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Analyses of Alternatively Processed Genes in Ciliates Provide Insights
into the Origins of Scrambled Genomes and May Provide a
Mechanism for Speciation

Feng Gao,a,b Scott W. Roy,c Laura A. Katza,d

Department of Biological Sciences, Smith College, Northampton, Massachusetts, USAa; Laboratory of Protozoology, Institute of Evolution and Marine Biodiversity, Ocean
University of China, Qingdao, Chinab; Department of Biology, San Francisco State University, San Francisco, California, USAc; Program in Organismic and Evolutionary
Biology, UMass-Amherst, Amherst, Massachusetts, USAd

ABSTRACT Chromosome rearrangements occur in a variety of eukaryotic life cycles, including during the development of the
somatic macronuclear genome in ciliates. Previous work on the phyllopharyngean ciliate Chilodonella uncinata revealed that
macronuclear �-tubulin and protein kinase gene families share alternatively processed germ line segments nested within diver-
gent regions. To study genome evolution in this ciliate further, we characterized two additional alternatively processed gene
families from two cryptic species of the ciliate morphospecies C. uncinata: those encoding histidine acid phosphatase protein
(Hap) and leishmanolysin family protein (Lei). Analyses of the macronuclear Hap and Lei sequences reveal that each gene family
consists of three members in the macronucleus that are marked by identical regions nested among highly divergent regions. In-
vestigation of the micronuclear Hap sequences revealed a complex pattern in which the three macronuclear sequences are de-
rived either from a single micronuclear region or from a combination of this shared region recombined with additional dupli-
cate micronuclear copies of Hap. We propose a model whereby gene scrambling evolves by gene duplication followed by partial
and reciprocal degradation of the duplicate sequences. In this model, alternative processing represents an intermediate step in
the evolution of scrambled genes. Finally, we speculate on the possible role of genome architecture in speciation in ciliates by
describing what might happen if changes in alternatively processed loci occur in subdivided populations.

IMPORTANCE Genome rearrangements occur in a variety of eukaryotic cells and serve as an important mechanism for generat-
ing genomic diversity. The unusual genome architecture of ciliates with separate germline and somatic nuclei in each cell, pro-
vides an ideal system to study further principles of genome evolution. Previous analyses revealed complex forms of chromosome
rearrangements, including gene scrambling and alternative processing of germ line chromosomes. Here we describe more com-
plex rearrangements between germ line and somatic chromosomes than previously seen in alternatively processed gene families.
Drawing on the present and previous findings, we propose a model in which alternative processing of duplicated micronuclear
regions represents an intermediate stage in the evolution of scrambled genes. Under this model, alternative processing may pro-
vide insights into a mechanism for speciation in ciliates. Our data on gene scrambling and alternative processing also enhance
views on the dynamic nature of genomes across the eukaryotic tree of life.
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Genomes are incredibly dynamic within diverse lineages across
the tree of life (1, 2). Dynamic genomes differ not only in

terms of extensive intra- and interspecific variation in genome
content and structure but also in genome processing (e.g., DNA
elimination and reorganization). Genome rearrangements occur
in a variety of eukaryotic cells and serve as an important mecha-
nism for generating genomic diversity. For example, the switching
of variant surface glycoprotein (VSG) to generate antigenic vari-
ation in Trypanosoma brucei occurs in part by DNA rearrange-
ments involving �1,000 VSG genes (3). Similarly, recombination
of V(D)J regions generates diversity in immunoglobulins in hu-
mans and other vertebrates (4). Moreover, different chromo-

somal rearrangements of the supergene locus P, which contains a
cluster of several genes that control different aspects of wing pat-
terning, result in various wing pattern morphs in the polymorphic
mimetic butterfly Heliconius numata (5). Finally, rearrangements
of a single locus underlie the expression of seven mating types in
Tetrahymena thermophila (6). Here, mating type is determined
through a stochastic process in which the macronuclear copy of
the mating gene is alternatively assembled from sequences in the
micronuclear mating type locus (6).

