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Abstract 
Incorporating spatialized (3D) sound cues in dynamic and interactive videogames and immersive 
virtual environment applications is beneficial for a number of reasons, ultimately leading to an 
increase in presence and immersion.  Despite the benefits of spatial sound cues, they are often 
overlooked in videogames and virtual environments where typically, emphasis is placed on the 
visual cues.   Fundamental to the generation of spatial sound is the one-dimensional convolution 
operation which is computationally expensive, not lending itself to such real-time, dynamic 
applications.  Driven by the gaming industry and the great emphasis placed on the visual sense, 
consumer computer graphics hardware, and the graphics processing unit (GPU) in particular, has 
greatly advanced in recent years, even outperforming the computational capacity of CPUs.  This 
has allowed for real-time, interactive realistic graphics-based applications on typical consumer-
level PCs.  Given the widespread use and availability of computer graphics hardware and the 
similarities that exist between the fields of spatial audio and image synthesis, here we describe 
the development of a GPU-based, one-dimensional convolution algorithm whose efficiency is 
superior to the conventional CPU-based convolution method. The primary purpose of the 
developed GPU-based convolution method is the computationally efficient generation of real-
time spatial audio for dynamic and interactive videogames and virtual environments.   
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Introduction 
 

A virtual (or three-dimensional (3D), or spatial) audio system (or audio display) allows a listener 
to perceive the position of a sound source(s), emanating from a static number of stationary 
loudspeakers or a pair of headphones, as coming from arbitrary locations in three-dimensional 
space. Spatial sound technologies go far beyond traditional stereo and surround sound techniques 
by allowing a virtual sound source to have such attributes as left-right, back-forth, and up-down 
(Cohen and Wenzel, 1995). Incorporating spatialized auditory information in an immersive 
virtual environment and videogames is beneficial for a variety of reasons. Spatial auditory cues 
can add a better sense of “presence” or “immersion”, compensate for poor visual cues (graphics), 
and at the very least, add a “pleasing quality” to the simulation (Durlach and A. S. Mavor, 1994; 
Shinn-Cunningham, 2002). Despite these benefits and despite the fact that spatial sound is a 
critical cue to the perception of our environment, it is often overlooked in immersive virtual 
environments and videogames where historically, emphasis has been placed on the visual senses 
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(Carlile, 1996; Cohen and Wenzel, 1995). That being said, the generation of spatial sound for 
dynamic, and interactive applications using traditional software-based methods and techniques is 
computationally very expensive except for trivial environments which are typically of little use. 
 
Collectively, “the process of rendering audible, by physical or mathematical modeling, the sound 
field of a sound source in space, in such a way as to simulate the binaural listening experience at 
a given position in the modeled space” is known as auralization (Kleiner et al., 1993).  The goal 
of auralization is to recreate a particular listening environment, taking into account the acoustics 
of the environment and the characteristics of the listener (see Kapralos et al. (2008) for a 
thorough review of spatial audio and auralization).  Auralization is typically accomplished by 
determining the Binaural Room Impulse Response (BRIR).  The BRIR represents the response of 
a particular acoustical environment to sound energy and captures the room acoustics for a 
particular sound source and listener configuration.  Once obtained, the BRIR can be used to filter 
the desired anechoic sound through a convolution process described by Equation 1.   
 

         (1) 

 
Where s is the input signal, r is the filter, n denotes the sample index, S and R denote the discrete 
Fourier transform (DFT) of s and r, respectively, f denotes the DFT index and N denotes the 
filter sample size. 
 
