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Small-network approximations for geometrically frustrated Ising systems

Bilin Zhuang* and Courtney Lannert†

Department of Physics, Wellesley College, Wellesley, Massachusetts 02481, USA
(Received 12 August 2011; published 9 March 2012)

The study of frustrated spin systems often requires time-consuming numerical simulations. As the simplest
approach, the classical Ising model is often used to investigate the thermodynamic behavior of such systems.
Exploiting the small correlation lengths in frustrated Ising systems, we develop a method for obtaining first
approximations to the energetic properties of frustrated two-dimensional Ising systems using small networks
of less than 30 spins. These small networks allow much faster numerical simulations, and more importantly,
analytical evaluations of their properties are numerically tractable. We choose Ising systems on the triangular
lattice, the kagome lattice, and the triangular kagome lattice as prototype systems and find small systems that
can serve as good approximations to these prototype systems. Through comparisons between the properties of
extended models and small systems, we develop a set of criteria for constructing small networks to approximate
general infinite two-dimensional frustrated Ising systems. This method of using small networks provides a
different and efficient way to obtain a first approximation to the properties of frustrated spin systems.

DOI: 10.1103/PhysRevE.85.031107 PACS number(s): 75.10.Hk, 75.10.Jm

I. INTRODUCTION

The phenomenon of frustration in condensed-matter sys-
tems has been studied for over 50 years. In 1936, Pauling
first noted that frustration is present in the structure of ice.
The tetrahedral structure of ice allows multiple possible
locations for the hydrogen atoms, giving rise to about
(3/2)N ground-state configurations for a total of N water
molecules [1]. Pauling’s prediction was later confirmed by the
experimental work by Giauque and co-workers [2,3]. Since
then, frustration in condensed-matter systems has been an
active area of research. Early theoretical investigations include
the study of the antiferromagnetic triangular Ising lattice
by Wannier, who showed that the system is disordered at
all temperatures and the ground-state entropy is 0.323 Nk,
where N is the number of spins and k is the Boltzmann
constant [4]. In recent years, new frustrated materials have
been discovered and characterized following advancements
in fabrication and measurement techniques. Most notably,
the ground-state spin configurations of rare-earth pyrochlores
Ho2Ti2O7 and Dy2Ti2O7 have been found to have a one-to-one
correspondence to the structural configurations of ice, and thus
they are aptly described as the “spin ice” [5,6]. Adding to their
interest, Castelnovo and co-workers [7] recently proposed that
magnetic monopoles emerge in the frustrated spin ice system,
and this has been supported by a few recent experiments
[8–11]. Apart from three-dimensional frustrated systems such
as spin ice, two-dimensional frustrated systems with a range
of different geometries can now be artificially constructed
with nanometer-size magnetic islands [12] or closely packed
colloidal spheres [13]. In addition, it has been proposed that
frustrated spin systems can be constructed by trapping cold
atoms [14] or polar molecules [15] in an optical lattice. An
important leap toward the experimental realization of such

*Present address: Division of Chemistry and Chemical Engineering,
California Institute of Technology, Pasadena, CA 91125.
†clannert@wellesley.edu

systems has been achieved by Simon et al. [16] by successfully
demonstrating antiferromagnetic spin chains in an optical
lattice.

Frustrated magnetic systems exhibit many interesting prop-
erties. Most notably, they have multiple degenerate ground
states, which give rise to a nonzero entropy at absolute zero
temperature, violating the third law of thermodynamics [17].
In addition, even in the regime when kT is much less than the
energy scale of the spin-spin interactions, there can still be sig-
nificant fluctuations within the system [18]. Moreover, many
frustrated systems possess rich phase diagrams as temperature
or external magnetic field strength is varied. The phases dis-
played in these systems can be magnetically ordered, partially
ordered, or completely disordered [19]. In addition to their
theoretical interest, frustrated magnetic materials may have
novel technological applications from microelectronics to drug
delivery. For example, efficient and environmentally friendly
magnetic refrigerators may be constructed with frustrated
systems using the technique of adiabatic demagnetization [20],
and new technologies in advanced magnetic-recording devices
may also be built with frustrated materials [12]. A better
understanding of the behaviors of frustrated systems may even
allow us to gain insights in fields beyond condensed matter
physics. For instance, it has been suggested that the folding of
a protein into a biologically functionable structure is a result
of the natural ability for the protein to resolve the frustrated
couplings [21].

As the simplest approach, the thermodynamic properties
of geometrically frustrated systems can be studied with the
Ising model. For systems in which classical spin fluctuations
dominate, the Ising system can be a very accurate physical
model. For other systems in which quantum fluctuations
dominate, the Ising system becomes less accurate [18], but
we may still use it to obtain a first approximation. Currently,
there are two primary methods for studying infinite frustrated
Ising systems: exact analytical methods, and Monte Carlo
simulations applied on very large systems and extrapolated to
the infinite-system limit. However, exact analytical solutions
are not always possible, while Monte Carlo simulations can
often be very time consuming. Therefore we are motivated
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to develop an efficient first approximation method for infinite
geometrically frustrated Ising systems.

