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The use of automation in cars is increasing. In future vehicles, drivers will no longer

be in charge of the main driving task and may be allowed to perform a secondary

task. However, they might be requested to regain control of the car if a hazardous

situation occurs (i.e., conditionally automated driving). Performing a secondary taskmight

increase drivers’ mental workload and consequently decrease the takeover performance

if the workload level exceeds a certain threshold. Knowledge about the driver’s mental

state might hence be useful for increasing safety in conditionally automated vehicles.

Measuring drivers’ workload continuously is essential to support the driver and hence

limit the number of accidents in takeover situations. This goal can be achieved using

machine learning techniques to evaluate and classify the drivers’ workload in real-time. To

evaluate the usefulness of physiological data as an indicator for workload in conditionally

automated driving, three physiological signals from 90 subjects were collected during 25

min of automated driving in a fixed-base simulator. Half of the participants performed

a verbal cognitive task to induce mental workload while the other half only had to

monitor the environment of the car. Three classifiers, sensor fusion and levels of data

segmentation were compared. Results show that the best model was able to successfully

classify the condition of the driver with an accuracy of 95%. In some cases, the model

benefited from sensors’ fusion. Increasing the segmentation level (e.g., size of the time

window to compute physiological indicators) increased the performance of the model for

windows smaller than 4 min, but decreased for windows larger than 4 min. In conclusion,

the study showed that a high level of drivers’ mental workload can be accurately detected

while driving in conditional automation based on 4-min recordings of respiration and

skin conductance.

Keywords: automated driving, classification, driver, workload, physiology, secondary task, machine learning

1. INTRODUCTION

According to the National Highway Traffic Safety Administration (NHTSA), 2,935 fatal crashes
occurred on U.S. roadways due to driver’s distraction in 2017. This represents 9% of all fatal crashes
(NHTSA, 2017). Performing a secondary task while driving is one cause that increases the risk to
have an accident, among other factors such as fatigue, mood or demanding driving conditions.
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The latter lead to hazardous drivers states as named by Darzi
et al. (2018). To solve that issue, car manufacturers aim at
reducing the rate of accidents by proposing an increasing level of
automation in cars to support the driver. According to the Society
of Automotive Engineers (SAE) classification (SAE, 2018), the
next generation of vehicles that will emerge on our roads will
be conditionally automated cars, corresponding to Level 3 of
the SAE taxonomy. At this automation level, the driver will no
longer be in charge of the main driving task, neither monitoring
the environment. However, the car alerts the driver that he or
she has to take over control of the car when the automation is
reaching its limit. The commonly accepted approach is sending a
takeover request (TOR) to the driver (Kim et al., 2019). Various
ways of alerting the driver are being tested (Petermeijer et al.,
2017), such as visual, auditory and haptic alerts, or a combination
of those. Thus, the driver must be ready to take over control at
any moment during the ride. The role of the driver in such a
situation will switch quickly from passenger behind the wheel to
driver. Besides, on the basis of decisions taken by the authorities
concerned, drivers could be allowed to engage in a Non-Driving-
Related Task (NDRT) during periods of conditionally automated
driving. The driver might be out-of-the-loop if he or she is
engaged in a NDRT. It was recently defined by Merat as being
“not in physical control of the vehicle, and not monitoring
the driving situation, or in physical control of the vehicle but
not monitoring the driving situation” (Merat et al., 2019). The
engagement of drivers in a NDRT would distract them from the
supervision of the environment for which they are responsible.
They could be distracted visually, orally, cognitively, or bio-
mechanically (Pettitt et al., 2005). These are not exclusive and
drivers’ could be distracted in different ways at the same time.
The distraction induced by performing a NDRT using another
sensory channel might also increase the mental workload (MWL;
Mehler et al., 2009).

Previous studies showed that performing NDRTs that involve
various modalities affect the gaze behavior and takeover
performance of drivers (Nakajima and Tanaka, 2017; Wandtner
et al., 2018). To address this issue, Parasuraman et al. (2000)
suggested that “well-designed information automation can
change human operator mental workload to a level that is
appropriate for the system tasks to be performed.” If we want
the drivers to safely engage in NDRTs, it is crucial to find a way
to measure continuously their state and use this information to
dynamically support the driver. Various types of measures that
depict the operator’s state could be used such as performance,
subjective or physiological measures. Under real situations, it
might not be the best option to rely on subject ratings for
adapting the level of automation. Driving data were suggested
in previous studies to show drivers’ distraction and elevations
of MWL induced by a NDRT in manual driving (Engström
et al., 2005). However, this source of data cannot be used in
conditionally automated driving since the car is performing the
main driving task most of the time, except during takeover
situations. Previous research has shown that increases of MWL
and cognitive distraction can easily be detected with cameras
using eye-tracking, face-based or EEG features (Li and Busso,
2013; Hogervorst et al., 2014). For practical issues, a EEG headset

would not be comfortable to wear for drivers, therefore, we are
not considering this signal in this study. When the driver’s gaze
is toward the windshield and facing the camera, these features
could be useful for predicting driver’s workload continuously.
However, the driver’s gaze often changes direction in the car.
Thus, it may be difficult to use only these data sources in real
driving conditions to measure driver cognitive load.

In this context, physiological signals seem to be the best option
to evaluate continuously and non-intrusively changes in MWL
of drivers while performing a secondary task in conditionally
automated driving. Recent advances in technology allow for
a recording of physiological signals with embedded sensors
that drivers could wear in real-world environments such as
wristbands, smartwatches, or smart clothes (Sonderegger, 2013;
Angelini et al., 2014). Features computed from raw physiological
signals could be used to classify the driver’s state using recent
machine learning techniques. This information could be used to
adapt either the automation level or the interaction level between
the driver and the car. Such a system would help reducing
fatalities due to bad takeover behavior and performance and
therefore increase safety on roads. Besides, this system could also
increase the user experience in automated cars because drivers
would be able to engage in their favorite activity during the ride.
This is because, based on such information, an automated system
could adapt the type of warning (e.g., display of a loud and
startling sound in case of low activation of the driver vs. smooth
visual hint in case of situations of high activation) or even decide
not to send out a TOR because it calculated that there is not
enough time to safely take over control under given conditions
(e.g., travel speed, distance to the object, state of the driver).

2. RELATED WORK

2.1. Mental Workload
Being one of the most widely invoked concepts in human
factors and ergonomics, MWL represents a topic of increasing
importance in research and practice (Young et al., 2015).
MWL can be explained in terms of the balance between the
demands of a situation (task and environmental context) and
the resources an individual has available to overcome the
situation (Wickens, 2008). While task demands are generally
referred to as stress, strain describes the impact of task
demands on the human (Schlegel, 1993). MWL is generally
defined as a multidimensional construct which is determined
by task characteristics, operator characteristics (e.g., attentional
resources, skills), and the environmental context (Young et al.,
2015). One of the main reasons for the increasing interest in
MWL lies within its link to human performance and hence
the possibility to identify suboptimal workload conditions that
might lead to stress, errors and incidents in the driving context
(Brookhuis and De Waard, 2001). It is generally agreed upon
that MWL can be considered a basic precursor of stress, errors,
and accidents—it has been difficult however to establish an
exact relationship between the concepts, which mainly might
be due to difficulties in the accurate measurement of MWL
(Young et al., 2015).
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Three main approaches have been put forward for assessing
MWL, including measures of task performance (primary and/or
secondary task), subjective ratings based on questionnaires and
physiological measures (Gawron, 2019). The first approach is
based on techniques measuring task performance on a primary
and a secondary task. While generally an acceptable level
of performance in the primary task can be maintained in
high workload conditions, performance on the secondary task
is highly correlated with MWL since the secondary task is
associated with the spare capacity unused for completion of
the primary task (Young et al., 2015). The primary-secondary
task paradigm has been shown to be a good indicator of
MWL in experimental research. Its implementation however is
linked with some rather severe drawbacks (e.g., artificial setup
of test environment with a high need for standardization and
control of the task scenarios; Fisk et al., 1986). In some driving
studies, the performance on the primary task was measured
using driving data (longitudinal and lateral parameters) and
the secondary task performance was used as an indicator of
MWL (Engström et al., 2005; Mehler et al., 2009). The second
approach is to assess MWL as subjective state based on subjective
ratings. This implies the assumption that humans are capable
of evaluating and expressing the level of MWL they experience
in a specific task after task completion. Some widely used
questionnaires for measuring MWL subjectively are the NASA-
TLX (Hart and Staveland, 1988) or the Rating Scale Mental
Effort (Zijlstra and Doorn, 1985). Task load questionnaires
are easy to apply and interpret but come along with some
methodological issues which are due to the subjectivity of the
measure and the retrospective bias of post-task assessments
(Bulmer et al., 2004). The third approach to measure MWL
is the assessment of physiological indicators. In this regard,
two groups of physiological indicators can be differentiated,
indicators of the autonomic nervous system and indicators of
the central nervous system. Cardiovascular indicators (e.g., heart
rate and heart rate variability) as well as electrodermal activity
(e.g., tonic and phasic skin conductivity) are often referred to
as useful indicators of MWL in research (De Waard, 1997).
However, considerable drawbacks for the assessment of MWL
via physiological parameters are the troublesome procedure of
applying electrodes, the generally rather high signal to noise
ratio as well as the interfering influence of physical activity
(Huigen et al., 2002). As mentioned before, it is difficult to
measure MWL using task performance or subjective ratings in
real-world conditions. In this study, these measures are used to
control the success of MWL manipulation. Besides, the use of
physiological signals as a potential source of data for measuring
MWL in conditionally automated driving is explored. In the
present study, we concentrate onmeasurements of the autonomic
nervous system for classifying drivers’ workload. This is because
we consider EEG or near-infrared spectroscopy are being less
suitable under real-world conditions since drivers might be
averse to wearing a headset. Besides, drivers’ gaze can constantly
switch between the windshield, the dashboard and potentially a
tablet or a smartphone held in the hands during conditionally
automated driving, which makes it challenging to continuously
capture this feature. However, we are convinced that these

