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Inelastic Neutron Scattering Signal from Deconfined Spinons in a Fractionalized

Antiferromagnet

C. Lannert1 and Matthew P. A. Fisher2
1Department of Physics, University of California, Santa Barbara, CA 93106

2Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106–4030

(August 26, 2005)

We calculate the contribution of deconfined spinons to inelastic neutron scattering (INS) in the
fractionalized antiferromagnet (AF ∗), introduced elsewhere. We find that the presence of free spin-
1/2 charge-less excitations leads to a continuum INS signal above the Néel gap. This signal is found
above and in addition to the usual spin-1 magnon signal, which to lowest order is the same as in the
more conventional confined antiferromagnet. We calculate the relative weights of these two signals
and find that the spinons contribute to the longitudinal response, where the magnon signal is absent
to lowest order. Possible higher-order effects of interactions between magnons and spinons in the
AF ∗ phase are also discussed.

I. INTRODUCTION

Theories of spin-charge separation in the high-Tc

cuprates have been hotly debated almost since the orig-
inal discovery of these materials [1]. Finding a the-
ory of electrons in more than one spatial dimension
which exhibits zero-temperature spin-charge separation
has proved to be as theoretically challenging as it is phe-
nomenologically appealing [2]. It can be argued that all
such theories will admit, in the low-energy limit, a formu-
lation in terms of a Z2 gauge theory [3]. Recent papers
have addressed the problem of finding microscopic mod-
els of electrons which become fractionalized in some range
of their parameters [4]. It remains an important task to
enumerate concrete, experimentally- measurable conse-
quences of these exciting theoretical ideas. Previously,
we have explored the consequences of two-dimensional
fractionalization on the spectral function, as probed by
angle-resolved photo-emission spectroscopy [5]. In this
paper, we calculate the inelastic neutron scattering signal
from spinons in a fractionalized antiferromagnet (AF ∗).
We find that these spin-1/2, charge-less excitations lead
to a continuum of excitations above a gap. Because we
are interested in the parent insulators of cuprate super-
conductors, we have taken a phenomenological model
for the spinons which gives them both a Néel gap aris-
ing from antiferromagnetic ordering and a d -wave pair-
ing gap which becomes the pseudogap at moderate dop-
ing and the superconducting gap in the superconduct-
ing phase. We contrast this signal with the signal from
excitations in a conventional antiferromagnet and calcu-
late the strength of the spinon signal compared to the
magnon signal (which is also present). This comparison
estimates the feasibility of measuring this anomalous sig-
nal in the parent insulators. We also discuss higher-order
effects stemming from interactions between spinons and
magnons.

II. THE MODEL

The AF ∗ phase has been discussed elsewhere [6–8]
and here we use the same phenomenological model in-
troduced and justified [5,6] previously. We assume that
the steps of: (1) deriving a lattice Hamiltonian contain-
ing all important effective interactions between electrons
and (2) splitting the electron into chargon and spinon
fields (ciα = bifiα) and deriving the appropriate Z2 gauge
theory have been performed and we have arrived at the
following effective low-energy Hamiltonian for the system
in 2-dimensional fractionalized phases:

H =
∑

<ij>

[−tsf̂
†
iαf̂jα + ∆ij f̂i↑f̂j↓ − tcb̂

†
i b̂j + H.c.]

+U
∑

i

[b̂†i b̂i − (1 − x)]2 + Hg, (1)

Hg = g
∑

<i,j>

Ŝi · Ŝj , (2)

where the spinon pairing ∆ij is taken to be d -wave:

∆ij =

{

+∆ along x̂,
−∆ along ŷ,

(3)

and the spin operator is Ŝi = 1
2 f̂ †

i σf̂i. Here, <i,j> are
nearest neighbors on a 2d square lattice. The U term is
a Hubbard-like interaction for (1 − x) chargons per unit
cell.

