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We investigate the finite temperature critical dynamics of three-dimensional superconductors in the
charged regime, described by a transverse gauge field coupling to the superconducting order parameter.
Assuming relaxational dynamics for both the order parameter and the gauge fields, within a dynamical
renormalization group scheme, we find a new dynamic universality class characterized by a finite fixed
point ratio between the transport coefficients associated with the order parameter and gauge fields,
respectively. We find signatures of this universality class in various measurable physical quantities, and
in the existence of a universal amplitude ratio formed by a combination of physical quantities.

DOI: 10.1103/PhysRevLett.92.097004 PACS numbers: 74.25.Bt, 74.20.–z, 74.25.Fy, 74.40.+k

Close to the critical temperature Tc of the normal-
superconductor transition, in a regime determined by
the Ginzburg criterion [1,2], order parameter fluctua-
tions dictate critical properties. For decades, the effect
of the charge of the superconducting order parameter
in this regime in three dimensions has formed the topic
of keen study. While for strongly type-I materials, the
coupling of the order parameter to transverse gauge
field fluctuations is expected to render the transition first
order [3], it is well established that strongly type-II
materials should exhibit a continuous phase transition,
and that sufficiently close to Tc, the charge of the order
parameter field is relevant [4]. While the exact location
of the boundary between these two types of behavior is
still the subject of investigation [5], the static critical
properties of the charged-XY universality class are rea-
sonably well understood. With the discovery of super-
conducting compounds with large critical temperatures
and short coherence lengths the critical regime of this
transition is now potentially accessible to experimental
investigation.

In this Letter, we investigate the less-addressed issue
[6,7] of the dynamics of the three-dimensional normal-
superconductor transition in the charged regime. In the
well-studied case of superfluid He4, the coupling of the
order parameter to a conserved energy density field has
nontrivial effects on critical dynamics [8]. Analogously,
we propose that the coupling of the superconducting order
parameter to relaxational transverse gauge field fluctua-
tions leads to qualitatively new dynamics characterized
by a universal ratio C between the zero wave-vector part
of the characteristic frequencies for the dynamics of the
order parameter  � and that of the gauge field A at the
critical point:

C � lim
k!0

! �k�

!A�k�
� const: (1)

Thus we propose the possibility that the strong coupling

of these two fields causes them to relax in the same
fashion at the critical point, with a single new dynamic
exponent z. In what follows, employing dynamic renor-
malization group (RG) techniques, we show these fea-
tures to hold within the context of a particular model. We
discuss the universal properties obtained from the model
and the behavior of measurable physical quantities.

The model.—As a starting point for modeling dynam-
ics, we employ the standard Ginzburg-Landau free en-
ergy used to define the finite temperature static critical
properties of a three-dimensional superconductor coupled
to a transverse electromagnetic field [9], generalized to N
complex species of matter field, given by

F �
Z
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where  � (with � 2 1; 2; . . . ; N) is the generalized or-
der parameter and A is a fluctuating massless gauge
field. The effective charge is given by

���
g

p
� e

�������
4�

p
= �hc

and deviations from criticality are measured by r �
2m�T � Tc�= �h2Tc [10]. For N � 1 and d � 3, this
model describes the low-energy excitations of a bulk
charged superfluid in the regime where charge-density
fluctuations are gapped at a high energy (the plasmon
gap), but remain coupled to transverse electromagnetic
fluctuations.

As originally obtained in Ref. [3], a one-loop static
RG analysis of Eq. (2) in d � 4� � dimensions shows
that no nontrivial charged fixed point exists for 2N <
nc � 365:9. However, for a range of parameters, more
sophisticated methods indeed find a continuous phase
transition for N � 1 [4,11,12], describing, presumably,
the second order transition found in many materials.
Many of the salient features of this ‘‘charged-XY’’ uni-
versality class are captured by Eq. (2) with N > Nc ’
183; for instance, the fact that the anomalous dimension
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of the order parameter field is negative. Given that the
N-component model does provide insight on the statics of
the charged superconducting transition, here we make the
reasonable assumption that when the free energy defined
by Eq. (2) is augmented by appropriate equations of
motion, the model captures the basic features of the
critical dynamics of the transition as well.