measures could also represent interesting indicators and should
be considered in future research.

2.2. Definition of Physiological Indicators
2.2.1. Electrodermal Activity (EDA)
The first selected physiological signal is the EDA, which is defined
as the changes in the electrical conductivity of the skin, caused
by the fluctuations of sweat in glands regulated by the autonomic
nervous system (Cacioppo et al., 2007). The latter can be declined
in two main components. One feature which can be derived from
EDA data is the tonic level of EDA which refers to the slow-
acting components of electrical activity such as the mean level
of EDA or slow climbing and decreases over time. The most
common measure of this component is the skin conductance
level. Changes in this measure reflect general changes in arousal
(Cacioppo et al., 2007). The second component is the phasic
component of EDA, which refers to fast-changing properties of
the signal. It is measured with the Skin Conductance Responses
(SCRs). Previous research suggested that both components
are important and may rely on different neural mechanisms
(Cacioppo et al., 2007). Phasic SCRs can be distinguished into two
categories called non-specific SCRs (NS-SCRs) and event-related
SCRs (ER-SCRs). The first one gathers responses occurring in
the absence of identifiable eliciting stimuli, while the second
one characterizes subjects’ electrodermal reaction to stimuli. One
commonly used indicator is the frequency of NS-SCRs, which
is generally between one and five per minute at rest, and more
than 20 per minute in periods of high arousal. To characterize
ER-SCRs, indicators such as latency, amplitude, rise time and
half recovery time are usually used (Boucsein, 2012). The same
indicators can be calculated identically for NS-SCRs, except
for latency which requires a time-stamped triggered event to
be calculated.

2.2.2. Electrocardiogram (ECG)
The second selected physiological signal is the ECG. Various
indicators can be computed based on ECG data such as the
heart period (the time interval between successive heart cycles)
and the heart rate variability (HRV; Camm et al., 1996). The
heart period is also known as the inter-beat interval (IBI).
Another widely used metric to evaluate the cardiac activity is the
heart rate (HR) which corresponds to the number of heartbeats
per unit of time, usually per minute. HRV is a general term
that refers to time changes in IBI. These measures are used
as indices of autonomic nervous system regulatory activities
and have been related to individual differences in attention and
cognition in various groups of populations (Cacioppo et al.,
2007). Previous studies showed that mental effort is related to
changes in cardiovascular state (Aasman et al., 1987; Bernston
et al., 1993) and more specifically in HRV (Mulder, 1992). The
HRV can be quantified by two different categories of methods.
The first method is the time-domain method. This category
contains both statistical and geometric measures, depicting the
variability of time between heartbeats (Camm et al., 1996). Malik
and Terrace (1996) recommend indicators to use in this regard
that are the standard deviation of IBI (SDNN, for estimating
the overall HRV), the HRV triangular index (an estimate of
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the overall HRV), the standard deviation of IBI calculated over
short periods (SDANN, an estimate of long-term changes of
HRV) and the square root of the mean squared differences of
successive IBI (RMSSD, an estimate of short-term components
of HRV). While some specialists in the field advise calculating
common statistical time-domain HRV measures such as SDNN
or RMSSD using at least a 5-min ECG recording (Camm et al.,
1996; Malik and Terrace, 1996), other investigations have utilized
ultra-short term measures (below 5 min) (Shaffer and Ginsberg,
2017). Studies showed that 10 s for HR, 30 s for RMSSD and
60 s for other metrics such as pNN50 could be enough to get
a reliable measure of cardiac activity (Salahuddin et al., 2007;
Baek et al., 2015). Other metrics such as SDANN and the HRV
triangular index require long-time monitoring (at least 20 min,
preferably 24 h; Malik and Terrace, 1996). The second method
to evaluate changes in HRV is the frequency-domain method.
Power spectral density method provides information on how
power (e.g., variance) distributes as a function of frequency.
Three main components can be distinguished in periods of two
to 5 min of recording, including the Very Low Frequency (VLF;
below 0.04 Hz), the Low Frequency (LF; between 0.04 and 0.15
Hz) and the High Frequency (HF; between 0.15 and 0.4 Hz;
Malik and Terrace, 1996). More recent researches suggest that
20–90 s could be enough to evaluate the components of HF
and LF (Salahuddin et al., 2007; Baek et al., 2015). However,
the use of VLF should be avoided to interpret recordings
shorter than 5 min. The ratio LF/HF is also an indicator used
to emphasize the behavior of the two main branches of the
autonomic nervous system.

2.2.3. Respiration
The third physiological signal recorded in this study is the
respiration of drivers. The respiratory system is complex and
sensitive to other psychological variables (Cacioppo et al., 2007).
Respiration forces the chest to expand and this movement of
chest expansion can be measured by piezoelectric sensors. The
respiratory system is linked with other muscles of the body
as well as with the nervous system. Under ideal conditions,
the respiratory activity is regular and harmonious but it can
be perturbed when experiencing stressful situations. Previous
research showed that respiration influences both EDA and heart
activity (Cacioppo et al., 2007). Several measures can be extracted
based on the information provided by breathing transducers such
as the breathing rate (BR), which corresponds to the number of
breathing cycles per minute. Inspiratory and expiratory volumes
and durations, the ratio of both, and the complexity of the signal
(through spectral analysis) are also measurements that can be
derived from the raw breathing signal.

2.2.4. Respiratory Sinus Arrhythmia (RSA)
Heart rate changes as a function of the respiratory cycle. This
phenomenon is called respiratory sinus arrhythmia. RSA has
become of great interest in recent years since the tight coupling
of both signals can be used as an index of the vagal control of the
heart (Cacioppo et al., 2007). Many factors influence RSA such as
posture, age, or activity. The main measure is the magnitude of

RSA but both frequency and time domain methods can be used
as well since they showed similar results.

2.3. Influence of MWL on Physiological
Measures
Previous studies already investigated the influence of increased
MWL induced by cognitive tasks on the physiological state
of subjects. The goal is to summarize previous findings in
order to get a better appreciation of the expected results in
this study. Studies that manipulated MWL by administering a
secondary NDRT to drivers were reviewed, as well as studies
that manipulated MWL with a cognitive task that subjects
had to perform on a computer under experimental laboratory
conditions. Previous research showed that the EDA level
increases with increasing task difficulty. It has been shown for
subjects performing oral or auditory tasks while driving in the
real field (Collet et al., 2009) or in a simulated environment
(Mehler et al., 2009, 2012). The same effect was found for a visual
task performed while driving in both real field and simulated
environments (Engström et al., 2005) or on a computer (Ikehara
and Crosby, 2005). However, no effect of task difficulty was found
on EDA for an auditory task performed in a driving simulator
(Engström et al., 2005). A possible explanation was provided
by Mehler et al. (2012) in their follow-on study for this non-
consistent effect of incremental difficulty of task on EDA in
the study of Engström et al. (2005). Some participants might
have disengaged from the task when performed at high levels
of difficulty, resulting in a lower physiological activation. This
shows the high importance of controlling the performance of
the participants with regard to the secondary task. For measures
describing the cardiac activity, HR and IBI were also shown to
be sensitive to increased task difficulty. IBI decreases (e.g., HR
increases) with increasing difficulty of the visual task performed
in both simulated and real environment (Engström et al., 2005).
The same effect was found for auditory tasks (with verbal prompt
or not) performed under real driving conditions (Engström et al.,
2005;Mehler et al., 2009). Collet et al. (2009) found similar results
since HR of participants increased when performing various
oral and auditory tasks while driving. An effect of increased
task demand induced by the environment in simulated driving
was also found on HR and frequency-based HRV measures
(Brookhuis et al., 2004; Brookhuis and de Waard, 2010). In
addition, the respiratory activity of subjects is also sensitive to the
performance of the auditory prompt-verbal response “n-back”
task while driving (Mehler et al., 2009). This study showed a
plateau effect between the 1-back and 2-back conditions for BR
and EDA, suggesting that it might be difficult to distinguish two
different levels of high cognitive workload using physiological
measures. Subsequently, Mehler et al. (2012) found that the
seeming plateau effect in the earlier study was an artifact of the
methodology employed and that when the order of task difficulty
is randomized, significant differences in EDA level between the
1-back and 2-back were observed, confirming that the mean
EDA level increases with task demand. In summary, previous
studies led in various experimental settings already showed that
changes in driver’s workload can bemeasured using physiological
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signals. Some significant results were found in both real field
and simulated environments (Engström et al., 2005), although
the simulation was probably less realistic than it is now. Some
indicators such as the mean EDA level or IBI can be used to
measure changes in workload. Increasing task difficulty lead
to increasing MWL, which goes with reduced IBI (e.g., higher
HR), increased mean EDA level and increased BR. Some of
these measures showed to vary when engaging in tasks involving
different sensory channels such as auditory, oral or visual tasks.
The fact that a speech-based cognitive task increases EDA, HR,
and BR (Collet et al., 2009; Mehler et al., 2009) is particularly
relevant for our study. We expect that these indicators will play a
significant role in the classification of drivers’ condition.

