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AFIT/GE/ENG/OlM-02 

Abstract 

Computer networks dramatically impact the Air Force mission and day-to-day 

operations. As network speeds increase to the gigabit range and beyond, better 

means for arbitrating network access becomes critical for increasing performance. 

Conventional approaches to increase Ethernet performance include using higher 

bandwidth media such as fiber optic cabling. However, there is a limit to the increase 

of effectiveness these measures provide. 

Spread spectrum multiple access techniques allow multiple users to simultane- 

ously access the shared network resources through the use of special coding. These 

techniques have been principally employed in wireless networking environments to 

compensate for the scarce bandwidth inherent in the systems. Since cabling infras- 

tructure upgrades may not be a viable option for increasing network performance, we 

apply spread spectrum techniques to a wired local area network to increase through- 

put and lower delay. 

Using OPNET, a network simulation and design tool, to simulate a direct 

sequenced spread spectrum technique, demonstrated that network throughput in- 

creased linearly with the number of users while delay remained relatively constant. 

For a network of 15 transmitting nodes in overload (maximum bandwidth) con- 

ditions, individual station throughput increased from a 25% packet success rate for 

Ethernet to nearly 78% - an increase of nearly 212%. On the network level, through- 

put increased from 8.7 Mbps to over 28.8 Mbps - an increase of 230%. Under similar 

conditions, mean delay was reduced by 800% from a high of 38 msec in Ethernet 

to approximately 4 msec for spread spectrum. The vast performance improvement 

demonstrated by this research yields insight into ways to extend legacy cabling in- 

frastructures for many years while easily accommodating newer bandwidth-intensive 

multimedia applications. 

xm 



Using Direct Sequenced Spread Spectrum 

in a Wired Local Area Network 

/.   Introduction 

This chapter presents an overview of this research with background information 

in Carrier Sense Multiple Access With Collision Detection (CSMA/CD) as well as 

Code Division Multiple Access (CDMA) medium access control (MAC) schemes. 

CSMA/CD is more popularly referred to as Ethernet. CDMA is a multiple access 

scheme which uses spread spectrum technology for network access. These two MAC 

protocols are the focus of this research. 

1.1    Background 

Multiple access techniques allow multiple stations to use the same media for 

communication. As the power of software applications and the need for enhanced 

multimedia functions (e.g., real-time voice and video services) continue to increase, 

the ability of local area networks (LANs) to meet this need is strained. As more users 

access network resources, throughput can diminish exponentially with the number 

of transmitting stations. This is in large part due to the multiple access technique 

employed. 

For example, the IEEE 802.3 standard uses CSMA/CD for its medium access 

control protocol and is the predominant MAC protocol used in most LANs. In an 

attempt to provide fair and equitable allocation of resources, IEEE 802.3 divides the 

bandwidth according to time slots - similar to a time division multiplexing scheme. 

If a station has data to transmit, it senses the medium to detect carrier presence. If 

a carrier is not detected, the station will transmit and simultaneously listen to the 

medium. If another station has also started transmitting, a collision will be detected 
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and both stations will stop transmitting and delay for a random amount of time 

before attempting retransmission. As more and more stations attempt to use the 

medium, the probability that two or more stations simultaneously transmit increases 

to the point where packet collisions significantly decrease throughput. 

Code division multiple access (CDMA) is a wireless networking MAC protocol 

which uses spread spectrum techniques to share communication channel bandwidth 

through the use of orthogonal spreading codes called pseudonoise (PN) codes. This 

scheme allows stations to have simultaneous access to the channel without experi- 

encing collision effects. Therefore, delays associated with random backoff times due 

to collisions in CSMA/CD are eliminated. 

Research on more efficient broadcast channel utilization has focused primarily 

on existing multiple access schemes. CSMA/CD is the predominant MAC protocol 

in wired LANs whereas CDMA is becoming the preferred standard in wireless com- 

munications networks. However, there has not been a significant amount of research 

into the feasibility of using CDMA in a wired LAN. 

This research proposes to use CDMA in wired LAN applications. It investigates 

the benefits of using wireless multiple access techniques in a wired medium and 

potential restrictions that result. This concept is demonstrated through simulation 

using the OPNET network simulation and design tool. 

1.2   Research Goal 

CDMA techniques have various implementations. The two most often encoun- 

tered are direct sequenced and frequency hopping. The goal of this research is to 

model and simulate a proposed wired LAN implementation of a direct sequenced 

spread spectrum (DSSS) data network. Based on simulation results, a comparison is 

made between the performance of a CDMA network to a 10Base2 coaxial Ethernet 

LAN. 
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1.3 Organization 

This thesis is divided into five chapters. The organization of the rest of this 

document is as follows: 

• Chapter 2 presents a review of literature pertaining to Ethernet LANs and 

CDMA communication networks. Discussion of the underlying technology is 

presented. 

• Chapter 3 identifies the methodology used to perform this study. Design de- 

cisions as well as identification of the factors and parameters used is research 

are also presented. 

• Chapter 4 presents the results of the Ethernet and DSSS LAN simulations. 

Model verification and validation is conducted on the components used in the 

simulations. Analysis of the simulation results is presented through the use of 

statistical tests. 

• Chapter 5 summarizes research conclusions and identifies areas for future re- 

search. 

1.4 Conclusion 

In this chapter, an introduction to the goal of increasing LAN performance 

through the use of CDMA techniques was presented. Additionally, the organization 

of this thesis was highlighted. 
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//.   Literature Review 

2.1 Introduction 

This chapter describes and summarizes research on the performance of the 

medium access control (MAC) protocols for both carrier sense multiple access with 

collision detection (CSMA/CD) and direct sequence code division multiple access 

(DS/CDMA) communication networks. The goal of this chapter is to establish a 

fundamental understanding of the performance characteristics of these two MAC 

protocols. 

2.2 Communication Networks 

Communication networks for distributed computing has dramatically impacted 

the Air Force's mission and day-to-day operations. Networks composed of desktop 

computers serve not only for office automation tools such as word processors and 

spreadsheets, but also for communications by electronic mail (e-mail) and file trans- 

fers. These computing and communications capabilities continue to evolve. As au- 

tomation tool's power and utility increase, so does the need for users to have access 

to them. Whether data is located on a user's desktop or on some distant server, 

the user has a need for ready, on-demand access to the information to perform their 

functions. 

2.3 OSI Reference Model 

Computer networks are designed using an organized series of levels or layers. 

This helps to reduce the complexity of designing a network. The International Stan- 

dards Organization (ISO) Open Systems Interconnection (OSI) model is based on 

a proposal to standardize the protocols used in the various layers [Tan96]. There 

are seven layers in the OSI model representing the hiearchical nature of a computer 

network. Each is named based on the function is provides. 
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1. Physical Layer: Responsible for actually putting the data on the network me- 

dia. It describes the physical properties of the various communications media, 

as well as the electrical properties and interpretation of the exchanged signals. 

i.e., This layer defines the length of coaxial cable and the type of connectors 

used to tap the channel. 

2. Data Link Layer: Responsible for the physical passing of data. The Data 

Link Layer describes the logical organization of data bits transmitted on the 

network medium, i.e., This layer defines the framing, addressing and any other 

overhead information of Ethernet packets. 

3. Network Layer: Responsible for routing data from one node to the other. The 

Network Layer describes how a packet will be exchanged over various links to 

deliver data between any two nodes in a network, i.e., This layer defines the 

addressing and routing structure of the network. 

4. Transport Layer: Responsible for the end-to-end integrity of the data trans- 

mission. The Transport Layer describes the quality and nature of how the 

packet will be delivered, i.e., This layer defines if and how retransmissions will 

be used to ensure that the data is delivered correctly . 

5. Session Layer: Responsible for establishing and maintaining the communica- 

tions channels. The Session Layer describes how the exchange of data is to be 

conducted, i.e., This layer describes how request and reply packets are paired 

in a remote procedure call. 

6. Presentation Layer: Responsible for managing and converting data. The Pre- 

sentation Layer describes the syntax of data being transferred, i.e., This layer 

describes how floating point numbers can be exchanged between hosts with 

different math formats. 

7. Application Layer: Responsible for program-to-program communication. The 

Application Layer describes how real work actually gets done and typically 
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is referenced to a program or function,  i.e., This layer would implement file 

system operations 

The data link layer contains a sublayer called the Medium Access Control 

(MAC) layer. The function of the MAC is vitally important to local area networks 

(LANs) since nearly all "LANs use a multiaccess channel as the basis of their com- 

munication" [Tan96]. The MAC sublayer determines which station is permitted to 

access the physical medium and when. It's function is also dominated by the type of 

link used. The following sections discuss the types of communication links and the 

MAC sublayer itself. 

2.3.1 Communication Links. There are two types of communication links 

for computer networks: point-to-point and broadcast. A point-to-point (PPP) link 

consists of a single transmitter and a single receiver. However, in local area networks 

where many stations are connected in a geographically concentrated area, broadcast 

links are typically used [Tan96]. This type of link can have multiple sending and 

receiving nodes connected to the same broadcast medium or channel. 

2.3.2 Medium Access Control. All the stations connected to a broadcast 

channel or the network medium are capable of transmitting data. In order to help 

provide a reliable data stream, data is divided into frames for transmission. These 

frames contain code bits for error checking and correcting along with any routing 

information or additional network overhead. In this way, only errored frames need 

to be retransmitted rather than an entire file. 

Means of providing fair and equitable access to the communication channel 

is the task of the medium access control (MAC) protocol. Frequently, more than 

one station will have data to send. The MAC de-conflicts the use of the channel so 

stations wishing to transmit have a good probability of a successful transfer [Tan96]. 

This is accomplished by restricting use of the channel or medium. If two or more 

stations attempt to transmit at the same time, a collision will result.   The time 
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the network is occupied transferring these collided packets is wasted. Essentially, a 

collision 'mixes' the two packets together making both transmissions incoherent to 

the intended receivers. By regulating who can transmit and at what time, the MAC 

helps to ensure transmissions will be successful. 

2.3.3 Network Performance. Network performance has grown considerably 

in the last twenty years largely due to increased bandwidth availability. Connection 

speeds often characters per second were considered state-of-the-art in the 1960's. In 

the 1970's, packet switched networks attained 64 kilobits per second (kbps) trunk 

speeds. The 1980's added capabilities to achieve 1.544 million bits per second or 

megabits per second (Mbps) which is also known as Tl speed [Kle92]. Channel 

speeds are now exceeding ten billion bits per second or gigabits per second (Gbps) 

[ZimOO]. Although increasing channel bandwidth can reduce delay and increase 

throughput in a network, its effect is finite and may not contribute any gains at all 

[Kle92]. 

In [Kle92], Kleinrock demonstrates that the medium may be capable of trans- 

mitting gigabits of information per second, while increasing the bandwidth may not 

increase the speed of communication. Information travels at a speed which cannot 

exceed the speed of light. In fact, in coaxial cable the speed is limited to 67% of the 

speed of light [IEE85]. The roundtrip propagation delay time is therefore fixed and 

is the same for a 1 Mbps link or a 1 Gbps link for the same length of medium. 

Suppose a station wishes to transmit a 1 MB file on a 1 Gbps link. Also, 

suppose that the distance separating the two stations is such that the propagation 

delay or latency is 100 ms. The effective end-to-end transfer time is 

Trans fer Time = Latency + — .   . „,  x Transfer Size (2.1) 
Bandwidth 
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The effective throughput is 

, Transfer Size ,     . 
Effective Throughput = ^--^— (2.2) 

Therefore, the transmission time is 100ms + ^jg = 108ms (note that there are 

8 bits per byte) and the effective throughput for this hypothetical transmission is 

j^~ = 74.1Mbps - far below the capacity of a gigabit network. 

Suppose the network media was upgraded to 10 Gbps. The transmission time 

is now 100ms + ^L = 100.8 ms and thus the effective throughput is ^g^ = 

79.4 Mbps. Despite the order of magnitude increase in capacity, there was only a 

nominal increase in throughput. The effective throughput is now dominated by the 

latency due to propagation delay. This shows why increasing the network speed does 

not have an appreciable effect in increasing performance [Kle92]. 

Bandwidth of the transmission media is but one of the three main user se- 

lectable factors for network performance. The other two factors are network topol- 

ogy (e.g, Bus, Ring, Star), and the access control scheme. Because there is a large 

installed base of Ethernet-based LANs, and since reinstallation of the physical me- 

dia to support increased bandwidth can be very costly, medium access control is 

a topic of prime interest in network performance studies. When analyzing general 

purpose communications networks and the MAC, two metrics are of prime interest: 

throughput and delay. These metrics are discussed in the following sections. 

2.3.3.1    Packets. Computer networks communicate using packets. 

Packets are an organized series of bits representing the data to be transferred and 

a certain amount of overhead. Information on who sent the data, the size of the 

data, its destination, and various other identifying features form what is known as 

packet overhead. As a packet is transferred to one station to another and traverses 

the OSI layers, it constantly has overhead information added to it or stripped away. 
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Ethernet packets have a minimum of 27 bytes of overhead added to a piece of data 

whereas higher level protocols can add even more [Tan96]. 

This overhead reduces the effective throughput and increases the delay of a 

system. This is because it takes time and resources to send these extra bits of 

information. Furthermore, if the added overhead bits result in too large a packet, 

the packet will have to be broken into even smaller pieces. This process is called 

fragmentation [Tan96]. These fragments will then have their own set of overhead 

information. 

2.3.3.2 Throughput. Throughput is defined as the rate (requests per 

unit of time) at which the requests can be serviced by the system [Jai91]. Generally, 

throughput is measured in bits per second (bps) and is defined with respect to user 

data. This is distinguished from the bits added as overhead for the particular trans- 

mission or network used. Raw capacity refers to the network speed (e.g., 10 Mbps, 

100 Mbps). The maximum achieved throughput, also known as channel capacity, is 

_, frames        bits        frames        bits ,     , 
Capacity =  = x  = -. \t.6) 

second       frame      second       second 

2.3.3.3 Delay. Delay can be defined in many ways. The most often 

used definition in performance analysis is total delay - the difference between when 

a packet is ready for transmission and when it is actually received [Jai91]. Total 

delay is defined by Jain as 

DelayTotal = Delay Queuing + DelayTransmissicm + Delay Propagation        (2.4) 

Queueing delay is the amount of time a packet spends in a station's transmit buffer 

and is associated with MAC arbitration. This incorporates the time between when a 

packet is ready to be sent and when it is actually transmitted. Transmission delay is 

the time required to transmit the packet and defined in (2.1). This delay is a function 
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of where the station is physically located on the medium. Propagation delay is the 

time it takes the frame to propagate across a given medium. Typically, total delay 

is a function of the number of stations accessing the network [Jai91]. 

2.3.3.4 Power Ratio. In network performance it is desirable to have 

high throughput and low delay. Intuitively, it seems as though increasing throughput 

would reduce delay. However, this is not necessarily the case. One way to increase 

throughput is to allow as many packets onto the network as possible. That is, if 

you increase the offered load to a network, the throughput will also increase. This 

will drive the utilization of the link to 100%. This load minimizes the possibility of 

an idle channel which reduces throughput. The problem with this strategy is that 

"increasing the number of packets in the network also increases the length of the 

queues" [PD96] at each station. Longer queues, in turn, mean packets are delayed 

longer prior to transmission resulting in longer delay. 

To describe this relationship, some network designers have proposed using the 

ratio of throughput to delay as a metric. This ratio is sometimes referred to as the 

power of the network [PD96] and is 

Throughput (     . 
Power = =—. . {4-d) 

Delay 

The power ratio makes several assumptions which limits its usefulness. First, it as- 

sumes an M/M/l queuing network that has infinite queues. In a real network, the 

network interface card (NIC) and the stations themselves have a finite amount of 

memory and sometimes have to drop packets. Second, power is typically defined 

"relative to a single connection (flow)" [PD96]. It is not clear how this extends to 

multiple, competing connections. Despite these limitations, however, "no alterna- 

tives have gained wide acceptance, and so power continues to be used" [PD96]. 
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2.4    Wired and Wireless Networks 

A major difference between wired and wireless networks is the transmission 

medium. According to Rappaport, "interference is the major limiting factor in the 

performance of cellular radio systems" [Rap96]. He further concludes that the main 

difference of wireless networks is the "extremely hostile and random nature of the 

radio channel." Users in wireless networks are typically mobile stations that must 

communicate through an unguided air interface with obstacles, limited bandwidth, 

and tighter power constraints. Some examples of problems with wireless communi- 

cation are multipath, fading, and interference [Rap96]. 

Because of these limitations, wireless networks must use reduced data rates 

to achieve reliable communications, while continuing to accommodate an increasing 

number of users [Rap96]. Wired networks, on the other hand, have fixed stations 

connected with high quality, guided mediums that induce few errors and have a 

higher probability of a successful transmission [Tan96]. 

Due to the higher bandwidth, wired networks can afford to have relatively 

inefficient transfer protocols. Wired networks achieve high data rates by using more 

bandwidth. This is in contrast to wireless networks that do not have the high 

bandwidth and achieve reliable communications by using slower data rates [Tan96] 

[Rap96]. 

Packet overhead becomes an issue in both types of networks. Because the data 

rate is slower compared to a wired network, wireless networks cannot afford to have 

too much overhead added to its packets. The added bits reduce the effective through- 

put of the system since now resources must be used to transmit this 'extraneous' 

information [PD96]. 
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2.5    Carrier Sense Multiple Access With Collision Detection 

The most widely used LAN protocol is 10 and 100 Mbps Ethernet, which is 

based on CSMA/CD and codified in IEEE 802.3 [Chr98]. IEEE 802.3 is an interna- 

tional standard that specifies a 1-persistent CSMA/CD for a 10 Mbps LAN and up 

to 1024 stations per segment using UTP cabling and a hub in a star configuration 

or 30 stations per segment in a bus configuration [IEE85]. Current revisions of the 

standard support 100 Mbps and 10 Gbps transmit speeds. Adoption of these speeds 

is slow, however, and 10 Mbps is still the most widely used [Chr98] [ZimOO]. 

2.5.1 Ethernet Operation. The Ethernet medium is time-shared and hence 

can be considered a form of a time-division multiple access (TDMA) system. When 

a station is ready to send data, it first listens to the channel to detect a carrier. If 

a carrier is detected, the channel is in use and the station waits until the channel is 

idle. When the station detects the idle channel, it transmits with probability of 1. 

This is referred to as 1-persistent. 