We now briefly justify this model for the underdoped
cuprate materials on phenomenological grounds. For suf-
ficiently small doping and low temperatures such that the
Z2 theory exhibits fractionalization, the Hamiltonian is
as written in Eq.(1). At temperatures below the energy
scale ∆, the spinons are effectively paired into d -wave
singlets and there is a d -wave gap to spin-1/2 excita-
tions. For large enough g (and an additional minuscule
3d spin coupling) the system develops long-range anti-
ferromagnetic order. At half-filling, the chargons are
gapped into an insulating phase and we obtain a frac-
tionalized insulator with long-range Néel order and an
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additional d -wave gap to spin-1/2 excitations, previously
dubbed AF ∗ [6]. Moving away from half-filling, the an-
tiferromagnetic order will be quickly suppressed, while
for tc ≪ U and with an additional long-range Coulomb
interaction, one still expects the chargons to be insulat-
ing. We then have a fractionalized insulating phase with
a d -wave gap to spin-1/2 excitations. Within a spin-
charge separation scenario, this phase is identified with
the pseudogap regime in the cuprates. For chargon hop-
ping, tc, sufficiently large, the chargons Bose condense,
giving a d -wave superconductor. At large dopings, we
expect the system to recover Fermi liquid properties, as
occurs when the vortex excitations (visons) in the Ising
gauge field condense thereby confining the spinons and
chargons to form the electron. A schematic phase dia-
gram is shown in Fig. 1. In this paper, we elucidate
further some of the properties of the AF ∗ phase, found
at half-filling.

Recent experiments by Bonn, Moler,et al put limits
on the likelihood of this sort of spin-charge separation
in Y Ba2Cu3O6+x, although the experiments have only
been performed on one sample so far [9]. The question
of spin response in an antiferromagnet which is fraction-
alized is nevertheless well-posed and could be relevant to
other materials. Also, it is quite possible that some other
sort of exotic order lurks in the cuprates; this work would
then serve as an illustrative calculation.

Cx

T

AF*

dSC

deconfined

X

T

confined

vison

FIG. 1. Schematic phase diagram for the high Tc cuprates
within a spin-charge separation scenario.

III. EFFECTIVE HAMILTONIAN FOR THE SPIN

SECTOR

In this paper we work at half-filling, where the charge
degrees of freedom will be gapped into a Mott insulating
phase, and calculate the spin response of the system, ap-
propriate for magnetic probes such as neutron scattering.
Hence, from here on, we assume that the relevant piece of
the Hamiltonian in Eq.(1) is that containing the spin de-
grees of freedom and we ignore the charge degrees of free-
dom. At temperatures much less than the vison energy,

the chargons and spinons are essentially non-interacting,
so this is reasonable in a fractionalized phase.

Hg (Eq.(2)) may be decoupled in a path integral, us-
ing a Hubbard-Stratonovich transformation. This gives
us the following low-energy theory for the spin sector:

Hspin =
∑

<i,j>

[−tsf̂
†
i f̂j + ∆ij f̂i↑f̂j↓ + H.c.]

−g
∑

i∈A,µ

Ni,µ ·
(

Ŝi − Ŝi+µ

)

+
g

2

∑

i∈A,µ

(Ni,µ)
2
, (4)

where N is a 3-component vector of classical fields liv-
ing on the nearest-neighbor links of the lattice, which we
have broken into its two square sublattices, labeled A and
B and shown in Fig. 2. µ ∈ {±x̂,±ŷ}.

x

y

A

B

=xµ

i j

FIG. 2. The 2d square lattice with sublattices A and B
marked.