When this filtered sound is presented to a listener the original sound environment is recreated.  
The BRIR can be considered as the signature of the room response for a particular sound source 
and human receiver.  Although interlinked, for simplicity and reasons of practicality, the room 
response and the response of the human receiver are commonly determined separately and 
combined via a post-processing operation to provide an approximation to the actual BRIR 
(Kleiner et al., 1993).  The response of the room is known as the Room Impulse Response (RIR) 
and captures the reflection properties (reverberation), diffraction, refraction, sound attenuation 
and absorption properties of a particular room configuration (i.e., the environmental context of a 
listening room or the “room acoustics”).  The response of the human receiver captures the 
direction dependent effects introduced by the listener due to the listener's physical make-up (i.e., 
pinna, head, shoulders, neck, and torso) and is known as the Head Related Transfer Function 
(HRTF).  HRTFs encompass various sound localization cues including Interaural Time 
Differences (ITDs), Interaural Level Differences (ILDs), and the changes in the spectral shape of 
the sound reaching a listener. The HRTF modifies the spectrum and timing of sound signals 
reaching each ear in a location-dependent manner.  Various techniques are available for 
determining (measuring, calculating) both the HRTF and the RIR however, a detailed discussion 
of these techniques is beyond the scope of this paper (see Kapralos et al. (2008) for greater 
details).  The output of the techniques used to determine the HRTF and the RIR is typically a 
transfer function which forms the basis of a filter that can be used to modulate source sound 
material (e.g., anechoic or synthesized sound) via a convolution operation. When the filtered 
sounds are presented to the listener, in the case of HRTFs, they create the impression of a sound 
source located at the corresponding HRTF measurement position and when considering the RIR, 
recreate a particular acoustic environment.  However, as previously described, convolution is a 
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computationally expensive operation especially when considering long filters associated with 
HRTFs and RIRs (filters with 512 coefficients are not uncommon) thus limiting their use to non-
real-time applications (the operation described in Equation 1 must be performed for each input 
signal sample).  Convolution is primarily performed in software in the time domain.   
 
As shown in Equation 1, convolution in the time domain is equivalent to multiplication in the 
frequency domain and therefore, performance improvements can be made by performing the 
convolution operation in the frequency domain (Gardner, 1995).  However, in order to 
accomplish this, the input and filters must be converted to their frequency domain representation 
using the Fast Fourier Transform (FFT); a time consuming process when performed using 
software thus also making it impractical for real-time use.  Recent work in image processing has 
established a GPU-based convolution method capable of performing a two-dimensional 
convolution operation in real-time (Fialka and Cadik, 2006).   In addition to software-based 
convolution methods, programmable DSP cards are available which allow for hardware-based 
convolution thus greatly improving performance. However, these boards are very specialized and 
typically only available to product developers and not the general consumer (Gallos and Tsingos, 
2003).  In contrast to the consumer-grade audio cards currently available, dedicated computer 
graphics hardware is evolving at a tremendous pace.  
 
In an attempt to reduce computational requirements, a number of initiatives have investigated 
simplifying the HRTFs and RIRs.  With respect to the HRTF, dimensionality reduction 
techniques such as principal components analysis, locally linear embedding, and isomap have 
been used to map high-dimensional HRTF data to a lower dimensionality and thus ease the 
computational requirements (Kapralos and Mekuz, 2007; Kistler and Wightman, 1992).  Despite 
the improvements with respect to computational requirements, even dimensionality reduced 
HRTFs are still not applicable for real-time applications and although the amount of reduction 
can be increased thus improving performance, reducing the dimensionality of HRTFs too much 
may lead to perceptual consequences that render them impractical.  Further investigations must 
be conducted in order to gain greater insight.  With respect to the RIR, it is usually ignored 
altogether and approximated by simply including reverberation generated with artificial 
reverberation techniques instead.  These techniques are not necessarily concerned with recreating 
the exact reflections of any sound waves in the environment. Rather, they artificially recreate 
reverberation by simply presenting the listener with delayed and attenuated versions of a sound 
source.  Although these delays and attenuation factors do not necessarily reflect the physical 
properties of the environment being simulated, they are adjusted until a desirable effect is 
achieved.  Given the interactive nature of video games and their need for real-time processing, 
when accounted for, reverberation effects in video games are typically handled using such 
techniques. 
 
