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ABSTRACT 

 

Computational Modeling of the Brain Limbic System  

and Its Application in Control Engineering. (August 2005) 

Danial Shahmirzadi, B.S., University of Tehran 

Chair of Advisory Committee: Dr. Reza Langari 

 

This study mainly deals with the various aspects of modeling the learning processes 

within the brain limbic system and studying the various aspects of using it for different 

applications in control engineering. 

The current study is a multi-aspect research effort which not only requires a 

background of control engineering, but also a basic knowledge of some biomorphic 

systems. 

The main focus of this study is on biological systems which are involved in 

emotional processes. In mammalians, a part of the brain called the limbic system is 

mainly responsible for emotional processes. Therefore, general brain emotional 

processes and specific aspects of the limbic system are reviewed in the early parts of this 

study. 

Next, we describe developing a computational model of the limbic system based on 

these concepts. Since the focus of this study is on the application of the model in 

engineering systems and not on the biological concepts, the model established is not a 

very complicated model and does not include all the components of the limbic system. In 
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fact, we are trying to develop a model which captures the minimal and basic properties 

of the limbic system which are mainly known as the Amygdala-Orbitofrontal Cortex 

system. 

The main chapter of this thesis, Chapter IV, shows the utilization of the Brain 

Emotional Learning (BEL) model in different applications of control and signal fusion 

systems. The main effort is focused on applying the model to control systems where the 

model acts as the controller block. Furthermore, the application of the model in signal 

fusion is also considered where simulation results support the applicability of the model. 

Finally, we studied different analytical aspects of the model including the behavior 

of the system during the adaptation phase and the stability of the system. For the first 

issue, we simplify the model, e.g. remove the nonlinearities, to develop mathematical 

formulations for behavior of the system. To study the stability of the system, we use the 

cell-to-cell mapping algorithm which reveals the stability conditions of the system in 

different representations. 

This thesis finishes with some concluding remarks and some topics for future 

research on this field. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

A fundamental property, which distinguishes an intelligent system from a traditional 

one, is the capability of learning. The learning process can occur at different levels of 

complexity, but a common characteristic is the adaptation of the system parameters to 

better cope with the changing environment. 

Moreover, any learning algorithm requires an evaluation mechanism to assess the 

operating condition of the system. One type of evaluation is based on the so called 

emotional cues, which assess the impact of the external stimuli on the ability of the 

system both to function effectively in the short term and to maintain its long term 

prospects for survival. 

The learning strategy which is based on emotional evaluations is appropriately called 

emotional learning. In mammalian brains this process occurs in the part of the brain 

called the limbic system, which constitutes one of the core elements of the brain [1]. 

The proposed study initially aims at developing a computational model of those parts 

of the mammalian limbic system which are more directly involved in emotional 

processing. The model can then be utilized as a versatile learning module in a system to 

associate the external conditions with certain internal criteria to refine the behavior of 

the system. 

 
This thesis follows the style and format of ASME Journal of Dynamic Systems, 
Measurement, and Control. 
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The focus of this study is to adapt this learning model for control systems and extend 

its application to other peripheral ones including sensor fusion. 

 

1.2 Objectives 

This study mainly deals with the various aspects of modeling the learning processes 

within the brain limbic system and the challenges in using it for different engineering 

applications. 

The major objectives of this thesis can be listed as follow: 

• Understanding the biological mechanisms of brain limbic system in emotional 

processing. 

• Establishing a computational model capturing the minimum characteristics of the 

limbic system. 

• Adapting the model for engineering applications, particularly control systems. 

• Developing analytical studies of the emotional control algorithm, stability 

analysis in particular. 

 

1.3 Literature Review 

Biologically motivated intelligent computing has in recent years been successfully 

applied for solving different types of problems [2, 3, 4, 5, 6]. Increasingly, researchers 

appreciate the limitations of traditional approaches when dealing with uncertainties and 

complexities associated with real-world situations and the possibilities for overcoming 

these problems inherent in intelligent approaches [7, 8]. 
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Similarly, inspired by the biology, it is also desirable for the artificial systems to 

have learning mechanisms. This brings the concept of Autonomy for an artificial system 

which is the ability of the system to adapt to changing circumstances [9]. 

In particular, efforts have been put to make the control systems flexible with respect 

to the changes in the system parameters, environmental disturbances and design 

objectives which open the area of Adaptive, Robust and Intelligent control systems [10, 

11, 12, 13]. Learning control involves modifying the controller’s behavior to improve its 

performance as measured by some predefined Index of Performance- IP. If control 

actions which improve the performance of the system are known, then the supervised 

learning methods, or methods for learning from examples, can be used to train the 

controller. However, in many control tasks, it is difficult to obtain training information 

in the form of pre-specified control actions, in which case supervised learning methods 

are not directly applicable [14]. At the same time, evaluating a controller’s performance 

according to some IP is often fairly straightforward. In such situations, appropriate 

control behavior must be inferred from observations of the IP, and hence these tasks are 

ideally suited for the application of Associative Reinforcement Learning [15]. 

Traditional learning methods all rely on some form of reinforcement signal which is 

presumably generated from outside of the system boundary. Even in the reinforcement 

learning methods in which the reinforcement signal is internally generated, it is still very 

directly linked to the external reinforcement. In this case, the problem can be usually 

simplified to a problem of credit assignment, as the reinforcement becomes directly 

linked with the specific course of actions taken by the system at the time [16]. 

 



 4 
 

In real life problems, the problem is more complicated. Solving the problem by 

credit assignment still needs an external agent to assign the credits, while at a higher 

level of autonomy this task should be done within the system boundary, as well. 

Therefore, new approaches where intelligence is not given to the system from outside, 

but is acquired by the system through learning, have proven much more successful [14, 

17]. 

A more cognitively based version of reinforcement learning is also developed in 

which a critic constantly assesses the consequences of actuating the plant with the 

selected control action in any given state in terms of the overall objectives or 

performance measures and produces an analog reinforcement cue which in turn directs 

the learning in the controller block. This cognitive version of the reinforcement signal 

has been denoted as an emotional cue, for it is indeed the function of emotions like 

stress, concern, etc. to assess the environmental conditions with respect to goals and 

utilities and to provide cues regulating action selection mechanisms [14, 18]. Whether 

called emotional control or merely an analog version of reinforcement learning with 

critic (evaluative control), the method is increasingly being utilized by control engineers, 

robotic designers and decision support systems developers and yielding excellent results 

[19, 20, 21, 22]. 

 

1.4 Organization 

This thesis organized as in six chapters including: Introduction, Biological 

Background, Mathematical Modeling, Applications, Analytical Studies and Conclusion. 
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In chapter II, the basic biological materials required to understand the concepts used 

in this study are furnished. In general, the fundamentals of brain emotional learning are 

described and formulated and the limbic system which performs the brain emotional 

processes is introduced. The limbic system is particularly characterized by four of its 

main components: Amygdala, Orbitofrontal Cortex, Sensory Cortex and Thalamus. The 

tasks of each of these components within the limbic system are explained. 

In chapter III, a computational model is developed mimicking the limbic system 

mechanisms described in chapter II. First, each of the components of the limbic system 

is modeled by a mathematical relation. Then a computational model is developed to 

simulate the behavior of each component and their interactions. The simulations are 

implemented in Simulink MATLAB ®. After that, some validation experiments to verify 

the accuracy of the model are done. The experiments consist of two biological 

benchmarks of Acquisition and Blocking. The acquisition and blocking experiments are 

explained and the behaviors of the system in each of these tests are described based on 

biological reasoning. 

Chapter IV deals with the challenges in using the model for some engineering 

applications. The main focus of the study is on adapting the model for control system 

applications. The model is also considered for signal fusion purposes and how that can 

improve the performance of the closed loop control system. Then, the simulation results 

of applying the model to control some plants with increasing complexity are provided. 

The first control system considered is a model of a submarine in reaching a reference 

depth underwater. Then the nonlinear model of a one-DOF robot arm is simulated to 
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evaluate the capability of the model in controlling nonlinear systems. The third control 

simulation is performed on a multi-input multi-output system of a gas turbine generator. 

The performance of the model in roll control of a tractor-semitrailer model is then 

compared with that of a sliding mode controller. Next simulations are designed to 

evaluate the performance of the system in signal fusion problems. The simulation shows 

the improvements in performance of a control system when the model is used to 

combine the output measurements to reduce the undesirable effects of delaying signals. 

Chapter V describes some analytical studies on the model. The studies include the 

behavior of the system in adaptation and non-adapting phases as well as the stability 

analysis of the emotional control system. To do the latter study, the results of using 

numerical method of cell-to-cell mapping are considered. 

Chapter VI finishes the thesis by discussing the main concluding remarks of the 

study and providing some potential directions for future research on this subject. 
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CHAPTER II 

BIOLOGICAL BACKGROUND 

2.1 Introduction 

The current study is a multi-aspect research effort which not only requires a 

background of control engineering, but also needs a basic knowledge of some 

biomorphic systems. Therefore, this section tries to make the reader familiar with some 

basic materials of those biomorphic systems which are used in this study. 

In fact, the main concern is studying those biological systems which are involved in 

emotional processes. As it is mentioned before, a part of the mammalian brain called 

limbic system is mainly known responsible for this purpose. Therefore, the brain 

emotional processes in general and the limbic system in particular are studied in the next 

two sections. 

 

2.2 Emotional Processes 

Learning is arguably the most vital factor through which the complex organisms are 

able to survive [23]. To be sure, all organisms have capabilities that enable them to 

operate within their environment, but complex organisms are generally endowed with 

the additional ability to learn from and adapt to their environment. Indeed, we 

differentiate between adaptation across generations through evolutionary processes 

versus learning within one generation and in response to specific environmental stimuli. 

This fact can be noticed specifically from two standpoints: 
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• How much an organism would be smart to intelligently interact with its 

environment at a specific time, it still requires some learning abilities. The reason 

is that the environment itself is changing constantly. So in order to keep the same 

level of performance within the ever changing environment, the organism should 

possess adaptation mechanisms. 

• Another reason is some adaptations should be learned by the animal within a 

much shorter time scope rather than generations. 

On the other hand, the learning system should be able to evaluate the current 

environmental condition. This helps the system to check the direction of learning and if 

it helps reaching the objectives of the system. 

To this end, the organism must evaluate its performance relative to some, internally 

or externally supplied, criteria and modify its actions accordingly [24, 25, 26]. These 

continuing experiences help the organism make associations between the environmental 

conditions, the actions it takes and the resulted impact in satisfying the criteria. The 

sequence of the growing associations and dissociations builds a learning capability, 

through which the organism refines its performance and, in principle, leads to a more 

adaptive behavior over time. 

In this connection, internal cues originating within the organism often play a stronger 

role than external ones. This is generally due to the inherent autonomy of complex 

organisms. From this perspective, the internal state of the organism – both emotional and 

cognitive - play key roles in learning. Emotional factor has historically been considered 

a negative factor hindering the rational decision making process. However, the 
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importance of emotions in human cognitive activities is progressively being documented 

by psychologists [27, 28]. Indeed, it has become clear that far from being a negative 

trait, emotions are positive forces crucial for intelligent behavior in natural systems [18, 

29]. 

One of the primary functions of emotion is evaluating the stimuli. When an 

environmental stimulus occurs in association with an emotionally charged stimulus, the 

emotional system will associate this new stimulus with the same or a similar emotional 

content. The second function of emotional systems is to focus the attention of the system 

on the signals which contribute the most to reach the objectives of the system. Instead of 

spending the resources on all the many sensory stimuli, the emotional evaluation can 

help focusing on relevant stimuli which are more decisive in generating the appropriate 

actions. 

In the fields of cognitive science researches, the emotions and emotionally charged 

signals are distinguished as positive versus negative signals. The positive emotions 

indicate a likely reward for the system, e.g. hope, whereas the latter ones forecast that 

there would be a punishment, e.g. fear [30, 31]. In the course of this study, we are not 

distinguishing between the emotional signals in that sense. This is because we are 

developing a computational model and any positive or negative emotional signal will be 

automatically reflected in the output of the system through the model. 
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2.3 Architecture of the Limbic System 

In mammalian creatures, the emotional processes are mainly occurred within a part 

of the brain called limbic system which consists of various components lying in the 

cerebral cortex. Figure 1 illustrates the anatomy of the main components of the limbic 

system. 

The main components of the limbic system involved in emotional processes are 

Amygdala, Orbitofrontal Cortex, Thalamus, Sensory Cortex, Hypothalamus, 

Hippocampus and some other areas. In this section, we are trying to briefly describe 

these components and their tasks. 

The primary affective conditioning of the system occurs in the Amygdala. The 

Amygdala is a small almond-shaped subcortical area which placed in a way to 

communicate with all other sensory cortices and areas within the limbic system [9]. 

Figure 2 shows the connections of the Amygdala to/from other componenets. It is indeed 

believed that the association between a stimulus and its emotional consequences takes 

place in the Amygdala [32, 33]. In this region, highly analyzed stimuli in the sensory 

cortices, as well as coarsely categorized stimuli in the thalamus are associated with an 

emotional value. The role of the Amygdala is in fact to assign emotional value to each 

stimulus that is paired with a primary reinforcement signal. 
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Fig. 1 Anatomical view of the Brain Limbic System 

 

 

Fig. 2 Connections of the Amygdala with other components of the Limbic System 

Hippocampus 

Orbitofrontal Cortex 

Midbrain 

Hypothalamus 

Thalamus 

Sensory Cortex 

Amygdala 

Basal Ganglia 

 

The Orbitofrontal Cortex is another component interacts with the Amygdala 

reciprocally. In general, it performs three interrelated functions which are Working 

Memory, Preparatory Set and Inhibitory Control [34]. The concept of working memory 

is captured by representing the current events and actions, as well as such events in the 
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recent past. The preparatory set is the priming of other structures in anticipation of 

impending action. Inhibitory control is the selective suppression of areas that may be 

inappropriate in the current situation. More specifically, the Orbitofrontal Cortex reacts 

to omit the expected reward or punishment and control the extinction of the learning in 

the Amygdala [35]. 