2.4. Classification of Workload
Our contribution is to classify drivers’ workload using
physiological measures during conditionally automated driving.
In this regard, the classification results and procedure from
previous studies, including the type of chosen physiological
signals, the features generation and selection techniques, the
selected classifiers, the validation techniques, or the number
of classes to predict are reported. In this section, we reviewed
studies for which the experimental task was the accomplishment
of a NDRT during manual driving periods (real or simulated
driving) or the performance of a single cognitive task in a
laboratory. For each study, the method employed by authors to
perform the classification is described.

Ferreira et al. (2014) asked two groups of adults (young vs. old)
to perform two different cognitive tasks on a computer, testing
their perceptual speed and visio-spatial cognitive processing
capabilities. Each group performed three blocks of these two
tasks, with two different difficulty levels of the tasks. One hundred
and twenty-eight features were extracted from the EEG, ECG,
EDA, heat flux, and respiration raw signals. Features were
computed from 10 and 60-s segments using sliding windows
with a step of one second. An inter-subject classification achieved
results from 64 to 86% accuracy to distinguish two difficulty
levels, depending on the task, the age group and the time window
used for classification. The best scores were achieved mostly with
data collected from young participants but with a high variation.

Haapalainen et al. (2010) administered six elementary tasks
to 20 young subjects on a computer. Tasks were asking for
visual perception and cognitive speed. A Naive Bayes classifier
had to choose between two levels of cognitive load (low vs.
high) using features derived from non-overlapping segments of
psychophysiological measures during the tasks. Features such
as statistical indicators of pupil diameter, GSR, heat flux, mean
absolute deviation of ECG, EEG power values, two mental
state outputs, heart rate and time-based HRV features were
calculated. A leave-one-out approach was used for validation.
Finally, the authors averaged the classification results across all
participants, using the best feature from each sensor. An average
of 76 and 71.4% of accuracy was achieved with respectively the
heat flux and mean absolute deviation from ECG. An accuracy
of 81.1% was achieved by combining both features. Besides,
the classification with EDA as an input feature showed the
lowest performance.

In another study led by Hogervorst et al. (2014), 14
participants had to perform the visual n-back task on a
computer at different levels of difficulty (rest, 0, 1, and 2-
back). Each participant did 8 epochs of 2 min of that
task in the 3 difficulty levels. Features such as frequency-
based indicators from EEG, mean EDA level, time-based
HRV indicators, breathing frequency, and eye-related indicators
were used. The best classification accuracy reached was a
little over 90% for distinguishing high (2-back) and low
(0-back) workload on the basis of 2 min segments with
all indicators. The breathing frequency was the most useful
physiological measure for classifying workload level. Using only
physiological features, the best accuracy achieved was around
75% to distinguish 2-min segments of 0-back and 2-back
task using the support vector machine classifier. This score
decreased slightly under 70% when using 30-s segments for
the classification.

Son et al. (2013) collected driving, physiological and eye
movement data of 30 participants performing the auditory n-
back task while driving. Task difficulty was varied on three levels
(0, 1, and 2-back task) for a duration of 2 min each. HR and
skin conductance level were used as physiological features. Ten-
second windows across all 2-min windows were used to compute
the features. A support vector machine classifier with a nested
cross-validation technique was used to classify periods of normal
driving and dual-task periods (NDRT and driving). The heart
rate showed the best accuracy as a single feature to classify
workload with 80% accuracy. In addition, all models with the two
physiological inputs (HR and skin conductance level) obtained at
least 82.6% accuracy.

A recent study led by Darzi et al. (2018) aimed at identifying
the causes of hazardous driver states, using a combination
of driver characteristics, vehicle kinematics, and physiological
measures. 21 drivers were asked to perform four 45-min
sessions of simulated driving. Each driving session contained
eight scenarios with changing weather, traffic density and
NDRT. The classification of cell phone usage periods only with
physiological data is the most relevant result for our study
because it is close to what we are trying to achieve in this
experiment, except that it is in the context of conditionally
automated driving. During cell phone use, participants indicated
to have a higher MWL with regard to NASA-TLX (NASA
Task Load Index, Hart and Staveland, 1988) results. Seventeen
features were computed from four physiological signals (ECG,
EDA, respiration, and temperature) from each 4-min scenario.
It included time-based and frequency-based HRV measures,
skin temperature, indicators of tonic and phasic EDA and
respiration rate and variability. To automatically classify drivers’
condition, the support vector machines, logistic regression and
decision trees were selected as classifiers. For the physiological
features, the baseline value was subtracted to driving value and
then normalized using the minimum and maximum during a
session. Only significant features to the stepwise forward feature
selection (threshold of 0.05) were selected and the leave-one-
out validation method was employed. Only with physiological
features, classifiers were able to detect that participants used the
cell phone while driving with a 81.8% accuracy. The most useful
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TABLE 1 | Summary of state of the art.

References Physiological features Best classifier Best performance (accuracy) Best features

ECG EDA RESP

Ferreira et al. (2014) Yes Yes Yes QDA 86% (60 s) EEG, respiration rate

Haapalainen et al. (2010) Yes Yes No NB 83.70% Heat flux, HRV

Hogervorst et al. (2014) Yes Yes Yes SVM 75% (2-back vs. 0 back, 120 s) EEG, respiration, RMSSD

Son et al. (2013) Yes Yes No SVM 82.9% HR, skin conductance

Darzi et al. (2018) Yes Yes Yes LR 82.3% (cell phone or not) ECG gradient, respiration rate

Solovey et al. (2014)
Yes Yes No MLP 75.7%; HR only : 74%

Yes Yes No LR 90% (30 s); HR : 80–85%

Le et al. (2018) No No No DT 89.91%

QDA, Quadratic Discriminant Analysis; NB, Naïve Bayes; SVM, Support Vector Machine; LR, Logistic Regression; MLP, Multilayer Perceptron; DT, Decision Tree.

physiological features for classification were the mean breathing
rate and the absolute value of the gradient of the ECG signal.

Another main study in this domain had been led by Solovey
et al. (2014). They conducted two field studies with 20 and 99
drivers to classify workload of drivers only with physiological
data using respectively a subject-dependant and a subject-
independent classification approach. Once again, the n-back task
was used to manipulate drivers’ workload (auditory prompt and
verbal answer with digits). Various size of time windows (10–30 s)
and overlapping factors (0–75%) were tested. Statistical measures
of HR, skin conducatance level and vehicle velocity were used for
classification. For the subject-dependant classification, accuracies
around 75% were achieved with all classifiers (except for the k-
Nearest Neighbor one) using all features. The model accuracy did
not decrease much using only HR features for classification. For
the subject-independent classification, accuracies around 90%
were achieved only with physiological measures. The additional
driving features did not increase accuracy, suggesting that
physiological measures alone have a great potential for classifying
drivers’ workload in automated driving (where driving features
are not available). Logistic Regression, Multilayer Perceptron and
Naïve Bayes classifiers were themost efficient ones. Increasing the
time widows for computing features increased the accuracy, with
the best accuracy achieved with a 30-s time window. However,
the overlapping factor did not affect the accuracy of the system.