There are reasons why implementations would use a probability less than one. 

Having p < 1 reduces the probability of collision when there are multiple stations 

waiting for a busy line to become idle. If each station transmits immediately with a 

probability of, "say 33%, then up to three stations can be waiting to transmit and 

the odds are that only one will begin transmitting when the line goes idle" [PD96]. 

However, under light loading levels, this can result in wasted bandwidth since there 

is the possibility that no station will transmit when the channel is idle. Ethernet 

uses 1-persistence to prevent the possibility of this wasted bandwidth. 

There is an upper bound of 1500 bytes in the message of an Ethernet packet 

[IEE85]. Due to this limit, a station can only occupy the medium for a fixed length 

of time. Moreover, a station must wait at least 9.6/is before it can transmit another 

frame [IEE85]. This gives other stations a chance to transmit. Furthermore, it also 
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keeps any one station from continuously transmitting and thereby preventing other 

stations access to the network [HM95] [RY94] [Chr96]. 

When two or more stations transmit at the same time, a collision is said to 

occur. When a collision is detected, all transmitting stations send a jam signal to 

alert the other stations on the network of a collision and then wait a random amount 

of time prior to retransmission. The immediate termination of packet transmission 

through collision detection saves time and bandwidth. It also minimizes delay and 

makes this the preferred MAC protocol in LANs versus CSMA without collision 

detection [Tan96]. 

Once a station detects that its frame is colliding with another, it transmits a 

512-bit jamming sequence and then stops transmission. This 512 bit minimum jam 

time comes from the fact that on a maximally sized Ethernet (180 m), the delay from 

one end to another is 51.2/is [Tan96]. Because both stations at opposite ends of the 

Ethernet detect a collision has occurred, they both must transmit enough bits to 

fill the Ethernet pipe - 512 bits. This need to transmit 512 bits explains why every 

Ethernet frame must contain at least 46 bytes of data : 14 byte header + 46 byte 

data + 4 bytes error correction code equals 64 bytes which equals 512 bits [PD96]. 

Figure 2.1 illustrates Ethernet operation with a collision. 

Figure 2.1.     Conceptualized Ethernet Operation 

Assume that the rectangular bar represents the media used for this Ethernet 

segment divided in time by the vertical bars. As is shown, each station, A-D, can 
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transmit for variable lengths of time depending on how long their packets are. In this 

example, station A senses the channel is idle and transmits at time 1 identified by the 

solid arrow. Station B senses the channel is now silent since station A has finished 

and transmits at time 2 and station C senses the channel is idle since station B has 

finished and transmits at time 3. However, station D also sensed the channel was idle 

at time 3 and begins to transmit. The dashed arrows represent a collision. This can 

occur especially when the stations are separated by large distances and propagation 

times are significant. Since both stations C and D tried to transmit at time 3, a 

collision resulted rendering any information in that time slot useless. The time 3 

brick pattern depicts wasted time and bandwidth since if station D did not transmit 

and cause this collision, station C's transmission would have been successful. 

After the collision, both station C and D backoff for a random amount of 

time as specified by the binary exponential backoff (BEB) algorithm and attempt to 

transmit at a later time. The BEB in IEEE 802.3 calls for the deferring stations to 

wait a specified number of time slots based on the collision count. If this is the first 

collision for both stations C and D, then they can either defer for 0 or 1 time slots. 

If it is the second collision, then they can defer for 0 to 22 time slots. 

In this example, assume station C has already had 1 collision previously and 

station D has none. Station C chooses to wait for 4 time periods and station D 

waits for 0. Since at time slot 4, no stations were transmitting, station D sensed 

the idle channel and began its transmission. If station C happened to have chosen 

1 time slot to defer, another collision could result with other stations in Time Slot 

5. Similarly, if station C chose 2 time slots, it is possible that it could have caused a 

collision with station A or B. Other stations continue to sense and transmit on the 

channel as they accumulate more data to send. 

2.5.2   Ethernet Implementation Issues. Ethernets are normally imple- 

mented in a far more conservative manner than what IEEE 802.3 proposes.  Most 
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have fewer than 200 hosts while the standard allows for 1024. Similarly, Ethernets 

are far shorter than 1500 meters and the propagation delay is closer to 5/xs rather 

than 51.2/xs [PD96]. Generally, an Ethernet is considered heavily loaded when uti- 

lization is over 30% since most of the network's capacity is wasted on collisions. At 

a minimum, Ethernet frames have about 27 bytes of data overhead. In addition, 

for transmission purposes, Ethernet also has an interpacket gap of 9.6/xs. This gap 

equates to about 12 bytes thereby increasing the total minimum overhead to 39 bytes 

per packet. 

2.5.3 Physical Medium. Ethernet is still the largest installed LAN topology 

with 10 Mbps being of the most popular [Chr98]. Despite the upgrade path to 100 

Mbps Fast Ethernet and the new movement toward Gigabit Ethernet, the 10 Mbps 

network still compose the majority of all LANs. Even today, most LANs use coaxial 

cabling [Chr98]. Other mediums in current use for wired LANS are unshielded 

twisted pair and optical fiber. 

Unshielded twisted pair (UTP), which is also found in 10 Mbps Ethernet net- 

works, houses 4 separate cables. UTP allows 2 strands for transmission and 2 strands 

for receiving to provide full duplex capability in the network. UTP is implemented 

in such a way that each communicating station is transmitting to a central hub in a 

star topology and therefore has a 'virtual point-to-point (PPP)' connection. 

Optical fiber poses more signaling challenges over coaxial cable or UTP and is 

the subject of intense research in fiber optic LANS (FO-LANs) [PSW92]. Essentially, 

fiber has a much larger bandwidth than other mediums and thus can accommodate 

a higher data rate. 

In the early days of networking, 10Base5 or 'thicknet' was the predominant 

physical medium. That was replaced with 10Base2 or 'thinnet' which is now the 

predominant cable in current use with the exception of UTP [Tan96].   The cable 
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employed in 10Base2 is RG-58. RG-58 has the specifications identified in Table 2.1 

below [IEE85] 

Table 2.1.     RG-58 Cable Specifications 

Frequency Range 0-4 GHz nominally 
VSWR 1.30 max 0-4GHz 

Voltage Rating 500VRMS max  1A DC 
Contact Resistance 3 milliohms  1A DC 

Impedance 50 Ohms constant for 0-4GHz 
Capacitance 101 pF per meter 
Attenuation 4.6dB per 100 meters @ 10MHz 

Velocity Ratio 0.67 

2.54 Past Ethernet Performance Studies. Kleinrock and Tobagi first con- 

cluded in 1975 that CSMA is "an efficient means for randomly accessing packet 

switched radio channels which have a small ratio (<p) of propagation delay to packet 

transmission time" [KT75]. CSMA efficiency can be measured in terms of <p where 

PropagationDelay 
PacketTransmissionTime 

Since the propagation delay is 

PropagationDelay = 
ChannelLength 
Speedof Light 

and the packet transmission time is 

(2.6) 

(2.7) 

PacketTransmissionTime = 
PacketLength 

Channel Bandwidth' 
(2.8) 

ip becomes 

<f 
ChannelLength • Channel Bandwidth 

Speedof Light ■ PacketLength 
(2-9) 
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Thus, any increase in channel length or bandwidth, or decreases in packet length 

will increase ip. A low <p results in reduced efficiency of the CSMA network [KT75]. 

Metcalfe and Boggs followed on the work of Kleinrock and Tobagi and first pro- 

posed the idea of CSMA with collision detection to increase efficiency for a prototype 

Ethernet system in 1976 [MB76]. This Ethernet system specified a bus topology of 

a 1 km cable with 100 personal workstations tapped to the bus communicating at a 

rate of 2.94 Mbps. The tapped bus could be any connecting medium and in current 

implementations is either coaxial cable (COAX), unshielded twisted pair (UTP), or 

fiber optic cabling [Tan96]. 

Further analysis of CSMA has also included performance analysis of CSMA/CD 

[ML83], [Tob80]. Tobagi and Hunt have shown that CSMA/CD has "improved 

throughput-delay characteristics over CSMA." The actual magnitude of CSMA/CD 

improvement over CSMA is dependent on the average retransmission delay and col- 

lision recovery time [TH80]. However, [TH80] examined a non-persistent CSMA/CD 

protocol versus a 1-persistent protocol with dynamic backoff. 

The performance of CSMA/CD based Ethernets has been studied extensively 

in [SH80] and [BM88]. Shoch and Hupp measured throughput in their Ethernet 

implementation at 98 percent of channel capacity and demonstrated stable behavior 

at generated loads well over 100 percent [SH80]. This unusual behavior was due 

to the network traffic that was bursty in nature and composed of a combination of 

short packets containing computer terminal traffic and larger packets indicative of 

file transfers from a relatively few number of stations. Also found by Shoch and 

Hupp, and later refuted by Peter O'Reilly, was that "overall system performance 

is not significantly sensitive to the number of stations producing a specified total 

network load, i.e., 10 stations offering 10% of the load produces the same effect as 

100 stations offering 1% of the load" [0'R83]. O'Reilly concludes that this is not 

necessarily true for all loading conditions and the number of stations involved in 

producing the offered load does in fact decrease performance [0'R83]. 
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Ethernet was originally developed to transport non real-time traffic between 

users. Typical applications of this type are file transfers (FTP) and e-mail [Chr98]. 

Users often did not perceive the inherent latency in transferring information. How- 

ever, as the needs of the network users changed, as with the increased use of real- 

time multimedia applications, delay becomes a large factor in the user's perception 

of performance and gives rise to the term "world-wide wait" [Meh96] for web-based 

applications. 

According to Christensen, delays in an Ethernet network with a high offered 

load can have lengthy and highly variable packet delays. These delays can ad- 

versely affect data throughput in windowed flow controlled protocols such as TCP/IP 

[Chr98]. These delays are caused by a phenomenon called the 'capture effect' which 

has been studied extensively in [HM95] [RY94]. In a highly loaded network, one 

single station with packets to send can dominate or 'capture' the network such that 

the other stations do not have the opportunity to transmit despite the fact that they 

have packets to send. Christensen [Chr98] studied the effects of changing the BEB 

portion of Ethernet to decrease packet delay and provide better services for real-time 

applications. 

There is no theoretical limit on maximum transfer delay. The random back- 

off and access algorithm in the Ethernet protocol can render the channel unstable 

[Pic86]. As traffic load increases and the channel becomes unstable, the number of 

collisions will also increase and the throughput will approach zero [Pic86]. As more 

stations attempt to transmit on the network, the network will become saturated 

and every attempt to transmit will result in a collision or backoff. Because stations 

cannot access the channel to transmit due to collisions or backoff, user throughput 

approaches zero. 

The CSMA/CD protocol is very complex. Analytic models use a variety of 

simplifying assumptions such as "balanced-star configuration, finite populations, 

unimodal or constant packet lengths, small packet sizes, and no buffering to obtain 
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tractable results" [Wan96]. Because of these assumptions, these analytic models 

can have very misleading results. In [TK85], the maximum achievable throughput 

for CSMA/CD is 60%. However, in a study by Smith and Kain [SK91] measured 

Ethernet performance differed significantly from predictions made by typical ana- 

lytic models. In measurement of a real Ethernet, Boggs and Mogul measured a 

throughput of 97% for large packet sizes [BM88]. 

Much of the previous work in Ethernet performance was based on analytic 

models and simulation. However, there have been some measurement studies as 

well. Measurements of real Ethernet networks are needed to avoid the simplifying 

assumptions mentioned previously. Boggs and Mogul presented measurement data 

on an Ethernet in [BM88] showing the effects of packet lengths, network lengths, 

and numbers of hosts. It was shown that Ethernet is capable of performing "ade- 

quately" [BM88] for high-bandwidth applications when response time is not closely 

constrained. In [Gon87], Gonsalves measured the performance of an operational 3 

and 10 Mbps bus structured Ethernet LAN. This investigation explored the effects 

of packet sizes and offered load on the throughput and delay metrics of the system. 

In general, as the packet size increased, throughput and delay also increased with 

respect to the offered load. The results of [Gon87] are used for the validation models 

used in this research. 

2.5.5 Summary of Research in CSMA/CD Network Performance. The lit- 

erature reviewed on CSMA/CD identified design parameters which impact through- 

put and delay performance. These are channel length, packet length, medium 

bandwidth, the number of stations connected to the medium, and the arbitration 

method. Changing the arbitration method from a random BEB to a more deter- 

ministic method as in [Chr98] [Chr96] served to decrease the mean and variance in 

packet delay in an Ethernet network. However, Ethernet can still suffer decreased 

throughput as offered load increases. 
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2.6    Code Division Multiple Access 

2.6.1 Spread Spectrum. Spread spectrum (SS) communications originally 

began in the 1950s in development of military guidance and communication systems 

[Sch82]. SS is so named because the transmitted bandwidth is much wider than 

the minimum bandwidth required to send the information. Originally, SS was used 

because of its inherent noise immunity and jamming resistance. However, a relatively 

new multiple access technique, code division multiple access (CDMA), is one of 

the principle research results of SS development [Sch82]. Rather than partitioning 

the communications channel in time slots (TDMA) or frequency (FDMA), CDMA 

techniques were developed as a hybrid of the two [Skl88]. 

SS multiple access techniques such as CDMA allow multiple signals to occupy 

the same radio frequency (RF) bandwidth and be transmitted simultaneously with- 

out interfering with one another, provided orthogonal spreading sequences are used 

[SSM99]. There are two main types of CDMA: direct sequence (DS) and frequency 

hopping (FH). Direct sequence CDMA (DS/CDMA) signals are generated by adding 

the information bits (modulo-2) to a spreading code, or pseudonoise (PN) code. This 

sequence is then transmitted using traditional modulation techniques such as binary 

phase-shift keying (BPSK) or quadrature phase-shift keying (QPSK) [She82]. Fre- 

quency hopping CDMA (FH/CDMA) uses the PN code differently. Rather than 

directly spreading the transmission signal through modular addition, FH/CDMA 

uses the code to determine successive frequency sets, changing from one frequency 

to another. Thus, the signal is 'spread' or 'hopped' across many different frequencies. 

2.6.2 DS/CDMA Transmission. The basic DS/CDMA operation is illus- 

trated in Figure 2.2. In Figure 2.2, both a sender and receiver attempt to commu- 

nicate. A binary data signal, x(t), enters a non-return-to-zero (NRZ) level encoder 

readying the information signal to be spread. Normally, the data sequence is a binary 

bit stream in the form of ones and zeroes.  In CSMA/CD, Manchester encoding is 
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Figure 2.2.     Basic DSSS System Model with BPSK Data Modulation 

used to ensure that there is a signal transition for every bit of information. Further 

information can be found in [Tan96]. The NRZ encoder converts this stream to a 

series of plus and minus ones and is sometimes said to be a bipolar pulse waveform, 

where a binary one is a minus one and a binary zero is a plus one. The information 

bit stream, x(t), is then multiplied with the PN code, g(t). Since g(t) switches at 

a much faster rate (i.e, has a higher frequency) than x(t), the signal is said to be 

'spread' since the signal is now increased or 'spread' to a higher frequency. This 

higher frequency is also know as the spreading or chipping rate. The signal x(t)g(t) 

is now modulated. In this example, it is transmitted using BPSK modulation and 

placed on a carrier frequency. The resulting spread signal, s(t), is then transmitted 

over a channel to a receiver, in this case free-space. While propagating through the 

channel, the signal can have noise added, such as background noise or interference 

from other transmission sources. The received signal is detected and demodulated. 

It is then correlated with a replica of the original spreading code g(t). Because the 

correlation is occurring on the receiver and not on the originating station, there may 

be a slight synchronization problem resulting in a phase difference on the receiver. 

Assuming perfect synchronization, the original signal is extracted and sent to an 

integrator and decision device. These last two stages in Figure 2.2 serve to aid in 

making x'(t), the received decoded information stream, estimating the original trans- 

mission. Due to noise levels and interference, it is possible for the integration and/or 

decision device to misinterpret the data and incorrectly data bit (a bit error). 
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To graphically illustrate this process, an example of a direct sequence binary 

phase shift keying (DS-BPSK) modulation and demodulation, as described above, is 

shown in Figure 2.3. 
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Figure 2.3.     Example Modulation and Demodulation of a DSSS Signal 

In this case, the PN coded waveform, g(t), has 10 chips per data bit. The pulse 

duration of the data, x(t), is ten times longer than the duration of the spreading or 

chipping interval. The transmitted BPSK signal is x{t)g(t). The PN coded waveform 

at the receiver is g(t-r). The r represents a time deviation since the waveform 

is located on a physically different station. In order to simplify calculation, it is 

assumed that the system employs perfect power control. In this case r = 0. Using 

modulo-2 addition, it can be seen that the application of the code spreads the data 

and the reapplication 'despreads' the signal resulting in an estimation of the original 

signal. 

A multiuser DS/CDMA system is obtained by extending the single-user spread 

spectrum system through the application of different spreading codes for each user. 

A CDMA channel with K users sharing the same bandwidth is shown in Figure 2.4. 

Users 1 - K data signals are spread with associated spreading codes Q\-K- These 

signals are then transmitted and summarily added in the transmission channel. The 

channel, usually free air, also adds in a noise component as well. The signal is then 
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Figure 2.4.     A CDMA Channel Model With K Users 

received at a receiver. The received signal is simply a sum of all the spread signals 

and the noise. This conglomeration of signals is then passed through a matched fil- 

ter bank. In this bank is the demodulation and correlation components as described 

in Figure 2.2. If this particular receiver is set to receive a message from User 1, 

then its matched filter will use User l's spreading code to despread the signal. The 

despreading process will extract User l's data stream while simultaneously reducing 

the interference effects of the other users since their codes do not match [Vit95]. Es- 

sentially, the despreading operation multiplies the desired signal and thereby raises 

it above the noise floor. At the same time, this action similarly reduces the inter- 

ference and noise power components resulting in those signals being enshrouded in 

the noise floor. Provided that the processing gain is such that the desired signal's 

power is sufficiently above the noise floor, the signal will be properly received and 

demodulated. 

2.6.3 CDMA Operation. In some CDMA systems, transmitting stations 

use a slotted-ALOHA based channel access mechanism to get a PN code allocation 

from the base arbitration station [PRAS99]. Once a code is obtained, the station 

transmits data on a separate transmission channel. Because transmissions occur 

simultaneously on the data channel (provided the noise floor is below a set thresh- 
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old), "the performance of the MAC protocol should be considered for efficient data 

transfer" [PRAS99]. An alternative to the base arbitration station is to preassign 

PN codes to stations and distribute a directory of assignments among stations in the 

network. 