One of the key features of geometrically frustrated systems
is their small spin-spin correlation lengths. In the absence of
long-range correlations, many properties of the system are
determined by the local geometric network in the vicinity of
each spin. By arranging a small number of Ising spins in an
appropriate network that satisfies two criteria highlighted in
Sec. V, we find that the energetic properties of the extended
two-dimensional Ising systems can be reproduced with surpris-
ing accuracy. As expected, the shorter the correlation length
in the extended system, the better it can be approximated
by a small network. However, it is worth noting that the
small networks are not necessarily producible by applying
periodic boundary conditions (PBCs) on several unit cells
of the extended system. In our approach, we build a small
network by appropriately connecting the most frustrated units
[the smallest (2n + 1)-gons in the lattice] in a manner similar
to their connections in the extended lattice. This construction
allows the small network to mimic the actual propagation of
frustration in the extended lattice without introducing extra
degrees of frustration. We will argue that our approach is in
fact more general than applying PBCs on a similarly sized
portion of the extended lattice, and that the results are of at
least equal accuracy. In some cases, applying PBCs on several
unit cells of the extended lattice produces results that deviate
drastically from the actual behavior of the extended lattice,
while our small network of similar size provides a much more
reliable approximation.

There are two main advantages of using small-network ap-
proximations. First, since the small networks that we develop
have less than 30 spins in general, it is much more efficient to
do Monte Carlo simulations on the small networks. Second,
it is possible to calculate the thermodynamic properties of
the system directly by utilizing the Boltzmann distribution
with minimal computational power. Therefore the method of
small-network approximation may provide a new and efficient
first approximation to the properties of frustrated systems.
Besides the intrinsic advantages of using small networks as
approximations, the criteria for good small models may also
provide a new way of estimating the correlation length, as an
extended system with a longer correlation length requires a
larger-sized small network to satisfy the good-approximation
criteria. Moreover, our work may provide interesting per-
spectives on the application of boundary conditions. Small
networks that give a good approximation generally have a high
degree of symmetry. Although in some special cases, applying
PBCs on a patch of the extended lattice may coincidentally
produce a network of high symmetry, such symmetry cannot
be produced by this method in general because the application
of PBCs generates a toroidal surface that reduces the symmetry
of the network.

In this paper, we present an approximation technique for
frustrated Ising systems; our goal is to find small Ising
networks with less than 30 spins that accurately approximate
the energetic properties of extended Ising systems in the ther-
modynamic (infinite-size) limit. We illustrate this technique
on the two-dimensional triangular, kagome, and triangular
kagome lattices. We carry out Monte Carlo simulations on
extended systems that are in the infinite-size limit, and

compare their properties with the small networks that we have
constructed. Since the energetic properties of these systems
can be well represented by the specific heat vs kT profiles,
we attempt to find small networks that accurately approximate
the specific heat of the extended systems and develop general
criteria for constructing good small-network approximations.
The paper is organized as follows. In Secs. II and III, we
describe our models and the numerical techniques that we use
to study the models. In Sec. IV, we compare the specific heat of
particular small networks to that of the extended Ising systems
on the triangular kagome lattice, the kagome lattice, and the
triangular lattice. In Sec. V, we elucidate the general criteria
for constructing a small network that well approximates the
specific heat of the extended two-dimensional lattices, and in
Sec. VI, we discuss the advantages for using small-network
approximations over carrying out simulations on a small piece
of the extended lattice with periodic boundary conditions.
Finally, in Sec. VII, we offer some concluding remarks.

II. MODEL DESCRIPTION

A. Extended Ising models

In this paper, we discuss the possibility of using small
Ising systems to approximate the specific heat of geometrically
frustrated two-dimensional Ising systems. We have chosen the
Ising systems on the triangular lattice, the kagome lattice, and
the triangular kagome lattice as prototypes of extended two-
dimensional systems. The network structures of these three
lattices are schematically displayed in Fig. 1, in which a solid
or open circle represents a site for an Ising spin, and a single
line represents the nearest-neighbor bond between the spins.

(a) (b)

(c)

FIG. 1. (Color online) Schematic representations of the structures
of ordinary two-dimensional Ising systems on (a) the triangular
lattice, (b) the kagome lattice, and (c) the triangular kagome lattice.
The solid and open circles represent spin positions and the shaded
areas represent a unit cell.
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We note that the triangular kagome lattice is different from the
other two lattices in that, while all spins on the triangular lattice
and the kagome lattice are geometrically equivalent to one
another, there are two kinds of sites with distinct geometries
on the triangular kagome lattice. We have distinguished the
two kinds of spins using open and solid circles in Fig. 1(c),
and we shall refer to the spins represented by the open and
solid circles as a spins and b spins, respectively.

The Hamiltonian for an Ising system is [22]

H =
∑

〈ij〉
Jijσiσj , (1)

where the indices i and j label the lattice sites. σi = ±1
is the spin variable at site i, representing the up and down
directions of the Ising spin, and Jij is the interaction between
the spins on i and j sites. A positive value for Jij represents
antiferromagnetic interactions while negative Jij represents
ferromagnetic interactions. The summation runs over all
nearest-neighbor pairs 〈ij 〉.

In the case of the triangular lattice and the kagome lattice, all
spins are geometrically equivalent and all the nearest-neighbor
interactions are of the same magnitude. Thus Jij = J and we
can rewrite the Hamiltonian as

H = J
∑

〈ij〉
σiσj . (2)

In the case of the triangular kagome lattice, there are two
kinds of nearest-neighbor interactions: the aa interaction and
the ab interaction. We denote the strength of the two kinds of
interactions as Jaa and Jab, respectively, and the Hamiltonian
of the system is given by

H = Jaa

∑

i,j∈a

σa,iσa,j + Jab

∑

i∈a,j∈b

σa,iσb,j , (3)

where σx,i denotes the spin with index i on the x lattice (x =
a,b). The first summation runs over all nearest neighbors 〈ij 〉
within the a sublattice and the second summation runs over all
nearest neighbors 〈ij 〉 between the a and the b sublattices.

