receive allele Mi from their heterozygous parents, and kij = kji, i 6= j

sib pairs in each of them one sib receives allele Mi from his/her heterozygous parent

and the other receives allele Mj from the same heterozygous parent.

Let us denote ρτ = (ρ1 = σ2
1, ρ2 = σ2

2, · · · , ρm = Σm, ρm+1 = Σ1,1, · · · , ρ2m =

Σm,m, ρ2m+1 = Σ1,2, · · · , ρ3m−1 = Σ1,m, · · · , ρ2m+m(m−1)/2 = Σm−1,m). We may get the

following expected second partial derivatives for i, j, k = 1, · · · ,m, i 6= j, i 6= j, j 6= k

∂2l

∂γ∂γτ
= −XτΓ−1X,E

( ∂2l

∂γ∂ρτ

)
= 0,

E
( ∂2l

∂ρ2
i

)
= E

( ∂2l

∂(σ2
i )

2

)
= − ki

2(σ2
i )

2
− kii[(σ

2
i )

2 + Σ2
i,i]

[(σ2
i )

2 − Σ2
i,i]

2
−∑

j 6=i

kij(σ
2
j )

2

2[σ2
i σ

2
j − Σ2

i,j]
2
,

E
( ∂2l

∂ρ2
m+i

)
= E

( ∂2l

∂Σ2
i,i

)
= −kii[(σ

2
i )

2 + Σ2
i,i]

[(σ2
1)

2 − Σ2
i,i]

2
,E

( ∂2l

∂Σ2
i,j

)
= −kij(σ

2
i σ

2
j + Σ2

i,j)

(σ2
i σ

2
j − Σ2

i,j)
2
,

E
( ∂2l

∂ρi∂ρj

)
= E

( ∂2l

∂σ2
i ∂σ

2
j

)
= − kijΣ

2
i,j

2(σ2
i σ

2
j − Σ2

i,j)
2
,

E
( ∂2l

∂ρi∂Σi,i

)
= E

( ∂2l

∂σ2
i ∂Σi,i

)
=

2kiiσ
2
i Σi,i

[(σ2
i )

2 − Σ2
i,i]

2
,E

( ∂2l

∂ρi∂Σj,j

)
= E

( ∂2l

∂σ2
i ∂Σj,j

)
= 0,

E
( ∂2l

∂ρi∂Σi,j

)
= E

( ∂2l

∂σ2
i ∂Σi,j

)
=

kijσ
2
j Σi,j

(σ2
i σ

2
j − Σ2

i,j)
2
,E

( ∂2l

∂ρi∂Σj,k

)
= E

( ∂2l

∂σ2
i ∂Σj,k

)
= 0,

E
( ∂2l

∂Σi,i∂Σj,j

)
= E

( ∂2l

∂Σi,i∂Σj,k

)
= E

( ∂2l

∂Σi,j∂Σk,l

)
= 0, (i, j) 6= (k, l).

Assume that ki, kii, kij −→ ∞, i, j = 1, · · · ,m. To make it simple, assume kmm =

min{ki, kii, kij}. Then we can show that − 1
kmm

∂2l
∂γ∂γτ and − 1

kmm
E

(
∂2l

∂ρ∂ρτ

)
are positive



114

definite. Now we are in a position to use the method in Miller (1977) and Pinheiro

(1994) according to the theory of Weiss (1971, 1973). Actually, taking kmm to replace

vj we can see that the key condition, i.e., Assumption 3.1.7 of Pinheiro (1994), p28,

holds. Then by the same arguments in Pinheiro (1994), Chapter 3, we can show that
√
kmmγ̂ converges to normal in distribution. This implies that the test statistic Fhet

is asymptotically Fm−1,n−m by considering the denominator of Fhet as the estimate of

mean squared error, which is independent of the numerator of Fhet (Pinheiro 1994,

pp28-29; Graybill 1976).

In above discussion, we assume that there are sufficiently large data which include

both trio families and sib-pair families. In addition, suppose we have nuclear families

with any number children. We can show that − 1
kmm

∂2l
∂γ∂γτ and − 1

kmm
E

(
∂2l

∂ρ∂ρτ

)
are

positive definite. Then, we can keep on using the method of Pinherio (1994), chap-

ters 2-3, to show that
√
kmmγ̂ is asymptotically normal. Hence, the statistic Fhet is

asymptotically F (m− 1, n−m)-distributed.
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APPENDIX F

If ni = 1 for each family, then there is only one child in each family. Let

ki, i = 1, 2, · · · ,m be the number of offspring who receive alleleMi from their heterozy-

gous parents. Let Ik be identity k × k matrix. The design matrix and the variance-

covariance matrix can be written asX =




1 0 · · · 0

...
... · · · ...

1 0 · · · 0

0 1 · · · 0

...
... · · · ...

