
	

GPU-Based One-Dimensional Convolution for
Real-Time Spatial Sound Generation

Brent Cowan and Bill Kapralos
Game Development and Entrepreneurship Program, Faculty of Business and IT.

University of Ontario Institute of Technology.
2000 Simcoe Street North, Oshawa, Ontario, Canada. L1H 7K4.

brent.cowan@mycampus.uoit.ca bill.kapralos@uoit.ca

Abstract
Incorporating spatialized (3D) sound cues in dynamic and interactive videogames and immersive
virtual environment applications is beneficial for a number of reasons, ultimately leading to an
increase in presence and immersion. Despite the benefits of spatial sound cues, they are often
overlooked in videogames and virtual environments where typically, emphasis is placed on the
visual cues. Fundamental to the generation of spatial sound is the one-dimensional convolution
operation which is computationally expensive, not lending itself to such real-time, dynamic
applications. Driven by the gaming industry and the great emphasis placed on the visual sense,
consumer computer graphics hardware, and the graphics processing unit (GPU) in particular, has
greatly advanced in recent years, even outperforming the computational capacity of CPUs. This
has allowed for real-time, interactive realistic graphics-based applications on typical consumer-
level PCs. Given the widespread use and availability of computer graphics hardware and the
similarities that exist between the fields of spatial audio and image synthesis, here we describe
the development of a GPU-based, one-dimensional convolution algorithm whose efficiency is
superior to the conventional CPU-based convolution method. The primary purpose of the
developed GPU-based convolution method is the computationally efficient generation of real-
time spatial audio for dynamic and interactive videogames and virtual environments.

Author Keywords
Spatial sound; game audio; graphics processing unit; GPU; convolution; real-time.

Introduction

A virtual (or three-dimensional (3D), or spatial) audio system (or audio display) allows a listener
to perceive the position of a sound source(s), emanating from a static number of stationary
loudspeakers or a pair of headphones, as coming from arbitrary locations in three-dimensional
space. Spatial sound technologies go far beyond traditional stereo and surround sound techniques
by allowing a virtual sound source to have such attributes as left-right, back-forth, and up-down
(Cohen and Wenzel, 1995). Incorporating spatialized auditory information in an immersive
virtual environment and videogames is beneficial for a variety of reasons. Spatial auditory cues
can add a better sense of “presence” or “immersion”, compensate for poor visual cues (graphics),
and at the very least, add a “pleasing quality” to the simulation (Durlach and A. S. Mavor, 1994;
Shinn-Cunningham, 2002). Despite these benefits and despite the fact that spatial sound is a
critical cue to the perception of our environment, it is often overlooked in immersive virtual
environments and videogames where historically, emphasis has been placed on the visual senses

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loading - The Journal of the Canadian Game Studies Association

https://core.ac.uk/display/426976121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	

	
 2

(Carlile, 1996; Cohen and Wenzel, 1995). That being said, the generation of spatial sound for
dynamic, and interactive applications using traditional software-based methods and techniques is
computationally very expensive except for trivial environments which are typically of little use.

Collectively, “the process of rendering audible, by physical or mathematical modeling, the sound
field of a sound source in space, in such a way as to simulate the binaural listening experience at
a given position in the modeled space” is known as auralization (Kleiner et al., 1993). The goal
of auralization is to recreate a particular listening environment, taking into account the acoustics
of the environment and the characteristics of the listener (see Kapralos et al. (2008) for a
thorough review of spatial audio and auralization). Auralization is typically accomplished by
determining the Binaural Room Impulse Response (BRIR). The BRIR represents the response of
a particular acoustical environment to sound energy and captures the room acoustics for a
particular sound source and listener configuration. Once obtained, the BRIR can be used to filter
the desired anechoic sound through a convolution process described by Equation 1.

 (1)

Where s is the input signal, r is the filter, n denotes the sample index, S and R denote the discrete
Fourier transform (DFT) of s and r, respectively, f denotes the DFT index and N denotes the
filter sample size.

