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VB-GROUPOIDS AND REPRESENTATION THEORY OF LIE

GROUPOIDS

ALFONSO GRACIA-SAZ AND RAJAN AMIT MEHTA

Abstract. A VB-groupoid is a Lie groupoid equipped with a compatible lin-
ear structure. In this paper, we describe a correspondence, up to isomor-
phism, between VB-groupoids and 2-term representations up to homotopy
of Lie groupoids. Under this correspondence, the tangent bundle of a Lie
groupoid G corresponds to the “adjoint representation” of G. The value of
this point of view is that the tangent bundle is canonical, whereas the adjoint
representation is not.

We define a cochain complex that is canonically associated to any VB-
groupoid. The cohomology of this complex is isomorphic to the groupoid
cohomology with values in the corresponding representations up to homotopy.
When applied to the tangent bundle of a Lie groupoid, this construction pro-
duces a canonical complex that computes the cohomology with values in the
adjoint representation.

Finally, we give a classification of regular 2-term representations up to
homotopy. By considering the adjoint representation, we find a new cohomo-
logical invariant associated to regular Lie groupoids.

1. Introduction

Let G be a Lie group with a representation on a vector space V , and let G⋉ V
be the semidirect product. In addition to being a group, G⋉ V is a vector bundle
over G, and the multiplication map (G⋉V )× (G⋉V ) → G⋉V is linear. In other
words, the semidirect product is a group object in the category of vector bundles.

Conversely, let Γ → G be a group object in the category of (smooth) vector
bundles. That is, let Γ → G be a vector bundle equipped with a Lie group structure,
such that the multiplication map Γ×Γ → Γ is linear. Then G automatically inherits
a Lie group structure. Furthermore, using right-translation by zero-vectors, we can
trivialize Γ, allowing us to canonically identify it with a semidirect product G⋉Γe,
where Γe is the fiber over the identity element e ∈ G.

Thus there is a one-to-one correspondence between Lie group representations
and group objects in the category of vector bundles. In particular, the adjoint
representation of G on its Lie algebra g corresponds to the tangent bundle TG, and
the coadjoint representation corresponds to the cotangent bundle T ∗G.

The goal of this paper is to extend the above correspondence to the setting of
Lie groupoids. The situation here is complicated by the fact that Lie groupoids do
not in general possess well-defined adjoint representations. Rather, as was observed
by Evens, Lu, and Weinstein [6], there is a sense in which a Lie groupoid G ⇒ M
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possesses a natural “representation up to homotopy” on the 2-term complex A →
TM , where A is the Lie algebroid of G.

The notion of representation up to homotopy was refined by Arias Abad and
Crainic [1], who gave explicit formulas for the adjoint representation up to ho-
motopy. However, their construction relies on the choice of a certain Ehresmann
connection on G, so it is not canonical in the strictest sense, though it is canonical
up to isomorphism.

Our approach is to consider VB-groupoids as geometric models for representa-
tions up to homotopy. Essentially, a VB-groupoid is a Lie groupoid with a compat-
ible linear structure, making it a groupoid object in the category of vector bundles.
VB-groupoids were first introduced by Pradines [16] in relation to the theory of
symplectic groupoids [4, 8, 17] and have played an important role in the study of
double structures by Kirill Mackenzie and his collaborators [11, 12, 13, 15]. Given
a Lie groupoid G ⇒ M with Lie algebroid A, one can construct two naturally-
associated VB-groupoids: the tangent bundle TG⇒ TM and the cotangent bundle
T ∗G⇒ A∗. The latter is the standard example of a symplectic groupoid.

Given a Lie groupoid G ⇒ M with a representation up to homotopy on a 2-
term complex C → E of vector bundles over M , we may construct an associated
VB-groupoid which can be viewed as a semidirect product of G with C → E. On
the other hand, we will see that any VB-groupoid is noncanonically isomorphic
to a semidirect product. Although the resulting representation up to homotopy
depends on the choice, different choices lead to representations up to homotopy that
are isomorphic. We thus obtain a one-to-one correspondence, up to isomorphism,
between VB-groupoids and 2-term representations up to homotopy.

In particular, the tangent and cotangent bundles correspond to the adjoint and
coadjoint representations up to homotopy. This fact is particularly pleasing, since
it gives us canonical models for the adjoint and coadjoint representations up to
homotopy.

To any VB-groupoid, we can associate a cochain complex that is isomorphic to
the complex of groupoid cochains with values in the corresponding representation
up to homotopy. As an immediate application, we obtain a canonical model for the
cohomology of a Lie groupoid with values in its adjoint representation.

The perspective of VB-groupoids allows us to classify regular 2-term represen-
tations up to homotopy. Part of the classification involves a certain cohomology
class, which, in the case of the adjoint representation, becomes an invariant of the
Lie groupoid itself.

This paper is the companion of an earlier paper [7], where VB-algebroids were
studied in relation to representations up to homotopy of Lie algebroids. Many of
the results of this paper can be seen as global analogues of results in [7]. It is known
[12] that VB-groupoids are the global objects corresponding to VB-algebroids, so
the theory of VB-groupoids and VB-algebroids provide a natural framework for
understanding differentiation and integration of representations up to homotopy
(at least in the 2-term case). In the time since a preprint version of this paper was
first posted on the arXiv in 2010, this has in fact been done in [2, 3]. Particularly, in
[2] the perspective of VB-groupoids and VB-algebroids was used to fully characterize
the obstructions to integrability of 2-term representations up to homotopy.

Structure of the paper.
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• In §2, we recall Arias Abad and Crainic’s notion of representation up to
homotopy of a Lie groupoid [1].

• In §3, we recall the definition and basic facts about VB-groupoids, includ-
ing the notion of horizontal lift. In §3.3, we give formulas (depending on
the choice of a horizontal lift) for the representations up to homotopy aris-
ing from a VB-groupoid. The semidirect product construction appears in
Example 3.16.

• In §4, we briefly review the construction of the dual of a VB-groupoid.
• The heart of the paper is §5, where we construct a canonical cochain com-
plex associated to any VB-groupoid. A choice of horizontal lift allows us to
produce a representation up to homotopy. In Appendix A, we show that
the representations up to homotopy arising in this manner agree with the
formulas given in §3.3. In §5.3, we study how the representation up to
homotopy depends on the choice of horizontal lift.

• In §6, we prove (Corollary 6.2) that isomorphism classes of VB-groupoids
are in one-to-one correspondence with isomorphism classes of 2-term repre-
sentations up to homotopy. Then, in Theorem 6.11, we give a classification
of VB-groupoids (and hence 2-term representations up to homotopy) satis-
fying a regularity condition.

• The classification result of Theorem 6.11 involves a cohomological invari-
ant. This characteristic class is a “higher categorical” invariant, in the
sense that it contains information about the “homotopy,” rather than the
“representation.” In §7, we consider the geometric interpretation of this
invariant in the case of the VB-groupoid TG.

• In §8, we describe a different (but equivalent) approach to constructing
representations up to homotopy from VB-groupoids, via something we call
the fat category. This approach helps to clarify the relationship between
the idea originally outlined by Evens, Lu, and Weinstein [6] and the Arias
Abad-Crainic definition of representation up to homotopy.

Acknowledgements. We would like to thank the Department of Mathematics at
Washington University in Saint Louis, as well as Eckhard Meinrenken, for funding
visits during which this work was developed. We thank Jim Stasheff for providing
useful comments on a draft of this paper. We thank Kirill Mackenzie, Ping Xu,
and Mathieu Stiénon for interesting discussions related to this work. We also thank
the anonymous referees for their careful reading and numerous suggestions that
improved the clarity of the paper.

2. Groupoid representations and representations up to homotopy

In this section, we review Lie groupoid representations from the cohomological
point of view, from which the generalization to representations up to homotopy
is straightforward. The material on representations and cohomology is standard
and can be found in, e.g., [14]. The material on representations up to homotopy
essentially follows that of [1].

The main concern of this paper is 2-term representations up to homotopy, and
in §§2.7–2.8 we specialize to this case.

We remark that, although we will be working in the smooth category, the general
theory of representations up to homotopy and VB-groupoids goes through in the
topological category. The key points where smoothness is used are to define the
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“adjoint representation” via the tangent bundle and to prove existence of decom-
positions in §3.2.

2.1. Lie groupoid representations. Let E →M be a vector bundle. The frame
groupoid G(E) is the groupoid whose set of objects is M and whose morphisms are

isomorphisms Ex
∼
→ Ey for x, y ∈ M . The frame groupoid is a Lie groupoid; we

refer the reader to [14] for details.
Let G⇒M be a Lie groupoid. A representation of G is a vector bundle E →M

and a Lie groupoid morphism ∆ : G→ G(E).

Example 2.1. When M is a point, then G is a Lie group, E is a vector space, and
G(E) is the general linear group on E. Thus we recover the usual notion of Lie
group representation.

Example 2.2. When G = M ×M is a pair groupoid, a representation of G on E
is equivalent to a trivialization of E. When G is the fundamental groupoid of a
manifold M , then a representation of G on E is equivalent to a flat connection on
E. These examples demonstrate that the notion of Lie groupoid representation is
too restrictive. For example, if E → M is nontrivializable, then there do not exist
any representations at all of the pair groupoid M ×M on E.

2.2. Lie groupoid cohomology. In order to arrive at a natural definition of
representation up to homotopy, we will need to restate the definition of Lie groupoid
representation in cohomological terms. We first recall the notion of Lie groupoid
cohomology.

Let G ⇒ M be a Lie groupoid with source and target maps s, t : G → M .
Let G(0) := M , and for p > 0 let G(p) be the manifold consisting of composable
p-tuplets of elements of G. In other words,

G(p) := G s×t · · · s×t G = {(g1, . . . , gp) | s(gi) = t(gi+1)}.

The space of (R-valued) smooth groupoid p-cochains is Cp(G) := C∞(G(p)).
There is a coboundary operator δ : Cp(G) → Cp+1(G) on the space of cochains,
which for p = 0 is given by

(δf)(g) = f(s(g))− f(t(g))

for f ∈ C0(G) = C∞(M) and g ∈ G, and for p > 0 given by

(δf)(g0, . . . , gp) =f(g1, . . . , gp) +

p∑

i=1

(−1)if(g0, . . . , gi−1gi, . . . , gp)

+ (−1)p+1f(g0, . . . , gp−1)

for f ∈ Cp(G) and (g0, . . . , gp) ∈ G(p+1). The equation δ2 = 0 is a consequence of
the groupoid axioms. The cohomology of the complex (C•(G), δ) is known as the
smooth groupoid cohomology of G.