Finally, Le et al. (2018) recently considered using near-
infrared spectroscopy to similarly classify drivers workload
being cognitively distracted by a NDRT. Again, the n-back task
was chosen for manipulating workload and 6 features were
computed from the sensor data. Five-fold cross-validation and
a principal-component analysis were applied to data before the
final classification. Five different classifiers were tested to classify
three workload levels (driving only vs. driving + 1-back vs.
driving + 2-back), including decision-tree, discriminant analysis
model, logistic regression, support vector machine and nearest
neighbor classifiers. Scores above 88% accuracy were achieved
for subject-dependant classification and between 84 and 90% for
subject-independent classification. The results obtained in this
study are very promising the results are obtained for classifying
three levels of workload compared to other studies that classified
only two levels. However, the sensor was placed on the forehead

of drivers, who may not be willing to wear such a device under
real driving conditions.

To summarize the findings from previous studies, the main
results of each article are presented inTable 1. Overall, decreasing
the time window for computing physiological measures showed
to decrease accuracy. Apart from psychological features such as
EEG, some of the best physiological features to classify MWL
were the breathing rate, HR or the mean absolute deviation
of IBIs. Another main result to consider is that the models
developed in several studies always benefited from sensor fusion.
This leads to a compromise to classify the driver’s condition.
Previous research reviewed here raises a fundamental issue if
we want to implement such systems in vehicles. The stake is
to find the best trade-off between the number of physiological
signals, features and time window to build a reliable and robust
model (e.g., high accuracy with low variance). If too many signals
are selected, it is difficult for the driver to wear many sensors
under real driving conditions. Also, if a time window of a few
minutes is needed to get an acceptable accuracy, this takes us
away from real-time MWL assessment and therefore makes an
implementation of such a system less credible.

3. CURRENT STUDY

In this paper, we propose a solution that classifies the driver’s
MWL (high vs. low) based on physiological data during
conditionally automated driving. In particular, the following
contributions are made:

• Creation of a dataset containing three physiological signals
(ECG, EDA, and respiration) of 90 subjects in the specific
context of conditionally automated driving in a simulator.

• Manipulation of drivers’ MWL through a verbal cognitive task
with a rigorous experimental approach. The selected task is
similar to a task that drivers might engage in under real driving
conditions (e.g., talking on the phone or to another passenger).

• Validation of the success of workload manipulation by means
of the widely used questionnaire NASA Task Load Index
(NASA-TLX, Hart and Staveland, 1988).

• Training of three different classifiers to predict drivers’
condition, using a k-fold cross-validation approach.
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FIGURE 1 | Takeover situations.

FIGURE 2 | The driving simulator.

• Evaluation of the effect of selected physiological
signals and segmentation level (e.g., size of time
windows used to compute features) on performance
of classifiers.

Our approach differs from previous studies because it investigates
the change of MWL of drivers in the specific context of
conditionally automated driving. With the future rise of
automated driving, it is important to validate that the results
of previous findings are consistent with the increase of drivers’
MWL at higher levels of automated driving. Besides, the
measures used to classify drivers’ MWL differ from some
previous studies that used eye-tracking, EEG or driving features.
In this study, only physiological signals that can be collected in
real-world conditions using smart embedded sensors are used.
Therefore, findings from this study are relevant to the potential
use of physiological signals for detecting changes in MWL of
drivers in future conditionally automated cars.

4. MATERIALS AND METHODS

4.1. Experimental Method
4.1.1. Participants and Experimental Design
90 young participants (24.15 ± 5.95 years old) within a tight
age range were recruited for this study. 40 of them identified
themselves as male, 49 as female and 1 as other. Participants were
mainly students. All participants were required to hold a driving
license and be of good general health. Students received course
credit for their participation. All the research and measurements

followed the tenets of the Helsinki agreement and written
informed consent was obtained from all participants.

The experimental design was a 2 × 6 mixed-design with the
task difficulty as a between-subject variable (secondary task vs.
no secondary task) and the takeover situation as a within-subject
variable (deer vs. traffic cone vs. frog vs. can vs. false alarm 1
and 2). The cognitive NDRT that half of the participants had
to perform was a verbal cognitive task named oral backward
counting (Siegenthaler et al., 2014; Krueger et al., 2019). It
consisted of counting backwards for 20 min from 3,645 by step
of 2. This artificial task was chosen because it is a continuous task
similar to a discussion on the phone or between passengers in
the car. With such task, a higher level of MWL was continuously
induced over a long period of time. This gave the possibility to
investigate the effect of segmentation on physiological signals.
Also, the engagement in such difficult task could be measured.
The six takeover situations included four obstacles that led to
taking over control: a deer and a frog crossing the road, as well
as a traffic cone and a can standing on the track (Figure 1).
Participants also received two false alarms. They could choose
to take over control if they estimated that the situation was
dangerous for them and the car. The takeover situations were
implemented in the scenario to make it more realistic and
engaging for participants. However, the effect of the takeover
situation on the physiological state of subjects is not presented
in this work.

4.1.2. Material and Instruments
The experiment was conducted on a fixed-base simulator, as
shown in Figure 2. It is composed of two adjacent car seats with
seat belts and a Logitech G27 steering wheel with the gas, brake
and clutch pedals. The clutch was not used in this study since
the car used in the simulation had an automatic gearbox. The
orientation and the longitudinal position of the seats toward
the steering wheel were adaptable like in a real car. All this
structure was installed in front of a large screen where the driving
simulation software was back-projected with a projector (model
Epsilon EH-TW3200). Two speakers were set up behind the seats
to immerse the driver in the simulated driving environment.
A cabin-like room with low ambient lighting contained all of
this installation. The driving simulation used GENIVI software,
developed with Unity by a consortium of car manufacturers.
The scenario used for the experiment was a replication of
the Yosemite National Park (USA) and included conditionally

Frontiers in Psychology | www.frontiersin.org 7 February 2021 | Volume 12 | Article 596038

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Meteier et al. Classification of Drivers’ Workload

automated driving features. It was modified to add the obstacles
triggered by the experimenter, leading to six takeover requests
throughout the driving session. During the experiment, the
Biopac MP36 hardware recorded the physiological signals of
drivers, at a sample rate of 1,000 Hz. Appropriate parameters
were used for each channel. A digital low pass filter with a
frequency of 66.5 Hz and a Q factor of 0.5 reduced the noise
of the three signals. For the EDA and RESP signals, the filter
had a respective gain of 2,000 and 1,000. The SS57LA and
SS2LB lead sets (Biopac) with disposable Ag/AgCl pre-gelled
electrodes (EL507 and EL503, Biopac) respectively collected the
EDA and ECG of participants. The SS5LB respiratory effort
transducer (Biopac) recorded the respiration via chest expansion
and contraction. The voice of participants assigned to the
manipulation group was recorded by an audio recorder placed
behind the dashboard.

4.1.3. Measures
Physiological signals of participants were recorded throughout
the whole experiment, including ECG, EDA, and RESP. Based
on these data, physiological indicators were calculated. The
creation of features from these indicators is presented later in the
article (section 4.2.1). The subjective workload was assessed using
the widely used questionnaire NASA-TLX (Hart and Staveland,
1988). It is a 6-item questionnaire where participants report
their subjective level of workload during a task. After their
experience in the driving simulator, participants were asked to
rate their workload during the main driving session. The scale
was modified due to visualization problems on the questionnaire.
Hence, each item rated on a 11-point scale, from 0 to 10 (0= Low,
10 = High). The mean score of the six items was computed to
create a global score of MWL rating from participants. To ensure
that participants were engaged enough in the NDRT throughout
the driving session, we also measured NDRT performance of the
participants. The frequency of orally spoken number (i.e., the
number of orally spoken numbers per minute) was calculated
from recordings obtained with the voice recorder. From times
to times, participants stopped counting since the task was
monotonous. For that reason, we also counted the number of
times the experimenter asked the participant to resume counting.

4.1.4. Procedure
After initial instructions about the experiment, participants
answered a questionnaire containing socio-demographic
questions (i.e., age, gender, driving experience, accidents, etc.).
To record the physiological signals, the experimenter attached
electrodes and the respiration belt to the participants’ body. Three
electrodes were attached to record the ECG, two above both
ankles and one at the right wrist. For the EDA, two electrodes
were attached to the index and middle finger of the right hand of
participants. Then, the experimenter asked them to take a seat
in the simulator. The experiment took place in three distinct
periods. Oral instructions were given by the experimenter
before each period to ensure that participants understood the
experimental procedure. As described in the section 4, the three
periods took place in the same scenic environment. During the
first period, participants had to monitor the environment of the

FIGURE 3 | Upper part: The dashboard displaying the icon indicating the

autopilot mode, the speed of the car and the number of engine’s revolutions

per minute. Bottom-left: gray icon—Autopilot OFF, Bottom-middle: green

icon—Autopilot ON, Bottom-right: Red icon—Takeover Request (TOR).

car while it was driving in conditional automation for 5 min.
They were told that no takeover could be requested during this
period. Indicators computed during this phase corresponded to
the physiological baseline of participants.