2.6.3.1 Direct Sequence Versus Frequency Hopped. Direct sequence 

(DS) and frequency hopping (FH) are the most commonly used methods for spread 

spectrum communications [Vit95]. Although the basic idea is the same, these two 

methods have many distinctive characteristics that result in completely different 

operational performance. 

The FH technique does not spread the signal and, as a result, there is no 

processing gain. Processing gain is the increase in power density obtained when 

a signal is despread. It improves the received signal's signal-to-noise ratio (SNR) 

[Vit95]. As a result, the FH technique needs more power in order to have the same 

SNR as a DS signal. 

FH is also more difficult to synchronize since both the receiver and the trans- 

mitter must be synchronized in both time and frequency. DS, on the other hand, 

requires only that the timing of the chips be synchronized. The FH technique re- 

quires more time to search for the signal to lock to it. As a result, the signal latency 

acquisition is generally longer. DS allows a receiver to lock-in the chip sequence in 

just a few bits. 

FH is better than the direct sequence radio when dealing with multipath, 

however. Since the hopper does not dwell on the same frequency, a null at one 

frequency in the sequence may not be a null at another frequency in the sequence. 

Therefore, a hopper can usually survive multipath better than a direct sequence 

radio. 

The frequency hopper is more popular for voice than data communications. A 

frequency hopper can typically carry more data than a direct sequence radio since 
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the signal is narrowband [Skl88]. A data system must have an error rate better than 

1CT4 while in general, a voice system can only survive an error rate as high as 10~2 

[Skl88]. Voice systems can tolerate more data loss because the human brain can 

'guess' between the words while a microprocessor cannot. As a result, even with 

implementation of error checking/correcting coding, the FH system is preferred. 

Although DS typically has a lower data rate than FH, it is widely accepted 

to be easier to implement due to ease of synchronization. Furthermore, the use of 

processing gain helps to lower power consumption which is important in applications 

such as cellular phones. It also has better applicability to data communications due 

to comparably lower error rates versus FH [PZB95]. 

2.6.3.2 Power Control. Power control attempts to adjust signals 

inbound to a receiver such that they have the same power as all other signals from 

interfering stations. In wireless networks, power fade due to movement, distance, or 

location is a big problem [Skl88]. If one mobile station transmits with some power 

X and another with some power Y and X > Y, the intended receiver may not be 

able to correctly receive the communication from Y. The power in Y may be such 

that the multiplication by despreading will only raise the signal slightly above the 

large interference caused by X. And similarly, the reduction in strength of X by 

despreading may not be enough to detect the relatively small signal produced by 

Y. This is often referred to as the "near-far" problem [Sch82]. By using a power 

control mechanism, the near-far problem can be mitigated and provide the "optimum 

capacity for CDMA cellular systems" [Kas88]. Even though perfect power control 

is not attainable, in practice most research assumes perfect power control [Kas88] 

[She82]. 

2.6.3.3 Noise Versus Interference. Since CDMA is noise resistant, 

it is a good choice for wireless communications. In wireless applications, there are 

many sources of noise inherent in an unguided medium.   Background noise, co- 
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channel interference, jamming sources, and thermal noise all play a part in the 

resultant SNR. Because the PN code is noise-like, as more transmitters are added to 

the network, their transmissions appear to receivers as additional noise. 

2.6.3.4 Pseduonoise Codes. A PN code sequence is a series of units 

called chips consisting of Vs and O's (in binary form) or -l's and +l's (in polar 

form). They act as a noise-like, but deterministic, carrier used for the bandwidth 

spreading of the data signal [Vit95]. Spreading is achieved by combining every data 

symbol with a complete PN code. Since the chip rate is usually much higher than 

the data rate, this spreading results in the signal energy being spread across the 

spectrum or the data stream occupies a much larger bandwidth than it originally 

had. In order to be used for direct sequenced communications, PN codes must have 

the following properties: 

• The sequences must consist of 2-leveled values, i.e., l's and O's or -l's and +l's 

depending on notation. 

• The codes must produce a 1-chip wide autocorrelation peak. This facili- 

tates code-synchronization and has properties similar to white Gaussian noise 

(WGN). 

• The codes must have low cross-correlation values. This must be true for both 

full-code correlation and partial-code correlation. 

• The codes should be 'balanced'. Code balance means that there can only be 

a difference of up to one between the number of l's and O's in a code. This is 

required to allow equal spreading of the energy over the entire frequency band. 

There are two ways of separating users in CDMA: orthogonal and nonorthog- 

onal coding. Orthogonal codes have the property that each must be synchronized 

with the intended receiver since each code used will only be orthogonal if they are 

aligned in time. Nonorthogonal codes are asynchronous. Receiving stations can syn- 
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chronize with their respective transmitters by aligning on the autocorrelation peaks 

[VIT 95]. 

Hadamard-Walsh (also known as Walsh-Hadamard) (WH) codes are consid- 

ered orthogonal. They have excellent cross-correlation characteristics making them 

extremely useful for reducing multiple access interference (MAI) from other users. 

Being orthogonal, there is ideally zero MAI. However, although full code cross- 

correlation is zero, partial code cross-correlation is not. 

WH codes do not have a single auto-correlation peak. Thus, there is the 

possibility of multiple auto-correlation peaks making it impossible for synchroniza- 

tion without some external means. If perfect synchronization is not achieved, then 

non-zero cross-correlation peaks result attributing to a partial code synchronization. 

This causes unsynchronized users to interfere with each other. Other problems also 

arise due to the fact that WH codes do not have adequate spreading behavior. The 

spreading is not over the entire bandwidth. They do not spread data as well as PN 

sequences because the power spectral density of WH codes are concentrated in a 

small number of discrete frequencies [She82]. 

Shift register sequences are considered non-orthogonal and exhibit auto-correlation 

properties with relatively high cross-correlation sidelobes [She82]. However, they do 

have a narrow auto-correlation peak. These types of sequences are generated by us- 

ing a shift register with feedback taps. By using a single shift register with specially 

selected feedback taps, maximum length sequences (M-sequences) can be obtained. 

A shift register of size n will produce a code length 

N = 2n - 1, (2.10) 

where N is the code length. 

Gold codes are constructed from the modulo-2 addition of two M-sequences 

also known as a 'preferred pair'. By shifting one of the two PN sequences, a different 
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Gold code is produced.  This property can be used to generate many codes which 

will permit multiple access on the channel [Skl88]. 

Gold codes are a popular implementation.   They have low cross-correlation 

values and have a large family size, M, where 

M 1. (2.11) 

The code length is defined by (2.10). 

Gold codes have only three cross-correlation peaks as given in Table 2.2 [Hay94] 

where m is the shift register length and N is the period or code length. As the length 

Table 2.2.     Three-Level Cross-Correlation Properties of Gold Sequences 

m N Cross-Correlation % Occurrence 

m is odd N = 2™ - 1 

i ~0.50 

~0.25 

2l-2-J+l) -0.25 
m is even and 

not divisible 

by 4 

N = 2m - 1 

1 
N 

~0.75 

N 
~ 0.125 

N ~ 0.125 

of the code increases, these cross-correlation peaks become less of a problem. The 

most "powerful" property of Gold codes is that they have a single auto-correlation 

peak at zero, which makes it very effective for synchronization and detection [She82]. 

If a Gold code is combined with a decimated or sampled version of one of the 

basis M-sequences used to form it, a Kasami code is produced. Kasami codes have 

the same correlation properties of Gold codes. The difference is that it produces a 

larger set of codes. The family size of these codes is 

M = 2? (2" + 1). (2.12) 
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The larger the code family size, the more code addresses that can be created. 

This sets a limit on the number of users that can use the system. Also, a large family 

size allows selection of those codes that show desirable cross-correlation characteris- 

tics. 

2.6.3.5 Synchronization. For proper operation, a DS/CDMA system 

requires the PN code at the receiver to be synchronized to the transmitting station. 

This ensures the highest autocorrelation power and thus produces the highest pro- 

cessing gain [Skl88]. A higher processing gain results in a higher SNR that will result 

in more simultaneous users. 

2.64 CDMA Performance Studies. Traditional cellular CDMA systems 

are setup to have a single base station with mobile units within its transmission 

range. There are two frequency channels for the network; an access channel and a 

data channel. The access channel serves to assign a PN code to a mobile unit from 

the base station to either notify the unit of the PN code used for an incoming call 

or assign a PN code to the unit when it is ready to initiate a call. The PN code is 

randomly chosen from a pool of available codes. If there are no codes available, then 

the user may not get a dial tone or service. Once the code is received, the mobile 

unit can exchange information with the base station on the data channel using the 

assigned PN code. Communication is established from mobile unit to base station 

and vice versa as identified in Figure 2.5 

Perez-Romero [PRAS99] found that for bursty sources such as multimedia and 

web service, purely random access to the access channel was efficient. However, for 

longer transmissions such as FTP, the randomness in attaining the PN code must be 

made more deterministic. Since code acquisition must be performed for each packet, 

once a station has successfully transmitted with a randomly attained code, it should 

keep that same code rather than give it up. Otherwise, collisions resulting for code 

allocation would increase [PRAS99]. 
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Figure 2.5.     Conceptual Cell Phone Communication Link 

However, dedicated code sequences assigned to separate users are inefficient 

in terms of channel utilization and throughput. Not every station will always have 

data to transmit. So if there is a user that does not have data to transmit, then the 

assigned code is wasted since the channel is not being utilized by that station. 

Suppose there are a total of 64 codes available for a particular cell and each 

user has an assigned data rate of 9.6kbps. This means that there are at most 64 

users who can transmit simultaneously for an overall throughput of 64 x 9.6kbps 

= 614.4kbps. Now suppose that there are six more stations who enter the cell and 

wish to transmit. Since all the codes are assigned, those six users are not able to 

transmit. Since the codes have been statically assigned, even when the six users 

currently in the cell finish their transmissions, the base station will not allocate 

those codes to the new users in the cell. Therefore, when the six completed users 

stop transmitting, the overall throughput is reduced to 58 x 9.6kbps = 556.8kbps 

and there is (614.4-556.8)kbps = 57.6kbps of wasted capacity. 

Perez-Romereo demonstrated that if the network has few users, then the data 

rate for each station can be redefined to maximize the channel. Conversely, if there 

are a large number of users, lower data rates should be defined to maintain the same 

SNR level through the processing gain - assuming the bandwidth and other system 

parameters are held constant. Thus, if the codes are not dynamically assigned, there 
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would be wasted utilization. This is why the assigned code allocation is inefficient 

[PRAS99]. 

DS/CDMA can have a greater capacity and support larger data rates than 

FDMA or TDMA [Gal94] and was chosen as the preferred radio transmission tech- 

nology for the next generation wireless systems employing the IMT-2000 standard 

[JJ99]. However, this performance is achieved through joint-decoding at the receiver 

and is comparatively more complex to FDMA or TDMA. 

Using the less complicated approach of linear multi-user detectors and single 

user decoders, Erkip and Aazhang determined that the capacity of DS/CDMA com- 

pared to TDMA and FDMA was about equal [EA98]. This study found that the 

probability of not being able to access the channel and the delay limited capacity 

was better in DS/CDMA than in the other orthogonal multiple access schemes as 

the offered load increased. 

However, if the SNR is held constant for TDMA and compared to CDMA, Sari 

found that TDMA has a 10 dB advantage over CDMA and that their bit-error-rate 

(BER) were about equal assuming a nondispersive channel, perfect synchronization, 

and power control [SSM99]. Sari's results are based on an upper limit of 64 users in 

the cell and more ideal assumptions. Field trials conducted by Qualcomm Inc. in 

1996 on an actual CDMA implementation showed 10-20 times capacity improvement 

over FDMA and TDMA [Ano96] and support Gallagher's claims of improved capacity 

with CDMA. 

According to a study by Xu, "The allocation of the CDMA access channels 

can significantly affect the overall system performance" [Xu99]. If there are too few 

access channels, the system cannot be accessed even though there may be traffic 

channels available. Conversely, if there are too many access channels, the number of 

extra transmitting stations creates too much interference and wastes the RF resource. 

Xu found that CDMA has a 47% capacity improvement over slotted-ALOHA. He 

further concluded that the backoff time and number of times a station requests a 
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channel before retransmission has a small influence on performance when the channel 

throughput is low or medium [Xu99]. 

Channel performance can be measured by channel throughput, channel traffic 

load, and channel capacity. The parameters which affect these performance charac- 

teristics, Xu identified, are the number of slots a stations waits after a collision is 

detected and how many times it probes the channel before it can retransmit [Xu99]. 

Sari quantifies performance for CDMA by analyzing BER with respect to the 

number of users. In a similar study, Zeger, identifies power and interference (both 

affecting BER) as principal performance parameters [ZN99]. Zeger determined as 

more users are added to the system, the frame error rate increases due to an increase 

in signal and noise power. If one holds the frame or BER constant, then the power 

available for other users is decreased, and thus the probability of blocking is increased 

since the total interference power would exceed the background noise power [ZN99] 

[Vit95]. 

In a study by Ramakrishna and Holtzman, the information rate can be in- 

creased by two methods. A single spreading code can be used. This would increase 

the bit rate at the expense of processing gain. Or, multiple orthogonal codes can 

be employed. These codes would effectively separate the single data stream into 

several data streams and then transmit them in parallel. This is also known as 

multi-code CDMA [RH98]. Either method is equally viable for increased through- 

put and both have the same effect on other users BER and signal-to-interference 

ratio (SIR). Generally, as the data rate is increased, more transmit power is needed 

and the interference to other users becomes larger [SK98]. 

The underlying factor affecting the performance of a CDMA system is the 

BER. The bit error rate (BER) is "one of the basic measures of performance for a 

CDMA system" [Let94]. Relating the signal-to-noise ratio (SNR) to the BER and 
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applying the central limit theorem, the probability of bit error, Pe, is [Let94], [Skl88] 

Pe = Q(/2SNR), (2.13) 

where Q is the complementary error function defined by as 

1 /*00 2 

«w=vs/-e"v- <214) 

If the BER (or Pe) is high, this is an indication of a low SNR. This means that 

the signal of interest cannot be successfully extracted from the noise floor. Since the 

BER is fundamental in CDMA system performance, there have been numerous stud- 

ies on the calculation of error probabilities for DS/CDMA systems [Let94], [LP87], 

[Hol92]. One of the most common approximations used for BER calculation is the 

Gaussian approximation 

2.6.4.1 Gaussian Approximation.        The predominant estimation for 

probability of bit error or bit error rate, Pe, is the Gaussian approximation and is 

[LP87] 

where k is the number of simultaneous transmitters, N is the code length, N0 is the 

noise power spectral density, and Eb is the energy per bit. However, this approxi- 

mation is generally inaccurate, and particularly as N increases, the BER estimate 

becomes more optimistic. This yields results that give more bit errors than expected 

[LP87]. 

2.6.4.2 Improved Gaussian Approximation.       An improved Gaussian 

approximation has been proposed [Hol92] that assumes perfect power control and 
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random signature sequences and is 

P.= -3Q 
'k-1      N0 

3N       2Eb 

(2.16) 

6 

6 

'{k-l)(f)+y/3a      N0 

N2 2Eh 

■ (k - l)(f)-VSa + N 
N2 2Eh 

where 

a (k-1) 
23N2     fl_     k-2\ 
360   + V 20 +    36   J ^ ' 

(2.17) 

In [Hol92], numerical results have shown that (2.16) has accurate and consistent 

results compared to earlier research. However, its BER estimation underestimates 

BER for small values of N but is more accurrate for larger values of N. 

2.6.5 Current CDMA Implementations. DS/CDMA is currently used in 

predominantly wireless environments. The two most prevalent of these environments 

are wireless personal communications systems (PCS) [RH98] and wireless Ethernet 

LANs as defined by IEEE 802.11 [IEE97]. Some newly emerging applications include 

data over cable service interface specifications (DOCSIS) [Lab99] and powerline com- 

munications networks [Str96]. Although primarily employed in the wireless arena, 

CDMA has shown an emergence in the wired communications realm as evidenced 

by the latter examples. 

2.6.6 Summary of DS/CDMA Research. CDMA systems have two main 

channels: an access channel and a transmission channel. Many use a slotted-ALOHA 

MAC protocol in the access channel to gain permission from a base station to trans- 
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mit on the transmission channel. Once permission to transmit has been granted, 

the data rate is fixed for the system. Since users share the channel simultaneously 

and each station's data rate is defined, there is no reduction in throughput char- 

acterized by wasted bandwidth due to collisions. However, where Ethernet has an 

electrical limit on the total number of stations which can access the networks at the 

same time, CDMA systems suffer from an abrupt drop for the entire network once a 

certain threshold is reached. This point of system failure can be seen when the SNR 

or BER is such that throughput is zero. This point is usually a design parameter of 

the network. 

Performance studies of CDMA systems principally revolve around the number 

of users who can access the network simultaneously (capacity). Capacity studies are 

based on the power levels and their effects on the BER of transmissions. Performance 

is also a function of the MAC in the access channel since the MAC governs the number 

of users who are allowed to the system. 

2.1   Summary of GSM A/CD and DS/CDMA Research 

Research on both CSMA/CD and DS/CDMA shows that these technologies 

are the most popular in wired and wireless communication networks respectively. 

Neglecting the effects of increasing the bandwidth of the transmission medium, the 

performance drawbacks in wired Ethernet LANs stem from delay induced by increas- 

ing the number of stations and thereby increasing the offered load while decreasing 

data throughput. The performance of CDMA networks is a function of the number 

of users or the background noise in the channel and the arbitration performance of 

the access channel. 

CSMA/CD is used primarily in wired networks and similarly, CDMA is pri- 

marily used in wireless voice and data networks. No studies were found that use 

CDMA in wired LANs. However, CDMA has been used in broadband cable for the 

transmission medium in cable television (CATV) networks and signaling in power- 
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line networks. Little research in bridging the implementations between wired and 

wireless MAC protocol networks has been done. 

Wireless communications is becoming a viable solution to implement computer 

networks [Rap96]. Optimization of channel bandwidth through innovative protocols 

is allowing increased data rates to rival the speeds of the early wired networks. Due to 

the fact that communication through the wireless channel is far more complex and 

has limited resources, this optimization was necessary whereas in wired networks 

optimization was not as large a concern. Further research is needed to bridge the 

gap between the wired and wireless MAC protocols to further increase wired network 

performance without the need to enhance or replace the already established cabling 

infrastructure. 