When this filtered sound is presented to a listener the original sound environment is recreated.
The BRIR can be considered as the signature of the room response for a particular sound source
and human receiver. Although interlinked, for simplicity and reasons of practicality, the room
response and the response of the human receiver are commonly determined separately and
combined via a post-processing operation to provide an approximation to the actual BRIR
(Kleiner et al., 1993). The response of the room is known as the Room Impulse Response (RIR)
and captures the reflection properties (reverberation), diffraction, refraction, sound attenuation
and absorption properties of a particular room configuration (i.e., the environmental context of a
listening room or the “room acoustics”). The response of the human receiver captures the
direction dependent effects introduced by the listener due to the listener's physical make-up (i.e.,
pinna, head, shoulders, neck, and torso) and is known as the Head Related Transfer Function
(HRTF). HRTFs encompass various sound localization cues including Interaural Time
Differences (ITDs), Interaural Level Differences (ILDs), and the changes in the spectral shape of
the sound reaching a listener. The HRTF modifies the spectrum and timing of sound signals
reaching each ear in a location-dependent manner. Various techniques are available for
determining (measuring, calculating) both the HRTF and the RIR however, a detailed discussion
of these techniques is beyond the scope of this paper (see Kapralos et al. (2008) for greater
details). The output of the techniques used to determine the HRTF and the RIR is typically a
transfer function which forms the basis of a filter that can be used to modulate source sound
material (e.g., anechoic or synthesized sound) via a convolution operation. When the filtered
sounds are presented to the listener, in the case of HRTFs, they create the impression of a sound
source located at the corresponding HRTF measurement position and when considering the RIR,
recreate a particular acoustic environment. However, as previously described, convolution is a

	

	
 3

computationally expensive operation especially when considering long filters associated with
HRTFs and RIRs (filters with 512 coefficients are not uncommon) thus limiting their use to non-
real-time applications (the operation described in Equation 1 must be performed for each input
signal sample). Convolution is primarily performed in software in the time domain.

As shown in Equation 1, convolution in the time domain is equivalent to multiplication in the
frequency domain and therefore, performance improvements can be made by performing the
convolution operation in the frequency domain (Gardner, 1995). However, in order to
accomplish this, the input and filters must be converted to their frequency domain representation
using the Fast Fourier Transform (FFT); a time consuming process when performed using
software thus also making it impractical for real-time use. Recent work in image processing has
established a GPU-based convolution method capable of performing a two-dimensional
convolution operation in real-time (Fialka and Cadik, 2006). In addition to software-based
convolution methods, programmable DSP cards are available which allow for hardware-based
convolution thus greatly improving performance. However, these boards are very specialized and
typically only available to product developers and not the general consumer (Gallos and Tsingos,
2003). In contrast to the consumer-grade audio cards currently available, dedicated computer
graphics hardware is evolving at a tremendous pace.

In an attempt to reduce computational requirements, a number of initiatives have investigated
simplifying the HRTFs and RIRs. With respect to the HRTF, dimensionality reduction
techniques such as principal components analysis, locally linear embedding, and isomap have
been used to map high-dimensional HRTF data to a lower dimensionality and thus ease the
computational requirements (Kapralos and Mekuz, 2007; Kistler and Wightman, 1992). Despite
the improvements with respect to computational requirements, even dimensionality reduced
HRTFs are still not applicable for real-time applications and although the amount of reduction
can be increased thus improving performance, reducing the dimensionality of HRTFs too much
may lead to perceptual consequences that render them impractical. Further investigations must
be conducted in order to gain greater insight. With respect to the RIR, it is usually ignored
altogether and approximated by simply including reverberation generated with artificial
reverberation techniques instead. These techniques are not necessarily concerned with recreating
the exact reflections of any sound waves in the environment. Rather, they artificially recreate
reverberation by simply presenting the listener with delayed and attenuated versions of a sound
source. Although these delays and attenuation factors do not necessarily reflect the physical
properties of the environment being simulated, they are adjusted until a desirable effect is
achieved. Given the interactive nature of video games and their need for real-time processing,
when accounted for, reverberation effects in video games are typically handled using such
techniques.