We begin by analyzing Eq.(4) at the mean field level.
We find antiferromagnetic Néel ordering and a quadratic
theory for the spinons which can be solved exactly. We
derive a self-consistency equation for the mean field
approximation which connects the magnitude of the
Néel order to properties of the spinons. Fluctuations
about this mean field solution lead to spin-waves (as in
the conventional antiferromagnet). Thus, we find that
the fractionalized antiferromagnetic phase has two spin-
carrying excitations: the spin-1 magnons and the spin-
1/2 spinons, which interact with each other. To deal
with these interactions, we treat the spinons as a per-
turbation: setting ts = ∆ = 0, one recovers the con-
ventional antiferromagnet and its spin-wave excitations.
Integrating out the spinons to each order in ts/g and ∆/g
would give modifications of the spin-wave theory due to
the spinons. If one wishes to find higher-order proper-
ties of the spinons, one may start with the mean field
result and then integrate out the magnons, generating
interactions between the spinons. In the limit ts, ∆ ≪ g,
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it is clear that the theory in Eq.(4) can be solved in a
controlled fashion.

A. Mean Field Theory

First, we ignore the spinons, setting ts = ∆ = 0
and reducing Ŝi to the usual spin-1/2 quantum opera-
tor. Eq.(4) becomes:

Heff
g =

g

2

∑

i∈A

∑

µ

Ni,µ ·Ni,µ

−g
∑

i∈A

∑

µ

Ni,µ ·
(

Ŝi − Ŝi+µ

)

. (5)

Choosing ẑ as the spin quantization axis, this is mini-
mized classically by:

Ŝz
i | ↑〉i∈A =

1

2
| ↑〉i∈A, (6)

Ŝz
j | ↓〉j∈B = −

1

2
| ↓〉j∈B , (7)

leading to a Hamiltonian for the field N:

Heff
g =

g

2

∑

i∈A

∑

µ

(Ni,µ)
2
− g

∑

i∈A

∑

µ

Nz
i,µ. (8)

This is minimized by: 〈Nz
i,µ〉 ≡ N0 = 1 ∀ i, µ.

Plugging this mean field solution for N back into
Eq.(4) gives a Hamiltonian for the spin sector at the mean
field level which is quadratic in the spinons:

HMFT
spin =

∑

<i,j>

[−tsf̂
†
iαf̂jα + ∆ij f̂i↑f̂j↓ + H.c.]

−4g
∑

i

N0ẑ · Ŝπ

i +
g

2

∑

i∈A,µ

N2
0 , (9)

where we have retained ẑ as the spin quantization
axis and have written

∑

i(−1)x+yŜi ≡
∑

i Ŝ
π

i =
1
2

∑

k f̂ †
k+π

σf̂k. The lattice spacing has been set to unity.

The full solution to this quadratic spinon Hamiltonian
has been given elsewhere [5,10] and here we reproduce
only the dispersion:

E2
k = N2

g + ǫ2k + ∆2
k, (10)

with

Ng = 2gN0, (11)

ǫk = −2ts(cos kx + cos ky), (12)

∆k = −∆(cos kx − cos ky). (13)

B. Self-Consistency of the Mean Field Solution

The mean field solution with N0 = 1 is found for-
mally in the limit ts = ∆ = 0, and one expects the
spinons to reduce the Néel order from this maximum
value. We therefore take a mean field solution of the
form 〈Nz

i,µ〉 = N0 and demand that it be a saddle point
of the full theory, Eq.(9):

Z[N0] = Tr{f̂ ,f̂†}e
−βHMFT[N0,f̂,f̂†], (14)

Z[N0] ≡ e−SMF[N0]. (15)

Tracing out the quadratic spinons gives an expression for
SMF[N0] and the saddle point condition, δSMF/δN0 = 0,
gives a self-consistent equation for N0. At zero tempera-
ture, this is:

1 = 2g

∫

d2k

(2π)2
1

Ek[N0]
, (16)

with Ek[N0] given in Eq.(10).
It is easy to check that for ts = ∆ = 0, Eq.(16) gives

N0 = 1. For ts, ∆ ≪ g, one finds the perturbative result:

N0 ≃ 1 −
(2ts)

2 + ∆2

8g2
+ · · · . (17)

At large values of ts/g and ∆/g, one expects the spinons
to drive the Néel order to zero, even at zero temperature.
In order to keep our calculations controlled, we work in
the limit ts, ∆ ≪ g and treat the spinons as a pertur-
bation. The reasonableness of this limit for the physical
systems in question will be discussed later.