Driven by the videogame industry, consumer computer graphics hardware has greatly advanced 
in recent years, outperforming the computational capacity of central processing units (CPUs). A 
graphics processing unit (GPU) is a dedicated graphics rendering device whose purpose is to 
provide a high performance, visually rich, interactive 3D experience by exploiting the inherent 
parallelism in the feed-forward graphics pipeline (Luebke and Humphreys, 2007). In contrast to 
consumer-grade audio cards, GPUs have moved away from the traditional fixed-function 
pipeline toward a flexible general-purpose computational engine that can currently implement 
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many parallel algorithms directly using graphics hardware. Current GPUs include fully 
programmable processing units that support vectorized floating point operations resulting in 
tremendous computational savings (Owens et al., 2007). Due to a number of reasons including 
the explosion of the consumer videogame market and advances in manufacturing technology, 
GPUs are, on a dollar-per-dollar basis, the most powerful computational hardware, providing 
“tremendous memory bandwidth and computational horsepower” (Owens et al., 2007). GPUs are 
also becoming faster and more powerful very quickly, far exceeding Moore’s Law applied to 
traditional microprocessors (Ekman et al., 1994). In fact, instead of doubling every 18 months as 
with CPUs, GPU performance increases by a factor of five every 18 months or doubles every 
eight months (Geer, 2005).  
 
Given the importance of the convolution operation in the generation of spatial audio but its 
demanding computational requirements, here we present a GPU-based convolution method that 
is capable of filtering a one-dimensional signal in real-time allowing for the generation of 
plausible spatial audio for dynamic, interactive applications such as videogames and virtual 
environments.  A comparison with conventional, software-based convolution demonstrates the 
effectiveness of the developed method. 
 
Paper Organization 
The remainder of this paper is organized as follows.  The Background section provides 
background information regarding graphic processing units (GPUs) and their use in spatial 
audio-based applications.  The Implementation section provides implementation details of the 
GPU-based convolution method.  Performance measures are provided in the Results section, 
where a comparison with conventional, software-based convolution is made and a discussion of 
the results is also provided. Concluding remarks are presented in the Conclusions section. 
 
 

Background 
 

In this section, an overview of spatial audio and audio processing in general using the GPU is 
provided.  However, prior to doing so, a brief introduction of GPUs is provided. 

GPU Overview  
In computer graphics, rendering is accomplished using a graphics pipeline architecture whereby 
rendering of objects to the display is accomplished in stages and each stage is implemented as a 
separate piece of hardware. The input to the pipeline is a list of vertices expressed in object space 
while the output is an image in the framebuffer. The stages of the pipeline and their operation are 
as follows (Owens et al., 2007):   

• Vertex Stage: i) Transformation of each (object space) vertex into screen space, ii) 
formation of triangles from the vertices, and iii) per-vertex lighting calculations. 

• Rasterization Stage: i) Determination of the screen position covered by each of the 
triangles formed in the previous stage, and ii) interpolation of vertex parameters across 
the triangle.  

• Fragment Stage: Calculation of the color for each fragment output in the previous stage. 
Often, the color values come from textures which are stored in texture memory. Here the 
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appropriate texture address is generated and the corresponding value is fetched and used 
to compute the fragment color.  

• Composition Stage: Pixel values are determined from the fragments.  
 

In contrast to the “traditional” fixed-function pipelines with “modern” (programmable) GPUs, 
both the vertex and fragment stages are user-programmable. Programs written to control the 
vertex stage are known as vertex programs or vertex shaders while programs written to control 
the fragment stage are known as fragment programs or fragment shaders. Early on, these 
programs were written in assembly language.  However, higher level languages have since been 
introduced including Microsoft’s High Level Shading Language (HLSL), the OpenGL Shading 
Language (GLSL) (Rost, 2006) and NVIDIA’s Cg (Mark et al., 2003). Generally, the input to 
both of these programmable stages is a four-element vector where each element represents a 32-
bit floating point number. The vertex stage will output a limited number of 32-bit, four element 
vectors while the fragment stage will output a maximum of four floating point, four element 
vectors that typically represent color. The fragment stage is capable of fetching data from texture 
memory (memory gather) but cannot alter the address of its output which is determined before 
processing of the fragment begins (incapable of memory scatter). In contrast, within the vertex 
stage, the position of input vertices can be altered thus affecting where the image pixels will be 
drawn (i.e., the vertex stage supports both memory gather and memory scatter) (Owens et al., 
2007). In addition to vertex and fragment shaders, Shader Model 4.0 currently supported by 
Direct3D 10 and OpenGL 3.0 defines a new type of shader, the geometry shader. A geometry 
shader receives input from the vertex shader and can be used to create new geometry.  It is also 
capable of operating on entire primitives (Sherrod, 2008).  