Driven by the videogame industry, consumer computer graphics hardware has greatly advanced
in recent years, outperforming the computational capacity of central processing units (CPUs). A
graphics processing unit (GPU) is a dedicated graphics rendering device whose purpose is to
provide a high performance, visually rich, interactive 3D experience by exploiting the inherent
parallelism in the feed-forward graphics pipeline (Luebke and Humphreys, 2007). In contrast to
consumer-grade audio cards, GPUs have moved away from the traditional fixed-function
pipeline toward a flexible general-purpose computational engine that can currently implement

	

	
 4

many parallel algorithms directly using graphics hardware. Current GPUs include fully
programmable processing units that support vectorized floating point operations resulting in
tremendous computational savings (Owens et al., 2007). Due to a number of reasons including
the explosion of the consumer videogame market and advances in manufacturing technology,
GPUs are, on a dollar-per-dollar basis, the most powerful computational hardware, providing
“tremendous memory bandwidth and computational horsepower” (Owens et al., 2007). GPUs are
also becoming faster and more powerful very quickly, far exceeding Moore’s Law applied to
traditional microprocessors (Ekman et al., 1994). In fact, instead of doubling every 18 months as
with CPUs, GPU performance increases by a factor of five every 18 months or doubles every
eight months (Geer, 2005).

Given the importance of the convolution operation in the generation of spatial audio but its
demanding computational requirements, here we present a GPU-based convolution method that
is capable of filtering a one-dimensional signal in real-time allowing for the generation of
plausible spatial audio for dynamic, interactive applications such as videogames and virtual
environments. A comparison with conventional, software-based convolution demonstrates the
effectiveness of the developed method.

Paper Organization
The remainder of this paper is organized as follows. The Background section provides
background information regarding graphic processing units (GPUs) and their use in spatial
audio-based applications. The Implementation section provides implementation details of the
GPU-based convolution method. Performance measures are provided in the Results section,
where a comparison with conventional, software-based convolution is made and a discussion of
the results is also provided. Concluding remarks are presented in the Conclusions section.

Background

In this section, an overview of spatial audio and audio processing in general using the GPU is
provided. However, prior to doing so, a brief introduction of GPUs is provided.

GPU Overview
In computer graphics, rendering is accomplished using a graphics pipeline architecture whereby
rendering of objects to the display is accomplished in stages and each stage is implemented as a
separate piece of hardware. The input to the pipeline is a list of vertices expressed in object space
while the output is an image in the framebuffer. The stages of the pipeline and their operation are
as follows (Owens et al., 2007):

• Vertex Stage: i) Transformation of each (object space) vertex into screen space, ii)
formation of triangles from the vertices, and iii) per-vertex lighting calculations.

• Rasterization Stage: i) Determination of the screen position covered by each of the
triangles formed in the previous stage, and ii) interpolation of vertex parameters across
the triangle.

• Fragment Stage: Calculation of the color for each fragment output in the previous stage.
Often, the color values come from textures which are stored in texture memory. Here the

	

	
 5

appropriate texture address is generated and the corresponding value is fetched and used
to compute the fragment color.

• Composition Stage: Pixel values are determined from the fragments.

In contrast to the “traditional” fixed-function pipelines with “modern” (programmable) GPUs,
both the vertex and fragment stages are user-programmable. Programs written to control the
vertex stage are known as vertex programs or vertex shaders while programs written to control
the fragment stage are known as fragment programs or fragment shaders. Early on, these
programs were written in assembly language. However, higher level languages have since been
introduced including Microsoft’s High Level Shading Language (HLSL), the OpenGL Shading
Language (GLSL) (Rost, 2006) and NVIDIA’s Cg (Mark et al., 2003). Generally, the input to
both of these programmable stages is a four-element vector where each element represents a 32-
bit floating point number. The vertex stage will output a limited number of 32-bit, four element
vectors while the fragment stage will output a maximum of four floating point, four element
vectors that typically represent color. The fragment stage is capable of fetching data from texture
memory (memory gather) but cannot alter the address of its output which is determined before
processing of the fragment begins (incapable of memory scatter). In contrast, within the vertex
stage, the position of input vertices can be altered thus affecting where the image pixels will be
drawn (i.e., the vertex stage supports both memory gather and memory scatter) (Owens et al.,
2007). In addition to vertex and fragment shaders, Shader Model 4.0 currently supported by
Direct3D 10 and OpenGL 3.0 defines a new type of shader, the geometry shader. A geometry
shader receives input from the vertex shader and can be used to create new geometry. It is also
capable of operating on entire primitives (Sherrod, 2008).