The second period served as a practice session for the
participants. During 5 min, they could familiarize with the
takeover process as well as with the driving functions of the
simulator (e.g., sensitivity of the steering wheel, gas and brake
pedal etc.). Before starting, the experimenter reminded the
subjects that they were driving a level 3 vehicle. The meaning
of icons showing the state of the autopilot on the dashboard
was explained to the driver (cf. Figure 3). For each TOR, the
simulation displayed a red icon on the dashboard and played an
audio chime in the speakers. The experimenter also explained
how the participants could take over control of the car, either
by steering the wheel, braking or pressing the upper-right button
placed on steering wheel. For the practice session, drivers were
told that three false alarms would be triggered to become familiar
with the process. After the three false alarms were triggered,
the experimenter made sure that participants understood the
process. Then, they had the chance to drive manually until the
end of the 5 min. This study does not include the analysis of data
during the practice drive.

The third period consisted of the main driving session that
lasted 20 min. The experimenter reminded the participants
to take over control of the car only in a situation that they
considered dangerous for themselves and the vehicle. They had to
react accordingly to six TORs. Each one was randomly triggered
between 1 min and a half and 4 min after the previous TOR.
The randomization of time between takeover was implemented
to avoid an expectation effect. Once participants gained control
over the critical situation and considered it as safe again, they
were instructed to reengage the autopilot. To do that, they had
to position the car in the center of the right lane and press a
button on the steering wheel. In addition, half of the participants
had to perform the speech-based cognitive secondary task while
the car was driving. At the end of the session, participants
were asked to stop the car and leave the simulator. The
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experimenter removed electrodes and the participants could fill
in the last part of the questionnaire. Then, they were thanked
and discharged.

4.1.5. Pilot Study
Eight people took part in the pilot study. The purpose was to
check that all the data were correctly recorded (physiological
signals and driving data) and that the driving scenario was
running flawlessly. Shadows on the lane due to the reflection of
sunlight on trees were removed from the driving environment.
Indeed, obstacles were not triggered at the same location for
all participants to minimize the impact of the visibility of
drivers during the takeover situations. Also, the original design
contained a third experimental condition. This condition was to
count backwards by step of 13 to induce a higher cognitive load.
However, we realized that it was too demanding to perform this
task for 20 min.

4.1.6. Statistical Analysis
The analyses were performed using IBM SPSS Statistics 25.
By examining the audio files recorded during the execution of
the NDRT, we found that the calculation task was performed
correctly and accurately. Four participants made some errors
during the NDRT. Three of themmade amistake in the transition
from 3,001 to 2,999, starting again from 3,999. The fourth
participant obtained an even score at the end. However, they
were not removed from the analysis because they kept counting,
which was the most important for the inducement of MWL.
For the subjective ratings of the NASA-TLX, nine participants
were removed due to due to issues with the online questionnaire.
To test for the difference of MWL between the control group
and the treatment group, analyses of variances (ANOVAs) were
calculated for each questionnaire item and the global score of
MWL. Cohen’s effect size is reported when the ANOVA showed
a significant result.

4.2. Classification Method
This section describes the methodology used to classify drivers’
condition (secondary task vs. no secondary task) based on the
recorded physiological signals. A first goal was to investigate
the effect of sensor fusion on classification accuracy. The
classification was performed for each signal independently
(ECG, EDA, RESP), each possible pair of signals and all
signals combined. A second goal was to observe the effect of
segmentation level. In other words, the main driving session
was segmented into windows of different size that were used to
compute features. Six segmentation levels were tested : 1, 2, 5,
10, 20, and 40. With a segmentation level of 1, the features were
computed from one 20-min window, whereas a segmentation
level of 40 consisted of 40 30-s windows for computing features.
The higher the segmentation level was, the more training
examples the algorithm had for training. This process aimed at
investigating the shortest time required to record physiological
parameters to classify accurately the MWL of drivers. Overall,
this work will help to find the best trade-off between the number
and type of physiological signals needed, the optimal time-span
for recording physiological data and the performance of a model

to classify the level of MWL workload, with the ultimate goal
of implementing such model in future automated vehicles under
real-world conditions.

4.2.1. Data Preprocessing
The preprocessing of raw physiological data was automated using
the Neurokit library in Python (Makowski et al., 2021). Neurokit
is a module that provides high-level integrative functions to
process and exploit bio-signals. Signals from the baseline and
driving phases were processed separately. The result of the
processing step resulted in the computation of physiological
indicators. To summarize the indicators computed in this study,
a definition of each indicator calculated from physiological raw
signals is proposed in Table 2.

The EDA signal was processed using methods of convex
optimization (Greco et al., 2016), which defines EDA as the sum
of three terms: the phasic component, the tonic component,
and an additive white Gaussian noise term incorporating
model prediction errors as well as measurement errors and
artifacts. To be able to process the EDA signal with the convex
optimization method, it had been down-sampled to 50 Hz to
reduce computation time. The signal had also been filtered with
a Finite Impulse Response low-pass filter of fourth order with a
cut-off frequency of 5 Hz and smoothed using the convolution of
a filter kernel with the input signal (Smith, 1999). That smoothing
process used the moving average principle, with a window size
of three-quarters the sampling rate. The output was the EDA
raw signal, the filtered signal, the tonic component, the phasic
component, the SCR onsets, peak indexes and amplitudes. Based
on the related work, we chose to use the filtered signal, the tonic
component and indicators that characterize NS-SCRs because
we evaluate changes in drivers’ state over a long period. Hence,
EDA indicators including the minimum, maximum, standard
deviation and mean values of filtered and tonic EDA signals were
computed in this study, in addition to the frequency and the
mean amplitude of NS-SCRs.

The ECG signal was filtered with a Finite Impulse Response
band-pass filter of fourth-order with cut-off frequencies of 3
and 45 Hz. A QRS-detector algorithm was used to locate R-
peaks from the ECG signal (Hamilton, 2002). The output was
the ECG raw signal, the filtered signal and the R-peaks indexes.
From that, HR and HRV indicators were computed. HRV
indicators included time domain, frequency domain and non-
linear domain indicators.

The respiration signal was filtered with a Butterworth
band-pass filter of second-order with cut-off frequencies of
0.1 and 0.35 Hz and smoothed with the same process
than EDA and a rectangular window size (also known as
Dirichlet window) of 3 s (Smith, 1999). The output was the
respiration raw signal, the filtered signal, the respiratory cycles
onsets, and respiratory phases (inspirations and expirations).
From that, indicators of rate and variability of respiration
were computed.

Also, from both respiration and ECG signal, RSA features
were computed using the peak-to-trough (P2T) and Porges–
Bohrer methods. The P2T algorithm computes all RSA estimates
in a given period. For each breath, an estimate of RSA is
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TABLE 2 | Summary of physiological indicators computed from raw physiological signals.

Signal Indicator Domain Description

EDA

Mean raw level The mean value of filtered EDA signal

Min raw value The minimum value of filtered EDA signal

Max raw value The maximum value of filtered EDA signal

Std raw value The standard deviation of filtered EDA signal

Mean tonic level The mean value of tonic EDA signal

Max tonic value The minimum value of tonic EDA signal

Min tonic value The maximum value of tonic EDA signal

Std tonic value The standard deviation of tonic EDA signal

Amp. NS-SCRs The mean amplitude of NS-SCRs (computed from phasic EDA signal)

Freq. NS-SCRs The number of NS-SCRs per minute (computed from phasic EDA signal)

ECG/RESP

Mean Rate

Time

The mean number of cardiac cycles per minute

Mean The mean time of IBIs/BBs

Median The median of the absolute values of the successive differences between adjacent IBIs/BBs

MAD The mean absolute deviation of IBIs/BBs

SD The standard deviation of IBIs/BBs

SDSD The standard deviation of the successive differences between adjacent IBIs/BBs

CV The Coefficient of Variation, i.e., the ratio of SD divided by Mean

mCV Median-based Coefficient of Variation, i.e., the ratio of MAD divided by Median

RMSSD The square root of the mean of the sum of successive differences between adjacent IBIs/BBs

CVSD The coefficient of variation of successive differences; the RMSSD divided by Mean

LF

Frequency

The spectral power density pertaining to low frequency band (0.04 to 0.15 Hz)

HF The spectral power density pertaining to high frequency band (0.15 to 0.4 Hz)

LF/HF The ratio of low frequency power to high frequency power

SD1

Non-linear

Measure of the spread of IBIs/BBs on the Poincaré plot perpendicular to the line of identity

SD2 Measure of the spread of RR intervals on the Poincaré plot along the line of identity

SD2/SD1 Ratio between long and short term fluctuations of IBIs (SD2 divided by SD1)