GPU-Based Audio and Spatial Audio Generation  
GPUs have also been applied to a wide variety of audio-based applications.  von Tycowicz and 
Loviscach (2008) describe the implementation of a flexible virtual drum that is simulated in real-
time and with low latency on the GPU. A MIDI controller with 16 pressure points is used for 
pressure recognition and a finite difference method is employed to synthesize sound based on 
location and pressure information.  Matsuyama et al. (2007), describe a method for the automatic 
generation of real-time sound for graphics-based animation of sparks to simulate thunder and 
lighting effects. The implementation also makes use of GPU-based numerical methods 
introduced by Kruger and Westermann (2003).  Using the Cg shading language, Whalen (2005) 
implements seven common audio functions: chorus, compress, delay, high-pass filter, low-pass 
filter, noise-gate and normalization. A performance comparison was made between the GPU and 
corresponding CPU implementation using a Pentium IV (3.0 GHz CPU) and an NVIDIA 
GeForce FX 5200 video card. The GPU showed better performance for several of the functions 
(compress and chorus with speedups of up to a factor of four). However, the CPU 
implementation was better for other functions (high-pass and low-pass filters). It was suggested 
that the GPU performance was poorer for some algorithms given the implementation of these 
algorithms was not suitable for GPU implementation given that they required (computationally 
expensive) texture access. With more modern video cards, texture access has been improved and 
this will undoubtedly lead to greater improvements in these methods. 
 
Röber et al. (2007) present a (low-frequency) wave-based acoustical modeling method that made 
use of the GPU and in particular, fragment shaders, 3D textures, and the OpenGL framebuffer 
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objects extension, in order to take advantage of the inherent parallelism of wave-based solutions 
to acoustical modeling (Röber, et al., 2006).  The system was tested on a PC with an AMD64 
4000+ dual-core CPU and an NVIDIA GeForce 7900 GT video card and showed speed-ups of 
factors of from 4.5 to 69 when compared to a software-based implementation.  However, the 
CPU implementation was not optimized.   
 
Audio-based ray tracing using the GPU was implemented by Jedrzejewski (2004) to compute the 
propagation of acoustical reflections in highly occluded environments and to allow for the sound 
source and the listener to move throughout the simulation without the need for a long pre-
computation phase. Jedrzejewski takes advantage of the fact that in acoustics, as opposed to 
graphics, objects other than walls do not contribute significantly to the sound wave modifications 
and therefore can be ignored during the computation. Because of this, only polygons that 
represent walls are taken into account.  Röber et al. (2007) describe a ray-based acoustical 
modeling method that employed the GPU to allow for real-time acoustical simulations. Their 
framework was designed along existing (computer graphics) GPU-based ray tracing systems 
suitably modified to handle sound wave propagation. The system accepts a 3D polygonal mesh 
of up to 15,000 polygons and pre-processes it into an accessible structure. A frame-rate of up to 
25 fps was achieved using a detailed model of a living room containing 1,500 polygons (using an 
NVIDIA GeForce 8800 GTX video card). 
 
