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INTRODUCTION

Microbial eukaryotes, i.e., protists, represent the bulk of eukaryotic diversity in terms of species
diversity and biomass. Protists are globally distributed in all ecosystems and play important roles in
food webs and nutrient cycles. To date it remains enigmatic how protist diversity is generated,
especially in lineages with large populations in ecosystems without apparent dispersal barriers
(i.e., many marine species, species that encyst). We argue that epigenetic processes, such as
chromatin modification and/or regulation by small non-protein-coding RNAs (npc-RNAs) that
rapidly modify genomes and gene expression states, play important roles in driving phenotypic
plasticity, differential adaptation and ultimately diversification of protists. Our argument is based
on two recent developments in epigenetic research: (1) it is now clear that epigenetic processes were
present in the last eukaryotic common ancestor (LECA) and are widespread across eukaryotes, and
(2) numerous studies have demonstrated that at least some epigenetic marks can be inherited across
generations. Given this, we suggest to combine morphometrics, genomics, and epigenomics for
research on adaptability and diversification in microbial eukaryotes.

DIVERSITY OF MICROBIAL EUKARYOTES

Many lineages of protists have a tremendous species diversity, which is reflected in a wide variety
of morphologies and ecological functions (e.g., Adl et al., 2019). In addition, research of the
last two decades has unearthed a large amount of cryptic diversity, suggesting a decoupling
of morphological and molecular evolution (e.g., Katz et al., 2005; Šlapeta et al., 2005; Darling
and Wade, 2008; Oliverio et al., 2014). Protists occur globally in all ecosystems, and while
some species are endemic to certain areas, others have a cosmopolitan distribution and vast
population sizes (e.g., Ryšánek et al., 2015; Faure et al., 2019). Large-scale barcoding studies
revealed that some closely related cryptic species are able to co-occur in close biogeographical
proximity (e.g., Amato et al., 2007; Weiner et al., 2014; Badger et al., 2017; Tucker et al., 2017).
In addition, protists show a variety of complex life cycles, sometimes alternating sexual and asexual
generations (e.g., Grell, 1973; Parfrey et al., 2008). Given these characteristics, the enormous species
diversity is perhaps not surprising. However, which (molecular/epigenetic) mechanisms allow for
speciation in microbes, especially in habitats with seemingly unlimited dispersal potential, remains
unresolved. Several groups have hypothesized that differential adaptation to environmental factors
may be the underlying driver for diversification in sympatry (e.g., Ryšánek et al., 2016; Irwin
et al., 2017; Škaloud et al., 2019). However, for gene flow between populations to be overcome,
mechanisms leading to the establishment of reproductive isolation would have to be fast and
efficient. We argue that in order for rapid diversification to be achieved, epigenetic processes
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that regulate gene activity and that may be influenced
by the environment play important roles in establishing
phenotypic plasticity; if the epigenetic marks are inherited across
generations—what we refer to as “epigenetic assimilation”—they
can provide a fitness advantage tomembers of the population and
ultimately lead to differential adaptation that drives speciation
(Figure 1).

EPIGENETICS IN MICROBIAL
EUKARYOTES

A prerequisite for our model of epigenetics as driver of ecological
speciation in protists (Figure 1) to be valid is the widespread
existence of epigenetic phenomena in microbial eukaryotes.
Eukaryotic epigenetics comprises processes such as chromatin
and DNA modifications and regulation by npc-RNAs (e.g.,
Razin and Riggs, 1980; Ng and Bird, 1999; Shabalina and
Koonin, 2008), that are thought to have evolved originally for
mediating genome conflict between mobile genetic elements
and host genomes (Lisch, 2009; Fedoroff, 2012). The effects of
epigenetics include, among others, gene activation or silencing,
and altering genome structures through DNA elimination or
polyploidization (e.g., Liu andWendel, 2003; Bernstein and Allis,
2005). Most epigenetic research has focused on animals and
plants, yet it was recently confirmed that the basic epigenetic
gene toolkit was present in LECA and is now widespread
throughout the eukaryotic tree of life (Aravind et al., 2014;
Weiner et al., 2020). This highlights the importance of epigenetics
for the functioning of eukaryotic genomes. For the majority
of protists, however, knowledge on their epigenetics remains
limited, mostly because many are uncultivable and annotated
reference genomes are lacking. What is known so far mostly
stems from research on model organisms, such as ciliates
(Alveolata) and human pathogens [e.g., Plasmodium (Alveolata)
and Trypanosoma (Excavata)].

