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Abstract

The Autonomous and Resilient Management of All-source Sensors (ARMAS) framework moni-
tors residual-space test statistics across unique sensor-exclusion banks of filters, (known as sub-
filters) to provide a resilient, fault-resistant all-source navigation architecture with assurance.
A critical assumption of this architecture, demonstrated in this paper, is fully overlapping state
observability across all subfilters. All-source sensors, particularly those that only provide partial
state information (altimeters, TDoA, AOB, etc.) do not intrinsically meet this requirement.

This paper presents a novel method to monitor real-time overlapping position state observ-
ability and introduces an “observability bank” within the ARMAS framework, known as Stable
Observability Monitoring (SOM). SOM uses real-time stability analysis to provide an intrinsic
awareness to ARMAS of the capabilities of the fault detection and exclusion (FDE) function-
ality. We define the ability to maintain consistent all-source FDE to recover failed sensors as
navigation resilience. A resilient FDE capability then is one that is “aware” of when it requires
more sensor information to protect the consistency of the FDE and integrity functions from
corruption. SOM is the first demonstration of such a system, for all-source sensors, that the
authors are aware.

A multi-agent 3D environment simulating both GNSS and position and velocity alternative
navigation sensors was created and individual GNSS pseudorange sensor anomalies are utilized
to demonstrate the capabilities of the novel algorithm. This paper demonstrates that SOM
seamlessly integrates within the ARMAS framework, provides timely prompts to augment with
new sensor information from other agents, and indicates when framework stability and preser-
vation of all-source navigation integrity are achieved.

∗jonathon.gipson@afit.edu
†robert.leishman@afit.edu
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1 Introduction

Introduced in 2018, ARMAS provided a generalized framework for real-time management of
heterogeneous, asynchronous all-source sensors [9]. This framework was resilient to corruption
from mismodeled, uncalibrated, and faulty sensors and was accomplished by combining sensor
validation, FDE, recalibration, and remodeling modes in a single architecture. Sensor-Agnostic
All-source Residual Monitoring (SAARM) was designed to provide all-source Fault Detection
and Exclusion (FDE) and navigation integrity functions within the ARMAS framework [11]. In
this context, all-source navigation resiliency is the ability to maintain consistent all-source FDE
operations with the ability to recover failed sensors. The pluggable Bayesian filters provided by
the SCORPION estimation architecture afforded needed flexibility to spawn, propagate, and
remove estimation filters on the fly [12]. SAARM required the designer to maintain a set of
unique navigation subfilters (each unique subfilter excludes measurements from a different sen-
sor) to maintain resilience to a single simultaneous sensor failure. A primary assumption of the
FDE and integrity functions was the ability to maintain overlapping position state observability.
This paper presents a novel method to monitor real-time overlapping position state observabil-
ity and introduces an “observability bank” within the ARMAS framework. These additions to
ARMAS use real-time observability analysis at the layer 2 subfilter level (each unique layer 2
subfilter excludes measurements from two different sensors) to provide a timely indication to
augment the framework with new sensor data, thus protecting the consistency of the ARMAS
FDE and integrity functions from corruption.

2 Background

2.1 Autonomous Resilient Management of All-source Sensors (ARMAS)

The ARMAS framework was designed to gracefully recover from multiple types of failure modes
(bias, model mismatched, and/or sensor miscalibration) while attempting to maintain a consis-
tent, uncorrupted navigation estimate. ARMAS employs a set of SCORPION pluggable EKF
estimators to address the following nonlinear navigation problem:

ẋ(t) = f [x(t),α(t),u(t), t] +G(t)w(t) (1)

where x is a N × 1 state vector of a vehicle’s position, velocity, and attitude. The measurement
error states vector α is of dimension M ×1, u is the control input vector, G is an (N +M)×W
linear operator, and w is a W × 1 white noise process defined by a W ×W continuous process
noise strength matrix, Q.

The state estimates are propagated through optimally combining the state process model,
sensor-specific calibration parameters, and measurement updates from j = 1...J available all-
source sensors. The measurement model for the jth sensor is described by:

z
[j]
k = h[j]

[
x(t), α[j](t),u(t), t,p[j]

]
+ v

[j]
k , (2)

where h[j] is the nonlinear measurement function for the jth sensor, α[j] is an L × 1 subset of
α which contains additional error states needed to process sensor measurements, p[j] is a P × 1
user-selectable model parameter vector for h[j], and vk is a Z × 1 discrete white noise process

with covariance defined by matrix R
[j]
k .

The Z × 1 measurement residual for sensor j, r
[j]
k is defined by

r
[j]
k = z

[j]
k − h[j]

[
x̂−k , α̂

[j]−
k ,uk, tk, p̂

[j]
k

]
, (3)
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where x̂−k , α̂
[j]−
k , and p̂

[j]
k are estimated quantities. Assuming white Gaussian noise, the mea-

surement residual from (3) is expected to follow the distribution

r
[j]
k ↪→ N

(
0N×1,S

[j]
k

)
, (4)

S
[j]
k = H

[j]
k P−k H

[j]T

k + R
[j]
k , (5)

where P−k is the (N +M)× (N +M) state estimate covariance matrix at time tk and H
[j]T

k is
the Z × (N +M) Jacobian of h[j].

Sensors are initialized in one of two modes: trusted or untrusted. Untrusted sensors are
required to enter a sensor validation mode prior to being brought into monitoring mode [10]. In
validation mode, ARMAS employs a likelihood function to monitor the statistical distribution
of a user-defined monitoring period composed of recent Kalman pre-update residuals. A Chi-
square, χ∗, test statistic is used to detect excursions outside a user-defined threshold across
the sampling period. Sensors in validation mode are excluded from impacting the main state
estimates using a Schmidt partial update [2]. Trusted sensors are directly brought online into
monitoring mode. In monitoring mode, sensor measurements are allowed to update the main
state estimates. ARMAS employs the same pre-update residual likelihood function used in the
validation mode to monitor sensor performance. A detailed explanation of monitoring mode,
including FDE and integrity functions is given in section 2.2.