There is a product Cp(G)× Cq(G) → Cp+q(G), (f1, f2) 7→ f1 ⋆ f2, given by

(f1 ⋆ f2)(g1, . . . , gp+q) = f1(g1, . . . , gp)f2(gp+1, . . . , gp+q)

for f1 ∈ Cp(G), f2 ∈ Cq(G), and p, q > 0. If p = 0, q > 0, then

(2.1) (f1 ⋆ f2)(g1, . . . , gq) = f1(t(g1))f2(g1, . . . , gq),

and if q = 0, p > 0, then

(2.2) (f1 ⋆ f2)(g1, . . . , gp) = f1(g1, . . . , gp)f2(s(gp)).
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If p = q = 0, then

(2.3) f1 ⋆ f2 = f1f2.

The coboundary operator δ is a graded derivation with respect to the product:

δ(f1 ⋆ f2) = (δf1) ⋆ f2 + (−1)|f1|f1 ⋆ (δf2).

A cochain f ∈ Cp(G), p > 0, is called normalized if f vanishes whenever at
least one of its arguments is a unit. By definition, every 0-cochain is considered to
be normalized. The space of normalized cochains is closed under the coboundary
operator δ and under the product ⋆.

2.3. Lie groupoid cohomology with values in a representation. Let G⇒M
be a Lie groupoid, and let E → M be a vector bundle. The space of smooth
groupoid p-cochains with values in E is Cp(G;E) := Γ((πp

0)
∗E), where πp

0 : G(p) →
M is the identity for p = 0 and is given by πp

0(g1, . . . , gp) = t(g1) for p > 0. More
concretely, if ω ∈ Cp(G;E), then ω(g1, . . . , gp) is an element of Et(g1).

There is a right C(G)-module structure on C(G;E), given by

(ω ⋆ f)(g1, . . . , gp+q) = ω(g1, . . . , gp)f(gp+1, . . . , gp+q)

for ω ∈ Cp(G;E), f ∈ Cq(G), and p, q > 0. When p or q is zero, the formula for
ω ⋆ f is similar to equations (2.1)–(2.3).

The space Cp(G;E), as the space of sections of a pullback bundle, can be iden-
tified with Γ(E) ⊗C∞(M) C

p(G), where the tensor structure is given by εφ ⊗ f =
ε⊗ (φ ⋆ f) for ε ∈ Γ(E), φ ∈ C∞(M), and f ∈ Cp(G). In particular, we see that
C(G;E) is generated as a right C(G)-module by Γ(E) = C0(G;E).

Given a representation ∆ of G on E, we can construct a degree 1 operator D on
C(G;E), whose action on 0-forms is given by

(Dε)(g) = ∆gεs(g) − εt(g)

for ε ∈ Γ(E) and g ∈ G, and for p > 0 given by

(Dω)(g0, . . . , gp) =∆g0ω(g1, . . . , gp) +

p∑

i=1

(−1)iω(g0, . . . , gi−1gi, . . . , gp)

+ (−1)p+1ω(g0, . . . , gp−1)

(2.4)

for ω ∈ Cp(G;E). The operator D satisfies the equation D2 = 0 and the following
graded Leibniz identity:

(2.5) D(ω ⋆ f) = (Dω) ⋆ f + (−1)|ω|ω ⋆ (δf).

The cohomology of the complex (C(G;E), D) is known as the smooth groupoid
cohomology of G with values in E. In the case where E is the trivial real line
bundle overM with the trivial representation, then we recover the R-valued smooth
groupoid cohomology.

We define normalized E-valued cochains in the same way as with R-valued
cochains. The space of normalized cochains is closed under the action of D, and
ω ⋆ f is normalized if ω ∈ C(G;E) and f ∈ C(G) are both normalized.
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2.4. Lie groupoid representations revisited. In this section, we will proceed
in the direction opposite to that of §2.3; that is, we will begin with an operator D
and attempt to construct a representation ∆.

Let G ⇒ M be a Lie groupoid, let E → M be a vector bundle, and let D be
a degree 1 operator on C(G;E) satisfying (2.5). For any g ∈ G, we may obtain a
linear map ∆g : Es(g) → Et(g), given by

(2.6) ∆gεs(g) = (Dε)(g) + εt(g)

for any ε ∈ Γ(E). Using (2.5), one can verify that

D(εf)(g) + (εf)t(g) = (D(ε)(g) + εt(g))fs(g)

for any f ∈ C∞(M). This implies that (2.6) well-defines ∆g.
We may think of ∆ : g 7→ ∆g as a map from G to the frame category C(E)

whose set of objects is M and whose morphisms are (not necessarily invertible)
linear maps Ex → Ey for x, y ∈ M . The frame category is a Lie category1 that
contains the frame groupoid as the subcategory consisting of all invertible elements.
In fact, the simplest way to prove that the frame groupoid is smooth is to recognize
it as an open subset of the frame category. The map ∆ : G → C(E) is smooth
since D is continuous, but in general ∆ will not respect composition. This point
motivates the following notion of quasi-action [1].

Definition 2.3. A quasi-action of G on E is a smooth map ∆ : G → C(E) that
respects source and target maps.

Definition 2.4. A quasi-action ∆ is called

(1) unital if ∆1x = id for all x ∈M ,
(2) flat if ∆g1∆g2 = ∆g1g2 for all (g1, g2) ∈ G(2).

Clearly, a flat and unital quasi-action is the same thing as a representation. In
particular, if both conditions in Definition 2.4 hold, then the image of ∆ is contained
in the frame groupoid of E.

Example 2.5. To illustrate the notion of quasi-action, we give an example where
G = S2 × S2 ⇒ S2 is the pair groupoid and E = TS2. Given (y, x) ∈ S2 × S2,
we define a map ∆(y,x) : TxS

2 → TyS
2 as follows. Equip S2 with the standard

spherical metric, where the distance between two antipodal points is π. If x and y
are antipodal, then ∆(y,x) is the zero map. Otherwise, ∆(y,x) is given by parallel
transport along the shortest geodesic from x to y, together with scalar multiplication
by a factor of (1 + cos(d(x, y)))/2, where d is the distance function. The scaling
factor ensures that the map ∆ : (y, x) 7→ ∆(y,x) is smooth at antipodal pairs. The
quasi-action ∆ is unital but not flat.

We use this example to emphasize some points about quasi-actions:

• The definition of quasi-action allows for the possibility of ∆g being degen-
erate, as is the case for antipodal pairs in the above example. This point is
crucial, since if we required every ∆g to be nondegenerate (equivalently, if
we required the image of ∆ to be in the frame groupoid), then there would
be no examples in the case where G = S2 × S2 and E = TS2, since such
an example would imply the existence of a trivialization of TS2.

1A Lie category is defined in the same way as a Lie groupoid, except without an inverse map.



VB-GROUPOIDS AND REPRESENTATION THEORY OF LIE GROUPOIDS 7

• This example illustrates the general fact (which we will see in Example 3.15)
that unital quasi-actions always exist for arbitrary G and E, although they
are not canonical. For example, we can obtain other unital quasi-actions
of S2 × S2 on TS2 by replacing the above scaling factor by any smooth
function f(y, x) on S2 × S2 that equals 1 when y = x and 0 when x and
y are antipodal, such as a bump function supported on a neighborhood of
the diagonal submanifold {(x, x)}.

So far, we have seen that, given a degree 1 operator D on C(G;E) satisfying
(2.5), we can obtain a quasi-action ∆ defined by (2.6). Using (2.5), one can then
show that D must satisfy (2.4) for p > 0. The following lemma, which we leave as
an exercise (also see [1]), expresses in terms of D the conditions for ∆ to be unital
and flat.

Lemma 2.6. Let D be a degree 1 operator on C(G;E) satisfying (2.5), and let ∆
be the quasi-action given by (2.6). Then

(1) ∆ is flat if and only if D2 = 0.
(2) ∆ is unital if and only if D preserves the space of normalized cochains.

The following theorem ties together the results from this section and §2.3.

Theorem 2.7. There is a one-to-one correspondence between representations of G
on E and degree 1 operators D on C(G;E) satisfying (2.5), preserving the space of
normalized cochains, and such that D2 = 0.

2.5. Representations up to homotopy. Let E =
⊕
Ei be a graded vector bun-

dle over M . We consider C(G; E) to be a graded right C(G)-module with respect
to the total grading:

C(G; E)p =
⊕

q−r=p

Cq(G;Er).

From the point of view of Theorem 2.7, the following is a natural extension of
the notion of representation to the graded setting.

Definition 2.8 ([1]). A representation up to homotopy of G on a graded vector
bundle E is a continuous degree 1 operator D on C(G; E) satisfying (2.5), preserving
the space of normalized cochains, and such that D2 = 0.

We stress that this definition of representation up to homotopy agrees with that
of unital representation up to homotopy in [1].

2.6. Transformation cochains. Let G⇒M be a Lie groupoid, and let E and C
be vector bundles over M . We define the space of transformation p-cochains from
E to C as Cp(G;E → C) := Γ

(
Hom

(
(πp

p)
∗E, (πp

0)
∗C

))
, where πp

p : G(p) → M
is the identity for p = 0 and is given by πp

p(g1, . . . , gp) = s(gp) for p > 0. More

concretely, if ω ∈ Cp(G;E → C) and (g1, . . . , gp) ∈ G(p), then ω(g1,...,gp) is a linear
map from Es(gp) to Ct(g1).

We note that C0(G;E → C) = Hom(E,C); however, for p > 0, Cp(G;E → C)
is different from the space of p-cochains with values in Hom(E,C), except when M
is a point.

Let ω ∈ Cp(G;E → C), and let ε ∈ Γ(E) = C0(G;E). Define a p-cochain
ω̂(ε) ∈ Cp(G;C) by

(2.7) ω̂(ε)(g1, . . . , gp) = ω(g1,...,gp)(εs(gp)) ∈ Ct(g1).
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The map ε 7→ ω̂(ε) can be extended to a C(G)-module morphism ω̂ : C•(G;E) →
C•+p(G;C). We leave the following proposition as an exercise (see [1, Lemma
3.10]).

Proposition 2.9. The map ω 7→ ω̂ is an isomorphism from Cp(G;E → C) to the
space of C(G)-module morphisms from C•(G;E) to C•+p(G;C).

Suppose that G is equipped with quasi-actions ∆E and ∆C on E and C, respec-
tively. Then we may define an operator D on C(G;E → C) by

(Dω)(g0, . . . , gp) =∆C
g0

◦ ω(g1, . . . , gp) +

p∑

i=1

(−1)iω(g0, . . . , gi−1gi, . . . , gp)

+ (−1)p+1ω(g0, . . . , gp−1) ◦∆
E
gp
.