B. Small Ising networks

The small Ising systems that we have constructed to
approximate the extended lattices in the previous section span
a range of structures. Each consists of a group of less than
30 spins connected in a specific network. In many cases, the
network of a particular small Ising system can be represented
by a polyhedron, on which the vertices represent the spin
positions and the edges represent the nearest-neighbor bonds.
We will display the structures of the small systems as we
discuss the small-network approximations in Sec. IV.

As in the extended Ising systems, each spin position on the
small networks has a spin variable of σi = ±1, representing the
up and down orientations of the spin. Since most of our small
networks can be represented by three-dimensional structures
such as polyhedra, the terms up and down may cause potential
confusion due to the surface curvature of the structures. In
our case, up and down represent the absolute up and down
directions in spin space and not the directions perpendicular to
the surface of the polyhedron at any particular spin position.

The Hamiltonian of a small network is given by

H =
∑

〈ij〉
Jijσiσj , (4)

where Jij is the interaction between spins on sites i and j , and
the summation runs over all the bonds in the network.

III. NUMERICAL TECHNIQUES

In this section, we introduce the numerical methods
involved in our study. Section III A gives the numerical details
of the Monte Carlo simulation, which is used to calculate
the properties of both the extended lattices and the small
networks. In Sec. III B, we present the method for calculating
the specific heat exactly from the partition function; this
method is computationally inexpensive for systems with less
than about 25 spins. In Sec. III C, we introduce a “deviation
index” to quantify how well each small network approximates
the thermodynamics of the extended lattice system.

A. Monte Carlo simulation

Frustrated Ising systems exhibit little long-range order, and
therefore a single-spin-flip algorithm is suitable to statistically
sample the microstates of these systems. In view of this, we
employ the Metropolis algorithm [23,24] to study the Ising
systems on both the extended two-dimensional lattices and the
small networks. For ordinary extended two-dimensional Ising
systems, we carry out the simulations using systems of L × L

unit cells under periodic boundary conditions. We use L = 30,
18, and 10 for the triangular lattice, the kagome lattice, and the
triangular kagome lattice, respectively, so that there are at least
900 spins in the simulation box for each system. We have used
convergence tests to check that our system size is sufficient
to represent the infinite-size limit—increasing the system
size gives the same results. The short correlation lengths
in the systems under study make finite-size-scaling analysis
unnecessary. Each simulation is started with a randomly
generated spin configuration on the lattice, and 1000 Monte
Carlo steps were performed to allow the system to equilibrate
before any measurements were taken. For a system of N spins,
one Monte Carlo step is equivalent to N Metropolis loops. (So
that in each step, each spin in the system is chosen once on
average by the algorithm.) After the initial equilibration steps,
one measurement of energy is recorded for each of the 9000
subsequent steps. Ten independent simulations are carried out
for each extended lattice and the results are averaged.

For the small networks, we have carried out 1000 equili-
bration steps followed by 9000 measurement steps as well.
However, it is necessary to average the result from 100
sets of Monte Carlo simulations to ensure that the results
are statistically significant. Because of the small system
size and the simple connectivities between the spins, it is
easy to simultaneously carry out all 100 simulations with a
single processor (see note1 for more details), and thus it is

1Suppose we are carrying out n independent simulations for
a system of N spins. When the system size is small and the
connectivities are simple, it is advantageous to write the spin variables
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extremely efficient to obtain statistically significant results for
small-network systems. Though the results we present below
for small networks are obtained from analytical evaluations
rather than from Monte Carlo simulations, we note that Monte
Carlo simulations are very fast and accurate for these small
systems. Extensions of our work (e.g., to non-Ising spins
or other lattices) might lead to small networks for which
analytical solution is infeasible but Monte Carlo simulation
is highly efficient.

In this paper, we are interested in calculating the energy
and the specific heat of our systems. The energy can be
calculated directly by finding the ensemble average of the
Hamiltonian, which is just the averaged energy for all the
microstates sampled:

E = 〈Hμ〉, (5)

where the subscript μ denotes a sampled microstate.
On the other hand, the heat capacity of the system can be

calculated directly from the energy by applying the fluctuation
dissipation theorem on the system [25]. As the heat capacity is
directly proportional to the total number of bonds in the system,
we have to divide the heat capacity by the total number of bonds
to allow a fair comparison between the various models. In our
calculation, we define the specific heat c as the heat capacity
per nearest-neighbor bond:

c = 2

Nz

1

kT 2

(〈
H2

μ

〉 − 〈Hμ〉2
)
, (6)

where N is the number of spins in the system and z is the
coordination number for each spin. The factor of 2 corrects for
double counting.

Frustrated Ising systems that have a uniform interaction
constant across the system undergo an “excitation crossover”
as the temperature increases from zero. Below the temperature
of the excitation crossover, the system is in one of its ground
states. At the excitation crossover, the excited states become
accessible to the system. The temperature of the excitation
crossover is largely dependent on the geometry of the Ising
system, and we have found that the excitation crossover of
an extended frustrated Ising system can be modeled using our
small networks. The behavior of the excitation crossover can be
best studied using the specific heat as a function of temperature,
in which the excitation crossover manifests as a round and
broad peak. In addition, two systems with the same specific
heat vs temperature profile have the same energy profile as
well. In view of this, we focus on using small networks to
approximate the specific heat vs kT profiles of the extended
systems.

