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ABSTRACT

We test the reliability of a method to measure the mean halo mass of absorption line systems such as
Damped Lyα absorbers (DLAs). The method is based on measuring the ratio of the cross-correlation
between DLAs and galaxies to the auto-correlation of the galaxies themselves, which is (in linear
theory) the ratio of their bias factor b. We show that the ratio of the projected cross- and auto-
correlation functions (wdg(rθ)/wgg(rθ)) is also the ratio of their bias factor irrespective of the galaxy
distribution, provided that one uses the same galaxies for wdg(rθ) and wgg(rθ). Thus, the method
requires only multi-band imaging of DLA fields, and is applicable to all redshifts. Here, we focus on
z = 3 DLAs. We demonstrate that the cross-correlation method robustly constrains the mean DLA
halo mass using smoothed particle hydrodynamics (SPH) cosmological simulations that resolve DLAs
and galaxies in halos of mass Mh & 5.2 × 1010M⊙. If we use the bias formalism of Mo & White
(2002) with the DLA and galaxy mass distributions of these simulations, we predict a ratio wdg/wgg

of 0.771. Direct measurement of these correlation functions from the simulations yields wdg/wgg =

bDLA/bgal = 0.73 ± 0.08, in excellent agreement with that prediction. Equivalently, inverting the
measured correlation ratio to infer a mean DLA halo mass yields (logarithmic averaging, in solar
units) < log MDLA > = 11.13+0.13

−0.13, in excellent agreement with the true value in the simulations:
< log MDLA >= 11.16 is the probability weighted mean mass of the DLA host halos in the simulations.
The cross-correlation method thus appear to yield a robust estimate of the average host halo mass
even though the DLAs and the galaxies occupy a broad mass spectrum of halos, and massive halos
contain multiple galaxies with DLAs. If we consider subsets of the simulated galaxies with high star
formation rates (representing Lyman break galaxies [LBGs]), then both correlations are higher, but
their ratio still implies the same DLA host mass, irrespective of the galaxy sub-samples,i.e. the cross-
correlation technique is also reliable. The inferred mean DLA halo mass, < log MDLA > = 11.13+0.13

−0.13,

is an upper limit since the simulations do not resolve halos less massive than ∼ 1010.5 M⊙. Thus,
our results imply that the correlation length between DLAs and LBGs is predicted to be, at most,
∼ 2.85 h−1 Mpc given that z = 3 LBGs have a correlation length of r0 ≃ 4 h−1 Mpc. While the
small size of current observational samples does not allow strong conclusions, future measurements
of this cross-correlation can definitively distinguish models in which many DLAs reside in low mass
halos from those in which DLAs are massive disks occupying only high mass halos.

Subject headings: cosmology: theory — galaxies: evolution — galaxies: high-redshift — quasars:
absorption lines

1. INTRODUCTION Damped Lyα absorbers (DLAs), which cause the
strongest absorption lines found in quasar spectra,
have neutral hydrogen (Hi) column densities greater

http://arXiv.org/abs/astro-ph/0504172v1
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than 2 × 1020 cm−2. Their integrated column den-
sity distribution implies that DLAs contain the largest
reservoir of neutral hydrogen (Hi) at high redshifts
(e.g. Lanzetta et al. 1991, 1995; Ellison et al. 2001;
Péroux et al. 2003). They contain more neutral Hi than
all the absorption line clouds in the Ly-alpha forest com-
bined; and in an ΩM = 1 universe, they contain as
much hydrogen as the co-moving mass density of stars
in disk galaxies today. This led Wolfe et al. (1986) to
put forward the hypothesis that DLAs are large thick
gaseous disk galaxies. This hypothesis has been de-
bated since. On the one hand, absorption line veloc-
ity profiles of low-ionization species of DLAs seem to
be consistent with those expected from lines of sight
intercepting rotating thick gaseous disks (Wolfe et al.
1995; Prochaska & Wolfe 1997b; Ledoux et al. 1998).
Prochaska & Wolfe (1997b) argue that the most likely
rotation velocity is ∼ 225km s−1, i.e. that DLAs are
typically as massive (1012M⊙) as L∗(z = 0) galaxies.
On the other hand, McDonald & Miralda-Escudé (1999)
and Haehnelt et al. (1998, 2000) have shown that a large
range of structures and morphologies, rather than a sin-
gle uniform type of galaxy, can account for the observed
DLA kinematics. At least at low redshifts (z < 1),
this is supported by observations (Le Brun et al. 1997;
Kulkarni et al. 2000; Rao & Turnshek 2000).

Early predictions of DLA properties were made using
cosmological simulations (Katz et al. 1996b) and semi-
analytical simulations of galaxy formation (Kauffmann
1996). Then, Gardner et al. (1997a) extended the re-
sults of Katz et al. (1996b) to predict the DLA statistics
(e.g. dN

dz ) accounting for the limited resolution of those
simulations. They developed a semi-analytical method
to correct the numerical predictions for the contribution
of unresolved low-mass halos, and found that roughly
half of these systems reside in halos with circular veloci-
ties Vc ≥ 100km s−1, and half in halos with 35km s−1 ≤
Vc ≤ 100km s−1. Interestingly, Gardner et al. (1997b)
found that ‘a CDM model with Ω0 = 0.4, ΩΛ = 0.6 gives
an acceptable fit to the observed absorption statistics’,
whereas other models did not match the observations
so well. More recently, Gardner et al. (2001) found that
there was an anti-correlation between the absorber cross-
section and the projected distance to the nearest galaxy,
and that DLAs arise out to 10–15 kpc. Indeed, they
found that the mean cross section for DLA absorption
is much larger than what one would estimate based on
the collapse of the baryons into a centrifugally supported
disk. To match the observed DLA abundances, they re-
quired an extrapolation of the mass function to small
halos down to a cut-off of Vc = 50–80km s−1.

Other work, such as that of Mo et al. (1999),
Haehnelt et al. (1998, 2000), Nagamine et al. (2004),
and Okoshi et al. (2004), indicates that DLAs are mostly
faint (sub-L∗

z=0) galaxies in small dark matter halos with
Vc ≪ 100km s−1. However, the exact fraction of DLAs in
such halos is a strong function of resolution, as shown by
Nagamine et al. (2004). Fynbo et al. (1999) and Schaye
(2001) used cross-section arguments and reached simi-
lar conclusions. For instance, Schaye (2001) argued that
the observed Lyman break galaxy (LBG) number density
alone (n = 0.016h3 Mpc−3 down to 0.1L∗) can account
for all DLA absorptions at z ∼ 3 if the cross-section for

DLA absorption is πr2 with r = 19h−1 kpc, much larger
than the luminous parts of most LBGs (Lowenthal et al.
1997). However, Schaye (2001) pointed out that the
cross-section can be much smaller than this, if a fraction
of DLA systems arise in outflows or if n is much larger
(i.e. there are many LBGs or other galaxies not yet de-
tected). In the semi-analytical models of Maller et al.
(2000), DLAs arise from the combined effects of massive
central galaxies and a number of smaller satellites within
100h−1 kpc in virialized halos. From all these studies, it
appears that the low-mass hypothesis is favored against
the thick gaseous disk model of Wolfe et al. (1986, 1995)
and Prochaska & Wolfe (1997a). A strong constraint on
the nature of DLA will come from a measure of the typ-
ical DLA halo mass.

In order to constrain the mass of z ≃ 3
DLAs, several groups are using Lyman break
galaxies (LBGs) as large scale structure tracers
(Gawiser et al. 2001; Adelberger et al. 2003 [hereafter
ASSP03]; Bouché & Lowenthal 2003; Bouché 2003;
Bouché & Lowenthal 2004 [hereafter BL04]; and Cooke
et al., 2004, private communication) to measure the
DLA-LBG cross-correlation, given that in hierarchical
galaxy formation models, different DLA masses will
lead to different clustering properties with the galaxies
around them. Specifically, the DLA-galaxy cross-
correlation yields a measurement of the dark matter
halo mass associated with DLAs relative to that of the
galaxies. In particular, if the galaxies are less (more)
correlated with the DLAs than with themselves, this will
imply that the halos of DLAs are less (more) massive
than those of the galaxies.

The purpose of this paper is to use cosmological sim-
ulations in order to demonstrate that cross-correlation
techniques will uniquely constrain the mean DLA halo
mass, and to compare the results with observations. The
advantage of using cosmological simulations is that one
can check the reliability of the clustering results given
that the mean halo mass of any population is a known
quantity in the simulations. As we will show, we find
that the DLA-galaxy cross-correlation implies a mean
DLA halo mass of < log MDLA > ≃ 11.13+0.13

−0.13 close to
the log MDLA = 11.16 expected from the DLA halo mass
distribution. The method is generally applicable to any
redshifts, but we focus here on z = 3.

Section 2 presents the numerical simulations used in
this paper. Section 3 lays the foundations of our cluster-
ing analysis. Our results are presented in section 4 along
with a comparison to current observational results. A
discussion of the implications of our results is presented
in section 5.