(2.8)

Via the isomorphism of Proposition 2.9, this operator is equivalently given by

D̂ω = DC ◦ ω̂ + (−1)p+1ω̂ ◦DE ,

where DC and DE are the operators on C(G;C) and C(G;E), respectively, corre-
sponding to the two quasi-actions.

In the case where ∆E and ∆C are both representations, then the operator D in
(2.8) satisfies D2 = 0, and one can then define the cohomology H•(G;E → C).

2.7. Representations up to homotopy: 2-term case. In this paper, we will be
concerned primarily with representations up to homotopy on graded vector bundles
that are concentrated in degrees 0 and 1. In this case, we use the notation E =
E ⊕ C[1], where E is the degree 0 part and C is the degree 1 part. Then

C(G;E ⊕ C[1])p = Cp(G;E)⊕ Cp+1(G;C).

Any degree 1 operator D on C(G;E⊕C[1]) decomposes as the sum of the following
four homogeneous components:

∂̂ : C•(G;C) → C•(G;E),

DC : C•(G;C) → C•+1(G;C),

DE : C•(G;E) → C•+1(G;E),

Ω̂ : C•(G;E) → C•+2(G;C).

The Leibniz rule (2.5) for D is equivalent to the requirements that

(1) DC and DE satisfy (2.5), and

(2) ∂̂ and Ω̂ are right C(G)-module morphisms.

Requirement (1) implies that there are quasi-actions ∆C and ∆E on C and E,
respectively, given by the following graded versions of (2.6):

∆C
g α = −(DCα)(g) + αt(g)(2.9)

∆E
g ε = (DEε)(g) + εt(g)(2.10)

for α ∈ Γ(C) and ε ∈ Γ(E). The reason for the sign difference between (2.9) and
(2.10) is that the Leibniz rule now incorporates the vector bundle grading.

Requirement (2) above implies (via Proposition 2.9) that ∂̂ corresponds to a

linear map ∂ ∈ Hom(C,E) = C0(G;C → E), and that Ω̂ corresponds to a trans-
formation 2-cochain Ω ∈ C2(G;E → C).
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Next, we will express equation D2 = 0 and the property of preserving normalized
cochains in terms of ∆C , ∆E , ∂, and Ω.

The equation D2 = 0 decomposes into the following equations:

DE ∂̂ + ∂̂DC = 0,

(DC)2 + Ω̂∂̂ = 0,

(DE)2 + ∂̂Ω̂ = 0,

DCΩ̂ + Ω̂DE = 0.

These equations respectively translate into the following equations:

∆E
g1
∂ − ∂∆C

g1
= 0,(2.11)

∆C
g1
∆C

g2
−∆C

g1g2
+Ωg1,g2∂ = 0,(2.12)

∆E
g1
∆E

g2
−∆E

g1g2
+ ∂Ωg1,g2 = 0,(2.13)

∆C
g1
Ωg2,g3 − Ωg1g2,g3 +Ωg1,g2g3 − Ωg1,g2∆

E
g3

= 0(2.14)

for (g1, g2, g3) ∈ G(3). Equation (2.11) says that ∆g1 = (∆C
g1
,∆E

g1
) is a chain map

on the 2-term complex C
∂
→ E. Equations (2.12)–(2.13) say that Ωg1,g2 provides a

chain homotopy from ∆g1∆g2 to ∆g1g2 . Equation (2.14) is a Bianchi-type identity,
saying that DΩ = 0, where D is defined as in (2.8). In particular, in the case where
∆C and ∆E are genuine representations, then (2.14) can be interpreted as a cocycle
condition.

The total operator D preserves normalized cochains if and only if all of the
four components do. For ∂, the property is automatic. For the remaining three
components, we obtain the following conditions:

∆C and ∆E are unital,(2.15)

Ω is normalized.(2.16)

The following theorem summarizes the results from this section:

Theorem 2.10. There is a one-to-one correspondence between representations up
to homotopy of a Lie groupoid G⇒M on a 2-term graded vector bundle E⊕C[1] →
M and 4-tuples (∂,∆C ,∆E ,Ω), where

• ∂ : C → E is a linear map,
• ∆C and ∆E are unital quasi-actions of G on C and E, respectively, and
• Ω is a normalized element of C2(G;E → C),

satisfying (2.11)–(2.14).

2.8. Gauge transformations. Let E be a graded vector bundle over M . There
is a natural quotient map µ : C(G; E) → Γ(E) whose kernel is spanned by all
Cq(G;Er) where q > 0.

Definition 2.11. A gauge transformation of C(G; E) is a degree-preserving C(G)-
module automorphism T of C(G; E), preserving the space of normalized cochains,
such that µ◦T = µ. Under a gauge transformation, a representation up to homotopy
D transforms as D′ = T ◦ D ◦ T−1. In this case, we say that D and D′ are gauge-
equivalent.
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Gauge-equivalent representations up to homotopy are isomorphic in the sense
of [1], but the notion of gauge-equivalence is slightly more refined than that of
isomorphism. Specifically, the condition involving µ in Definition 2.11 serves the
purpose of restricting attention to isomorphisms that “cover” the identity map on
Γ(E).

In the case where E = E is concentrated in degree 0, a representation up to
homotopy is the same thing as a representation, and there are no nontrivial gauge
transformations.

Let G ⇒ M be a Lie groupoid, let E ⊕ C[1] be a 2-term graded vector bundle,
and consider a normalized transformation 1-cochain σ ∈ C1(G;E → C). The
associated operator σ̂ : C•(G;E) → C•+1(G;C) may be viewed as a degree 0
operator on C(G;E ⊕ C[1]). Clearly, σ̂2 = 0, so the map 1 + σ̂ is invertible with
inverse 1− σ̂. One can easily see that 1+ σ̂ is a gauge transformation. The converse
is also true:

Proposition 2.12. Every gauge transformation of C(G;E ⊕ C[1]) is of the form
1 + σ̂ for some normalized σ ∈ C1(G;E → C).

Proof. Let T : C(G;E ⊕C[1]) → C(G;E ⊕C[1]) be a gauge transformation. Since
T is a C(G)-module automorphism, it is completely determined by its action on
the 0-cochain spaces Γ(E) and Γ(C). Since T is degree-preserving, it sends Γ(C)
to Γ(C) and Γ(E) to Γ(E) ⊕ C1(G;C). The condition µ ◦ T = µ implies that the
action of T on Γ(C) is the identity, and that T (ε)−ε is in kerµ (and therefore must
be in C1(G;C)) for ε ∈ Γ(E). Hence, the map T − 1 is a C(G)-module morphism
taking C•(G;E) to C•+1(G;C) and can be identified via Proposition 2.9 with σ̂ for
some σ ∈ C1(G;E → C). Since T preserves the space of normalized cochains, so
does σ̂, implying that σ is normalized. �

We will study how 2-term representations up to homotopy transform under gauge
transformations in §5.3; in particular, see equations (5.8).

3. VB-groupoids

In this section, we review the various equivalent definitions of VB-groupoid, the
construction of the core of a VB-groupoid, and the notion of horizontal lift. Most
of the material in §§3.1-3.2 can be found elsewhere (for example, [14]), but we hope
that the reader will find our presentation valuable. In §3.3, we present the formulas
for the components of the representation up to homotopy arising from the choice
of a horizontal lift.

3.1. The definition of VB-groupoid. Consider a commutative diagram of Lie
groupoids and vector bundles as follows:

(3.1) Γ

��

//
// E

��

G //
// M

By this we mean that Γ ⇒ E is a Lie groupoid (with source, target, multiplication,
identity, and inverse maps s̃, t̃, m̃, 1̃, and ι̃), G⇒M is a Lie groupoid (with source,
target, multiplication, identity, and inverse maps s, t, m, 1, and ι), Γ → G is a
vector bundle (with projection map and zero section q̃ and 0̃), E → M is a vector
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bundle (with projection map and zero section q and 0) and such that qs̃ = sq̃ and
qt̃ = tq̃. For the rest of this subsection we will always start with this data.

Definition 3.1. A VB-groupoid is a commutative diagram of Lie groupoids and
vector bundles like (3.1) such that the following conditions hold:

(1) (s̃, s) is a morphism of vector bundles.
(2) (t̃, t) is a morphism of vector bundles.
(3) (q̃, q) is a morphism of Lie groupoids.
(4) Interchange law:

(γ1 + γ3)(γ2 + γ4) = γ1γ2 + γ3γ4

for any γj ∈ Γ for which the equation makes sense; specifically, for any

(γ1, γ2) ∈ Γ(2), (γ3, γ4) ∈ Γ(2) such that q̃(γ1) = q̃(γ3) and q̃(γ2) = q̃(γ4).

Example 3.2. Let G⇒ M be any Lie groupoid and take Γ = TG, E = TM . Then
(3.1) is a VB-groupoid where s̃ = Ts, t̃ = T t, m̃ = Tm, et cetera. This is the
tangent prolongation VB-groupoid which, as we will later see, plays the role of the
“adjoint representation” of G.

On the surface, our definition of VB-groupoid appears different from the usual
ones (e.g. [10, 14]). In what follows, we will show that the various definitions
are equivalent. More precisely, we will see that the conditions in Definition 3.1 are
equivalent to the requirement that Γ → G be a “Lie-groupoid object in the category
of vector bundles” or, equivalently, that Γ ⇒ E be a “vector-bundle object in the
category of Lie groupoids”.

First of all, we remark that the usual definition includes the following technical
condition. Consider the manifold E ×s G := s∗E = {(e, g) ∈ E ×G | q(e) = s(g)}
and the map

pR : Γ → E ×s G = s∗E

γ 7→ (s̃(γ), q̃(γ))
(3.2)

The technical condition is that pR is required to be a surjective submersion. How-
ever, Li-Bland and Ševera showed in [9, Appendix A] that this condition is unnec-
essary. Specifically, if Γ is a commutative diagram like (3.1) and Condition 1 in
Definition 3.1 is satisfied, then the map pR is automatically a surjective submersion.

Definition 3.3. A Lie-groupoid object in the category of vector bundles is a com-
mutative diagram of Lie groupoids and vector bundles like (3.1) such that

(1) (s̃, s) is a morphism of vector bundles.
(2) (t̃, t) is a morphism of vector bundles.
(3) Γ(2) → G(2) is a vector bundle with the natural structure.
(4) (m̃,m) is a morphism of vector bundles.

In Definition 3.3, Condition 3 is necessary to make sense of Condition 4. Each
fiber of Γ(2) → G(2) has a natural vector space structure thanks to Conditions 1
and 2, so only local trivializability needs to be checked for Condition 3. Note that
the conditions of Definition 3.3 imply that the identity (1̃, 1) and inverse (ι̃, ι) maps
are also morphisms of vector bundles.