The Thalamus is a non-homogenous subcortical structure that lies next to the basal 

ganglia. Its major role is being a way-station between subcortical and cortical structures. 

Most sensory information is relayed from the peripheral sensory systems to the sensory 

cortices through various parts of the Thalamus [36]. In particular, the thalamic sensory 

inputs going to the Amygdala are believed to mediate inherently emotionally charged 

stimuli as well as coarsely resolved stimuli in general [37]. The signal from Thalamus to 

Amygdala skips the processes involved in Sensory Cortex and other following 

components. So the Thalamus provides a non-optimal but fast stimulus to the Amygdala 

where this signal is often a characteristic signal among the input stimuli [36]. 

The Sensory Cortex is the component next to the Thalamus and receives its inputs 

through this component. In fact, the information from the sensory areas is extensively 

processed within the Sensory Cortex. The Amygdala and Orbitofrontal Cortex receive 

highly analyzed input from the sensory cortex [32, 35, 38]. In general, these areas are 

mainly responsible for higher perceptual processing in mammalians, though their exact 

functions are still an open subject of research. 

The Hypothalamus lies below the Thalamus and it is believed in connection with 

various functions that regulate the endocrine system, the autonomous nervous system 
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and primary behavioral surviving states [39]. There are connections from different 

regions of the Amygdala to the lateral regions of Hypothalamus, and the other way 

around, which are thought to be involved in motivational control of the structures within 

the Hypothalamus [40]. 

The Hippocampus is a complex twisting structure which lies within the same 

subcortical region as the Amygdala does. It is believed that Hippocampus is responsible 

for mapping the environment mainly based on environmental cues. The Hippocampus 

has roles in different functions including spatial navigation, laying down of the long-

term memory and formation of the contextual representations [41]. 

Rather than the components considered previously, there are some other components 

in the limbic system. For example, we can point out to the components like the Basal 

Ganglia, Globus Pallidus, Substantia Nigra, Subthalamic Nucleus and Periamygdaloid 

Cortex where each plays a role within the system. Since the focus of this study is not the 

detailed study of the biological limbic system, we avoid describing the areas very 

comprehensively. 

 

2.4 Summary 

This chapter provided a baseline for the studies of this research and answered why in 

general we need Autonomous systems. 

In this chapter, we introduced the theory of Learning and the importance of having 

this capability in the mechanisms for them to be able to survive in a changing 

environment. Then it is described that any learning system requires an Evaluation 
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mechanism to assess the conditions of the system which is implemented through 

defining performance criteria. In fact, the system uses the evaluation mechanism to 

establish associations between different sets of condition-action pairs. 

Then, in the same vein, we introduced the Emotional evaluation and learning which 

is the base for emotional decision making in mammalians. In mammalians, the system 

which is responsible for emotional processing is the part of the brain called limbic 

system. The limbic system and its mechanisms in emotional processing are further 

described. 

Finally, the main components of the limbic system are enumerated and the task of 

each of them is briefly explained. 
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CHAPTER III 

MATHEMATICAL MODELING 

3.1 Introduction 

In this chapter, we describe developing a computational model of the limbic system 

studied in the previous chapter. Since the focus of this study is on application of the 

model in engineering systems, control systems in particular, and not on the biological 

concepts, the model established is not a very complicated model including all the 

components of the limbic system. In fact, we are trying to develop a model captures the 

minimal and basic properties of the limbic system which is mainly known as Amygdala-

Orbitofrontal Cortex system. 

 

3.2 Amygdala-Orbitofrontal Cortex System 

In the Fig. 2, we saw the main components of the limbic system which interact with 

Amygdala in emotional processes. The key elements of the limbic system, and its related 

cortical and subcortical areas, which are considered for the model are the Amygdala, the 

Orbitofrontal Cortex, the Sensory Cortex and the Thalamus. These elements and their 

interactions with other components of the limbic system are illustrated in the Fig. 2 with 

a dotted oval. Furthermore, from the aforementioned components, the first two play a 

key role in the processing of emotions while the rest largely (though not entirely) 

function as preprocessors of sensory input. 
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In particular, the task of the thalamus is to provide a non-optimal but fast response to 

stimuli. This capability is often simulated by passing the maximum signal, over all 

sensory signals, to the Amygdala [9, 36, 42]. 

The main task of the sensory cortex in biological systems is to appropriately 

distribute the incoming sensory signals through the Amygdala and the Orbitofrontal 

Cortex [38], where in this study it is modeled as a computational delay [9].  

The fundamental idea behind decision-making based on emotional learning, 

following [9, 43], is to generate the action (output), which minimizes an emotional stress 

(or maximizes an emotional reward), while the system is receiving different sets of 

sensory signals. The sensory inputs received by the system represent the situation the 

system is currently experiencing, and the emotional signals reflect the degree of 

satisfaction with the performance of the system. 

Based on these mechanisms, Fig. 3 shows the schematics of the model of the Brain 

Emotional Learning (BEL) algorithm. 

The main learning of this system occurs within the Amygdala and the Orbitofrontal 

Cortex components which are illustrated in Fig. 3 by dotted lines over these components. 

The output of the model, , is generated as the difference between all the 

excitatory Amygdala and inhibitory Orbitofrontal Cortex nodal outputs as follows: 

MO

∑∑ −=
i

i
i

i OCAMO .                                                 (1) 
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Fig. 3 Block Diagram of the Simplified Limbic Model (BEL) 

 

For each sensory input received by the model, , there is one corresponding 

Amygdala node, , and one corresponding Orbitofrontal Cortex node, , which 

generate the nodal Amygdala and Orbitofrontal Cortex outputs. These outputs are 

generated by multiplying the sensory input signal by the Amygdala and the Orbitofrontal 

Cortex as given by: 

iSI

iA iOC

iii SIVA .= ,                                                         (2) 

iii SIWOC .= .                                                       (3) 

 

In the above,  and  are the adaptive gains of the Amygdala and the 

Orbitofrontal Cortex, respectively. 

iV iW

The Amygdala and the Orbitofrontal Cortex learning processes occur through their 

internal weights update rule as: 
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where  and  are the emotional signal and the model output, respectively. ES MO

It should be noted that the learning model considered here is mainly based on the 

model given in [43]. However, parts of the model are updated [9], which can be found in 

Appendix C. 

As it is observed in Fig. 3, except for the signal going from thalamus to the 

Amygdala, the Amygdala and the Orbitofrontal Cortex are both receiving the same set of 

signals, while the Orbitofrontal Cortex also receives a signal from the Amygdala. 

A fundamental characteristic of the model is the fact that the motivation to respond 

and the response itself are different [44], a fact that enables a rich pattern of response to 

the external stimuli. In the same vein, the evaluation of the stimulus and the choice of 

action to be taken as the result of the evaluation are clearly separated. This is inspired by 

the biology where the task of the Amygdala is to learn the associations between the 

sensory and the emotional input and to reflect them at the output [32, 33]. 

As it is realized from the Amygdala learning rule stated above, the adaptation trend 

is monotonic [45]. Whether the experienced association is favorable or unfavorable, the 

Amygdala captures the essence of this association and tends to function on the basis of 

the new experience in the future. This is however mitigated by the fact that the final 

action generated by the limbic system is further controlled by the Orbitofrontal Cortex, 
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which generates inhibitory signals to counter or augment the signal generated by the 

Amygdala [34]. This process is based on the fact that the Orbitofrontal Cortex receives 

the same signals as the Amygdala does, and makes an independent assessment of the 

situation. In addition, the data path from the Amygdala to Orbitofrontal Cortex indicates 

the level of Amygdala’s emotional evaluation of the given stimuli. This enables the 

Orbitofrontal Cortex to determine the level of required inhibition to potentially balance 

the Amygdala’s excitatory output. The functional effect is to block the Amygdala 

response when it is acting based on an inappropriate association. In fact, the 

Orbitofrontal Cortex tracks the mismatches between the base system predictions and the 

actual received reinforcement, and learns to inhibit the system output in a manner 

proportionate to the degree of mismatch [46]. In other words, the learning capabilities of 

the model are not simply due to the learning mechanism within either the Amygdala or 

the Orbitofrontal cortex alone, but due to the reciprocal interaction between them.  

In this connection, we also need to point out the role of the thalamus. The shortcut 

path from thalamus to the Amygdala improves the speed and fault tolerance properties of 

the model, because it bypasses the more time-consuming sensory cortex processing 

while also enables the model to generate a fast (albeit non-optimum) action, called 

Satisfactory Decision, even when the Sensory Cortex does not work perfectly (largely if 

it is overwhelmed by the sheer number of contradictory sensory signals). This signal 

effectively carries as much information contained within the multiple sensory inputs as 

possible. Precisely how thalamus functions as a signal processing and transmission 

device is not well established. In this model of thalamus, the maximum over the sensory 
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inputs is invoked as the signal from thalamus to Amygdala [9, 43]. In general, however, 

computational modeling of the thalamus remains a challenging issue [47]. 

From a biological standpoint, the emotional signal is a generic, internally generated 

signal which can represent various reinforcing inputs from Thalamus, Hypothalamus and 

parts of the Basal Ganglia. The same issue is applicable when the model is simulated in 

an artificial environment. The emotional signal can be generated from different parts of 

the system reflecting any relevant criteria. Developing a module to systematically 

determine the emotional signal can improve the performance of the algorithm, because it 

represents the condition of the system with respect to the specific objective of interest. A 

shortage of the current model of the emotional processing in the limbic system is the 

inability of these models to selectively evaluate the incoming stimuli (sensory inputs) 

and correspondingly inhibit them at different levels of intensity based on an appropriate 

emotional signal [43]. 

 

3.3 Validation 

In this section, the accuracy of the computational model developed in the previous 

section is validated by simulating the model on two biological benchmark experiments: 

Acquisition and Blocking. 
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3.3.1 Acquisition Experiment 

Acquisition -abbreviated by ACQ- is a basic learning experiment in which the model 

is expected to associate and disassociate the sensory input signals depending on whether 

the emotional signal is present to the system or not [9, 43]. 

Indeed, this is the minimal functionality of any associative learning system to be able 

to dynamically react based on the given sensory input and emotional signals. The 

Amygdala-Orbitofrontal Cortex protocol is known to represent these characteristic 

behaviors. The following are the simulation results of two ACQ experiments: 

 

3.3.1.a First ACQ Experiment 

In this ACQ experiment, one sensory input and one emotional signal are given to the 

system as shown in Fig. 4. In the first stage, the sensory input and the emotional signal 

both have the value of one, where in the second stage, the emotional signal vanishes and 

then in the third stage, reappears with the value of two. Then, the next stage starts with a 

sensory input of value two but no emotional signal is present to the system, where it 

becomes available then after with the value of one. Finally, while the emotional signal 

remains at the value of one, the sensory input signal reappears with the value of 0.6. 

The output of the model is given in Fig. 5.  As it is observed from the figure, the 

model does not generate any output value until both the sensory signal and the emotional 

signal do have some nonzero values. 

Furthermore, the values of the output at the steady state track the values of emotional 

signal and not the values of sensory input signal. 
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Fig. 4 Sensory (upper) and Emotional (lower) signals for ACQ 1 experiment 

 

The magnitude of the sensory signal contributes in changing the rate at which the 

final value is reached. This fact is realized at the two final stages where the emotional 

signal has the value of one but the sensory inputs have values of two and 0.6 

respectively. As the Fig. 5 shows, in both stages the output reaches the value of one but 

much faster at the first time compared to the second time. 

 

Fig. 5 Model output in ACQ 1 experiment 

 

The learning behaviors of the Amygdala and Orbitofrontal Cortex are shown in the 

upper and lower plots of Fig. 6, respectively. As it is aforementioned, the Amygdala can 
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not have learning in the reverse direction. In the other words, it can only learn the 

associations to produce the output signals and whenever the disassociation is required, 

the Orbitofrontal Cortex increases the inhibition.  

  

Fig. 6 Amygdala (upper) and Orbitofrontal Cortex (lower) learning through ACQ 1 experiment 

 

Fig. 6 shows that in this experiment, the Amygdala reaches the half of its full 

learning during presence of the emotional signal of magnitude one and reaches the full 

learning when the emotional signal rises from one to two. Also, whenever the emotional 

signal disappears and the disassociation is required, the Orbitofrontal Cortex learning is 

increased. 

 

3.3.1.b Second ACQ Experiment 

The second ACQ experiment is designed to consider the situations where the 

emotional signal takes the negative values. Negative emotions might be biologically 

interpreted as emotional states like fear, stress, etc. But the main reason for considering 
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the behavior of the system when the emotional signal takes negative values is the later 

concern when the model is being applied in control systems, where the emotional signal 

usually takes both positive and negative values. The sensory input and emotional signal 

given to the model in this experiment are shown in the Fig. 7. 

 

Fig. 7 Sensory (upper) and Emotional (lower) signals for ACQ 2 experiment 

 

As it is observed from the Fig. 8, the output of the system still follows the values of 

the emotional signal and the higher magnitudes of the sensory input make the response 

faster. 