Although developmentally regulated chromosome rearrange-
ment occurs in a variety of eukaryotes, genome rearrangements
may be most pronounced in ciliates. Ciliates are a very diverse
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clade of microbial eukaryotes that segregate germ line and somatic
functions into two types of nuclei with distinct genome structures:
the diploid micronucleus (germ line) and the polyploid macronu-
cleus (soma). Micronuclei and macronuclei differentiate from a
genetically novel zygotic nucleus following sexual conjugation.
The new zygotic nucleus divides by mitosis. The two descendant
nuclei then take on distinct roles, with one developing into a germ
line micronucleus and the other into a somatic macronucleus.
During development, the macronuclear genome is transformed
through a series of chromosomal rearrangements, including frag-
mentation, DNA elimination, and DNA amplification (7–15).

The types of DNA elimination during macronuclear develop-
ment are quite diverse, both within a given ciliate species and
among different ciliates (9, 12). Precise excision of internal elim-
inated sequences (IESs) occurs in Paramecium, Oxytricha, and
Chilodonella. A more complex form of genome reorganization
(termed gene scrambling) is observed in some ciliates, such as
Chilodonella, Oxytricha, and other stichotrichous ciliates: not only
must IESs be removed, but also the intervening macronucleus-
destined sequences (MDSs) must be reordered. Gene scrambling
has been well characterized in genes encoding actin I, telomere
end-binding protein subunit �, and DNA polymerase � in spiro-
trichs (16–19) and actin and �-tubulins in Chilodonella uncinata
(20).

The mechanism underlying gene scrambling is not well under-
stood, but MDS boundary motifs, macronuclear RNA templates
and small RNAs appear to be important. First, splicing appears to
involve homologous recombination between pairs of identical
short sequence motifs (called pointers) at the 3= end of one MDS
and the 5= end of the subsequent MDS (15, 21). Second, RNA
transcripts from the parental macronucleus have important roles
in guiding creation of new macronuclear chromosomes, and small
RNAs determine which sequences to retain in the macronucleus
(22, 23). These transcripts serve as templates for splicing and also
have a role in proofreading of spliced DNAs (24). The importance
of the parental macronuclear genome for development of the new
somatic genome is underscored by two observations. First, intro-
ducing novel chromosomal sequences in the form of new tem-
plates into the macronucleus leads to the presence of these novel
chromosomal arrangements in the macronucleus in subsequent
generations (9, 24, 25). Second, a high frequency of aberrant
nanochromosomes appears to be created in the process of macro-
nuclear creation; however, these aberrant nanochromosomes are
not found in the mature macronucleus, indicating that they are
discarded and/or corrected by a proofreading mechanism (26).
Thus, the presence/absence of a sequence in the preceding macro-
nucleus promotes presence/absence in the new macronucleus.

A previous study on the ciliate Chilodonella uncinata revealed a
highly complex form of chromosome rearrangement, in which
some micronuclear segments are used to generate multiple ma-
cronuclear sequences (20), a process called alternative processing.
For example, the macronuclear �-tubulin genes P1 and P2 are
assembled by alternative processing of several micronuclear loci:
MIC P1, MIC P2, and MIC SP1 (20). Previous analyses of tran-
scriptome data revealed more than 100 candidate alternatively
processed gene families, indicating that alternative processing
may be extensive among gene families within C. uncinata (27).
Alternative processing in the spirotrichous ciliate Oxytricha tri-
fallax was subsequently reported (26, 28, 29).