2.8    OPNET 

OPNET is a powerful network simulation and modeling tool [Tec97]. It uses 

a layered hierarchy to model the different effects a packet suffers while being trans- 

mitted over a bus, point-to-point (PPP), or radio connection. Virtually any network 

device, component (i.e, workstation, server, router, satellite), or communication sys- 

tem can be modeled to predict performance. Users may modify existing models or 

create whole new node or process layer models to simulate real world or prototype 

devices. The resulting components can then be interconnected and simulated. 

2.8.1    Design Tool. Most OPNET models can be classified as systems 

composed of multiple subsystems that interact with each other. The subsystems' 

interactions rely on communication resources to exchange information. These com- 

munication resources may be required between two physically distinct entities or 

between logically linked entities based on their functional area. The most prevalent 

form of communications in OPNET models is based on messages that can carry 

information between subsystems called packets. Packets are data structures defined 
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by OPNET, which are treated as "objects that can be created, modified, examined, 

copied, sent, received, and destroyed" [Tec97]. 

The basis of OPNET operation rests in C/C++ code also known as Proto-C 

[Tec97]. This code allows the user to precisely define how a model behaves. OPNET 

specific functions called Kernel procedures allow a user to manipulate packets and 

models to achieve the desired behavior. More specifically, operations dealing with 

packet transmission and reception are key to implementation of a DSSS LAN since 

there is a subtle difference between this type of network and a traditional radio 

network. 

2.8.2 Transceiver Pipeline. Radio links provide a broadcast medium where 

each transmission can affect multiple receivers throughout the network model. The 

radio link in OPNET is implemented as a transceiver pipeline. This pipeline is a 14- 

stage process that operates on a packet as it travels from a transmitter to a receiver. 

The pipeline is split with 6 stages in the transmitter (Stages 0-5) and 8 stages in 

the receiver (Stages 6-13) as seen in Figure 2.6 [Tec97]. 

These stages are a series of functions designed to operate on specific packet 

attributes through the course of a transmission. Every type of communication link 

(i.e., bus, PPP, or radio) has an associated transceiver pipeline. Each pipeline differs 

based on the type of link in the assumptions it makes on those attributes. Since radio 

transmission is so complex, the radio transceiver pipeline has the most stages and 

does not eliminate any stages based on simplifying assumptions. This is the pipeline 

that is used for DSSS LAN enhancement. The simulated CSMA/CD network utilizes 

the simplified bus transmission pipeline. 

2.8.2.1 STAGE 0 - RECEIVER GROUP. The receiver group is 

not actually part of the pipeline. It is executed once per transmission in order to 

determine eligible receivers.   Even though the radio environment is broadcast in 
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Figure 2.6.     OPNET Radio Transceiver Pipeline 

nature, there are reasons why certain receivers should not be considered.   Some 

examples of this include: 

• Disjoint frequency bands: If the receiver and transmitter are in two separate 

frequency bands, then the transmission does not affect the other as either noise 

or a valid signal. 

• Physical separation: The receiver may be too far away from the transmitter to 

establish a link. This could also be due to obstacles in the environment. 

• Antenna nulls: Antenna gains can be significantly reduced if directional an- 

tennas are used and not pointed to the proper location. 
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2.8.2.2 STAGE 1 - TRANSMISSION DELAY. The transmission 

delay stage is invoked for each new transmission. This calculation is shared for 

all resulting pipelines created between the transmitter and receiver. This stage 

calculates the amount of time it takes to transmit the entire packet. This result is 

the simulation time difference between the beginning of transmission of the first bit 

and the end of transmission of the last bit in the packet. The transmission delay is 

saved in the packet attribute OPCJTDAJiA.TXJ)ELAY. 

2.8.2.3 STAGE 2 - LINK CLOSURE. The link closure stage is 

invoked once for each receiver in the transmitting station's receiver group. The 

purpose of this stage is to determine whether a particular receiver can be reached 

by a transmission. The ability of the transmission to reach the receiver is called 

closure [Tec97] where reach is defined as the point at which the transmission can 

be received by the intended receiver. There are several ways that a signal may not 

reach a receiver to include too low transmit power, obstacles in transmission path, 

and mismatched transmission parameters. This stage does not attempt to determine 

if a transmission is valid or not, but checks to see if the transmitted signal can affect 

a receiver channel. In effect, it applies to interference jamming as well as desired 

signals. 

2.8.2.4 STAGE 3 - CHANNEL MATCH. The channel match stage 

is executed once for each receiver that satisfies the specifications in Stage 2. The 

purpose of this stage is to classify a transmission as either valid, noise, or ignored. 

Valid packets belong to a receiver channel carrying the desired signal. Noise packets 

may or may not be valid transmissions in the network, but are considered interference 

to the desired receiver since the receiver is not locked to the desired signal. Ignored 

packets are transmissions that do not affect the desired receiver. 
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2.8.2.5 STAGE 4 ~ TRANSMITTER ANTENNA GAIN. The trans- 

mitter antenna gain stage is executed separately for each receiver except those that 

failed link closure in Stage 2 and channel match in Stage 3. The purpose of this 

stage is to compute the gain associated with the transmitter's antenna based on the 

direction it is pointing and its type. Antenna gain increases or reduces a transmit- 

ted signal's energy due to the physical characteristics of the antenna. Antennas that 

provide no gain are called isotropic since they have perfect symmetry in radiated 

power in all directions. 

2.8.2.6 STAGE 5 - PROPAGATION DELAY. The propagation 

delay stage is invoked for each receiver that successfully passed the criteria for both 

link closure and channel match. The purpose of this stage is to calculate the amount 

of time required for the packet's signal to travel from the radio transmitter to the 

radio receiver. Generally, this result is dependent on the physical separation between 

the source and destination components. 

2.8.2.7 STAGE 6 - RECEIVER ANTENNA GAIN. The receiver 

antenna gain stage is invoked for each eligible receiver. Gain is computed at the time 

the leading edge of the packet (i.e, the first bit) arrives at the receiver's location. It 

is similar to the calculations performed by Stage 4. 

2.8.2.8 STAGE 7 - RECEIVED POWER. The received power stage 

is executed separately for each eligible receiver. The purpose of this stage is to 

calculate the received power of all signals arriving at the receiver. This calculation 

is based on the packet's transmitted power, antenna gains, separation distance, and 

frequency of transmission. 

2.8.2.9 STAGE 8 - BACKGROUND NOISE. The purpose of the 

background noise stage is to characterize the effects of all noise sources except those 

due to concurrently arriving transmissions.  Concurrently arriving transmission are 
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accounted for in Stage 9. The typical background noise sources are thermal noise, 

emission from neighboring electronics, and otherwise unmodeled radio transmissions. 

OPNET characterizes background noise as the sum of both thermal noise and a con- 

stant ambient noise which can be considered additive white gaussian noise (AWGN). 

First, the thermal noise is calculated by 

ThermalNoise =((NrT)+ Tb) (W)(k), (2.18) 

where Nf is the noise figure of the receiver, T is the temperature of the receiver, 

Tb is the background temperature taken to be 290° Kelvin, W is the bandwidth the 

transmission occupies, and k is Boltzmann's constant given as 1.379 x lO-23-^. The 

ambient noise is taken as a constant noise component times the bandwidth of the 

signal given and is 

BackgroundNoise = NW, (2.19) 

where N is the ambient noise level, 1.0 x 10~26 Watts, and W is the bandwidth the 

signal occupies. The sum of (2.18) and (2.19) comprise the total background noise. 

2.8.2.10 STAGES 9 - 13. Stages 9-13 were combined in this section's 

discussion since each stage is invoked for each collision segment. Each stage may be 

invoked several times depending on the number of overlapping packets colliding in 

the channel. 

The interference noise stage (Stage 9) is invoked under two conditions: a valid 

packet arrives at its destination while another packet is already being received; or a 

valid packet is already being received when another packet whether valid or invalid 

arrives. Although both of these situations sound similar, the difference lies in the 

type of the arriving packet. If the arriving packet is valid,' then collision information 

must be updated for both the current and the arriving packet.   However, if the 
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arriving packet is invalid (i.e., destined for different receiver or otherwise considered 

noise) then only collision information is updated for only the valid packet. 

Essentially, if there are overlapping packets upon reception, interference noise 

is calculated by summing the received power of the packets that collided. This stage 

may be invoked several times for the same packet. That is to say that a single 

packet can have multiple areas of overlap with other packets at various times as seen 

in Figure 2.7. 

No Interference 
2 Interferers 

1 Interferer 
1 

Figure 2.7.     Multiple Areas of Collisions on Transmitted Packets 

At each area of collision, there may be various numbers of overlap resulting in 

different values of interference noise power for a single packet. 

The purpose of this stage is to account for the interactions between transmis- 

sions that arrive concurrently at the same receiver. The noise is accounted for by 

accumulating the power associated with the interfering packet in the noise value of 

the valid packet. Interference calculations are not needed for noise since link quality 

is not assessed. 

The SNR stage (Stage 10) takes the interference noise values and is executed 

under three circumstances: 

• A packet arrives at a receiver 
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• A packet is already being received when another packet arrives causing a col- 

lision 

• A packet is already being received and another packet which is currently col- 

liding completes reception 

This stage is invoked many times depending on the number of overlapping 

packet transmissions. The three invocation circumstances define intervals over which 

the packet's average power is constant. As such, if there is interference in packet 

reception, the SNR must be recalculated to adjust for the increase in interference 

noise. The SNR value is based on earlier stages for received power, background noise, 

and interference noise. 

The BER stage (Stage 11) is also executed under the three circumstances 

as defined in Stage 10. This stage may be invoked many times depending on the 

number of overlapping packet transmissions. The three invocation circumstances 

define intervals over which the packet's average power is taken to be constant. As 

such, if there are interference in packet reception, the BER, like the SNR, must be 

recalculated to adjust for the increase in interference noise. The purpose of this stage 

is to derive the probability of bit errors during the past interval of constant SNR. 

This is not the actual rate of bit errors, but the expected rate based on SNR and 

the type of modulation. 

Following the BER stage is Stage 12, Error Allocation. The purpose of the 

error allocation stage is to assign the number of bits in error in a packet segment. 

This assignment is based on the bit error probability calculated in Stage 11 and the 

packet length. The higher the probability and longer the packet, the more probability 

of having bits in error. 

Error Correction is taken care of in Stage 13. The error correction stage is 

invoked exactly once for each packet that is considered valid. The purpose of this 

stage is to determine whether or not the arriving packet will be accepted and for- 
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warded to the respective node models. It models any error correction capability of 

the receiver. If the number of errors is less than or equal to a set threshold, the 

packet is accepted. Otherwise, it is rejected. 

2.9   Summary 

This chapter presented an overview of the operation of both Ethernet and 

CDMA communication networks. It also identified the network simulation and de- 

sign tool, OPNET. 

Ethernet has adapted to accommodate increasing network speeds up to 10 

Gbps. However, this increase comes at the expense of replacing the installed cable 

base. This can result in a significant investment on the part of the network designer. 

Spread spectrum communications has proven to be a viable wireless networking 

communication mechanism. Although primarily employed in a wireless architecture, 

there has been implementations in wired communications. However, these imple- 

mentations do not account for the volatile nature of local area networks. 

OPNET is a proven asset in network simulation and design. Its hierarchical 

method of model implementations makes it a powerful tool to truly emulate a full 

communication network. Assuming verified and validated model design, MAC level 

simulations of both Ethernet and the proposed DSSS LAN are possible through the 

use of OPNET. 
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III.   Methodology 

3.1    Background 

In traditional wired LANs, the communication link between the transmitting 

and receiving stations is shared by allowing one station at a time access to the 

channel. In order to prevent simultaneous access to the medium, some form of 

arbitration is needed to allow each station exclusive access to the channel. This 

type of network access is used in the operation of Ethernet-based networks, the 

predominant network communication protocol used today [Chr98]. 

In an Ethernet network, only one station at a time is capable of transmitting 

data packets to another station. If the source station detects interference from a 

packet transmission from another station on the LAN, the source and interfering 

station(s) will terminate their transmissions and wait to retransmit at a later time. 

Therefore, information can only be sent in its entirety over the LAN if a certain 

amount of interference-free transmission can be sustained. 

Inherent in this one-user-at-a-time protocol are several disadvantages. Even 

though for a small number of stations Ethernet is a suitable method of data trans- 

mission, as the numbers of stations on the LAN increases, the frequency of collisions 

increases as well [TH80]. This, in turn, increases the average time required for packet 

arrival which leads to a second disadvantage - poor performance in time-critical com- 

munication. Some forms of data communication such as email and file transfers, do 

not have arrival time constraints and reasonable delays can be tolerated. However, 

excessive delay in voice or video data renders it unusable [SH80]. One approach to 

solving this problem is to allow simultaneous access to the communication channel 

or a many-at-a-time capability. Thereby, LAN communications could become faster 

and more efficient [PSW92]. 
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3.2 Problem Definition 

Wired Ethernet-based LANs use carrier sense multiple access with collision 

detection (CSMA/CD) and binary exponential backoff (BEB) to arbitrate access to 

the physical medium. As more stations access the network, throughput is decreased 

and average delay is increased due to collisions. One obvious solution is to increase 

the bandwidth available in the network. This increases the number of slots available 

for transmission and decreases the number of collisions. Larger bandwidth results in 

higher data rates and therefore higher throughput. However, replacing existing cable 

plants with higher bandwidth media is a sizeable investment [Kle92]. Furthermore, 

signal propagation delay places an upper limit on network capacity in exclusive 

access networks whatever the bandwidth. This research explores ways to increase 

the performance of the wired Ethernet-based LAN without having to replace the 

cabling infrastructure. Rather than increasing capacity by increasing bandwidth, this 

research increases capacity by allowing simultaneous access to the medium through 

the use of spread spectrum modulation techniques. 

3.3 Hypothesis 

This research shows that a network using a direct sequenced code division mul- 

tiple access (DS/CDMA) MAC can support more stations with a higher through- 

put than a comparable network using CSMA/CD. Since transmitting stations in 

a DS/CDMA network are separated by orthogonal spreading codes, each stations' 

transmission appears as noise to other stations. In this way, multiple simultaneous 

transmission streams can be supported. Since a successful transmission is based on 

the SNR of the transmission in the network, there is theoretically no limit to the 

number of stations that can access the network. Since there are no collisions in this 

network (unlike in CSMA/CD networks), as more users are added to it, there should 

be no degradation in user throughput. 

3-2 



3.4 Goals 

The goal of this research is to show that the performance of a DS/CDMA mul- 

tiple access protocol is significantly better than a comparable CSMA/CD network. 

This research also determines the practical upper limit on the number of stations 

that can be supported in each network. 

3.5 System Definition 

The systems under consideration are LANs for a small office or an academic 

computer lab. Both LAN configurations, Ethernet and DSSS, are modeled with a 

maximum of 30 network stations per network. Specifically, the performance study 

evaluates both configurations that contain a variable number of stations ranging from 

2 to 30 stations. There are always an equal number of transmitting and receiving 

stations to setup virtual 'conversations' throughout the network. All stations are 

homogeneous. Individual capacity of the stations (i.e, processor speed, memory, 

etc.) were not considered as parameters in this study. The 'generic' nature of all 

stations lends itself to focus on the performance evaluation of the LAN configuration 

only. Simulation time was set at 10 minutes based on pilot studies for performance 

responses. No further increase in simulation time produced significant changes in the 

simulation results (i.e., the simulation reached steady state such that the deviation 

in responses as the run continued was less than 1%). 

3.6 Approach 

OPNET V7.0, a network simulation and design tool, is used to model and sim- 

ulate both the Ethernet and DSSS LANs. First, an OPNET model of a DS/CDMA 

wired network was developed and tested. This model is then used to characterize 

the throughput, delay, and error rate of the network with respect to the offered load 

and number of transmitting stations. These metrics are further defined in Section 

3.8. 
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3.7   System Boundaries 

There have been many studies on the performance of Ethernet and DS/CDMA 

networks. However, significant use of DS/CDMA has only been in wireless or wide 

area networks. The operating environments are much different than that of a wired 

LAN. 

The focus of this research is in the MAC sub-layer since this is the principal dif- 

ference between CSMA/CD and DS/CDMA. The key component under study is the 

MAC arbitration scheme denned as either DS/CDMA or CSMA/CD. Since wireless 

spread spectrum networks have the ability to accommodate multiple simultaneous 

users in the same single transmission channel, the MAC protocol in wired networks 

is changed to allow this as well. Because the focus is at this particular layer, some 

operating assumptions have been abstracted out. The DS/CDMA network model 

has the following attributes: 

• Each station taps a single bus channel, 

• The only noise on the network is due to other transmissions, 

• Perfect power control, and 

• Perfect synchronization. 

To baseline the performance for comparison, an IEEE 802.3 Ethernet running 

on 10Base2 copper wire in a bus configuration is used to characterize the CSMA/CD 

network. UTP and optical fiber were also considered, but are dismissed for the 

following reasons: 

• UTP was considered since most current 10/100 Mbps Ethernet LANs use this 

cabling. However, it uses four separate strands of cable. If UTP were used in 

DS/CDMA, then there would effectively be four simultaneous channels avail- 

able from the very beginning before any application of a new MAC scheme. 

Furthermore, UTP is employed in a star configuration creating a connection 
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scheme which does not resemble a broadcast link. In effect, it is a point-to-point 

link. Since comparison of PPP to broadcast links is not under consideration, 

the single coaxial cable in a bus configuration more closely resembles the free 

space medium used in wireless applications of current DS/CDMA implementa- 

tions over that of UTP. These differences complicate the analysis of the effects 

of the MAC analyzed in this study; 

• Optical fiber was also considered, however, since the goal of this research is to 

implement better throughput in an existing network infrastructure, the use of 

fiber optic cable seems to mitigate the need for a better MAC scheme and was 

thus dismissed as an operating factor. 

10Base2 is an RG-58 copper coaxial cable. Signals propagating within it can 

have the same characteristics as those signals traveling in an antenna for wireless 

transmissions [Lab99]. Since it has the closest resemblance to free space versus UTP 

or fiber and due to its large installed base, it is used as the model for the physical 

medium. A 10 Mbps, 10Base2 coaxial LAN is chosen as the baseline architecture. 