2. SIMULATIONS

We use the Tree-SPH simulations of Katz et al.
(1996a) parallelized by Davé et al. (1997), which com-
bine smoothed particle hydrodynamics (SPH, Lucy
1977) with the tree algorithm for computation of the
gravitational force (Hernquist 1987). This formulation
is completely Lagrangian, i.e. it follows each particle in
space and time. The simulations include dark matter,
gas, and stars. Dark matter particles are collision-less
and influenced only by gravity, while gas particles are
influenced by pressure gradients and shocks in addition
to gravity, and can cool radiatively. Gas particles are
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Fig. 1.— The star formation rate (SFR) as a function of halo
mass (DM+baryons) Mh is shown on the left panel. The streak
of points at 1013M⊙ corresponds to several resolved galaxies. The
line shows the running mean (in log M) with a decreasing SFR
threshold. The filled circles show the SFR threshold versus the
mean mass (< log M >) of the six sub-samples. The six sub-
samples are the 7, 25, 50, 100, 200, 400 most star-forming galaxies,
labeled 1 to 6. The right panel shows the SFR as a function of the
baryonic mass Mb (right).

transformed into collision-less stars when the following
conditions are met: the local density reaches a certain
threshold (nH ≥ 0.1 cm−3), and the particles are colder
than a threshold temperature (T ≤ 30, 000 K) and are
part of a Jeans unstable convergent flow (see Katz et al.
1996a, for details). A Miller & Scalo (1979) initial mass
function of stars is assumed. Stars of mass greater than
8 M⊙ become supernovae and inject 1051 erg s−1 of pure
thermal energy into neighboring gas particles. Thus,
the star formation rate (SFR) is known for each galaxy.
Photo-ionization by a spatially uniform UV background
(Haardt & Madau 1996) is included.

The simulation was run from redshift z = 49 to red-
shift z = 0 with the following cosmological parameters:
ΩM = 0.4, ΩΛ = 0.6, h ≡ H0/(100 km s−1 Mpc−1) =
0.65, Ωb = 0.02 h−2, a primordial power spectrum in-
dex n = 0.93, and σ8 = 0.8 for the amplitude of
mass fluctuations. In this paper, we use the z = 3 out-
put. The simulation has 1283 dark matter particles and
the same number of gas particles in a periodic box of
22.222h−1 Mpc (co-moving) on a side with a gravita-
tional softening length of 3.5h−1 kpc (Plummer equiva-
lent). The mass of a dark matter particle is 8.2×108M⊙,
and the mass of a baryonic particle is 1.09×108 M⊙. We
identify dark matter halos by using a ‘friends-of-friends’
algorithm (Davis et al. 1985) with a linking length of
0.173 times the mean interparticle separation. There are
1770 resolved dark matter halos with a minimum of 64
dark matter particles (5.2 × 1010M⊙).

We use the group finding algorithm ‘spline kernel in-
terpolative denmax’ (SKID) (Katz et al. 1996a) to find
galaxies in the simulations. We refer the reader to
Kereš et al. (2004) for a detailed discussion of the SKID
algorithm. There are 651 galaxies resolved with a mini-
mum of 64 SPH particles (or 6.9×109 M⊙). Fig. 1 shows
the SFR as a function of total halo mass (dark matter
+ baryons; left) and baryonic mass (right) for the 651
SKID-identified galaxies. The line shows the running
mean (in log M) with a decreasing SFR threshold.

The rest-UV spectra and colors of observed LBGs
are dominated by the light from massive stars
(Lowenthal et al. 1997; Pettini et al. 2001). To simulate
various ‘flux-simulated’ LBG samples in the simulations,

Fig. 2.— (a): Column density map of Hi in the 22.222 h−3 Mpc3

volume projected along the x axis on a 40962 pixel grid. Potential
DLAs with NHi larger than > 1020.3cm−2 appear black. (b):
Position of potential DLAs projected along the x axis. (c): Position
of the 651 galaxies that have a baryonic mass Mb larger than the
resolution 6.8×109 M⊙. (d): Position of the 100 most star-forming
galaxies. The red crosses show the positions of the seven most star-
forming galaxies.

we selected 6 sub-samples of galaxies according to their
SFR, consisting of the 7, 25, 50, 100, 200, 400 most star-
forming galaxies. The corresponding SFR thresholds and
mean masses < log M > for each of the sub-samples are
marked with the filled circles in Fig. 1 (left) labeled 1 to 6.
Naturally, real LBGs are color-selected, so this SFR se-
lection can only be an approximation. Davé et al. (1999)
discuss the properties of LBGs in numerical simulations
similar to this one.

We select DLAs from the simulations as follows. We
compute the Hi column density (NHi) from the gas den-

sity projected onto a uniform grid with 40962 pixels, each
5.43 kpc co-moving (or 2 kpc physical) in size, corre-
sponding to the smoothing length. Each gas particle
is projected onto the grid in correct proportions to the
pixel(s) it subtends given its smoothing length. Since
DLAs occur in dense regions, however, the smoothing
lengths are typically equal or smaller than the pixel size.
We first assume the gas is optically thin, and then correct
the column densities for the ionization background using
a self-shielding correction as in Katz et al. (1996b). The
Hi column density projected along the x axis is shown in
Fig. 2(a). A pixel is selected as a DLA from the column
density map if NHi is greater than 1020.3cm−2. There
are approximately 115,000 pixels that meet this criterion,
shown in Fig. 2(b). We assume that each such pixel is a
potential DLA. Fig. 2(c) shows the positions of the 651
galaxies that have a baryonic mass Mb larger than the
resolution 6.8 × 109 M⊙. Fig. 2(d) shows the positions
of the 100 galaxies with the highest star formation rate,
and the positions of the simulated LBGs as red crosses.
From Fig. 2, one can already see that the galaxies and
the DLAs are correlated.

The left panel of Fig. 3 shows the mass probability
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Fig. 3.— Left: The halo mass (DM+baryons) probability func-
tion p(M) of all the SKID-identified galaxies with baryonic masses
larger than the resolution 6.8× 109 M⊙, corresponding to 64 SPH
particles. For comparison, the curve is the dark matter mass func-
tion from the extended Press-Schechter formalism of Mo & White
(2002) in this cosmology, scaled arbitrarily (i.e. not a fit). Right:

The DLA dark matter mass distribution, pDLA(M) (∝ dN
dzd log M

).

It was found by matching the 2-D DLA positions with the near-
est resolved halo. The shape of the distribution will not be con-
strained by the DLA-galaxy cross-correlation, but its first moment
(< log M >) will be.

distribution of all the resolved galaxies. The line shows
the halo mass distribution obtained from Press-Schechter
(PS) formalism (Mo & White 2002). The mean mass
(logarithmic average) for all the 651 galaxies is shown
(< log Mh(M⊙) > = 11.57). The right panel of Fig. 3
shows the DLA halo mass distribution. The halo mass
of a given DLA was obtained by matching the projected
DLA positions (2-D) with those of the resolved halos.
The projected distance distribution (between halos and
DLAs) peaks at 8 kpc, with a tail to ∼20 kpc (physical
units) (see also Gardner et al. 2001), and there is very
little ambiguity in identifying the halo of a DLA. Prac-
tically all the DLAs reside in halos with more than 64
dark matter particles. Note that, at z = 0, the DLA
distribution appears to be broadly peaked at around
Vrot = 200 km s−1 (Zwaan et al. [2005], in prepara-
tion) and is even broader with respect to luminosity
(Rosenberg & Schneider 2003).

As mentioned, the purpose of this paper is to show
that cross-correlation techniques will uniquely constrain
the mean of this distribution, but it will not constrain
its shape. We refer the reader to Gardner et al. (2001)
and Nagamine et al. (2004) for a detailed discussion of
the DLA halo mass distribution in numerical simulations.
Typically, in order to match the observed DLA statistics,
they require an extrapolation of the DLA mass function
below the mass resolution. Here we make no attempt to
include halos smaller than our resolution since it would
require putting in the appropriate cross-correlation signal
by hand for halos smaller than our resolution.

3. CORRELATION FUNCTIONS IN HIERARCHICAL
MODELS

In this section, we describe the fundamental clustering
relations necessary to understand how one can determine
the halo mass of DLAs.

A widely used statistic to measure the clustering of
galaxies is the galaxy auto-correlation function ξgg(r).
Similarly, one can define the cross-correlation ξdg be-
tween DLAs and galaxies from the conditional proba-
bility of finding a galaxy in a volume dV at a distance

r = |r1 − ro|, given that there is a DLA at ro:
P (LBG|DLA) = nu(1 + ξdg(r))dV, (1)

where nu is the unconditional background galaxy density,
i.e. the density when ξ = 0.