C. Fluctuations About the Mean Field

We see from the self-consistent mean field calculation
of the previous section that the Néel order is reduced at
zero temperature by the spinons. Even in the absence of
the spinons (i.e. in the pure-spin model with ts = ∆ = 0)
we know that fluctuations in the order parameter are im-
portant and lead to magnons. This suggests the follow-
ing program for calculating the spin excitations in AF ∗

beyond the mean field level. First, set ts = ∆ = 0 and
work with the spin-1/2 quantum operator, Ŝi. “Integrat-
ing out” these operators on each site leads to an effective
theory of fluctuations in the field N and gives the spin-
wave dispersion. Then, one may integrate out the spinons
perturbatively in ts/g and ∆/g. This will lead to inter-
actions between the magnons and give corrections to the
magnon dispersion.

With ts and ∆ set to zero, the effective spin Hamilto-
nian, Eq.(4), reduces to H eff

g [N, Ŝ], Eq.(5). In this section
we look at fluctuations of the field N around the mean
field solution. We therefore set Nz = 1 on all links and
look at the fluctuations, N − ẑNz ≃ N⊥. H eff

g can then
be written in the following form:
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Heff
g =

g

2

∑

i∈A

∑

µ

(

N⊥
i,µ

)2
+ H int, (18)

H int = H0 + H1, (19)

H0 = −4g
∑

i∈A

Ŝz
i + 4g

∑

j∈B

Ŝz
j , (20)

H1 = −g
∑

i∈A,µ

Ŝ⊥
i · N⊥

i,µ + g
∑

j∈B,µ

Ŝ⊥
j ·N⊥

j−µ,µ. (21)

Integrating out the operators Ŝi on each site amounts to
performing perturbation theory in H int. To second order,
the resulting effective action for N⊥ is:

exp{−Seff[N⊥]} = Tr{Ŝ}e
−βHeff

g [N,Ŝ], (22)

Seff[N⊥] ≃

∫ ∞

0

dτ





g

2

∑

i∈A,µ

|N⊥
i,µ|

2

−
g

16





∑

i∈A

|
∑

µN⊥
i,µ|

2 +
∑

j∈B

|
∑

µN⊥
j−µ,µ|

2





+
1

64g





∑

i∈A

|
∑

µ∂τN
⊥
i,µ|

2 +
∑

j∈B

|
∑

µ∂τN
⊥
j−µ,µ|

2







 , (23)

where τ is imaginary time and we have set the tempera-
ture to zero.

Since we are interested in obtaining a long-wavelength
theory for the spin-waves, we make the coarse-graining:
N⊥

i,µ → N⊥
i , i ∈ A. This amounts to working in the

basis of the Goldstone modes of the theory. With this
approximation, we arrive at the effective action:

Seff[N⊥] ≃

∫ ∞

0

dτ

[

∑

i

(

3g

4
|N⊥

i |
2 +

5

16g
|∂τN

⊥
i |

2

)

+
∑

〈i,i′〉

(

−
g

4
N⊥

i · N⊥
i′ +

1

16g
∂τN

⊥
i · ∂τN

⊥
i′

)

+
∑

〈〈i,i′′〉〉

(

−
g

8
N⊥

i · N⊥
i′′ +

1

64g
∂τN

⊥
i · ∂τN

⊥
i′′

)



 , (24)

where all sites are on the A sublattice, 〈···〉 refers to
nearest-neighbor pairs, and 〈〈···〉〉 refers to next-nearest-
neighbor pairs. Fourier transforming to k and (imagi-
nary) ω gives:

Seff =

∫

k,ω

g|N⊥(k, ω)|2
[

(

1 − γ2
k

)

+
ω2

4g2

(

1 + γ2
k

)

]

,

(25)

with

γk ≡
1

2
(cos kx + cos ky). (26)

This immediately gives the lowest-order magnon dis-
persion, ωk = 2g

√

(1 − γ2
k)/(1 + γ2

k). This dispersion

is similar to the usual one found using, for instance,
Holstein-Primakov bosons (see, for instance, Ref. [11]),
but the ratio of the spin-wave velocity to the maximum
of the dispersion is different. Even neglecting spinons en-
tirely, this is only a lowest-order result for fluctuations of
the field N. Working to higher orders in the perturbation
theory of Eqns.(19-21) will generate a more realistic spin-
wave theory of the conventional antiferromagnet. For the
purposes of calculating the INS response, we satisfy our-
selves with the lowest-order result for the magnons.

The lowest-order effect of the spinons, as we have seen
in Section III B, will be to reduce 〈Nz〉 from unity. At
higher order, we expect interactions with the spinons to
further affect the magnon dispersion. However, it would
be wise for the purposes of comparing the magnon and
spinon INS responses to take into account this over-all
reduction of the Néel order by the spinons. Therefore,
we make the substitution: g → gN0, where N0 is set
by the self-consistency condition, Eq.(16), giving a “self-
consistent” magnon dispersion:

ωk = 2gN0

√

1 − γ2
k

1 + γ2
k

. (27)

One important consequence of this calculation is
that it allows one to set the parameter g in terms of
experimentally-measured properties of the magnon spec-
trum. Because it is probably less sensitive to details of
magnon interactions, we choose to set g by the maximum
of the magnon dispersion rather than by the spin-wave
velocity near k = (0, 0). In the Heisenberg model, the
maximum of the magnon dispersion is 2J ; we therefore
make contact with this model by identifying J = gN0.
Many experimental probes of the undoped cuprates find
J to be around 150 meV [12–15].

IV. INELASTIC NEUTRON SCATTERING

RESPONSE

What is the difference in spin response between the
model given in Eq.(1) and a spin-charge confined an-
tiferromagnet? The lowest energy spin excitations in
both systems are the spin-1 magnons dictated by Gold-
stone’s theorem in this symmetry-broken phase. For
the confined insulator, the lowest-energy spin-1/2 exci-
tations would presumably be something like single elec-
trons, which have a huge Mott gap (on the order of a
few eV in the cuprates). In contrast, we see immedi-
ately that provided one is in the regime where Eq.(1)
holds (i.e. at temperatures and energies small compared
to the vison gap), the lowest energy spin-1/2 excitations
are spinons which propagate as independent excitations
above the Néel (and d -wave) gap which is on the order of
J ∼ 0.1 eV. In the previous sections, we have laid out a
theory of the spin degrees of freedom in a fractionalized
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insulator with long-range Néel order. Now, we calculate
the INS signal in AF ∗ using the lowest-order theories of
the magnons, Eq.(25), and spinons, Eq.(9).

A. Magnetic Neutron Scattering Cross-Section

The differential cross-section for neutrons scattering by
wave-vector q = kf −ki and energy ω off electronic spins
is [16]:

d2σ

dΩdω
∼

|kf |

|ki|
F 2(q)

∑

α,β

(

δαβ −
qαqβ

q2

)

Sαβ(q, ω) (28)

(α,β = x, y, z), where F 2(q) is a form factor and the spin
structure factor is:

Sαβ(q, ω) =
1

π

1

1 − e−ω/kBT
Imχαβ(q, ω), (29)

where

χαβ(q, iωn) =

∫ β

0

dτeiωnτ 〈Tτ Ŝα
q(τ)Ŝβ

−q(0)〉 (30)

is the imaginary-time spin-spin correlation function. At
temperatures such that kBT ≪ ω, we can take the zero-
temperature limit:

1

1 − e−ω/kbT
→ Θ(−ω) (31)

with Θ(x) the Heavyside-step function. The spin-1/2
operators are given by the usual expression with elec-
tron operators replaced by spinon operators: Ŝ(q, τ) =
∑

k f̂ †
q+k(τ)σf̂k(τ).