For completeness, we note that the free energy density
is invariant under the following transformations:

 a� ! �abO�! 
b
!; (3)

�
 a� ! ei�

��
g

p
�� ~rr�
#�$yab��! 

b
!;

A�r� ! A�r� 
 r��r�;
(4)

where �;! 2 f1; . . . ; Ng, a; b 2 f1; 2g, O is an N � N
orthogonal matrix, # 2 �0; 2��, and $yab is the usual
2� 2 Pauli matrix.  1

� and  2
� are the real and imaginary

parts, respectively, of the �th complex field. The term in
Eq. (2) with coupling constant u is the only quartic
matter-matter interaction allowed by these symmetries.

The simplest equations of motion augmenting the stat-
ics described by Eq. (2) are relaxational in both  � and A.
In the presence of external fields h � and hA coupling to
 � and A, respectively, they take the form

@t � � �� 

�
�F
� 

�
� h �

�

(�; (5)

@tAi � ��A

�
�F
�Ai

� hAi

�

)i: (6)

Here, � and �A are transport coefficients associated
with  � and A, respectively. The fields (�, (

�, and �
are white noise correlated and ensure that the fluctuation-
dissipation theorem is satisfied. Thus, they obey the
constraints

h(��r; t�(
!�r

0; t0�i � 2T� ��!�3�r� r0���t� t0�; (7)

h(��r; t�i � h(��r; t�(!�r0; t0�i � 0; (8)

h)i�r; t�)j�r0; t0�i � 2T�A�ij�
3�r� r0���t� t0�; (9)

h)i�r; t�i � 0: (10)

In fact, if we assume that the normal state of the system is
a metal, Eq. (6) can be derived from the low-frequency
form of Maxwell’s equation

r � B � 4�J=c
 @tE=c; (11)

in the gauge A0 � 0, where the electric and magnetic
fields are given by E � �@tA=c and B � r�A, re-
spectively. The net current J � js 
 jn has a superfluid
component js � � �

�A j�r � i
���
g

p
A� �j2 and a normal

component jn. The average normal current is given by
$nE, where $n is the normal conductivity. Thermal fluc-
tuations of the normal fluid give rise to the noise in Eq. (6).

With these assumptions, one can retrieve Eq. (6) from
Eq. (11) in the limit !! 0 and identify the inverse
transport coefficient, ��1

A , with the bare conductivity, $n.
A complete model for the dynamics requires identifi-

cation of all conserved quantities and Poisson-bracket
relations applicable to the normal-superconductor system
in the charged regime [8]. Even in the uncharged regime,
one might expect nondissipative coupling of the order
parameter to a combination of energy and mass density
to exhibit model E dynamics as in superfluid helium [8].
However, hydrodynamic analyses show that in the pres-
ence of impurities (which is implicit in the assumption of
finite conductivity well within the normal state) this
coupling does not survive [13], as indicated by the ab-
sence of second sound modes in actual superconducting
systems. However, in principle, a conserved energy den-
sity mode could couple to the order parameter mode via
nonlinear interactions, leading to model C dynamics in
the uncharged superconductor [13]. Likewise, in the
charged regime, we do not expect any nondissipative
coupling of energy-mass density to the order parameter,
due to the presence of impurities in real samples of
interest. However, the possibility of nonlinear interac-
tions with conserved quantities cannot be completely
eliminated. The model we employ consisting of the order
parameter and gauge field modes alone, each with relaxa-
tional dynamics, is the simplest, but hitherto unexplored,
possibility.