GPU-Based Audio and Spatial Audio Generation
GPUs have also been applied to a wide variety of audio-based applications. von Tycowicz and
Loviscach (2008) describe the implementation of a flexible virtual drum that is simulated in real-
time and with low latency on the GPU. A MIDI controller with 16 pressure points is used for
pressure recognition and a finite difference method is employed to synthesize sound based on
location and pressure information. Matsuyama et al. (2007), describe a method for the automatic
generation of real-time sound for graphics-based animation of sparks to simulate thunder and
lighting effects. The implementation also makes use of GPU-based numerical methods
introduced by Kruger and Westermann (2003). Using the Cg shading language, Whalen (2005)
implements seven common audio functions: chorus, compress, delay, high-pass filter, low-pass
filter, noise-gate and normalization. A performance comparison was made between the GPU and
corresponding CPU implementation using a Pentium IV (3.0 GHz CPU) and an NVIDIA
GeForce FX 5200 video card. The GPU showed better performance for several of the functions
(compress and chorus with speedups of up to a factor of four). However, the CPU
implementation was better for other functions (high-pass and low-pass filters). It was suggested
that the GPU performance was poorer for some algorithms given the implementation of these
algorithms was not suitable for GPU implementation given that they required (computationally
expensive) texture access. With more modern video cards, texture access has been improved and
this will undoubtedly lead to greater improvements in these methods.

Röber et al. (2007) present a (low-frequency) wave-based acoustical modeling method that made
use of the GPU and in particular, fragment shaders, 3D textures, and the OpenGL framebuffer

	

	
 6

objects extension, in order to take advantage of the inherent parallelism of wave-based solutions
to acoustical modeling (Röber, et al., 2006). The system was tested on a PC with an AMD64
4000+ dual-core CPU and an NVIDIA GeForce 7900 GT video card and showed speed-ups of
factors of from 4.5 to 69 when compared to a software-based implementation. However, the
CPU implementation was not optimized.

Audio-based ray tracing using the GPU was implemented by Jedrzejewski (2004) to compute the
propagation of acoustical reflections in highly occluded environments and to allow for the sound
source and the listener to move throughout the simulation without the need for a long pre-
computation phase. Jedrzejewski takes advantage of the fact that in acoustics, as opposed to
graphics, objects other than walls do not contribute significantly to the sound wave modifications
and therefore can be ignored during the computation. Because of this, only polygons that
represent walls are taken into account. Röber et al. (2007) describe a ray-based acoustical
modeling method that employed the GPU to allow for real-time acoustical simulations. Their
framework was designed along existing (computer graphics) GPU-based ray tracing systems
suitably modified to handle sound wave propagation. The system accepts a 3D polygonal mesh
of up to 15,000 polygons and pre-processes it into an accessible structure. A frame-rate of up to
25 fps was achieved using a detailed model of a living room containing 1,500 polygons (using an
NVIDIA GeForce 8800 GTX video card).

Tsingos and Gascuel (1997) developed an occlusion and diffraction method that utilizes
computer graphics hardware to perform fast sound visibility calculations that can account for
specular reflections (diffuse reflections were not considered), absorption, and diffraction caused
by partial occluders. Specular reflections are handled using an image source approach (Allen and
Berkley, 1979) while diffraction is approximated by computing the fraction of sound that is
blocked by obstacles on the path from the sound source to the receiver by considering the
amount of volume of the first Fresnel ellipsoid that is blocked by the occluders. A visibility
factor is computed using computer graphics hardware. A rendering of all occluders from the
receiver’s position is performed and a count of all pixels not in the background is taken (pixels
that are “set” i.e., not in the background, correspond to occluders). Although their approach is
not completely real-time, it is “capable of achieving interactive computation rates for fully
dynamic complex environments” (Tsingos and Gascuel, 1997). Tsingos and Gascuel later
introduced another occlusion and diffraction method based on the Fresnel-Kirchoff optics-based
approximation to diffraction (Tsingos et al., 2001; Tsingos and Gascuel, 1998) The Fresnel-
Kirchoff approximation is based on Huygens’ principle (Hecht, 2002). Given the use of graphics
hardware, their method is fast and is well suited to the interactive auralization of diffracted
energy maps (Tsingos and Gascuel, 1998). Comparisons for several configurations with
obstacles of infinite extent between their method and between boundary element methods
(BEMs), gives “satisfactory quantitative results” (Tsingos and Gascuel, 1998). Finally, a
complete overview of GPU-based spatial sound and audio processing is beyond the scope of this
paper but a thorough review is provided by Hamidi and Kapralos (2009).