The model outlined in the sections above provides a
theory of the spin response in AF ∗. In the next sec-
tion, we use the lowest-order results to calculate the
magnon and spinon signals (respectively) in inelastic neu-
tron scattering. We include a brief discussion of higher-
order effects.

B. Magnon Response

Starting from the ts = ∆ = 0 spin Hamiltonian,
Eq.(5), it is straightforward to calculate the spin-spin
response function by including a source term in the ef-
fective action of the form:

∑

i Ŝi · Ki. The result, to
lowest order in fluctuations of N is:

S+−

magnons(q, ω) =
4

(1 + γ2
q)2

(1 − γq)2
√

1 − γ4
q

δ(ω − ωq), (32)

with γq and ωq given in Eqns.(26-27). While the exact
form of this response function differs from that found in,
say, the Holstein-Primakov formalism, it has the same

universal features. By universal properties we mean that
the limits of both the response function and the spin-wave
dispersion as q → (0, 0) and q → (π, π) are the same for
all calculational methods because they are dictated by
symmetries. Including intra-spin-wave interactions mod-
ifies the non-universal aspects of the dispersion (e.g. the
spin-wave velocity near q = 0) and yields direct multi-
magnon contributions to the spin structure factor. These
direct multi-magnon processes are of a much lower weight
than the single magnon processes and so we ignore them.

To first order then, the magnon response to neutron
scattering in AF ∗ has the same universal features as in
a conventional antiferromagnet. This calculation allows
us to fix the parameters in our theory: we have seen in
Section III C that the energy scale gN0 = J to this or-
der. Additionally, the magnitude of the direct spinon
signal can be compared with the magnitude of this well-
established magnon signal.

C. Spinon Response

As detailed in Section III A, at the mean field level,
the spinon part of the Hamiltonian in Eq.(1) is quadratic
and has been solved elsewhere [5,10]. The spin-flip and
longitudinal structure factors for the spinons are as fol-
lows:

S+−

f (q, ω) =

∫

k

[(

1 −
ǫq−k

Eq−k

) (

1 +
ǫk
Ek

)

−
∆q−k∆k

Eq−kEk

+
N2

g

Eq−kEk

]

× δ(ω − Eq−k − Ek), (33)

= S−+

f (q, ω), (34)

Szz
f (q, ω) =

1

2

∫

k

[(

1 −
ǫq−k

Eq−k

) (

1 +
ǫk
Ek

)

−
∆q−k∆k

Eq−kEk

−
N2

g

Eq−kEk

]

× δ(ω − Eq−k − Ek)

+elastic (Bragg) response, (35)

where Ng, ǫk, ∆k, and Ek are defined in Eqns. (10-13).

These formulas have a few salient features. Spin-flip
neutron scattering leaves a spin-1 excitation in the sam-
ple with momentum q and energy ω. The expression
for S+−

f simply sums the ways of destroying a spin-down
(-up) spinon at momentum −k and creating a spin-up
(-down) spinon at momentum q− k, with the constraint
that the energy cost for this process must be ω. The rest
of the expression is the zero-temperature probability that
the state at −k is occupied and the one at q−k is unoccu-
pied, appropriate for fermions. If one takes Ng = 0 (cor-
responding to no Néel order), the full spin-rotation in-
variance of the spinon system is restored and S+− = Szz ,
as expected.
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For INS using unpolarized neutrons, the differential
cross section is a combination of these two signals, but
it is possible using polarized neutrons to obtain signals
from these two channels separately (albeit at a large
cost to the intensity). It is worth noting that, pro-
vided one aligns the polarized neutron spins along the
direction of the staggered magnetization, the signal due
to single magnons is only in the “spin-flip” sector, i.e.
Szz

1 magnon
= 0. The first contribution to Szz from spin-

waves alone occurs in the two-magnon channel which
is of a greatly reduced weight compared to the single
magnon signal. The spinons then constitute the only
magnetic signal of reasonable weight in this channel at
energy scales of order J.