ECG

pNN50

Time

The proportion of successive IBIs greater than 50 ms, out of the total number of IBIs

pNN20 The proportion of successive IBIs greater than 20 ms, out of the total number of IBIs

TINN The baseline width of IBIs distribution obtained by triangular interpolation

HTI The HRV triangular index (total number of IBIs divided by the height of IBIs histogram)

VHF

Frequency

Variability, or signal power, in very high frequency (0.4–0.5 Hz)

LFn The normalized low frequency, obtained by dividing the low frequency power by the total power

HFn The normalized high frequency, obtained by dividing the low frequency power by the total power

LnHF The log transformed HF

CSI

Non-linear

The Cardiac Sympathetic Index (longitudinal variability of Poincaré plot divided by transverse variability)

CVI The Cardiac Vagal Index (logarithm of the product of longitudinal and transverse variability)

CSI_modified The modified CSI (the square of the longitudinal variability divided by transverse variability)

RESP

Mean amplitude Time The mean respiratory amplitude

ApEn
Non-linear

The approximate entropy of RRV

DFA2 A long-term fluctuation value. Only be computed if mora than 640 breath cycles in the signal

RSA

Mean Mean of RSA estimates

Mean Log The logarithm of the mean of RSA estimates

SD The standard deviation of all RSA estimates

NoRSA The number of breath cycles from which RSA could not be calculated

RSA_PB The Porges–Bohrer estimate of RSA, optimal when the signal to noise ratio is low, in ln(ms^2)

Identical indicators computed from both ECG and respiration (RESP) signal are grouped together. IBIs refers to interbeat intervals (ECG) and BBs refers to breath-to-breath cycles
(RESP).
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calculated by subtracting the shortest heart period during
inspiration from the longest heart period during a breath cycle
(Lewis et al., 2012). RSA features included the mean, the
standard deviation and the logarithm of the P2T estimates (in
milliseconds), in addition to a measure computed with the
Porges–Bohrer method, as explained in Lewis et al. (2012).

4.2.2. Feature Generation and Normalization
The same feature engineering process was applied to data of
all participants, regardless of their experimental condition. Each
indicator presented above was calculated for each segment of
the driving phase. It was taken as a feature for the classification.
For each indicator, an additional feature was computed,
corresponding to the difference of that indicator between the
driving segment and the baseline. That feature engineering
process aimed at taking into account the physiological state of
participants at rest and evaluate the individual changes on each
indicator during the driving session (Darzi et al., 2018). In this
way, the model performance should be higher for a between-
participant validation procedure, since the ultimate goal is to
build a model that would performwell with any subject inside the
car. In total, the three raw physiological signals served to compute
122 features corresponding to 61 physiological indicators (10
from EDA, 27 from ECG, 19 from RESP, five from RSA). For
classifiers sensitive to the range of features, data were normalized
using the maximum and minimum of each feature during a
driving segment. The minimum value was subtracted to the
feature value and then divided by the difference between the
maximum and minimum values.

4.2.3. Feature Selection
Statistical analysis techniques are usually employed to check for
the effect of a between-subjects factor on dependant variables.
Therefore, we chose to do an ANOVA on each one of the
122 features independently. Only the physiological features that
reached the significance level (p-value lower than 0.05) were
used for classification. The number of features was not the
same depending on the segmentation level and the physiological
signals used for the classification task.

4.2.4. Selected Algorithms
At this step of the procedure, the dataset consisted of some
selected features that were used as input of classifiers for
the training and validation procedure. Three algorithms were
selected based on results from previous research in the field
(Son et al., 2013; Solovey et al., 2014; Darzi et al., 2018) and
for their ease of implementation. They have been implemented
in Python using the scikit learn machine-learning framework
(Pedregosa et al., 2011). The effect of selected physiological
signals and segmentation level was tested with each classifier.
Their classification principle is detailed below:

Random Forest Classifier (RF): A random forest is a meta
estimator that fits some decision tree classifiers on various
sub-samples of the dataset and use averaging to improve the
predictive accuracy and control over-fitting (Breiman, 2001).

C-Support Vector Classifier (SVC): The support vector
classifier uses boundaries (linear or more complex) to separate

data in the input feature space. The separation boundary is
defined by a kernel. In this experiment, we tested four different
kernels: the linear, the sigmoid and the polynomial ones, as well
as the radial basis function (Hsu et al., 2010).

Multi-Layer Perceptron Classifier (MLP): A multi-layer
perceptron consists of a set of nodes distributed in a number of
layers. It contains at least three layers of nodes: an input layer, a
hidden layer and an output layer. Except for the input nodes, each
node is a neuron that uses a non-linear activation function. The
multi-layer perceptron utilizes backpropagation as a supervised
learning technique for training (Hastie et al., 2009). Here, we use
the multi-layer perceptron as a classifier, meaning that the output
layer contains only two nodes that output the probability that the
driver was performing a secondary task or not, based on input
features. The classifier contained one hidden layer and we only
tested to change the number of neurons in that hidden layer.

4.2.5. Optimization and Validation
To maximize the performance of classifiers, an optimization of
hyperparameters of the three selected classifiers was done. The
hyperparameter search aims to find the set of hyperparameters
that minimizes the loss and maximizes the classification accuracy
(Claesen and De Moor, 2015). The grid search technique was
chosen to search for the best set of hyperparameters. It consists
of predefining a range of values to test for each hyperparameter.
The classifier tests all possible combinations of parameters for
training and validation procedures. A first iteration of that
grid search technique (GridSearch1) was performed with a
wide range of values. The goal was to eliminate values of
hyperparameters for which the model does not perform well
and hence reduce this range for the final optimization during
the validation procedure. It was done on the entire dataset
which was split into a training set (75% of samples) and a
validation set (25% of samples). The hyperparameters that have
been tested during this first optimization procedure can be found
in Table 3. The definition and the chosen range of values for
each parameter are presented. This first procedure was done for
each level of segmentation and the feature selection process was
also applied. The second hyperparameter optimization process
was done during the final validation procedure. It used a
reduced range of values defined after the first optimization.
The k-fold cross-validation method was select to validate the
performance of classifiers and prevent classifiers from overfitting
the data (Hastie et al., 2009). In this procedure, the dataset
was split into 10-folds. Classifiers were trained using data from
9 subsets and then validated on the remaining subset. The
validation was repeated 10 times, with each subset acting as
the validation subset once. The second step of optimization
with a refined range of parameters (GridSearch2) was performed
within the final validation pipeline. The 10-fold validation
procedure was performed once for each set of hyperparameters.
Graphs and tables report results for the set of hyperparameters
that gave the best mean accuracy for the classification overall
10 subsets.
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TABLE 3 | Tweaked hyperparameters during the first iteration of the grid search procedure (GridSearch1 ), with chosen ranges and step values for each parameter.

Classifier Parameter name Parameter definition Range

RF

n_estimators Number of trees in the forest. [10, 507, 1,005, 2,000]

max_features Number of features to consider when looking for the best split. Sqrt

max_depth Maximum depth of the tree.

If None, then nodes are expanded until all leaves are pure

or until all leaves contain less than 2 samples.

[None, 10, 57, 105, 152, 200]

SVC

kernel Specifies the kernel type to be used in the algorithm [linear, RBF]

C Regularization parameter. [2e-3, 2e-1, 2e1, 2e7, 2e9, 2e11]

gamma Kernel coefficient for RBF kernel. [2e-13, 2e-9] by step of 10

MLP

solver Solver used for weight optimization. [lbfgs, adam]

max_iterations Maximum number of iterations.

Solver iterates until convergence or number of iterations.

[500, 1,500]

alpha L2 penalty (regularization term) parameter. [1e-4, 1] by step of 10

hidden_layer_sizes The number of neurons in the hidden layer. [32, 64, 128, 256, 512]

random state Determines random number generation for weights and bias initialization. [0, 42]

RBF refers to Radial Basis Function.

5. RESULTS

5.1. Statistical Validation of MWL
Inducement
5.1.1. Engagement on Task
The indicator used to check for the engagement on task was the
frequency of orally spoken numbers. The participants counted
backward, on average, to the number 2,740 (M = 2740.03, SD =

311.28), making an average of 452 (M = 452.49, SD = 155.64)
calculations throughout the driving session. It is equivalent to
22.6 numbers orally spoken per minute, e.g., approximately one
number every 3 s. During the experiment, the experimenters
asked participants to resume counting on average twice (M =

2.00, SD= 1.77).

5.1.2. Subjective Ratings (NASA-TLX)
To control the success of the MWL manipulation, subjective
ratings of workload collected from the NASA-TLX questionnaire
were used. Results indicate higher level of reported MWL for
the group that performed the secondary task (M = 4.64, SD =

0.90) compared to the control group (M = 3.90, SD = 1.42;
F(1, 79) = 7.77, p < 0.05, d = 0.63), regarding the global score
of the NASA-TLX. The difference was also significant between
both groups for mental demand (F(1, 79) = 59.85, p < 0.001,
d = 1.73), performance (F(1, 79) = 9.07, p < 0.05, d = 0.67)
and frustration (F(1, 79) = 6.83, p < 0.05, d = 0.58). Means and
standard deviations for all components of the questionnaire are
shown in Figure 4.