It can then be easily ported to accommodate DS/CDMA wireless-to-wired imple- 

mentation. 

3.8   System Services and Performance Metrics 

Both the CSMA/CD and DS/CDMA protocols provide access to the broadcast 

medium in the computer network. The stations connected to this medium access the 

bus to transmit variable amounts of data. The system service is simply to provide 

an efficient communication link for each individual station's transmission. Once a 

transmission has occurred there are three possible outcomes: 

1. The bits arrive correctly, 

2. The bits arrive with errors, 

3. The bits do not arrive at all. 
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Since the networks are wired-based, their bit error rates are close to zero as op- 

posed to a wireless implementations where BER defines system performance [Rap96] 

[PD96]. The service of bits arriving with errors is thus not a service which needs to 

be measured. If there are errors, it is due to collisions in the network and will be 

attributed to outcome three: bits do not arrive at all. 

For each transmission, the data transfer rate, or user throughput and end-to- 

end delay of the DS/CDMA and CSMA/CD networks are collected. This is related 

to the load of the system defined as the number of stations transmitting in the 

network. This leads to the following performance metrics: 

• Throughput (bps) directly measures the rate at which bits arrive correctly and 

corresponds to outcome one. Indirectly, with offered load, it also measures the 

service outcome number three of bits not arriving at all. In the CSMA/CD, the 

aggregate network throughput is constrained by the capacity of the network 

media. However, in the DS/CDMA network, the aggregate network throughput 

is limited by the sum total of the capacities of each individual station since all 

stations can transmit concurrently at the same time, 

• Mean Delay (msec) is the time from when a packet is placed in the transmitter's 

transmission queue to when the final bit is received at the receiver, and 

• Power Ratio which relates throughput and delay and measures outcomes one 

and three and indirectly relates to outcome two. As throughput increases, the 

power ratio also increase. As delay increases, power decreases. Even though 

throughput may increase at the expense of delay, the ratio of the two shows a 

performance decrease. 

The throughput and mean delay are used to compare performance between both the 

CSMA/CD and DS/CDMA LAN implementations. They are also used to compute 

the power ratio of the network to give another venue to characterize the performance. 
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Other metrics recorded are queue size, queuing delay, and average packet size. 

Queueing delay is a component of the mean end-to-end (ETE) delay metric and 

influences outcome three. If packets cannot queue, then they are dropped which 

reduces throughput. Packet sizes will aid in determining the overall effect of the 

queueing delay, ETE delay, and throughput. 

3.9   Parameters 

3.9.1 System. The system parameters affecting the performance of the 

network and packet transmission delay are: 

• Speed of the network: 10 Mbps [IEE85] 

• Bandwidth of the physical medium: 400 MHz [Lab99] [Tan96] 

• Length of physical medium: 180 m [IEE85] 

• Type of MAC: CSMA/CD or DS/CDMA 

• SNR 

• Eb/No 

• Number of stations connected to the network 

• Transmission Buffer size: 8 KB [Kil98] 

The parameters that are common to both Ethernet and DSSS LANs are: 

• All stations are homogeneous 

• Packets arrive at each station according to a Poisson distribution. 

• Packets are serviced on a first-come-first-served (FCFS) basis 

Parameters that are specific to Ethernet: 

• IEEE 802.3 Standard 

• 10Base2 bus configuration 
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• Maximum channel bandwidth is 10 Mbps 

• Binary Exponential Backoff (BEB) used for retransmission delay interval when 

a collision occurs 

Parameters specific to DSSS: 

• Direct sequenced spread spectrum 

• No coding or error correction 

• Binary phase shift keying (BPSK) modulation 

• Processing gain is defined as channel bandwidth divided by data rate 

ProcessingGain = GP =   _. ±  „ ,   ■ (3.1) 
DataRate 

• Sources of interference are 

- Background thermal noise 

- Transmitting sources not in same code family 

- Multiple access interference due to transmission from other stations in the 

same code family 

• Code family employed are Gold codes 

- Length, N=513 

- 513 preferred m-sequences accommodates more than the 2-30 accessing 

stations 

- Maximum cross correlation bounded at a nominal value of about 0.0176 

based on the expected value of the equations defined in Table 2.2. This 

parameter is explained further below. 
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3.9.1.1 Code Selection. Gold codes are modeled in the DS/CDMA 

simulations. Since the operation of CDMA is not actually under review, the choice of 

a spreading code is only made to help define what chipping rate is used and to quan- 

tify the cross-correllation effect of the codes on multiple access interference (MAI). 

For simulation purposes, the actual spreading code is irrelevant since it's only im- 

pact for OPNET modeling is how it affects the noise resulting from cross-correlation 

MAI. Each code family (i.e., WH, Gold, or Kasami) has it's own unique characteris- 

tics and it is these families which govern CDMA performance in a simulation study. 

Furthermore, since Gold codes are so well behaved with its 3-valued correlations, the 

expected value is used based on Table 2.2. Since OPNET uses the final sum total 

of the multiple access interference, this assumes the cross-correlation values occurs 

according to their percentages. 

Because the choice of Gold codes, synchronization is possible through the code 

itself. However, since this research is concerned with the MAC sublayer, synchroniza- 

tion is not an issue and therefore we assume stations to be perfectly synchronized. 

3.9.2 Workload. The workload is defined in the OPNET simulation by 

specifying the distribution of the size of and interarrival times of the packets. The 

workload is a function of the number of users and the amount of data that must 

be transmitted which are factors of this study. It is assumed that all stations have 

an identical offered load to the system and that increasing the number of stations 

increases the offered load to the network for the same packet interarrival time. This 

is done to facilitate the ideal separation of the factor effects in the analysis. The 

workload parameters affecting performance are: 

• Packet interarrival times which are exponentially distributed, and 

• Packet size which is geometrically distributed with mean of 791 bytes as defined 

by the IEEE 802.3 [IEE85]. 
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3.10 Factors 

The factors chosen for this study are the following: 

• Type of MAC scheme used: DS/CDMA and CSMA/CD, 

• Number of stations transmitting on the network: The upper limit on Ethernet 

for a 10Base2 Network is 30 nodes per segment [IEE85]. Five different values 

will be used for the number of stations, n=2,4,8,16,30 

• Workload: the offered load to the network will be 25%, 50%, 75%, 100%, 200%, 

and 400% of the network capacity. Each station on the network will contribute 

an equal share of the offered load. 

3.11 Exponential Distribution for Workload 

Since network traffic is a factor in this research, specific values for the mean 

have been chosen to represent a range of light to heavy loading levels. The value of 

the mean is set to provide the network load of 25%, 50%, 75%, 100%, 200%, and 

400% channel bandwidth utilization. The latter three levels represent an overload 

condition. 

These loading levels are dependent on the number of transmitting stations 

in the network. For an overall network utilization of 25% for a 10 Mbps Ethernet, 

stations on the network must generate an offered load to total 2.5 Mbps or 0.25 times 

10 Mbps. For example, if there are 10 stations on the network, then each station 

must offer 0.25 Mbps of load to the network or ^^tat^s • Using the minimum and 

maximum values for the packet size defined in [IEE85], the average packet length is 

about 791 bytes. Since there are 8 bits per byte, it is a simple matter to convert the 

number of bits of offered load to the number of packets of offered load. The offered 

load per station is 

C. \ / %Utilization \  ( NetworkCapacity \ 
jackets    \ =    I      ice      J I     **a^aJv (3-2) 
sec ■ station)      (PacketLengthinBytes) (|^) 
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The interarrival time is simply the inverse of (3.2) and gives seconds per packet for 

each station. The values for the interarrival times for the various configurations of 

the simulation trials are given in Table 3.1. 

Table 3.1.     Packet Interarrival Times (msec) 

Number of Users 
Offered Load 2 4 8 16 30 

25% 2.53 5.06 10.12 20.25 37.97 
50% 1.27 2.53 5.06 10.12 18.98 
75% 0.84 1.69 3.37 6.75 12.66 
100% 0.63 1.27 2.53 5.06 9.49 
200% 0.32 0.63 1.27 2.53 4.75 
400% 0.16 0.32 0.63 1.27 2.37 

The DSSS network does not require dividing the the total load amongst its 

users since there is ideally no conflict in resource allocation. It is possible that every 

station in the DSSS network each could transmit to the maximum capacity of the 

network. Even so, in order to maintain consistency between the two different net- 

works, every station will have the interarrival times outlined in Table 3.1 regardless 

of MAC scheme used. 

The data rate is a user defined factor in the DS/CDMA network. Depending 

on the amount of processing gain required to maintain a SNR capable of sustaining 

a BER of 1 x 10"4, the data rate can be set to achieve the required processing gain. 

Since the Ethernet station could ideally handle a data rate of 10 Mbps, the DSSS 

stations were designed to also accommodate a 10 Mbps data rate although the DSSS 

could be configured for a higher data rate at the expense of the processing gain. 

3.12   Evaluation Technique 

This research will use simulation and analysis to compare CSMA/CD to DS/CDMA. 

The simulation is conducted using OPNET MODELER [Tec97], a network simula- 

tion and design tool.   Models of both Ethernet and DSSS networks for the 2-30 
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connected stations are created using the graphical user interface in OPNET MOD- 

ELER and simulated on UltralO SparcStations running SunOS Release 5.7 operating 

system. 

3.13   Models Used 

This research used the OPNET provided CSMA/CD models to build a 10Base2 

bus-type Ethernet network. These components include OPNET's ethcoaxstation-adv 

models for the stations, eth.coax.adv for the channel, and ethJap^adv for the bus 

tap. 

The DS/CDMA models were created using OPNET's simple radio transmitter 

and receiver models. These are built using three components: a source, a queue, 

a transmitter/receiver, and an antenna. Most studies and models for DS/CDMA 

networks use a wireless channel which assumes transmission in a lossy, unguided 

medium. This research first developed the DS/CDMA network as a wireless net- 

work following the specifications of generic direct-sequenced spread spectrum com- 

munications. This model was then validated for proper operation by comparison to 

analytic models. The free-space model for the transmission channel in the wireless 

implementation was then modified to have characteristics of the RG-58 (10Base2) 

copper cable. This, then, changed the wireless DS/CDMA implementation and 

turned it into a wired LAN for comparison to the Ethernet LAN. The rest of this 

chapter explains how the DSSS models were developed as well as detail the analysis 

process which will be covered in-depth in Chapter 4. 

3. U    OPNET Implementation of DSSS 

There are many characteristics that separate DSSS from normal radio trans- 

mission. This includes differences in the amount of required transmitter power, signal 

bandwidth, interference, and noise reduction. Channel attributes normally defined 

for an unguided medium such as the air interface for radio transmissions must be 
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changed to emulate a guided medium such as coaxial cable. In order to accommodate 

these changes, several transceiver pipeline stage modifications are required. Specific 

code changes are listed in Appendix D. The addition of certain model attributes 

is needed to successfully simulate a DSSS network. These attributes were added to 

both the DSSS transmitter and receiver and are identified in Table 3.2 and further 

explained in the following subsections. 

Table 3.2.     Extended Receiver Attributes 

Attribute Variable Type Default Value 
Code_Family Integer 0(Gold Code) 

Cross-Correlation Double 1 
Spreading.Gain Double 1 

The Code-Family attribute was added to provide a flag for OPNET to identify 

that a DSSS transmission is taking place. If this attribute is not set, then OPNET 

assumes that the transmission is not a spread signal and follows the default radio 

calculations in the pipeline. The variable type is an integer to easily differentiate 

the type of code family employed. There are several types of spreading codes used 

in DSSS communications - each having its own unique characteristics. The default 

value is defined as 0 representing a Gold code family. Other values which can be 

assigned different integer values are WH codes, Kasami codes, and any number of 

others. However, for this research, only the attributes for Gold codes have been 

defined. 

The code family chosen for spreading impacts the value of the Cross-Correlation 

attribute. The cross correlation identifies how much of a de-spread signal's power 

will pass on to the receiver as noise. Various code families have different values 

of cross correlation. Gold codes have very 'well behaved' tri-level cross correlation 

values and is easily inputed into the Cross-Correlation attribute. The variable type 

is a double since cross-correlation is essentially a percentage of passed interference 

power. 
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The Spreading-Gain attribute is also a double value. This attribute performs 

an adjustment to the overall processing gain of the system based on the type of 

interference noise encountered in a transmission. When the de-spreading operation 

is applied to the signal in the presence of narrowband noise, there is a different 

processing gain associated with it versus a wideband or pulsed interference signal. 

The interfering signal does not necessarily get reduced by the full processing gain 

of the system as do regular MAI signals [PZB95]. The Spreading-Gain attribute 

compensates for this by scaling the overall processing gain of the system. One of the 

operating assumptions is that the only source of interference is due to MAI which 

is roughly equivalent to wideband noise. Since this type of noise does not scale 

as do narrowband or pulsed noise, it's value is 1 which means that the amount of 

processing gain into the system with this type of interference is the same as the 

processing gain out of the system. In examining the other types of interference, the 

Spreading-Gain attribute can have a range from 0 to 1 where 1 is no reduction in 

gain and 0 means that the noise is resistant to this spreading technique. 

3.14.1 Stage 2 - Link Closure. It is assumed for simulation purposes that 

link closure is established. All stations in the network are capable of sending and 

receiving information to any other station. As such, the closure-all pipeline stage 

is employed. Hence, there are no calculations performed for this stage other than 

assigning a true value to the link closure attribute. 

3.14.2 Stage 3 - Channel Match. The channel match stage ensures that the 

transmitter and receiver have compatible characteristics for communication. Where 

the traditional radio characteristics leave off, spread spectrum requires a few more 

properties that must 'match'. Spread spectrum's most notable difference between 

traditional radio is the use of a 'spreading code'. These codes possess unique proper- 

ties depending on the family of code membership. Auto and cross-correlation values 

exist between any two codes. This auto and cross-correlation is essentially the de- 
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gree to which the codes are similar. The actual cross-correlation value is based on 

spreading code length and other properties [Skl88]. A family of codes possesses the 

unique qualities of minimal cross correlation values between codes in the family and 

reduced correlation between codes of a different family. 

OPNET already has an attribute in the radio link for a spreading code. This 

attribute is used as a way to identify an individual station - a virtual address. 

Assigning a value to this attribute does not make the transmission spread spectrum 

communication. In fact, it does not affect the operation at all [Tec97]. Since this 

research is not actually modulating data streams or spreading transmissions, the need 

for an actual spreading code is a moot point. However, from a simulation standpoint, 

it can be used to designate a particular code from a predefined family for the network 

for use by a certain station for multiple access considerations. Therefore, in order to 

implement a DSSS LAN, a code family must be defined to differentiate the spreading 

code attribute as a member of a spread spectrum network versus a radio network. 

The attribute Code-Family is added to facilitate this function. This attribute 

must match on both the transmitter and receiver end. If they match, then the re- 

ceiver channel will be tagged as a valid transmission and be processed by subsequent 

stages. However, if they don't match, then it is assumed that the packet is noise and 

be processed in the Interference Noise stage. 

3.14.3 Stages 4 & 6- Transmitter and Receiver Antenna Gain. This stage 

is modified to always assign isotropic antenna transmission characteristics to the 

receiver channel. This facilitates the ultimate wired implementation. 

3.14.4 Stage 7 - Received Power. One of the operating assumptions of 

the DSSS LAN is perfect power control. In order to facilitate this characteristic, 

the received power calculation is manipulated such that the user defined transmitter 

power is the same as the resulting received power at the receiver. The relationship 

between frequency, distance and power is therefore eliminated. 
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3.14-5 Stage 9 - Multiple Access Interference Noise. This stage was re- 

named to better explain its function. Assuming that the only sources of noise are 

thermal and background noise, then stations produce interference noise. This stage 

was changed to accumulate noise power according to the type of interference. All 

stations in the network can be considered wideband jamming sources if their sig- 

nals are tagged as interference since transmissions occupy the full bandwidth of the 

medium. 

To simplify calculations of the SNR and more closely model the wired medium 

of RG-58 cabling, it is assumed that the only noise source is the other transmitting 

nodes. Thus, the noise floor will be composed of other transmissions simultaneously 

accessing the network. If there are no transmissions, the cable will be silent (no 

signals). This is not an unreasonable assumption since the stations on a wired me- 

dia experience near zero noise. Current OPNET models do not account for noise 

in the Ethernet-Bus state processes or the bus transmission pipeline [Tec97]. Noise, 

in the Ethernet bus, will result in a collision on the network. This is also the oper- 

ating assumption for the DS/CDMA network when there are multiple simultaneous 

transmissions, rather than a collision occurring, the noise level is increased. 

In order to understand how the interference noise attribute is accumulated, 

consider the diagram in Figure 3.1. If the receiver is looking for s(t) and there are 

no other transmissions occurring, the signal-to-noise (SNR) for the signal of interest 

before transmission is 

SNR = ^, (3.3) 

where N is the average noise power in the system and S is the signal power of the 

signal of interest. For a DSSS binary phase shift keyed (BPSK) modulation in a 

additive white gaussian noise channel, the SNR at the input to the demodulator is 

SNR,^ =^ = GP(SNR) = GP^, (3.4) 

3-16 



m'(t)...j'(t) 

s'(t) 

V   7Y 

s(t)' -Cx 

t 
Demodulator 

g(t) 

Figure 3.1.     Simplified Diagram of Multiple Access Interference 

where GP is the processing gain of the system and is defined in (3.1) and the primes 

indicate the received power of the respective signals (either signal of interest, S, or 

noise, N). 

Consider a signal, m(t), that is in the same code family as the intended signal, 

s(t). Since m(t) is in the same family, there will be some cross-correlation in the 

de-spreading process and it can be considered as a multiple access interferer (MAI). 

This cross-correlation coefficient serves to reduce the processing gain by some amount 

dictated by the coefficient's value. Following the same reasoning for as (3.4), the 

signal-to-multiple-access-interferer can be described by 

SNRM = ^rl = (a)(GP)^-, 
M> M' 

(3.5) 

where a is the cross-correlation coefficient between the codes used to spread and 

despread respectively and M is the received power of an MAI station. 