B. Analytical calculation

As our small networks have a very limited number of
spins, their specific heat may also be calculated using the

for all n systems in a single N × n matrix, such that each row
represents an independent system. A Hamiltonian operator of size
N × N × n may be used to calculate the energetics. A random vector
of size n can be generated in each Monte Carlo loop to determine
the acceptance ratio for each system. For a very large system, this
method is impractical due to the size of the matrices.

canonical ensemble and considering all possible microstates
for the system. In this formulation, the partition function is
given by

Z =
∑

all states

e−βEμ, (7)

where the subscript μ designates each microstate and β =
1/kT . The specific heat can be calculated from the partition
function using the following expression [26]:

c = 2

Nz
kβ2 ∂2 ln Z

∂β2
. (8)

For very small systems of less than 25 spins, it is easy
to numerically evaluate the partition function using Eq. (7)
and then calculate the specific heat using Eq. (8). This
provides us with an alternative way to accurately calculate
the specific heat of our small networks, and this exact method
requires much shorter computation time than a Monte Carlo
simulation. For slightly larger systems, the partition function
may also be calculated with more efficient algorithms, such
as combinatorial methods [27,28], Pfaffian methods [29–32],
the transfer matrix method [33,34], and the bond-propagation
method [35].

C. Deviation index

In this work, we consider a number of small networks as
approximations to the extended lattices under study. Some
are better approximations to the corresponding extended
lattice, while others are not as good. To evaluate how good
a small-network approximation is, we define a deviation
index D, which has the same definition as the coefficient
of determination R2, in regression analysis [36]. Usually,
R2 is used to determine the accuracy of a curve fit and
has values between 0 and 1; the closer the value of R2 to
1, the better the approximation. However, the value of R2

may go below zero when the curve fit is no better than a
horizontal line through the mean value. In our case, when
D > 0.9, the small network gives a reasonable approximation
to the corresponding extended lattice, and when D < 0, the
properties of the small network deviates drastically from that
of the extended lattice.

Our simulations are performed for the same set of kT /J

values for each system. For the nth value of kT /J , we obtain
the specific heat values cext,n and csn,n for the extended system
and the small network, respectively. We then calculate the
deviation index D using the following equations:

Stot =
∑

n

(cext,n − c̄ext)
2, (9)

Serr =
∑

n

(cext,n − csn,n)2, (10)

and

D = 1 − Serr

Stot
, (11)

where f̄ is the mean value of fn. To allow comparisons over a
range of values of kT /J , we carry out our simulation for 150
values of kT /J equally spaced in logarithmic scale between
kT /J = 0.1 and kT /J = 100.
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TABLE I. Spin-spin correlations of three antiferromagnetic lat-
tices at zero temperature and zero field, where r0 is the lattice constant
for the triangular and kagome lattices and rbb is the distance between
b sites in the triangular kagome lattice.

Lattice Spin-spin correlation

Triangular lattice C(r/r0)−1/2 with |C| ∼ 1a

Kagome lattice e−r/ξ with ξ = 3.3r0
b

Triangular kagome lattice 0 for r/rbb � 1 c

aReference [37].
bReferences [38,39].
cReference [40].

IV. COMPARISON BETWEEN SMALL NETWORKS
AND EXTENDED SYSTEMS

Geometrically frustrated systems are notable for their
short correlation lengths. As suggested by Table I, the spin-
spin correlation length ranges from extremely small for the
triangular kagome lattice to power law suppressed for the
triangular lattice with the kagome lattice intermediate with
exponentially suppressed correlations. It is this absence of
long-range correlations that make it possible to approximate
the collective behavior of an infinite system by a small number
of spins connected in an appropriate network. In a suitable
small network, the local interactions are preserved but the
long-range correlations are neglected. Accordingly, we expect
our small-network approximation method to succeed for a
particular extended system precisely to the degree that that
system has short-ranged correlations.

A. Triangular kagome lattice

We begin by developing a small-network approximation for
the frustrated triangular kagome lattice (TKL), which has the
shortest-range correlations of the three systems we consider.
Unlike the triangular and the kagome lattices, the TKL does
not require all bonds to have J > 0 to be frustrated. As long
as Jaa > |Jab|, the system is frustrated, remaining disordered
down to zero temperature, regardless of the sign of Jab [40].
In addition, earlier work by Loh and co-workers [40] has
shown that the sign of Jab does not affect the energy and the
specific heat of the system, due to a one-to-one correspondence
between the microstates for two systems with the same Jaa but
with Jab differing by a sign. Due to the two kinds of bonds
in the TKL, there are in general two excitation crossovers for
the system, appearing as two broad peaks in the specific heat
vs kT plot. By seeking to reproduce the interactions and the
connectivities of the lattice sites in the TKL, we arrive at the
“triangular drying-rack network,’ which we now show is a very
good approximation to the frustrated TKL.

A schematic diagram of our small-network approximation
to the TKL is shown in Fig. 2(a). This structure has 9 spins
and 18 bonds in total. Two a trimers are located on top and at
the bottom of the “drying rack,” and three b spins are located
on the three sides, providing the connection between the top
and the bottom trimers. Figure 2(b) displays the connectivity
between the spins in the drying rack, showing 6 aa bonds and
12 ab bonds in the structure. The ratio between the number of

(a)

a

a a

a

aa

b

b

b

(b)

aa

aa

a

a

bb
b

FIG. 2. (Color online) (a) Structure of the triangular drying-rack
network. (b) Connectivity between spins in the triangular drying-rack
network.

aa bonds and ab bonds in this structure is the same as that in
the extended two-dimensional TKL.