 

Fig. 8 Model output in ACQ 2 experiment 
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The Amygdala and Orbitofrontal Cortex learnings are shown in Fig. 9. The 

Amygdala learning rises to half the full learning and does not ever change even when the 

magnitude of the emotional signal changes from positive one to negative one. 

 

Fig. 9 Amygdala (upper) and Orbitofrontal Cortex (lower) learning through ACQ 2 experiment 

 

 

In fact, the negative values of the output are due to the very high inhibitory effects of 

the Orbitofrontal Cortex to not only neutralize the excitatory effects of the Amygdala, 

but also produce negative net responses whenever the emotional signal takes negative 

magnitudes. 

 

3.3.2 Blocking Experiment 

Blocking -abbreviated by BLK- is another benchmark experiment for associative 

learning systems. In BLK experiment, the system is required to avoid establishing 
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unnecessary associations [9, 43]. For example, if the emotional signal is reasonably 

associated with one sensory input, no other sensory input should be associated. 

This phenomenon can be described by the principle of parsimony, in the sense that, 

if one sensory input is enough to capture the behavior of emotional signal, associating it 

with other sensory inputs is wasting of effort. 

To verify this result with the model under consideration, the model is given two 

sensory inputs and one emotional signal as demonstrated in Fig. 10. At the early times, 

the emotional signal is merely associated with the first sensory input until the time when 

the second sensory input appears as well. 

Then the emotional signal disappears where some pulses of first and second sensory 

inputs emerge. In later times, the emotional signals are associated with the second 

sensory input and then similar pulses of sensory signals emerge again without presence 

of emotional signal. 

 

Fig. 10 Sensory (two uppers) and Emotional (lower) signals for BLK experiment 
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The output of the model is given in the Fig. 11. As it is expected from previous ACQ 

simulations, the output generally follows the emotional signal conditioned on at least one 

sensory signal is present to the system. But even without presence of emotional signals, 

the system produces some fading responses when the sensory inputs, that are associated 

with the emotional signal, appear. For example, after associating the emotional signal 

with the first sensory input, it is not associating with the second one. 

 

Fig. 11 Model output in BLK experiment 

 

This fact can be verified because after the emotional signal vanishes, the system does 

not react to the second sensory input but does react to the first sensory input, though 

fading. Another observation is that the responses are much weaker in the subsequent 

presences of first sensory signal. 

However, the experiment shows that after disassociation of the emotional signal with 

the previously associated sensory inputs, it can be associated with new sensory inputs. 

This fact is verified at the second part of the simulation where the emotional signal is 

now associated with the second sensory input. As it is expected, the system now does not 

react to the presence of first sensory input but does react to the second one. 

The learning behaviors of the two Amygdala and two Orbitofrontal Cortex nodes are 

demonstrated in Fig. 12. It is realized from the figures that the main Amygdala 
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excitatory learning and Orbitofrontal Cortex inhibitory learning happens for the first 

sensory input. In particular, during the association of the emotional signal with the first 

sensory input, the second Amygdala and Orbitofrontal Cortex nodes do not react at any 

level. 

 

Fig. 12 Amygdala (two uppers) and Orbitofrontal Cortex (two lowers) learning through BLK experiment 

 

3.4 Conclusion 

In this chapter, we furnished more specified descriptions of the limbic system and its 

main components of: Thalamus, Sensory Cortex, Amygdala and Orbitofrontal Cortex. 

The next step was establishing a computational model of this system. It has been 

discussed that the idea of this system is the distinction between the motivation to 

response and the response itself and it further described that how does the Amygdala-

Orbitofrontal Cortex system implement this concept. In developing the computational 
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model, we made some simplification assumptions to be able to do the modeling. For 

example, we modeled the Sensory Cortex as a block with computational delay, because 

other biological tasks of this component were not easy to capture in a mathematical 

formulation. 

Finally, we validated the model by simulating it on some well-known benchmark 

experiments of Acquisition and Blocking. The results of experiments confirmed the 

accuracy if the model where the behavior of the system were in agreement with the 

expected behaviors. 

Further observations from the experiments demonstrated that the magnitude of the 

output of the model follows the magnitude of the emotional signal. On the other hand, 

the magnitude of the sensory signal contributes to the rate of learning where the higher 

the magnitude of the sensory signal is, the faster the adaptation is and vice versa. 
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CHAPTER IV 

APPLICATIONS 

4.1 Introduction 

In this chapter we are describing the utilization of the developed model in some 

application domains. In fact, the main effort is focused on applying the model to control 

systems where the model acts as the controller block. Furthermore, the application of the 

model in signal fusion is also considered. For each application domain, some simulations 

support the applicability of the model where an example is also furnished in which the 

signal fusion is used to enhance the performance of the control system. 

 

4.2 Control System Applications 

The rationale for using emotional learning in control engineering has been previously 

established [22, 48]. In this connection, the first issue in using the model for a control 

system configuration is how to embed it within the overall architecture of the system. Of 

course, there is no unique way of doing this, because the fundamental characteristic of 

the model is its flexibility in achieving multiple objectives based on receiving different 

sensory inputs and emotional signals. Figure 13 demonstrates a reasonable candidate for 

embedding the BEL (Brain Emotional Learning) model within a typical feedback control 

block diagram.  

The block diagram demonstrated in the figure assumes the emotional signal, , 

and sensory input, , are determined by the Eqs. (6) and (7): 

ES

SI

                                           yKyKSI &.. 21 += ,                                                 (6) 
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                                                       uKeKES .. 43 += .                                               (7) 

 

In the above, e  is the control tracking error,  is the output of the BEL model 

(which is indeed the control action),  is the plant output and  is the rate of change in 

the plant output. The terms  through  are the weights associate with the 

aforementioned signals. 

MO

y
.
y

1K 4K

 

Fig. 13 Control System Configuration with BEL Controller  

 

In this context the given controller acts as a nonlinear, adaptive proportional 

derivative (PD) controller. 

With respect to the operation of the controller, the emotional signal is the weighted 

combination of the regulation error and the control action, because these are two 

parameters generally desired to have low magnitudes. In fact, as we saw in the previous 

chapter, the model output follows the emotional signal at steady state. Therefore, when 
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the system reaches the reference value, the control action would be zero, as it is 

expected. 

The sensory input is selected as combination of the plant output and its rate of 

variations, because it makes the system more responsive to changes in the condition of 

the system. 

Again, it is to be noted that the flexibility in generating emotional signal allows that 

through choosing the corresponding emotional cues, we can implicitly decide the control 

objectives. 

In biological processes, rapid processing is an important characteristic of the limbic 

system as compared to the cortical areas of the brain and therefore, it is expected that the 

controller inspired by limbic system would generate fast responses.  

 

4.2.1 Submarine Model 

We start the simulations with a linear Single Input-Single Output (SISO) model of a 

submarine system. The system is designed as a set point tracking control problem. The 

transfer function of the system is given in Eq. (8): 
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Fig. 14 Closed loop response of the submarine model (a)without controller (b)with BEL controller 

 

As Fig. 14(a) shows, the closed loop system, by itself, is unstable. Then we used the 

BEL controller for the system whereas Fig. 14(b) shows, it can be seen that the system 

response reaches the reference value of one with an acceptable performance indices. 

The learning trends in the Amygdala and the Orbitofrontal Cortex are illustrated in 

Figs. 15 and 16, respectively. The figures illustrate that both the Amygdala and 

Orbitofrontal Cortex have quite gradual and monotonic learning trend e.g. the 

Orbitofrontal Cortex does not increase and decrease the inhibition magnitude frequently. 

 

4.2.1.a Robustness Analyses 

Because of the fast adaptation capability of the BEL model, it is intriguing to 

evaluate its robustness with respect to some variations. To do this, we are considering 

the performance of the BEL controller and a PID controller with respect to system 

parameter variations and disturbance rejection. 
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Fig. 15 Amygdala learning trend 

 

 

Fig. 16 Orbitofrontal Cortex learning trend 

 

First the performances of the controllers on the system with original parameters and 

under the normal conditions are considered. Figure 17 illustrates the closed loop 

responses of the system using the BEL and the PID controllers. 
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Fig. 17 Closed loop response of the submarine model (a)with BEL controller (b)with PID controller 

 

In order to evaluate the performance of the two controllers, Table 1 shows the 

transient performance indices of the time response of the system with the BEL and the 

PID controllers, respectively. The table shows that the response of the system with the 

BEL controller is faster and has smaller overshoot than that of with the PID controller. 

 

Table 1 Transient performance indices of the BEL and PID controllers on submarine model 

 Overshoot % Rise Time Settling time S-S Error % 
BEL 5.15 0.02 0.40 0.00 
PID 9.50 0.26 1.8 0.08 

 

To analyze the performance of the controllers when the system parameters are 

changed, we consider the transfer function given in Eq. (9) instead of the original 

transfer function of Eq. (8): 
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Table 2 shows that the performance of the system is more deteriorated when the PID 

controller is used and in fact the BEL controller is more robust with respect to changes 

in parameters of the system. 

The next analysis is on evaluating the robustness of the controllers with respect to 

the disturbances. To do this, we add a disturbance signal at the input of the original plant 

model of Eq. (8). The same transient performance indices of the BEL and the PID 

controllers for this situation are demonstrated in Table 3. 

 
Table 2 Transient performance indices of the BEL and PID controllers on deteriorated submarine model 

 Overshoot % Rise Time Settling time S-S Error % 
BEL 5.15 0.02 0.93 -1.65 
PID 11.26 0.27 4.10 -6.63 

 

 

Table 3 Transient performance indices of the BEL and PID controllers on submarine model with input 

disturbance  

 Overshoot % Rise Time Settling time S-S Error % 
BEL 09.27 0.02 0.51 1.92 
PID 15.66 0.27 1.68 9.95 

 

The disturbance rejection of the BEL controller in comparison with the PID one is 

better realized by imposing the above disturbance for a short period of time in the steady 

state condition of the system. The results are demonstrated in the Fig. 18 which shows 

that the BEL response is less deteriorated rather than the PID response. 
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4.2.2 Robot Arm Nonlinear Model 

The next simulation we consider is for a nonlinear model of the arm of a robot [14]. 

The input of the model, , is the signal of the DC motor attached to it and the output, u ϕ , 

is its angular position. The differential equation, governing the system is given in Eq. 

(10): 

67.3
cos2.39.. ϕϕ −

=
u .                                               (10) 

   

 

Fig. 18 Closed loop response of the submarine model (a)with BEL controller (b)with PID controller, 

when the system is deteriorated by the input disturbance 

 

Figure 19 illustrates the closed loop response of the system without any controller 

where the system shows non-decaying oscillations. 
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Fig. 19 Closed loop response of the 1-DOF robot arm model 

 

Then a BEL controller and a PID controller are designed for the system where the 

closed loop responses are demonstrated in Figs. 20(a) and 20(b), respectively. 

 

        

Fig. 20 Closed loop response of the 1-DOF robot arm model with (a)BEL controller and (b)PID 

controller 
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Fig. 21 Closed loop response of the 1-DOF robot arm model with (a)BEL controller and (b)PID 

controller, when the system is disturbed during time period of 6s to 9s 

 

The robustness of the BEL with respect to external disturbances to this system is also 

notable. Figure 21 shows the responses of the same system as in Fig. 20 when the system 

is disturbed within time interval of 6s to 9s. The figures show that, except some minor 

oscillations, the BEL response is not noticeably affected by the disturbance, however, 

the PID response is impaired with more magnitude. 

 

4.2.3 Gas Turbine Generator 

In this section, we examine the BEL on a Multi Input-Multi Output (MIMO) system. 

The system is a strongly coupled linear model of a gas turbine generator where it has 

two inputs of reflux fuel pump excitation and nozzle actuator excitation and two outputs 

of gas generator speed and inter-turbine temperature [14]. The MIMO transfer function 

of the system is given in the matrix form of Eq. (11): 
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Figure 22 shows the outputs of the closed loop system without any controller. The 

figure shows that one output is under-damped while the other is over-damped, since both 

outputs are desired to reach the reference value of one.  

 

 

 

Fig. 22 Two outputs of the gas turbine generator closed loop system without any controller 

 

The next simulations show the controller design for this system. Since the system is a 

2-output model, it is required to use two different controllers to control each of the 

outputs, however, because the system is strongly coupled, it is not as easy as designing 
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two different controllers, independently. The outputs of the system with two BEL 

controllers and two PID controllers are illustrated in Figs. 23 and 24, respectively. 

 

 

Fig. 23 Two outputs of the gas turbine generator closed loop system with two different BEL controllers 

 

 

Fig. 24 Two outputs of the gas turbine generator closed loop system with two different PID controllers 
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The figures show faster responses of the system with BEL controller, however, they 

have some low-magnitude oscillations at the early times. 

 

4.2.4 Heavy Vehicle Rollover 

In this section, the simulation results of applying the BEL algorithm for rollover 

control of a heavy vehicle are described and compared with those when the Sliding 

Mode control is used. 

The increasing demand for freight transportation has made safety an important 

concern. A major portion of freight transportation is deliveries made by heavy trucks, 

which constitute a significant part of commercial transportation. Due to the high center 

of gravity of heavy vehicles, rollover is usually one of the important issues to be 

addressed in the operation of these vehicles. The issue attracts more attention for the 

combined tractor-semitrailer vehicles because the rollover threshold for these types of 

vehicles can be as small as 60 percent of that of similar, but rigid vehicles [49]. 