0 1 · · · 0

...
... · · · ...

0 0 · · · 1

...
... · · · ...

0 0 · · · 1




,Γ = diag(σ2
1Ik1 , · · · , σ2

mIkm).

Then we have XτΓ−1X = diag(k1/σ
2
1, k2/σ

2
2, · · · , km/σ

2
m). Using a fact of inverse ma-

trix (A+ abτ )−1 = A−1 − (A−1a)(bτA−1)/(1 + bτA−1a), we can calculate

(
H[XτΓ−1X]−1Hτ

)−1
=







σ2
2/k2 · · · 0

...
...

...

0 · · · σ2
m/km




+
σ2

1

k1




1

...

1




( 1 · · · 1 )




−1

=




k2/σ
2
2 · · · 0

...
...

...

0 · · · km/σ
2
m



−




k2/σ
2
2

...

km/σ
2
m




( k2/σ
2
2, · · · , km/σ

2
m )

k1

σ2
1

+ · · ·+ km

σ2
m

.

Therefore, the non-centrality parameter λhet,singleton ≈ (Hγ)τ [H(XτΓ−1X)−1Hτ ]−1H

=
∑m

i=2(α1 − αi)
2ki/σ

2
i −

[∑m
i=2(α1 − αi)ki/σ

2
i

]2
/[

∑m
i=1 ki/σ

2
i ].
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APPENDIX G

Such as in Appendix F, let us denote the variance-covariance matrix of the
∑m

i=1 ki

singleton offspring by Γ1, and the related design matrix by X1. Now let Γ2 denote the

variance-covariance matrix of the
∑m

i=1 kii sib-pairs, in each of them both sibs receive

the same allele from their heterozygous parents, and X2 the related design matrix.

Then the form of X2 is similar to X1 given in Appendix F with different numbers of

rows and Γ2 =

diag
((

σ2
1 Σ1,1

Σ1,1 σ2
1

)
, · · · ,

(
σ2

1 Σ1,1

Σ1,1 σ2
1

)
, · · · ,

(
σ2

m Σm,m

Σm,m σ2
m

)
, · · · ,

(
σ2

m Σm,m

Σm,m σ2
m

))
.

Let Γ3 denote the variance-covariance matrix of the
∑m

i=1

∑
j>i kij sib pairs, in

each of them one sib receives one allele (i.e., Mi, i = 1, 2, · · · ,m, respectively) from

his/her heterozygous parent and the other receives the other allele (i.e., Mj, j 6= i, j =

1, 2, · · · ,m, respectively) from the same heterozygous parent, and X3 be the related

design matrix. The variance-covariance matrix Γ3 is

diag
((

σ2
1 Σ1,2

Σ1,2 σ2
2

)
, · · · ,

(
σ2

1 Σ1,2

Σ1,2 σ2
2

)
, · · · ,

(
σ2

m−1 Σm−1,m

Σm−1,m σ2
m

)
, · · · ,

(
σ2

m−1 Σm−1,m

Σm−1,m σ2
m

))
.
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The related design matrix is X3 =




1 0 · · · 0 0

0 1 · · · 0 0

...
... · · · ...

...

1 0 · · · 0 0

0 1 · · · 0 0

...
... · · · ...

...

0 0 · · · 1 0

0 0 · · · 0 1

...
...

... · · · ...

0 0 · · · 1 0

0 0 · · · 0 1




. In the same manner

of Appendix F, we may obtain that

Xτ
1 Γ−1

1 X1 = diag

(
k1

σ2
1

,
k2

σ2
2

, · · · , km

σ2
m

)

Xτ
2 Γ−1

2 X2 = diag

(
2k11

σ2
1 + Σ1,1

,
2k22

σ2
2 + Σ2,2

, · · · , 2kmm

σ2
m + Σm,m

)
.

After some calculation, one may obtain that

Xτ
3 Γ−1

3 X3 =




∑
i6=1

k1iσ
2
i

σ2
1σ2

i−Σ2
1,i

− k12Σ1,2

σ2
1σ2

2−Σ2
1,2

· · · − k1mΣ1,m

σ2
1σ2

m−Σ2
1,m

− k12Σ1,2

σ2
1σ2

2−Σ2
1,2

∑
i6=2

k2iσ
2
i

σ2
2σ2

i−Σ2
2,i

· · · − k2mΣ2,m

σ2
2σ2

m−Σ2
2,m

...
...

...
...