Tsingos and Gascuel (1997) developed an occlusion and diffraction method that utilizes 
computer graphics hardware to perform fast sound visibility calculations that can account for 
specular reflections (diffuse reflections were not considered), absorption, and diffraction caused 
by partial occluders. Specular reflections are handled using an image source approach (Allen and 
Berkley, 1979) while diffraction is approximated by computing the fraction of sound that is 
blocked by obstacles on the path from the sound source to the receiver by considering the 
amount of volume of the first Fresnel ellipsoid that is blocked by the occluders. A visibility 
factor is computed using computer graphics hardware. A rendering of all occluders from the 
receiver’s position is performed and a count of all pixels not in the background is taken (pixels 
that are “set” i.e., not in the background, correspond to occluders). Although their approach is 
not completely real-time, it is “capable of achieving interactive computation rates for fully 
dynamic complex environments” (Tsingos and Gascuel, 1997).  Tsingos and Gascuel later 
introduced another occlusion and diffraction method based on the Fresnel-Kirchoff optics-based 
approximation to diffraction (Tsingos et al., 2001; Tsingos and Gascuel, 1998) The Fresnel-
Kirchoff approximation is based on Huygens’ principle (Hecht, 2002).  Given the use of graphics 
hardware, their method is fast and is well suited to the interactive auralization of diffracted 
energy maps (Tsingos and Gascuel, 1998). Comparisons for several configurations with 
obstacles of infinite extent between their method and between boundary element methods 
(BEMs), gives “satisfactory quantitative results” (Tsingos and Gascuel, 1998).   Finally, a 
complete overview of GPU-based spatial sound and audio processing is beyond the scope of this 
paper but a thorough review is provided by Hamidi and Kapralos (2009). 
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Implementation Details 
 

In this section, implementation details of the GPU-based convolution method are provided.  The 
implementation is based on the OpenGL Shading Language (OGSL).  The input (un-processed) 
signal can be of any type (i.e., floating point, integer including the “short integer” 16-bit 
resolution common with WAV files used in many videogames). Of course, given an input signal 
that does not conform to this assumption, it can still be processed but at additional computational 
cost.  The filter coefficients can be of any type (e.g., float, integer, etc.).  For this work, an 
NVIDIA GTX-280 video card is being used.  Although the implementation is applicable to all 
video cards, the GTX supports double precision floating point numbers allowing data to be 
stored with full accuracy thus avoiding the introduction of artifacts in the final (filtered) result 
(see Results and Discussion section).   
 
GPUs have been designed to work with two-dimensional images as the output of typical 
computer graphics applications is a two-dimensional image.  Therefore, prior to performing the 
convolution, there is a set-up phase to convert the one dimensional audio signal and filter, into a 
two-dimensional format as required by the GPU.  The source (shader) code is provided below.  
Although the code is made freely available, the authors ask that if used, proper acknowledgment 
be given.  With the GTX-280, the 16-bit (integer) input sound signal is stored in single channel 
16-bit intensity maps (images) while the HRTF filter is sent to the GPU as an array of floats (i.e., 
it is not stored as  an image). Although this is not completely necessary and the data can be 
divided into two 8-bit channels, it does lead to reduction in both computational requirements and 
round-off errors.  A texture is then created from the data in OpenGL.  This however is 
accomplished using the CPU and not the GPU. To return the data back from the video card, the 
video card output must be copied from the display (screen) into arrays of bytes. These byte 
arrays must then be combined to form the desired output.  
 
Vertex Shader 
 

varying vec2 texCoord;       
 
void main(void){ 
 gl_Position = ftransform(); 
 texCoord = gl_MultiTexCoord0.xy; 
} 
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Fragment Shader 

 
uniform vec2 imageSize; 
varying vec2 texCoord; 
uniform sampler2D image; 
const int MAX = 200;   
uniform float hrtf[MAX]; //float array sent from CPU 
 
void main (){ 
 float x = 1.0 / imageSize.x; 
 float y = 1.0 / imageSize.y; 
 int   length = MAX; 
 vec2  currentPos; //position being sampled 
 float oldY; 
 float total = 0.0; //running total 
 vec3   base = vec3(0.0, 0.0, 0.0); 
 float temp = 0.0; //used in calculations 
  