In the present study, we explored two gene families that were

previously identified as possibly alternatively processed on the ba-
sis of transcriptome data (27, 30): that encoding histidine acid
phosphatase family protein (Hap) and that encoding leishmano-
lysin family protein (Lei). Hap encodes a member of a large func-
tionally diverse group of proteins that play key roles in such varied
biological processes as metabolism, development, and intracellu-
lar signaling (31). Leishmanolysin was identified as an important
virulence factor that was found in the parasite Leishmania, where
it contributes to a variety of functions allowing host immune eva-
sion (32, 33). The function of these genes in ciliates is as yet un-
known. We found that both gene families have three macronu-
clear copies that are marked by patterns of regions of identity
intermingled with divergent regions. We characterized the micro-
nuclear Hap sequences, which revealed a complex pattern of al-
ternative processing to produce the three macronuclear se-
quences. We propose a model in which alternative processing of
duplicated micronuclear sequences represents an intermediate
stage in the evolution of scrambled genes. Finally, we speculate on
the possibility that alternative processing can contribute to high
rates of speciation in ciliates.

RESULTS
Hap and Lei have multiple macronuclear sequences marked by
alternating regions of nucleotide divergence and identity. We
identified three macronuclear sequences for both Hap (Acc. no.
KJ000273-KJ000278) and Lei genes (see Table S1 in the supple-
mental material). For each gene family, comparison between
different macronuclear sequences revealed a combination of iden-
tical and diverged sequences (Fig. 1). For the Hap genes, compar-
ison of two macronuclear sequences (termed MAC P1 and MAC
P2) showed three identical regions (indicated by a � value of 0)
(Fig. 1) alternating with more divergent regions. Comparison be-
tween MAC P1 and the third sequence (MAC P3) also showed
three identical regions, but these regions were in different loca-
tions (Fig. 1A). For the Lei gene, MAC P1 and MAC P2 share four
identical regions alternating with more divergent regions, while
MAC P1 and MAC P3 share five identical regions with some vary-
ing boundaries as compared to MAC P2 (Fig. 1B).

We sought to time the duplication events that led to the differ-
ent macronuclear sequences relative to the divergence of the Pol
and USA strains (Fig. 1C and D). We found that there was more
nucleotide divergence between different macronuclear sequences
than there was between the two strains’ copies of the same macro-
nuclear sequence (see Fig. S1 and S2 in the supplemental mate-
rial), indicating that for both gene families the duplication events
predate the divergence between the strains.

Macronuclear Hap sequences are assembled from alterna-
tively processed MDSs from a single micronuclear locus con-
taining duplicated Hap genes. To assess the processing between
the germ line micronucleus and somatic macronucleus, we used
traditional PCR to characterize the micronuclear sequences of
Hap genes for the Pol strain (ca. 3.6 kb in length) (Fig. 2), using a
MAC P2-specific forward primer and a shared reverse primer.
This revealed a single micronuclear locus containing three dupli-
cated Hap gene sequences. Based on the comparison with the ma-
cronuclear sequences, we term these P2 specific (blue in Fig. 2), P3
specific (purple in Fig. 2), and shared (black in Fig. 2).

Comparison of micronuclear and macronuclear sequences of
Hap gene revealed a complex pattern of alternative processing and
gene scrambling. Pointer sequences ranging from 4 to 8 bp were
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found at the boundaries of MDSs and IESs (Table 1), supporting
the alternative processing of Hap gene. The MAC P1 has the sim-
plest pattern and is made up of four MDSs that are located sequen-
tially in a single micronuclear copy (shared) and are separated by
three rapidly evolving IESs (see Fig. S3 in the supplemental mate-
rial). In contrast, both MAC P2 and P3 are scrambled in the mi-
cronucleus and are generated by combination of interdigitated
sequences from the single micronuclear region. MAC P2 contains
sequence from both the shared and P2-specific copies: interest-
ingly, two of the shared MDSs found in MAC P1 are also found in
MAC P2 (first and fourth), whereas the other two (second and
third) undergo alternative processing with P2-specific sequences.
MAC P3 is generated from the shared sequence and yet another
sequence (P3 specific) and is more complex yet: (i) no full MDS is
shared with either MAC P1 or MAC P2, with only partial shared
MDSs being present, and (ii) three of the five P3-specific MDSs are
present in the opposite orientation (i.e., on the reverse strand).