− k1mΣ1,m

σ2
1σ2

m−Σ2
1,m

− k2mΣ2,m

σ2
2σ2

m−Σ2
2,m

· · · ∑
i 6=m

kmiσ
2
i

σ2
mσ2

i−Σ2
m,i




.
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APPENDIX H

To simplify notations, we omit subscripts ij from ∆ijQ, πijA, πijB,∆ijA,∆ijB in

the following appendices H, I, and J. Taking the variance-covariance for equation

(3.6), we have the following matrix equation to calculate the coefficients

Cov




(πA, πA) (πB, πA) (∆A, πA) (∆B, πA)

(πA, πB) (πB, πB) (∆A, πB) (∆B, πB)

(πA,∆A) (πB,∆A) (∆A,∆A) (∆B,∆A)

(πA,∆B) (πB,∆B) (∆A,∆B) (∆B,∆B)







βA

βB

rA

rB




= Cov




(∆Q, πA)

(∆Q, πB)

(∆Q,∆A)

(∆Q,∆B)




.(H.1)

From Elston and Keats (1985) and Almasy and Blangero (1998), we have the following

Cov(πA, πA) = Cov(πB, πB) = 1/8,Cov(πB, πA) = (1− 2θAB)2/8,

Cov(∆A,∆A) = Cov(∆B,∆B) =
3

16
,Cov(∆B,∆A) =

3

16
ρ(∆A,∆B),

Cov(∆A,∆Q) =
3

16
ρ(∆A,∆Q),Cov(∆Q,∆B) =

3

16
ρ(∆Q,∆B),

where ρ(∆i,∆j) = 1− 16
3
θij + 32

3
θ2

ij − 32
3
θ3

ij + 16
3
θ4

ij. In Appendix I, we will show that

Cov(∆A, πA) = Cov(∆B, πB) = 1/8,Cov(∆B, πA) = Cov(∆A, πB) = (1− 2θAB)2/8,

Cov(∆Q, πA) = (1− 2θAQ)2/8,Cov(∆Q, πB) = (1− 2θQB)2/8. (H.2)

Plugging the above results into the equation (H.1), we have a sub-matrix block equa-

tion



A A

A B







βA

βB

rA

rB




=




(1− 2θAQ)2

(1− 2θQB)2

3ρ(∆A,∆Q)/2

3ρ(∆Q,∆B)/2




,
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where

A =




1 (1− 2θAB)2

(1− 2θAB)2 1


 , B =

3

2




1 ρ(∆A,∆B)

ρ(∆A,∆B) 1


 .

Therefore, we have from Harville (1997)




βA

βB

rA

rB




=



A A

A B



−1




(1− 2θAQ)2

(1− 2θQB)2

3ρ(∆A,∆Q)/2

3ρ(∆Q,∆B)/2




.

=



A−1 + (B − A)−1 −(B − A)−1

−(B − A)−1 (B − A)−1







(1− 2θAQ)2

(1− 2θQB)2

3ρ(∆A,∆Q)/2

3ρ(∆Q,∆B)/2




.

The equation 3ρ(∆i,∆j)/2 − (1 − 2θij)
2 = (1 − 8θij + 24θ2

ij − 32θ3
ij + 16θ4

ij)/2 =

(1− 2θij)
4/2 leads to



rA

rB


 = (B − A)−1




3ρ(∆A,∆Q)/2− (1− 2θAQ)2

3ρ(∆Q,∆B)/2− (1− 2θQB)2


 .

=




1
2

(1−2θAB)4

2

(1−2θAB)4

2
1
2



−1 


(1−2θAQ)4

2

(1−2θQB)4

2




=
1

1− (1− 2θAB)8




(1− 2θAQ)4 − (1− 2θQB)4(1− 2θAB)4

(1− 2θQB)4 − (1− 2θAQ)4(1− 2θAB)4


 .

Moreover, we have



βA

βB


 = A−1




(1− 2θAQ)2

(1− 2θQB)2


− (B − A)−1




3ρ(∆A,∆Q)/2− (1− 2θAQ)2

3ρ(∆Q,∆B)/2− (1− 2θQB)2


 .

=



βπA

βπB


−



rA

rB


 .

Hence, we have shown the first four coefficients in (3.7) are valid.
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APPENDIX I

Consider a sib-pair with trait values yi and yj. First, we have the following

equation from Haseman (1970) (also see Amos 1994, equation (5) on p537 or Amos

et al. 1989, p437)

Cov(yi, yj|πA,∆A) =
1

2
σ2

Ga +
1

4
σ2

Gd + σ2
s + (1− ψA)σ2

g + ψA(ψA − 1)σ2
gd

+[−(1− 2ψA)σ2
g − (1− 2ψA)2σ2

gd]πA + (1− 2ψA)2σ2
gd∆A.

Comparing the above equation with Cov(yi, yj|πA,∆A) = πQσ
2
ga + ∆Qσ

2
gd + 1

2
σ2

Ga +

1
4
σ2

Gd + σ2
s , we find

∆Q = (1− ψA)2 − [(1− 2ψA) + (1− 2ψA)2]πA + (1− 2ψA)2∆A. (I.1)

Taking covariances on both sides of above equation with ∆A, we get

Cov(∆Q,∆A) = −[(1− 2ψA) + (1− 2ψA)2] Cov(πA,∆A) + (1− 2ψA)2 Cov(∆A,∆A).