5.2. Classification of Drivers’ Workload
5.2.1. Reduction of Hyperparameter Range
The first iteration of the grid search (GridSearch1) gave insights
about the influence of hyperparameter values on the performance
of the model. The RF classifier obtained the poorest results
with 2,000 estimators and a maximum depth of 200. For the
final pipeline, we reduced the range for these two parameters.

The SVC classifier performed best across all segmentation levels
with the linear kernel and C-values of 2e-1, 2e1, and 2e7.
Therefore, we chose to only use the linear kernel and refine
the final range of C-values. For some segmentation levels, the
MLP classifier did not converge to achieve the best score after
1,500 iterations. Therefore, it was set to 2,000 for the final
pipeline. The lbfgs solver (which stands for Limited-memory
Broyden–Fletcher–Goldfarb–Shanno) was selected for the final
optimization process because it gave better results more often
than the adam solver. The smallest alpha value (1e-4) did not
show satisfying results so it was excluded from the final range
of values. The number of neurons in the hidden layer did not
have much influence (except for 512 neurons). Therefore, a
similar range of values was chosen. Finally, the random state was
set at 42 for challenging the model with random initialization
of weights and biases during the final procedure. The chosen
range and step values for each hyperparameter tested during the
final optimization procedure (GridSearch2) are summarized in
Table 4.

5.2.2. Influence of the Number of Selected

Physiological Signals
Figure 5 shows the means and standard deviations of the
classification accuracy using the 10-fold validation procedure.
Results are reported for each classifier depending on the type and
the number of chosen physiological signals, with a segmentation
level of 1. For each combination of selected signals, Table 5
shows the best mean accuracy (and standard deviation) and the
classifier which performed best to classify drivers’ condition over
the 10-folds. Using only EDA as the input signal, the model
showed the lowest performance, achieving between 69 and 73%
accuracy regardless of the classifier. The model with ECG alone
achieved 82–89% accuracy. With only one physiological signal as
the input of classifiers, the respiration achieved the best results
with an accuracy close to 90% on average over the 10-folds.
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FIGURE 4 | Subjective ratings of MWL collected from the NASA-TLX questionnaire. Low value means high performance for the Performance item.

TABLE 4 | Final range of values tested for each hyperparameter (GridSearch2 ).

Classifier Parameter name Range

RF

n_estimators [10, 257, 505, 752, 1,000]

max_features sqrt

max_depth [None, 10, 40, 70, 100]

SVC
kernel linear

C [2e-3, 2e7] by step of 10

MLP

solver lbfgs

max_iterations 2,000

alpha [1e-3, 1] by step of 10

hidden_layer_sizes [32, 64, 128, 256]

random state 42

With two signals as the input of classifiers, the combination of
EDA and ECG features showed the lowest accuracy, between 82
and 89% accuracy. The combination of EDA and respiration as
input signals gave 87–89% accuracy. The best combination of
two signals was respiration and ECG, achieving 92–94% accuracy
depending on the selected classifier. Finally, the combination of
the three signals resulted in accuracy between 91 and 92% for
classifying drivers’ condition.

5.2.3. Influence of the Segmentation Level
For each classifier and each segmentation level from 1 to 40,
Figure 6 shows the means and standard deviations achieved by
the model after the classification task. The results are reported
only for selected signals that achieved accuracy over 85% with a
segmentation level of 1 with at least two classifiers. It includes the
respiration alone, both pairs of EDA with respiration and ECG
with respiration, and the fusion of the three signals. Best results
for each level of segmentation are summarized in Table 6. The

classifier and the combination of signals that gave the best results
are also reported.

6. DISCUSSION

6.1. Manipulation of Workload
Regarding the results from the experimental manipulation,
measures of task performance showed that participants were
sufficiently involved in the NDRT they were asked to perform.
Indeed, they counted orally with a rate of one number every 3 s
on average. Subjective ratings of MWL showed that participants
in the NDRT condition reported a significantly higher level of
MWL than participants in the control group. Mental demand
was the component that showed the largest effect size. Results
from task performance and subjective ratings indicate that the
manipulation of MWL of participants was successful. We can
hence consider that performing such speech-based NDRT for
20 min in conditionally automated driving is increasing the
MWL of drivers. From that, the effect of a higher level of MWL
on the collected physiological data of drivers can be analyzed.
A procedure using machine learning techniques for classifying
drivers’ MWL was used and an interpretation of results is
proposed below.

6.2. Interpretation of Results Depending on
the Selected Signals
The results are first interpreted for the effect of selected
physiological signals on classification performance. Features
were computed with a segmentation level of 1, meaning
that physiological indicators were calculated from the entire
driving period (20 min). With only one physiological signal
selected as an input of the model, results showed that the
model was performing poorest when the only EDA signal
was selected. Using ECG alone, the model performed best,
achieving an accuracy of 89% with the RF classifier. However,
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FIGURE 5 | Classification accuracy as a function of selected physiological signals and classifier.

TABLE 5 | Best score for each combination of selected signals (with a

segmentation level of 1).

Selected signal Best classifier Best accuracy [Mean (SD)]

EDA RF 0.73 (0.15)

ECG RF 0.89 (0.09)

RESP RF 0.88 (0.15)

EDA + ECG RF 0.89 (0.09)

EDA + RESP RF 0.89 (0.13)

ECG + RESP MLP 0.94 (0.06)

EDA + ECG + RESP SVC/MLP 0.92 (0.09)

Bold values show the best score achieved by the model.

from the three physiological signals alone, the model showed
more consistent results across classifiers with the respiration
signal selected alone as input. Indeed, each of the three
classifiers achieved 87–88% of accuracy, but with higher variance
compared to ECG. We can consider that both features computed
independently from the respiration and ECG signals are useful
to distinguish the driver conditions (verbal secondary task vs. no
secondary task).

If we now look at the effect of sensor fusion on classification
results, the fusion of EDA and ECG did not give better results
than the ones achieved with ECG alone. In the same way,
the fusion of EDA and respiration signals was not better than
respiration alone. In previous studies, EDA indicators such as
mean skin conductance level were shown to be sensitive to an
increase of MWL (Engström et al., 2005; Mehler et al., 2009).
Similar indicators were computed in this work such asmean tonic
and raw level of EDA. Additional indicators relating the long-
term changes of driver’s state such as the frequency of NS-SCRs
were supposed to improve the accuracy of the system. Results

suggest that EDA features were the least useful ones to classify
drivers’ condition, as found by Haapalainen et al. (2010) and
Son et al. (2013). Nevertheless, the model can achieve 73% with
EDA features, which confirms that drivers’ skin conductance is
affected by the performance of a secondary task involving a verbal
function (Engström et al., 2005; Collet et al., 2009; Mehler et al.,
2009).

However, the model benefited from the fusion of two sensors
without EDA. Indeed, the fusion of respiration and ECG signals
showed to increase the accuracy of the system compared to
the respiration or ECG alone, achieving accuracy levels of over
90% using all classifiers. This is consistent with statements made
above, confirming that the ECG and respiration features are
useful for classification. Also, the variance of scores obtained
over the 10-folds was lower. This suggests that the performance
of classifiers varied less from one-fold to the other during the
classification task, making the model more robust. Besides, the
fusion of the three signals as inputs of the model performed
similarly (or slightly worse) than the one of respiration and ECG.
The variance and accuracy achieved were also similar regardless
of the classifier. Overall, the fusion of ECG and respiration
showed to achieve the best performance to specify the drivers’
condition, with an accuracy of 94% and a standard deviation
of 0.06 across the 10-folds with the MLP classifier (Table 5). It
is probably due to the additional respiratory sinus arrhythmia
features that were computed during the processing of ECG and
respiration signals. These features were taken into account in
the classification procedure and might have helped the model
to capture more information about the change of phase between
ECG and respiration signals during the execution of the task.

If we compare the results to reviewed studies reported in
Table 1, the accuracy achieved in this study is better, using
only physiological features for the classification. Still, results
must be compared carefully since the experimental settings
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FIGURE 6 | Classification accuracy as a function of the segmentation level and classifier.

TABLE 6 | Best score for each segmentation level, with corresponding signals

and classifier.