We used information on the structure of Hap in the Pol micro-
nuclear sequence to design USA-specific primers for characteriz-
ing micronuclear copies in this strain. The organization of the
USA micronuclear sequence shows a structure similar to that of
Pol, except that the fourth MDS of MAC P3 is divided into two
MDSs by a 35-bp IES (see Fig. S4 in the supplemental material),

implying that this IES was either gained in the USA strain or lost in
the Pol strain. The pointer sequences in the USA strain range from
2 to 8 bp, with some MDS-IES junction shifts compared to the Pol
strain (Table 1; also, see Table S2 and Fig. S3 in the supplemental
material).

Using a similar approach, we were not able to characterize the
micronuclear copy(ies) corresponding to the Lei gene. Walking
PCR for the Lei gene yielded sequences that are identical to the
macronuclear sequences, indicating that the primers are inter-
rupted by IESs in the micronucleus (we had macronuclear con-
tamination in our micronuclear preps), the gene is highly frag-
mented or scrambled, and/or the region we characterized does not
contain IESs in the micronucleus.

DISCUSSION

This study of two gene families in two strains of the ciliate mor-
phospecies C. uncinata leads to three main insights: (i) macronu-
clear Hap and Lei gene family members show a combination of
regions of identity and highly divergent regions that are suggestive
of alternative processing; (ii) the three macronuclear Hap mem-
bers are generated by alternative processing of a single micronu-
clear region that contains duplicated and decayed Hap genes; and
(iii) alternative processing is more complex than previously be-

FIG 1 Sequence comparisons among gene family members of Hap (A) and Lei (B) and genealogies of gene family members from Pol and USA strains for Hap
(C) and Lei (D). (A and B) Graphs are sliding-window analyses of pairwise divergence (�) calculated using DnaSP (59). The top comparison is of macronuclear
(MAC) P1 and P2, and the bottom comparison is of MAC P1 and P3. Regions in black at identical positions correspond to shared sequences. (C and D)
Topologies were estimated by PhyML (58) as implemented in SeaView (57). Numbers at nodes represent the bootstrap values of maximum likelihood analysis
out of 1,000 replicates. Scale bars show substitutions per site.
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lieved, as the sharing of micronuclear regions can vary in generat-
ing macronuclear products. Drawing on these findings, we hy-
pothesize that alternative processing of duplicated micronuclear
sequences may be an intermediate step in the evolution of gene
scrambling and may play a role in speciation in ciliates.

Complex processing of Hap and Lei gene family members.
Sliding-window analyses of divergence among Hap and Lei gene
family members revealed stretches of identity nested within highly
divergent regions. The identical regions are flanked by highly di-
vergent stretches where pairwise differences (�) can be up to 0.60
(Hap) or 0.80 (Lei), values that are likely underestimates due to
multiple hits/saturation (Fig. 1). Previous studies of �-tubulin
and protein kinase domain-containing gene families in C. unci-
nata showed similar patterns, with islands of identity within
highly divergent macronuclear gene family members (20, 27).

Analyses of the transcriptome data from C. uncinata Pol strain
revealed more than 100 gene families that also show similar pat-
terns, suggesting that alternative processing could be common
(27).

Three macronuclear Hap members are generated by alterna-
tive processing of a single micronuclear region that contains du-
plicated and decayed Hap genes. Several lines of evidence support
this conclusion: (i) the sharing of identical regions among macro-
nuclear sequences; (ii) the recovery of only one micronuclear se-
quence containing regions identical to all regions of the macronu-
clear Hap genes; (iii) the presence of pointer sequences at
appropriate locations between the micronuclear regions that need
to be joined to form macronuclear sequences; and (iv) the fact that
the two strains of C. uncinata show the same alternative processing
patterns. Based on the pattern observed here, we hypothesize that
the original Hap gene duplicated twice, followed by decay of some
of the coding regions and subsequent replacement by recombina-
tion of intact homologous regions during macronuclear develop-
ment (see cartoons in Fig. 3 and 4). The processing of the Hap
micronuclear locus leads to the three alternatively processed ma-
cronuclear sequences in which identical macronuclear regions
come from shared micronuclear regions.