The vehicle model considered for this study is a 14-DOF model of a tractor-

semitrailer. Figures 25 through 27 show the side, top and rear views of the vehicle along 

with the various coordinate systems used in the modeling process. The dynamic 

equations governing the behavior of the tractor and the trailer are previously developed 

using a combination of Newtonian and Lagrangian mechanics [50, 51]. In particular, the 

total kinetic and gravitational potential energies of the system are obtained as: 
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( )Gzcz ghmghmH 21 +−= .                                             (13) 
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Fig. 25 Side view of the tractor-semitrailer 
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Fig. 26 Top view of the tractor-semitrailer 
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Fig. 27 Rear view of the tractor-semitrailer 

 

Substituting the expressions for kinetic and potential energies in the Lagrange 

equations, given in Eq. (14), leads to the dynamic equations of motion in the standard 

form: 
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The value of , degrees of freedom, for this model equals to fourteen. The 

corresponding degrees of freedom are: 

n

• Longitudinal, lateral and vertical positions with respect to the coordinate system 

fixed at ground (3) 

• Tractor yaw, pitch and roll angles (3) 
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• Relative pitch angle of the fifth wheel with respect to the coordinate system fixed 

at tractor sprung mass (1) 

• Relative yaw angle of the trailer with respect to the coordinate system fixed at 

tractor sprung mass (1) 

• Spin angle of each of the six wheels (6) 

The generalized forces can be calculated by transferring the set of applied forces on 

the vehicle into the set of forces applied in the generalized coordinate system. The 

coordinate transformation matrices as well as system inertia, damping and stiffness 

matrices can be found in the references [50, 51]. 

Figure 28 shows the free body diagram of the tractor-semitrailer. As it is observed in 

the figure, the applied forces are mainly those from the road surface on each of the 

wheels, and the longitudinal aerodynamic drag force. From the combined tractor-trailer 

standpoint, the fifth-wheel joint is an internal component, but its pitch motion relative to 

the tractor body should be taken into account. The reason is the fifth-wheel joint 

contributes to the normal load transfer on the trailer tires during braking/acceleration. It 

also impacts the trailer roll positioning at non-zero articulation angles. 

Figure 29 represents the block diagram of the feedback control system used for 

controlling the vehicle model. The desired velocity of the vehicle and the steering angle 

applied by the driver are the reference and exogenous input to the control system, 

respectively. The desired velocity is the instantaneous value of the vehicle velocity, 

where depending on the different driving conditions, a minimum rollover margin is 

ensured. 
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Fig. 28 Free body diagram of the tractor-semitrailer 

 

The vehicle roll angle is monitored from the state-feedback control system. We 

simulate the model for three driving situations of braking, acceleration and cornering 

with the BEL controller and the simulation results are compared with those of using 

Sliding Mode controller [51]. The interested readers are referred to the Appendix B for a 

brief description of the Sliding Mode control method. 

Figure 30 demonstrates the BEL controller and its emotional signal  and sensory 

signals  which are generated from Eqs. (15) and (16):  

ES
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∑
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=
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1
.

k
kk TwSI ,                                                 (15) 

errorerror YKvKES .. 43 += .                                        (16)  
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Fig. 29 Block diagram of the vehicle model feedback control 

 

Again, as it is realized from the equations, the sensory and emotional signals are 

chosen in such a way that reflects the condition of the system and shows the parameters 

desired to be minimized, respectively. 

The sensory input is the weighted sum of the generated torques. Since there is no 

preference over the torques on the different wheels, the weights are assumed equal. 

The emotional signal is similarly generated as the weighted sum of the velocity error 

and yaw-rate error. To generate the force and torque control actions, two different BEL 

controllers are used, respectively. It should be mentioned that the weights  have much 

smaller order of magnitude compared to coefficients  and . 

kw

3K 4K

The input signals for desired velocity and steering input in the three situations of 

braking, acceleration and cornering are given in Figs. 31 through 33. 

The steering input is the angle applied to the steering wheel by the driver and the 

desired velocity profile is assumed according to the driving condition. The steering angle 

inputs and velocity values are in degree (◦) and meter per second (m/s), respectively. 
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Fig. 30 The emotional and sensory signals for BEL model in vehicle roll control 

 

 

Fig. 31 Braking situation (a)desired velocity (b)steering input 
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Fig. 32 Acceleration situation (a)desired velocity (b)steering input 

 

 

Fig. 33 Cornering situation (a)desired velocity (b)steering input 
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Before applying the above control approaches on the system, it should be noted that 

the system by itself is highly unstable. For example, Fig. 34 shows the roll angles of the 

vehicle during the cornering. It can be realized that even before the cornering happens 

the vehicle demonstrate noticeable roll angles and totally looses the stability after the 

cornering happens. 

 

 

Fig. 34 Vehicle roll angle in cornering without any controller 

 

The simulation results for the three aforementioned driving situations are shown in 

Figs. 35 through 47. The control strategies aim at tracking the desired velocity and yaw-

rate values while keeping the roll angle in an acceptable range. The desired yaw-rate 

profile is determined instantaneously within the model based on the vehicle velocity and 

steering wheel angle. From the viewpoint of passenger comfort and safety, the vehicle 

must demonstrate smooth behaviors. 
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Figure 35 shows the roll angles of the vehicle during braking period with BEL and 

Sliding Mode controllers. It is evident from the figure that the vehicle roll angles are 

smaller when the BEL controller is used in comparison with the Sliding Mode controller, 

however, both values are in small ranges. This is due to the fact that the vehicle is 

braking in a straight line and it is not expected to show very high roll angles. 

 

Figure 35 Vehicle roll angles in braking with (a)BEL controller (b)sliding mode controller 

 

Also, it should be mentioned that when the sliding mode control is used, despite the 

apparent unstable trend of roll angle within the 10-second simulation time, Fig. 36 shows 

that it does not really become unstable and tends back to stability during longer 

simulation times. 
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Figure 36 Longer simulation of vehicle roll angles in braking with sliding mode controller 

 

Since the steering wheel input is zero, it may ideally be expected that the vehicle 

does not show any roll and yaw motions. But due to the performance of the fifth-wheel, 

in practice the vehicle tends to deviate from straight-line movement, albeit by a small 

amount. 

The Figs. 37 through 39 demonstrate the velocity and yaw-rate response of the 

vehicle with BEL and Sliding Mode controllers. The desired velocity profile is better 

followed when BEL controller is used (see Fig. 38), but desired yaw-rate tracking has 

lower error with the Sliding Mode controller. Despite showing better yaw-rate tracking, 

the response of the Sliding Mode controller shows high-frequency oscillations. 
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Figure 37 Desired  and actual velocity in braking with (a)BEL controller (b)sliding mode controller 

 

 

Figure 38 Velocity tracking error in braking with (a)BEL controller (b)sliding mode controller 
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A general conclusion of the results of braking simulations is the higher oscillation in 

the responses with Sliding Mode controller. As it is mentioned earlier, this kind of 

behavior is usually expected from Sliding Mode designs. 

 

Figure 39 Desired and actual yaw-rate in braking with (a)BEL controller (b)sliding mode controller 

 

 

The simulation results of the vehicle during acceleration, with the BEL and Sliding 

Mode controllers are shown in Figures 40 through 43. 
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Figure 40 Vehicle roll angles in acceleration with (a)BEL controller (b)sliding mode controller 

  

Figure 41 Desired and actual velocity in acceleration with (a)BEL controller (b)sliding mode controller 
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Figure 42 Velocity tracking error in acceleration with (a)BEL controller (b)sliding mode controller 

    

Figure 43 Desired and actual yaw-rate in acceleration with (a)BEL controller (b)sliding Mode 

controller 
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As Fig. 40 shows, the Sliding Mode controller keeps the vehicle in lower roll angles 

than the BEL controller does, however, the Fig. 43 demonstrates that the desired yaw-

rate is not followed with neither of the Sliding Mode nor the BEL controllers. 

Particularly, the divergent behavior of the vehicle yaw-rate with the Sliding Mode 

controller is problematic. 

The roll angles obtained via the Sliding Mode controller is small though at the cost 

of increasing yaw motions. Therefore, despite the fact that the roll angle obtained from 

the BEL controller is larger than that obtained from Sliding Mode controller, it is more 

practically desirable. 

 

Figure 44 Vehicle roll angles in cornering with (a)BEL controller (b)sliding mode controller 

 

The next situation considered in this study is cornering. As Fig. 33 shows, the 

vehicle velocity is expected to decrease when the vehicle is turning. As it is observed in 
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Fig. 44, the peak-to-peak variation of the roll angles obtained via Sliding Mode 

controller is smaller than that of obtained with the BEL controller. The roll angles 

obtained from Sliding Mode controller is more oscillatory and the vehicle rolls in both 

positive and negative directions which is not desirable from the passenger comfort and 

driving safety viewpoints. 

 

Figure 45 Desired and actual velocity in cornering with (a)BEL controller (b)sliding mode controller 

 

Figures 45 and 47 demonstrate the velocity and yaw-rate tracking errors, 

respectively. It is realized that the tracking performances are very similar when Sliding 

Mode and BEL controllers are used. The BEL controller does not show as low a yaw-

rate tracking error as the Sliding Mode controller does, but its behavior is much 

smoother. 
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Figure 46 Velocity tracking error in cornering with (a)BEL controller (b)sliding mode controller 

 

In general, the tracking performance of the system with the BEL controller is better 

than that of with Sliding Mode controller. The most characteristic property of responses 

from the BEL controller is smoother behavior. The Sliding Mode controller shows 

behaviors with high frequency oscillations. These types of behaviors are undesirable 

from the passenger comfort and safety viewpoints. 

It should not be expected that a control algorithm totally outperforms the Sliding 

Mode controller because the Sliding Mode controller has an effective gain of infinity. 

Therefore, any partial improvement in performance attained by BEL in comparison with 

the Sliding Mode controller is acknowledgeable because it produces cheaper control. For 

example, the simulations demonstrate that the braking torques generated by the BEL 

controller in cornering situation have values one order of magnitude less than those 

generated by Sliding Mode controller (  as opposed to ). mN .10 4 mN .105
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Figure 47 Desired and actual yaw-rate in cornering with (a)BEL controller (b)sliding mode controller 

 

 

4.3 Signal Fusion Applications 

Recent growing development in different areas of science and technology has led to 

generating a huge amount of data. However, these data are raw and are required to be 

processed further by a decision support system to bring more accurate and meaningful 

information [52, 53, 54]. The basic mechanism in any decision support engine is the data 

fusion algorithm which relies on synergistic use of information from multiple resources 

in order to assist in the overall understanding of the condition of the system [55]. In 

other words, by distributed sensing and measurements of the conditions of the system, 

deficiencies in any of the parameters of the system, can be addressed [56]. The industrial 

applications of sensor fusion [52, 53, 55, 57, 58, 59] makes the subject important for 
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safety [52, 55] and robust performance of machines [58]. To ameliorate the effects of 

faults of the sensor fusers, in any uncertain and novel situation, some stochastic and 

probabilistic methods have been proposed [54, 57, 60], while some traditional filtering 

methods [61, 62] and soft computing intelligent algorithms [57, 59, 63] have also been 

put forward. However, these studies often lack generality and may not be applicable to 

specific situations [64]. 

In this section, we intend to utilize the concepts of the developed model for 

applications in sensor fusion. To do this, we should again set the inputs of the system 

reasonably such that the emotional signal and the sensory signal make sense with respect 

to the task the system is desired to perform. 

To choose the sensory signals, the first idea would be the signals which are to be 

combined. In fact, these signals are the inputs to the system which represent the quantity 

to be measured. 

To define an emotional signal which would be able to reasonably express the 

accuracy of the input signals, we need a measure of each of the input signals and the 

output fused signal. This helps to evaluate how accurate the fused signal is with respect 

to the different sensory signals. Figure 48 shows the BEL model along with the sensory 

and emotional signals. The emotional signal is defined as given in Eq. (17): 

∑−= iSIKFSKES .. 43 ,                                       (17) 

 

where  are the sensory signals,  is the fused signal,  is the emotional 

signal and  and  are the summation weights. 

,...2,1, =iSIi FS ES

3K 4K
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Fig. 48 Application of BEL model for signal fusion  

   

In fact, the algorithm tries to minimize the emotional signal and therefore causes the 

fused signal reaches the accurate value of the sensory signals. In the following, the 

algorithm is verified through an example. 

 

4.3.1 Sensor Fusion 

In this section, we test the signal fusion algorithm developed in above on a specific 

example. In this example, the sensory signals are intentionally chosen to be erroneous, 

which are shown in Fig. 49. 

The reason for choosing the input sensory signals as given in Fig. 49 is we assumed 

the correct sensory signal to have the values of two, four, six and eight within each of the 

time intervals, respectively. Then each of the four signals is artificially corrupted in one 

time period [65]. In fact, at each time, three of the sensors function correctly while one 
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measures faulty values. Therefore, it is expected that the fusion algorithm be able to 

recognize the corrupted signal and does not incorporate it at the output signal. 

 

 

Fig. 49 Four erroneous sensory signals  

 

The results of combining the above sensory signals with the BEL model and via 

ordinary averaging method (Mean) are given in Fig. 50. It is observed that the BEL 

signal tracks the correct values of two, four, six and eight, while the Mean signal 

obviously deviates from the correct values depending on how worse the faulty signals 

are.  

 

4.3.2 Sensor Fusion in Control Feedback Loop 

This section describes the application of the sensor fusion algorithm, developed in 

the previous section, in feedback loop of a control system. 

 



 64 
 

Sensor failures are a major cause of concern in many industrial systems such as 

engine-performance monitoring [66]. In this and similar applications the quantity which 

must be measured may be physically difficult to access, e.g. high temperatures [67]. 