Definition 3.4. A vector-bundle object in the category of Lie groupoids is a com-
mutative diagram of Lie groupoids and vector bundles like (3.1) such that
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(1) (q̃, q) is a morphism of Lie groupoids.
(2) Γ q̃×q̃ Γ ⇒ E q×q E is a Lie groupoid with the natural structure.
(3) The addition maps (+,+) are a morphism of Lie groupoids.

In Definition 3.4, Condition 2 is necessary to make sense of Condition 3. There
is a natural groupoid structure on Γ q̃×q̃ Γ ⇒ E q×q E thanks to Condition 1,
and all the maps involved are smooth, so we only need to check that the source
map is a submersion in order to satisfy Condition 2. Note that the conditions of
Definition 3.4 imply that the scalar multiplication maps and the zero sections are
also morphisms of Lie groupoids.

Definitions 3.1, 3.3, and 3.4 are equivalent per the next proposition.

Proposition 3.5. Consider a commutative diagram of Lie groupoids and vector
bundles like (3.1). Then the following are equivalent:

• Γ is a VB-groupoid,
• Γ is a “Lie-groupoid object in the category of vector bundles”,
• Γ is a “vector-bundle object in the category of Lie groupoids”.

Proof. In Lemma 3.13 below we will show that Condition 3 in Definition 3.3 and
Condition 2 in Definition 3.4 follow from the property of pR being a submersion,
rendering them completely unnecessary.

Next, we notice that Conditions 3 and 4 in Definition 3.1 are equivalent to
Condition 4 in Definition 3.3, and that Conditions 1, 2, and 4 in Definition 3.1 are
equivalent to Condition 3 in Definition 3.4. This is shown by writing down each
condition as a commutative diagram. This completes the proof. �

Finally, we note the following identities which are satisfied by VB-groupoids:

0̃g1 0̃g2 = 0̃g1g2 , 0̃1x = 1̃0x ,

for all (g1, g2) ∈ G(2) and all x ∈M . We will use these identities without reference
throughout the remainder of the paper.

3.2. Cores and decompositions of a VB-groupoid.

3.2.1. The right-core. Let Γ be a VB-groupoid as in (3.1). Notice that s∗E =
E ×s G → G is a vector bundle, and that pR, as defined in (3.2), is a surjective
morphism of vector bundles covering the identity map on G.

Definition 3.6. The kernel of pR, which we will denote V R → G, is the right-
vertical subbundle of Γ → G. Equivalently, for every g ∈ G, the fiber V R

g is the

kernel of s̃g : Γg → Es(g). Elements in V R are called right-vertical elements of Γ.

Definition 3.7. The right-core of the VB-groupoid (3.1) is CR := 1∗(V R). In
other words, CR is the restriction of V R to the units of G.

For any (g1, g2) ∈ G(2), right-multiplication by 0̃g2 produces a linear isomorphism

from V R
g1

to V R
g1g2

. In particular, for any g ∈ G, right-multiplication by 0̃g produces

a linear isomorphism from CR
t(g) to V R

g . Hence, we have a natural isomorphism of

vector bundles over G between V R and t∗(CR) = CR ×t G given by:

jR : t∗(CR) = CR ×t G −→ V R ⊆ Γ

(c, g) 7→ c · 0̃g
(3.3)



VB-GROUPOIDS AND REPRESENTATION THEORY OF LIE GROUPOIDS 13

Now consider the following short exact sequence of vector bundles:

(3.4) t∗(CR)
jR

//

��

Γ
pR

//

��

s∗E

��

G
id

// G
id

// G

,

where pR and jR are defined by Equations (3.2) and (3.3) respectively.
We recall that a section of (3.4) is a morphism of vector bundles h : s∗E → Γ

such that pR ◦ h = id. Such a section induces a splitting, that is, an isomorphism
of vector bundles s∗E ⊕ t∗(CR) ∼= Γ, given by

CR
t(g) ⊕ Es(g)

∼
→ Γg,

(c, e) 7→ c · 0̃g + hg(e),
(3.5)

where hg(e) := h(e, g). Given a choice of a section, the image of hg is a complement
to V R

g ⊆ Γg. We will refer to vectors in the image of hg as right-horizontal.
Of course, the right-horizontal subspaces are noncanonical; however, when g is

a unit, there is a natural splitting

(3.6) Γ1x = CR
x ⊕ 1̃(Ex) for all x ∈M.

We will restrict our attention to splittings whose restriction to the units coincides
with (3.6).

Definition 3.8. A right-horizontal lift of the VB-groupoid (3.1) is a section h :
s∗E → Γ of (3.4) such that

(3.7) h(e, 1x) = 1̃e for all x ∈M and e ∈ Ex.

A right-decomposition of the VB-groupoid (3.1) is a splitting of (3.4) which coincides
with the splitting (3.6) at the units of G.

Clearly, right-horizontal lifts and right-decompositions are equivalent to each
other. Since a right-decomposition is a splitting of a short exact sequence of vec-
tor bundles which agrees with a given splitting on an embedded submanifold, the
existence of right-decompositions (and hence right-horizontal lifts) follows from a
standard partition-of-unity argument.

Example 3.9. For the tangent prolongation VB-groupoid TG, the right-core consists
of vectors at units of G that are tangent to the s-fibers. In other words, the right-
core is the Lie algebroid A of G. The short exact sequence (3.4) is then

(3.8) t∗(A) → TG→ s∗(TM),

where the first map is given by right-translation and the second map is push-forward
by s. A right-horizontal lift of TG is the same thing as an Ehresmann connection
on G, in the sense of [1].

3.2.2. The left-core. By exchanging the roles of source and target, one can similarly
define a left-core. All the concepts in §3.2.1 have analogues in this setting. In
particular, the analogue of (3.4) is the short exact sequence

(3.9) s∗(CL)
jL

// Γ
pL

// t∗E ,
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Example 3.10. For the tangent prolongation VB-groupoid TG, the left-core consists
of vectors at units of G that are tangent to the t-fibers, so the left-core can also
be identified with the Lie algebroid of G. The left-core and right-core for TG
correspond to the two models for the Lie algebroid of G, defined via left- and
right-invariant vector fields, respectively.

3.2.3. Two cores, un cœur. There is a canonical isomorphism between the left- and
right-cores of a VB-groupoid. This fact allows us to see CL and CR as simply being
two different models for a single natural vector bundle C.

Proposition 3.11. The involution

F : γ ∈ Γ 7→ −γ−1 ∈ Γ

exchanges the right-core CR and the left-core CL.

We will abuse notation and use F to refer to the restriction of F to either CL

or CR. Explicitly, the restrictions are given by

(3.10) F (c) = −c−1 = c− 1̃t̃(c)

for c ∈ CR and F (c) = c− 1̃s̃(c) for c ∈ CL. The map F can be used to transform
expressions involving one core into those involving the other.

Example 3.12. Consider the tangent prolongation groupoid TG in the case where
M is a point (so that G is a Lie group). In this case, the left-core and the right-core
are both equal to the tangent space at the identity of G, and the isomorphism F is
the identity map.

There is a natural correspondence between left- and right-horizontal lifts. Ex-
plicitly, let h : E ×t G → Γ be a section of (3.4). We can associate a section
h′ : E ×s G→ Γ of (3.9) by

h′(e, g) =
(
h(e, g−1)

)−1

In the remainder of the paper we will, whenever possible, remain model-agnostic
and simply refer to the core C. However, when writing specific formulas it will
frequently be necessary to choose a model. Unless otherwise specified, we will in
these situations take C to mean CR.

3.2.4. Proof of technical conditions. We shall now prove the following lemma, which
completes the proof of Proposition 3.5.

Lemma 3.13. Every VB-groupoid satisfies Condition 3 in Definition 3.3 and Con-
dition 2 in Definition 3.4.

Proof. First, we choose a decomposition, so that we have isomorphisms Γ ∼= s∗(CL)⊕
t∗E and Γ ∼= t∗(CR)⊕ s∗E. These isomorphisms allow us to decompose Γ(2) as

Γ(2) ∼= (π2
0)

∗(CR)⊕G(2) (π2
1)

∗E ⊕G(2) (π2
2)

∗(CL),

where π2
0 , π

2
1 , π

2
2 : G(2) →M are the three vertex maps given by π2

0(g1, g2) = t(g1),
π2
1(g1, g2) = s(g1) = t(g2), and π

2
2(g1, g2) = s(g2). This shows that Γ(2) → G(2) is

a vector bundle, which is Condition 3 in Definition 3.3.
Next, we observe that Condition 2 in Definition 3.4 reduces to checking that the

source map of the groupoid Γ q̃×q̃ Γ ⇒ E q×q E is a submersion. This source map
can be written as the following composition:
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Γ q̃×q̃ Γ −→ E q×s G id×q̃ Γ
∼
−→ E q×qs̃ Γ −→ E q×q E

(γ1, γ2) 7→ (s̃(γ1), q̃(γ1), γ2) 7→ (s̃(γ1), γ2) 7→ (s̃(γ1), s̃(γ2))

The first map in this composition is the fibered product of pR and the identity,
the second map is an isomorphism, the third map is the fibered product of the
identity and q̃. Hence they are all submersions, and so is their composition. �

3.3. How to obtain a representation up to homotopy from a VB-groupoid.
Let Γ be a VB-groupoid as in (3.1). In this section, we give formulas and some geo-
metric explanation for the components ∂,∆C ,∆E ,Ω that correspond (via Theorem
2.10) to a representation up to homotopy of G on the 2-term graded vector bundle
E ⊕ C[1].

Although it is possible to check conditions (2.11)–(2.16) directly (see Example
3.16), we will not do so. Instead, we will later see in §5 that there is a canonically
defined complex that, given a horizontal lift, can be identified with C(G;E⊕C[1]).
In Appendix A, we show that the formulas for ∂, ∆C , ∆E , and Ω can be derived
by transferring the differential from the canonical complex to C(G;E ⊕ C[1]) and
decomposing into homogeneous components. Conditions (2.11)–(2.16) are then
immediate consequences.

3.3.1. The core-anchor. The core-anchor is a vector bundle morphism ∂ : C → E,
given by projection by t̃:

(3.11) ∂c = t̃(c)

for c ∈ CR. In the case Γ = TG, the core is the Lie algebroid A of G, and
∂ : A→ TM coincides with the anchor map.