At a given redshift, the auto-correlation and cross-
correlation functions are related to the dark matter cor-
relation function ξDM through the mean bias b(M):

ξgg(r)= b
2
(Mgal) ξDM(r), (2)

ξdg(r)= b(MDLA) b(Mgal) ξDM(r), (3)
where Mgal is the mean galaxy halo mass, and MDLA is

the mean DLA halo mass, and b(M) is given by:
∫ ∞

M

p(M ′) b(M ′) dM ′ , (4)

where p(M) is the halo mass probability distribution
and b(M) is the bias function, which can be computed
using the extended PS formalism (e.g. Mo et al. 1993;
Mo & White 2002). Thus, from Eq. 2–3, if both ξdg and
ξgg are power-laws (ξ ∝ rγ) with the same slope γ, the
amplitude ratio of the cross- to auto-correlation is a mea-
surement of the bias ratio b(MDLA)/b(Mgal) from which
one can infer the halo masses MDLA/Mgal. The details
will be presented in section 4.2. Briefly, given that b(M)
is a monotonic increasing function of M , if ξdg is greater
(smaller) than ξgg, then the halos of DLAs are more (less)
massive than those of the galaxies.

In the remainder of this work, we will use only pro-
jected correlation functions, w(rθ), where rθ = DA(1 +
z)θ in co-moving Mpc with DA the angular diameter dis-
tance. This is necessary since (1) the gas column density
distribution is a 2-D quantity, and (2) this corresponds
to the situation when one relies on photometric red-
shifts (e.g. Bouché & Lowenthal 2003, BL04). w(rθ) is
directly related to spatial correlation functions ξ(r) if the
selection function is known. Following Phillipps et al.
(1978) and Budavári et al. (2003), the projected auto-
correlation function, wgg, of galaxies with a redshift dis-

tribution dN
dz is:

wgg(rθ)=

∫ ∞

0

dz
(

dN
dz

)2
g(z)−1 × (f(z)θ)1−γ rγ

0 Hγ

=(rθ)
1−γ rγ

0,gg Hγ

∫ ∞

0

dl
(

dN
dl

)2
, (5)

where dN
dl is the galaxy redshift distribution in physical

units, f(z) = DA(1 + z) is the co-moving line-of-sight

distance, g(z) = dr/dz = c/H(z), and Hγ =
Γ( 1

2
)Γ( γ−1

2
)

Γ( γ

2
)

(see Appendix A). The projected cross-correlation wdg

between a given absorber at a given redshift and the
galaxies (with a distribution dN

dz ) is:

wdg(rθ)=

∫

dN
dl ξ(

√

r2
θ + l2) dl , (6)

For galaxies distributed in a top-hat redshift distribu-
tion dN

dl of width Wz (normalized such that
∫

dN
dl dl = 1),

as in the case here, Equations 5 and 6 imply that the am-
plitudes of both wdg(rθ) and wdg(rθ) are inversely pro-
portional to Wz (see Appendix A for the derivations):

wgg(rθ)≃ (rθ)
1−γ rγ

0,gg Hγ ×
(

1

Wz

)2

Wz , (7)

wdg(rθ)≃ (rθ)
1−γ rγ

0,dg Hγ × 1

Wz
. (8)
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Therefore, the ratio of the amplitudes of the two
projected correlation functions wdg to wgg is simply

(r0,dg/r0,gg)
γ , or the bias ratio b(MDLA)/b(Mgal) from

which we infer the mean DLA halo mass, regardless of
the redshift distribution. This is an important result
for surveys that rely on photometric redshifts: the ra-
tio of the projected correlation is a true measure of the
bias ratio, regardless of contamination or uncertainty in
the actual redshift distribution, provided that the same
galaxies are used for wdg to wgg.

4. RESULTS

In section 4.1, we quantify the amplitude of the DLA-
galaxy cross-correlation relative to the galaxy-galaxy
auto-correlation in the SPH simulations. We show how to
invert the cross-correlation results into a mass constraint
in section 4.2. We show that this method is indepen-
dent of the galaxy sample that one uses (§ 4.3). Finally,
we compare these results to observational results in sec-
tion 4.4.

4.1. DLA-galaxy cross-correlation

The filled circles in Figure 4 show the DLA-galaxy
cross-correlation wdg using the entire sample of 115,000
DLAs and the 651 resolved galaxies. We computed
wdg(rθ) with the following estimator:

1 + wdg(rθ)=

〈

Nobs(rθ)

Nexp(rθ)

〉

, (9)

where Nobs(rθ) is the observed number of galaxies be-
tween rθ − dr/2 and rθ +dr/2 from a DLA and Nexp(rθ)
is the expected number of galaxies if they were uniformly
distributed, i.e. Nexp(rθ) = 2πrθΣgdr where Σg is the
galaxy surface density. <> denotes the average over the
number of selected DLAs (NDLA). In counting the pairs,
we took into account the periodic boundary conditions
of the simulations.

There are several reasons not to use other estima-
tors such as the Landy & Szalay (1993) (LS) estima-
tor. First, we want to duplicate as closely as possible
the method (and estimator) used in the observations of
Bouché & Lowenthal (2003) and BL04. But, more im-
portantly, the LS estimator is symmetric under the ex-
change galaxy-absorber, whereas here and for the obser-
vations of BL04, the symmetry is broken. This is due
to the absorber redshift being well known, while galaxies
have photometric redshifts with larger uncertainties and,
therefore, are distributed along the line of sight. This
broken symmetry is also fundamental in the derivation
of Eqs. 5–6. Had we used spectroscopic redshifts and ξ(r)
instead of w(rθ), the LS estimator would be superior.

Given that we use the galaxy surface density Σg to esti-
mate the unconditional galaxy density (see Eq. 1), the in-
tegral of Σg(1+wdg) over the survey area A will be equal
to the total number of galaxies, i.e.

∫

A Σg(1 + wdg)dA =

Ng. As a consequence,
∫

ΣgwdgdA = 0 and the corre-
lation will be negative on the largest scales, i.e. biased
low. This is the known ‘integral constraint’. In the case
of our 22.222h−2 Mpc2 survey geometry, we estimated
the integral constraint to be C = 0.04, or 2% of the
cross-correlation strength at 1h−1 Mpc. We added C to
wdg estimated from Eq. 9.

Fig. 4.— The filled circles show the projected DLA-galaxy cross-
correlation wdg(rθ) at z = 3 in this 22.222h−3 Mpc3 simulation.
The solid triangles show the projected auto-correlation wgg(rθ)
(offsetted by 0.03dex in the x–axis for clarity). The full sample of
115,000 DLAs and 651 resolved galaxies were used. The amplitude
ratio a = 0.73 ± 0.08, which is wdg/wgg, is found by fitting wdg

to the model ŵdg = a × ŵgg, where ŵgg is the fit to the galaxy-
galaxy auto-correlation (shown by the dashed line). The small
panel shows the 1σ contour of the χ2 distribution. An integral
constraint of C = 0.04 was used.

The uncertainty to wdg, σw, has two terms, the Poisson
noise and the clustering variance (see Eisenstein 2003,
references therein, and Appendix B). In Appendix B,
we show that σw will be proportional to 1/

√
NDLA

(Eq. B11).
There are several ways to compute σw in practice. The

proper way to compute σw would be to resample the
DLAs, since this would include the uncertainty due to
the finite the number of lines of sight. However, this is
valid for independent lines of sight, as in the case of an
observational sample (provided that NDLA is large, say
greater than 10) and will not be correct here given that
we have only one simulation, and that we have to use
the same galaxies for each simulated line of sight. The
uncertainty σw must then reflect that we used only one
realization of the large scale structure. For this reason,
we elected to use the jackknife estimator (Efron 1982),
i.e. by dividing the 22.222h−2 Mpc2 area into 9 equal
parts and each time leaving one part out. This will accu-
rately reflect the uncertainty in wdg due to the one large
scale structure used, but the S/N ratio (SNR≡ wdg/σw)
will not increase with

√
NDLA as expected (Appendix

B); it will saturate after a certain value of NDLA. We
find that indeed the SNR saturates at NDLA ≃ 40 (not
shown). This is a major difference from observational
samples, where each field is independent. In that case,
Eq. B11 applies and the SNR is proportional to

√
NDLA.

We computed the full covariance matrix from the
Njack = 9 realizations as follows:

COVij =
Njack − 1

Njack

Njack
∑

k=1

[wk(rθi
)−w(rθi

)]·[wk(rθj
)−w(rθj

)]

(10)
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where ωk is the kth measurement of the cross-correlation
and ω is the average of the Njack measurements of the
cross-correlation. The error bars in Fig. 4 show the di-
agonal elements of the covariance matrix, i.e. σw ≡√

COVii.
We computed the projected auto-correlation wgg(rθ)

of the same simulated galaxies used for wdg(rθ) in a sim-
ilar manner. We used the estimator shown in Eq. 9 to
compute wgg(rθ), where Nobs(r) is now the number of
galaxies between r − dr/2 and r + dr/2 from another
galaxy. The open triangles in Fig. 4 show the projected
auto-correlation wgg(rθ) of the 651 galaxies.