Moreover, the physical properties of the sensors are susceptible to changes over time, 

e.g. time constant. Therefore, if these sensors are used to measure the output of a control 

system, performance of the system may be affected by deterioration in the sensor 

properties. Using more than one sensor for multiple measurements of the same 

parameter is one way to decrease the unfavorable effects, while the correlation between 

the different sensors can result in a less vulnerable signal. In other words, through a 

combination of distributed sensing and measurement, deficiencies in any of the 

parameters of the sensing system can be addressed [56]. 

 

 

Fig. 50 Combined signal with BEL and ordinary averaging methods 

 

 



 65 
 

Figure 51 shows the block diagram of using the BEL signal fusion component in the 

closed-loop control system. In fact, the output signal is measured by different sensors 

and the signal fusion block produces one signal as the feedback signal. 

 

Fig. 51 Applying BEL sensor fusion algorithm in feedback loop of a control system 

 

In the simulations, we assume that the sensors might deteriorate in time constant 

properties and so their measurement signals can be delayed. The plant is assumed as the 

model of a gas turbine generator whose output is fluid temperature and is not easily 

accessible due to the hot atmosphere in the outlet section of the turbine. The plant 

transfer function is given in Eq. (18): 

                                                 
5000110010

1)( 2 ++
=

ss
SG .                                     (18) 

 

All four sensors are measuring the same output and ideally they should give the same 

measurement signals. To model the corrupted sensors, we put some delays in the 
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measurement signals and consider the performance of the system in different situations 

of delayed signals. 
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Fig. 52 Step response of the gas turbine generator with correct sensory signal 
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Fig. 53 Step responses of the system for 1s delay in one of the sensory signals (upper: with ordinary 

averaging, lower: with BEL signal fusion) 
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In order to do that, we first design a PID controller for the system assuming that the 

feedback loop is correct. The step response of the system is represented in Fig. 52. Then, 

we introduce a delay of 1s in one of the sensory feedback signals. The step responses of 

the system, without and with using the signal fusion, are given in Fig. 53, respectively. 

The figure shows the under-damped behavior of the system when the feedback signals 

are fused compared to the response of the system where they are simply averaged. The 

next situation is corrupting two of the sensory signals with time delays of 0.1s and 0.5s. 

As Fig. 54 shows, this deterioration makes the system unstable when the feedback 

signals are simply averaged, but using the BEL signal fusion acceptably stabilizes the 

system. 
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Fig. 54 Step responses of the system for 0.1s and 0.5s delays in two of the sensory signals (upper: with 

ordinary averaging, lower: with BEL signal fusion) 
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The situation gets worse when three of the sensory signals are corrupted by time 

delay of 0.1s. Figure 55 shows that these changes extremely destabilize the system while 

when the signals are combined, the response of the system becomes stable and reaches 

the reference value of . oC400
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Fig. 55 Step responses of the system for 0.1s delay in three of the sensory signals (upper: with ordinary 

averaging, lower: with BEL signal fusion) 

 

Figures 56 and 57 show the four measurement signals in each of the previous 

simulations along with their averaging signal and their fused signal via BEL algorithm, 

respectively. It is observed from the figures that when the BEL algorithm is used, the 

fused signal is robust with respect to changes in sensory signals. This is not the case 

when the signals are simply averaged. 
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Fig. 56 Four sensory signals and their averaging signal in three simulations of Figs. 53, 54, 55 

 

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

 

Fig. 57 Four sensory signals and their fused signal with BEL algorithm in three simulations 

of Figs. 53,54,55 
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4.4 Conclusion 

This chapter presented the applications of the BEL model in control and signal 

fusion problems. The main issue in applying the model for different applications is 

defining the sensory and emotional signals in such a way that appropriately represent the 

state and objectives of the system. 

In the first part, the model is adapted for applications in control systems and the 

applicability of the model is verified by simulating it in controlling different systems 

with increasing complexity. 

The first system was the model of a submarine where the closed-loop system was 

unstable. The results of designing a BEL and a PID controller showed that the responses 

of the BEL controller are faster with lower overshoot when compared with the PID 

responses. In addition, we investigated the robustness of the BEL controller with respect 

to changes in the system parameters and the input disturbances. The results showed that 

the BEL is much more robust to these variations rather than the PID controllers. 

In the second simulation, a nonlinear model of a single-link robot arm is considered. 

The results were similar to those of the previous system where the responses of the BEL 

controller were faster and more robust to input disturbance when compared to the 

performance of the PID controller. 

The next simulation consists of a MIMO system of a gas turbine generator. The 

system has 2 inputs of reflux fuel pump excitation and nozzle actuator excitation and 

two outputs of gas generator speed and inter-turbine temperature. The simulations 

showed that the closed-loop system by itself was unable to reach the control reference 
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values. Then, two BEL and two PID controllers are designed for each of the coupled 

outputs of the system where the results showed better performance of the BEL controller 

in comparison with the PID controller, much faster response in particular. 

It should be mentioned that the comparisons of the BEL and PID controllers in the 

aforementioned simulations are not very fair. That is because the BEL controller is an 

adaptive nonlinear control whereas the PID controllers used in these problems were non-

adaptive ones however the result of using an adaptive PID controller for the submarine 

model of section 4.2.1 is given in the Appendix D. In the following control system, we 

compared the performance of the BEL controller with that of a Sliding Mode controller 

which is non-linear controller. 

The application of the BEL algorithm in rollover control of a 14-DOF model of a 

tractor-semitrailer showed partial improvement of the performance of the system when 

compared with the performance of the Sliding Mode controller. The vehicle system is 

studied under three conditions of braking, acceleration and cornering. The roll angles of 

the vehicle were in a similar range with both BEL controller and Sliding Mode controller 

however the variation were smoother with BEL controller. The control system was also 

designed to track the desired velocity and yaw-rate profiles. The tracking performances 

of each of the BEL and Sliding Mode controllers were better in some situations, though 

the behavior of the Sliding Mode controller was very oscillatory in most of the cases 

which is not desirable. The simulations also showed that the controller outputs of the 

BEL controller are generally smaller than those of the Sliding Mode controller. 
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The next simulations considered in this chapter were in applying the BEL model for 

signal fusion applications. Again, the main idea in applying the model for this problem is 

defining the sensory signals and emotional signal correspondingly so they represent the 

conditions and objective of the problem, respectively. 

We tested the model on an example of sensor fusion problem. In this example, there 

were four different measurement signals each of them were faulty in a time interval. The 

model showed good performance in fusion of these signals where the combined signal 

was free of error. 

The more interesting application was using the sensor fusion algorithm in the 

feedback loop of a control system. In this problem, a PID is designed for the system 

under the normal condition. Then, four signals are used to provide the feedback for the 

system where in different simulations some of them were made delaying to model the 

changes in the physical parameters of the system. The simulations showed that when 

different signals are combined using the BEL algorithm, the control system was able to 

preserve its performance, though with some deteriorations. However, when the feedback 

signals are averaged, the control system became unstable with delaying signals. 
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CHAPTER V 

ANALYTICAL STUDIES 

5.1 Introduction 

In this chapter, some analytical aspects of the BEL model, as a controller, are 

considered. The immediate questions in evaluating the performance of an adaptive 

system would be how its behavior is during adaptation and non-adapting periods, in 

which state space domains is the system bounded i.e. stable, etc? Therefore, this chapter 

describes the analyses in addressing these issues. 

 

5.2 Non-Adapting Phase 

To study the behavior of the system in the non-adapting phase, we consider the 

model as an individual block and assuming that the system is receiving a sensory signal. 

Correspondingly, there are one Orbitofrontal Cortex node and one Amygdala node. 

So from the Eq. (1), we can obtain the output of the model as: 

OCAMO −= .                                                 (19) 

 

Due to Eqs. (2) and (3), each of the Amygdala and Orbitofrontal Cortex nodes can be 

written as: 

SIVA .= ,                                                     (20) 

SIWOC .= .                                                   (21) 

 

By substituting Eqs. (20) and (21) back into Eq. (19), we have: 
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( )SIWVMO .−= .                                             (22) 

 

Since we are interested in the output of the model when the system completes the 

learning process, we have to use the adaptations rules of the Amygdala and Orbitofrontal 

Cortex which are given in the Eqs. (4) and (5): 

 ( ) ( )VSIESSIAESSIV ..... −=−=Δ αα ,                             (23) 

( ) ( )ESWSIVSISIESMOSIW −−=−=Δ ...... ββ .                      (24) 

 

In fact, in writing Eq. (23), we made an assumption on removing the max function. 

However, the response of the system will change wherever VSIES .−  is negative, but 

because handling such a nonlinear function is very cumbersome we made the 

assumption to remove it. 

Therefore, when the system is no more adapting, then the gains are not changing and 

so their variation would be zero. By setting the Eqs. (23) and (24) equal to zero, we 

have: 

  
SI
ESVna = ,                                                      (25) 

0.
=

−
=

SI
ESVSIW ss

na .                                           (26) 

 

By substituting the Eqs. (25) and (26) into Eq. (22), we have: 

( ) ESSIWVMO nanana =−= . .                                        (27) 
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The above equation shows that at the non-adapting phase, the value of the output 

follows the emotional signal which is the result previously verified in section 3.3. 

In the application of control problems, we can further develop the formulation by 

substituting  from Eq. (7) as follow: ES

nana MOKeKESMO .. 43 +== ,                                    (28) 

 

which results in the following formula: 

e
K

KMOna .
1 4

3

−
= .                                             (29) 

 

 

An immediate result of the Eq. (29) is that when the system reaches the reference 

value (and the error becomes zero) the controller output becomes zero, which is an 

expected behavior from any set-point control system. 

 

5.3 Adaptation Phase 

In this section, we are considering the behavior of the BEL model during the 

adaptation phase. In fact, we are interested in the formulation for the Amygdala and 

Orbitofrontal Cortex nodes as the time progresses. 

We start with the Eqs. (23) and (24) which show the variations of the Amygdala and 

Orbitofrontal Cortex nodes. For the sake of calculations, we approximate the variation of 
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the parameters with their derivatives. By sorting the above equations as functions of V  

and W , we have: 

ESSIVSIV .... 2
.

αα =+ ,                                              (30) 

ESSIVSIWSIW ...... 22
.

βββ −=+ .                                    (31) 

 

To obtain a closed-loop formulation for the gain of the Amygdala, we can do the 

following calculations: 

∫ ∫=∫⇒∫=⎟
⎠
⎞

⎜
⎝
⎛ ∫⇒

∫=∫+∫⇒=+

dteESSIVe          ESSIeVe
dt
d     

ESSIeVeSIVe            ESSIVSIV
dtSIdtSIdtSIdtSI

dtSIdtSIdtSI

.........

...........
........

....2
...2

.

2222

222

αααα

ααα

αα

αααα
, (32) 

 

and so the Amygdala gain can be obtained as follows: 

∫

∫
= ∫

dtSI

dtSI

e 

dteESSI
V

..

..

2

2

....
α

α
α

.                                            (33) 

 

By having the formula for the Amigdala gain, V , now we can proceed with 

calculating the Orbitofrontal Cortex gain, W . The calculations are demonstrated in the 

following: 
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( )
( )

( )
( )

 
e

dtESSIVSIe
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    dtESSIVSIeWe 

    ESSIVSIeWe
dt
d 

    ESSIVSIeWeSIWe 

       ESSIVSIWSIW

dtSI

dtSI

dtSIdtSI

dtSIdtSI

dtSIdtSIdtSI
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∫
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22
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......

.......

......
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......

β

β

ββ

ββ

βββ
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ββ
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.     (34) 

 

By substituting V  from Eq. (33), we obtain the following formula: 

∫

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∫

∫
∫

=

∫ ∫

dtSI

dtSI

dtSI
dtSI

e

dtESSI
e 

dteESSI
SIe

W
..

..

..

2..

2

2

2

2

...
....

...

β

α

α
β

β
α

β

.               (35) 

 

In fact, it should be noted that neither Eq. (33) nor Eq. (35) furnishes information 

which can be effectively used, i.e. there in no practical conclusion obtained from them. 

However, in the cases where  and  signals have simple integrable forms, Eqs. 

(33) and (35) may become simpler and furnish some advantageous information. 

SI ES

 

5.4 Stability Analysis Using Cell-to-Cell Mapping 

Among the issues concerning the functionality of the BEL model as a controller, 

stability is one of the most important ones. In this section, we are describing the 

procedures for analyzing the stability of the model based on the numerical method of 

Cell-to-Cell Mapping. 
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The Cell-to-Cell Mapping method was initially developed as an efficient numerical 

technique for global analysis of nonlinear systems [68, 76] and its applications in 

different nonlinear analyses are studied [69, 70, 77]. The method is based on 

discretization of a portion of the state space of the system which is of interest to the 

problem. This discrete space defines a partition of the state space into a number of small 

areas, called cells. Then, a cell-to-cell mapping can be evolved based on the dynamic 

equations of the system. 

The mapping is generated in the way that one cell is selected as the initial state and 

then based on the dynamic equations of the system, the next state is determined and this 

process is continued up until one of the predefined scenarios happen. These scenarios are 

as follow: 

• The mapping is resulted in a sink cell (the sink cell is a unique cell whose size is 

exceptionally different from all other regular cells and contains all the area 

outside of the state space of interest.) 

• The mapping is found to generate a new periodic motion. 

• The mapping falls in the domain of attraction of another periodic cell or reaches 

the cell itself which is a previously determined periodic motion. 

Figure 58 shows typical state trajectories in each of these three scenarios for a 2-

dimensional state space.  