In ciliates, which contain both a germline and somatic
nucleus within one cell, epigenetics plays key roles in distinctions
between the two genomes and in elimination of DNA during
the development of a new somatic nucleus during reproduction
(e.g., Chicoine and Allis, 1986; Jahn and Klobutcher, 2002;
Chalker et al., 2013; Pilling et al., 2017). Small npc-RNAs, such
as “scan RNAs” and “macronuclear RNAs,” bind to homologous
regions in the genome or direct histonemodifications (e.g., H3K9
methylation) in those regions to mark them for either retention
or elimination (Chen et al., 2014; Swart et al., 2014). Similarly,
npc-RNAs, so-called “template RNAs,” were found to be involved
in the reordering of scrambled genes in some ciliates (e.g.,
Garnier et al., 2004; Nowacki et al., 2011). Another phenomenon
of genome dynamics that is likely driven by epigenetics is the
determination of ploidy levels throughout the life cycle. Many
protist lineages, such as some Foraminifera (Rhizaria), ciliates
and Amoebozoa have been observed to undergo significant
changes in ploidy, sometimes containing thousands of copies of
the genome that later are eliminated again (Parfrey et al., 2008;
Bellec and Katz, 2012; Goodkov et al., 2020). In the case of
ciliates, research suggested that RNA interference, which is part

of the “epigenetic toolkit,” is driving these changes (Heyse et al.,
2010).

In addition to these large-scale modifications to the genome
architecture, epigenetic processes are involved in changes to
the morphology or physiology of protists. This is especially
prevalent in parasites, in which epigenetics controls virulence
and cell differentiation through regulation of gene expression
and thus plays an important role in host-pathogen interaction
(e.g., Croken et al., 2012; Gomez-Diaz et al., 2012). For example,
the formation of cysts (an important life cycle stage for
host infection) in Toxoplasma (Apicomplexa), Acanthamoeba
(Amoebozoa), and Giardia (Excavata) is driven at least partly
by epigenetic mechanisms such as histone acetylation and
methylation (e.g., H3K18 acetylation and H3R17 methylation
in Toxoplasma; Saksouk et al., 2005; Dixon et al., 2010; Sonda
et al., 2010; Moon et al., 2017; Lagunas-Rangel and Bermudez-
Cruz, 2019). Antigenic variation, a strategy used by many
pathogens (e.g., Trypanosoma brucei, Giardia lamblia, Giardia
doudenalis, and Plasmodium falciparum) to avoid the host
immune system, also is achieved through epigenetic regulation
of gene expression (Kulakova et al., 2006; Elias and Faria,
2009; Juarez-Reyes and Castano, 2019; Lagunas-Rangel and
Bermudez-Cruz, 2019). Their genomes contain many genes
for surface proteins and the timing of gene expression is
at least partly epigenetically regulated, e.g., through histone
methylation (H3K4) or acetylation (H3K9) of the var genes in
Plasmodium falciparum (e.g., Freitas-Junior et al., 2005; Guizetti
and Scherf, 2013; Duffy et al., 2014). In this way, pathogenic
protists are able to rapidly react and adapt to a changing
host environment.

A further aspect of cell physiology that seems to involve
epigenetics is mating type determination in ciliates (e.g., Pilling
et al., 2017). While most ciliate species have different mating
types, their number varies greatly (up to a 100; Phadke and
Zufall, 2009) and so do the molecular mechanisms for mating
type determination (e.g., Orias et al., 2017). For Paramecium
tetraurelia it could be shown that the difference between its two
mating types lies in the presence/absence of a transmembrane
protein, whose expression is regulated by “scan RNAs” (Singh
et al., 2014).

Despite the fact that details on the exact molecular processes
and the genes/enzymes involved often remain scarce, the above-
mentioned examples highlight the ubiquity and importance of
epigenetics in the life histories of microbial eukaryotes.

THE POTENTIAL ROLE OF EPIGENETICS
IN DRIVING ADAPTATION AND
DIVERSIFICATION

Ecological speciation through differential adaptation to
environmental factors may be a plausible explanation
for diversification in protists considering their often-large
population sizes and wide biogeographic distribution. Here,
we focus on the role of epigenetics in these events, yet we
acknowledge that bottlenecks and drift likely are also important
drivers of diversity in protists, especially in lineages with small
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FIGURE 1 | Theoretical sequence of events in ecological speciation driven by epigenetics. In addition to genetic mutations, naturally occurring protist populations

experience epigenetic modifications that may be stochastic or be triggered by the environment. These modifications can lead to phenotypic plasticity in the population

through changes in genome structure or gene expression states. If the epigenetic modification is followed by a genetic mutation, it may be fixed in the genome

through genetic assimilation. However, if the epigenetic mark itself is stably inherited (i.e., “epigenetically assimilation”) across generations, it may represent a

selectable advantage that can lead to an increase in fitness of the population and ultimately to adaptation, diversification, and speciation without changes to the

genome. The numbers indicate the most critical steps in this sequence of events that we discuss throughout the text.

populations and restricted distribution. However, the effects
of these population genetic phenomena on epigenetics remain
largely unknown.