A discussion of parameters is wise at this point. Work-
ing in units of gN0 = J , we will use ts = ∆ = J to cal-
culate Sαβ for the spinons. This gives numerical values
of these constants which are reasonable for the undoped
cuprates. However, one may wonder whether they violate
our above working assumptions ts/g, ∆/g ≪ 1. Indeed,
it is not immediately obvious how to set the parameter
g. Here, we take the following tack: the quantity gN0

is set by comparison between the magnon dispersion in
Eq. (27) and the maximum of the magnon dispersion
in INS experiments. This gives gN0 = J ≃ 150meV .
The parameters ts and ∆ may similarly be set by exper-
iments and we use the values given above. With these
two constraints, the self-consistency equation, Eq. (16),
becomes an equation for the parameter g. It is clear that
if the values of ts and ∆ are too large, the equation for g
will have no solutions. For the parameters above, using
the expansion (valid for small ts/g and ∆/g) in Eq.(17)
as a first iteration yields g ≃ 1.4J . Plugging the resul-
tant values of ts/g and ∆/g into the full self-consistent
equation for N0, the right hand side of Eq.(16) can be
numerically integrated for various values of N0. The re-
sult is shown in Fig. 3. It is clear from the graph that
the value of N0 which satisfies the self-consistent equa-
tion is N0 ≃ 0.7. This gives gN0 = .98J ≃ J , and we
have our self-consistent parameters. We note that the
value N0 ≃ 0.7 is still rather close to the “no spinon”
mean field value of unity, so that treating the spinons as
a perturbation is somewhat justified [17].

0 0.5 1 1.5 2
N_0

0

1

2

I(
N

_0
)

FIG. 3. Results of numerically integrating the RHS of
Eq.(16), called I(N0), for ts/g = ∆/g = 0.7. The
self-consistent value of N0 is the one for which I = 1.

The above expression for S+−

f can be numerically in-
tegrated to obtain the spinon response. This has been
performed, approximating the δ-function in energy with
a Lorentzian of width ǫ = 0.01J . None of the salient fea-
tures of the results were influenced by the specific values
of parameters (such as ts, ∆, ǫ).

D. INS Signal

In Figs. 5 and 6 we present the lowest-order results for
S+− = S+−

f +S+−

magnons
, corresponding to spin-flip neutron

scattering. All energies are in units of J = gN0. Note
that we have taken the staggered magnetization to point
in the ẑ-direction, but since our theory does not contain
terms which couple the spin and spatial variables (as,
say, a spin-orbit coupling would), the spin axes can be
rotated independently of the spatial axes.

q y

q x

(a)

(b)

π/2 π

π/2

π

(c)

FIG. 4. Contours in the qx, qy plane.
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As Sαβ(q, ω) is a function of three variables (for the
effectively two-dimensional cuprates of interest), we show
here a few views of this function. Fig.5, shows contour
plots of the intensity as a function of distance along cuts
in the (qx, qy) plane (shown in Fig.4) and energy. For
the magnon signal, the δ-function in Eq.(32) has been
replaced with a “box” function:

δ(x) =

{

1/ǫ for − ǫ/2 < x < ǫ/2,
0 else,

(36)

with ǫ = 0.06J ≃ 10meV . In these plots, we see the
magnon dispersion with zeros at q = (0, 0) and (π, π)
and a vanishing weight near (0, 0). Above this, we see
the spinon continuum turn on with a lower-bound which
is modulated with twice the period of the magnon dis-
persion. We see in this plot that the spinon signal is
appreciable.