The state trajectory starts from initial state #1, falls into the sink cell after three steps 

which show an unstable trajectory. On the other hand, the trajectories starting from 

initial states #2 and #3 are stable trajectories, since they will remain within the boundary 
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of state space of interest. However, the former state evolution leads to discovering a new 

periodic motion, while the latter joins into a previously found periodic trajectory. 

To give a better understanding of the Cell-to-Cell mapping algorithm, Fig. 59 shows 

the flowchart of a simple implementation of the algorithm. 

In the above flowchart,  is the group number assigned to the ith  cell. The 

general scheme of the flowchart can be described as follows: Initially, all the cells within 

the state space are assigned group number of zero, virgin cells, and the sink cell is set to 

have a group number of 1. Then the mapping process is developed starting on the first 

cell ( ) so forth to cover all the regular cells (

)(iGr

1=i Ni = ). At each stage, the group 

number of the cells is checked to characterize them as either a cell currently under 

processing (recognized by the temporary group number of -1), or a cell already 

processed (recognized by a cell having a nonzero group number). 

In the former case, it means that a new periodic motion is found and so a new group 

number is added to the previously recognized groups, whereas in the second case, it 

means that the cell belongs to the domain of attraction of a already recognized periodic 

motion, and so the group number of that existing periodic motion is assigned to this new 

cell. 

After completing this process on all the available cells within the state space domain, 

what we have is different periodic motions with different domain of attractions, where 

one of them belongs to the domain of attraction of the sink cell, i.e. the motion ends in a 

state out of the domain of interest. Therefore, as the result of this analysis, the selected 

domain of state space is divided into regions where if the initial state is anywhere within 
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them, we can infer its trajectory route and so the final state, in particular. In the other 

word, we can simply recognize the domains where the started motion will be bounded or 

unbounded. For the purpose of this study, we assume any unbounded motion as unstable 

and otherwise, stable. 

 

 

Fig. 58 Different scenarios in evolution of a state trajectory 

 

Therefore, the dynamics of the system can be efficiently characterized and its 

behavior is globally analyzed via such mapping [68]. However, the Cell-to-Cell mapping 

is an universal method which can be principally applied to any nonlinear system, but its 

practical utilization is usually limited by the huge amount of memory and time required 
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for processing all the cells within the state space of interest [68], however, methods are 

proposed to generate cells in a more effective manner to reduce the number of cells and 

correspondingly the required amount of memory [71]. 

 

Fig. 59 Flowchart of a simple cell-to-cell mapping algorithm 

Initial 
Group 
Setting 

New 
Periodic 
Motion 

Existing 
Periodic 
Motion 

 

In this section, we are showing the results of applying this method for the BEL 

model. In order to better realizing the effects of Orbitofrontal Cortex in the system, we 

first analyze the system consisting of the plant and the BEL model with Amygdala only, 

and then we incorporate the Orbitofrontal Cortex to the BEL model. One advantage of 

using a numerical analysis e.g. Cell-to-Cell mapping over an analytical analysis e.g. 

Lyapunov method, is that any nonlinearity and complicacy can be incorporated in the 

model, since the analysis is performing numerically. Therefore, in our problem, we are 
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not obligated to remove that max function -because of the complicacy it causes- and we 

can progress with analyzing the system in its original form of Eqs. (1) through (5). 

Also, it is advantageous to rewrite Eqs. (6) and (7) in the direct form used in the 

Cell-to-Cell mapping analysis, here: 

⎩
⎨
⎧

+−=
=

uKyKES
yKSI

.).(
.

43

1 ,                                          (36) 

 

where without loss of generality, the gain  and the control reference 2K r , in Eqs. (6) 

and (7), are assumed to be zero. 

 

5.4.1 Amygdala System 

In this section we assume the system consists of the plant and the BEL model 

including only Amygdala where each of them has one state, the plant output, , and the 

Amygdala gain, V , respectively. The state equations are previously developed which 

after substitution of  and  from Eq. (36), we have: 

y

ES SI

( )
⎪⎩

⎪
⎨
⎧

+−=+−=+−=

−+−=

yVKyuyubyay

VyKVyKKyKyKV

...3.2.3.2..

......,0max...

1

.
14131

.
α ,                       (37) 

 

where the plant is assumed to be a linear function of the plant input & output,  and . u y

In the above equations, the  and V  are the states of the system, where the 

parameters 

y

α , ,  and  are the design parameters of the system. 1K 3K 4K
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Therefore, the purpose of the stability analysis on this system is to determine for 

which values of these parameters, the stability of the system is preserved, and for which 

values, is not. 

Figure 60 shows a square domain of the state space limited from -1 to 1 for each 

state. As it may be realized from the figure, the descritization step is 0.05. The values of 

the parameters of the system are mentioned in the figure. In this figure (and the 

consequent figures in this chapter on Cell-to-Cell mapping results), the points indicated 

by a “ ” or “○” sign, characterizes stable points where the points depicted by “• ×” sign 

are the points whose trajectories step out of the domain of interest (unstable trajectory). 

 

Fig. 60 Stability analysis of the Amygdala system for the parameters  

of 5,3,2,8.0 431 ==== KKKα  
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To verify the result of this analysis, we simulate the time behavior of the system for 

some of the stable and unstable points. For this purpose, as it is shown in the Fig. 60, 

two stable and two unstable points are selected as the initial state of the system 

trajectory. 

Figure 61 shows the time variation of both states of the system while the initial state 

is each of the selected points. As it is expected, the state values are stable when the 

trajectory starts at each of the two stable points, where the system states take very large 

(effectively unstable) values when the system starts at each of the unstable points. 

 

 

Fig. 61 Time response of the system for two stable and two unstable initial states as depicted in Fig. 60 
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The next issue which is of interest is how the parameters of the system affect the 

stability. In fact, we want to investigate how the stability regions in the state space are 

varying when the parameters of the system change. 

To this purpose, we keep all the parameters of the system fixed and vary one 

parameter at each time to realize the effects of that on the stability of the system. 

The first parameter we are considering is the learning rate of the Amygdala, α . 

Figure 62 shows the stability regions for different values of α . As it is realized, by 

increasing α  from 0.1 to 1, the stability region is shrinking mostly from the below (in 

the domains where the plant output is negative). 

 

 

 

Fig. 62 Stability regions of the system for different values of α  
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From the Eq. (37), it is realized that α  is in fact the rate of updating the state V  

which also indirectly affects the evolution of state , because the state equations are 

interrelated. Therefore it is reasonable that by increasing the update step, the 

convergence of the equations becomes worse and so the trajectory jumps out of the 

region of interest. 

y

Figures 63 through 65 show the stability regions of the system for varying ,  

and , respectively. 

1K 3K

4K

 

 

 

Fig. 63 Stability regions of the system for different values of  1K
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As it is realized from the Fig. 63, increasing  impairs the stability of the system 

where for the values of  greater than 20, the system is completely unstable. 

1K

1K

 

 

Fig. 64 Stability regions of the system for different values of  3K

 

The reason for such paramount diverging effects of  on the state equations is that 

this coefficient appears in both equations and even with the squared terms. So its 

variations affect the convergence of the equations strongly. 

1K

By the similar reasoning, the behaviors of the system with respect to changes in 

coefficients  and , which are shown in Figs. 64 and 65, can be described. By 

increasing these coefficients, the update step for the state V  will be increased.  So for the 

3K 4K
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larger values of  and , the stability regions become smaller. In particular, for large 

values of  and , the stability regions lie on upper and lower domains of the state 

space, respectively. This is due to the negative sign of  coefficient which makes the 

variation in the opposite direction. 

3K 4K

3K 4K

3K

 

 

Fig. 65 Stability regions of the system for different values of  4K

 

Now, we are viewing the effects of the parameters of the system in the time domain. 

In the other word, we want to investigate the time behavior of the system by changing 

these parameters. 
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Fig. 66 Representation of initial points of (0.25,0.25) and (0.25,-0.35) 

 

 

Fig. 67 Time simulations for the initial state of (0.25,0.25) for different values of α  
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The first parameter to be considered is α . For this, we determine the behavior of the 

system for two different initial conditions, points (0.25, 0.25) and (0.25, -0.35), which 

are shown in the Fig. 66. The plant outputs by varying α  are demonstrated in the Figs. 

67 and 68, for the aforementioned initial points, respectively. 

 

 

Fig. 68 Time simulations for the initial state of (0.25,-0.35) for different values of α  

 

From Fig. 67, it can be realized that for the upper initial point of Fig. 66, the values 

of α  are not affecting the output of the system considerably. This fact can be described 

by the stability domains demonstrated in the Fig. 62, where the relative position of this 

point is not affected by changing α . However, Fig. 68 shows that the outputs of the 

system for the lower initial point of Fig. 62 are drastically changing when α  increased 
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from 0.1 to 1. For lower values of α , the output is under-damped where by reaching α  

to 0.4 and 0.5, it starts to oscillate around the final value of zero, and for greater values 

of α  the system becomes unstable. 

 

 

Fig. 69 Time simulations for the initial state of (0.25,0.25) for different values of  1K

 

These observations can be described by the Fig. 62, where this point is initially 

located well within the stability region whereas when α  reaches 0.4 and 0.5, the point 

gets very close to the boundary of the stability region and finally, for greater α , the 

point lies out of the region. 

Similar investigations are applicable for the time behaviors of the system when the 

coefficients ,  and  are changing. Figs. 69, 70 and 71 show the states of the 1K 3K 4K
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system for each of these cases, respectively, and for the initial point of (0.25, 0.25). By 

looking at the positions of this point in Figs. 63, 64 and 65, each of the stable and 

unstable behaviors can be corresponded. For example, as Fig. 64 shows, by changing 

 from 0.3 to 30, the point (0.25, 0.25) remains in the stability region and 

consequently, the time responses of the system given in Fig. 70 are stable. 

3K

 

 

Fig. 70 Time simulations for the initial state of (0.25,0.25) for different values of  3K

 

On the other hand, when  changes to 20, the point (0.25, 0.25) lies in the unstable 

region (see Fig. 63), and therefore, the corresponding responses in Fig. 69 are unstable 

as well. 

1K
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Another issue to be considered in the BEL model is the effects of the max function in 

the learning of the Amygdala on the stability of the system. To this purpose, we analyze 

the system for some parameters, both with and without max function whose results are 

shown in Fig. 72. 

 

 

Fig. 71 Time simulations for the initial state of (0.25,0.25) for different values of  4K
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Fig. 72 Stability regions of the same system with and without max function 

 

 

As it is observed from the figures, the max function expands the domain of stability 

of the system from the above. This is directly related to the expression 

 in the max function of Eq. (37). For the parameters of the 

system in this case, this expression is simplified to 

VyKVyKKyK ...... 1413 −+−

( ) yV ..83+− . It is easily verified that 

this expression in the upper region of interest is negative. So when the max function is 

assumed in the formula, this negative value becomes zero and so, as the results show, 

prevents the system from instability. 

 

5.4.2 Amygdala-Orbitofrontal Cortex System 

After gaining insights in the behavior of the system with the BEL model consisting 

of only Amygdala, now we intend to study the complete model of Amygdala-
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Orbitofrontal Cortex system and its stability analysis with respect to different 

parameters. 

By including the Orbitofrontal Cortex in the BEL model, another state is added to the 

two previous states, which is the Orbitofrontal Cortex gain, W .  

Therefore, the state equations of the system are now in the form of: 

( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+−+−=

−+−=+−=+−=

−−+−=

WyKKVyKKyKKWyKVyKW

WyKVyKyuyubyay

VyKWyKKVyKKyKyKV

.................
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.........,0max...
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2
1

2
31

22
1

22
1

.
11

.
1414131

.

βββββ

α

,   (38) 

 

where the plant model is still a linear system. Due to the addition of a third state which 

increases the computational burden of the analysis drastically, we increase the 

discretization step from 0.05 to 0.10 to reduce the number of cells and correspondingly 

the required memory and time. 

Another problem in handling the results of the Cell-to-Cell mapping analyses on the 

system with Amygdala-Orbitofrontal Cortex model is the limitations on representing the 

3-dimensional state space and the stability regions within that, in particular. To alleviate 

this problem, we provide the 2-dimensional projections of the state space on each of its 

three basic planes along with the original 3-dimensional representation. 
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Fig. 73 3-dimensional stability regions of the system along with its 2-dimensional projections on the three 

basic planes 

 

Figure 73 shows the regions of stability of the system, in 3-dimensional original 

space and three 2-dimensional projections, for a set of parameters of the system. 

Figures 74 and 75 show the same representations of the stability of the system for a 

different set of system parameters. In Fig. 74, the value of α  is changed from 0.6 to 0.1 

to consider its effects on the stability regions. The figure shows that the stability regions 

remain very similar with varying α , whereas its paramount effects when the Amygdala 

system is considered (see Fig. 62). In Fig. 75, we set the parameters of the system the 

same as those in Fig. 73 except  which is changed from 2 to 0.2. The projections 1K
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show curved patterns in this case. An observation for the results of this case is there are 

some points with “○” sign where there is no “×” inside them. Since these 2-dimensional 

representations are the projections of the original 3-dimensioal space on its basic planes, 

this means that all the points along that direction are stable points. 

 

 

Fig. 74 The similar results as Fig. 73 except α  is changed from 0.6 to 0.1 

 

In order to find out the role of the Orbitofrontal Cortex in the system, in the Figs. 76 

through 80, we consider the effects of the system parameters on the stability of the 

Amygdala-Orbitofrontal Cortex system only within the “Plant Output - Amygdala Gain” 
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plane which would be exactly the same plane as in the case where the Orbitofrontal 

Cortex was not included in the model (Figs. 62 through 65). 