Replacing Cov(∆Q,∆A) = 3
16
ρ(∆A,∆Q) and Cov(∆A,∆A) = 3

16
in the above equa-

tion (Almasy and Blangero 1998), we find that Cov(∆A, πA) = 1/8. Then taking

covariance of both sides of equation (I.1) with πA, we find

Cov(∆Q, πA) = −[(1− 2ψA) + (1− 2ψA)2] Var(πA) + (1− 2ψA)2 Cov(∆A, πA)

= −(1− 2ψA)/8 = (1− 2θAQ)2/8.

Similarly, we can show the other equations in (H.2).
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APPENDIX J

To calculate the intercept α in (3.7), we consider the joint distribution of πQ, πA

and πB for a sib-pair. Assume that there is no interference for disjoint chromosome

regions. Then

P (πijA = iA, πijQ = iQ, πijB = iB)

= P (πijA = iA, πijQ = iQ)P (πijB = iB|πijA = iA, πijQ = iQ) (J.1)

= P (πijA = iA|πijQ = iQ)P (πijQ = iQ)P (πijB = iB|πijQ = iQ).

From Haseman and Elston (1972), Table IV, we construct the joint distribution of

πijQ, πijA and πijB by equation (J.1); the results are presented in Table II. Consider

a sib-pair with trait values yi and yj. Then from Table II we have

Cov(yi, yj|πA = 0, πB = 0)−
[1

2
σ2

Ga +
1

4
σ4

Gd + σ2
s

]

= (σ2
ga + σ2

gd)P (πQ = 1|πA = 0, πB = 0) +
σ2

ga

2
P (πQ = 1/2|πA = 0, πB = 0)

=
(1− ψA)(1− ψB)

ψAψB + (1− ψA)(1− ψB)
σ2

ga +
(1− ψA)2(1− ψB)2

[ψAψB + (1− ψA)(1− ψB)]2
σ2

gd.

Therefore, we have the intercept α in (3.7) since it is the coefficient of σ2
gd in above

equation.
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APPENDIX K

For simplicity, let us assume σ2 = 1 and define K =
σ2

Ga

2
+

σ2
Gd

4
+ σ2

s . From Table

II and equation (3.10), we may calculate

C22 = σ2
ga

ψAψB

ψAψB + (1− ψA)(1− ψB)
+ σ2

gd

ψ2
Aψ

2
B

[ψAψB + (1− ψA)(1− ψB)]2
+K

C21 =
σ2

ga

2

[ ψAψB

ψAψB + (1− ψA)(1− ψB)
+

ψA(1− ψB)

ψA(1− ψB) + (1− ψA)ψB

]

+σ2
gd

ψ2
AψB(1− ψB)

[ψAψB + (1− ψA)(1− ψB)][ψA(1− ψB) + (1− ψA)ψB]
+K

C20 = σ2
ga

ψA(1− ψB)

ψA(1− ψB) + (1− ψA)ψB

+ σ2
gd

ψ2
A(1− ψB)2

[ψA(1− ψB) + (1− ψA)ψB]2
+K

C12 =
σ2

ga

2

[ ψAψB

ψAψB + (1− ψA)(1− ψB)
+

(1− ψA)ψB

ψA(1− ψB) + (1− ψA)ψB

]

+σ2
gd

ψA(1− ψA)ψ2
B

[ψAψB + (1− ψA)(1− ψB)][ψA(1− ψB) + (1− ψA)ψB]
+K

C11 =
σ2

ga

2
+ σ2

gd

2ψA(1− ψA)ψB(1− ψB)

[ψAψB + (1− ψA)(1− ψB)]2 + [ψA(1− ψB) + (1− ψA)ψB]2
+K

C10 =
σ2

ga

2

[ (1− ψA)(1− ψB)

ψAψB + (1− ψA)(1− ψB)
+

ψA(1− ψB)

ψA(1− ψB) + (1− ψA)ψB

]

+σ2
gd

ψA(1− ψA)(1− ψB)2

[ψAψB + (1− ψA)(1− ψB)][ψA(1− ψB) + (1− ψA)ψB]
+K

C02 = σ2
ga

(1− ψA)ψB

ψA(1− ψB) + (1− ψA)ψB

+ σ2
gd

(1− ψA)2ψ2
B

[ψA(1− ψB) + (1− ψA)ψB]2
+K

C01 =
σ2

ga

2

[ (1− ψA)(1− ψB)

ψAψB + (1− ψA)(1− ψB)
+

(1− ψA)ψB

ψA(1− ψB) + (1− ψA)ψB

]

+σ2
gd

(1− ψA)2ψB(1− ψB)