Alternative processing is more complex than previously be-
lieved, as the sharing of micronuclear regions can vary in generat-
ing macronuclear products. Our Hap MIC locus adds to the list of
alternatively processed genes in C. uncinata, which includes
�-tubulin gene family (20) and a protein kinase domain contain-
ing protein (PKc) gene family (27). Previous analyses of the
�-tubulin gene family showed that two members, MAC P1 and
MAC P2, are generated using the same alternatively processed
MIC SP1 regions (20). The analyses of the PKc gene family also

FIG 2 Schematic maps of the somatic and corresponding germ line sequences of Hap. The three diverse Hap genes are alternatively spliced together from a single
micronuclear locus. Colors correspond to macronuclear loci in Fig. 1. MDSs for each macronuclear locus are marked with arrows, and their corresponding sites
in the micronuclear locus are also indicated with the same arrows linked with lines. The directions of the arrows indicate the sequence directions in the
macronuclear locus.

TABLE 1 Characteristics of pointers of the Hap gene family from strain
Pol of C. uncinata

Pointer Sequence Start and end Haplotype(s)

1 TGACAAC 2786-2792/2846-2852 P1/P2
2 CAGAAAC 3059-3065/3130-3136 P1/P2
3 TACCCAAG 3499-3506/3572-3579 P1/P2
4 GATCTTC 133-139/3035-3041 P2
5 AAGATGGA 3182-3189/191-198 P2
6 TTTGCTT 471-476/3458-3464 P2
7 GGTTGCA 2663-2669/1083-1089 P3
8 AGAA 1286-1289/2926-2929 P3
9 GAAACC 3045-3050/1333-1338 P3
10 TCACT 1607-1611/3384-3388 P3
11 TTCG 3466-3469/2223-2220 P3
12 ATTCAAA 2078-2072/2031-2025 P3
13 CCAGAAAG 2002-1995/1949-1942 P3
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showed that the shared identical regions are processed using the
same MIC regions (27). The present study of Hap gene revealed a
different pattern in that Hap macronuclear gene family members
MAC P2 and MAC P3 are generated using different alternatively
processed (i.e., shared) MIC P1 regions. This complex pattern of
sharing indicates that there must be a controlled and precise rear-
rangement mechanism to guide the macronucleus-destined se-
quences into the correct linear order and orientation, as has been
found in other ciliates (24, 34).

On the origins and consequences of genome scrambling. Our
analyses of patterns among Hap and Lei gene family members
leads to a model on the evolution of gene scrambling whereby
duplication of micronuclear regions is followed by a transient pe-
riod of alternative processing, which is later resolved as gene
scrambling (Fig. 3 and 4). The cases of alternative processing re-
ported here and elsewhere (20, 27, 29, 35) share the observation
that macronuclear gene family members are generated by recom-
bination between duplicated micronuclear sequences. Such a sys-
tem may arise through constructive neutral evolution (36, 37),
though we recognize the challenges of disentangling the evolu-
tionary forces (e.g., genetic drift and natural selection) at play in

the origin of this system (38–42). Hence, we focus on the role of
gene duplication in enabling the evolution of alternative process-
ing and, ultimately, gene scrambling.