Comparing Figs. 62 through 65 to the similar Figs. 77 through 80, the general 

observation is that including the Orbitofrontal Cortex in the system shifts the stability 

domains from around center to the left regions (from Amygdala gain operating points of 

around zero to the negative values). 

 

 

Fig. 75 The similar results as Fig. 73 except  is changed from 2 to 0.2 1K
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Fig. 76 Stability regions of the system for different values of β  (OFC is included) 

 

 

 

 

 



 100 
 

 

 

 

 

 

 

 

 

Fig. 77 Stability regions of the system for different values of α  (OFC is included) 
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Fig. 78 Stability regions of the system for different values of  (OFC is included) 1K
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Fig. 79 Stability regions of the system for different values of  (OFC is included) 3K
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Fig. 80 Stability regions of the system for different values of  (OFC is included) 4K

 

As the figures show, in most of the cases with different parameters of the system, the 

inclusion of the Orbitofrontal Cortex contracts the stability domains of the system, e.g. 

compare Figs. 64 and 79, Figs. 65 and 80, etc. 
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The next consideration is on the behavior of the model with higher order nonlinear 

systems rather than the linear one used so far. Therefore, we choose a nonlinear model 

for the system as  and so the state equations of the system are 

now in the following form: 

ducybyayy +−−−= 23
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The point of interest in this section is how the parameters of the plant (and not the 

controller which was the matter of study so far) are affecting the stability regions. Figure 

81 show the projections of the stability regions of the system for three values of 2.0=a , 

 and , respectively. As it is observed, by increasing , operating regions of 

Amygdala and Orbitofrontal Cortex gains remain almost the same, though the operating  

regions of  state becomes narrower. For example, as the figure shows, in the case of 

, the output can not reach the value of 1. This issue can be considered in 

designing reference tracking systems. Figure 82 shows the stability regions of the system 

when the parameter b  is set to 0.2, 2 and 20, respectively. Again for the high values of 

, the system is able to work within a very limited bounds in order to preserve its 

stability. 

2=a 20=a a

y

20=a

b
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Fig. 81 Effects of plant parameter, a: 2-dimensional projections on the three basic planes 
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Fig. 82 Effects of plant parameter, b: 2-dimensional projections on the three basic planes 
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Fig. 83 Effects of plant parameter, c: 2-dimensional projections on the three basic planes 
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Fig. 84 Effects of plant parameter, d: 2-dimensional projections on the three basic planes 

 

Figure 83 illustrates the variations in the stability regions of the system for the values 

of the parameter  of 0.2, 2 and 20, respectively. Changing this parameter affects the c
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stability of the system much drastically, where for large values of c , all the states of the 

system become unstable. This is due to the fact that the operating range of y  is assumed 

between -1 and 1, and so its higher orders get smaller in magnitude. Therefore, the 

effects of the coefficients  and b  are not as severe as that of coefficient c  is. a

The last graph to be considered here is Fig. 84 which demonstrates the stability of 

the system for different values of parameter . The figure shows that by increasing this 

coefficient, the operating regions for the Amygdala and Orbitofrontal Cortex gains are 

contracting whereas the plant output’s operating domain is expanding. In fact, the 

variations of the stability regions in this case are more complicated. This is due to the 

fact that  is the coefficient corresponding to the plant input u  and since this parameter 

includes all the states V , W  and , so all the states would be affected. 

d

d

y

 

5.5 Conclusion 

In this chapter, we mainly considered the behavior of the BEL model during the 

adaptation and non-adapting phases and the stability of the system and how it is being 

changed with changing of parameters. 

To obtain the behavior of the system in the non-adapting phase, we started with the 

dynamic of the model and set the updating equations equal to zero. The magnitude of the 

output of the model at the non-adapting phase was found to be equal to the magnitude of 

the emotional signal. This result was in agreement to the results observed from the 

acquisition and blocking experiments in chapter 3 where the model outputs were 

following the emotional signal at the steady state. By further substituting the emotional 
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signal, it was realized that the output of the model, when it is used as a controller, was 

proportional to the control reference error, which is expected from a control system. 

 Investigating the behavior of the system during adaptation phase was much more 

difficult, because the equations of the system were complicated, e.g. nonlinear and 

coupled. The final time-dependent equations for the gains of Amygdala and 

Orbitofrontal Cortex were found to include numerous integrals. In fact, it was realized 

that the results, in the form of the equations obtained in this section, did not provide 

some practical information, however, it is believed that in the problems where the 

sensory and emotional signals have more simple and integrable expressions, then the 

formulas may get simpler and provide more interpretations of the behavior of the system 

during adaptation phase. 

The main study on the model was the stability analysis to realize how the stability of 

the system is preserved for different parameters of the system. The method we used to 

analyze the stability of the system was the numerical method of the cell-to-cell mapping. 

The method is based on discretization of the state space and obtains the state trajectories 

of the system in different number of steps using the dynamic equations of the system. 

To apply the cell-to-cell method for the BEL system, we started by assuming the 

BEL model excluding the Orbitofrontal Cortex. The stability regions are determined for 

some different sets of parameters of the system including the learning rates and gains of 

the system. The results showed that by increasing the learning rates and coefficients, the 

stability of the system was impaired, and that is due to the fact that these parameters are 

in fact the step values for updating the equations and so by increasing the update steps, 
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the convergence and stability of the system is affected. To confirm the results obtained 

from the cell-to-cell method, we performed the time-simulations for some stable and 

some unstable initial states where the results agreed with those realized via the cell-to-

cell mapping. 

Due to the numerical inherent of the method, it can be applied to any nonlinear 

dynamic. Therefore, by applying the method for the BEL model once with the max 

function and once without the max function included in the learning rule of the 

Amygdala, we were able to realize the effects of that on the behavior of the system. The 

results showed that including the max function improves the stability of the system 

where when it is ignored some previously stable regions became unstable. 

In the next set of analyses, we included the Orbitofrontal Cortex component and so 

the stability of the original BEL model was considered. It should be mentioned that two 

issues hindered the implementation of the method in this case. First, because of adding 

the Orbitofrontal Cortex, the system now possesses three states, and so representing the 

state space became more difficult. The second issue is the complexity of the analyses 

from the time and memory aspects were obligated increasing the discretization size to 

reduce the computational burden. 

The general results of stability of the system with different parameters were similar 

to those when the Amygdala was only considered. On the other hand, by increasing the 

parameters of the system, the equations became more likely to diverge and the system 

became unstable. 
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We also investigated the stability of the system when the BEL is used with higher 

order plants. The results showed that the stability of the system were more sensitive to 

those parameters of the plant were correspond to the inputs of the plant rather than those 

correspond to the outputs of the plant. This observation can be described by the fact that 

the input if the plant includes all the states of the system and so it affects all the state 

equations whereas the output of the plant only affects one state equation. 
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CHAPTER VI 

CONCLUSION 

6.1 Concluding Remarks 

This research was dealing with different aspects in applying a biomorphic system to 

an engineering problem. The first few chapters furnished a review of similar works in 

which the biologically motivated algorithms are used to solve different types of 

problems, the basic background on the emotional processes and the architecture of the 

Limbic system which is believed to be responsible for emotional processes in the brain. 

In the chapter III, we furnished more specified descriptions of the limbic system and 

its main components of: Thalamus, Sensory Cortex, Amygdala and Orbitofrontal Cortex. 

The next step was establishing a computational model where to do that, we made 

some simplification assumptions to be able to do the modeling. For example, we 

modeled the Sensory Cortex as a block with computational delay, because other 

biological tasks of this component were not easy to capture in a mathematical 

formulation. 

Finally, we validated the model by simulating it on some well-known benchmark 

experiments of Acquisition and Blocking. The results of experiments confirmed the 

accuracy if the model where the behavior of the system were in agreement with the 

expected behaviors. 

Further observations from the experiments demonstrated that the magnitude of the 

output of the model follows the magnitude of the emotional signal. On the other hand, 
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the magnitude of the sensory signal contributes to the rate of learning where the higher 

the magnitude of the sensory signal is, the faster the adaptation is and vice versa. 

Consequently in chapter IV, we presented the applications of the BEL model in 

control and signal fusion problems. The main issue in applying the model for different 

applications is defining the sensory and emotional signals in such a way that 

appropriately represent the state and objectives of the system. 

In the first part, the model is adapted for applications in control systems and the 

applicability of the model is verified by simulating it in controlling different systems 

with increasing complexity. 

The first system was the model of a submarine where the closed-loop system was 

unstable. The results of designing a BEL and a PID controller showed that the responses 

of the BEL controller are faster with lower overshoot when compared with the PID 

responses. In addition, we investigated the robustness of the BEL controller with respect 

to changes in the system parameters and the input disturbances. The results showed that 

the BEL is much more robust to these variations rather than the PID controllers. 

In the second simulation, a nonlinear model of a single-link robot arm is considered. 

The results were similar to those of the previous system where the responses of the BEL 

controller were faster and more robust to input disturbance when compared to the 

performance of the PID controller. 

The next simulation consists of a MIMO system of a gas turbine generator. The 

system has 2 inputs of reflux fuel pump excitation and nozzle actuator excitation and 

two outputs of gas generator speed and inter-turbine temperature. The simulations 
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showed that the closed-loop system by itself was unable to reach the control reference 

values. Then, two BEL and two PID controllers are designed for each of the coupled 

outputs of the system where the results showed better performance of the BEL controller 

in comparison with the PID controller, much faster response in particular. 

It should be mentioned that the comparisons of the BEL and PID controllers in the 

aforementioned simulations are not very fair, in the sense that, the BEL is an adaptive 

nonlinear control whereas the PID controllers used in these problems were non-adapting 

ones. In the following control system, we compared the performance of the BEL 

controller with that of a Sliding Mode controller which is non-linear control algorithm. 

The application of the BEL algorithm in rollover control of a 14-DOF model of a 

tractor-semitrailer showed partial improvement of the performance of the system when 

compared with the performance of the Sliding Mode controller. The vehicle system is 

studied under three conditions of braking, acceleration and cornering. The roll angles of 

the vehicle were in a similar range with both BEL controller and Sliding Mode controller 

however the variation were smoother with BEL controller. The control system was also 

designed to track the desired velocity and yaw-rate profiles. The tracking performances 

of each of the BEL and Sliding Mode controllers were better in some situations, though 

the behavior of the Sliding Mode controller was very oscillatory in most of the cases 

which is not desirable. The simulations also showed that the controller outputs of the 

BEL controller are generally smaller than those of the Sliding Mode controller. 

The next simulations considered in this chapter were in applying the BEL model for 

signal fusion applications. Again, the main idea in applying the model for this problem is 
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defining the sensory signals and emotional signal correspondingly so they represent the 

conditions and objective of the problem, respectively. 

We tested the model on an example of sensor fusion problem. In this example, there 

were four different measurement signals each of them were faulty in a time interval. The 

model showed good performance in fusion of these signals where the combined signal 

was free of error. 

The more interesting application was using the sensor fusion algorithm in the 

feedback loop of a control system. In this problem, a PID is designed for the system 

under the normal condition. Then, four signals are used to provide the feedback for the 

system where in different simulations some of them were made delaying to model the 

changes in the physical parameters of the system. The simulations showed that when 

different signals are combined using the BEL algorithm, the control system was able to 

preserve its performance, though with some deteriorations. However, when the feedback 

signals are averaged, the control system became unstable with delaying signals. 

Finally, in chapter V, we considered the behavior of the BEL model during the 

adaptation and non-adapting phases and the stability of the system and how it is being 

changed with changing of parameters. 

To obtain the behavior of the system in the non-adapting phase, we started with the 

dynamic of the model and set the updating equations equal to zero. The magnitude of the 

output of the model at the non-adapting phase was found to be equal to the magnitude of 

the emotional signal. This result was in agreement to the results observed from the 

acquisition and blocking experiments in chapter 3 where the model outputs were 
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following the emotional signal at the steady state. By further substituting the emotional 

signal, it was realized that the output of the model, when it is used as a controller, was 

proportional to the control reference error, which is expected from a control system. 

 Investigating the behavior of the system during adaptation phase was much more 

difficult, because the equations of the system were complicated, e.g. nonlinear and 

coupled. The final time-dependent equations for the gains of Amygdala and 

Orbitofrontal Cortex were found to include numerous integrals. In fact, it was realized 

that the results, in the form of the equations obtained in this section, did not provide 

some practical information, however, it is believed that in the problems where the 

sensory and emotional signals have more simple and integrable expressions, then the 

formulas may get simpler and provide more interpretations of the behavior of the system 

during adaptation phase. 

The main study on the model was the stability analysis to realize how the stability of 

the system is preserved for different parameters of the system. The method we used to 

analyze the stability of the system was the numerical method of the cell-to-cell mapping. 

The method is based on discretization of the state space and obtains the state trajectories 

of the system in different number of steps using the dynamic equations of the system. 

To apply the cell-to-cell method for the BEL system, we started by assuming the 

BEL model excluding the Orbitofrontal Cortex. The stability regions are determined for 

some different sets of parameters of the system including the learning rates and gains of 

the system. The results showed that by increasing the learning rates and coefficients, the 

stability of the system was impaired, and that is due to the fact that these parameters are 
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in fact the step values for updating the equations and so by increasing the update steps, 

the convergence and stability of the system is affected. To confirm the results obtained 

from the cell-to-cell method, we performed the time-simulations for some stable and 

some unstable initial states where the results agreed with those realized via the cell-to-

cell mapping. 