[ψAψB + (1− ψA)(1− ψB)][ψA(1− ψB) + (1− ψA)ψB]
+K

C00 = σ2
ga

(1− ψA)(1− ψB)

ψAψB + (1− ψA)(1− ψB)
+ σ2

gd

(1− ψA)2(1− ψB)2

[ψAψB + (1− ψA)(1− ψB)]2
+K.
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APPENDIX L

For each yi of the n individuals, Σi = σ2 and Xi = ( 1 xAi xBi zAi zBi ) , i =

1, 2, · · · , n. From formulas in Fan and Xiong (2002), Appendix A, we show that

1

n

n∑

i=1

Xτ
i Σ−1

i Xi =
1

nσ2

n∑

i=1

Xτ
i Xi ≈ 1

σ2
diag(1, VA, VD), (L.1)

where VA and VD are additive and dominant variance-covariance matrices of (3.3). For

each of the m sib-pairs, the variance-covariance matrix Σi = σ2




1 ρ12

ρ12 1


 and the

model matrix Xi =




1 x
(i)
A1 x

(i)
B1 z

(i)
A1 z

(i)
B1

1 x
(i)
A2 x

(i)
B2 z

(i)
A2 z

(i)
B2


 =



Xi1

Xi2


 , i = n + 1, 2, · · · , n + m.

Notice Σ−1
i = [σ−2/(1−ρ2

12)]




1 −ρ12

−ρ12 1


. From Fan and Xiong (2003), Appendix

C, we have E [Xτ
i1Xi2] = E [Xτ

i2Xi1] = diag(1, VA/2, VD/4). By above formulas and

the formulas in Fan and Xiong (2002), Appendix A, we have the following

1

m

n+m∑

i=n+1

Xτ
i Σ−1

i Xi ≈ 2

(1− ρ2
12)σ

2

[
diag(1, VA, VD)− ρ12diag(1, VA/2, VD/4)

]
. (L.2)

For each of the k tri-sibships, the variance-covariance matrix Σi = σ2




1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1




and the model matrix Xi =




1 x
(i)
A1 x

(i)
B1 z

(i)
A1 z

(i)
B1

1 x
(i)
A2 x

(i)
B2 z

(i)
A2 z

(i)
B2

1 x
(i)
A3 x

(i)
B3 z

(i)
A3 z

(i)
B3




=




Xi1

Xi2

Xi3



, i = n + m +

1, 2, · · · , n+m+k. Notice Σ−1
i = [σ−2/C3]




1− ρ2
23 ρ13ρ23 − ρ12 ρ12ρ23 − ρ13

ρ13ρ23 − ρ12 1− ρ2
13 ρ12ρ13 − ρ23

ρ12ρ23 − ρ13 ρ12ρ13 − ρ23 1− ρ2
12




,

where C3 = 1−ρ2
12−ρ2

13−ρ2
23 +2ρ12ρ13ρ23. From Fan and Xiong (2003), Appendix C,



124

we have E [Xτ
ijXik] = E [Xτ

ikXij] = diag(1, VA/2, VD/4), j, k = 1, 2, 3, j 6= k. Denote

C31 = 3− ρ2
12 − ρ2

13 − ρ2
23, and C32 = 2[ρ12ρ13 + ρ12ρ23 + ρ13ρ23 − ρ12 − ρ13 − ρ23]. By

the above formulas, constants, and the formulas in Fan and Xiong (2002), Appendix

A, we have

1

k

n+m+k∑

i=n+m+1

Xτ
i Σ−1

i Xi ≈ 1

C3σ2

[
C31diag(1, VA, VD) + C32diag(1, VA/2, VD/4)

]
. (L.3)

Combine the n individuals, m sib-pairs, and k tri-sibships. Denote

a1 = n+ 2m(1− ρ2
12)

−1(1− ρ12) + k[C31 + C32]/C3,

a2 = n+ 2m(1− ρ2
12)

−1(1− ρ12/2) + k[C31 + C32/2]/C3, (L.4)

a3 = n+ 2m(1− ρ2
12)

−1(1− ρ12/4) + k[C31 + C32/4]/C3.

Then equations (P.1), (P.3) and (L.3) lead to equation (3.8).



125

APPENDIX M

Taking variance-covariance among xij, zij, yi of regression (4.2) leads to the fol-

lowing variance-covariance equations

Cov




(xi1, xi1) (xi2, xi1) · · · (xik, xi1) (zi1, xi1) · · · (zik, xi1)
(xi1, xi2) (xi2, xi2) · · · (xik, xi2) (zi1, xi2) · · · (zik, xi2)

...
... · · ·

...
... · · ·

...
(xi1, zik) (xi2, zik) · · · (xik, zik) (zi1, zik) · · · (zik, zik)







α1

α2

...
αk

δ1
..
.