Once a fault is detected, the sensor is no longer “trusted” and is quarantined from affecting
the core navigation state estimate, x̂[j]. ARMAS attempts to reinitialize the sensor via vali-
dation mode. If this fails, ARMAS attempts to repair and recover the faulty sensor via two
separate modes: sensor calibration and remodeling. In calibration mode, user-selectable sensor
parameters, p[j] and/or α[j] are estimated using residual monitoring from trusted sensors that
have observability of x. If there is a single calibration parameter, ARMAS attempts to correct
the calibration using residual monitoring and sends the sensor back to validation mode. If linked
extrinsic calibration parameters exist, (e.g. camera lever arm and camera orientation within
p[j] or α[j]), these are estimated individually and sequenced based on convergence of the state
covariance matrix to maintain state observability.

If the recalibrated sensor fails to pass sensor validation, the sensor enters remodeling mode
where ARMAS attempts to modify the measurement model, h[j], based on 1...S user-defined
measurement models. S concurrent filters are spawned (each with a unique measurement
model), and an epoch of measurement residuals is gathered against the core navigation estimate
x. The ‘winning’ sensor measurement model is selected based on which filter best matches the
prescribed distribution (4) during the residual epoch. The sensor then enters validation mode.
If the remodeling mode does not result in a new model selection, and Resilient Sensor Recov-
ery (RSR) is activated, the sensor periodically re-enters validation mode after a user-selectable
time period in an attempt to overcome a temporal anomaly [9]. Figure 1 is a state transition
diagram depiction of these modes. The result is a framework compatible with heterogeneous,
asynchronous all-source sensors with the benefits of resilience against various sensor calibration,
modeling, and temporal faults.

One assumption that is not explicitly discussed in [9] is that ARMAS requires overlapping
state observability [6] to detect anomalous sensor behavior. As discussed above, the system
monitors Kalman pre-update residuals between sensor measurements and subfilter estimates
to continuously judge whether sensor measurements adhered to the distribution prescribed by
the sensor model. Anomalous sensor behaviors (e.g. bias, gain, model mismatch, high noise,
etc.) are only observable if there are other sensors with comparable observability into the
state estimate. If anomalous behavior is detected, the ARMAS framework attempts to recover
the sensor through recalibration, remodeling, and re-validation. Without overlapping state
observability, it is impossible to determine if a sensor is misbehaving or if it can be re-validated.
The criticality of this assumption for ARMAS is highlighted in the analysis below.
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Figure 1: ARMAS Framework State Diagram [9]. A sensor begins at point O (origin) and
is “trusted” or “untrusted”. SAARM and the new contribution SOM reside within the M
(Monitoring) mode.

2.2 Sensor-Agnostic All-source Residual Monitoring (SAARM)

SAARM assumes a system form of

ẋ(t) = f [x(t),α(t),u(t), t] +G(t)w(t) (6)

where x is a N × 1 state vector of a vehicle’s position, velocity, and attitude. The measurement
error states vector α is of dimension M ×1, u is the control input vector, G is an (N +M)×W
linear operator, and w is a W × 1 white noise process defined by a W ×W continuous process
noise strength matrix, Q. SAARM estimates system states with J separate subfilters. At time
t = tk, the system state vector and state estimation covariance matrix are defined by

x̂[j](tk) and P
[j]
x̂x̂(tk),

forj = 1...J separate subfilters. Each of these subfilters is informed by a subset of I− 1 sensors.
At t = tk, the ith sensor provides measurements given by

z[i](tk) = h[i]
[
x̂[j](t−k ),u(tk), tk

]
(7)

where h[i] is the nonlinear measurement function, u(tk) is the control input function, and v[i](tk)
is a discrete white noise process of dimension Zi× 1 defined by covariance matrix R[i](tk). The
pre-update measurement estimate for sensor i from filter j is defined by

ẑ[i,j](tk) = h[i]
[
x̂[j](t−k ),u(tk), tk

]
, (8)

where the estimated covariance matrix is defined by

Pẑẑ
[i,j](t−k ) = H[i](t−k )Px̂x̂

[j](t−k )H[i](t−k )T . (9)

4



Using (8) and (9), the “pre-update residual” vector between sensor i and filter j, r[i,j] and its

covariance matrix, P
[i,j]
rr are defined as

r[i,j](tk) = z[i](tk)− ẑ[i,j](t−k ), (10)

P[i,j]
rr (tk) = R[i](tk) + P

[i,j]
ẑẑ (t−k ). (11)

Fault detection relies on computing a moving average of recent residual-space test statistics
formed by pre-update residual vectors from (10) and (11). ARMAS is designed to detect any
sensor behavior which is inconsistent with the stated measurement model within the limitations
of the stated significance level, alpha. Although not examined in this paper specifically, the
ARMAS framework provides additional options for the user to provide candidate models and/or
calibration schemes which could be used to validate and recover a failed sensor. The likelihood
function focuses on a single residual-space statistic derived from the Mahalanobis distance, d,
given by

d2 = (y − µ)TΣ−1(y − µ), (12)

where µ and Σ are the mean and covariance of a Zi-dimensional Gaussian distribution. It is
known that a sum of M independent d2 distances follows a χ∗ distribution with Z degrees of
freedom [4] given by

χ∗ =

k+M∑
s=k

d2(ts), (13)

d2(tk) = rT (tk)[Prr(tk)]
−1r(tk). (14)

The set of pre-update residuals is known to be a zero-mean, white sequence [16]. The fault
detection test for M pre-residuals is composed of the following hypotheses:

H0 : χ∗[i,j] < χ2(1− α/2,M × Zi) (15)

H1 : χ∗[i,j] > χ2(1− α/2,M × Zi) (16)

where α is the probablity of false alarm and M is the number of averaged pre-residual samples.
H0 refers to the hypothesis where the fault is not present in filter j. H1 refers to the hypothesis
where a fault is present in filter j. The resulting hypothesis test forms the basis of the fault
detection algorithm.