Due to the numerical inherent of the method, it can be applied to any nonlinear 

dynamic. Therefore, by applying the method for the BEL model once with the max 

function and once without the max function included in the learning rule of the 

Amygdala, we were able to realize the effects of that on the behavior of the system. The 

results showed that including the max function improves the stability of the system 

where when it is ignored some previously stable regions became unstable. 

In the next set of analyses, we include the Orbitofrontal Cortex component and so the 

stability of the original BEL model was considered. It should be mentioned that two 

issues hindered the implementation of the method in this case. First, because of adding 

the Orbitofrontal Cortex, the system now possesses three states, and so representing the 

state space became more difficult. The second issue is the complexity of the analyses 

from the time and memory aspects were obligated increasing the discretization size to 

reduce the computational burden. 

The general results of stability of the system with different parameters were similar 

to those when the Amygdala was only considered. On the other hand, by increasing the 

parameters of the system, the equations became more likely to diverge and the system 

became unstable. 
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We also investigated the stability of the system when the BEL is used with higher 

order plants. The results showed that the stability of the system were more sensitive to 

those parameters of the plant were correspond to the inputs of the plant rather than those 

correspond to the outputs of the plant. This observation can be described by the fact that 

the input if the plant includes all the states of the system and so it affects all the state 

equations whereas the output of the plant only affects one state equation. 

 

6.2 Future Research 

This study has mainly developed the idea of using a computational model of the 

learning in the brain limbic system for engineering applications and for control systems 

in particular. However, different aspects of this problem are still in their infancy stages 

and can motivate further research works. Among the different issues, here are some 

more important topics to be considered: 

 

6.2.1 Analytical Study 

To develop any (learning) control algorithm and to evaluate its functionality, the first 

issues would be the questions on how fast does the controller converge, how stable it is 

and how the performance indices are, e.g. time-domain performance indices. However, 

some preliminary studies on the model are performed in this thesis, but more 

comprehensive works are required to establish the bases for performance of the system. 
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6.2.2 Systematic Design Procedure 

Current design procedure of the BEL controller does not have a systematic routine, 

i.e., to design the controller for each application, different values of the gain are tried to 

obtain suitable design parameters. This task can generally be cumbersome in some 

applications. So, it is advantageous to establish a systematic way to design the system 

parameters. In particular, this can be a self-tuning algorithm to determine the gains of the 

controller and corresponding weights in the emotional and sensory signals. 

 

6.2.3 Advanced Study of the Components of the System 

As it is particularly mentioned in the sections 2.3 and 3.2, the current structure of the 

limbic system and the model developed based on that are simplified models of the limbic 

system. In fact, there are some other components in the real limbic system which directly 

affects the functionality of the system, but they are not included in the current model. 

Furthermore, the models currently assumed for some of the components are too simple 

or inappropriate and are required to be enhanced. In particular, the current models of the 

Thalamus and Sensory Cortex include the minimum properties of these components and 

efforts should be made to enhance these models. 

 

6.2.4 Multi-Input Multi-Output Systems 

The controller structure considered so far is designated for SISO systems. Even, in 

the applications where the system is MIMO, e.g. section 4.2.3 and 4.2.4, we used two 
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different controllers each to generate one control output. So the current control structure 

can be modified for MIMO applications. 

 

Fig. 85 Complete model of contextual emotional processing 

 

Including the Context learning in the system can be a good candidate to make the 

system appropriate for multi-input multi-output structures. Context is defined as the 

stimuli that encode the entire situation, rather than its individual features [72]. This 

feature can enhance the performance of the system in coping with multiple sensory 

inputs and producing the appropriate output based on the total stimuli. 
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The emotional processing model described in the previous chapters can be 

effectively considered as the Amygdala-Orbitofrontal Cortex system. 

There is another important component involved in emotional processing within 

limbic system and that is the Hippocampus [73], which is shown in Fig. 1. It is believed 

that the Hippocampus is responsible for supplying the system with a context for its 

operation. 

Figure 85 demonstrates the block diagram of the contextual emotional processing. In 

addition to the two main modules of the limbic system, i.e. the Amygdala and the 

Orbitofrontal Cortex, the Hippocampus is further included to provide the Amygdala and 

the Orbitofrontal Cortex with contextual inputs [9]. 
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APPENDIX A 

NOMENCLATURE 

iAA,  Amygdala nodal output 

,...,,, 21 baaa  Parametric modeling terms 

ES  Emotional signal 

e  Control reference error 

FS  Fused signal 

fF ,  Plant modeling functions 

21 , ff  The (nonlinear) functions relating the states to their rates of change 

21
ˆ,ˆ ff  Estimations of  functions, respectively 21 , ff

g  The (nonlinear) function relating the ξ  states to the control inputs,  

& Gravity acceleration 

ĝ  Estimation of  function g

H  Total gravitational potential energy of the system 

czh  Vertical center of gravity position of the tractor sprung mass 

Gzh  Vertical center of gravity position of the trailer sprung mass 

zyx III 111 ,,  Mass moment of inertia of tractor body with respect to , ,  axes x′ y ′ z′

xzI1  The  product of inertia of the tractor body zx ′−′

zyx III 222 ,,  Mass moment of inertia of trailer body with respect to , ,  axes x ′′ y ′′ z ′′

xzI 2  The  product of inertia of the tractor body zx ′′−′′
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61 ,..., ωω II  The spin inertias of each of the six wheels 

21,KK  Summation coefficients in sensory input 

43,KK  Summation coefficients in emotional signal 

MO  BEL model overall output 

naMO  Non-adapting values of the BEL output 

1m  Sprung mass of the tractor 

2m  Sprung mass of the trailer 

n  Number of independent system degrees of freedom 

fO  Fifth-wheel joint 

hO  Trailer roll center 

rO  Projected point of the tractor mass center on the roll axis 

tO  Trailer yaw center 

)( nu OO =  Projected point of  on the road surface rO

iOCOC,  Orbitofrontal Cortex nodal output 

iQ  Generalized forces not derivable from a potential function 

iq  Generalized coordinates 

0R  Auxiliary parameter in complete Orbitofrontal Cortex learning rule 

S  Vector of errors between the current values of ξ  and the desired dξ  

values 

 



 135 
 

iSISI ,  Sensory input 

T  Total kinetic energy of the system 

121 ,...,TT  Tractor and braking torques on the six wheels 

t  Time 

U  Vector of control inputs 

u  Plant input 

iVV ,  Amygdala adaptive gain for node i  

naV  Non-adaptive values of the Amygdala gain 

czcycx vvv ,,  Velocities of the tractor mass center in x , ,  directions y z

errorv  Error between desired velocity and actual velocity 

GzGyGx vvv ,,  Velocities of the trailer mass center in x , y ,  directions z

iWW ,  Orbitofrontal Cortex adaptive gain for node i  

naW  Non-adaptive values of the Orbitofrontal Cortex gain 

121 ,..., ww  Weight coefficients for torque summation 

X  Vectors of all system states 

aX  Sub-vectors of system states 

errorY  Error between desired yaw rate and actual yaw rate 

y  Plant output 

α  Amygdala learning rate 

β  Orbitofrontal Cortex learning rate 
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21
, ff δδ  Function uncertainty in additive form 

ĝ.ε  Function uncertainty in multiplicative form 

ϕ  Angle of the robot arm 

η  Positive coefficient in Lyapunov stability criteria 

61 ,...,θθ  The spin angles of each of the six wheels 

rzryrx ωωω ,,  Angular velocities of tractor about the x′ , y ′ , z′  axes 

tztytx ωωω ,,  Angular velocities of tractor about the x ′′ , y ′′ , z ′′  axes 

ξ  Sub-vectors of system states 

dξ  Desired vector values of subsystem of statesξ  
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APPENDIX B 

SLIDING MODE CONTROL 

Sliding Mode control is a nonlinear control methodology that can be utilized for 

tracking purposes [51]. The basic concept behind Sliding Mode control is partitioning 

the system states into two subsystems of states,  and aX ξ . So the standard state 

equation of the system with total states of [ ]TaXX ξ,=  can be written as follows: 

( )
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⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++

+
=⎥

⎦

⎤
⎢
⎣

⎡
+

=⎥
⎦

⎤
⎢
⎣

⎡

UXgXXf
XXf

UXgXf
XfX

f

afaaa

.ˆ.1ˆ
,,ˆ

.
,

2

1

2

1

2

1

εδ
ξδξξ

ξ&
&

.          (40)  

 

The terms 
1f

δ , 
2fδ  and ĝ.ε  are included in the state equations to account for 

modeling uncertainties. The idea is stabilizing the subsystem of  states, assuming the aX

ξ  states as its virtual control inputs. So the real control inputs, U , are assumed to 

merely be the inputs to the subsystem having states of ξ . The design challenge is 

obtaining the desired values of ξ  states, dξ , which stabilize the  subsystem. The 

method to determine 

aX

dξ  values is based on defining  vector as the vector of errors 

between the current values of 

S

ξ  and the desired dξ  values, and trying to make  

converge to zero [74]. By the definition of , its time derivative can be calculated as: 

S

S

                                   ( ) ( ) ( ) ( ) ( )XUXgXXfS df ξεδ && −+++= .ˆ.1ˆ
22 ,                        (41) 

 

where  must satisfy: S
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                                                         0.. 〉−≤ ηη                 SSS & .                                    (42) 

 

Substituting  from Eq. (41) in the criterion of Eq. (42) yields the following 

inequality for control input U : 

S&

( ) ( ) ( ) ( ) ( )[ ] 0..ˆ.1ˆ.
22 〉−≤−+++ ηηξεδ               SXUXgXXfS df

& .   (43) 

 

Therefore, any control input, U , satisfying the inequality of Eq. (43), drives S  

toward zero, which means the ξ  states are approaching the desired values of dξ . 

Consequently, the subsystem of  states is stabilized. The behavior of Sliding Mode 

control can be considered in two phases: first, when  approaches zero, and second, 

when it remains fixed at zero. However, the criterion in the latter phase is usually 

relaxed by assuming a thin region around the perfect estimation track. 

aX

S

In general, the control responses generated by the Sliding Mode controllers, have the 

problem of being oscillatory. This is due to a common phenomenon in Sliding Mode 

convergence, called, chattering. Chattering is the oscillation of the estimated error values 

till the steady desired tracking is reached. In addition, if the threshold region is wide, the 

oscillations can be observed in steady state behavior, as well. 

The chattering effect is inherent to the Sliding Mode control because the gain of the 

controller is usually very large (effectively infinite). So any unmodeled dynamics in the 

system add some extra poles and shift the root locus asymptotes to the right. If the 

system is linearly modeled, this alteration in the dynamics of the system leads to 
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instability. But when the system is modeled nonlinearly, instead of   being unstable, the 

chattering effects are observed. Shifting the instantaneous switching to alternatives with 

more soft switching trends, e.g. replacing the commonly used sign function with a 

sigmoid one can reduce the effective gain of the controller and alleviates extreme 

chattering effects [75]. 
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APPENDIX C 

UPDATED LEARNING MODEL 

In chapter III, a simplified model of the limbic system is given which mainly 

considers the Amygdala, Orbitofrontal Cortex, Thalamus and Sensory Cortex. The main 

source for developing this model is the work by Moren at 2002 [43]. 

However to fulfill the objectives of the current study this model works suitably, but it 

is worth noting that the model has been updated in the reference [9] published at 2004. 

In addition to some changes in the functioning of the Thalamus, etc., the particular 

modification appears in the learning rule of the Orbitofrontal Cortex. The followings are 

the learning rule of the Orbitofrontal Cortex nodes in the new model which actually 

replaces the Eq. (5) of chapter 3: 

0.. RSIW ii β=Δ ,                                                (44) 

 

where  is determined as follow: 0R

 
ES if                 OCA

ES if         OCESA
R

i
i

i
i

i
i

i
i

⎪
⎪
⎩

⎪⎪
⎨

⎧

=⎟
⎠

⎞
⎜
⎝

⎛
−

≠−⎟
⎠

⎞
⎜
⎝

⎛
−

=

∑∑

∑∑

0,0max

0,0max
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Since the model output is ∑∑ −=
i

i
i

i OCAMO , it is realized that in the case of zero 

emotional signal ( ), the models are very much the same (except for the max 

function), but the main difference is when we have a nonzero emotional signal. 

0=ES
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APPENDIX D 

EXAMPLE OF AN ADAPTIVE PID CONTROLLER 

As it is mentioned in Chapter IV, except for one example in which the performance 

of the BEL controller is compared with that of a Sliding Mode controller, in other 

examples the comparison is made between BEL adaptive controller and simple non-

adaptive PID controller. 

Here, we are considering the results of an adaptive PID controller for the submarine 

model of section 4.2.1 and comparing the performance of the system with this controller. 

 

 

Fig. 86 Closed-loop step responses of the submarine model with non-adaptive and adaptive PID 

controllers 
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The adaptive PID controller is designed based on the MIT adaptation rule [78]. Each 

of the proportional, derivative and integral gains of the controller is initially set to the 

corresponding value of the non-adaptive PID controller and then is adapted based on the 

MIT rule. 

Figure 86 shows the results of the model with the previously used non-adaptive PID 

controller and the adaptive PID controller, where some improvements are observed in 

the performance of the system. 

In order to compare the performance of the BEL controller with that of the adaptive 

PID controller, the same time domain performance indices of the system for these 

controllers are given in Table 4. 

 

Table 4 Transient performance indices of the BEL and adaptive PID controllers on submarine model 

 Overshoot % Rise Time Settling time S-S Error % 
BEL 5.15 0.02 0.40 0.00 

Adaptive PID 8.8 0.30 1.5 0.05 
 

It is realized that the performance of the BEL controller still beats that of the 

adaptive PID controller. 
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