In order to elucidate the interactions between ecology,
epigenetics, and evolution that are the basis of our suggested
model, special consideration has to be placed on the following
questions (Figure 1): (1) does the environment trigger epigenetic
variations, (2) can epigenetic modifications lead to phenotypic
plasticity, and (3) are environmentally acquired epigenetic
marks stably inherited to establish reproductive isolation and
speciation? Over the last few years research efforts investigating
these interactions have rapidly increased, yet so far mostly
focusing on multicellular model species (e.g., Smith and Ritchie,
2013; Vogt, 2017; Boskovic and Rando, 2018; Perez and Lehner,
2019).

The notion that the environment influences epigenetic
modifications is by now well-established. Many studies have
focused on the effects of stress, toxin exposure or nutrition
on epigenetic marks (e.g., Yaish et al., 2011; Collotta et al.,
2013; Tiffon, 2018; Weyrich et al., 2019), and research on
natural non-model systems showed epigenetic variability in
populations across ecological gradients (e.g., Foust et al.,
2016; Mcnew et al., 2017; Johnson and Kelly, 2020; Wogan
et al., 2020). These studies usually focus on patterns of
DNA methylation as this epigenetic modification is better
understood and easy to analyze through bisulfite sequencing
methods (e.g., Meissner et al., 2005; Smallwood et al., 2014).
To our knowledge, few data exist on similar studies of
protists, yet we argue that due to their ubiquitous occurrence
across a wide range of environments, protist populations
hold great promise for investigating environmental effects on
epigenetic variation.

Elucidating the influence of epigenetics on phenotypic
plasticity is more challenging as it can be difficult to rule

out underlying genetic influences. However, recently progress
has been made, mostly through experimental modifications to
epigenetic marks on DNA or histones and the investigation
of subsequent effects on the phenotype (e.g., Kronholm et al.,
2016; Verhoeven et al., 2016). Research on a natural system
was able to show that epigenetic modifications were more
likely than genetic variability to have shaped the behavioral
reproductive isolation in fish species (Smith et al., 2016).
Similarly, epigenetic mechanisms were found to be responsible
for phenotypic plasticity in asexual lineages allowing them
to respond to environmental fluctuations (Castonguay and
Angers, 2012). A further striking example of rapid phenotypic
plasticity induced by epigenetics can be found in protist lineages
that use antigenic variation through epigenetically regulated
changes in gene expression to adjust to changing environments
(see above).

For epigenetics to act as driver of speciation, it is important
that epigenetic marks are stably inherited across generations, at
least until reproductive isolation is established and/or genetic
assimilation has occurred (Figure 1; discussed in Rey et al.,
2016). The stable inheritance of epigenetic marks has long
been debated as they were assumed to be eliminated during
reproduction and only affect the current generation (discussed
in: Richards, 2006), a view that is in line with the concepts
of the modern synthesis and the rejection of the idea that
acquired traits can be passed down to future generations
(discussed in: Jablonka and Lamb, 2008; Bonduriansky, 2012).
However, in recent years, examples of soft inheritance through
transgenerational inheritance of epigenetic marks became more
numerous (e.g., Richards, 2006; Bond and Finnegan, 2007; Perez
and Lehner, 2019). Again, important examples can be found
among protists, such as ciliates, in which acquired changes to
the morphology or physiology, such as doublet morphology and
mating types, are inherited to progeny without changes in the
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underlying nucleotide sequence (e.g., Pilling et al., 2017; Neeb
and Nowacki, 2018). In addition, experimental evolution on the
unicellular algae Chlamydomonas (Archaeplastida) showed that
epigenetic variation is stably inherited across generations and
thus influences adaptability of the organism (Kronholm et al.,
2017).

CONCLUSION

In recent years, a large amount of research has been published
that focuses on the role of epigenetics in ecological speciation.
It has been shown that environmentally induced epigenetic
modifications can lead to differential gene expression and
phenotypic plasticity. If these epigenetic marks are stably
inherited across generations (“epigenetic assimilation”) and
increase the fitness of the population, they could be substrate
for selection and thus represent a first step toward ecological
speciation (Figure 1).

While detailed information on the molecular processes of
epigenetics inmicrobial eukaryotes remains scarce, its prominent
role in shaping genome dynamics and driving phenotypic
plasticity even across generations makes it likely that epigenetics
is involved in generating their tremendous diversity. This, as
well as their short generation times, make protists interesting
model systems for studying the influence of epigenetics on
adaptation and speciation. The model of ecological speciation
driven by epigenetics presented here is consistent with the
idea of rapid diversification in lineages with large population

sizes and therefore weak genetic drift. Recent improvements
in the sensitivity of high-throughput sequencing techniques to
sequence the genomes, transcriptomes, and epigenomes of non-
modelmicrobesmake this an exciting time to combinemolecular,
morphological, and epigenetic approaches for elucidating the
origin of species diversity and a species’ response to changing
environmental conditions.
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