Once a fault is detected, a agreement of all other subfilters is utilized to exclude the faulty
sensor. With J = I subfilters, SAARM can only exclude single faults within each residual
monitoring epoch (i.e. M -sample moving average). In this scenario, each subfilter is informed
by a different subset of I − 1 sensors (i.e. each subfilter is missing a single sensor). SAARM
also assumes that all states are observable by all subfilters. In addition to J = I subfilters,
a main filter is maintained to generate a full navigation state estimate for user output. Ac-
cordingly, cross-covariance terms between the main filter and any other filters are not used for
any computation. For this scenario, SAARM provides an axiom for fault exclusion: under the
assumption that, at most, one sensor can fail simultaneously, at least one of the J subfilters will
be completely unaffected by faulty measurements [9].

The fault consensus is tallied in a T-matrix of dimension I × J and uses the following
convention:

T(i, j) =


0, Sensor i not associated with filter j

0, χ∗[i,j] < χ2(1− α/2,M × Zi), No Fault, H0

1, χ∗[i,j] > χ2(1− α/2,M × Zi), Fault, H1

(17)

Figure 2 shows the relationship between I sensors and J subfilters required for “fault agreement“
sensor exclusion. The rows correspond to the i = 1...I sensors and the columns correspond to
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Figure 2: SAARM T-Matrix for i = 1...I All-Source Sensors [11]. If Sensor 3 were faulty, for
example, each subfilter that includes that sensor would report a fault (all across row three) and
only subfilter 3 would remain consistent. Filter 3 would then be promoted to the main filter
level and a new bank of FDE subfilters must be populated.

the j = 1...J subfilters. Each row contains measurements, Z[i], and the measurement covariance
matrix, R[i], from the ith sensor. Each column contains the estimated measurement, ẑ[i,j], and
its covariance matrix, Pẑẑ

[i,j].

Based on the stated convention, a fault is declared when T contains a single nonzero entry
(i.e. at least one subfilter detectedH1). After a fault is declared, SAARM waits for an agreement
from the remaining subfilters until a single fault-free subfilter remains. It is assumed that the
last remaining fault-free subfilter is the one which does not contain the faulty sensor. After
fault exclusion, the fault-free subfilter is elevated to “main filter” status and the pre-update
residual monitoring epoch is restarted with I − 1 total sensors and J − 1 subfilters. Each newly
spawned subfilter now contains I − 2 sensors. The faulty sensor is removed from monitoring
mode and follows the state diagram shown in Figure 1. Of note, SAARM is able to detect the
occurrence of multiple simultaneous faults but is only able to provide multiple fault exclusion
when initialized with additional subfilter layers.

In summary, SAARM provides all-source sensor FDE and integrity for various sensor fault
types. To provide resiliency to a single fault, ARMAS is required to instantiate and maintain
a quantity of subfilters equal to the quantity of all-source sensors. A separate main filter is
maintained strictly for user output. Fault identification is based on a sequence of χ∗ statistical
tests of pre-update measurement residuals. Fault exclusion is based on a subfilter agreement
approach which is tallied in a novel T matrix. If every subfilter has position state observability,
then SAARM provides a method for all-source position integrity via the union of all subfilter
position covariance estimates. This integrity concept is based on the assumption that the
framework is able to maintain at least one uncorrupted subfilter. The next section describes
the motivation for a novel layer in ARMAS used for real-time observability analysis.

2.3 Motivation for Stable Observability Monitoring

The ARMAS framework with SAARM was originally conceived and simulated with basic linear
2D position and velocity sensors and assumed fully overlapping state observability within the
FDE layer. All-source sensors, particularly those that only provide partial state information
do not intrinsically exhibit this characteristic. In collaborative navigation scenarios, retention
of autonomy is desirable as long as a stable, resilient solution can be maintained. Another
key motivation for SOM is the ability to determine when to augment with collaborative in-
formation and a method to measure the sufficiency of the collaborative information. In early
2020, the ARMAS framework was applied to a flight test dataset [1] (Figure 3). The flight
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North [m] East [m]

Up
[m]

Figure 3: sUAS Flight Test Data, 12 Oct 2018, Camp Atterbury, IN

Figure 4: Trace of aposteriori Layer 1 Subfilter Position Covariance, Simulated Single GPS 15
Pseudorange Sensor Failure

was conducted by the ANT Center on 12 October 2018 at Camp Atterbury, IN where a small
Unmanned Aerial System (sUAS) took off and landed at Himsel Army Airfield (HAA). During
the 27-minute dataset, the aircraft flew patterns at approximately 250 and 100 meters above
the local surface. The aircraft used the ANT Center’s Scorpion framework [12] to provide a
GNSS/INS-coupled ‘truth’ navigation solution. This analysis consists of individual pseudorange
measurements extracted from six Global Positioning System (GPS) Satellite Vehicles (SV) for
nonlinear processing in ARMAS as individual sensors.

For analysis, we configured ARMAS with a sensor package consisting of 6 individual pseudo-
range sensors, one for each visible SV. This means each filter in the FDE layer is equipped with
a unique combination of 5 sensors. The latter half of the flight test dataset contains numerous
pseudorange sensor dropouts. During analysis, it was observed that sensor dropouts tended
to cause spurious behavior in ARMAS. This behavior occurs when less than 5 SVs are visible,
meaning each layer 1 subfilter is unable to perform a stable position state estimate with less
than 4 SVs. Further analysis reveals that SAARM is unable to provide an agreement to identify
a failed sensor when the FDE subfilter layer loses overlapping position state observability. In
other words, SAARM can detect a sensor fault but can not exclude the faulty sensor if even
a single FDE layer subfilter loses position state observability due to dropout, poor geometry,
etc. Since the initial simulation of ARMAS was performed with fully overlapping position state
observability in the FDE layer, this deficiency was overlooked.