	

	
 7

Implementation Details

In this section, implementation details of the GPU-based convolution method are provided. The
implementation is based on the OpenGL Shading Language (OGSL). The input (un-processed)
signal can be of any type (i.e., floating point, integer including the “short integer” 16-bit
resolution common with WAV files used in many videogames). Of course, given an input signal
that does not conform to this assumption, it can still be processed but at additional computational
cost. The filter coefficients can be of any type (e.g., float, integer, etc.). For this work, an
NVIDIA GTX-280 video card is being used. Although the implementation is applicable to all
video cards, the GTX supports double precision floating point numbers allowing data to be
stored with full accuracy thus avoiding the introduction of artifacts in the final (filtered) result
(see Results and Discussion section).

GPUs have been designed to work with two-dimensional images as the output of typical
computer graphics applications is a two-dimensional image. Therefore, prior to performing the
convolution, there is a set-up phase to convert the one dimensional audio signal and filter, into a
two-dimensional format as required by the GPU. The source (shader) code is provided below.
Although the code is made freely available, the authors ask that if used, proper acknowledgment
be given. With the GTX-280, the 16-bit (integer) input sound signal is stored in single channel
16-bit intensity maps (images) while the HRTF filter is sent to the GPU as an array of floats (i.e.,
it is not stored as an image). Although this is not completely necessary and the data can be
divided into two 8-bit channels, it does lead to reduction in both computational requirements and
round-off errors. A texture is then created from the data in OpenGL. This however is
accomplished using the CPU and not the GPU. To return the data back from the video card, the
video card output must be copied from the display (screen) into arrays of bytes. These byte
arrays must then be combined to form the desired output.

Vertex Shader

varying vec2 texCoord;

void main(void){
 gl_Position = ftransform();
 texCoord = gl_MultiTexCoord0.xy;
}

	

	
 8

Fragment Shader

uniform vec2 imageSize;
varying vec2 texCoord;
uniform sampler2D image;
const int MAX = 200;
uniform float hrtf[MAX]; //float array sent from CPU

void main (){
 float x = 1.0 / imageSize.x;
 float y = 1.0 / imageSize.y;
 int length = MAX;
 vec2 currentPos; //position being sampled
 float oldY;
 float total = 0.0; //running total
 vec3 base = vec3(0.0, 0.0, 0.0);
 float temp = 0.0; //used in calculations

 //Setup
 currentPos = texCoord;
 currentPos.x -= float(length) * x;
 if(currentPos.x < 0.0){
 currentPos.x = currentPos.x + 1.0;
 currentPos.y = currentPos.y - y;
 }
 oldY = currentPos.y;

 int i;
 for(i=0; i<length; i++){
 currentPos.y = oldY + floor(currentPos.x)*x;
 temp = texture2D(image, currentPos).r;
 temp = (temp * 64.0-32.0)* hrtf[i];
 total += temp;
 currentPos.x += x;
 }

 total += 128.0;
 int intTotal = int(total);
 base.r = float(intTotal)/256.0;
 base.g = total-float(intTotal);
 if(total > 128.0){
 base.b = 1.0;
 }
 else{
 base.b = 0.0;
 }

 gl_FragColor = vec4(base,1.0);
}

Conversion Code
The code below runs on the CPU and is executed after the vertex and fragment shaders are
executed. This code reads the pixel data from the frame buffer and converts it to a 1D array of
unsigned integers. The blue channel is used to correct the output in the red channel. More
specifically, the blue channel is used to prevent a strange bug in the output from the card. If a

	

	
 9

channel outputs a value greater than 128 out of 255, the channel’s data is off by one. This can be
a large problem when it is the red channel because it is multiplied by 256 meaning that the result
would be off by 256. The blue channel acts as a flag to indicate if this has occurred in the red
channel so that output can be corrected (this may be video card specific).