3.3.2. The core quasi-action. The core quasi-action ∆C is given by

(3.12) ∆C
g c = hg(t̃(c)) · c · 0̃g−1

for c ∈ CR
s(g). This may be interpreted as a conjugation action of g on c, in the

sense that hg(t̃(c)) is the unique horizontal element of Γg by which c can be left-

multiplied, and 0̃g−1 is the unique horizontal element of Γg−1 by which c can be

right-multiplied. In particular, if c is in ker ∂, then ∆C
g c = 0̃g · c · 0̃g−1 . It is clear

from this formula that the induced representation on ker ∂ is canonical.
In the case Γ = TG, the right-core CR corresponds to the “right-invariant vector

field” model of the Lie algebroid A of G. In this model, an element a ∈ As(g) is
a vector in T1s(g)G that is tangent to the s-fiber. Right-translation is well-defined
for such vectors, but left-translation is not well-defined unless a ∈ ker ρ. However,
when we have chosen a “horizontal” subspace of TgG that is complementary to the
s-fiber, then left-translation is possible, giving us a quasi-action of G on A.

3.3.3. The side quasi-action. The side quasi-action ∆E is given by

(3.13) ∆E
g e = t̃(hg(e))

for e ∈ Es(g). Geometrically, (3.13) simply says that e is horizontally lifted to Γg

and then projected back to E via t̃. If h′ is another horizontal lift, then h′g(e) =

hg(e)+ c · 0̃g for some c ∈ CR
t(g). Then t̃(h

′
g(e)) = t̃(hg(e))+ t̃(c) = ∆E

g e+∂c. Thus,

although ∆E depends on the choice of h, the induced representation on coker∂ is
canonical.
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In the case Γ = TG, we have E = TM , where the action of g ∈ G on a vector
v ∈ Ts(g)M is given by horizontally lifting v to a vector in TgG and then projecting
by T t.

3.3.4. The transformation cochain. The 2-cochain Ω measures the failure of the
horizontal lift h to be multiplicative. The precise formula is

Ωg1,g2e =
(
hg1g2(e)− hg1(t̃(hg2(e))) · hg2(e)

)
· 0̃(g1g2)−1

=
(
hg1g2(e)− hg1(∆

E
g2
e) · hg2(e)

)
· 0̃(g1g2)−1

(3.14)

for (g1, g2) ∈ G(2) and e ∈ Es(g2). We will say more about the geometric meaning
of Ω in the case Γ = TG in §7.

Remark 3.14. The reader may verify that, in the case Γ = TG, the formulas for
∂, ∆C , ∆E , and Ω agree with the components of the adjoint representation up to
homotopy as defined in [1].

3.4. More examples of VB-groupoids. An important example of VB-groupoid
is the tangent prolongation TG, which has already been mentioned many times. In
this section, we describe more examples. In particular, we describe the semidirect
product of G with a 2-term representation up to homotopy.

Example 3.15. Let G⇒ M be a Lie groupoid and let E → M be a vector bundle.
Then, as a vector bundle, let Γ → G be defined as Γ := t∗E ⊕ s∗E; that is

Γ =
{
(e1, g, e2) | e1 ∈ Et(g), e2 ∈ Es(g)

}
.

Then Γ is the total space for a VB-groupoid, with source, target, and multiplication
maps given by

s̃(e1, g, e2) = e2,

t̃(e1, g, e2) = e1,

(e1, g1, e2) · (e2, g2, e3) = (e1, g1g2, e3).

In this case, C = E and ∂ is the identity. There is a one-to-one correspondence
between horizontal lifts h and unital quasi-actions ∆ on E given by

hg(e) = (∆g(e), g, e).

Given a horizontal lift, the resulting representation up to homotopy has side and
core quasi-actions both equal to ∆, with Ω being the “curvature” of ∆, given by

Ωg1,g2e = ∆g1g2e−∆g1∆g2e.

For the purposes of representation theory, we argue that the VB-groupoid t∗E⊕
s∗E plays the role of the “trivial” representation of G on E, since it contains no
additional information beyond the Lie groupoid G ⇒ M and the vector bundle
E →M .

Example 3.16 (Semidirect product). Let G⇒M be a Lie groupoid, and let D be a
representation up to homotopy of G on E⊕C[1]. Let (∂,∆C ,∆E ,Ω) be the 4-tuple
corresponding to D via Theorem 2.10.

Let

Γ = t∗C ⊕ s∗E = {(c, g, e) | c ∈ Ct(g), e ∈ Es(g)}.
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We endow Γ with a Lie groupoid structure over E, defined as follows. The source
and target maps s̃, t̃ : Γ → E are given by

s̃(c, g, e) = e,(3.15)

t̃(c, g, e) = ∂c+∆E
g e.(3.16)

It is clear that s̃ is a submersion. Multiplication for compatible pairs is given by

(3.17) (c1, g1, e1) · (c2, g2, e2) =
(
c1 +∆C

g1
c2 − Ωg1,g2e2, g1g2, e2

)
.

For e ∈ Ex, the identity over e is 1̃e = (0, 1x, e). Inverses are given by

(c, g, e)−1 =
(
−∆C

g−1c+Ωg−1,ge, g
−1, ∂c+∆E

g e
)
.

The maps s̃, t̃, and m̃ are clearly linear, and the groupoid axioms can be verified
by direct computation. We point out the following:

• The condition t̃(γ1 · γ2) = t̃(γ1) is equivalent to (2.11) and (2.13).
• Associativity of the product is equivalent to (2.12) and (2.14).
• Equations (2.15) and (2.16) are equivalent to the fact that the identity map
1̃ we defined is indeed an identity.

The existence of horizontal lifts means that any VB-groupoid can be identified
with a semidirect product, albeit noncanonically. Using this, one could give a
direct proof of the fact that the structures defined in 3.3 satisfy the axioms of a
representation up to homotopy.

4. Dual of a VB-groupoid

Consider a VB-groupoid Γ like in (3.1), with core C, and let Γ∗ → G be the dual
vector bundle to Γ → G. Then [14, 16] there is an associated dual VB-groupoid

(4.1) Γ∗

��

//
// C∗

��

G //
// M

In the case Γ = TG, the dual VB-groupoid is the cotangent prolongation T ∗G⇒ A∗.
The dual construction plays a significant role in the definition of the canonical

VB-groupoid complex in §5, and we will briefly recall the formulas for the structure
maps for later use. We refer the reader to [14] for details and proofs.

The source and target š, ť : Γ∗ ⇒ C∗ are defined as follows. Let ξ ∈ Γ∗
g. Then

š(ξ) ∈ C∗
s(g) and ť(ξ) ∈ C∗

t(g) are given by

〈š(ξ) | c1〉 = −〈ξ | 0̃g · c
−1
1 〉,(4.2)

〈ť(ξ) | c2〉 = 〈ξ | c2 · 0̃g〉(4.3)

for all c1 ∈ Cs(g) and c2 ∈ Ct(g). Here and in the following, 〈 | 〉 denotes the pairing
of a vector space and its dual.

The formulas (4.3)–(4.2) can be derived by requiring that the short exact se-
quences

s∗(E∗) // Γ∗ // t∗(C∗) ,

t∗(E∗) // Γ∗ // s∗(C∗) ,
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are dual to (3.4) and (3.9), respectively. In particular, we note that, for any g ∈ G,
ker ť ⊆ Γ∗

g is the annihilator of ker s̃ ⊆ Γg, and similarly with s and t reversed.

Let (ξ1, ξ2) ∈ (Γ∗)(2), where ξi ∈ Γ∗
gi
. Under the assumption that š(ξ1) = ť(ξ2),

the product ξ1 · ξ2 ∈ Γ∗
g1g2

is given by the formula

(4.4) 〈ξ1 · ξ2 | γ1 · γ2〉 = 〈ξ1 | γ1〉+ 〈ξ2 | γ2〉

for γi ∈ Γgi . The formula (4.4) can be interpreted as saying that the graph of
multiplication in Γ∗ is, up to sign, the annihilator of the graph of multiplication in
Γ.

5. VB-groupoids and representations up to homotopy

In this section, we introduce the canonical VB-groupoid complex, and we show
that a choice of horizontal lift induces a decomposition of the complex into a 2-term
representation up to homotopy. Different choices of horizontal lift lead to gauge-
equivalent representations up to homotopy. In this sense, we can think of 2-term
representations up to homotopy as simply being manifestations of the VB-groupoid
complex.

5.1. VB-groupoid cohomology. Consider a VB-groupoid Γ as in (3.1) with dual
VB-groupoid Γ∗. Let

(
C•(Γ∗), δ̌

)
be the complex of smooth groupoid cochains asso-

ciated to the Lie groupoid Γ∗ ⇒ C∗. There is a natural subcomplex Clin(Γ
∗), whose

p-cochains are functions of (Γ∗)(p) that are linear over G(p). We call
(
C•

lin(Γ
∗), δ̌

)

the complex of linear cochains for the dual VB-groupoid Γ∗.

Definition 5.1. A linear p-cochain ϕ ∈ Cp
lin(Γ

∗) is called left-projectable if

(1) ϕ(0̌g, ξ1, . . . , ξp−1) = 0, and
(2) ϕ(0̌g · ξ1, . . . , ξp) = ϕ(ξ1, . . . , ξp),

for all (ξ1, . . . , ξp) ∈ (Γ∗)(p) and g ∈ G such that ť(ξ1) = 0s(g).

The first condition in Definition 5.1 implies that ϕ(ξ1, . . . , ξp) only depends on ξ1
and q̌(ξi) for 2 ≤ i ≤ p. The second condition is a left-invariance condition for the
dependence on ξ1. When p = 0, both conditions are vacuous, so the space of left-
projectable 0-cochains is C0

lin(Γ
∗) = Γ(C). The space of left-projectable 1-cochains

consists of sections X of Γ that project via s̃ to a section of E (see Proposition 5.5
below).

It follows directly from the definition of the coboundary operator δ̌ that the left-
projectable cochains form a subcomplex of Clin(Γ

∗). This fact allows us to make
the following definition.

Definition 5.2. The VB-groupoid complex
(
C•

VB(Γ), δ̌
)
of Γ is the subcomplex

of left-projectable cochains in Clin(Γ∗). The VB-groupoid cohomology of Γ is the
cohomology of the VB-groupoid complex.

In §5.2, we will see that a choice of decomposition allows us to identify CVB(Γ)
with C(G;E ⊕ C[1]), and that under this identification the differential δ̌ defines a
representation up to homotopy of G on E ⊕ C[1]. For now, we make the following
observation, which says that CVB(Γ), like C(G;E ⊕ C[1]), is a right C(G)-module
for which the coboundary operator satisfies the graded Leibiz rule.