In each set of plots in Fig. 3, we compare the specific heat vs
kT profiles for the triangular drying-rack network and the Ising
model on the extended TKL with the same Jaa and Jab values.
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0.05
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triangular drying rack

(a)
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−1
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1

10
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0
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0.03
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kT/|J
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|

c/
|J
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extended TKL
triangular drying rack

(b)

FIG. 3. (Color online) Specific heat vs kT plots for the triangular
drying-rack network and the extended two-dimensional TKL with
(a) Jaa/|Jab| = 5 and (b) Jaa/|Jab| = 9.
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The specific heat of the TKL is obtained from Monte Carlo
simulations, and that for the triangular drying-rack network
is evaluated analytically. Although the triangular drying-rack
network has only nine spins, its specific heat profile matches
that of the extended TKL almost exactly. Since the specific
heat profile of the full TKL can be modeled by such a limited
number of spins in our triangular drying-rack network, it
suggests that it is possible to study frustration by focusing
on the local interactions among a small number of spins that
are connected in an appropriate network.

B. Kagome lattice

In this section, we compare the specific heat profiles of
particular small Ising networks with that of the frustrated
Ising system on the kagome lattice. In the kagome Ising
system, each spin has four nearest neighbors that are arranged
in a bowtie network around the spin, and all spins on the
lattice are geometrically equivalent to one another. In view of
these geometrical features of the kagome lattice, we consider
Ising networks represented by two quasiregular polyhedra: the
cuboctahedron and the icosidodecahedron. The structures of
the cuboctahedron and the icosidodecahedron are shown in
Figs. 4(a) and 4(b), respectively. We treat each vertex on the
polyhedra as a spin position and each edge as a bond between
the neighboring spins. Here, the cuboctahedron has 12 spins
and 24 bonds, while the icosidodecahedron has 30 spins and
30 bonds. Both small networks are similar to the kagome
lattice in the sense that each spin and its four neighbors form
a bowtie network and all spins are geometrically equivalent to
one another within the structure. However, while the kagome
lattice consists of triangular and hexagonal plaquettes, the
cuboctahedron and the icosidodecahedron differ by containing
square or pentagonal instead of hexagonal faces.

The specific heat profiles for the Ising systems on the
kagome lattice, the cuboctahedron network, and the icosido-
decahedron network are shown in Fig. 5. The specific heat
for the extended kagome lattice is obtained from Monte Carlo
simulation, while the results for the cuboctahedron and the
icosidodecahedron are calculated analytically. Comparisons
show that the icosidodecahedron’s network, which has only
30 spins, can serve as a very good approximation to the
specific heat profile of the frustrated kagome lattice at all
kT . On the other hand, the cuboctahedron network is a less
accurate approximation, which produces a slightly lower peak
than the extended kagome lattice in the specific heat vs kT

plot. However, the cuboctahedron network has the advantage

(a) (b)

FIG. 4. (Color online) Structures of Ising systems on (a) a
cuboctahedron, and (b) an icosidodecahedron.
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FIG. 5. (Color online) The specific heat vs kT plot for frustrated
Ising systems on the kagome lattice, the cuboctahedron network, and
the icosidodecahedron network.

that it has only 12 spins, and it therefore requires much
less computation time than the 30-site icosidodecahedron to
analytically evaluate the specific heat.

Both the cuboctahedron and the icosidodecahedron belong
to the class of quasiregular polyhedra, as all the vertices are
geometrically equivalent to one another on each polyhedron.
The geometrical equivalence of all spins is similarly true for
the kagome lattice. However, we show next that it is possible to
construct a small network that well approximates the kagome
lattice without requiring geometrical equivalence between
the sites. Consider two other networks, which we name the
“five-bowtie network” and the “six-bowtie network,’ which are
composed of five or six bowties wrapped around in a circle.
The structures of these two networks are shown in Fig. 6. In
these two networks, not all spins are geometrically equivalent
to one another. The specific heat vs kT curves for these bowtie
networks in Fig. 7 show that they are also good approximations
to the kagome lattice. The specific heat of the kagome lattice
in Fig. 7 is obtained from Monte Carlo simulations and that of
the bowtie models are from the analytical method.

C. Triangular lattice

The Ising model on the triangular lattice is composed only
of triangular plaquettes, and each spin is connected to six
neighboring spins. The best small-network approximation to
the triangular lattice would be obtained from a polyhedron

FIG. 6. (Color online) Structures of Ising systems on (a) the five-
bowtie network, and (b) the six-bowtie network.
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FIG. 7. (Color online) The specific heat vs kT plot for frustrated
Ising systems on the kagome lattice, the five-bowtie network, and the
six-bowtie network.

on which each face is a triangle and each vertex is connected
to six neighboring vertices. However, it can be shown with
standard topological methods that no such polyhedron exists
[41]. Instead, we consider networks formed from existing
regular triangulated polyhedra, namely the tetrahedron, the
octahedron and the icosahedron. The geometric structures of
these polyhedra are shown in Fig. 8.

The specific heat profiles of Ising networks on these polyhe-
dra are shown in Fig. 9, in which Monte Carlo simulations are
used for the extended triangular lattice and analytical methods
are used for the small polyhedra. The results show that none
of these networks gives a particularly great approximation to
the extended triangular lattice. However, as we consider small
networks from tetrahedron to octahedron to icosahedron, the
approximation gets better. Even though there is no network
(that we have considered) that gives an excellent fit, the
approximations given by the octahedron and the icosahedron
networks are pretty good given that they only have 6 and 12
spins, respectively, and can therefore be exactly solved with
minimal computational power.