glReadBuffer(GL_BACK);

glReadPixels(520, 600-wave.length/256-2, tex3.width,wave.length/256+1,
GL_RGB, GL_UNSIGNED_BYTE, data);

for(GLuint j=0; j<256*(wave.length/256+1); j++){
 Output[j] = data[j*3]*256 + data[j*3+1];
 if(data[j*3+2] >= 127)Output[j]+=256;
}

Results and Discussion

Comparison
Here, a comparison of the computational running time requirements for both the conventional
(software-based) and GPU-based convolution methods is made. This is accomplished by
measuring the computational time requirements when convolving a particular input signal with a
filter for each method (the same input signal and HRTF was used for both methods). The filter
considered for this test was an actual HRTF filter taken from the CIPIC HRTF dataset, measured
from a KEMAR manikin using the “large ear” with the sound source positioned on the horizontal
axis directly in front of the KEMAR (Algazi et al., 2001). The filter coefficients were floating
point numbers (i.e., “float”) and of size 200 (although the filter coefficients considered here were
floating point values, the proposed method can handle filter coefficients of any type). The input
signal was a one-dimensional sine-wave signal (each sample had a resolution of 16 bits and of
type “short int”). The size (number of samples) of the input signal ranged from 5,000 to 60,000,
increasing in increments of 5,000. The tests were performed using a Dell XPS 720 PC with an
Intel Core2 6700 (2.66 GHz) Processor with 2 GB of RAM and an NVIDIA GTX-280. The
GTX supports double precision floating point numbers thus allowing data to be stored with full
accuracy.

The results of this test are summarized in Table 1, and Figure 1 where a comparison of the
average computational time requirements (x-axis) vs. the size of the input signal of conventional
CPU-based (software) convolution and GPU-based (hardware) convolution using both the
NVIDIA GTX 8800 and GTX 280 video cards is illustrated. Each point on the graph (both GPU
and CPU-based implementations) represents computational time requirements averaged over
1,000 iterations. The GPU-based computational time requirements includes processing on the
CPU which was performed to convert the data into the format required by the GPU.

	

	
 10

	

Figure 1: Comparison of input sample size vs. average running time for GPU- and
CPU-based convolution. Filter size was constant at 200 samples.

Number of
Samples

Time (ms)
CPU

Time (ms)
GPU

5,000 3.72 0.45
10,000 7.50 0.50
15,000 11.27 0.58
20,000 15.06 0.61
25,000 18.84 0.69
30,000 22.63 0.70
35,000 26.39 0.75
40,000 30.19 0.80
45,000 33.95 0.89
50,000 37.70 0.92
55,000 41.50 0.94
60,000 45.27 0.99

	

Table 1: Average computational time requirements. The first column represents
input signal size (number of samples), the second column represents the average

computational time requirements of the conventional CPU-based convolution
method, and the third column represents the average computational time

requirements GPU-based convolution method.	

Discussion
As shown in Figure 1, GPU-based convolution is clearly superior to CPU-based convolution
with respect to average computation time. In particular, the average computational running time
for the GPU-based method ranged from 0.45 ms (input sample size of 5,000) to approximately 1

	

	
 11

ms (input sample size of 60,000) to compute the convolution of an input signal and a filter with
200 coefficients. In contrast, the CPU computational time requirements ranged from 3.72 ms
(input sample size of 5,000) to 45.27 ms (input sample size of 60,000). An average
computational time of just under 1 ms for the convolution of an input signal with 60,000 samples
and an (HRTF) filter with 200 coefficients corresponds to approximately 1,000 fps; clearly
applicable for real-time operation. In contrast, the same convolution using the CPU-based
method leads to a frame-rate of 22 fps. Furthermore, the NVIDIA GTX-280 video card is over
two years old and although at the time of its introduction it was “the fastest single-GPU solution
out there”, better, more powerful video cards are available that will further reduce the running
time requirements. The results presented here are also an improvement from the prior results of
Cowan and Kapralos (2009), where a running time of approximately 2 ms was observed for the
convolution of an input signal with 60,000 samples and an (HRTF) filter with 200 coefficients.
The implementation of that work was optimized leading to the results obtained here.