Lemma 5.3. Let ϕ ∈ Cp
lin(Γ

∗) be left-projectable, and let f ∈ Cq(G) be viewed as
a fiberwise-constant element of Cq(Γ∗). Then
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(1) ϕ ⋆ f is linear and left-projectable, and
(2) δ̌(ϕ ⋆ f) = (δ̌ϕ) ⋆ f + (−1)pϕ ⋆ (δf).

5.2. VB-groupoid cohomology and decompositions. Let Γ be a VB-groupoid
as in (3.1), and let ϕ ∈ Cp

VB(Γ) be a VB-groupoid cochain. We define an associated

map ϕ̂ : G(p) → Γ, where ϕ̂(g1,...,gp) ∈ Γg1 , by the equation

(5.1) 〈ξ1 | ϕ̂(g1,...,gp)〉 = ϕ(ξ1, ξ2, . . . , ξp)

for any (ξ2, . . . , ξp) ∈ (Γ∗)(p−1) where q̌(ξi) = gi. Condition (1) of Definition 5.1
implies that ϕ̂ is well-defined and that ϕ is completely determined by ϕ̂. The
following lemma examines the implications of Condition (2).

Lemma 5.4. For ϕ ∈ Cp
VB(Γ), let ϕ̂ be defined as above. Then s̃(ϕ̂(g1,g2,...,gp)) =

s̃(ϕ̂(1t(g2),g2,...,gp)) for all (g1, . . . , gp) ∈ G(p).

Proof. Expressed in terms of ϕ̂, Condition (2) in Definition 5.1 says

(5.2) 〈0̌g0 · ξ | ϕ̂(g0g1,g2,...,gp)〉 = 〈ξ | ϕ̂(g1,g2,...,gp)〉

for all (g0, . . . , gp) ∈ G(p+1) and ξ ∈ Γ∗
g1

such that ť(ξ) = 0t(g1). Pick any γ ∈ Γg0

such that t̃(γ) = t̃(ϕ̂(g0g1,g2,...,gp)). Then, using (4.4) and the fact that 〈0̌g0 | γ〉 = 0,

we can rewrite the left side of (5.2) as 〈0̌g0 · ξ | γ · γ−1 · ϕ̂(g0g1,g2,...,gp)〉 = 〈ξ | γ−1 ·
ϕ̂(g0g1,g2,...,gp)〉. Thus, we have that

(5.3) 〈ξ | γ−1 · ϕ̂(g0g1,g2,...,gp) − ϕ̂(g1,g2,...,gp)〉 = 0.

In other words, γ−1 · ϕ̂(g0g1,g2,...,gp) − ϕ̂(g1,g2,...,gp) is in the annihilator of ker ť ⊆

Γ∗
g1
, and therefore satisfies s̃(γ−1ϕ̂(g0g1,g2,...,gp) − ϕ̂(g1,g2,...,gp)) = 0. We obtain the

desired result by setting g0 = g−1
1 . �

Conversely, given a map ϕ̂ : G(p) → Γ, where ϕ̂(g1,...,gp) ∈ Γg1 , satisfying the

equation in Lemma 5.4, we may define a linear cochain ϕ ∈ Cp
lin(Γ

∗) by (5.1),
which will satisfy Definition 5.1. In other words, we have the following result:

Proposition 5.5. The map ϕ 7→ ϕ̂ given by equation (5.1) is a bijection from
Cp

VB(Γ) to the space of maps ϕ̂ : G(p) → Γ, where ϕ̂(g1,...,gp) ∈ Γg1 , such that

s̃(ϕ̂(g1,g2,...,gp)) = s̃(ϕ̂(1t(g2),g2,...,gp)) for all (g1, . . . , gp) ∈ G(p).

Now suppose that Γ is equipped with a horizontal lift h : s∗E → Γ. Given
ϕ ∈ Cp

VB(Γ), we may then decompose ϕ̂ as in (3.5) to obtain ϕE ∈ Cp−1(G;E) and
ϕC ∈ Cp(G;C), given by the equation

(5.4) ϕ̂(g1,...,gp) = hg1(ϕ
E
(g2,...,gp)

) + ϕC
(g1,...,gp)

· 0̃g1 .

Note that ϕE does not depend on g1, as a consequence of Lemma 5.4.
We view the pair (ϕE , ϕC) as an element of Cp−1(G;E)⊕Cp(G;C) = C(G;E⊕

C[1])p−1. The following result is immediate.

Theorem 5.6. The map Θh : ϕ 7→ (ϕE , ϕC) is an isomorphism of graded right
C(G)-modules from CVB(Γ)[1] to C(G;E ⊕ C[1]).

The isomorphism Θh in Theorem 5.6 depends on the choice of horizontal lift and
is therefore noncanonical. However, given such a choice, we may use Θh to transfer
the coboundary operator δ̌ on CVB(Γ) to an operator Dh on C(G;E ⊕ C[1]). The
operator Dh satisfies the Leibniz rule as a result of Lemma 5.3, and it squares to
zero and preserves normalized cochains since δ̌ does. Thus we have the following:
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Corollary 5.7. The operator Dh := Θh ◦ (−δ̌) ◦ Θ−1
h on C(G;E ⊕ C[1]) is a

representation up to homotopy of G on the 2-term graded vector bundle E ⊕ C[1].

The minus sign in the definition of Dh arises from the fact that the isomorphism
Θh involves a shift in grading.

In Appendix A, we show that the components ∂, ∆C , ∆E , and Ω of the repre-
sentation up to homotopy Dh agree with the formulas given in §3.3, giving us the
following:

Corollary 5.8. The 4-tuple (∆C ,∆E , ∂,Ω), as given by formulas (3.11)–(3.14),
satisfies (2.11)–(2.16) and therefore defines a representation up to homotopy.

5.3. Dependence of the representation up to homotopy on the decompo-
sition. Let Γ be a VB-groupoid as in (3.1). We would like to determine how the
representation up to homotopy Dh changes under a change of horizontal lift.

Let h and h̊ be two horizontal lifts. Let g ∈ G and let e ∈ Es(g). Then s̃(hg(e)) =

s̃(̊hg(e)), so hg(e)− h̊g(e) is vertical. We write

(5.5) h̊g(e) = hg(e) + σg(e) · 0̃g

for a unique element σg(e) ∈ Ct(g). We may view σ as a normalized element of

C1(G;E → C). Conversely, given a horizontal lift h and a normalized transforma-

tion 1-cochain σ ∈ C1(G;E → C), we can define a new horizontal lift h̊ by (5.5).
Thus, we have proven the following.

Lemma 5.9. The space of horizontal lifts is an affine space modeled on the nor-
malized subspace of C1(G;E → C).

Suppose that h and h̊ are two horizontal lifts related by σ via (5.5). From (5.4)
and (5.5), we can see that the associated “chart transformation” on C(G;E⊕C[1])
is given by

(5.6) Θ
h̊
◦Θ−1

h = 1− σ̂,

where σ̂ is the operator associated to σ (see Proposition 2.9). Therefore,

(5.7) D
h̊
= (1 − σ̂) ◦ Dh ◦ (1 + σ̂).

In light of Proposition 2.12, we see that D
h̊
and Dh are gauge-equivalent, and that

every element of the gauge-equivalence class of Dh appears as D
h̊
for some choice

of h̊. We summarize the result as follows:

Theorem 5.10. Let Γ be a VB-groupoid as in (3.1). The set of all representations
up to homotopy Dh arising from Γ for different choices of horizontal lift h is equal
to exactly one gauge-equivalence class of representations up to homotopy of G on
C ⊕ E[1].

We can expand (5.7) to obtain the following gauge transformation formulas:

∂̊ = ∂,

∆̊C
g = ∆C

g + σg∂,

∆̊E
g = ∆E

g + ∂σg,

Ω̊g1,g2 = Ωg1,g2 − σg1∆
E
g2

−∆C
g1
σg2 + σg1g2 − σg1∂σg2

(5.8)
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6. The moduli space of VB-groupoids

6.1. The relationship between VB-groupoids and representations up to
homotopy. Corollary 5.8 tells us that (3.11)–(3.14) give a well-defined map tak-
ing VB-groupoids equipped with horizontal lifts to 2-term representations up to
homotopy. This map is inverted by the semidirect product construction in Exam-
ple 3.16. Thus we have the following:

Theorem 6.1. There is a one-to-one correspondence between 2-term representa-
tions up to homotopy and VB-groupoids equipped with horizontal lifts.

Together, Theorems 5.10 and 6.1 imply the following:

Corollary 6.2. There is a one-to-one correspondence between isomorphism classes
of 2-term representations up to homotopy and isomorphism classes of VB-groupoids.

6.2. Classification of regular 2-term representations up to homotopy. Re-
call from §3.3 that the core-anchor ∂ : C → E associated to a VB-groupoid (3.1) is
independent of the choice of a horizontal lift.

Definition 6.3. A VB-groupoid (or a 2-term representation up to homotopy) is
called regular if its core-anchor ∂ has constant rank.

Clearly, a 2-term representation up to homotopy is regular if and only if it
corresponds, via Theorem 6.1, to a regular VB-groupoid.

As we have seen in §3.3, one can recover from a VB-groupoid canonical repre-
sentations of G on K := ker ∂ and ν := coker∂, but in general these bundles are
singular. If the VB-groupoid is regular, then K and ν are vector bundles.

In this section, we classify regular VB-groupoids up to isomorphism. Per Corol-
lary 6.2, such a classification is equivalent to a classification of the moduli space
of regular 2-term representations up to homotopy. We begin by considering two
special cases of regular VB-groupoids.

6.2.1. VB-groupoids of type 1.

Definition 6.4. A VB-groupoid (or a 2-term representation up to homotopy) is of
type 1 if its core-anchor ∂ is an isomorphism.

We consider how conditions (2.11)–(2.16) for the 4-tuple (∂,∆C ,∆E ,Ω) spe-
cialize in the type 1 case. We may assume that C = E and ∂ = 1. Then, from
(2.11)–(2.13) and (2.15), we have that ∆C = ∆E , where ∆E is a unital quasi-action,
and that Ωg1,g2 is equal to the “curvature” ∆E

g1g2
− ∆E

g1
∆E

g2
of ∆E . Then (2.14)

and (2.16) are automatically satisfied.
The representations up to homotopy of the type that we have just described are

exactly those that arise from VB-groupoids of the form in Example 3.15, which do
not include any more information than the Lie groupoid G and the vector bundle
E. Using Corollary 6.2, we conclude the following.

Proposition 6.5. Every VB-groupoid of type 1 is isomorphic to a VB-groupoid of
the form in Example 3.15.