Now consider another signal, j(t), arrives at the receiver. This time, it is some 

arbitrary signal that may or may not be spread but is not in the same code family 

as s(t).   This signal can be considered a generic jamming source.   There are no 
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cross-correlation values to deal with in this case. However, depending on the type of 

jamming (i.e., wideband, narrowband, pulsed), the processing gain associated with 

this signal is different. Following (3.4) and (3.5), a signal-to-jamming ratio can be 

defined as 

SNRJ=^ = (GPj)j. (3-6) 

The signal of interest plus MAI stations and jamming sources are potential 

transmissions that could be encountered in a DSSS network. To relate all three 

signals together, consider the signal-to-interference ratio (SIR) at the input to the 

demodulator. The numerator is the power of the signal of interest, S. The denomi- 

nator is the sum of the noise signal powers, M, J, and noise N 

SIR = ^ . (3.7) 
M' + J' + N1 V    ' 

Simplifying (3.7) using (3.4), (3.5), and (3.6) yields 

orn         (GP)S  ,3g^ 
N + (§%) J + (a(GP))M' 

Generalizing (3.8) to account for multiple jammers and MAIs yields 

qTRz=  (GP)Sj  ,gg* 

where k is the total number of transmitting stations, St is the power of the signal of 

interest, r is the number of jammers, and t is the number of MAIs. 

A Spreading-Gain attribute is added to the receivers' list of attributes to ac- 

commodate the varying types of interference and is defined as 

GP 
SpreadingGain = 775-, (3.10) 
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which is simply a ratio of processing gains where GP is the standard processing 

gain defined by (3.1) and GPj is the processing gain experienced by a jammer 

source. Wideband interference results in a spreading gain approximately equal to 

one [PZB95]. 

This pipeline stage is responsible for calculating the denominator of (3.9). 

Arriving packets are checked to determine if the packets overlap in time or have 

collided. If they do and they are members of the matched receiver's channel, then 

they are considered noise. Based on the flags set in the channel match stage, the 

noise is applied as either MAI noise or jammer noise. MAI noise is enhanced by the 

system's GP but also decreased by the cross-correlation coefficient. Jammer noise is 

decreased by the newly-defined spreading gain ratio. This accumulated sum is the 

resulting accum-noise attribute of the packet. 

3.14.6 Stage 10- Signal to Noise Ratio. OPNET's default radio transceiver 

pipeline stores the SNR before applying GP. When plotting the SNR statistic, this 

value would result in less than expected numbers for the DSSS network. Therefore, 

a modification was made to this stage to add in the processing gain. 

3.15   Experimental Design 

A full factorial experimental design with replications is chosen for the experi- 

mental design. Factors and their associated levels are identified in Table 3.3. 

Table 3.3.     Factors and Levels 

Factors MAC Number of Stations Network Offered Load 

Levels 
DS/CDMA 

CSMA/CD 

2 
4 
8 

16 
30 

25% 
50% 
75% 

100% 
200% 
400% 
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There are a total of three factors, each of which has two, five, and six respective levels. 

In order to characterize the effects of these factors, a minimum of 2 x 5 x 6 = 60 

experiments are needed for every combination of these factors at the prescribed 

levels. In order to isolate experimental error, three replications have been chosen for 

a total of 60 x 3 = 180 experiments. 

3.15.1 Regression Model. The model for this design consists of three repli- 

cations of each of the 60 experiments corresponding to the a=5 levels (2, 4, 8, 16, 

30) of the # Stations factor, b=6 levels (25%, 50%, 75%, 100%, 200%, 400%) of the 

Network Offered Load factor, and c=2 levels (DS/CDMA,CSMA/CD) of the MAC 

protocol used. There are a total of seven, effects. This includes; 

• Three main effects: 

1. MAC Scheme 

2. # Stations 

3. Network Offered Load 

• Three Two-Factor Interactive Effects: 

1. MAC Scheme and # Stations 

2. MAC Scheme and Network Offered Load 

3. # Stations and Network Offered Load 

• One Three-Factor Interactive effect of all three factors 

To analyze the throughput and delay of this research, the model is 

Vobcr = M + Ota + ßb + £c + lab + I/CIC + Ibc + labe + eabcr, (3.11) 

where 
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• Vobcr = the response of the rth replication of the experiment with the three 

factors at the a, b, and c levels respectively 

• (i = mean response, 

• aa = effect of # Stations at level a, 

• ßb — effect of Offered Load at level b, 

• £c = effect of MAC scheme at level c, 

• 7 = interactive effects of factors at given levels, 

• eabcr — error of the response of the r*/i replication at the factors a, b, and c 

levels. 

The effects of the factors in this research are analyzed using an ANalysis Of 

VAriance (ANOVA) table. This provides for the calculation of effects of not only the 

factors, but the effects due to the interaction of these factors as well as characterizing 

experimental error. Further, the percentage of variation explained by the # Stations, 

Offered Load, MAC scheme, their interactions,'and experimental error are identified. 

3.15.2    Verification and Validation of Models. Much research has been 

conducted in Ethernet LANs. The study by Gonsalves [Gon87] was used to validate 

the ethcoaxstation-adv model as well as the underlying network media. These 

models are provided by OPNET and have already undergone extensive testing as a 

sound simulation model of a coaxial-based 10 Mbps Ethernet station. Comparison 

of the results obtained from verification and validation tests to Gonsalves's study is 

needed to ensure proper setup of the Ethernet networks used in this research. The 

results of this analysis is in Chapter IV. 

Due to the complexity of DS/CDMA wireless channels, most previous research 

uses statistical approximations rather than exact analysis to model these networks. 

In order to verify that the OPNET models created for this research behave as they 

should, model verification is accomplished by comparison to these approximations. 
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For a CDMA system, the BER defines the performance of the system. Approxima- 

tions of the BER are typically used in verification and/or validation of DS/CDMA 

research. 

The BER is related to the SNR as seen in (2.13) This is also the relationship 

that OPNET uses to do a table lookup for the BER value in Stage 11 of its transceiver 

pipeline [Tec97]. 

The improved Gaussian approximation along with the standard Gaussian ap- 

proximation are both used to verify and validate that the OPNET DS/CDMA mod- 

els created for this research is operating correctly. This was done by comparing the 

results of the analytic models to that of the models in this research and statisti- 

cally determine if they are different. If they are not statistically different, then the 

DS/CDMA models can be assumed to operate validly based on the assumptions of 

this research. 

3.16   Summary 

This chapter outlined the methodology used to analyze the data resulting from 

this research. The experimental design was presented along with definition of this 

research's goals, boundaries, factors, and input parameters. 

OPNET's radio transceiver pipeline is modified to perform spread spectrum 

communication functionality. The Ethernet models are taken from OPNET's default 

library and compared for proper performance. 

A multilinear regression is constructed to characterize the throughput and 

delay responses of the systems under study. The comparison of both systems is 

facilitated through the use of an ANOVA table. 
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IV.   Results and Analysis 

This chapter presents the results obtained from this research. Verification and vali- 

dation of the DS/CDMA and CSMA/CD LAN models were conducted and summa- 

rized. Results from experimental runs are also presented. An analysis of variation 

was conducted to quantify the effects of the MAC scheme, # of Stations, Network 

Offered Load, and the interactions between these factors to the throughput and delay 

metrics. 

4-1    Verification and Validation 

The simulation of both the DS/CDMA and CSMA/CD models must be de- 

signed such that the results are representative of the real systems they model. This is 

accomplished using a two-stage approach. The first stage is verification, the second 

is validation. 

Since there are a number of assumptions made to implement the respective 

LANs, the first step is to determine if the model behaves correctly. This is referred 

to as 'verification' which ensures that "the model does what it is intended to do" 

[Jai91]. There are three tests which can be performed to aid in verification [Jai91]. 

1. Consistency: When offered similar workloads, the results should be similar as 

well. 

2. Seed Independence: Changing the random seed between replications of a par- 

ticular configuration should produce similar results. This ensures that the 

random-number generation does not effect the final result. 

3. Degeneracy: The model should work for extreme cases and produce results. 

This aids in the debugging process to ensure proper model behavior. 

The second step is called 'validation'. Validation is concerned with the "rep- 

resentativeness of the assumptions" [Jai91]. In other words, validation ensures that 
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the model produces results consistent with those observed in a real system. There 

are two comparisons which aid in the validation process [Jai91]. 

1. Real-System Measurements: Comparison to real systems is "the most reliable 

and preferred way to validate" [Jai91]. However, this may not be possible for 

all situations. 

2. Theoretical Results: The system which is being modeled may be analytically 

modeled using simplifying assumptions. The results obtained from an analyt- 

ical model may be compared to validate the simulation model, but there is a 

danger that the analytic model is not valid. If so, the simulation model will 

not be valid either. 

It is important to note that although a model may be verified and validated, it 

is very difficult to have a 'fully validated' model. The validation tests are only valid 

for the configurations in those tests. Since the verification and validation runs cover 

the extreme cases this research will encounter, the simulation models are assumed 

to operate as a real implementation of these systems under the same assumptions. 

4.1.1 CSMA/CD. CSMA/CD verification tests were conducted using OP- 

NET's ethcoaxjstation-adv models for the stations, eth.coax-.adv for the channel, 

and eth-tap-adv for the bus tap. These models are used to build and simulate a 

10Base2 coaxial Ethernet LAN. Verification is accomplished in four stages: 

1. Network containing two stations transmitting at sub-capacity. 

2. Network containing two stations transmitting over capacity. 

3. Network containing four stations transmitting at sub-capacity. 

4. Network containing four stations transmitting over capacity. 

The first and second stages verify that a single communication link is estab- 

lished.  Since the medium is a coaxial wire, the error rate can be considered zero. 
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Therefore, the number of sent packets should equal the number of received packets 

provided the arrival rate of the packets do not saturate the network. If the network 

has more packets arriving than can be transmitted, as is the case in Stage 2, then 

there will be packet drops at the transmitting station. Since the transmitters have 

a finite memory size (8 KB) [Kil98] and the network is saturated, the packets will 

have to enqueue in the transmitter's buffer. Once the buffer fills, the packet must 

be discarded resulting in a buffer overflow. However, since the buffer is continually 

full, the transmitter will always have a packet to send and thus there will be nonstop 

transmission. The throughput will be equal to the capacity of the channel which is 

10 Mbps. Furthermore, since packets are queuing in Stage 2, the end-to-end delay 

will also increase in this configuration. 

The third and fourth stages verify that two communication finks are estab- 

lished. However, since there are two simultaneous transmissions occurring at the 

same time, there is an increased probability for collisions to result. Since bandwidth 

is wasted whenever there is a collision, the throughput will be decreased compared 

to Stages 1 and 2. In the overloaded case for Stage 4, packets will be lost not only 

due to collisions but also due to transmitter buffer overflows. Delay will also increase 

since packets are queueing. 

Stages 1 and 2 are setup according to Figure 4.1. Stages 3 and 4 are setup 

according to Figure 4.2. Stations designated with a 'TX' are setup to only transmit 

whereas 'RX' designate stations configured to only receive. The transmitters are 

assigned interarrival times to generate loads below the capacity of the network. For 

verification purposes, three trials were conducted with interarrival times constant 

and set at 2.5 ms for Stage 1 and 5 ms for Stage 3 . This generates an average total 

offered load of about 2.5 Mbps which is below the 10 Mbps capacity of the network. 

The packets are constant sized at 791 bytes. For the overload cases in Stages 2 and 

4, the interarrival times are constant and set at 0.3 ms and 0.6 ms respectively to 
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Figure 4.2.     Ethernet Station Verification Setup: 4 Stations 

generate a total offered load of 20 Mbps - twice the capacity of the network. The 

configurations for the verification runs are summarized in Table 4.1 

Verification of the CSMA/CD simulation model is accomplished using the con- 

sistency, seed independence, and degeneracy tests. Consistency is established for the 

workload in that one station offering the network a total of 2.5 Mbps has approx- 

imately the same result as two stations offering a total of 2.5 Mbps even though 

each station is only offering 2-5J^P" = 1.25 Mbps each to the network. Changing the 

random seed between the 3 replications produced similar results. Overloading the 

network shows that for the extreme loading case, the model still produces consistent 

results. Extreme underloading was not considered since the 2.5 Mbps offered load is 

an underloading case. 

It is clear that the CSMA/CD models operate according to the behavior of 

Ethernet operation. Since there was a finite simulation time (10 minutes), the de- 

4-4 



Table 4.1.     Ethernet Verification Configuration Parameters 

Parameter Value 
Packet Size Constant 791 Bytes 

Interarrival Rate 
Stage 1 2.5 msec 
Stage 2 5 msec 
Stage 3 0.3 msec 
Stage 4 0.6 msec 

Buffer Size Infinite 
Simulation Time 5 minutes 

lay measurement had a maximum value. However, since there was also an infinite 

buffer size, the delay values would have continued to increase without bound as the 

simulation is increased. Collisions were indirectly measured based on the reduction 

in the throughput measurements. Since the Ethernet channel has a near zero BER, 

losses are attributed solely to collisions. Since there was a loss in throughput, there 

must be an increase in the number of collisions. All values recorded were averaged 

over the 10 minute simulation time for these verification trials. Based on the results 

in Table 4.2, therefore, the model is verified. 

Validation of the CSMA/CD network is accomplished by comparing the results 

to data obtained from a real system. In a study by Gonsalves [Gon87], the through- 

put and delay metrics were measured in a 10 Mbps Ethernet LAN configured using 

values listed in Table 4.3. 

This research duplicated this configuration and recorded throughput and delay. 

The data was then compared using paired observations where the result of each 

configuration in the simulation was paired with the data point corresponding to 

the similar configuration in Gonsalves' study. The performance differences in these 

paired observations produces a new set of data which a confidence interval for the 

mean can be calculated. This analysis is presented in Appendix B. The results 

obtained from validation simulation runs are seen in Figure 4.3. 
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Table 4.2.     Ethernet Verification Results 

Metric Replication 1 Replication 2 Replication 3 

Throughput 
Stage 1 2.47 Mbps 2.49 Mbps 2.48 Mbps 
Stage 2 2.48 Mbps 2.49 Mbps 2.47 Mbps 
Stage 3 9.50 Mbps 9.50 Mbps 9.50 Mbps 
Stage 4 9.26 Mbps 9.25 Mbps 9.24 Mbps 

Delay 
Stage 1 0.77 msec 0.77 msec 0.77 msec 
Stage 2 0.78 msec 0.78 msec 0.77 msec 
Stage 3 6.54 msec 6.54 msec 6.54 msec 

Stage 4 11.18 msec 11.19 msec 11.11 msec 
Queue Size 

Stage 1 0.05 packets 0.05 packets 0.05 packets 
Stage 2 0.01 packets 0.01 packets 0.01 packets 
Stage 3 9.81 packets 9.80 packets 9.81 packets 
Stage 4 7.87 packets 7.62 packets 7.73 packets 

Table 4.3.     Gonsalves Ethernet Configuration 

Parameter Value 
Bandwidth 10 Mbps 

Packet Sizes Constant 512 and 1500 Bytes 
Normalized Offered Load 10-1000% 

Number of Stations 30-38 
Buffer Size for Each Station 1 packet 

As can be seen, the simulated results tracked the measured responses in Gon- 

salves' study fairly closely. A confidence interval was constructed on the mean dif- 

ference between these two systems. Since the confidence interval included zero, the 

systems are not statistically different. Therefore, with 95% confidence, the simula- 

tion behaves the same as a real 10 Mbps Ethernet system. 

4.1.2 DS/GDMA. The DS/CDMA models are adapted from the simple 

radio transmitter and receiver models in OPNET. These are built using three com- 

ponents: a source, a queue, a transmitter/receiver, and an antenna. These stations 

are built as shown in Figures 4.4 and 4.5. 
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Figure 4.3.     Ethernet Validation Responses 
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Figure 4.4.     Node Model of DSSS Transmitter 
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Figure 4.5.     Node Model of DSSS Receiver 

The difference between these models and the default radio models lies in the 

implementations present in the radio transceiver pipeline stages. The modified code 

is listed in Appendix D. In order to implement a finite buffer representing memory 

limitations in the stations, a simple first-in-first-out (FIFO) queue is added between 

the source and the transmitter in the DSSS TX model. 

The verification of the DS/CDMA models was not as straightforward as the 

CSMA/CD models.   This is principally due to the fact that a wired LAN imple- 
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mentation of DS/CDMA was not available for comparison. Additionally, the upper 

layers of the OSI model created additional levels of complexity. Since this research 

is at the MAC and subsequent layers, the higher layers were abstracted out. Error 

checking and correction coding was also not considered in this research. If the BER 

rose above 1 x 10-4, the packet was discarded. 

To begin the verification and validation process, the DS/CDMA system was 

first designed to operate in a wireless environment. Since the literature did not 

reveal any studies using spread spectrum communication in a wired environment, 

validation tests would not be based on analytic or real system data. However, there 

have been numerous studies using spread spectrum in the wireless environment. 

Therefore, wireless DS/CDMA models were constructed to facilitate tests based on 

analytic models for the bit error rate and the wireless radio transmission models. If 

the unguided free space characteristics of the wireless model were made to emulate 

the guided medium characteristics of a coaxial cable, then the model is assumed to 

be valid for this configuration. 

It was assumed that connections have already been established between sta- 

tions. Therefore, time for initial acquisition of the data signal is omitted from the 

ETE delay calculation. A 1 x 1(T4 BER threshold was used. Therefore, if the BER 

rose above this threshold, then the SNR level is assumed too low and the packet is 

lost. Throughput drops to zero at this point. Perfect power control is also assumed 

to mitigate the 'near-far' effects of transmissions in the network. 

The principal use of spread spectrum communications, with respect to this 

research, is to provide a multiple access capability using an existing communication 

channel. A station is not only able to send packets to a receiver when it is the 

only transmitter, but if there are multiple transmitters, all the 'conversations' can 

be successfully received at the same time. In effect, collisions are removed from the 

network when a DS/CDMA MAC scheme is present. Therefore, it is expected that 

the throughput of one connection (one transmitter and one receiver) will not decrease 
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in the presence of another transmitter. This is in contrast to the CSMA/CD MAC 

scheme where if there was a collision, the bandwidth is wasted and therefore, the 

throughput would decrease. 

Another aspect of the DS/CDMA system is the relative immunity to noise. 

Noise can come from a variety of sources, but it is assumed in this research that 

noise is only due to the other transmitting stations in the network. To simulate 

this effect, a single transmitter and a single receiver are setup as in Figure 4.6 using 

OPNET's default radio models. 

\ / 
^ %/ 

I 
TX1 

Jammer RX1 

Figure 4.6.     DSSS Jamming Verification 

The jammer source is broadcasting white noise in the full bandwidth of the 

network. The characteristics of this setup are listed in Table 4.4. 