δk




= Cov




(yi, xi1)
(yi, xi2)

...
(yi, xik)
(yi, zi1)

...
(yi, zik)



(M.1)

In a similar way as Appendix A, Fan and Xiong (2002), the following expecta-

tions, variance and covariances can be derived accordingly: Exij = 0, Ezij = 0,

E(x2
ij) = Cov(xij, xij) = 2PMj

Pmj
, E(z2

ij) = Cov(zij, zij) = P 2
Mj
P 2

mj
, E(xijxil) =

Cov(xij, xil) = 2DMjMl
, E(zijzil) = Cov(zij, zil) = D2

MjMl
, E(xijzil) = Cov(xij, zil) =

0, Cov(yi, xij) = E(yixij) = 2DMjQαQ, Cov(yi, zij) = E(yizij) = D2
MjQδQ for

j, l = 1, · · · , k, j 6= l. Plugging the above quantities into (M.1) gives




2PM1Pm1 2DM1M2 · · · 2DM1Mk
0 · · · 0

.

..
.
.. · · ·

.

..
.
.. · · ·

.

..
2DM1Mk

2DM2Mk
· · · 2PMk

Pmk 0 · · · 0
0 0 · · · 0 P 2

M1
P 2

m1
· · · D2

M1Mk

..

.
..
. · · ·

..

.
..
. · · ·

..

.
0 0 · · · 0 D2

M1Mk
· · · P 2

Mk
P 2

mk







α1

...
αk

δ1
..
.

δk




=




2DM1QαQ

.

..
2DMkQαQ

D2
M1QδQ

..

.
D2

MkQδQ



.

Therefore, the coefficients of (4.3) are being derived.



126

APPENDIX N

To simplify notations, we omit subscripts ij from πijQ,πijM1 ,· · · , πijMk
, ∆ijM1 ,· · · ,∆ijMk

in the appendices B and C. Taking variance-covariance among πQ, πMj
, yi of equation

(4.4) leads to

Cov




(πM1 , πM1) (πM1 , πM2) · · · (πM1 , πMk
)

(πM1 , πM2) (πM2 , πM2) · · · (πM2 , πMk
)

...
...

...
...

(πM1 , πMk
) (πM2 , πMk

) · · · (πMk
, πMk

)







βπM1

βπM2

...

βπMk




= Cov




(πQ, πM1)

(πQ, πM2)

...

(πQ, πMk
)




.(N.1)

From Elston and Keats (1985) and Almasy and Blangero (1998), we have the following

Cov(πMi
, πMi

) = 1/8, i = 1, · · · , k,

Cov(πMi
, πMj

) = (1− 2θMiMj
)2/8, i 6= j = 1, · · · , k,

Cov(πQ, πMi
) = (1− 2θMiQ)2/8, i = 1, · · · , k.

Plugging above quantities into equation(N.1) gives

1

8




1 (1− 2θM1M2 )2 · · · (1− 2θM1Mk
)2

(1− 2θM1M2 )2 1 · · · (1− 2θM2Mk
)2

.

..
.
..

.

..
.
..

(1− 2θM1Mk
)2 (1− 2θM2Mk

)2 · · · 1







βπM1
βπM2

..

.
βπMk


 =

1

8




(1− 2θM1Q)2

(1− 2θM2Q)2

.

..
(1− 2θMkQ)2


,

which leads to




βπM1
βπM2

..

.
βπMk


 =




1 (1− 2θM1M2 )2 · · · (1− 2θM1Mk
)2

(1− 2θM1M2 )2 1 · · · (1− 2θM2Mk
)2

.

..
.
..

.

..
.
..

(1− 2θM1Mk
)2 (1− 2θM2Mk

)2 · · · 1




−1 


(1− 2θM1Q)2

(1− 2θM2Q)2

.

..
(1− 2θMkQ)2


.
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APPENDIX O

Taking variance-covariance among ∆Q, πMj
,∆Ml

of equation (4.5) leads to

Cov




(πM1 , πM1) · · · (πMk
, πM1) (∆M1 , πM1) · · · (∆Mk

, πM1)

...
...

...
...

...
...

(πM1 , πMk
) · · · (πMk

, πMk
) (∆M1 , πMk

) · · · (∆Mk
, πMk

)

(πM1 ,∆M1) · · · (πMk
,∆M1) (∆M1 ,∆M1) · · · (∆Mk

,∆M1)

...
...

...
...

...
...

(πM1 ,∆Mk
) · · · (πMk

,∆Mk
) (∆M1 ,∆Mk

) · · · (∆Mk
,∆Mk

)







βM1

...

βMk

rM1

...

rMk




= Cov




(∆Q, πM1)

...

(∆Q, πMk
)

(∆Q,∆M1)

...