Segmentation

level

Best selection of signals Best

classifier

Best accuracy

[Mean (SD)]

1 ECG + RESP MLP 0.94 (0.06)

2 ECG + RESP SVC 0.95 (0.07)

5 EDA + RESP RF 0.95 (0.05)

10 ECG+RESP/EDA+ECG+RESP SVC 0.90 (0.05)

20 ECG+RESP/EDA+ECG+RESP RF 0.89 (0.04)

40 ECG+RESP/EDA+ECG+RESP RF 0.84 (0.05)

Bold values show the best score achieved by the model.

varied from one study to another: the driving environment,
the task to complete or the classification procedure. The tasks
performed by participants in previous studies were either visual
or auditory. The only study in which the task was similar to the
task administered in our experiment is the one led by Solovey
et al. (2014). Participants had to perform the auditory n-back
task and answer verbally to targets. Overall, if we compare
our results with those of the latter study based on accuracy
measurement, a better accuracy was achieved in this work,
probably because the features were calculated over a 20-min
time window.

6.3. Interpretation of Results for the Effect
of Segmentation Level
In this study, the effect of segmentation on the performance of
themodel was also investigated. For each driver, the physiological
signals collected during the driving session were split into several
parts (from 1 to 40) and physiological indicators were computed
for each segment. Regardless of the classifier and the chosen
physiological signals, increasing the segmentation level from 1 to
5 showed to increase the accuracy of the model. Especially for
respiration alone and respiration with EDA signals, the model
gained around 10% of accuracy, as shown on Figure 6. For these
signals that gave a lower accuracy with a segmentation level of 1,
the model benefited from sensor fusion. The features computed
on 4-min time windows (segmentation of 5) were more accurate
to depict the condition of drivers. For segmentation levels of
5–40, increasing the segmentation level showed to decrease the
accuracy, regardless of the selected signals. Even if the model

had more training example for the classification task, it was more
difficult to predict the driver’s condition when the features were
computed on time windows shorter than 4 min. However, even
with 30-s time windows, the model was still able to achieve
84% accuracy with both ECG and respiration and the three
signals (Table 6). For small time windows, Solovey et al. (2014)
also found that enlarging the time window used for computing
features (e.g., decreasing the segmentation level) increases the
accuracy of the model. Again, if we compare our results with
those of the latter study based on accuracy measurement, a lower
accuracy was obtained in our study over 30-s time windows
(84 vs. 90%). However, they used sliding windows to compute
features so their model probably had more training data than our
model to maximize its performance. Finally, another interesting
result is that increasing the segmentation level showed to reduce
the variance for some pairs of signals (error bars on Figure 6).
This would suggest that the model could be more robust if a
reduced time window is used for evaluating driver’s state.

6.4. Selection of Best Trade-Off Between
Performance and Number of Physiological
Signals
For an implementation of a model able to classify drivers’ MWL
in future automated cars, the goal is to select the best trade-
off between the length of the time window used to compute
features from the physiological signals and the performance of
the system. Based on results obtained in this study, we would
select a time window of 4 min to compute features since that
segmentation level gave the best accuracy with low variance. For
the selection of signals, three options would be possible based on
results obtained in this work. The first option would be to choose
only the respiration alone as input signal. It would facilitate the
implementation of suchmodel under real-world conditions since
only one sensor would be necessary to detect driver’s MWL with
a high accuracy (over 90%). The respiration could be measured
either using non-contact respiratory monitoring methods (Min
et al., 2010; Al-Khalidi et al., 2011) or contact-based methods
using a piezoelectric sensor mounted in the seat belt. The second
option would be to select the three signals, because it showed the
lowest variance over the 10-folds, meaning that the prediction in
real-time of driver’s condition would be more reliable from one
time to the next. If EDA and ECG would be selected as inputs
signals in addition of RESP, both signals could be collected from

Frontiers in Psychology | www.frontiersin.org 15 February 2021 | Volume 12 | Article 596038

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Meteier et al. Classification of Drivers’ Workload

an intelligent watch or from sensors integrated in smart garments
(Sonderegger, 2013; Schneegass et al., 2015). The third option
would be to use EDA and respiration signals, that showed the
highest performance (high accuracy and low variance) in the
present study. In practice, recent advances in technology allow
for a continuous recording of the EDA and ECG signals. EDA
can be collected from wearable devices such as watches, but they
might not give measures as sensitive as the ones obtained with
the gold-standard sensors used in this experiment. This can be
explained by the lower sensitivity of the wrist tissue and the
lower density of eccrine glands in this area compared to the
volar surface of the hands (palms) or the foot (sole) (Taylor and
Machado-Moreira, 2013). Besides, watches are currently using
a plethysmograph sensor and do not provide fine-grained HRV
features. However, we must consider that advances in wearable
devices and smart clothes might give the possibility to collect
robustly and continuously ECG, EDA and respiration signals
in a near future. Technologies such as built-in sensors in the
seat, radars or intelligent clothes with electrodes such as socks
or chest strap are conceivable. Since, we cannot predict the
pace of development of new technologies in the field of smart
sensors and garments, we make here a proposition based on
the empirical results of this work, taking into account the three
physiological signals. Therefore, based on results obtained in
this experimental study it can be argued that the combination
of EDA and respiration signals with a time window of 4 min
should be selected for an optimal prediction of orally induced
MWL in conditionally automated driving. In previous studies,
physiological indicators showed a great potential to detect an
increase of driver’s MWL due to the performance of a secondary
task while driving manually. This study showed that it is also
possible to use such indicators for distinguishing two different
levels of driver’s MWL at a higher level of automation. Previous
findings on MWL evaluation can hence be considered in the
specific context of automated driving (Level 3 or more according
to the SAE taxonomy; SAE, 2018). Therefore, physiological
sensors could be worn by drivers so that the car could evaluate
their state continuously in conditionally automated driving. This
evaluation of driver’s state could be used by the car along with
the evaluation of the driving situation to provide an optimal
support to the driver through in-car interfaces. However, the
successful implementation and acceptance of such algorithm
depends on people’s willingness to wear such sensors in the car.
However, although highly interesting and challenging for the
future development of the car industry, this is a different topic
and not the subject of this paper.

6.5. Limitations and Further Research
There are several limitations that need to be discussed. A first
limitation is that the verbal task might have influenced the
respiratory pattern of subjects and therefore influenced our
physiological indicators (Cacioppo et al., 2007). Therefore, based
on the present findings, we can only state that a higher level
of MWL induced by a continuous verbal task can be accurately
detected in the context of conditionally automated driving.
Future research needs to be conducted to investigate to what
extent similar results could be obtained in situations of high

MWL induced by a task that does not require the participants
to speak. In addition, only a subset of all available features
were used for the classification task. However, some features
that were excluded could have been useful for the classification
because of their correlation with other features. Therefore,
different strategies for feature selection should be explored. Also,
similar experiments should be conducted to collect physiological
data from drivers performing cognitive tasks that involve other
modalities. The visual and/or auditory n-back task (without
verbal answer) could be used to manipulate the MWL of drivers,
as done in previous studies (Mehler et al., 2009; Son et al.,
2013; Hogervorst et al., 2014; Solovey et al., 2014). Therefore, the
model developed as part of this study needs to be evaluated using
other NDRTs.

Another stake for the emergence of driver’s state systems
under real conditions is to be able to evaluate MWL in real-time.
Since, Solovey et al. (2014) obtained an accuracy of around 90%
using sliding windows of 30 s, it would be interesting to test the
effect of sliding windows on our data to generate more training
examples and see if it increases the performance of the model.
Further studies should focus on evaluating MWL on shorter
epochs of cognitive task. The duration of the task performed
by drivers in this study was rather long (20 min). Even if the
segmentation of data was tested, it might have facilitated the
model to achieve good results. Another experiment should be
led with participants performing cognitive NDRTs on shorter
periods. In this way, it would be closer to reality because drivers
might not perform verbal task during 20 min. Based on the new
collected data, the same model will be tested to see if it still
performs well to predict the MWL level of drivers on shorter
periods. If the model’s performance decreases too much, the
model will need to be refined. To do that, we could consider using
model architectures that are efficient with temporal data such
as recurrent neural networks. The perceptron used in the MLP
classifier would be replaced by gated recurrent units or long-short
term memory cells (Hochreiter and Schmidhuber, 1997).

7. CONCLUSION

The main contribution was to use machine learning techniques
to specify drivers’ condition (verbal task or no task). Three
different classifiers along with sensor fusion and six levels of data
segmentation were compared. Results show that the model was
able to successfully classify the state of the driver with an accuracy
of 95% using physiological features from two signals, computed
from 4-min windows. The model benefited from sensors’ fusion
when the respiration and ECG were both selected as input
signals. We also showed that increasing the segmentation level
from 1 to 5 increased the performance of the classifiers, but
increasing the segmentation level from 5 to 40 decreased the
performance. For the concrete implementation of such a model
under real driving conditions, a fusion of EDA and respiration
signals with a time window of 4 min should be considered to
compute physiological features in order to classify drivers’ MWL
in conditionally automated driving.
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