Table 4.4.     DSSS Verification Configuration 

Bandwidth 100 kHz 
Packet Sizes Constant 1024 bits 

Packet Interarrival Time 1 packet per second 
Transmit Power 1 Watt 
Jammer Power 1 Watt 

Data Rate 1024 bps 
Buffer Size Infinite 

As the jammer comes closer to the receiver, the noise power received becomes 

greater than the received signal power, thus reducing the SNR. This reduction results 
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in an increase in BER. This increase translates to reduced throughput since the signal 

can no longer be effectively received at the receiver. Since the BER threshold is set 

to zero, all the bits in a packet must be received correctly in its entirety in order to 

be counted. Therefore, when the BER is above zero, the throughput is zero. This 

can be seen in Figure 4.7. 

Traditional Radio Performance in the Presence of Jammer Interference 

(a) Bit-Error-Rate (b) Signal-tc-Noise Ratio (c) Throughput 

0.03 -l 

-10          10 20 -20 -10          10 20 -20 -10 10 

Distance in Meters Distance m Meters Distance* a Meters 

Figure 4.7. Traditional Radio BER, SNR, and Throughput Performance in the 
Presence of Jammer Interference 

If, however, the DS/CDMA model is used in this same configuration, the effects 

of a jammer are mitigated by the processing gain of the system. Throughput should 

not suffer since there is an increase in the effective SNR level at the receiver. This 

translates into an insignificant effect to the BER of the communication link and thus, 

throughput remains constant. This can be seen in Figure 4.8. 

Rerunning these two configurations for an offered load greater than the capacity 

of the stations should show an increase in ETE delay. This is due to the queueing 

of packets at the transmitter's buffer. The throughputs will be constant with a 

value equal to the capacity of the station since the stations always have a packet to 

transmit at any given time. This was verified with consistent throughput responses 

of about 10 Mbps and linearly increasing ETE delay measurements. 
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DSSS BER and SNR Mitigation of Jammer Interference 
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Figure 4.8.     DSSS BER and SNR Mitigation of Jammer Interference 

Note that the capacity for the DS/CDMA system is defined with respect to the 

station rather than the network medium. This is due to the difference in the MAC 

schemes. CSMA/CD is a TDMA-type system where each station must take turns 

to access the medium. However, the DS/CDMA stations can transmit at whatever 

data rate is defined for the system regardless of the number of stations. Also, it can 

transmit whenever it chooses versus having to wait for a time slot. When the offered 

load is greater than the defined data rate of the station, packets will queue. This 

is similar to CSMA/CD where the offered load is greater than the capacity of the 

entire network and queueing results. 

The next scenario in this verification process involves multiple simultaneous 

transmitters. When two or more stations broadcast at the same time in the network, 

whether in a wireless or wired environment, packets overlap in the medium and 

creates collisions. In the case of a radio, if the transmissions are in disjoint frequency 

bands then the power of the signals of interest do not affect one another and thus, 

multiple conversations can be supported. This is the same situation as being able to 

tune to various radio stations on a home stereo. However, if there is a single channel 

or frequency band, then the power of the signals will 'mix' and the information will 

be unintelligible to the receivers. 
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This can be divided into two situations for the DS/CDMA system. The first 

situation is when the multiple transmissions are within the same code family as the 

signal of interest. When the signals are in the same code family, there is 'bleed- 

over' of power from the interfering station into the noise summation of the receiver. 

This is representative of the cross-correlation value introduced in Section 2.6.3.4 

and implemented in (3.5). The power of the MAI will reduce the effective processing 

gain present in the receiver. The second situation involves communications when the 

transmissions are in different code families. In this case, the power of the interferer 

is considered wideband noise and reduced by the processing gain without the effect 

of cross-correlation. 

Consider the configuration in Figure 4.9 using the default non DS/CDMA radio 

models. The simultaneous transmissions will interfere with each other similar to the 

\ % / I 1 
^sggj. 

TX1 TX2 

RX2 

Figure 4.9.     Two Simultaneous Wireless Radio Communication Links 

jammer in Figure 4.6. However, the stations are stationary, so TXl's transmission 

will interfere with TX2's transmission throughout the entire simulation run and 

throughput will be zero. The results of these runs are summarized in Table 4.5. 

Comparing the SNR in Figures 4.7 and 4.8 and Table 4.5, note how the SNR in 

DS/CDMA is higher than the traditional radio. This is a result of the processing gain 

introduced by spreading the signal.  The SNR of DS/CDMA when the interfering 

4-12 



Table 4.5.     MAI Verification Responses 

Metric Value 
Throughput 1,024 bps 

Delay 1 second 
SNR 65.5 dB 
BER 0.0 

signal is in the same code family is lower than the SNR of DS/CDMA when the 

interfering signal is not in the family like the jammer. The SNR due to MAI is 

approximately 65 dB neglecting distance between interferes. The SNR of a station 

not in the same code family characterized by the wideband jammer is approximately 

70 dB, again neglecting distance between receiver and interferer. The difference of 

5 dB is due to the cross-correlation involved with the MAI signal will increase the 

effective noise passed to the demodulator in the receiver. This reduces the SNR. 

The ETE delay will be some constant value representing the propagation and 

transmission components of ETE delay. Queuing delay will not be significant since 

the loading is low compared to the capacity of the station. The multiple simultaneous 

transmission configurations are also rerun to demonstrate increased ETE delay due 

to increased offered load. Queueing delay is introduced in this configuration resulting 

in increased ETE delay. ETE was measured to be a constant one second. This is 

attributed to the low 1 pps data rate of the transmissions. At the higher loading 

levels, the delay was on a continuous increase thus verifying the model assumptions. 

Since the DS/CDMA models are able to mitigate the noise effects of both 

additive white noise (from the jammer configurations) and multiple access inter- 

ference (the multiple simultaneous configurations), the model behavior is verified. 

Furthermore, similar to the experimental runs conducted in the verification of the 

CSMA/CD, consistency, seed independence, and degeneracy were also tested and 

verified. 
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Validation consisted of comparing the results to an analytic model of BER 

performance for a DS/CDMA system using the Gaussian and Improved Gaussian 

approximations. The parameters for these validation runs are listed in Table 4.6. 

Table 4.6.     DS/CDMA Validation Configuration 

N: Code Length 31 
Eb/N0 12 dB 

k: Number of Users 2-20 

The Gaussian approximation generally underestimates the BER for a small 

number of users resulting in a higher analytic value than can be expected from a 

real system. However, for larger numbers of users, the approximation tends to over- 

estimate the BER. The improved Gaussian approximation has an almost opposite 

result. It overestimates the BER for small numbers of users and underestimates 

the BER for larger numbers of users resulting in lower analytic value than can be 

expected from a real system with a large number of users. Both of these analytic 

models have been used in previous studies for model validation and will also be used 

for validation for this research. 

Using a paired-sample comparison analysis, the differences between the ana- 

lytic models and the responses of this research were investigated. Using a zero-mean 

confidence interval test, the three traces in Figure 4.10 were found not to be different 

at a 95% confidence level. 

A detailed presentation of this validation is in Appendix B. The conclusion 

is that the wireless DS/CDMA behaves as it should and produces results consistent 

with a spread spectrum model. 

Definitive validation is not possible for the wired DS/CDMA implementation 

due to insufficient research in this area. However, coaxial cable as employed by cable 

television operators has properties similar to radio antennas. Cable television is 

used to transport television signals originally designed for broadcast communication. 
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Figure 4.10.     DSSS Validation Comparison to Analytic Models 

Because there is virtually no loss in signal strength and quality, cable television has 

been the preferred means of receiving television programming [Lab99]. 

Radio communication requires the use of an antenna to transmit the signal to 

a receiver also equipped with an antenna. By extending this communication link, 

it is possible to accomplish the same conveyance using one long antenna with the 

transmitting and receiving stations on either end. This long antenna can now be 

replaced with a coaxial cable. Additionally, since the frequency spectrum is not 

regulated in a wire as opposed to the frequency management for transmission in free 
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space, more bandwidth is available in a coaxial line. This results in more channels 

available for cable television at a higher fidelity than the antiquated 'antenna rabbit 

ears'. 

Using this reasoning, the differences between a radio transmission and a wired 

transmission are not fundamental. The principal difference is that radio does not 

have physical links whereas wired does. However, the communication is virtually 

the same. Therefore, since the wireless DS/CDMA system is verified and validated, 

substituting characteristics of a coaxial cable for the free space characteristics will 

result in a system that behaves accordingly. Thus, it is assumed, that the wired 

DS/CDMA system is a valid simulation model. 

4.2    CSMA/CD Analysis 

4.2.1 Throughput. The throughput for the Ethernet simulations followed 

the expected trends. There were slight deviations from published results when higher 

loading levels were introduced. In general, throughput decreases as more stations 

access the network. This is due to the increased number of collisions as more sta- 

tions access the channel. But, for two or more transmitting stations, this did not 

hold. In fact, 15 transmitting stations at a loading of 200% (20 Mbps) had a higher 

throughput than four or eight transmitting stations at similar offered loads as seen 

in Figure 4.11. However, with 95% confidence, these values were not statistically 

significant. 

This result differs from theoretical results from analytic models [TK85] [TH80]. 

In these studies, stations had infinite buffers. As such, at offered load exceeding 

network capacity, the end-to-end delay will increase without bounds and never reach 

a steady state. As packets arrive to the transmitting station, they queue and wait 

for transmission. Since the service rate of the stations cannot exceed the speed of 

the network and the offered load exceeds this capacity, more packets will continue 

to enqueue. This results in an infinite delay time for this network. 
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Figure 4.11.     CSMA/CD Responses With Respect to Load 

Limiting the buffer size is one way to bound delay. In measured studies of 

Ethernet performance by Boggs et al. and Gonsalves et al. [BM88] [Gon87], the 

network interface cards on the stations have some defined amount of memory (al- 

though these values were not specified in Boggs' study). This amount of memory 

limits the buffer size and therefore limits the number of packets that may wait for 

transmission. Therefore, regardless of offered load, there is a finite value for the 

maximum end-to-end delay. 

The results of this research had an 8 KB limit for the buffer size. Therefore, 

when the buffer was full, arriving packets were dropped. This decreased the overall 

throughput and followed the predictions of the empirical models. However, when 

two or more simultaneous stations transmitted packets, it is seen in Fig. 4.11 that 

the throughput is actually more for 15 stations than for four or eight transmitting 

stations despite an increase in number of collisions. This was found to be statistically 

insignificant with a confidence level of 95%. 
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CSMA/CD Responses Vs. Number of Transmitting Stations 
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Figure 4.12.     CSMA/CD Responses With Respect to Number of Stations 

However, this could possibly be a result of the random distribution of packet 

sizes and the arrival of those packets. As more stations are added to the network and 

the offered load for the system is held constant, then each individual station's packet 

interarrival time is scaled back such that the average number of packets transmitted 

is reduced by a corresponding ratio to the number of added stations. For instance, if 

the network offered load is to be about 20 packets per second (pps), then if there is 

only one transmitting station, it will transmit 20 pps. If there are two transmitting 

stations, then each will transmit 10 pps. Similarly, if there are four transmitting 

stations, then each will transmit 5 pps. Reducing the number of packets that need 

to be transmitted per second per user increases the interarrival time of the packet 

arrivals. 

This reduced number of packets per second each station transmits is then com- 

bined with the packet size. Two transmitting stations yields an average throughput 

of about 7 Mbps for a 100% offered load to the network. This is contrasted with 15 

transmitting stations at a similar load attaining a throughput of about 9.4 Mbps. 

Generally, as more users are added to the system, the throughput decreases. 
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The explanation may lie in the 8 KB transmission buffer. Since packets are 

arriving at a lower rate per station, the transmission buffers do not fill as fast com- 

pared to network configurations with fewer stations for the same load. Since the 

buffers have more room to hold packets, not as many packets will be discarded. As 

the loading level is increased, the buffers fill faster and similar performance should 

be noticed between these configurations. However, if the packet size is taken into 

account, the drop in throughput for fewer stations can be seen. Smaller packets 

will fill the buffers whereas larger packets are discarded. For networks with more 

stations, packet interarrival times are larger and have less impact. 

At loads above the capacity of the network, throughput characteristics begin 

to change. The throughput increases when the loading increases above the stated 

capacity of the network. Initially, the network is able to accommodate the traffic 

being submitted to it. However, once the buffer fills on each NIC, the station is 

forced to discard packets. This is evident since there is no queue space for the 

packet to wait for transmission. However, the buffer is not necessarily filled to 

capacity; i.e., since the packet sizes are variable, they will not evenly divide the 

entire buffer memory space. Therefore, smaller sized packets may be accepted into 

the 'left-over' memory space and queued for transmission while larger sized packets 

are immediately discarded. This situation effectively increases the utilization of the 

NIC's buffer space resulting in an increase in throughput in spite of the increased 

loading level. As the loading level is increased even further, this situation is more 

pronounced since the arrival of packets to the station is so fast that the buffer is 

filled practically the entire simulation. 

4.2.2 Delay. The delay response of the CSMA/CD networks produced 

consistent results as predicted. Generally, as the loading increased, the mean ETE 

delay also began to increase. This trend in evident in Figures 4.11b and 4.12b. 
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Since there was a finite transmit buffer, the ETE delays stabilized at the points 

in the above mentioned plots. However at high loading levels, this was an unstable 

region and the delay metrics are volatile. 

4.2.3 Power. Another view of the performance of the system is its Power 

curve. Power was defined previously in Section 2.3.3.4 as the ratio of throughput 

to delay. When examining power in Figures 4.11c and 4.12c with respect to the 

offered load, the maximum point on the curve is the optimum operating point in the 

network for the given configuration. 

In this case, it is evident that the optimum loading level is about 70-80%. In 

looking at power with respect to number of stations, the fewer number of stations 

results in the most power. The network has its maximum power when the number 

of stations is limited to about two to four transmitting stations. 

Thus, although throughput may increase as the load increases, the power ratio 

will show the detrimental effect of increased delay at these higher loading levels. 

4.3   DS/CDMA Analysis 

The throughput and delay times were not what was expected. Throughput 

was generally higher than what the network should have been capable of passing 

and similarly, delay was longer due to inferences made by a wireless transmission 

mechanism. However, upon further investigation, these effects were characteristic of 

proper operation. These results are discussed in the following sections. 

4.3.1 Throughput. The throughput measurements of the DS/CDMA net- 

work was higher than expected. Defining the station's maximum throughput at 10 

Mbps and specifying the interarrival rate to produce packets at or above a 10 Mbps 

rate, the throughput was about 10 Mbps. When examining actual data throughput 

or what some call "goodput" [PD96], this was not expected. However, when the data 

must be encapsulated in frame formats, such as Ethernet, there is a certain amount 
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of overhead which should be associated with it. In the case of the CSMA/CD experi- 

ments, this is taken care of by the Ethernet packet format. At a minimum, Ethernet 

adds about 39 bytes of overhead to each packet (27 bytes of header and trailer plus 

12 bytes of interpacket gap). This equates to about ^ = 5% overhead to a sample 

of packets with an average size of 791 bytes. Thus, Ethernet cannot achieve a full 10 

Mbps throughput since 5% of the bandwidth must be used to transmit this overhead 

information. The link throughput (what the network medium actually transfers) 

may reach a full 10 Mbps, however, overall station throughput will be about 5% less 

giving a theoretical maximum reported network throughput of 10 Mbps-(0.05*10 

Mbps) = 9.5 Mbps based on an average 791 byte packet size. 

Since the DS/CDMA network was designed to closely match the CSMA/CD 

Ethernet LAN, the measured network throughput should have been scaled back by 

5%. Otherwise, performance results identifying variations due to the factors in this 

research would be aliased with the omission of overhead resulting in degradation 

in user throughput. This scaling factor is an estimate in the amount of overhead 

required in the system. Rather than simply subtracting out 5% from the capacity of 

each network run resulting in 10Mbps- (0.05*19M6ps) = 9.5Mbps as the data rate of 

each individual station, 5% of the resulting value was subtracted out to characterize 

the losses that would have been noticed had overhead bits been implemented. So, if 

a station is offering 2.5 Mbps total throughput, then the resulting data throughput 

would be at most 2.5Mbps - (0.05 * 2.5Mbps) = 2.375Mbps which is consistent with 

the results of the Ethernet. 

Upon further investigation, this throughput scaling was dismissed. This re- 

search assumes that the communication links have already been established. In the 

DS/CDMA case, each station already has knowledge of which station it wishes to 

transmit to. Since each transmitter/receiver pair does not have to deal with MAI 

due to the ideal separation in spread spectrum communications, there is little, if 

any, control information in the packet. As such, there is almost no packet overhead. 
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Source and destination addresses information is not needed since transmission ne- 

gotiation would have occurred before the broadcast commenced. Additionally, only 

the intended receiver will be able to decode the transmission since it is encoded 

using the receiver's PN code sequence. Thus, the data indirectly has a destination 

address built into the packet through the use of the spreading code. All the control 

information which Ethernet must embed in the overhead portion of its packets is 

taken into account in the station-to-station negotiation which is assumed to occur 

prior to the start of the transmission links investigated in this research. There could 

be error detection and correction coding in the packet overhead, but this is beyond 

the scope of this research. Thus, there is no overhead needed in the DS/CDMA 

network and is not scaled out for Ethernet comparison. The throughput responses 

of the DS/CDMA network are in Figures 4.13a and 4.14a 
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Figure 4.13.     DS/CDMA Responses With Respect to Load 

As can be seen, the throughput curves are not bounded. In fact, the capacity 

of the network is indeed defined by the sum of the capacity of each station in the 

network. So one station in the network results in a capacity of 10 Mbps. Two 

transmitting stations increase the network capacity to 20 Mbps and so on.  In the 
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DS/CDMA Responses Vs. Number of Transmitting Stations 
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Figure 4.14.     DS/CDMA Responses With Respect to Number of Stations 

overload conditions, packets may be thrown out at the transmitter queue, however, 

the throughput will be at its maximum value. 

4.3.2 Delay. Delay measurements in DS/CDMA was generally higher than 

expected but followed the expected trends similar to the CSMA/CD network. This is 

due to the transmission and propagation delay calculations in OPNET. The propaga- 

tion delay calculations in the bus pipeline uses a unit-delay attribute that represents 

a normalized delay increment which equates to the speed of light calculations in 

the radio model. Since the DS/CDMA wired implementation is an adaptation of 

the wireless, model, the radio pipeline stages are used versus the bus stages used in 

the CSMA/CD implementations. Although the calculations are nearly identical, the 

radio calculations take into account a form of processing delay in the transmitter. 