Consider a scenario where SV ‘GPS 15’ in a 6-SV constellation is excluded by ARMAS due
to a simulated pseudorange bias at t = 100 sec. Figure 4 shows a local observability analysis
for this scenario with the remaining observability subfilters, FDE layer subfilters, and Main
Filter. Note there are 10 layer 2 subfilters remaining (from the original 15) in the observability
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Figure 5: Trace of aposteriori Layer 2 Subfilter Position Covariance, Simulated Single GPS 15
Pseudorange Sensor Failure

layer, corrresponding to 5 remaining SVs (after GPS 15 was excluded). Note that each layer
2 subfilter in the observability layer is informed by exactly 4 unique pseudorange sensors until
GPS 15 is removed. Since 4 unique pseudoranges are required to constrain a stable 3D position
solution with clock bias estimation, the unbounded position state covariance matrix indicates
a complete loss of observability after t = 100 sec. As mentioned, a single pseudorange sensor
dropout in this scenario will result in the loss of position state observability and is evidenced
by an increase in the position state covariance estimate. If an additional sensor failure occurs,
the decision-making FDE layer of ARMAS will struggle to provide a subfilter agreement to
determine the culprit sensor due to a reduction in position state observability. This analysis
forms the genesis of local observability monitoring at the layer 2 “sub-subfilter” level to preserve
the consistency of the layer 1 subfilter FDE and integrity functions of ARMAS.

3 Novel Observability Layer 2 “Sub-subfilter” Bank

In the previous section, we began the motivation for monitoring observability at a layer deeper
than the FDE and integrity operations to preserve estimation consistency and framework re-
siliency. The uncorrupted subfilter guarantee provided by the ARMAS framework for a single
simultaneous fault enables SAARM to extend a similar guarantee for all-source position in-
tegrity [11]. The previously stated fault exclusion axiom is extended:

Assuming at least one of the subfilters is informed entirely by properly modeled, uncorrupted
sensors, then at least one subfilter contains consistent state estimation error statistics [11]. If
the states of interest in each layer 2 subfilter are observable and stabilizable, then
each layer 1 subfilter inherits these properties.

This means that the physical region encompassed by the position covariance estimates of all
layer 1 subfilters contains the true navigation state within the statistical significance of the
fault detection tests. That said, SAARM requires overlapping position observability across all
layer 1 subfilters to perform consistent FDE operations and guarantee the preservation of at
least one uncorrupted subfilter for position integrity. For SAARM to guarantee position state
observability at the layer 1 subfilter level, an additional layer of subfilters is required (Figure
6). Each unique subfilter in the observability layer excludes measurements from two sensors.
The purpose of this layer is to provide a means for observability analysis one layer deeper than
the decision-making FDE layer to maintain resiliency to a single simultaneous sensor fault.

For example, if a failed sensor is excluded, the FDE layer will be repopulated with new
subfilters, each missing a single unique sensor and the failed sensor. Prior to the sensor exclusion,
a subset of the observability layer contains the set of filters needed to spawn the new FDE
subfilter layer after the exclusion. The purpose of monitoring the observability one layer deeper
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Figure 6: ARMAS Framework with Novel Observability Layer for Resiliency to One Simulta-
neous Sensor Failure.

than the decision-making FDE layer is to provide a mechanism to warn the user in the event that
a single sensor failure could jeopardize the consistency of the FDE and integrity operations. This
warning comes in the form of a user “observability warning” to add an additional sensor to the
framework. If only a single subfilter in the FDE layer loses overlapping position observability,
SAARM is unable to provide a subfilter agreement required to identify and exclude the failed
sensor. Once overlapping position observability is lost in the FDE layer, ARMAS can no longer
guarantee at least one consistent uncorrupted subfilter which is required to preserve solution
integrity. Due to potentially variable Fisher information available from all-source navigation
sensors, it is critical that a resilient all-source navigation framework contains a method to
monitor observability prior to corruption of the decision-making FDE layer.

To maintain resilience to F simultaneous sensor failures, the number of concurrent layer 2
subfilters in the observability filter bank, N , required to monitor observability for I sensors is:

N =

(
I

F + 1

)
=

I!

(F + 1)(I − (F + 1))!
(18)

As one might expect, the processing requirements to monitor each layer 2 subfilter posi-
tion state covariance are non-trivial. For example, an 8 sensor system requires 28 concurrent
SAARM layer 2 subfilters for resiliency to a single simultaneous sensor failure. When summed
with the main filter and 8 traditional subfilters, a total of 37 concurrent estimation filters must
be maintained. This method monitors overlapping position observability at the processing ex-
pense of factorial growth in the required quantity of concurrent estimation filters. A major
benefit of this approach is evident in the event of a sensor failure. Since a subset of the observ-
ability filter bank will form the new FDE layer, maintenance of these filters in the observability
layer eliminates FDE and integrity operation downtime normally required during FDE layer
re-initialization. Additionally, if we monitor the magnitude of the state estimate variance in
each layer 2 subfilter we can determine which sensors provide critical Fisher information about
our state(s) of interest prior to fault detection and exclusion events.

4 Stable Observability Monitoring (SOM)

The ability to maintain stable aposteriori estimates of system states is a primary indicator
of overall estimator stability [6]. A primary goal of observability analysis is to measure the
influence measurements have on system states [16]. Observability analysis has been applied to
fused estimation with a variety of approaches including information matrix [8], error covariance
analysis [21], and others [15] [7] [13]. It is well understood that a discrete linear time varying
system is globally observable if the rank of its observability matrix M is of rank n for all time
indices k. The degree of local observability can be defined as the measure of the singularity of
M over a finite set of k [3]. For linear systems, the observability Gramian can be obtained as a
solution of the the Lyapunov equation [5].