Given that the convolution operation involves floating-point number calculations, it is important
that the video card support double-precision arithmetic to avoid any floating point-related errors
which will manifest themselves in the final (filtered) result. As previously described, the
NVIDA GTX-280 video card supports double precision computations and therefore floating
point errors were not an issue here. However, previous work by Cowan and Kapralos (2008)
previously investigated GPU-based convolution using the NVIDIA GeForce 8800 which does
not support double-precision arithmetic. The method introduced noise/artifacts to the lower-
order bytes of the resulting GPU-based convolution output. This noise resulted from the
limitations specifically with the NVIDIA GeForce 8800. More specifically, the GeForce 8800
was returning values with an 8-bit accuracy thus not allowing “images” to have 16-bits per
channel. As a result, the 16-bit input sound signal was divided into two 8-bit values (via the red
and green channels of the image), combined in the shader and stored as floats. Furthermore, the
8-bits per channel implied that the input had to be divided between two channels. Although this
required slightly more computation, it did not interfere with accuracy.

Conclusions

Spatial auditory cues can add a better sense of presence or immersion, compensate for poor
visual cues (graphics), and at the very least, add a “pleasing quality” to the simulation. As a
result, incorporating spatial audio cues in videogames and virtual environments seems obvious.
However, the generation of plausible spatial audio hinges on the convolution operation which
itself is computationally expensive thus typically not lending itself to dynamic, real-time
applications. To overcome the limitations associated with software-based convolution, here we
presented a hardware-based convolution method that takes advantage of the tremendous
computational ability of the affordable and commonly available graphics processing units
(GPUs). The method was implemented using the OpenGL Shading Language (OGLS). Results
indicate that the method is far more computationally efficient when compared to conventional,
time-domain, software-based convolution and is in fact capable of performing convolution of a
filter containing 200 coefficients and a one-dimensional signal of up to 60,000 samples, in real-
time (approximately 1 ms). Given that the generation of spatial audio hinges on the convolution
operation and the widespread availability of computer graphics cards with onboard

	

	
 12

programmable GPUs, the generation of accurate virtual audio for games and virtual
environments is now plausible.

Acknowledgements

The financial support of the Natural Sciences and Engineering Research Council of Canada
(NSERC) in the form of an Undergraduate Summer Research Award to Brent Cowan and a
Discovery Grant to Bill Kapralos is gratefully acknowledged. The authors thank the Center for
Image Processing and Integrated Computing (CIPIC) at the University of California, Davis, for
making their HRTF dataset freely available.

References

Algazi, V. R., Duda, R. O., Thompson, D. M., and Avendano, C. (2001). The CIPIC HRTF
database. In Proceedings of the 2001 IEEE Workshop on Applications of Signal
Processing to Acoustics, New Paltz, NY. USA, October 21-24, 2001.

Allen, J. B., and Berkley, D. A. (1979). Image method for efficiently simulating small-room

acoustics, Journal of the Acoustical Society of America 65(4):943–950.

Carlile, S. (1996). Virtual Auditory Space: Generation and Application. Austin, TX. USA: R. G.

Landes Company.

Cohen, M., and Wenzel, E. (1995). The design of multidimensional sound interfaces. In Virtual

Environments and Advanced Interface Design, Barfield, W., and Furness, T. Eds. New
York, NY. USA: Oxford University Press Inc., pp. 291–346.

Cowan, B., and Kapralos, B. (2008). Spatial sound for video games and virtual environments

utilizing real-time GPU-based convolution. In Proceedings of the ACM FuturePlay 2008
International Conference on the Future of Game Design and Technology. Toronto,
Ontario, Canada, November 3-5, 2008.

Cowan, B., and Kapralos, B. (2008). Real-time GPU-based convolution: A follow-up. In
Proceedings of the ACM FuturePlay 2009 International Conference on the Future of
Game Design and Technology. Vancouver, British Columbia, Canada, May 12-13, 2009.

Durlach, N. I., and Mavor, A. S. (1995). Virtual Reality: Scientific and Technological

Challenges. Washington, DC. USA: National Academies Press.

Ekman, M., Warg, F., and Nilsson, J. (1994). An in-depth look at computer performance growth,

Computer Architecture News 33(1):144–147.

Fialka, O., and Cadik, M. (2006). FFT and convolution performance in image filtering on GPU.

In Proceedings of the Conference on Information Visualization, Washington, DC. USA,
June 15-17, 2006, pp. 609-614.