The regular polyhedra presented above do not have the same
number of neighbors for each spin as the triangular lattice. To
find out whether a better approximation can be achieved by a
structure in which every spin has six neighbors, we consider an
“icosahedron +2” network, constructed by adding two spins
to the icosahedron network as shown in Fig. 10. The resulting
network has 14 spins in total and every spin in the structure

(a)Tetrahedron (b)Octahedron (c)Icosahedron

FIG. 8. (Color online) Ising systems on regular triangulated
polyhedra.
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FIG. 9. (Color online) Specific heat of Ising networks on three
regular triangulated polyhedra and the triangular lattice.

has six neighbors. In Fig. 11, the specific heat profile for the
icosahedron +2 network (evaluated analytically) shows that
its behavior is very far from that of the triangular lattice,
although both structures are made up of triangular plaquettes
and have six neighbors to each spin. This deviation is due
to the arrangement of the triangular plaquettes: while every
bond is shared by two triangular plaquettes in the triangular
lattice, some bonds in the icosahedron +2 network are shared
by three or five triangular plaquettes. This results in a higher
density of triangular plaquettes and a corresponding increase
in frustration.

To check whether a small network has to be made of
triangular plaquettes in order to be a good approximation to
the triangular lattice, we have also considered a network on the
snub cube, whose structure is shown in Fig. 12. This structure
has 24 vertices and 60 bonds. Each vertex in the structure
has five neighboring vertices (as in the icosahedron), but its
surface consists of squares and triangles. The specific heat
of the frustrated Ising network on the snub cube (evaluated
analytically) is shown in Fig. 13 together with that of the
triangular lattice and the icosahedron network. We find that
the snub cube network is a much worse approximation to the

FIG. 10. (Color online) An Ising system on the icosahedron +2
network, an icosahedron with two added spins such that every spin
has six neighboring spins.
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FIG. 11. (Color online) Specific heat of Ising networks on an
icosahedron with two added spins and the triangular lattice.

triangular lattice than the icosahedron network, which also has
five neighboring spins to each spin but is made up of triangular
faces only. This result suggests that a good approximation
network is obtained for the triangular lattice only if the small
structure is made up exclusively of triangular plaquettes.

D. Summary and comparison of small-network approximations

In Table II, we tabulate the deviation index D for the various
small Ising networks considered in the previous sections,
calculated according to Eq. (11). The value of D provides us
with an indicator of how well each small network approximates
its corresponding extended lattice. A small network can be
considered a very good approximation if D > 0.9. For the
TKL, we calculate D for systems with Jaa/|Jab| = 9. The
values of D suggests that the triangular kagome lattice is very
closely approximated by the triangular drying-rack network,
and that the kagome lattice is very well approximated by
the cuboctahedron, the icosidodecahedron, and the bowtie
networks. Furthermore, the icosahedron network, which has
only 12 spins, serves as a reasonably good approximation to
the triangular lattice.

Among the small networks studied in this work, one can
see a number of instances when a network with fewer spins is
a better approximation than a network with a larger number
of spins (for instance, in the case of the triangular lattice, the
deviation index D of the 12-site icosahedron is significantly
closer to 1 than that of the 24-site snub cube). These cases
highlight the importance of the connections between the spins
in the small network: a network with a smaller number of

FIG. 12. (Color online) An Ising system on the snub cube.
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FIG. 13. (Color online) Specific heat of Ising networks on the
snub cube, icosahedron, and the triangular lattice.

spins can be a better fit if it better mimics the geometry of the
extended lattice. We note that, all other things being equal, one
would expect the deviation between a small network and an
extended lattice to decrease as the size of the small network
increases. In this work, we see the general trend of increasing
D with increasing number of spins among the same class
of small networks. For example, the value of D increases
with N among the regular polyhedron approximations (the
tetrahedron, the octahedron, and the icosahedron) for the
triangular lattice, and also among the quasiregular polyhedron
approximations (cuboctahedron and the icosidodecahedron)
for the kagome lattice. In future work, it would be interesting
to design classes of small networks with similar geometry in
order to quantify how the deviation depends on network size.
However, such “classes of network” for comparisons must be
chosen with care, because there may be factors other than
the size of the network that would contribute to the specific
heat of the system. For example, in our work, we find that
the 18-site six-bowtie model has a slightly higher value of D

than the 15-site five-bowtie model. This can be due to the fact
that the pentagonal plaquettes in the five-bowtie model and

TABLE II. Values of the deviation index D for various small
networks.

Extended lattice Small system N D

TKL triangular drying rack 9 1.0000

Kagome lat. cuboctahedron 12 0.9909
icosidodecahedron 30 0.9988

five bowtie 15 0.9986
six bowtie 18 0.9966

Triangular lat. tetrahedron 4 0.4428
octahedron 6 0.8642
icosahedron 12 0.9267

icosahedron+2 14 −1.5526
snub cube 24 −0.4429

PBC on 4 × 4 unit cells 16 0.3416
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the hexagonal plaquettes in the six-bowtie model contributes
differently to frustration.

Given this demonstrated importance of the connection
between the spins (the local structure around spins), we seek
to elucidate the key aspects of local geometry that affect
the ability of a small network to mimic an extended system.
Drawing on our results for the specific cases of the triangular,
kagome, and triangular kagome lattices, in the next section we
summarize general criteria for constructing small networks
that are good approximations to extended frustrated systems.