9



Directly related to the observability Gramian is the Fisher Information matrix which is a
measure of the certainty of the state estimate due to measurement data alone [14] [17] [20]. The
discrete recursive definition of the Fisher information matrix F is

F (t+k ) = ΦT (tk)F (t−k )Φ(tk) + HT (tk)R(tk)
−1H(tk) (19)

where the Fisher information contained in a single update at tk is HT (tk)R(tk)
−1H(tk) which

is the same term used to generate

P(t+k )−1 = P(t−k )−1 + HT (tk)R(tk)
−1H(tk). (20)

This relationship can be leveraged for observability analysis in a nonlinear estimator. If the
system model is stochastically controllable and observable, then P(t+k ) is uniformly bounded
from above [16]. Stabilizable states have a unique positive-definite P(t+k ) [16]. By monitoring
post-update covariance matrices over time, we can ascertain if the signal to noise ratio in the
system enables stabilized estimation. For the purposes of this paper, we focus on the stability
of the position states because we are particularly interested in preserving the consistency of the
navigation integrity solution provided by the FDE sublayer in ARMAS.

The user-defined monitoring epoch for the sum of Mahalanobis distances in (13) adjusts the
sensitivity of the SAARM monitoring test within the ARMAS framework [18]. This is a moving
average of recent residual-space test statistics formed by pre-update residual vectors from (10)
and (11). The length of ‘monitoringTime’ (M∆t) is an ARMAS tuning parameter which is
used to adjust for detection sensitivity for temporal anomalies. The ARMAS ‘monitoringTime’
is designed to contain a sufficient quantity of samples to meet central limit theorem [19] criteria
for the desired α. The pluggable estimation architecture provided by SCORPION enables
propagation of multiple layers of subfilters. We record and monitor the post-update position
covariances in each n = [1...N ] layer 2 subfilter in the observability bank. An observability flag
Ok is set for layer 2 subfilter n for tk according to

Ok,i(n) =


1, if P

[n]
j (t+k ) > P

[n]
j (t+k−M )β

1, P
[n]
j (t+k ) > Pj,max

0, otherwise

(21)

where P
[n]
i (t+k ) is the jth diagonal of the post-update state covariance matrix for layer 2 subfilter

n, Pi(t
+
k−M ) is the post-update variance for state estimate element j for layer 2 subfilter n

exactly M samples prior to tk, Pj,max a user-defined limit for maximum steady-state state
estimate covariance, and β ∈ [1,∞) is the state estimate covariance transient growth threshold.
If k < M (e.g. a newly initialized filter), an observability flag is not set. A more compact form
used to monitor position states is

Ok,pos(n) =


1, if tr

(
P

[n]
pos(t

+
k )
)
> tr

(
P

[n]
pos(t

+
k−M )

)
β

1, if tr
(
P

[n]
pos(t

+
k )
)
> tr

(
Ppos,max

)
0, otherwise

(22)

where P
[n]
pos(t

+
k ) is the most recent post-update position covariance matrix for layer 2 subfilter

n, P
[n]
pos(t

+
k−M ) is the post-update position covariance matrix for layer 2 subfilter n exactly M

samples prior to tk Ppos,max is a user-defined limit for maximum steady-state position state
estimate covariance, and β ∈ [1,∞) is the state estimate covariance transient growth threshold.
The trace is the sum of the diagonal elements of the matrix Pk, which represent variances of

the system state estimates. If the tr
(
P

[n]
pos(t

+
k )
)

converges, then the individual position estimate
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variances also converge. When applying (22), it is important to ensure units are identical across
the grouped states.

By measuring the difference between the trace of post-update position covariance matrices,
we can determine if the position state information contained in the HT (tk)R(tk)

−1H(tk) terms
in the previous M measurements have resulted in a stable mean estimate of all position elements
in that subfilter. The user sets β as a tuning parameter for acceptable transient variance growth
per monitoring epoch. To maintain resilience to a sensor failure, a user prompt to augment
ARMAS with an additional sensor is triggered if at least a single layer 2 subfilter observability
test sets to 1 (23). The newly added sensor will directly enter monitoring mode if it is considered
‘trusted’ or must pass through sensor validation if ‘untrusted’.

SOMAddNewSensor =

{
true, if

∑N
n=1Ok(n) > 0

false, otherwise
(23)

where N is the quantity of layer 2 subfilters.

Once a new sensor is successfully added into ARMAS monitoring mode, each layer 2 subfilter
gains another sensor. The results of (21) or (22) are ignored until the newly requested sensor
completes an ARMAS monitoring period after entering monitoring mode. If post update vari-
ance stability is regained after the requisite ARMAS monitoring period, then (21) or (22) will
set to 0 for each stable layer 2 subfilter and the observability warning is rescinded. This method
flags the presence of an information deficiency with respect to the estimated states of interest
in real-time across multiple layer 2 subfilters in a novel observability bank which is intended to
preserve the consistency of the FDE and integrity operations in ARMAS.

5 State Estimate Covariance Transient Growth Threshold (Beta)
and Maximum State Estimate Covariance Limits

The state estimate covariance transient growth threshold, β ∈ [1,∞), sets SOM framework
sensitivity to transient loss of Fisher information for the state(s) of interest (21). The maximum
state estimate covariance limit is simply an upper bound for state estimate covariance and is
designed to set a minimum steady-state information threshold for the framework. The validation
gate employed by SAARM is a moving window of residual-space test statistics in the form of
Mahalanobis distances. The power of SAARM’s Chi-squared distributed hypothesis test is
dependent on the ARMAS framework’s ability to produce a stable and consistent pre-update
residual covariance matrix, Σ (14). By operating SOM’s state estimate covariance monitoring
scheme in the layer 2 sublayer (See Figure 6), we are able to peek forward at framework stability
in the event of a single unknown sensor failure.