RG analysis.—The equations of motion Eqs. (5) and
(6), allow a dynamical RG analysis which we now detail
(also see, for example, Ref. [8]). The effective charge

���
g

p

and the coupling constant u of Eq. (2) are treated pertur-
batively, as is the deviation from four dimensions, � �
4� d, in order to avoid infrared divergences [14].
Because the characteristic electron speeds are small com-
pared to the speed of light, the low-energy theory of the
system need not be relativistically invariant. This leads to
the residual gauge symmetry contained in Eq. (4). (This
has been pointed out previously in, for instance,
Ref. [15].) To avoid divergences in functional integrals
resulting from the fact that multiple choices of gauge lead
to the same magnetic field configuration, we perform the
Fadeev-Popov procedure and add a term 1=�2,��r �A�2

to the free energy [Eq. (2)] [16]. Fixing the value of ,
corresponds to making a choice of gauge, and for the
remainder of this Letter we work with , � 1(analogous
to the Feynman gauge in quantum electrodynamics).
Regarding the dynamics, since our focus is on the manner
in which the relaxational rates of the fields  and A affect
one another, we rescale the theory and write the equations
of motion in terms of the ratio of transport coefficients
� � � =�A.

We perform the standard RG procedure, integrat-
ing out modes in a momentum shell �=b < jkj<�,
where � is a high momentum cutoff, and all frequencies,
followed by a rescaling of space and time: r ! br and
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t! bzt. To one loop, and O���, the ! functions for u and
g are (as in Ref. [3])

du
d lnb

� �u� 2�N 
 4�u2 � 3g2 
 6gu; (12)

dg
d lnb

� �g�
N
3
g2 � g��� (A�; (13)

yielding Gaussian (u � g � 0), XY (u � 0, g � 0),
and charged-XY (u � 0, g � 0) fixed points for N �
183. At the charged-XY fixed point of interest, g � 3�=N
to leading order in �. We find that the anomalous dimen-
sions of the order parameter and gauge field at this order
(and in our choice of gauge) are

( � �2g; (A � Ng=3; (14)

and note that (A � � � 4� d at the critical point, as
required by gauge invariance [12].

We fix the exponent z by requiring that the time de-
rivative term in the equation of motion for A return to
its ‘‘bare’’ form. The same feat in the equation of motion
for  is accomplished by allowing the ratio � to flow. We
find that

1 � b2�(A�z
�
1
 g

N
2�

lnb
�
; (15)

�0 � bz�2
( �

�
1� g

�

�
 1
lnb

�
; (16)

giving a one-loop ! function for �:

d�
d lnb

� g�
�
N
2�

�
�

�
 1
� 2�

N
3

�
: (17)

At the O��� charged fixed point, Eq. (17) has a stable
fixed point solution:

� �
�N � 12� 


�����������������������������������������������������
�N � 12�2 
 24N�N 
 9�

p
4�N 
 9�

; (18)

which in general obeys 0 � � < 1:5 for all N � 0. We
note that � � 0 (� ! 0 with �A fixed, for instance) is
not a fixed point and that ��1 � 0 (�A ! 0 with � fixed,
for instance) is an unstable fixed point, at this order. Thus,
we are led to conclude that, at least within a one-loop RG
analysis, the critical dynamics of the charged supercon-
ductor is governed by a nontrivial fixed point wherein �
has a finite ratio, reflecting the fact that the dynamics of
the order parameter and those of the gauge field are
strongly coupled. At the charged-XY fixed point, we find
that z � 2
 ��3=�2�� � 1� to leading order in �, imply-
ing that z > 2. While an accurate value of the dynamic
exponent would require employing more sophisticated
treatments, our results certainly suggest that near criti-
cality, the system relaxes slower than expected for dif-
fusive dynamics.