	

	
 13

Gardner, W. G. (1995). Efficient convolution without input-output delay. Journal of the Audio

Engineering Society 43(3):127-136.

Gallos, E., and Tsingos, N. (2003). Efficient 3D audio processing with the GPU. In Proceedings

of the ACM International Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 2003), San Diego, CA. USA, July 27–31 2003, pp. 896–907.

Geer, D. (2005). Taking the graphics processor beyond graphics, IEEE Computer 39(9):14–16.

Hamidi, F., and Kapralos, B. (2009). A review of spatial sound for virtual environments and

games with graphics processing units. The Open Virtual Reality Journal. 1(1):8-17.

Hecht, E. (2002). Optics, fourth ed. Pearson Education Inc., San Francisco, CA. USA.

Jedrzejewski, M. (2004). Computation of room acoustics on programmable video hardware,

Master’s Thesis, Polish-Japanese Institute of Information Technology, Poland.

Kapralos, B., Jenkin, M., and Milios, E. (2008). Virtual audio systems. Presence: Teleoperators

and Virtual Environments. 17(6):527-549.

Kapralos, B., and Mekuz, N. (2007). Application of dimensionality reduction techniques to

HRTFs for interactive virtual environments. In Proceedings of the ACM Advancements
in Computer Entertainment (ACE 2007), Salzburg, Austria, June 13-15, 2007.

Kistler, D. J., and Wightman, F. L. (1992). A model of head-related transfer functions based

on principle components analysis and minimum phase reconstruction. Journal of the
Acoustical Society of America, 91(3):1637-1647.

Kleiner, M., Dalenbäck, B., and Svensson, P. (1993). Auralization – an overview. Journal of the

Audio Engineering Society, 41(11):861-875.

Kruger, J., and Westermann, R. (2003). Linear algebra operators for GPU implementation of

numerical algorithms. In Proceedings of the 30th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH 2004), San Diego, CA. USA, July 27-
31 2003, pp. 908–916.

Luebke, D., and Humphreys, G. (2007). How GPUs work, IEEE Computer 40(2):96–100.

Mark, W. R., Glanville, P. S., Akeley, K., and Kilgard, M. J. (2003). Cg: A system for

programming graphics hardware in a C-like language, In Proceedings of the ACM
 International Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 2003), San Diego, CA. USA, July 27–31 2003, pp. 896–907.

Matsuyama, K., Fujimoto, T. (2007). and N. Chiba, Real-time sound generation of spark

	

	
 14

discharge. In Proceedings of the 15th Pacific Graphics Conference, Maui, Hawaii,
October 29 November 2 2007, pp. 423–426.

Röber, N., Kaminski, U., and Masuch, M. (2007). Ray acoustics using computer graphics

technology. In Proceedings of the 10th International Conference on Digital Audio
Effects, Bordeaux, France, September 10-15 2007.

Röber, N., Spindler, M., and Masuch, M. (2006). Waveguide-based room acoustics through

graphics hardware. In Proceedings of the International Computer Music Conference
2006, New Orleans, LA. USA, November 6-11 2006.

Rost, R. (2006). OpenGL Shading Language, second ed., Addison-Wesley Professional, Boston,

MA. USA.

Sherrod, A. (2008). Game graphics programming, Course Technology, Cengage Learning,

Boston, MA USA.

von Tycowicz, C., and Loviscach, J. (2008). A malleable drum. In Proceedings of the 35th

Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
2008 Posters), Los Angeles, CA. USA, August 11-15 2008, Article No. 74.

Tsingos, N., and Gascuel, J. D. (1997). Soundtracks for computer animation: Sound rendering in

dynamic environments with occlusion. In Proceedings of Graphics Interface ’97
Kelowna, BC. Canada, May 21-23, 1997, pp. 9–16.

Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. (2001). Modeling acoustics in virtual

environments using the uniform theory of diffraction. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2001),
pp. 545–552.

Tsingos, N., and Gascuel, J. D. (1998). Fast rendering of sound occlusion and diffraction effects

for virtual acoustic environments. In Proceedings of the 104th Convention of the Audio
Engineering Society, Amsterdam, The Netherlands, May 16-19, 1998, pp. 1–14.

Whalen, S. (2005). Audio and the graphics processing unit. Author report, University of

California, Davis, California, USA.