Since the pre-update residual covariance matrix is a function of the state estimate covariance
and the observation model in (9), the post-update state estimate covariance P+ is a direct indi-
cator for estimator observability and stabilizability [16]. The least stabilizable layer 2 subfilter
is informed by exactly 1 fewer sensor than the least stabilizable layer 1 subfilter. By monitoring
the layer 2 subfilter level, this allows for a sensor augmentation request before a potential loss
of stability in the FDE operations. Since T-matrix exclusion operations employed by SAARM
require a unanimous fault agreement to exclude a failed sensor (17), it is particularly important
that the stability of the layer 1 subfilter estimates is ensured. Furthermore, since ARMAS
navigation integrity is provided by the union of the layer 1 subfilter position covariance ellipses,
position integrity can be stabilized if the position states are selected as the SOM states of
interest.
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A selection of β = 1.0 is the most sensitive case which results in a request for an addi-
tional sensor when any layer 2 subfilter state estimate covariance grows by any amount in a
single ARMAS monitoring epoch according to (23). This extreme case will maximize use of
available offboard information. In the opposite case, large values of β will produce a less sen-
sitive framework without a tendency to request additional sensor augmentation, where β →∞
performs identically to legacy ARMAS. For initial implementation, we recommend beginning
with a small value for β ≈ 2.0. This tuning parameter should be adjusted by the user to set
the desired balance between autonomy and framework estimation stability for the state(s) of
interest. The next section describes a set of reconfigurable GNSS scenarios used to assess the
effectiveness of SOM.

6 Simulation

This section describes a set of four example 3D scenarios designed to assess the impacts of SOM
on ARMAS FDE operations and untrusted sensor validation. Individual SVs are arranged in
random stationary GNSS constellations in a local tangential frame (LTF). In scenarios 1-4,
we initialize three aircraft operating a standard EKF, ARMAS, and ARMAS-SOM (22) with
4, 5, 6, and 7 trusted pseudorange sensors, respectively. We assume the remaining untrusted
SVs are available for augmentation via SOM. The availability of additional untrusted sensor
information can be analagous to offboard augmentation in a collaborative navigation scenario.
Each constellation contains 1 SV directly overhead and 9 SVs evenly distributed in azimuth with
discrete random uniform elevations between 45 and 63.4 degrees (See Fig. 7). Each scenario
consists of two sensor anomalies introduced at fixed times: (1) a growing pseudorange bias
(linear ranging ramp) from t = 240 to t = 330 sec on a trusted sensor and (2) validation of
an untrusted pseudorange sensor with a constant 40 meter bias at t = 360 sec. The growing
pseudorange bias on the trusted sensor is used to assess FDE in monitoring mode (i.e. how large
is the bias before it is detected and excluded). The constant bias is used to measure probability
of detection in validation mode after recovery from a sensor exclusion.

Consider a three-dimensional example with two vehicles obtaining their navigation solutions
from an EKF within the ARMAS framework

ẋ(t) =

ẋp(t)
ẋv(t)
ẋa(t)

 =

 ẋv(t)
ẋa(t)
− 1
τa

ẋv(t)

+

 0
0

w(t)

 (24)

where xp is the vehicle’s position (m), xv is the vehicle’s velocity (m/s), xa is the vehicle’s
acceleration (m/s2), and τa = 90 seconds is a time-constant associated with a First-order Gauss-
Markov (FOGM) process. A 3D white noise process is given by w(t) where E[w(t) w(t+τ)T ]
= Qδ(τ) and

Q = (1.0× 10−2)2I3×3 (m2/s4) (25)

The model from (24) is used to generate randomly initialized vehicle trajectories for each
trial. Initial velocities and accelerations are normally distributed with σaccel = 1× 10−2 (m/s2)
and σvel = 5 (m/s). Figure 8 shows 300 sample truth trajectories for this scenario.

Each vehicle is initialized identically with initial state and covariance estimates:

x̂(0) =
[
0 0 200 0 0 0 0 0 0

]T
, (26)

P(0) = diag

([
30 30 30 10 10 10 0.01 0.01 0.01

]2)
. (27)

Each aircraft receives discrete measurements from a constellation of stationary satellite
vehicles (SV). Although there are 10 SVs (labelled GPS1-10), the aircraft are initialized with a
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Figure 7: Sample of 10-SV Stationary Constellation Skyplot with Discrete Random Uniform
Elevations and 1 Satellite Directly Overhead

trusted subset of this constellation varying from 4 to 7 SVs. An additional fixed satellite with
a random uniform elevation between 45 and 63.4 degrees is introduced at t = 360 sec and is
corrupted with a constant 40 meter pseudorange range bias. This constellation is designed to
provide coverage at high elevation angles between approximately 45 degrees and 63.4 degrees
with a single satellite directly overhead (Figure 7).

Individual pseudorange measurements are performed according to (28)

ρi =
√

(XSV,i −Xu) + (YSV,i − Yu) + (ZSV,i − Zu) + bu, (28)

where ρi is the pseudorange to SV i, with fixed coordinates (XSV , YSV , ZSV ), estimated user
coordinates are (Xu, Yu, Zu), and an estimated GNSS receiver clock bias is bu. The pseudorange
measurement covariance RSV = 102 m2. A receiver clock bias bu is independently estimated as
an additional state in each EKF. All coordinates are expressed in the LTF.

Pseudorange measurements, ẑ = h(x̂), are performed according to (30) for the estimated
position states (Xu, Yu, Zu, bu) within x̂. The measurement Jacobian HHH is:

HHH =
[
−(Xi,SV −Xu)

ri

−(Yi,SV −Yu)
ri

−(Zi,SV −Zu)
ri

1
]

(29)

where

ri =
√

(XSV,i −Xu) + (YSV,i − Yu) + (ZSV,i − Zu) (30)

is the distance from the platform to an SV.