We fitted the galaxy auto-correlation with a power

law model (ŵgg = Aggr
β
θ ) by minimizing χ2 ∝ [w −

ŵ]T COV−1[w− ŵ], where w and ŵ are the vector data
and model, respectively, and COV−1 is the inverse of the
covariance matrix. We used Single Value Decomposition
(SVD) techniques to invert the covariance matrix, COV,
since it is singular and the inversion is unstable (see dis-
cussion in Bernstein 1994).

We then use that fit as a template to constrain the
amplitude of wdg, i.e.

ŵdg = a × ŵgg, (11)

where a is the amplitude ratio Adg/Agg of the correlation
functions. This assumes that the two correlation func-
tions have the same slope (see section 3). This method
also closely matches the method used by BL04 (see sec-
tion 4.4 below), and will make comparison to those ob-
servations straightforward.

The solid line in Fig. 4 shows the fit to wdg using
Eq. 11, where the best amplitude a is

a = 0.73 ± 0.08 . (12)

The top panel shows the χ2(a) distribution with the 1σ
range. In other words, the bias ratio b(MDLA)/b(Mgal)
is 0.73 ± 0.08. This can be converted into a correlation
length for wdg of a1/1.8 ≃ 84% times that of the galaxy
auto-correlation, i.e. r0,dg ≃ 0.84 × r0,gg.

Several authors (e.g. Berlind & Weinberg 2002;
Berlind et al. 2003, and reference therein) have shown
that the small scales (r < 1 Mpc) of the correlation
function are the scales sensitive to variations in the
halo occupation number. At those scales, ξ(r) is very
susceptible to galaxy pairs that are in the same halo.
Therefore, when we repeated our analysis with the six
sub-samples, we restricted ourselves to rθ > 1h−1 Mpc.
In this case, for the full sample, we find the amplitude
ratio to be a = 0.70 ± 0.18, in good agreement with
Eq. 12.

The reader should not use these results (e.g. Eq. 12),
obtained with 651 galaxies and 115,000 DLAs, to scale
the errors to smaller samples because we use the same
large scale structure for all the 115,000 simulated DLAs.
As mentioned earlier, the large scale structure dominates
the uncertainty at large NDLA, and this is seen in the fact
that the SNR saturates after NDLA ≃ 40. We come back
to this point at the end of section 4.4.

4.2. The mass of DLA halos from the amplitude of wdg

Eq. 12, i.e. the bias ratio b(MDLA)/b(Mgal), can be
converted into a mean halo mass for DLAs if one knows
the functional form of b(M) and Mgal. One can use

Fig. 5.— Left: The z = 3 bias b(M) as a function of halos of mass
M from the extended Press-Schechter theory as in Mo & White
(2002). Right: Same in log M space. In both panels, the dashed
line is a linear fit to the curve over the mass range log M ∼ 11.5—
12.5.

the PS formalism (e.g. Mo & White 2002) or the auto-
correlation of several galaxy sub-samples to constrain the
shape of b(M). We will refer to these as the ‘theoretical
method’ and as the ‘empirical method’, respectively.

4.2.1. Theoretical biases b(M)

One can compute the theoretical biases for any popu-
lation (Eq. 4) and predict the bias ratio a priori if the
mass probability distribution p(M) is known. Naturally,
p(M) is known in our simulation (Fig. 3). We will show
that the predicted bias ratio is well within the 1σ range
of our results (Eq. 12), demonstrating the reliability of
the method.

Given that galaxies and the DLAs actually lie in halos
of different masses, the theoretical biases are found from
Eq. 4, i.e.:

bDLA(> M)=

∫ ∞

M

pDLA(M ′) b(M ′) d log M ′ , (13)

bgal(> M)=

∫ ∞

M

pgal(M
′) b(M ′) d log M ′ , (14)

where p(M) is the appropriate mass distribu-
tion (p(M) ≡ dn

d log M ) (normalized such that
∫

p(M)d log M = 1) and b(M) is the bias of halos
of a given mass M . The bias function b(M) is also a
function of redshift z, i.e. b(M, z), and can be computed
at a given z from the extended PS formalism (e.g.
Mo & White 2002). It is shown in Fig. 5 for z = 3 on a
linear-linear (left) and log-linear (right) plot.

The mass distributions pDLA and pgal were shown in
Fig. 3. Because p(M) is bounded at some low mass limit
Mmin (due to limited resolution or to observational selec-
tion), the mean bias b of a given galaxy sample is defined

by bgal = b(> Mmin).

The predicted biases b are shown in the left panel of
Fig. 6. The predicted biases b for the sub-samples, the
651 galaxies, and the DLAs are represented by open
squares, the filled square and the filled circle, respec-
tively. From b for the 651 galaxies (filled square) and for

DLAs (filled circle), the theoretical bias ratio bDLA/bgal

is found to be 0.771, very close to the bias ratio mea-
sured from the clustering of galaxies around the DLAs
(Eq. 12).

When the distributions p(M) are not known, we can
infer a mass ratio from the bias ratio using the approx-
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Fig. 6.— Left: The symbols show the mean bias b as a function of
the mean halo mass < log Mh > for the DLAs (circle), full galaxy
sample (filled square) and the sub-samples (open squares), labeled
1 to 6. The bias is calculated using Eqs. 13–14 and the distributions
pDLA and pgal (shown in Fig. 1). From the filled symbols, the pre-
dicted bias ratio is found to be 0.771. The solid line is a linear fit to
the points and is 5% away from to the linear approximation (Fig. 5)
shown by the thick dashed line. Right: Same as left, but using the
empirical method (see text) instead of the mass distributions. The
triangles show the mean bias for the different galaxy samples using
b ∝

√

Agg (Eq. 2) where the normalization was adjusted to match
the amplitude of the dashed line. The bias for the 651 galaxies is
represented by the filled triangle. The open triangles show b for the
sub-samples. The right axis scale shows the corresponding correla-
tion length r0. For the DLAs, the shaded areas show the measured
bias ratio a = 0.73 ± 0.08 and the corresponding halo mass range
< log MDLA(M⊙) > = 11.13+0.13

−0.13 using the mean mass of the 651
resolved galaxies: < log Mgal > = 11.57. In both panels, the ver-
tical dashed line shows the ‘true’ mean < log MDLA >= 11.16 ob-
tained from the DLA mass distribution pDLA(M) shown in Fig. 3.
Both panels are for z = 3.

imation b(M) = b0 + b1 log M 1, over a restricted mass
range. In each panel in Fig. 5, the dashed line shows
such a linear fit over the mass range log M ∼ 11—12.5.
Using this approximation, the mean bias b is given by

b(> Mmin)=

∫ ∞

Mmin

p(M ′) b(M ′) d log M ′

= b0 + b1

∫ ∞

Mmin

p(M ′) log M ′ d log M ′

= b0 + b1 < log M > , (15)

where < log M > is the first moment of the distribu-
tion p(M). Thus, the mean bias for the galaxies and
the DLAs are bgal = b(< log Mgal >), and bDLA = b(<
log MDLA >), respectively, where <> is the first moment
of the appropriate mass distribution.

In Figure 6 (left panel) the solid line is a linear fit
to the theoretical biases b(< log M >), and is 5% away
(in amplitude) from the linear approximation (Eq. 15)
shown by the thick dashed line. The vertical dashed line
indicates the mean DLA halo mass < log MDLA > that
is found from the first moment of the mass distribution
in Fig. 3. This shows that using a linear approximation
of b(M) is equivalent to using the bias function b(M)
from Mo & White (2002), provided that the DLA-galaxy
mass ratio is not larger than a decade. Indeed, the 5%
difference in amplitude cancels out when taking the bias
ratio.

4.2.2. Empirical method for b(M)

1 One can use b(M) = b′0 +b′1 M instead, and replace < log M >
by < M > in the remaining of the discussion.

To infer < log MDLA > from Eq. 12 or from observa-
tions, one needs to find the coefficients b0, and b1. To
do so, one can either use the PS formalism (Mo & White

2002) or use the fact that b is proportional to
√

Agg

(Eq. 2), where Agg is measured for each of the galaxy
sub-samples covering the mass range log M ∼ 11.5—
12.5. Figure 6 (right panel) illustrates this point. The
thick dashed line is again the linear approximation shown
in Fig. 6. The open (filled) triangles show the mean bi-
ases b of the sub-samples (full sample) assuming that
b ∝

√

Agg (Eq. 2). The normalization is set to match
the dashed line, and is not relevant since we measure a
ratio of two biases. This shows that one can use either
the PS formalism (Mo & White 2002) or use

√

Agg to
find the coefficients b0, and b1.

In the case where the auto-correlation length r0,gg has
been determined, one can use the right y–axis scale of
Fig. 6 the infer the DLA halo mass from the measured
bias ratio.