6.2.2. VB-groupoids of type 0.

Definition 6.6. A VB-groupoid (or a 2-term representation up to homotopy) is of
type 0 if its core-anchor ∂ is the zero map.
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In the type 0 case, ∂ = 0 and (2.11) holds automatically. Equations (2.12), (2.13),
and (2.15) say that ∆C and ∆E are representations of G on C and E, respectively.
Then we may interpret (2.14) and (2.16) as saying that Ω ∈ C2(G;E → C) is
normalized and closed with respect to the differential D in (2.8).

Next, we consider how a type 0 representation up to homotopy transforms under
a gauge transformation. From (5.8), we see that the representations ∆C and ∆E

are invariant, while Ω changes by an exact term:

(6.1) Ω̊ = Ω−Dσ

Proposition 6.7. (1) A type 0 representation up to homotopy of G on E⊕C[1]
is given by a triple (∆C ,∆E ,Ω), where ∆C and ∆E are representations of G
on C and E, respectively, and Ω ∈ C2(G;E → C) is a normalized cocycle.

(2) Two such triples (∆C ,∆E ,Ω) and (∆̊C , ∆̊E , Ω̊) are gauge-equivalent if and

only if ∆C = ∆̊C , ∆E = ∆̊E, and Ω is cohomologous to Ω̊.

Corollary 6.8. Type 0 VB-groupoids like (3.1) are classified up to isomorphism
by triples (∆C ,∆E , [Ω]), where ∆C and ∆E are representations of G on C and E,
respectively, and [Ω] is a cohomology class in H2(G;E → C).

Remark 6.9. The cochains Ω appearing in the above analysis are always normalized.
The conclusion in Corollary 6.8 uses the fact that the complex C(G;E → C)
retracts to the subcomplex of normalized cochains. The proof given by Eilenberg
and Maclane [5] in the case of group cohomology can be easily extended to the
present context.

6.2.3. The general case. Given two VB-groupoids

Γ0

��

//
// E0

��

G //
// M

Γ1

��

//
// E1

��

G //
// M

over the same Lie groupoid G, we can form the direct sum VB-groupoid

Γ0 ⊕ Γ1

��

//
// E0 ⊕ E1

��

G //
// M

Note that the core of Γ0 ⊕ Γ1 is the direct sum of the cores of Γ0 and Γ1.

Lemma 6.10. Given a regular VB-groupoid Γ, there exist unique (up to isomor-
phism) VB-groupoids Γ0 of type 0, and Γ1 of type 1, such that Γ is isomorphic to
Γ0 ⊕ Γ1.

Proof. Let Γ be a regular VB-groupoid as in (3.1). Let K := ker ∂, F := im ∂, and
ν := coker∂. As a result of the regularity condition, we have that K, F , and ν are
all vector bundles that fit into the short exact sequences

K // C // F ,

F // E // ν .
(6.2)
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We choose splittings of the sequences (6.2), giving isomorphisms

C ≈ K ⊕ F

E ≈ ν ⊕ F
(6.3)

Next, we make a choice of horizontal lift for Γ. Such a choice gives us a representa-
tion up to homotopy (∂,∆C ,∆E ,Ω), which completely describes the VB-groupoid
structure of Γ. Each of the components may be written in “block-matrix” form
with respect to the direct sums in (6.3). In particular, the block form of ∂ is ( 0 0

0 1 ).
By (2.11), the block forms of ∆C and ∆E are of the form

∆C =

(
∆K ΛC

0 ∆F

)
∆E =

(
∆ν 0
ΛE ∆F

)
.

Here, ∆K and ∆ν are the canonical representations of G on K and ν, respectively,
and ∆F is a quasi-action on F that depends on the choice of horizontal lift.

We can block-diagonalize ∆C and ∆E by setting

σ =

(
0 −ΛC

−ΛE 0

)

and making the associated gauge transformation (see (5.8)). From (2.12)–(2.13),
we then see that, in the new gauge, Ω takes the form

Ω =

(
ω 0
0 RF

)
,

where RF is the curvature of ∆F . Thus, for an appropriate choice of horizontal
lift, the associated representation up to homotopy decomposes as the direct sum of
a type 0 representation up to homotopy on ν ⊕ K[1] and a type 1 representation
up to homotopy on F ⊕ F [1].

For uniqueness, we use the classification of type 1 and type 0 VB-groupoids in
Proposition 6.5 and Corollary 6.8. As a type 1 VB-groupoid, Γ1 is determined up
to isomorphism by the vector bundle F . As a type 0 VB-groupoid, Γ0 is determined
up to isomorphism by the representations ∆ν and ∆K and the cohomology class
[ω] ∈ H2(G; ν → K). Both ∆ν and ∆K are canonical, and it can be seen that the
cohomology class [ω] is independent of the choices. �

The following result ties together the results in this section.

Theorem 6.11. Let G ⇒ M be a Lie groupoid, and let E,C → M be vector
bundles. Regular VB-groupoids over G with side bundle E and core C are classified
up to isomorphism by the following data:

• a regular bundle map ∂ : C → E,
• a representation ∆K of G on K := ker ∂,
• a representation ∆ν of G on ν := coker∂, and
• a cohomology class [ω] ∈ H2(G; ν → K).

Therefore, regular representations up to homotopy of G on E ⊕ C[1] are classified
up to isomorphism by the same data.
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7. Example: the adjoint representation

Let G ⇒ M be a regular Lie groupoid, and let A → M be the Lie algebroid
of G, with anchor map ρ : A → TM . Consider the VB-groupoid TG ⇒ TM ,
which plays the role of the adjoint representation. By Theorem 6.11, there is a
canonically-defined cohomology class [ω] ∈ H2(G; ν → K), where ν := cokerρ and
K := ker ρ. In this section, we give a geometric interpretation of the class [ω] in
some nice cases.

7.1. Restriction to orbits. Before interpreting [ω], we require some notation
and terminology. For x ∈ M , the orbit through x is Ox := t(s−1(x)) ⊆ M . If
the s-fibers of G are connected, then Ox is the leaf through x of the integrable
distribution F := im ρ ⊆ TM , where ρ : A → TM is the anchor map for the Lie
algebroid A of G. We may restrict G to a (immersed) Lie subgroupoid G|Ox

⇒ Ox,
where G|Ox

:= s−1(Ox). On the other hand, it is clear that the disjoint union of
G|Ox

(taken over all distinct Ox) is isomorphic to G as a set-theoretic groupoid.
Intuitively, we should be able to recover the Lie groupoid structure of G from
“gluing data” describing how the different G|Ox

fit together.

7.2. Bundles of Lie groups. We first consider the case where s = t, so that G
is a bundle of Lie groups over M . In this case, each orbit consists of a single point
x ∈M , and in particular, the anchor map ρ is zero, so TG is a type 0 VB-groupoid.

Let h : G ×M TM → TG be a horizontal lift. Note that, in this situation, h is
equivalent to a connection on the fiber bundle G→M .

Since the representation of G on TM is trivial in this case, the formula for Ω in
(3.14) simplifies slightly:

Ωg1,g2v = (hg1g2(v)− hg1(v) · hg2(v)) · 0̃(g1g2)−1

for g1, g2 ∈ Gx and v ∈ TxM . We can see that Ω measures the failure of parallel
transport by h to induce group homomorphisms of the fibers. Therefore, G is locally
trivializable as a Lie group bundle if and only if it is possible to choose h such that
Ω vanishes, and the cohomology class [Ω] can thus be viewed as an obstruction to
such local trivializability.

7.3. Regular Lie groupoids. We now consider a more general case of a regular
Lie groupoid G ⇒ M . Let x be a point in M . To avoid potential technical issues,
we will assume that the orbit space is nice near Ox; specifically, we assume that the
quotientM/∼, where points in the same orbit are identified, has a smooth structure
near Ox such that Ox is a regular value of the quotient map. As a result of this
assumption, the quotient map induces an isomorphism between νy and TOx

(M/∼)
for all y ∈ Ox, and therefore any v ∈ νx can be canonically extended to a section ṽ
of ν|Ox

.
Suppose that we have chosen splittings TM ≈ ν ⊕ F and A ≈ K ⊕ F , where

F = im ρ, and a horizontal lift h : s∗(TM) → TG such that the quasi-actions ∆TM

and ∆A, as well as the 2-cochain Ω, are block-diagonal with respect to the chosen
splittings. The existence of such an h is part of the proof of Lemma 6.10. Because
of block-diagonality, we have that ∆TM |ν = ∆ν , and one can see that ∆ν

gv = ṽt(g)
for any v ∈ νx and g ∈ s−1(x). We may then express the formula for ω = Ω|ν as

ω(g1,g2)v · 0̃g1g2 = hg1g2(ṽx)− hg1(ṽy) · hg2(ṽx)
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for v ∈ νx and (g1, g2) ∈ G(2) such that s(g2) = x. In other words, ω measures
the infinitesimal failure of parallel transport by h in the normal directions to give
isomorphisms of the restricted groupoids G|Ox

.
We may give a more simple intepretation in the nicest case, where the orbit space

is smooth and the quotient map M →M/∼ is a submersion. In this case, we may
think of G as a “bundle of transitive Lie groupoids” over M/ ∼, where the fiber
over Ox ∈ M/∼ is the Lie groupoid G|Ox

. It is possible to choose h such that ω
vanishes if and only if this bundle of transitive Lie groupoids is locally trivializable
(so a “transitive Lie groupoid bundle”). Therefore, the cohomology class [ω] can
be viewed as an obstruction to such local trivializability.

It would be nice to find a simple interpretation of [ω] that does not require so
many technical assumptions.

8. The Fat category (groupoid)

In [6], Evens, Lu, and Weinstein observed that the 1-jet prolongation groupoid
J1G of a Lie groupoid G ⇒ M , consisting of 1-jets of bisections, carries natural
representations on the Lie algebroid A of G and on TM . They noted that, although
these representations do not pass to representations of G on A and TM , there is a

sense in which they induce a “representation up to homotopy” on the complex A
ρ
→

TM . However, the Arias Abad-Crainic notion of representation up to homotopy
[1] which we have used in this paper differs from that of Evens-Lu-Weinstein.

In this section, we describe a construction for VB-groupoids that generalizes
the 1-jet prolongation groupoid, thus providing a conceptual link between the two
notions of representation up to homotopy. Specifically, given a VB-groupoid Γ, we

construct a Lie groupoid Ĝ(Γ) → M , with canonical representations on C and E,

such that Ĝ(Γ) = J1G when Γ = TG. We then briefly describe how the formulas
in §3.3 for the components of a representations up to homotopy can be derived
directly from an object that is very closely related to Ĝ(Γ).