In addition to initial pseudorange sensors, additional unbiased pseudorange sensors may be
requested automatically by SOM at any time during the scenario. The other two approaches
(legacy ARMAS, EKF) are limited to the sensors provided during initialization. In this respect,
SOM has a clear advantage over the two legacy approaches. The point of this analysis is to
show that ARMAS-SOM can detect a threat to navigation resilience, provide timely sensor
augmentation, and successfully preserve the consistency of the FDE and validation operations
in ARMAS. In the middle of the scenario, an insidious growing position bias is injected into a
single trusted pseudorange sensor to test the ARMAS FDE process. The size of the position
bias at exclusion is recorded. Near the end of the scenario, an untrusted pseudorange sensor
with a fixed bias is added into validation at t = 360 sec to test ARMAS sensor validation.
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Figure 8: Sample Truth Trajectories, 300 Runs

7 Numerical Results

The following section presents the results for three identical aircraft (EKF, ARMAS, and
ARMAS-SOM equipped) in four scenarios with 4, 5, 6, and 7 initial trusted pseudorange sen-
sors. We assume the remaining untrusted SVs are available for augmentation via SOM. The
acceptable steady state variance growth term β from (22) is set to 3.0 for all runs. This was
achieved by initially setting β to 1.0 and incrementally increasing until desired sensitivity is
achieved. The maximum position state estimate covariance is Ppos,max = diag3×3(20m2) (22).

In each scenario, a single trusted pseudorange sensor experiences a sensor anomaly (linear
ramp) from t = 240 to 330 sec and an untrusted biased sensor (40 meters) is added at t = 360
sec. The EKF simply trusts all information provided, has no ability to detect faults nor perform
sensor validation, and is included only as a performance baseline. ARMAS is equipped with
FDE capabilities and validation of untrusted sensors. The ARMAS recalibration and remodeling
modes are not active. ARMAS-SOM includes all of the aforementioned ARMAS capabilities
and adds the ability to request additional untrusted pseudorange sensors at any time. SOM
monitors the stability of the state covariance estimates in the observability subfilters (layer
2) (22). Since each observability layer subfilter exclude 2 sensors, the minimum number of
pseudorange sensors at the user output level (layer 0) is 6. If one of the trusted sensors is
excluded, the quantity of sensors at the top level must remain at least 6 to ensure stability at
the layer 2 subfilter level.

7.1 Scenario 1

In scenario 1, each aircraft is initialized with 4 trusted pseudorange sensors receiving information
from a random stationary constellation of SVs in the LTF. A summary of the results is shown
in Table 1. Clearly, ARMAS-SOM outperforms both ARMAS and the EKF, especially in terms
of RSS error and detection rate for a biased sensor. This is expected because ARMAS-SOM
augments itself with 2 additional untrusted pseudorange sensors using the ARMAS validation
process prior to the sensor anomaly event at t = 240 sec. Once the spoofed sensor is excluded,
ARMAS-SOM requests one additional untrusted sensor to stabilize the observability layer prior
to validation of the untrusted biased sensor. This results in a total of 3 added pseudorange
sensors for a total of 7. With ARMAS, the exclusion of the spoofed sensor results in only 3
pseudorange sensors which is insufficient to provide a stable 3D position estimate with clock
bias estimation. This is evidenced by the large growth in estimated standard error at approx.
t = 245 sec in Figure 9. Figure 10 shows the mean RSS error and standard deviation for 1000
monte carlo trials. It is clear that ARMAS does not recover well from the exclusion of the
spoofed sensor with a bias detection rate of 0.01 is clearly outperformed by ARMAS-SOM with
a detection rate of 0.99. The EKF simply trusts all information provided and the navigation
solution is carried off by the linear ramp sensor anomaly.
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4 Trusted SVs, 1000 Trials

Aircraft
Grand Mean
(Median) [m]

Std. Dev.
[m]

Mean GPS4 Anomaly
Exclusion Mag. [m]

Detection Rate
40 m Bias

Mean Total
Added Sensors

EKF 916.0 (76.53) 1,720.8 – – –
ARMAS 694.3 (76.52) 684.3 44.53 0.01 –
SOM 16.78 (10.15) 18.25 41.51 0.99 3.00

Table 1: Scenario 1 Results

Figure 9: Scenario 1 State Estimation Error for 1 Run with Sensor Anomaly from t = 240 to
330 sec and Biased Sensor added at t = 360 sec

Figure 10: Scenario 1 Mean 3D RSS Error Comparison for 1000 Runs with Sensor Anomaly
from t = 240 to 330 sec and Biased Sensor added at t = 360 sec

7.2 Scenario 2

In scenario 2, each aircraft is initialized with 5 trusted pseudorange sensors. A summary of
the results is shown in Table 2. ARMAS-SOM outperforms both ARMAS and the EKF. Fig-
ure 12 shows the improvement in estimation performance achieved by ARMAS-SOM sensor
augmentation at approximately t = 70 sec. This is also visible at approximately t = 70 sec
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5 Trusted SVs, 1000 Trials

Aircraft
Grand Mean [m]
(Median)

Std. Dev. [m]
Mean GPS4 Anomaly
Magnitude at Exclusion [m]

Detection Rate for
40 meter Bias

Mean Total
Added Sensors

EKF 283.5 (36.42) 411.3 – – –
ARMAS 39.07 (22.44) 34.22 40.36 0.58 –
SOM 12.14 (9.48) 7.25 37.93 1.00 2.00

Table 2: Scenario 2 Results

with the estimated standard error estimates in Figure 11. Once the spoofed sensor is excluded,
ARMAS-SOM requests one additional untrusted sensor to stabilize the observability layer prior
to validation of the unstrusted biased sensor. This results in a total of 2 added pseudorange sen-
sors for a total of 7. With ARMAS, the exclusion of the spoofed sensor results in 4 pseudorange
sensors which is sufficient to provide a stable 3D position estimate with clock bias estimation
at the main filter level. Figure 10 shows the mean RSS error and standard deviation for 1000
monte carlo trials. It is clear that ARMAS maintains a stable solution but has difficulty with
proper validation of the untrusted biased sensor with a detection rate of 0.58 and is outper-
formed by ARMAS-SOM with a detection rate of 0.99. The EKF simply trusts all information
provided and the navigation solution is exploited by the biased information.