 //Setup 
 currentPos = texCoord; 
 currentPos.x -= float(length) * x; 
 if(currentPos.x < 0.0){ 
  currentPos.x = currentPos.x + 1.0; 
  currentPos.y = currentPos.y - y; 
 } 
 oldY = currentPos.y; 
 
 int i; 
 for(i=0; i<length; i++){ 
  currentPos.y = oldY + floor(currentPos.x)*x;  
  temp = texture2D(image, currentPos).r;  
  temp = (temp * 64.0-32.0)* hrtf[i]; 
  total += temp; 
  currentPos.x += x; 
 } 
 
 total += 128.0; 
 int intTotal = int(total); 
 base.r = float(intTotal)/256.0; 
 base.g = total-float(intTotal); 
 if(total > 128.0){ 
  base.b = 1.0; 
 } 
 else{ 
  base.b = 0.0; 
 } 
 
 gl_FragColor = vec4(base,1.0); 
} 

 
Conversion Code 
The code below runs on the CPU and is executed after the vertex and fragment shaders are 
executed.  This code reads the pixel data from the frame buffer and converts it to a 1D array of 
unsigned integers.  The blue channel is used to correct the output in the red channel.  More 
specifically, the blue channel is used to prevent a strange bug in the output from the card. If a 
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channel outputs a value greater than 128 out of 255, the channel’s data is off by one. This can be 
a large problem when it is the red channel because it is multiplied by 256 meaning that the result 
would be off by 256. The blue channel acts as a flag to indicate if this has occurred in the red 
channel so that output can be corrected (this may be video card specific). 
 

glReadBuffer(GL_BACK); 
     
glReadPixels(520, 600-wave.length/256-2, tex3.width,wave.length/256+1, 
GL_RGB,  GL_UNSIGNED_BYTE, data); 
     
for(GLuint j=0; j<256*(wave.length/256+1); j++){ 
 Output[j] = data[j*3]*256 + data[j*3+1]; 
 if(data[j*3+2] >= 127)Output[j]+=256; 
} 

 
Results and Discussion 

 
Comparison 
Here, a comparison of the computational running time requirements for both the conventional 
(software-based) and GPU-based convolution methods is made.  This is accomplished by 
measuring the computational time requirements when convolving a particular input signal with a 
filter for each method (the same input signal and HRTF was used for both methods).  The filter 
considered for this test was an actual HRTF filter taken from the CIPIC HRTF dataset, measured 
from a KEMAR manikin using the “large ear” with the sound source positioned on the horizontal 
axis directly in front of the KEMAR (Algazi et al., 2001).  The filter coefficients were floating 
point numbers (i.e., “float”) and of size 200 (although the filter coefficients considered here were 
floating point values, the proposed method can handle filter coefficients of any type).  The input 
signal was a one-dimensional sine-wave signal (each sample had a resolution of 16 bits and of 
type “short int”).  The size (number of samples) of the input signal ranged from 5,000 to 60,000, 
increasing in increments of 5,000.  The tests were performed using a Dell XPS 720 PC with an 
Intel Core2 6700 (2.66 GHz) Processor with 2 GB of RAM and an NVIDIA GTX-280.  The 
GTX supports double precision floating point numbers thus allowing data to be stored with full 
accuracy. 
 
The results of this test are summarized in Table 1, and Figure 1 where  a comparison of the 
average computational time requirements (x-axis) vs. the size of the input signal of conventional 
CPU-based (software) convolution and GPU-based (hardware) convolution using both the 
NVIDIA GTX 8800 and GTX 280 video cards is illustrated.  Each point on the graph (both GPU 
and CPU-based implementations) represents computational time requirements averaged over 
1,000 iterations.   The GPU-based computational time requirements includes processing on the 
CPU which was performed to convert the data into the format required by the GPU. 
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Figure 1: Comparison of input sample size vs. average running time for GPU- and 
CPU-based convolution.  Filter size was constant at 200 samples. 