FIG. 5. S
+−(q, ω) along cuts (a),(b),and (c) in Fig. 4. En-

ergies are in units of J . White regions are zero intensity and
black regions are high intensity.

In Fig.6, we show contour plots of the spinon intensity
as a function of qx and qy at constant values of the energy.
We see that the spinon intensity at turn-on (ω = 4J) is
largest near the corners at (0, 0), (π, π), etc. For compar-
ison, Fig. 6(d) shows plots of the single magnon weight
(Eq.(32)) as a function of qx and qy.
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FIG. 6. Spinon S
+−(q, ω) at energies ω/J = (a) 4.5 (b)5.0

(c)6.0 . The single magnon weight, Eq.(32), is shown in (d).
White regions are low intensity and black regions are high
intensity.

In Fig. 7 we present contour plots of Szz
f (q, ω) sequen-

tially along the cuts in Fig. 4. We note again that, to
first order, there is no magnon contribution to this corre-
lation function and so the two-spinon continuum visible
in these plots should in principle be the primary magnetic
source of INS in this channel.

FIG. 7. S
zz(q, ω) along a cut (a)+(b)+(c) in Fig. 4. En-

ergies are in units of J and the color scheme is the same as in
Figs. 5 and 6.

E. Higher Order Effects

At higher orders in the perturbation theory of Eqns.
(19 -21), we would expect spin wave interactions (present
and important for detailed features even when ts and ∆
are zero) to modify the magnon dispersion and lead to
multi-magnon signals in both the S+− and Szz channels.
This calculation would be the same as for a conventional
antiferromagnet (since ts = ∆ = 0) and would presum-
ably lead to the actual spin-wave response in a conven-
tional antiferromagnetic system. At higher orders in ts/g
and ∆/g, we would obtain magnon interactions mediated
by spinons, which are not present in conventional anti-
ferromagnets. Being gapped excitations, the spinons are
inherently a “high energy” phenomena as far as the spin-
waves are concerned. We might therefore expect them
to influence most heavily the high-energy portions of the
magnon dispersion. One can see from the graphs given in
Section IVD that the lower edge of the spinon continuum
has a minimum near (π, 0), where the magnon dispersion
has one of its maxima. One would expect interactions be-
tween these two excitations to effect the dispersions most
heavily near these points of closest approach. While the
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effect of unconventional excitations such as spinons can
in principle be seen in the spin-wave response, we have
chosen in this paper to focus on the direct spinon contri-
bution to inelastic neutron scattering, shown in the pre-
vious section. The spin-waves will also affect the spinon
signal at higher orders, however, probably not in any
dramatic fashion.

V. CONCLUSIONS

In this paper we have presented a theory of the spin
excitations of the fractionalized antiferromagnet, AF ∗, in
the limit where the visons can be ignored. This theory
is Eq.(4). This phase has both long-ranged antiferro-
magnetic order and the topological order associated with
fractionalization [18]. It contains two spin-carrying exci-
tations: the spin-1 magnons and the spin-1/2 spinons,
which interact with each other. The theory is well-
defined and can be solved in a controlled manner in the
limit ts/g, ∆/g ≪ 1. In this paper, we have found the
lowest-order theories of these two excitations and have
calculated the dynamic spin-spin response functions of
each, appropriate for inelastic neutron scattering experi-
ments.

To lowest order, the magnon signal is the same as in
a conventional antiferromagnet, but higher-order effects
of the spinons should lead to modifications of the dis-
persion, particularly near (π, 0). The main anomalous
feature of the INS signal from AF ∗ is the presence of a
spinon continuum at energies ∼ 4J , which exists even
in the longitudinal response, where the magnons are ex-
pected to be absent at lowest-order.
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Girvin, Steve Nagler, Doug Scalapino, Alan Tennant, and
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