4.2.3. The mean DLA halo mass

To actually determine < log MDLA > from our cross-
correlation result (Eq. 12), we used (i) the linear approx-
imation to the PS bias (thick dashed line in Fig. 6), and
(ii) < log Mgal >= 11.57 for the 651 galaxies. We infer

a mean DLA halo mass of < log MDLA >= 11.13+0.13
−0.13,

shown by the vertical shaded area on the right panel of
Fig. 6. Our cross-correlation result (Eq. 12) is shown by
the horizontal shaded area. The ‘true’ DLA mass de-
rived from pDLA (Fig. 3) and Eq. 13 is shown by the
vertical dashed line at log MDLA = 11.16. Similarly, us-
ing fits to b(M) in linear space (left panel of Fig. 5), we
infer < MDLA >= 2.12+2.96

−2.0 × 1011, close to ‘true’ mean

1/NDLA

∑

i MDLA,i = 3.94 × 1011M⊙.
In summary, the amplitude of wdg relative to wgg, a =

0.73 ± 0.08 (Eq. 12), measured in this simulation implies
that DLAs have halos of (logarithmically) averaged mass:

< log MDLA(M⊙) > = 11.13+0.13
−0.13 , (16)

close to the true 11.16. This shows that the cross-
correlation technique uniquely constrain the mean of the
halo mass distribution, despite the fact that DLAs oc-
cupy a range of halo masses and some halos contain mul-
tiple galaxies and multiple DLA systems. In the next
section, we will show that the technique is reliable in the
sense that it will lead to the same answer regardless of
the galaxy sample used.

From the right panel of Fig. 6, we can now predict the
cross-correlation strength for real z = 3 LBGs, which
have a correlation length of r0,gg ≃ 4 Mpc (e.g. ASSP03;
Adelberger et al. 2004), corresponding to halos mass of
Mh ≃ 1012M⊙. From the figure, one expects that the
correlation ratio or the bias ratio is ∼ 1.75/3 = 0.58,
and thus the DLA-LBG cross-correlation would have a
correlation length r0,dg = 4 × (0.58)1/1.6 ≃ 2.85 Mpc.

Potential systematics include the few massive halos
(Mh > 1013M⊙) that are missed due to the limited vol-
ume (22.222h−3 Mpc3) of our simulation. However, since
DLAs are cross-section selected these few massive halos
are too scarce to change the mean < log MDLA > of the
DLA mass probability distribution (Fig. 3, right). Natu-
rally, if there were such massive halos in our simulations,
the amplitude of the cross-correlation would be different.
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We address this point in a general way in the next sec-
tion (4.3) and show that the derived < log MDLA > is
independent of the galaxy sample used.

Our treatment of feedback is limited to energy injection
of supernovae, and thus does not treat phenomenon like
winds. Nagamine et al. (2004) included winds in simi-
lar simulations and showed that the DLA abundance de-
creases with increasing wind strength, but the mean DLA
halo mass will be shifted towards higher mass in the pres-
ence of winds. Nagamine et al. (2004) also showed that
the DLA abundance (extrapolated to 108M⊙, i.e. below
the resolution limit, using the PS formalism) also de-
creases with increasing resolution, but again, the mean
DLA halo mass will be shifted towards higher mass in
higher resolution runs.

Given that (i) a fraction of DLAs are expected to
arise in halos below our mass resolution of Mh & 5.2 ×
1010M⊙ and (ii) our total DLA abundance extrapolated
to 108M⊙, as in Nagamine et al. (2004), over-predicts
the observed DLA abundance, Eq. 16 is an upper limit.
Furthermore, given the results of Nagamine et al. (2004)
showed that both winds and better resolution increase
the mean DLA halo mass, we conclude that a simula-
tion with SNe winds and with a better mass resolution
would lower our mean DLA mass. Reading from Fig. 5 in
Nagamine et al. (2004), we estimate that < log MDLA >
is ∼ 10.6 for their high resolution run with strong winds,
or a factor of ∼ 5 smaller than here. Thus, Eq. 16 is an
upper limit.

4.3. The cross-correlation is independent of the galaxy
sample

From Eqs. 2 and 3, we expect the relative amplitude
a to vary as a function of the halo mass of the galaxy
sample Mh. We therefore performed the same cross-
correlation calculations for each of the six sub-samples
presented in section 2 (see also Fig. 1), and ask the ques-
tion: is the inferred < MDLA > the same in each case?
We restricted ourselves to scales rθ > 1 Mpc (from the
discussion in § 4.1).

Fig. 7 shows the measured amplitude or bias ratio a
for each of the sub-samples. The amplitude ratio a for
the sub-samples (full sample) is represented by the open
squares (filled circle) with solid error bars. The filled
circle with dotted error bars represents the full sample
shown in Fig. 4 from which we inferred a = 0.73 ± 0.08
and log MDLA = 11.13+0.13

−0.13. As expected, a increases
with larger sub-samples, or with decreasing galaxy halo
mass Mh.

For the method to be self-consistent, the derived DLA
halo mass < log MDLA > should be the same for all
the sub-samples. Given Eq. 15, < log MDLA >= 11.13
determined in the previous section, and a mean galaxy
halo mass < log Mh >, we can predict the bias ratio a.
The solid line in Fig. 7 represents this prediction. One
sees that the measured bias ratio for the sub-samples
(open squares) follow the expected bias ratio (solid line).
For comparison, the dashed lines show the expected am-
plitude ratios a if DLAs were in halos of mean mass
< log MDLA >= 10.5, 11.5 and 12 (from bottom to top)
instead of the inferred < log MDLA >= 11.13.

We conclude that the method is self-consistent: the
mass < log MDLA > is independent of the galaxy sam-
ple used and that the clustering statistics of DLAs with

Fig. 7.— The DLA-LBG cross- to auto-correlation amplitude
ratio, a (defined in Eq. 11), as a function of the mean galaxy halo
mass < log Mh > using the full DLA sample of ∼ 115, 000 lines
of sight. Note that a is also b(MDLA)/b(Mgal). Each of the sub-
samples (see Fig. 1) is labeled 1 to 6. The filled circle with solid
error bars shows a for the entire sample of 651 galaxies and 115,000
DLAs. The filled circle with dotted error bars (offsetted along the
x–axis) shows a fitted over all scales for the entire sample of 651
galaxies and 115,000 DLAs from which we infer a mean DLA halo
mass of < log MDLA >= 11.13+0.13

−0.13. For this mass, the expected
amplitude ratio a for the six sub-samples is shown by the solid
line. The expected a follows closely the values found for the sub-
samples, showing that one will get the same DLA halo mass for any
galaxy sub-sample, as long as the same galaxies are used for wgg

and wdg, i.e. that the method is self-consistent. For comparison,
the dashed lines show the expected a if the mean DLA halo mass
< log MDLA > were 10.5, 11.5 and 12 (from bottom to top) instead.

galaxies can be used to infer their mass, and that large
observational samples will shed new light on their nature.
A direct observational measure of the relative ampli-
tude a (Cooke 2005, private communication), will show
whether or not DLAs are massive disks (1012M⊙) as pro-
posed by Wolfe et al. (1986, 1995); Prochaska & Wolfe
(1997b).

4.4. Comparison to observations

In this section, we first briefly review past and recent
observations of clustering between galaxies and DLAs
(§ 4.4.1). We then (§ 4.4.2) focus on comparing the sim-
ulated DLA-LBG cross-correlation to the observational
results of BL04, in a meaningful way, i.e. with a sample
of similar size.

4.4.1. Observations of the DLA-galaxy cross-correlation
at z = 3

Early attempts to detect diffuse Lyα emission from
DLAs at z > 2 using deep narrow band imaging
(Lowenthal et al. 1995) did not reveal the absorber but
unveiled a few companion Lyα emitters (Lowenthal et al.
1991), hinting at the clustering of galaxies around DLAs.
This prompted Wolfe (1993) to calculate the two-point
correlation function at < z >= 2.6 and to conclude
that, indeed, Lyα emitters are clustered near DLAs at
the 99% or greater confidence level. Some recent Lyα
searches have succeeded in unveiling the absorber (e.g.
Fynbo et al. 1999).

Francis & Hewett (1993) reported the discovery of
super-clustering of sub-DLAs at z ∼ 2.4 and z ∼ 2.9:
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a total of four Hi clouds are seen in a QSO pair sepa-
rated by 8′, each being at the same velocity. Recent re-
sults from narrow-band imaging of the Francis & Hewett
field shows that spectroscopically confirmed Lyα emit-
ters are clustered at the redshift of the strongest Hi
cloud at z = 2.9 (log NHi = 20.9) towards Q2138-4427
(Fynbo et al. 2003). Roche et al. (2000) identified eight
Lyman-alpha emitting galaxies near the DLA at z = 2.3
towards PHL 957 in addition to the previously discov-
ered Coup Fourré galaxy (Lowenthal et al. 1991), imply-
ing the presence of a group, filament, or proto-cluster
associated with the DLA. Other evidence of clustering
include the work of Ellison et al. (2001), who found that
the DLA at zabs = 3.37 towards Q0201+1120 is part of a
concentration of matter that includes at least four galax-
ies (including the DLA) over transverse scales greater
than 5h−1 Mpc; and D’Odorico et al. (2002) who showed
that out of ten DLAs in QSO pairs, five are matching sys-
tems within 1000km s−1. They concluded that this re-
sult indicates a highly significant over-density of strong
absorption systems over separation lengths from ∼ 1 to
8 h−1 Mpc.