(∆Q,∆Mk
)




. (O.1)

As in Appendix N, the following covariances are from Elston and Keats (1985), Al-

masy and Blangero (1998) and Fan and Jung (2003)

Cov(∆Mi
, πMi

) = 1/8, i = 1, · · · , k,

Cov(∆Mi
, πMj

) = Cov(∆Mj
, πMi

) = (1− 2θMiMj
)2/8, i, j = 1, · · · , k, i 6= j,

Cov(∆Mi
,∆Mi

) =
3

16
, i = 1, · · · , k,

Cov(∆Mi
,∆Mj

) =
3

16
ρ(∆Mi

,∆Mj
), i, j = 1, · · · , k, i 6= j

Cov(∆Q, πMi
) = (1− 2θMiQ)2/8, i = 1, · · · , k,

Cov(∆Q,∆Mi
) =

3

16
ρ(∆Q,∆Mi

), i = 1, · · · , k,
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where ρ(∆1,∆2) = 1 − 16
3
θij + 32

3
θ2

ij − 32
3
θ3

ij + 16
3
θ4

ij. Plugging the above results into

the equation (O.1), we have a sub-matrix block equation



A A

A B







βM1

...

βMk

rM1

...

rMk




=




(1− 2θM1Q)2

...

(1− 2θMkQ)2

3ρ(∆Mi
,∆Q)/2

...

3ρ(∆Mk
,∆Q)/2




,

where

A =




1 (1− 2θM1M2)
2 · · · (1− 2θM1Mk

)2

(1− 2θM1M2)
2 1 · · · (1− 2θM2Mk

)2

...
...

...
...

(1− 2θM1Mk
)2 (1− 2θM2Mk

)2 · · · 1




,

B =
3

2




1 ρ(∆M1 ,∆M2) · · · ρ(∆M1 ,∆Mk
)

ρ(∆M1 ,∆M2) 1 · · · ρ(∆M2 ,∆Mk
)

...
...

...
...

ρ(∆M1 ,∆Mk
) ρ(∆M2 ,∆Mk

) · · · 1




.

Therefore, we have from Harville (1997) that




βM1

...

βMk

rM1

...

rMk




=



A A

A B



−1




(1− 2θM1Q)2

...

(1− 2θMkQ)2

3ρ(∆Mi
,∆Q)/2

...

3ρ(∆Mk
,∆Q)/2



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=



A−1 + (B − A)−1 −(B − A)−1

−(B − A)−1 (B − A)−1







(1− 2θM1Q)2

...

(1− 2θMkQ)2

3ρ(∆Mi
,∆Q)/2

...

3ρ(∆Mk
,∆Q)/2




.

The equation 3ρ(∆i,∆j)/2 − (1 − 2θij)
2 = (1 − 8θij + 24θ2

ij − 32θ3
ij + 16θ4

ij)/2 =

(1− 2θij)
4/2 leads to




rM1

rM2

...

rMk




= (B − A)−1




3ρ(∆M1 ,∆Q)/2− (1− 2θM1Q)2

3ρ(∆M2 ,∆Q)/2− (1− 2θM2Q)2

...

3ρ(∆Mk
,∆Q)/2− (1− 2θMkQ)2




=




1 (1− 2θM1M2)
4 · · · (1− 2θM1Mk

)4

(1− 2θM1M2)
4 1 · · · (1− 2θM2Mk

)4

...
...

...
...

(1− 2θM1Mk
)4 (1− 2θM2Mk

)4 · · · 1




−1 


(1− 2θM1Q)4

(1− 2θM2Q)4

...

(1− 2θMkQ)4




.

Moreover, we have




βM1

βM2

...

βMk




= A−1




(1− 2θM1Q)2

(1− 2θM2Q)2

...

(1− 2θMkQ)2




− (B − A)−1




3ρ(∆M1 ,∆Q)/2− (1− 2θM1Q)2

3ρ(∆M2 ,∆Q)/2− (1− 2θM2Q)2

...

3ρ(∆Mk
,∆Q)/2− (1− 2θMkQ)2




=




βπM1

βπM2

...

βπMk




−




rM1

rM2

...

rMk




.
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APPENDIX P

To derive a1, a2, a3 in approximation (4.6), we assume three sub-samples of a

population: n individuals, m trio families each has both parents and a single child,

and s nuclear families each has both parents and two offspring.

(a) For each yi of the n individuals, Σi = σ2 andXi = (1, xi1, · · · , xik, zi1, · · · , zik), i =

1, · · · , n. When the sample size n of individuals is large, the large number law leads

to

1

n
X tX =

1

n

n∑

i=1




n xi1 xi2 · · · xik zi1 · · · zik

xi1 x2
i1 xi2xi1 · · · xikxi1 zi1xi1 · · · zikxi1

xi2 xi1xi2 x2
i2 · · · xikxi2 zi1xi2 · · · zikxi2

...
...