V. GENERAL CRITERIA FOR CONSTRUCTING
SMALL-NETWORK APPROXIMATIONS

In the previous section, we presented comparisons between
a variety of small networks for each of our prototype two-
dimensional frustrated Ising systems. A natural question would
be whether there are any general rules for constructing a small
network so that it well approximates the energetics of a particu-
lar extended two-dimensional lattice. Based on our results, we
suggest the following general criteria for constructing small
networks to model extended two-dimensional lattices.

(1) The local lattice structure around each spin in the
small network should resemble that in the extended lattice. By
local lattice structure, we mean the arrangement of triangular
plaquettes around each spin in the network. For example,
each spin in the kagome lattice is a shared vertex of two
disconnected triangular plaquettes, as shown in Fig. 14(a). We
observe that the better approximations to the frustrated kagome
lattice, such as the icosidodecahedron, the cuboctahedron,
and the n-bowtie networks, have this same local structure
around each of their spins. Similarly, the triangular drying-rack
network gives an excellent approximation to the frustrated
TKL, and the spins on the two structures have identical local
structures. In both the “drying-rack” network and the TKL, the
b spins have the same local structure shown in Fig. 14(b) and
the a spins have the same local structure shown in Fig. 14(c).

For the triangular lattice, we are not able to find a small
network that has exactly the same local structure as the
extended lattice, due to the constraints of topology. However,
we observe that a better approximation is obtained as the
local structure of the small network approaches that of the
triangular lattice. The triangular lattice has a local structure of

(a) (b) (c)

a

a

a

a

b a

a

a

b

b

FIG. 14. (Color online) Local lattice structures around (a) each
spin in the cuboctahedron, the icosidodecahedron, the N -bowtie
networks, and the kagome lattice, (b) each b spin in the triangular
drying-rack network and the TKL, and (c) each a spin in the
triangular drying-rack network and the TKL. The orange (medium
gray) spheres denote the center spins and the dark gray spheres denote
the neighboring spins.

(a) (b) (c)

FIG. 15. (Color online) Local structures around each spin in
(a) the triangular lattice, (b) the icosahedron, and (c) the snub cube.
The orange (center) spheres denote the center spins and the gray
(dark) spheres denote the neighboring spins.

six connected triangular plaquettes around each spin as shown
in Fig. 15(a). Among the polyhedra, the local structure of the
icosahedron, with five connected triangular plaquettes around
each spin as shown in Fig. 15(b), resembles the triangular
lattice to the greatest extent. As a result, the network on the
icosahedron gives the best approximation to the frustrated
triangular lattice. On the other hand, the snub cube network
has a local structure shown in Fig. 15(c), in which not all the
triangular plaquettes are connected. As the local structure for
the snub cube differs sharply from that of the triangular lattice,
the behavior of the snub cube network is very different from
the triangular lattice.

We note that the importance of the local arrangement of
triangular plaquettes results from the fact that the triangular
plaquettes are the main contributors to the frustrated behavior
in Ising systems on the triangular lattice, the kagome lattice,
and the triangular kagome lattice. The triangular plaquettes
give rise to a higher density of frustrated bonds than other
(2n + 1)-gons. If a geometrically frustrated lattice is made up
of pentagons and other higher-sided polygons, then the local
arrangement of the pentagons would be the most important
factor to consider.

(2) Each bond in the small network should be a shared
edge of the same number of triangular plaquettes as that in
the extended lattice. In the lattices that we have considered,
every edge is shared by no more than two triangles due to the
constraints of two dimensionality. When constructing small
networks for these two-dimensional lattices, we find it is
extremely important to make sure that every bond is shared
by the same number of triangles as in the corresponding
extended lattice. For example, in the kagome lattice, every
bond belongs to only one triangular plaquette. In the small
networks, which give good approximations for the kagome
lattice (including the icosidodecahedron, the cuboctahedron,
and the bowtie networks), every bond also belongs to only one
triangular plaquette. The same holds true for the triangular
drying-rack network model for the TKL.

On the other hand, if this condition is not satisfied, the
behavior of the small network deviates sharply from that of the
the extended system. For example, even though the number of
nearest neighbors are the same in both the triangular lattice
and the “icosahedron+2” network, the latter gives a D value
as poor as −1.5. The chief reason is that there are bonds
that are shared by three or five triangles, which leads to
extra frustration due to the excess connectivity among those
triangular plaquettes. On the other hand, in the snub cube
network, there are bonds that belong to one triangle only, and
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this also causes the behavior of this small network to deviate
sharply from that of the triangular lattice.

While the first criterion on the similarity of local structures
should be satisfied as closely as possible, the second criterion
that the bonds must be shared by the same number of
triangles must be satisfied for all small networks. Based on
our observations, the behavior of a frustrated lattice is heavily
dependent on the types of bonds in the network. Whether
a bond is shared by one, two, or more triangular plaquettes
makes a drastic difference, as the connectivity of triangular
plaquettes through the bonds has a significant effect on the
density of states and the number of accessible states in the
system. For example, in the ground states of the snub cube,
the square plaquettes are not frustrated, and thus the snub
cube is less frustrated than the icosahedron, even though both
structures have the same number of neighbors for each spin.
The snub cube thereby has a lower energy per spin in the
ground state, resulting in a much higher peak in the specific
heat than the icosahedron (whose behavior is close to that of
the frustrated triangular lattice).