Gawiser et al. (2001) studied the cross-correlation of
LBGs around one z ∼ 4 DLA. Probably due to the high
redshift of their DLA, Gawiser et al. (2001) found that
wdg(rθ) is consistent with 0, i.e. they found that the
distribution of the eight galaxies in that field (with spec-
troscopic redshifts) is indistinguishable from a random
distribution. Their data did not allow them to put limits
on the amplitude of wdg.

ASSP03 found a lack of galaxies near four DLAs and
concluded that the DLA-LBG cross-correlation is signif-
icantly weaker than the LBG-LBG auto-correlation at
the 90% confidence level. They found two LBGs within
rθ = 5.7h−1 Mpc and within Wz < 0.0125 (∼ 8h−1 Mpc)
whereas ∼ 6 were expected if the cross-correlation has
the same amplitude as the galaxy auto-correlation. Be-
cause of the field of view available, both of these studies
were not sensitive to scales larger than rθ ∼ 5h−1 Mpc,
which is important since the relevant scales to mea-
sure the DLA-LBG cross-correlation extend up to rθ ∼
10h−1 Mpc.

However, the results of ASSP03 can be used to put
an upper limit on wdg/wgg through the following steps:
First, note that the two galaxies (in NDLAs = 4 fields)
observed by Adelberger et al. give

< Nobs >=< Nexp > (1 + ξdg) = 0.5(2/4) , (17)

and the six galaxies expected if ξdg = ξgg give < Nexp >

(1 + ξgg) = 6/4, where ξ is the volume average of the

correlation function. Second, we find ξgg ≃ 1.1 for the
LBG auto-correlation published in ASSP03 and assum-
ing that the cell used is a sphere centered on the DLAs
with an effective radius of ∼ 6h−1 Mpc, i.e. with the
same volume as the cylindrical cell used by ASSP03.
Thus, the expected number of galaxies per DLA field
is < Nexp >= 0.68 if ξdg = 0, and the total num-
ber of galaxies is 4× < Nexp >= 2.85. Clearly their
measurement of 2 galaxies is consistent with no cross-
correlation. From Eq. 17, we can infer that 1+ ξdg = 0.7

using < Nexp >= 0.68. Third, the uncertainty to ξdg,
σξ, can be estimated using the results shown in Ap-
pendix B. The variance V (ξ) = σ2

ξ is made of two

terms, the shot noise variance Vsn and the clustering
variance Vcl. The shot noise variance to < Nobs > is
V (< Nobs >)sn =< Nobs >= 0.5 (Eq. B2). The 2pt clus-

tering variance (Eq. B6) is simply N
2
(Aξgg) = N

2
(2.50)

where A = J2/K1 = 2.28. The 3pt clustering variance
(Eq. B7) is ∼ 0 since ξdg ≃ 0. Finally, from Eq. B11,

σξ = 1√
4

1√
2.85/4

√

(1 + 2.5
0.7 )

√
0.7 ≃ 1.06, and a 1-sigma

(2-sigma) upper limit to ξdg is ξdg + 1(2)σξ = −0.3 +

1.06(2.12) = 0.76(1.82), respectively. Since ξgg = 1.1,
the 1-sigma (2-sigma) upper limit to the amplitude ratio

is ξdg/ξgg . 0.70(1.65), respectively. This rough calcu-
lation is quite consistent with Adelberger’s results where
it was found that ξdg < ξgg at the 90% confidence level
using Monte Carlo simulations.

Given that the relevant scales to measure the DLA-
LBG cross-correlation extend up to rθ ∼ 10h−1 Mpc,
Bouché & Lowenthal (2003) were able to first detect and
measure a DLA-LBG cross-correlation signal (BL04) us-
ing the wide-field (0.35 deg2 or ∼ 402 Mpc2 co-moving
at redshift z = 3) imager MOSAIC on the Kitt Peak
4m telescope. Bouché & Lowenthal (2003) showed that
there was an over-density of LBGs by a factor of ∼ 3
(with 95% confidence) around the zabs ≃ 3 DLA to-
wards the quasar APM 08279+5255 (zem = 3.91) on
scales 2.5 < rθ < 5h−1 Mpc. Extending the results of
Bouché & Lowenthal (2003) to three z ∼ 3 DLA fields,
BL04 probed the DLA-LBG cross-correlation on scales
rθ ∼ 5–20h−1 Mpc and found (i) a DLA-LBG cross-
correlation with a relative amplitude wdg = (1.62 ±
1.32) × wgg that is greater than zero at the ∼ 95% con-
fidence level, and (ii) wdg is most significant on scales
5–10h−1 Mpc. In other words, DLAs are clustered with
LBGs, but unfortunately the sample size did not allow
BL04 to test whether a is greater or smaller than 1. Soon,
the ongoing survey of z ≃ 3 DLAs of Cooke et al. (2004)
will double the sample of BL04.

In a slightly different context Bouché et al. (2004) ap-
plied successfully the technique presented here to 212
z ≃ 0.5 Mg ii systems (of which 50% are expected to
be DLAs) using luminous red galaxies (LRGs) in the
Sloan Digital Sky Survey Data Release 1. They found
that the Mg ii–LRG cross-correlation has an amplitude
0.67 ± 0.09 times that of the LRG–LRG auto-correlation,
over co-moving scales up to rθ = 13 h−1 Mpc. Since
LRGs have halo-masses greater than 3.5 × 1012 M⊙ for
MR . −21, this relative amplitude implies that the
Mg ii host-galaxies have halo-masses greater than ∼ 2–
8× 1011 M⊙, These results show how powerful the cross-
correlation technique is.

To summarize the current observational situation on
the z = 3 DLA-LBG cross-correlation, ASSP03 finds that
the amplitude ratio is ξdg/ξgg . 0.70, and BL04 finds

that ξdg/ξgg & 0.30, both at the 1-sigma level. Using

Monte-Carlo simulations, ASSP03 finds ξdg/ξgg < 1.0,

at the 90% confidence level, and BL04 finds ξdg/ξgg >
0.0, at the 95% confidence level. The DLA halo mass
range allowed by these observations is still large: it covers
log MDLA ∼ 10–12M⊙

2.

2 After this paper submission, we learned that Monaco et
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4.4.2. Simulation of present observations: wdg with
small samples

There are many significant differences between the
observational sample of BL04 and the present simu-
lated one. First, the shape of the volume is very
different: The survey volume of BL04 is 40 × 40 ×
100h−3 Mpc3 (co-moving) deep, while these simulations
are 22.222h−1 Mpc (co-moving) on a side. Given that
the survey of BL04 contains about 80–120 LBGs per
field, their observed LBG number density corresponds
to about seven galaxies per 22.222h−3 Mpc3. Naturally,
seven galaxies are not a fair sample of the LBG lumi-
nosity function. This is an inherent problem due to the
size of the simulation, rendering the comparison between
the observed and the simulated cross-correlation difficult.
Second, as mentioned in § 2, the simulated LBGs are se-
lected according to their SFR, while the observed LBGs
are color selected. Third, the same galaxies are used for
every simulated line of sight. These differences limit our
ability to perform a direct comparison to observations.

With these caveats in mind, we can repeat our analysis
of section 4.2 in the limit of small NDLA and with similar
galaxy number densities. Because, to first order, σw ∝
(
√

NDLANgal)
−1 (Eq. B11), a sample made of 10 DLAs

and 25 galaxies per 22.2222h−2 Mpc2 ‘field’ is expected to
have similar errors to the sample of BL04 made of 3 DLAs
and 100 galaxies per 402h−2 Mpc2 field. As for the full
sample, we restricted ourselves to scales rθ > 1h−1 Mpc,
which also corresponds to the most relevant scales 5–
10h−1 Mpc of the observations of BL04. We find that
the relative amplitude of the cross-correlation with 10
lines of sight and 25 galaxies is a = 0.77± 0.53, whereas
BL04 found a = 1.62 ± 1.32, i.e. both with the same
signal-to-noise ratio.

This confirms the results of BL04. But, more im-
portantly, one can now use the result for this sample
made of 10 DLAs and 25 galaxies (with a surface density
Σg ∼ 0.05 Mpc−2) as a benchmark to predict the SNR
for the larger samples of future observations, given that
the SNR will be proportional to

√

NgalNDLA (Eq. B11).