Following duplication of micronuclear regions, the existence
of long stretches of identical sequences provides redundancy in
the pointer pairs that direct rearrangements during macronuclear
development (Fig. 3A). Alternative usage of various combinations
of these nascent pointers could lead to production of macronu-
clear sequences from diverse combinations of the micronuclear
duplicates. Over time, the redundancy in pointer sequences and
duplicated coding regions could allow an inactivating mutation in
a region of one duplicate to become fixed with no negative fitness
effect (i.e., decay) (Fig. 3B). Such mutated regions could be ex-
cluded from the macronucleus by scanning during macronuclear
development, which ensures that sequences in the newly formed
macronucleus reflect those in the previous macronucleus (34, 43,
44); thus, a mutated region of one duplicate could become re-
stricted to the micronucleus. A similar inactivating mutation in
the other duplicate could then lead to restriction of that region to
the micronucleus, at which point all functional macronuclear re-
gions would be assembled from multiple micronuclear sequences,
constituting a newly scrambled gene (Fig. 3C). Further mutations
could eventually lead to a pattern of nearly complete reciprocal
degradation, with the pointer sequences representing the only re-
maining regions of sequence redundancy (Fig. 3D). For instance
an inactivating mutation within remaining paralogous regions in
the black duplicate on the right of Fig. 2 would abolish MAC P1, in
which case all remaining macronuclear sequences would be the
result of scrambling.

In this scenario, alternative processing could represent a tran-
sient stage on the road to full gene scrambling (Fig. 4). This model
mirrors classic duplicate gene pseudogenization (45, 46), in which
one of a pair of duplicate genes degrades by mutation, though in
the case of alternative processing in ciliates, different regions of the
duplicates could reciprocally degrade. Another possibility is that
some parts of the duplicated gene could be retained in duplicate
due to evolution of new functions (neofunctionalization) or par-
titioning of ancestral functions between the two regions (subfunc-
tionalization) (45, 46). In this case, alternative processing could be
evolutionarily stable, with further degradation opposed by puri-
fying selection. In the examples reported here, the persistence of
some gene regions in duplicates despite significant sequence di-
vergence suggests that purifying selection is acting to oppose in-
activating regions, and thus that they are not simply functionally
redundant.

We further speculate that our model of differential degrada-
tion of duplicates leading to gene scrambling may provide a mech-
anism for speciation in ciliates (Fig. 4). If the degradation of re-
gions occurs multiple times in subdivided populations, then this
could create a barrier to successful reproduction between result-
ing strains as offspring between such crosses would not be capable
of generating functional gene family members (Fig. 4D and E). In
other words, differing patterns of alternative processing of scram-
bled “options” in subdivided populations would lead to incom-
patibility in subsequent matings between members, resulting in
incipient species. In this scenario, it is possible that reproductive
barriers may occur more rapidly than predicted by the accumula-
tion of point mutations, which would explain the disconnect be-
tween the rates of morphological and molecular evolution that
underlie ciliate species (47–55).

FIG 3 Model for the origins of scrambled micronuclear genes. (A) Following
an initial micronuclear duplication, DNA splicing could use a variety of se-
quences as pointers, leading to identical spliced molecules deriving from var-
ious combinations of the two micronuclear duplicates. Blue and orange boxes
on the left indicate the two duplicates. Mixed blue/orange boxes on the right
indicate various spliced DNAs generated by using a variety of spliced sites. (B)
Due to RNA template proofreading, a mutation in one duplicate (arrow) leads
to the mutated region becoming restricted to the micronucleus (light color),
leading to constitutive usage of sequence from the nonmutated duplicate at
that site (all spliced DNAs use orange in the mutated region). (C) A second
mutation in the other duplicate leads to constitutive usage of sequence from
the other (blue) duplicate at a second site. (D) Accumulation of mutations in
the duplicates leads to a scrambled gene.
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MATERIALS AND METHODS
Ciliate culturing and DNA extraction. We maintained two previously
characterized cryptic species (referred to here as strains, as they have not
been described formally) of the ciliate morphospecies C. uncinata, Pol
(ATCC PRA-256) and USA-Sc2, following protocols described by Katz et
al. (48). To isolate total DNA, cultures were treated overnight with
penicillin-streptomycin-amphotericin B (17-745 H; Lonza, Allendale,
NJ), and cells were pelleted by spinning at 5,000 rpm for 20 min. Genomic
DNA was extracted using phenol-chloroform following standard proto-
cols (56). Micronuclear DNA was isolated according to Katz and Kovner
(20). Briefly, micronuclear DNA was gel isolated by gel electrophoresis
using low-melting-point UltraClean agarose (15005-50; Mobio, Carls-
bad, CA) after digestion with Bal 31 nuclease (M02135; New England
Biolabs, Ispwich, MA) to enrich micronuclear DNA. Gel-isolated micro-
nuclear DNA was purified using �-agarase (M03925; New England Bio-
labs).