Figure 11: Scenario 2 State Estimation Error for 1 Run with Linear Pseudorange Ramp Bias
from t = 240 to 330 sec and Biased Sensor added at t = 360 sec
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6 Trusted SVs, 1000 Trials

Aircraft
Grand Mean [m]
(Median)

Std. Dev. [m]
Mean GPS4 Anomaly
Magnitude at Exclusion [m]

Detection Rate for
40 meter Bias

Mean Total
Added Sensors

EKF 153.7 (25.11) 213.6 – – –
ARMAS 17.73 (12.94) 9.00 38.44 0.85 –
SOM 12.34 (11.76) 3.97 38.44 1.00 1.00

Table 3: Scenario 3 Results

Figure 12: Scenario 2 Mean 3D RSS Error Comparison for 1000 Runs with Sensor Linear
Pseudorange Ramp Bias from t = 240 to 330 sec and Biased Sensor added at t = 360 sec

7.3 Scenario 3

In scenario 3, each aircraft is initialized with 6 trusted pseudorange sensors. A summary of the
results is shown in Table 3. ARMAS-SOM outperforms both ARMAS and the EKF. Figures 13
and 14 show that ARMAS and ARMAS-SOM performance is nearly identical until ARMAS-
SOM augments with an additional untrusted sensor at approximately t = 310 sec after spoofed
sensor exclusion. This results in a total of 1 added pseudorange sensor for a total of 7. With
ARMAS, the exclusion of the spoofed sensor results in 5 pseudorange sensors at the main filter
level which is sufficient to provide a stable 3D position estimate with clock bias estimation in
each layer 1 subfilter (each containing 4 pseudorange sensors). It is clear that ARMAS maintains
a stable solution but has difficulty with proper validation of the untrusted biased sensor with
a detection rate of 0.85 and is outperformed by ARMAS-SOM with a detection rate of 1.00.
The EKF simply trusts all information provided and the navigation solution is exploited by the
biased information.
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Figure 13: Scenario 3 State Estimation Error for 1 Run with Sensor Linear Pseudorange Ramp
Bias from t = 240 to 330 sec and Biased Sensor added at t = 360 sec

Figure 14: Scenario 3 Mean 3D RSS Error Comparison for 1000 Runs with Sensor Linear
Pseudorange Ramp Bias from t = 240 to 330 sec and Biased Sensor added at t = 360 sec

7.4 Scenario 4

In scenario 4, each aircraft is initialized with 7 trusted pseudorange sensors. A summary of
the results is shown in Table 4. ARMAS-SOM performs identically to ARMAS and both
outperform the EKF. Figures 15 and 16 show that ARMAS and ARMAS-SOM performance
is nearly identical. ARMAS-SOM does not request any sensor augmentation for a total of
7 pseudorange sensors. The EKF simply trusts all information provided and the navigation
solution is exploited by the biased information.
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7 Trusted SVs, 1000 Trials

Aircraft
Grand Mean [m]
(Median)

Std. Dev. [m]
Mean GPS4 Anomaly
Magnitude at Exclusion [m]

Detection Rate for
40 meter Bias

Mean Total
Added Sensors

EKF 85.52 (20.5) 113.4 – – –
ARMAS 11.04 (10.08) 2.55 36.75 0.99 –
SOM 11.04 (10.08) 2.55 36.75 0.99 0.00

Table 4: Scenario 4 Results

Figure 15: Scenario 4 State Estimation Error for 1 Run with Sensor Linear Pseudorange Ramp
Bias from t = 240 to 330 sec and Biased Sensor added at t = 360 sec

Figure 16: Scenario 4 Mean 3D RSS Error Comparison for 1000 Runs with Sensor Linear
Pseudorange Ramp Bias from t = 240 to 330 sec and Biased Sensor added at t = 360 sec

7.5 Across Scenarios

Figure 17 shows a summary of detection rates for each of the four 1000-run scenarios. Clearly,
ARMAS validation consistency is a function of stable observability in the FDE (layer 1) sub-
filters. In order guarantee resilience to a single simultaneous sensor failure, stable observability
must be established at the Observability (layer 2) subfilters.
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Figure 17: Summary of Detection Rates for 40 meter Biased Pseudorange Sensor

8 Conclusion

This paper addresses a critical vulnerability of ARMAS and provides a convenient method to
monitor real-time navigation resilience and eliminate subfilter respawn downtime in the event
of a sensor failure. This method presents a novel “observability bank” operating in a layer of I
choose 2 subfilters. These additions to ARMAS provide real-time stable observability analysis
via monitoring of the layer 2 subfilter aposteriori covariance matrices.

The ARMAS framework was originally developed with linear 2D position and velocity sen-
sors which provided fully overlapping position observability. Initial analysis of ARMAS with
GNSS pseudorange data from a sUAS flight test at Camp Atterbury, IN showed that ARMAS
operations can become inconsistent if the FDE layer subfilters lose overlapping position estima-
tion observability. SOM monitors each layer 2 subfilter for both observability and stabilizability.

To maintain resilience to a single simultaneous sensor failure, we must assume that a single
sensor may fail at any time. Since the “observability” bank contains a subset of subfilters
which will form the new FDE layer after a sensor exclusion, the observable and stabilizable
properties guaranteed by SOM are inherited by the newly formed FDE layer. Furthermore,
SOM provides the user with a timely warning to augment with additional sensor data and
provides a notification when the augmented sensor information is sufficient for resilience to a
single simultaneous sensor failure. A Monte Carlo analysis of four example scenarios proves
that a loss of overlapping position observability in the FDE layer can result in an inability to
exclude a failed sensor and inadvertent validation of a corrupted sensor, resulting in undetected
corruption of the main navigation solution. SOM is shown to guarantee ARMAS framework
resilience to a single simultaneous sensor failure and is proven by the preservation of the ARMAS
FDE and validation processes.
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