5. CONCLUSIONS

Motivated by the fact that (i) the amplitude of
the cross-correlation is a measurement of the mean
DLA halo mass and (ii) observational constraints
(Gawiser et al. 2001;ASSP03; BL04 and Cooke et al.
2005, private communication) are reaching a turning
point and the DLA halo masses are starting to be con-
strained, we tested the cross-correlation technique using
Tree-SPH cosmological simulations. The method uses
the ratio of the cross-correlation between DLAs and high-
redshift galaxies to the auto-correlation of the galaxies
themselves, which is (in linear theory) the ratio of their
bias factor, to infer the mean DLA halo mass.

In a Tree-SPH simulation (Katz et al. 1996a) paral-
lelized by Davé et al. (1997) with 1283 particles in a vol-
ume 22.2223 h−3 Mpc3 (co-moving), we find that:

1. scales rθ > 1–15 h−1 Mpc are the most relevant

al.(2005, private communication) constrained the halo mass of a
few individual DLAs to be around 5 × 1011 M⊙. Their mass es-
timates come from the emission-absorption redshift difference as a
proxy for a rotation curve.

scales to constrain the mean DLA halo mass using
the projected cross-correlation wdg(rθ);

2. the DLA-galaxy cross-correlation has an amplitude
wdg = (0.73 ± 0.08) × wgg, close to the predicted
value of 0.771 using the Mo & White (2002) for-
malism;

3. the inferred mean DLA halo mass is

< log MDLA(M⊙) > = 11.13+0.13
−0.13 , (18)

in excellent agreement with the true values of the
simulations, i.e. log MDLA = 11.16. We can thus
conclude that the cross-correlation technique yields
the first moment of the DLA halo mass distribu-
tion, even when DLAs and galaxies occupy a broad
range of halos with massive halos containing mul-
tiple galaxies with DLAs;

4. if we consider subsets of the simulated galaxies with
higher star-formation rates (representing LBGs),
the cross-correlation technique is self-consistent,
i.e. the DLA mass inferred from the ratio of the
correlation functions does not depend on the galaxy
sample used. This demonstrates the reliability of
the method;

5. for real z = 3 LBGs with a correlation length
r0,gg ≃ 4h−1 Mpc (Adelberger et al. 2003, 2004),
our results imply that the DLA-LBG cross-
correlation is expected to have a correlation length
r0,dg ≃ 2.85h−1 Mpc;

6. with small samples (with 10 lines of sight and
25 galaxies) matching the statistics of BL04; the
relative amplitude of the cross-correlation is a =
0.77±0.53, i.e. with a signal-to-noise ratio (SNR∼
1.3–1.5) comparable to BL04, where they found
a = 1.62 ± 1.32.

In short, the cross-correlation between galaxies and
DLAs is a powerful and self-consistent technique to con-
strain the mean mass of DLAs, and we have demon-
strated its reliability. Given the resolution limits of the
simulation used here (Mh & 5.2 × 1010M⊙), our values
are strictly upper limits. These simulation results sug-
gest that DLAs are expected to be less massive than
z = 3 LBGs by a factor of at least ∼ 4.8.

Recently, Cassata et al. (2004) studied the morphology
of K-selected galaxies at redshifts up to z = 2.5 and
found that the late type fraction drops beyond z > 2.
Erb et al. (2004) show that the kinematics of 13 z >
2 morphologically elongated galaxies are not consistent
with those of an inclined disk. Furthermore, the virial
mass of these galaxies is in the range of a few 1010M⊙
up to 5×1010 M⊙. These results and the ones presented
here disfavor the presence of large massive 1012M⊙ disk
at z > 2 and therefore the massive disk hypothesis for
DLAs.

Current observational samples are just starting to put
constraints on wdg/wgg for z = 3 DLAs. BL04 found
wdg/wgg > 0 at the 95% confidence level, and ASSP03
found < 1 at the 90% confidence level, allowing the mass
range < log MDLA >∼ 10–12M⊙. Future observations
will be able to distinguish between models in which DLAs
reside in low mass halos from those in which DLAs are



11

massive disks occupying only high mass halos thanks to
planned wide-field imagers.
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APPENDIX

CROSS-CORRELATION AND AUTO-CORRELATION FUNCTIONS

For a given absorber with galaxies distributed with dN
dz , one may think that the projected auto-correlation wp,gg(rθ)

is proportional to
∫ (

dN
dz

)2
dz while the cross-correlation wdg(rθ) is proportional to

∫ (

dN
dz

)1
dz. Thus, at first glance,

their ratio is not very useful. Below we show the situation to be not so trivial. In this appendix, we merely connect
results previously published to show that the amplitude of both wgg(rθ) and wdg(rθ) are proportional to 1/Wz, where
Wz is the redshift width of the galaxy distribution (determined by the box size or by observational selections such as
photometric techniques).

First, we list some definitions and three results (Eq. A1–A3) that will be useful later. For a 3D correlation function
ξ(r) = (r/r0)

−γ , the projected correlation function wp(rp) is (Davis & Peebles 1983):

wp(rp)=

∫ ∞

∞
dy ξ(rp, y) =

∫ ∞

∞
dy ξ(

√

r2
p + y2)

= (rp)1−γ rγ
0 Hγ (A1)

where ξ(rp, y) is the 3D correlation function decomposed along the line of sight y and on the plane of the sky rp, i.e.

r2 = y2 + r2
p. Hγ is in fact the Beta function B(a, b) =

∫ 1

0 ta−1 (1− t)b−1 dt evaluated with a = 1/2 and b = (γ − 1)/2,

i.e. Hγ = B(1
2 , γ−1

2 ) =
Γ( 1

2
)Γ( γ−1

2
)

Γ( γ

2
) .

In appendix C of ASSP03, one finds the expected number of neighbors between rθ − dr/2 and rθ + dr/2 within a
redshift distance |∆z|<rz:

wp(rθ; <rz)=
1

rz

∫ rz

0

dl ξ(
√

r2
θ + l2)

=
1

2rz
(rθ)

1−γ rγ
0 Hγ Ix(

1

2
,
γ − 1

2
) (A2)

where x = r2
z/(r2

z + r2
θ) and Ix is the incomplete Beta function Bx(a, b) =

∫ x

0
ta−1 (1− t)b−1 dt normalized by B(a, b):

Ix(a, b) ≡ Bx(a, b)/B(a, b).
Many papers (Phillipps et al. 1978; Peebles 1993; Budavári et al. 2003) have shown that the angular correlation

function is:

w(θ) = (θ)1−γ rγ
0 Hγ ×

∫ ∞

0

dz
(

dN
dz

)2
g(z)−1f(z)1−γ (A3)

where g(z) = dr/dz = c/H(z) and f(z) = Dc(z) is the co-moving line-of-sight distance to redshift z, i.e. Dc(z) =
∫ z

0
dt c

H(t) .

Equation A3 can be derived from the definitions of the angular and 3D correlation functions, w(θ) and ξ(r) (e.g.
Phillipps et al. 1978). We reproduce the derivation here and extend it to projected auto- and cross-correlation func-
tions. The probabilities of finding a galaxy in a volume dV1 and another in a volume dV2 at a distance r = |r2−r1|,
along two lines of sight separated by θ are:

dP (θ)=N 2 dΩ1dΩ2[1 + w(θ)] or (A4)

dP (r)=n(z)2 dV1dV2[1 + ξ(r)] (A5)

where N is the number of galaxies per solid angle, i.e. dN/dΩ, and n(z) is the number density of galaxies, which
can be a function of redshift. Given that N = 1

dΩ

∫

n(z)dV (z) and that dV = f2(z)g(z) dΩdz, N ≡
∫

dz dN
dz =

∫

dz n(z)f2(z)g(z).
To relate w(θ) and ξ(r), one needs to integrate Eq. A5 over all possible lines-of-sight separated by θ (i.e. along z1

and z2) and equate it with Eq. A4:

N 2[1 + w(θ)] =

∫ ∞

0

dz1f(z1)
2g(z1)n(z1) ·

∫ ∞

0

dz2f(z2)
2g(z2)n(z2)[1 + ξ(r12)] . (A6)
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In the regime of small angles, the distance r12 (in co-moving Mpc) can be approximated by:

r2
12 = r2

1 + r2
2 − 2r1r2 cos θ

≃ (r1 − r2)
2 + r2θ2 with r =

r1 + r2

2

≃ (g(z)(z1 − z2))
2 + f(z)2θ2 with z =

z1 + z2

2

≃ g(z)2y2 + f(z)2θ2 with y = z1 − z2 . (A7)

Changing variables in Eq. A6 from (z1, z2) to (z, y), assuming the the major contribution is from z1 ≃ z2 and using
Eq. A7, the angular correlation function is

w(θ) =

∫ ∞
0

dzf(z)4g(z)2n(z)2
∫ ∞
−∞ dyξ(

√

f(z)2θ2 + g(z)2y2)
[∫ ∞

0
dzf2(z)g(z)n(z)

]2 . (A8)