... · · · ...
... · · · ...

zik xi1zik xi2zik · · · xikzik zi1zik · · · z2
ik




≈




1 Exi1 Exi2 · · · Exik Ezi1 · · · Ezik

Exi1 Ex2
i1 Exi2xi1 · · · Exikxi1 Ezi1xi1 · · · Ezikxi1

Exi2 Exi1xi2 Ex2
i2 · · · Exikxi2 Ezi1xi2 · · · Ezikxi2

...
...

... · · · ...
... · · · ...

Ezik Exi1zik Exi2zik · · · Exikzik Ezi1zik · · · Ez2
ik




= diag(1, VA, VD).

Therefore, we have the following approximation

1

n

n∑

i=1

Xτ
i Σ−1

i Xi =
1

nσ2

n∑

i=1

Xτ
i Xi ≈ 1

σ2
diag(1, VA, VD), (P.1)

where VA and VD are additive and dominant variance-covariance matrices defined by

(??).
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(b) For i-th trio family, let (yfi, ymi, yi1)
τ be the trait values, andXi = (Xfi, Xmi, Xi1)

τ

be the related model matrix, i = n + 1, · · · , n +m. In the same way as Appendix A

of Fan and Xiong (2003), the covariance matrix between parents and their offspring

can be shown to be

E Xτ
fiXi1 = E Xτ

miXi1 =



VA/2 Ok

Ok Ok


 , (P.2)

where Ok is zero k × k matrix. For each of the m trio families, the variance-

covariance matrix Σi = σ2




1 0 ρ0

0 1 ρ0

ρ0 ρ0 1




. The inverse matrix of Σi is Σ−1
i =

1
(1−2ρ2

0)σ2




1− ρ2
0 ρ2

0 −ρ0

ρ2
0 1− ρ2

0 −ρ0

−ρ0 −ρ0 1



. By above formulae, we can show the following

1

m

n+m∑

i=n+1

Xτ
i Σ−1

i Xi ≈ 2

(1− 2ρ2
0)σ

2




3− 4ρ0 0 0

0 (3− 2ρ0 − 2ρ2
0)VA 0

0 0 (3− 2ρ2
0)VD



.(P.3)

(c) For the i-th family which composes of both parents and two offspring, let

(yfi, ymi, yi1, yi2)
τ be the trait values, and Xi = (Xfi, Xmi, Xi1, Xi2)

τ be the related

model matrix, i = n+m+ 1, · · · , n+m+ s. In the same way as Appendix C of Fan

and Xiong (2003), it can be shown that

E Xτ
i1Xi2 =



VA/2 Ok

Ok VD/4


 . (P.4)

For each of the s families, the inverse variance-covariance matrix

Σ−1
i =

1

σ2




1 + 2ρ0C 2ρ0C −C −C
2ρ0C 1 + 2ρ0C −C −C
−C −C C(1−2ρ2

0)

ρ0(1−ρ12)
−C(ρ12−2ρ2

0)

ρ0(1−ρ12)

−C −C −C(ρ12−2ρ2
0)

ρ0(1−ρ12)

C(1−2ρ2
0)

ρ0(1−ρ12)




(P.5)
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where C = ρ0(1 − ρ12)/[(1 − 2ρ2
0)

2 − (ρ12 − 2ρ2
0)

2]. Using (P.2), (P.4) and (P.5), we

can show

1

s

n+m+s∑

i=n+m+1

Xτ
i Σ−1

i Xi ≈ diag(d11, d22VA, d44VD) (P.6)

where the constants are given by d11 = 2[1+4Cρ0−4C+C/ρ0], d22 = 2+4C(ρ0−1)+

C(2−ρ12−2ρ2
0)/[ρ0(1−ρ12)], d44 = 2(1+2Cρ0)+C[4(1−2ρ2

0)−(ρ12−2ρ2
0)]/[2ρ0(1−ρ12)].

Combining the n individuals, m trio families, and s families with two offspring, the

equations (P.1), (P.3) and (P.6) lead to
∑n+m+s

i=1 Xτ
i Σ−1

i Xi ≈ diag(a1, a2VA, a3VD)/σ2,

where

a1 = n+m(1− 2ρ2
0)
−1(3− 4ρ0) + sd11,

a2 = n+m(1− 2ρ2
0)
−1(3− 2ρ0 − 2ρ2

0) + sd22, (P.7)

a3 = n+m(1− 2ρ2
0)
−1(3− 2ρ2

0) + sd44.
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APPENDIX Q

Using (P.2) and (P.4), we can show approximation (4.7). The constants b1 and

b2 are given by

b1 =
l+2∑

j=1

γjj + (γ13 + · · ·+ γ1,l+2) + (γ23 + · · ·+ γ2,l+2) +
l+2∑

h=3

l+2∑

j=h+1

γhj,

b2 =
l+2∑

j=1

γjj +
l+2∑

h=3

l+2∑

j=h+1

γhj/2. (Q.1)
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