Number of 
Samples 

Time (ms) 
CPU 

Time (ms) 
GPU 

5,000 3.72 0.45 
10,000 7.50 0.50 
15,000 11.27 0.58 
20,000 15.06 0.61 
25,000 18.84 0.69 
30,000 22.63 0.70 
35,000 26.39 0.75 
40,000 30.19 0.80 
45,000 33.95 0.89 
50,000 37.70 0.92 
55,000 41.50 0.94 
60,000 45.27 0.99 

	
  
Table 1: Average computational time requirements.  The first column represents 
input signal size (number of samples), the second column represents the average 

computational time requirements of the conventional CPU-based convolution 
method, and the third column represents the average computational time 

requirements GPU-based convolution method.	
  

Discussion 
As shown in Figure 1, GPU-based convolution is clearly superior to CPU-based convolution 
with respect to average computation time.  In particular, the average computational running time 
for the GPU-based method ranged from 0.45 ms (input sample size of 5,000) to approximately 1 
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ms (input sample size of 60,000) to compute the convolution of an input signal and a filter with 
200 coefficients.  In contrast, the CPU computational time requirements ranged from 3.72 ms 
(input sample size of 5,000) to 45.27 ms (input sample size of 60,000).  An average 
computational time of just under 1 ms for the convolution of an input signal with 60,000 samples 
and an (HRTF) filter with 200 coefficients corresponds to approximately 1,000 fps; clearly 
applicable for real-time operation.  In contrast, the same convolution using the CPU-based 
method leads to a frame-rate of 22 fps.  Furthermore, the NVIDIA GTX-280 video card is over 
two years old and although at the time of its introduction it was “the fastest single-GPU solution 
out there”, better, more powerful video cards are available that will further reduce the running 
time requirements.  The results presented here are also an improvement from the prior results of 
Cowan and Kapralos (2009), where a running time of approximately 2 ms was observed for the 
convolution of an input signal with 60,000 samples and an (HRTF) filter with 200 coefficients.  
The implementation of that work was optimized leading to the results obtained here. 
 
Given that the convolution operation involves floating-point number calculations, it is important 
that the video card support double-precision arithmetic to avoid any floating point-related errors 
which will manifest themselves in the final (filtered) result.  As previously described, the 
NVIDA GTX-280 video card supports double precision computations and therefore floating 
point errors were not an issue here.  However, previous work by Cowan and Kapralos (2008) 
previously investigated GPU-based convolution using the NVIDIA GeForce 8800 which does 
not support double-precision arithmetic.  The method introduced noise/artifacts to the lower-
order bytes of the resulting GPU-based convolution output.  This noise resulted from the 
limitations specifically with the NVIDIA GeForce 8800.  More specifically, the GeForce 8800 
was returning values with an 8-bit accuracy thus not allowing “images” to have 16-bits per 
channel.  As a result, the 16-bit input sound signal was divided into two 8-bit values (via the red 
and green channels of the image), combined in the shader and stored as floats.  Furthermore, the 
8-bits per channel implied that the input had to be divided between two channels. Although this 
required slightly more computation, it did not interfere with accuracy.  
 
 

Conclusions 
 

Spatial auditory cues can add a better sense of presence or immersion, compensate for poor 
visual cues (graphics), and at the very least, add a “pleasing quality” to the simulation.  As a 
result, incorporating spatial audio cues in videogames and virtual environments seems obvious.  
However, the generation of plausible spatial audio hinges on the convolution operation which 
itself is computationally expensive thus typically not lending itself to dynamic, real-time 
applications.  To overcome the limitations associated with software-based convolution, here we 
presented a hardware-based convolution method that takes advantage of the tremendous 
computational ability of the affordable and commonly available graphics processing units 
(GPUs).  The method was implemented using the OpenGL Shading Language (OGLS).  Results 
indicate that the method is far more computationally efficient when compared to conventional, 
time-domain,  software-based convolution and is in fact capable of performing convolution of a 
filter containing 200 coefficients and a one-dimensional signal of up to 60,000 samples, in real-
time (approximately 1 ms).  Given that the generation of spatial audio hinges on the convolution 
operation and the widespread availability of computer graphics cards with onboard 
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programmable GPUs, the generation of accurate virtual audio for games and virtual 
environments is now plausible. 
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