Changing variables to l = g(z)y, using Eq. A1 and using a normalized redshift distribution, i.e.
∫

dz dN
dz = 1, Eq. A8

becomes

w(θ) =

∫ ∞

0

dz
(

dN
dz

)2
g(z)−1 × (f(z)θ)1−γ rγ

0 Hγ (A9)

which leads to Eq. A3 (Eq. 9 in Budavári et al. 2003) and is one version of Limber’s equations.
In this paper, we measured the projected auto-correlation of the LRGs, wgg(rθ), where rθ = f(z)θ 3. Following the

same steps as above with rθ instead of θ, and dV = (drθ)
2g(z)dz, wgg(rθ) is:

wgg(rθ) = r1−γ
θ rγ

0,gg Hγ

∫ ∞

0

dz
(

dN
dz

)2
g(z)−1 (A10)

In the case of the projected cross-correlation, wdg(rθ), the conditional probability of finding a galaxy in the volume
dV2 given that there is an absorber at a known position r1 is, by definition (e.g. Eisenstein 2003),

dP (2|1)(rθ)=Ng dΩ2[1 + wdg(rθ)] (A11)

dP (2|1)(r)=ng(z) dV2[1 + ξdg(r)] . (A12)

Using the same approximations (Eq. A7) and one integral along the line of sight z2 (keeping the absorber at z1), one
finds that the projected cross-correlation is:

wdg(rθ)=

∫ ∞

0

dz2f(z2)
2g(z2)n(z2)ξdg(r12)

=

∫ ∞

0

dz
(

dN
dz

)

ξdg(
√

r2
θ + g(z)2(z1 − z2)2)

=

∫ ∞

0

dy g(z)
(

dN
dz

)

g(z)−1ξdg(
√

r2
θ + g(z)2y2)

=

∫ ∞

0

dl
dN

dl
ξdg(

√

r2
θ + l2) (A13)

≃ 1

Wz
× (rθ)

1−γ rγ
0,dg Hγ , (A14)

where we approximated dN
dz with a normalized top-hat of width Wz = 2rz, used Eq. A2, and the fact that Ix ≃ 1 since

x = r2
z/(r2

z + r2
θ) ≃ 1 for a redshift width Wz of 20h−1 Mpc and rθ = 1h−1 Mpc 4. Thus, as one would have expected,

the cross-correlation is inversely proportional to the width of the galaxy distribution.
Naturally, in Eq. A11 and A12, the redshift of galaxy 1 (i.e. the absorber) is assumed to be known with good

precision. If the absorber population had poorly known redshifts, one would need to add an integral to Eq. A13,
washing out the cross-correlation signal further.

For the projected auto-correlation (Eq. A10), if one approximates dN
dz by a top-hat function of width Wz, then

wgg(rθ)= (rθ)
1−γ rγ

0,gg Hγ ×
∫ ∞

0

dz g(z)
(

dN
dz

)2
g(z)−2

=(rθ)
1−γ rγ

0,gg Hγ ×
∫ ∞

0

dl

(

dN

dl

)2

≃
(

1

Wz

)2

Wz × (rθ)
1−γ rγ

0,gg Hγ , (A15)

3 In general this should be DA(1 + z)θ where DA is the angular distance. For a flat universe, DA(1 + z) = DM = Dc = f(z) where DM

is the co-moving transverse distance, using D. Hogg’s notations (Hogg 1999).
4 Ix = 0.94 for Wz = 22.222 h−1 Mpc and rθ = 1 h−1 Mpc.
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which shows that the auto-correlation depends on the redshift distribution of the galaxies in the same way as the
cross-correlation, i.e. ∝ 1/Wz. The reason for this is that the redshift distribution dN

dz has a very different role with
respect to the correlation functions, which can be seen by comparing Eqs. A10 and A13. It is this very different role
that leads to the same 1/Wz dependence.

In the case of a Gaussian redshift distribution dN
dz , the ratio of cross- and auto-correlations may not be exactly

r0,dg/r0,gg if the approximation leading to A14 breaks down. Using mock galaxy samples (from the GIF2 collaboration,
Gao et al. 2004) selected in a redshift slice of width, Wz , equal to their artificial Gaussian redshift errors σz, we find
that the cross-correlation is overestimated by 25 ± 10 per cent. This correction factor is independent of the width of
the redshift distribution as long as σz ≃ Wz or as long as it is Gaussian. This implies that the ratio of the correlation
functions (wdg/wgg) will be insensitive to errors in photometric redshifts.

THE ERRORS TO CORRELATION FUNCTIONS

In this appendix, we list the basic properties of the errors to correlation functions.
From the definition of the cross-correlation ξdg shown in Eq. 1, the expected number of galaxies in a cell of volume

∆V centered on a DLA is given by the counts of neighbor galaxies:

< Nobs >= N(1 + ξdg(r)), (B1)

where N = nu∆V .
Various text books (e.g. Peebles 1980, section 36) have shown that the variance of the number of neighbor galaxies

Nobs near a DLA is the sum of the shot noise

V (Nobs)sn =Nobs (B2)

and the clustering variance V (Nobs)cl. The clustering variance is itself the sum of the two terms, V2pt and V3pt:

V (Nobs)2pt =N
2 1

(∆V )2

∫

∆V

∫

∆V

ξgg(|r2 − r1|) (B3)

V (Nobs)3pt =N
2 1

(∆V )2

∫

∆V

∫

∆V

[ζdgg(r1, r2) − ξdg(r1)ξdg(r2)]dV1dV2 , (B4)

where N = nu ∆V = Nexp, ξgg is the galaxy-galaxy auto-correlation, and ζdgg is the three-point correlation function.
ζ can be written as a product of two-point correlations (Peebles 1980):

ζdgg(r1, r2)=Q [ξdg(r1)ξdg(r2) + ξdg(r1)ξgg(|r1 − r2|) + ξdg(r2)ξgg(|r1 − r2|)], (B5)

where r1 = |ro + r|, r2 = |ro + r2| and r12 = |r1 − r2|.
For a spherical volume ∆V , the integrals B3–B4 can be written as (using the results in Peebles 1980, section 59):

V (Nobs)2pt =N
2
(rgg,0

r

)γ

J2 = N
2

(

J2

K1

)

ξgg (B6)

V (Nobs)3pt =N
2
[

Q

(

K2
1

(rdg,0

r

)2γ

+ 2K2

(rdg,0

r

)γ (rgg,0

r

)γ
)

− K2
1

(rdg,0

r

)2γ
]

,

=N
2
[

Q

(

ξ
2

dg + 2
K2

K2
1

ξggξdg

)

− ξ
2

dg

]

(B7)

where ξ = 1/∆V
∫ r

0
ξdV = (r0/r)γ K1, J2 = 72/[(3−γ)(4−γ)(6−γ)2γ], K1 = 3/(3−γ) and K2 can only be computed

numerically. For γ = 1.6, J2 = 4.87, K1 = 2.14, and K2 ≃ 4.
The variance V (ξ) of the estimator of ξ can be computed analytically. From Landy & Szalay (1993), it is:

V (ξ)=V

(〈

Nobs

Nrand

〉)

≃ V (< Nobs >)

< Nrand >2
+

V (< Nrand >) < Nobs >2

< Nrand >4

≃
[

V (< Nobs >)

< Nobs >2
+

V (< Nrand >)

< Nrand >2

]

(1 + ξdg)
2. (B8)

The shot noise of the random sample in Eq. B8, V (< Nrand >)/ < Nrand >2, can be neglected because the random
sample of galaxies is intentionally much larger than the sample of observed galaxies. Thus, the rms (1σ) of ξdg is

σξ ≃
σ<Nobs>

< Nobs >
[1 + ξdg] (B9)

where σ<Nobs> ≡ 1
NDLA

√

V (Nobs), and V (Nobs) is given by the sum of Eqs. B2-B4. If we approximate the clustering

variance of Nobs (Eqs. B3–B4) by Vcl = N
2
(Aξgg +Bξ

2

dg +Cξdgξgg), where A = J2/K1, B = Q−1 and C = 2QK2/K2
1
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are constants (Eq. B6–B7), then σ<Nobs> becomes

σ<Nobs> =
1√

NDLA

√

V (Nobs)sn + V (Nobs)cl

=
1√

NDLA

√

< Nobs > +N
2
(Aξgg + Bξ

2

dg + Cξdgξgg), (B10)

Therefore, the expected rms of the cross-correlation function σw, Eq. B9, becomes:

σξ =
1√

NDLA

1√
< Nobs >

·

√

1 + N
2 Aξgg + Bξ

2

dg + Cξdgξgg

< Nobs >
· (1 + ξdg) ,

or

σξ =
1√

NDLA

1√
N

·

√

√

√

√1 +
Aξgg + Bξ

2

dg + Cξdgξgg

(1 + ξdg)
·
√

(1 + ξdg) , (B11)

using Eq. B1. This expression is proportional to 1√
NDLA

1√
N

as one might have expected. Thus, the noise in < ξ > goes

as the inverse of the square root of the number of DLAs, NDLA, and as the inverse of the square root of the number
of galaxies N in the cell of volume ∆V .
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