Traditional PCR and cloning. We chose two gene families, encoding
histidine acid phosphatase family protein (Hap) and leishmanolysin fam-
ily protein (Lei), for which multiple RNA transcripts sharing some se-
quences are present in the assembled C. uncinata transcriptome. Primers
for both Hap and Lei genes were designed from these shared regions. The
primers were then used on two C. uncinata strains, Pol and USA, to am-
plify the macronuclear sequences. Haplotype-specific primers were de-
signed to amplify the micronuclear sequences. PCR was performed using
Phusion Hot Start high-fidelity DNA polymerase (F 540 L; Finnzymes,
Finland). Amplified products were cloned using Zero Blunt TOPO kits
(K2800; Invitrogen, CA), and screened using the polymerase TaqGold
(Applied Biosystems, CA).

Genome walking PCR and cloning. We used Seegene’s DNA walking
SpeedUp kit (K1052; Seegene, Rockville, MD) to amplify additional re-

gions of Lei. PCR amplification was performed following Seegene kit pro-
tocol using kit primers and gene-specific primers designed for this study.
Genome walking PCR products were cloned using TA TOPO cloning kits
(45-0641; Invitrogen) and screened using the polymerase TaqGold (Ap-
plied Biosystems, CA).

Sequencing and data analysis. Sequences were generated using the
BigDye terminator v3.1 cycle sequencing kit (no. 4337455) from PE Ap-
plied Biosystems (Wellesley, MA). Reaction products were cleaned using
gel filtration columns (no. 42453) from Edge Biosystems (Gaithersburg,
MD) and analyzed on a PerkinElmer ABI-3100 automated sequencer at
the Center for Molecular Biology (Smith College, Northampton, MA).
Contigs were assembled in SeqMan (DNASTAR), and all polymorphisms
were confirmed by eye. SeaView v. 4.2.4 (57) and MegAlign (DNASTAR)
were used to create alignments. Genealogies based on nucleotide align-
ments were estimated using PhyML (58) as implemented in SeaView v.
4.2.4 with the model GTR�gamma. DnaSP (59) was used to perform
sliding-window analysis to calculate average pairwise differences (�).
Sliding-window analyses were performed with a 20-bp window and a 5-bp
step.

Nucleotide sequence accession numbers. The macronuclear se-
quences for Lei genes have been deposited in GenBank database under
accession no. KJ000279 to KJ000284. The micronuclear sequence of Hap
genes for the Pol strain has been deposited under accession no. KJ626297.
The micronuclear sequence of Hap genes for the USA strain has been
deposited under accession no. KJ626298.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01998-14/-/DCSupplemental.

Figure S1, PDF file, 0.5 MB.

FIG 4 Genome architecture drives evolution in ciliates, resulting in gene scrambling and perhaps even speciation. (A) Each ciliate contains a germ line
micronucleus with a canonical eukaryotic genome and a somatic macronucleus represented by a large polyploid nucleus. A single gene with IESs is shown in the
micronucleus, and multiple copies of the processed gene are present in the macronucleus. (B) The gene duplicates in the micronucleus followed by divergence,
and both copies are processed during macronuclear development. (C) A coding region in the micronucleus degrades and is replaced by recombination of
homologous regions from the intact copy, leading to alternatively processed macronuclear chromosomes. Further decay can happen, so that no duplicate
homologous regions remain and only one haplotype will be generated during macronuclear development, resulting in gene scrambling. (D and E) Populations
that become fixed for different scrambling “options” may become incompatible (i.e., incipient species).
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