Physical consequences.—The most striking new fea-
ture of this fixed point (in contrast with the uncharged
dynamics) is the existence of the universal fixed ratio, �.
Physically, its existence requires that the order parameter
and gauge fields relax in the same fashion. In fact, using
scaling arguments [8], one can show that at the critical
point, the ratio of the characteristic frequencies at k � 0
of the two fields is exactly the universal amplitude ratio,
identifying the constant C of Eq. (1) with �; i.e.,

C � lim
k!0

! �k�

!A�k�
� �: (19)

Here, the characteristic frequency of a field Q is de-
fined by

!�1
Q �k� � i.Q�k;! � 0�

@.�1
Q �k;!�

@!








!�0
; (20)

where .Q is the dynamic linear response function, hQi �
.QhQ. In our case, close to criticality, the characteristic
frequency has the scaling behavior !Q � /�z�Q�k/� for
both fields  and A, where / is the divergent correlation
length associated with the order parameter, and �Q is a
universal function. In principle, the characteristic fre-
quency for each field can be obtained by measuring the
static susceptibility and dynamic linear response function
associated with the field.

The dynamic linear response functions themselves
carry valuable information on critical dynamics. Close
to Tc, they have the scaling form

.Q�k;!� � /2�(QfQ�!/z; k/�; (21)

where, associated with each field  � and A, (Q and fQ
are the anomalous dimension and a scaling function,
respectively.

Each of these functions is manifest in measurable
quantities. The order parameter response function,
. �k;!�, is the pair susceptibility appearing in
Josephson tunneling experiments [17]. In principle, the
scaling behavior of . in Eq. (21) could be used to ex-
tract the dynamic exponent, z. Accessing .A�k � 0; !�
should be relatively straightforward, since it is related
to the resistivity in linear response. The external field
that couples to A is an applied current jext, so that
hAi � .Ajext, with $�k � 0; !� � �i.�1

A �k � 0; !�=!.
Close to criticality and above Tc, we expect this to pro-
vide the dominant contribution to the net conductivity
and, using Eq. (21), to diverge as $�k � 0; !� �
/z�2
(AG�!/z� � /z
2�d, where G is a scaling function.
This is a consequence of the Josephson scaling relation
[12,18] which holds in both charged and uncharged re-
gimes, as a result of gauge invariance [12]. Notably, in the
charged regime, the exponent z has a different value than
in the uncharged case.

We see that various features of the dynamic univer-
sality class of the charged superconductor appear in
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measurable quantities. The definitive signature of this
universality class would be in the extraction of the uni-
versal amplitude ratio, Eq. (19).

Concluding remarks.—The charged superconductor-
normal transition is a continuing source of rich physics.
Research on the static transition of the charged Ginzburg-
Landau model indicates differing behavior for type-I and
type-II superconductors, as well as the relevance (suffi-
ciently close to the continuous transition) of the charge of
magnetic field fluctuations. Numerical and analytical
work in Ref. [6] on the dynamics of this transition also
seem to reveal distinctly different dynamic behavior be-
tween strongly and weakly screened superconductors. In
Ref. [7], Monte Carlo studies of superconductor dynamics
in the vortex representation find that for strong magnetic
screening, z � 2:7, in qualitative agreement with our
result that the order parameter dynamics in the charged
regime is subdiffusive. Here, as our key point, we suggest
that for materials with continuous transitions from nor-
mal metal to superconductor, the dynamics in the charged
regime will be governed by a new universality class.
Further analyses of all these issues are well in order.

In experiments, the charged regime of the
superconductor-metal transition is not easily accessible.
The Ginzburg criterion indicates that materials with high
critical temperature, large anisotropy and extreme type-II
behavior should manifest large regimes of fluctuations.
However, within this fluctuation regime, the region close
to Tc where the system crosses over to the regime of
charged fluctuations is often too narrow to access [2].
For instance, high Tc materials such as YBa2Cu3O7�d,
while possessing large regimes of critical fluctuations, are
too strongly type-II to observe charged critical fluctua-
tions. However, weakly type-II materials with high Tc’s
or granular texture, and moderate anisotropies could open
up a window into this new regime. We are hopeful that an
investigation of such materials will yield an understand-
ing of the effect of charge on the critical dynamics of this
transition.
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