8.1. The fat category. Let Γ be a VB-groupoid. The fat category Ĉ(Γ) consists
of pairs (g,H), where g ∈ G and H ⊆ Γg is a subspace that is complementary
to the right-vertical subspace V R

g (see Definition 3.6). There is an obvious pro-

jection map Ĉ(Γ) → G, where the fiber over g ∈ G is an affine space modeled on

Hom(Es(g), Ct(g)). Thus, Ĉ(Γ) is a smooth manifold.

As the name suggests, Ĉ(Γ) has the structure of a Lie category, where the source

and target maps factor through the projection Ĉ(Γ) → G and the multiplication is
given by (g1, H1) · (g2, H2) = (g1g2, H1H2), where

H1H2 = {v1 · v2 | vi ∈ Hi and s̃(v1) = t̃(v2)}.

If (g,H) is invertible, then its inverse is simply (g−1, H−1). However, it is possible
for (g,H) to be noninvertible; this occurs exactly when H fails to be complementary
to V L

g .

8.2. The fat groupoid. The fat groupoid Ĝ(Γ) consists of all invertible elements

of Ĉ(Γ), i.e. pairs (g,H), where g ∈ G and H ⊆ Γg is a subspace complementary

to both V R
g and V L

g . The elements of Ĝ(Γ) form an open subset of Ĉ(Γ), so Ĝ(Γ)
naturally inherits a smooth Lie groupoid structure.
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In the case where Γ = TG, the fat groupoid Ĝ(Γ) consists of pairs (g,H), where
g ∈ G and H ⊆ TgG is a subspace complementary to both the source-fiber and the
target-fiber; in other words, H is the 1-jet of a bisection of G. Thus, in this case,
the fat groupoid Ĝ(()TG) is the 1-jet prolongation groupoid J1G.

8.3. Representations of the fat category (groupoid). The fat category has
canonical Lie category representations ψC and ψE on the vector bundles C and E,
respectively, defined as follows. For e ∈ Es(g) and c ∈ Cs(g),

ψE
(g,H)e = t̃(v),

ψC
(g,H)c = w · c · 0̃g−1

where v is the unique vector in H such that s̃(v) = e, and w is the unique vector
in H such that s̃(w) = t̃(c). The representations ψC and ψE restrict in the obvious
way to produce Lie groupoid representations of the fat groupoid, which we will also
denote as ψC and ψE .

Recall that the core-anchor ∂ : C → E is given by ∂(c) = t̃(c). It follows that
the representations ψC and ψE are related by the core-anchor: ∂ψC = ψE∂.

8.4. Sections and representations up to homotopy. We would like to pass the
canonical representations ψC and ψE of Ĝ(Γ) to G. The obvious way to do so would

be to choose a section of the projection map Ĝ(Γ) → G and then use the section to
pull ψC and ψE back to G. However, such a section does not always exist globally.
On the other hand, global sections do always exist for the projection Ĉ(Γ) → G;
indeed, such a section is equivalent to a section of the short exact sequence (3.4).

We may impose the additional requirement that a unit 1x lift to (1x, 1̃(Ex)). Sec-

tions of Ĉ(Γ) → G satisfying this requirement are equivalent to (right-)horizontal
lifts of Γ. Specifically, given a horizontal lift h : s∗E → Γ, the map g 7→ ĝ :=
(g, hg(Es(g))) is a section of Ĉ(Γ) → G. If we use this section to pull the represen-

tations ψC and ψE back to G, we immediately recover the formulas (3.12)-(3.13).
In general, we can’t expect the lift g 7→ ĝ to respect multiplication, which is why

∆C and ∆E are only quasi-actions and not representations. The failure of the lift
to respect multiplication is measured by ĝ1g2 − ĝ1 · ĝ2, which can be identified with
Ωg1,g2 as given by (3.14).

Appendix A. Derivation of the representation up to homotopy
formulas

A.1. Horizontal lifts and dual pairings. Let Γ be a VB-groupoid. Throughout
this section, we will assume that Γ has a fixed right-horizontal lift h : s∗E → Γ.
By (3.5), any γ ∈ Γg may be uniquely written as

γ = γV · 0̃g + hg(γ
H),

where γH = s̃(γ) ∈ Es(g) and γV ∈ Ct(g). We refer to γV and γH , respectively,
as the vertical and horizontal parts of γ. Similarly, any ξ ∈ Γ∗

g may be uniquely
written as

ξ = 0̌g · ξ
V + ηg(ξ

H),

where ξH = ť(ξ) ∈ C∗
t(g) and ξV ∈ E∗

s(g), with E∗ identified with the left -core of

Γ∗. Here, η : t∗C∗ → Γ∗ is the left-horizontal lift given by the equation

(A.1) 〈ηg(ν) | γ〉 = 〈ν | γV 〉
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for ν ∈ C∗
t(g) and γ ∈ Γg. Equation (A.1) defines a one-to-one correspondence

between right-horizontal lifts on Γ and left-horizontal lifts on Γ∗. We also have the
following equation, which is a consequence of the fact that the natural inclusion
s∗E∗ → Γ∗, (g, τ) 7→ 0̌g · τ , is the dual of the projection Γ → s∗E, γ 7→ (q̃(γ), γH):

(A.2) 〈0̌g · τ | γ〉 = 〈τ | γH〉.

Together, (A.1) and (A.2) allow us to simply express the pairing of γ and ξ as

(A.3) 〈ξ | γ〉 = 〈ξV | γH〉+ 〈ξH | γV 〉.

In particular, horizontal elements of Γ∗ annihilate horizontal elements of Γ, and
vertical elements of Γ∗ annihilate vertical elements of Γ.

We conclude the section with a lemma that will be useful in §A.2.

Lemma A.1. For any ξ ∈ Γ∗
g and c ∈ Cs(g),

〈š(ξ) | c〉 = 〈ξV | − t̃(c)〉+ 〈ξH | hg(t̃(c)) · c · 0̃g−1〉.

Proof. From the definition of š in (4.2), we have

〈š(ξ) | c〉 = 〈ξ | 0̃g · (−c
−1)〉,

which may be decomposed via (A.3). The horizontal part of 0̃g · (−c
−1) is s̃(0̃g ·

(−c−1)) = s̃(−c−1) = −t̃(c). To obtain the vertical part, we subtract the horizontal
lift of the horizontal part:

(0̃g · (−c
−1))V · 0̃g = 0̃g · (−c

−1) + hg(t̃(c))

= 0̃g · (−c
−1) + hg(t̃(c)) · 1̃t̃(c)

= (0̃g + hg t̃(c)) · (−c
−1 + 1̃t̃(c))

= hg t̃(c) · c.

In the last line, we have used (3.10). Thus the vertical part of 0̃g · (−c−1) is

hg(t̃(c)) · c · 0̃g−1 , and the result follows from (A.3). �

A.2. Formulas for representation up to homotopy components. We wish
to show that the formulas (3.11)–(3.14) for the four components ∂, ∆C , ∆E , and
Ω agree with the representation up to homotopy Dh in Corollary 5.7. We will do
this by applying Dh to 0-cochains α ∈ Γ(C) = C0(G;C) and ε ∈ Γ(E) = C0(G;E),
and showing that the resulting cochains decompose as

Dhα = DCα+ ∂α,(A.4)

Dhε = Ωε+DEε.(A.5)

First, we consider Dhα. By alternatively viewing α as a section of C and as a
linear function on C∗, we may write Θ−1

h α = α, so Dhα = −Θh(−δ̌α). By the

definition of the differential δ̌,

−δ̌α(ξ) = 〈ť(ξ) | αt(g)〉 − 〈š(ξ) | αs(g)〉

for ξ ∈ Γ∗
g. Using (4.3), (A.3), and Lemma A.1, we can rewrite this as

〈ξH | αt(g) − hg(t̃(αs(g))) · αs(g) · 0̃g−1〉+ 〈ξV | t̃(αs(g))〉

= 〈ξH | αt(g) −∆C
g αs(g)〉+ 〈ξV | ∂αs(g)〉.

Using (2.9) and comparing (5.4) with (A.3), we conclude that (A.4) does indeed
hold.
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Next, we consider Dhε. Equations (5.1) and (5.4) imply that Θ−1
h ε ∈ C1

VB(Γ) is
given by

Θ−1
h ε(ξ) = 〈ξ | hg(εs(g))〉

for ξ ∈ Γ∗
g. By the definition of δ̌,

−δ̌(Θ−1
h ε)(ξ1, ξ2) = −Θ−1

h ε(ξ2) + Θ−1
h ε(ξ1 · ξ2)−Θ−1

h ε(ξ1)

= −〈ξ2 | hg2(εs(g2))〉+ 〈ξ1 · ξ2 | hg1g2(εs(g2))〉 − 〈ξ1 | hg1(εs(g1))〉

for (ξ1, ξ2) ∈ (Γ∗)
(2)
(g1,g2)

. Using (3.14) and (4.4), we can rewrite the middle term as

〈ξ1 · ξ2 | Ωg1,g2εs(g2) · 0̃g1g2 + hg1(∆
E
g2
εs(g2)) · hg2(εs(g2))〉

= 〈ξ1 | Ωg1,g2εs(g2) · 0̃g1 + hg1(∆
E
g2
εs(g2))〉+ 〈ξ2 | hg2(εs(g2))〉.

Substituting this into the previous equation and using (A.3), we get

−δ̌(Θ−1
h ε)(ξ1, ξ2) = 〈ξ1 | Ωg1,g2εs(g2) · 0̃g1 + hg1(∆

E
g2
εs(g2) − εs(g1))〉

= 〈ξH1 | Ωg1,g2εs(g2)〉+ 〈ξV1 | ∆E
g2
εs(g2) − εs(g1)〉.

Using (2.10) and comparing (5.4) with (A.3), we conclude that (A.5) does indeed
hold.
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[9] D. Li-Bland and P. Ševera. Quasi-Hamiltonian groupoids and multiplicative Manin pairs. Int.
Math. Res. Not. IMRN, (10):2295–2350, 2011.

[10] K. C. H. Mackenzie. Double Lie algebroids and second-order geometry. I. Adv. Math.,
94(2):180–239, 1992.

[11] K. C. H. Mackenzie. Drinfel′d doubles and Ehresmann doubles for Lie algebroids and Lie
bialgebroids. Electron. Res. Announc. Amer. Math. Soc., 4:74–87 (electronic), 1998.

[12] K. C. H. Mackenzie. Double Lie algebroids and second-order geometry. II. Adv. Math.,
154(1):46–75, 2000.

[13] K. C. H. Mackenzie. Duality and triple structures. In The breadth of symplectic and Poisson
geometry, volume 232 of Progr. Math., pages 455–481. Birkhäuser Boston, Boston, MA, 2005.
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