VI. SMALL NETWORKS VS PERIODIC
BOUNDARY CONDITIONS

In Sec. V, we presented general guidelines for construct-
ing small networks to approximate the thermodynamics of
extended two-dimensional lattices. Our degree of success is
directly related to the short correlation lengths in these systems,
which allow local structure to dominate the thermodynamics.
Given this, the reader may be wondering whether just as
good of an approximation can be obtained by taking a small
piece of the two-dimensional lattice and applying periodic
boundary conditions (PBCs). If the correlation length is zero
outside of a unit cell (as it is for the triangular kagome
lattice), applying periodic boundary conditions on one unit
cell would be expected to give a very good approximation. In
fact, the network obtained from a unit cell of the triangular
kagome lattice with PBCs is identical to what we have called
the triangular drying-rack network. However, applying PBCs
to the kagome and triangular lattices, which have longer
correlation lengths, is met with much lower success, as we
show next.

For extended two-dimensional systems whose spin-spin
correlation decays with distance r , it is difficult to know a
priori the minimum size required for a patch of the lattice with
PBCs to well approximate an extended system. We now show
that (for a comparable number of spins) a network constructed
by applying PBCs to a small section of the extended lattice
gives a much worse approximation than the small networks
we have developed. For the triangular lattice, applying PBCs
on 4 × 4 unit cells (16 spins) is insufficient to produce a good
approximation to the extended triangular lattice. Figure 16
shows the specific heat profile obtained from simulations on
4 × 4 unit cells of the triangular lattice with PBCs, as well as
the specific heat profiles for the octahedron network (8 spins),
the icosahedron network (12 spins), and the triangular lattice
for comparison. Even though 4 × 4 unit cells has more spins
than the octahedron and the icosahedron, its fit of the triangular
lattice has a D value of 0.3416 (Table II), much worse than the
icosahedron and the octahedron. The reason behind this huge
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FIG. 16. (Color online) The specific heat profile obtained by
applying periodic boundary conditions on 4 × 4 unit cells of the
triangular lattice compared with that for the extended triangular
lattice, the octahedron, and the icosahedron.

deviation is that by applying PBCs, one introduces additional
triangular plaquettes. In contrast, for a given number of spins,
a triangulated polyhedron has a higher degree of symmetry,
and thus its spin network allows the best approximation of the
frustration dynamics on a two-dimensional infinite triangular
lattice.

We conclude that, compared to applying PBCs to a finite
piece of the lattice, the method of small-network approxi-
mation that we have developed in Sec. V is generally more
accurate, for the same number of spins. In some special cases,
one of our small networks has the same structure as a few
unit cells of the extended lattice under PBCs. In addition to
the case of the TKL and the triangular-drying-rack network,
for the kagome lattice, the network of the cuboctahedron turns
out to be the same as applying PBCs on 2 × 2 unit cells of the
kagome lattice (but this is rather coincidental since the kagome
lattice contains hexagonal plaquettes while the cuboctahedron
contains square plaquettes instead). However, the variety of
structures covered by our small-network approximation is
much larger than what can be obtained by applying PBCs. In
the case of the triangular lattice, the small-network approach
allows us to do much better than applying PBCs, and in the case
of the kagome lattice, the icosidodecahedron’s network and
the five-bowtie network, which cannot be created by applying
PBCs on the kagome lattice, can also give us very accurate
approximations. Furthermore, knowing the rules of small-
network approximation, we can directly have an estimate of
the correlation length of an extended system, as there is a lower
limit of the network size required to satisfy the general criteria
of a good approximation.

VII. CONCLUSION

In this work, we have examined the correspondence
between geometrically frustrated Ising systems on particu-
lar small spin networks and three ordinary extended two-
dimensional systems. The small correlation lengths in these
frustrated Ising systems makes it possible for a remarkably
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small network of spins to give a good approximation for the
specific heat of the corresponding extended two-dimensional
lattice. However, the correlation length poses a fundamental
lower limit on the size of the small network required to
obtain a good approximation, and we find decreasing success
for this small-network approach as the correlation length
of the extended lattice system increases. We suggest that
using suitably designed small networks is a good way to
obtain a first approximation for the properties of large and
complicated geometrically frustrated systems. In addition, the
minimum size of the small system required to satisfy the good-
approximation criteria can be an estimate of the correlation
length of the two-dimensional infinite frustrated systems.

The behavior of frustrated magnetic systems are often
difficult to study, particularly beyond the simplest approxi-
mations. For many physical systems, Heisenberg spins are
required to accurately model the quantum properties of
the systems. Even within the classical Ising approximation,
computationally intensive Monte Carlo simulations on large
systems are often used because there are no general analytic

approximations available for frustrated systems. In this work,
we have presented an approach that may provide a general
way to approximate frustrated systems with extremely small
computational expense. The small networks discussed here
could be embellished to resemble more realistic models, for
instance by using Heisenberg spins instead of Ising ones,
while remaining computationally feasible. In addition, the idea
of small-network approximations could lead to new renor-
malization or numerical procedures, and to new perspectives
on the application of boundary conditions. In this work, we
have focused on ordinary two-dimensional systems that are
frustrated due to their triangular plaquettes. However, similar
methods could be applied to other kinds of geometrically
frustrated lattices with various geometrical structures in both
two and three dimensions, such as spin ice.
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5924 (2000).
[33] S. Cho and M. P. A. Fisher, Phys. Rev. B 55, 1025 (1997).
[34] F. Merz and J. T. Chalker, Phys. Rev. B 65, 054425 (2002).
[35] Y. L. Loh and E. W. Carlson, Phys. Rev. Lett. 97, 227205 (2006).
[36] J. Devore, Probability and Statistics for Engineering and the

Sciences, 8th ed. (Brooks/Cole, Boston, 2009).
[37] J. Stephenson, J. Math. Phys. 5, 1009 (1964).
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