In the CSMA/CD models, the bus transmitter has a 'virtual queue' in which it 

stores packets it receives from the source to transmit. If the transmitter is currently 

busy sending a packet, the newly arrived packet waits before it is sent. OPNET has 

a defined time associated with this wait hidden from the user. In the bus models, 
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this delay is about 0.1ms. This value is taken from the queueing delay measured in 

the MAC of the ether„coax.adv model. This value is not constant and its variability 

is a function of the size of the packet that is to be transmitted. 

In the DS/CDMA models, this delay is higher. Analysis shows that there is 

anywhere from 0.5 to 0.7 ms of delay associated with the transmitter's queueing 

delay statistic as well as the queue component used to simulate the station's finite 

memory buffer. These delays in addition to the propagation delay are the ETE delay 

statistic in the absence of contention (the two station network configuration). The 

difference of 0.4-0.6 ms between the CSMA/CD and DS/CDMA models is attributed 

to the different transmitters used. 

The transmitter component in the bus model assumes that the packet it re- 

ceives for transmission is ready to be placed on the physical line [Tec97]. There is a 

certain amount of delay associated with this. In Ethernet, Manchester encoding is 

used. This basically takes the raw bits in the packet and converts them to a series of 

binary transitions to be placed on the cable. However, in the radio transmitter, the 

assumption is a little different. The data it receives from the source is assumed to 

be the raw bits for transmission like in the bus transmitter, but rather than doing a 

simple encoding scheme, the data is also modulated onto a carrier frequency [Tec97]. 

In this case, BPSK modulation is used. This information is then sent to the antenna 

component which places the data onto the medium. In the wireless case, the medium 

is air. In the DS/CDMA system in this research, the air has attributes consistent 

with a a coaxial cable. Thus, the differences in these queueing delays results in 

the CSMA/CD system having a slightly better delay response than the comparably 

configured DS/CDMA system. However, this difference is finite and overshadowed 

by the large queueing delay imposed at higher loading levels. The delay responses 

are plotted in Figure 4.13b and 4.14b 
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4-3.3   Power. When examining power in Figures 4.13c and 4.14c with 

respect to the offered load, the maximum point on the curve is the optimum operating 

point in the network for the given configuration. In this case, the optimum loading 

level is about 70% for a single transmitter. But, as more users are added to the 

system, the 'knee' in the power curves is shifted to the right resulting in higher 

power levels than CSMA/CD. In fact, there does not seem to be a maximum value 

for power for eight and fifteen transmitting stations for these loading conditions and 

configurations. A failure point stress test is explained in the following section to 

determine when the system performance would degrade. 

4.34 Failure Point. The DS/CDMA system holds much promise in ex- 

panding the capabilities of the installed base of legacy LAN implementations. The 

simulation analysis conducted for the comparison portion of this research placed an 

upper limit on the total number of users which can simultaneously communicate 

on a maximally sized coaxial Ethernet segment. This is due to electrical concerns 

of the IEEE working group which drafted the IEEE 802.3 standard. However, ne- 

glecting this limit and assuming that an infinite number of users may access the 

medium, investigation as to the maximum number of users that could communicate 

was conducted. The theoretical limit has a ceiling of 513 users since this is the 

total number of spreading codes available for the Gold code family chosen for this 

research. Any additional users would violate the assumption of the value used for 

the cross-correlation coefficient. However, using a BER of 1 x 10~4 as the minimum 

acceptable error rate, it is shown in Appendix C that the actual limit is 98 concur- 

rent communication links. This limit could be increased by choosing a different code 

family, however, the cross-correlation values must be recalculated as well to meet 

the requirements of the simulation model. 

The loading level is set for each station to continuously transmit constant sized 

(791 bytes) packets at a rate of 10 Mbps. Additional stations are added incrementally 

until a failure point is reached.   Failure is defined as a loss of throughput for any 
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particular station. This point is reached when the SNR is so low at the receiver that it 

cannot discern the signal data from the noise. BER will no longer equal zero as well. 

It was found that the addition of the 97th user caused the entire network throughput 

to drop to zero with a threshold set to 1 x 1(T4 . Since perfect power control for the 

network has been assumed, loss of throughput for one link will also indicate a loss 

of throughput for any other link. This is due to the assumption that all the stations 

are identical and perfect power control is established. Power received at one station 

is the same as power received at another station. So, when one station has a low 

SNR, they all have a low SNR because every station's transmission interferes with 

every other station's transmissions. 

44    System Comparison 

An ANOVA analysis was conducted to determine the percent variation due 

to the factor effects. This analysis is detailed in Appendix A. Furthermore, zero 

mean confidence interval tests were conducted to determine if there were statistically 

significant differences in the responses of the networks. Figures 4.15 and 4.16 present 

the data collected in simulation trials. 

4.4.I Throughput. The throughput response had a wide range in variabil- 

ity. The responses ranged from 2.27 Mbps to about 38.55 Mbps. A square root 

transform was initially applied to minimize the variation in the data. The prin- 

ciple source of variation is due to the Network Offered Load which accounted for 

about 63% of the variation. The MAC Scheme only accounted for about 8% and the 

Number of Stations accounted for less than 2%. 

It is widely known and accepted that throughput is directly related to the of- 

fered load of the system [PD96]. Increasing the offered load increases the throughput. 

Therefore, Network Offered Load was removed from the analysis and the ANOVA 

was recalculated to determine the true effects of the MAC Scheme and Number of 
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Mean Responses of DS/CDMA and CSMA/CD Vs. Offered Load 
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Figure 4.15.     Comparison of DS/CDMA and CSMA/CD Responses Vs. Network 
Offered Load 

Stations. At a low 25% loading level, the MAC Scheme constituted nearly 99% of 

the variation whereas the Number of Stations accounted for nearly less than 0.2% 

and their interactive affects amounted to about 0.4%. The latter effects were not 

statistically significant at a 95% confidence level. This clearly shows that the MAC 

Scheme is a predominant factor in throughput responses for the systems at low load. 

In an overload condition (Network Offered Load = 400%), the number of sta- 

tions had more of an impact with approximately 15% of the variation. The MAC 

Scheme comprised about 66% and their interactive effects was nearly 19%. This 

shows that at high loading levels, the impact of the Number of Stations becomes 

more significant while the MAC Scheme continues to be a dominant factor in the 

responses. Interestingly, the interaction between these two factors increased as well. 

This is attributed to the nature of the MAC protocol being a multiple access scheme 

which must accommodate as many users as possible.  At low load, there is not as 
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Figure 4.16.     Comparison of DS/CDMA and CSMA/CD Responses Vs.  Number 
of Stations 

much contention for the medium. However, at higher loads, each station always has 

data to transmit, so the arbitration of the medium becomes more important. A 

summary of the percent variation due to the factors is given in Table 4.7. 

Table 4.7. Percent Variation of Factor Effects on Throughput 

Percentage of Variation Due to Factor Effects 
Factor 25% Load 50% Load 75% Load 100% Load 200% Load 400% Load 

# Stations 0.16 0.23 1.31 2.43 10.49 15.02 

MAC 98.57 99.39 96.71 86.21 73.59 66.16 

# Stations and MAC 0.35 0.13 1.88 11.34 15.91 18.81 
Error 0.91 0.24 0.10 0.02 0.00 0.00 

Confidence levels were constructed on the mean difference between the DS/CDMA 

and CSMA/CD networks throughput responses. With 95% confidence, the DS/CDMA 

network had a better mean throughput response. 
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The general trend in Figure 4.17 shows that the throughput in the DS/CDMA 

network does not degrade as quickly as the CSMA/CD network. Although there 

is a clear distinction in throughput performance on the aggregate network perfor- 

mance, the effects on a per station basis is more pronounced. Comparing station- 

to-station throughput, the throughput was increased by nearly 250% at high loads. 

The CSMA/CD network was only capable of successfully transmitting approximately 

25% of its data whereas the DS/CDMA network was able to sustain a rate of about 

78% Mbps at a similar load. 
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Figure 4.17.     Comparison of DS/CDMA and CSMA/CD Mean Station Percent 
Throughput Vs. Load 

44.2   Delay.      The delay had a similarly large range in responses. The re- 

sponses ranged from 0.73 msec to about 94.99 msec. The principle source of variation 
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was again attributed to the Network Offered Load. This was not verified due to the 

fact that the data did not allow the use of an ANOVA analysis on the complete data 

set. Multiple transforms were applied to the data, however the assumption of errors 

being independent and normally distributed was violated. However, separating out 

the load effects and transforming the resulting data allowed for an ANOVA analysis 

to quantify the effects of the MAC Scheme and Number of Stations. 

It is widely known and accepted that delay is also directly related to the offered 

load of the system [PD96]. Increasing the offered load increases the amount of delay 

in the network due to the queueing of packets at the transmitting stations. Therefore, 

Network Offered Load was removed as a factor and the ANOVA analysis was then 

possible on the resulting data set. This allowed for the calculation to determine the 

true effects of the MAC Scheme and Number of Stations. At a low 25% loading 

level, the MAC Scheme constituted nearly 98% of the variation. The effects due to 

the Number of Stations and their interactive effects comprised less than 2% of the 

total variation. This clearly shows that the MAC Scheme is the dominant factor in 

delay responses for the systems at low load. 

In an overload condition (Network Offered Load = 400%), the number of sta- 

tions had more of an impact with approximately 9% of the variation. The MAC 

Scheme comprised about 53% and their interactive effects was nearly 38%. This 

shows that at high loading levels, the impact of the Number of Stations becomes 

more significant while the MAC Scheme continues to be a dominant factor in the 

responses. Interestingly, the interaction between these two factors increased as well. 

This is attributed to the nature of the MAC protocol being a multiple access scheme 

which must accommodate as many users as possible. At low load, there is not as 

much contention for the medium. However, at higher loads, each station always has 

data to transmit with even more data arriving. Queueing delays are introduced since 

not every station can transmit whenever it needs to. It must wait its turn to gain 

4-30 



access to the channel. Thus, the arbitration of the medium becomes more important. 

A listing of the percent variation due to the factors is given in Table 4.8 

Table 4.8.     Percent Variation of Factor Effects on Delay 

Percentage of Variation Due to Factor Effects 
Factor 25% Load 50% Load 75% Load 100% Load 200% Load 400% Load 

# Stations 0.79 6.12 0.90 0.77 0.60 9.32 

MAC 98.15 69.63 54.58 72.69 66.36 53.29 

# Stations and MAC 1.06 24.11 44.51 26.54 33.04 37.39 

Error 0.00 0.14 0.01 0.00 0.00 0.00 

Confidence levels were constructed on the mean difference between the DS/CDMA 

and CSMA/CD networks throughput responses. With 95% confidence, the DS/CDMA 

network had a lower mean delay response. Delay was reduced from an average of 38 

ms to about 4 ms resulting in an improvement of nearly 850%. 

An ANOVA analysis was not performed on the power metric since both of its 

components have already been analyzed in the previous sections. However, a zero 

mean difference confidence interval was calculated to determine which network had 

a better power response. With 95% confidence, the DS/CDMA had a better mean 

power performance than a comparably configured CSMA/CD system. 

4-5   Summary 

This chapter presented the results of the research. Verification and validation 

of the simulation models was first conducted. Simulation analysis of Ethernet and 

DSSS LANs were then discussed as well as a comparison as to which had a better 

delay-throughput characteristic. It was found that the DS/CDMA implementation 

was significantly different than a CSMA/CD implementation with higher throughput 

and lower delay at a 95% confidence level. Similarly, power was also higher at the 

same confidence level in a DS/CDMA network. Analysis of this conclusion was also 

presented. 
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V.   Conclusions and Recommendations 

This chapter summarizes this research's efforts. A restatement of the goal and sum- 

mary of the results are presented. Recommendations for future work completes this 

chapter. 

5.1 Goal 

The goal of this research was to model and simulate a proposed wired LAN 

implementation of a direct sequenced spread spectrum data network. Based on simu- 

lation results, a comparison was made between the performance of a CDMA network 

to a 10Base2 coaxial Ethernet LAN. This research also determined the practical up- 

per limit on the number of stations that can be supported in each network. 

5.2 Results 

The DS/CDMA wired network demonstrated better throughput and delay re- 

sponse than a comparably configured CSMA/CD network. The maximum number 

of users that can be accommodated in the DS/CDMA system is approximately 98 

simultaneous communication links which equates to 196 total stations. The IEEE 

802.3 places a limit of 30 total stations per Ethernet segment. Thus, the DS/CDMA 

system can accommodate nearly 4 times the number of users. 

5.3 Conclusions 

This research proposed a wired implementation of a wireless medium access 

control protocol to increase LAN performance. The OPNET simulation results show 

that DS/CDMA provides higher throughput and lower delay than a comparably 

configured CSMA/CD LAN. The main factor affecting these results is the amount 

of network offered load which constituted approximately 60% of the variation in 

overall throughput responses. With constant loading, the MAC scheme constituted 
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the overwhelming majority of the response variation for both throughput and delay. 

This substantiates the claim that the MAC protocol is responsible for differences in 

throughput and delay. 

Throughput increased by nearly 250% at higher loading levels from nearly 8.7 

Mbps to well over 28 Mbps over standard CSMA/CD. Delay was reduced from an 

average of 38 ms to about 4 ms, an improvement of nearly 850%. These improvements 

were only limited based on the research bounds. These reported improvements could 

certainly be increased if the per station data rates and PN code sequences were chosen 

differently. 

5.4    Implications and Impact 

The implications involved in using DS/CDMA in a wired LAN are tremendous. 

Not only is it possible to sustain more stations in a given network segment, but this 

performance increase is available without a costly cabling infrastructure upgrade. No 

longer must users endure lengthy file transfers or suffer reduced productivity based 

on excessive network delay. 

Current coaxial-based Ethernets can be revitalized to accommodate new mul- 

timedia functionality where it wasn't practical before. Delay limited applications, 

e.g., voice over IP (VoIP) or internet telephony, may be possible due to the re- 

duction of mean end-to-end delay. Large file transfers such as downloading entire 

theater-quality movie files may not be so prohibitive due to the increase in mean 

throughput. The video rental industry could loan videos via a simple Internet down- 

load. Secure videoconferencing is also possible due to the inherent security offered 

by spread spectrum techniques. 

Military application potential is also impacted. The U.S. Air Force, and the 

Department of Defense as a whole, has a need to maintain a high quality, highly 

reliable internetwork. Costly upgrades impair this level of readiness largely due to 

the inability to upgrade the cabling infrastructure.   Replacing a network interface 
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card in a personal computer is far easier and could potentially be done at a much 

lower expense. Increased multimedia capabilities, as described previously, can also 

be implemented. These added functions will enhance productivity and readiness. 

Spread spectrum communication mechanisms have the potential to enhance 

virtually any type of currently fielded time-division-based data networks. The costs 

associated with this type of upgrade is nominal when considering the enormous 

throughput and delay improvement to be gained with this medium access control 

protocol. 

5.5   Recommendation for Future Work 

The DS/CDMA model of this research used design parameters of a baseband 

10Base2 RG-58 coaxial cable. This cable is capable of gigabit per second rates 

[Tan96] using digital signaling. Synchronization time was neglected but could im- 

pact the end-to-end delay measurements reducing the average difference between the 

CSMA/CD and DS/CDMA models. Synchronization may be divided into coarse and 

fine, coarse is used for initial signal acquisition and fine is used to continuously track 

the signal. Losses can be incurred if synchronization is not maintained. Power con- 

trol was also assumed for this research which would require some sort of overhead 

and was not addressed. 

Many networks use UTP and broadband cabling. UTP has four strands of cop- 

per wire each of which could be designated a specific channel on its own. Control and 

synchronization information could be used on separate lines to allow a dedicated com- 

munication line as simulated for this research. Broadband cable has the capability of 

having multiple frequency bands while still maintaining a large bandwidth of about 

300-450MHz [Tan96]. Rather than using UTP for the extra channels, the bandwidth 

of a broadband cable could be divided into smaller frequency bands (FDMA) for the 

extra control information needed for true implementation of a DS/CDMA LAN. 
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This research was a proof of concept for using spread spectrum communication 

techniques in a wired LAN environment. Future research in this area could involve 

adapting the models of this study and implementing synchronization timing issues 

as well as other conversation setup functions. The 'near-far' effect could also be 

incorporated into the existing models and the lack of perfect power control evaluated 

in the absence of a control channel. The channel medium could also be investigated 

for adaptation onto a UTP or broadband cabling and address both of these issues. 

Once overhead and link setup are properly addressed, another area of study is the 

implementation of a DS/CDMA testbed to experiment with actual communication 

station hardware. 

Characteristics for Gold codes was employed in this research using an expected 

value for the cross-correlation coefficient defined in Table 2.2. Another venue for fu- 

ture research would be to implement the models created for this research for DSSS 

and dynamically calculate the cross-correlation between codes. This would entail ac- 

tual assignment of PN codes to the different stations rather than simply identifying 

the station by some arbitrary reference address. Performance of a dynamic calcula- 

tion as to the cross-correlation between a specific pair of codes for each occurrence 

of a 'collision' in the network would then be implemented for evaluation. 

5.6   Summary 

The research goals have been met. Spread spectrum techniques hold promise 

for upgrading legacy coaxial cable local area networks. It is possible for users travers- 

ing the internet to not suffer from the tedium of lengthy downloads. Spread spectrum 

internet applications may one day provide an end to the "world-wide wait". 
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Appendix A.   Model Analysis 

This section elaborates on the analysis conducted in Chapter 4. An ANOVA table 

analysis was conducted. In using the ANOVA, a number of assumptions were made 

which required testing. If the tests do not hold, then the conclusions drawn from 

the ANOVA would be compromised. These assumptions are 

• There is a linear relationship between the factors and the response. 

• The errors are statistically independent 

• The errors are normally distributed with zero mean and constant standard 

deviation. 

The first response analyzed is the throughput metric. The measurements ob- 

tained from the simulations are listed in Table A.l 

Table A.l.     Throughput Measurements in Mbps 
Number of Transmitting Stations fin 

2 4 8 16 30 

MACfC} MACCO MACfC) MACfC) MACfC) 

DS/CDMA CSMA/CD DS/CDMA CSMA/CD DS/CDMA CSMA/CD DS/CDMA CSMA/CD DS/CDMA CSMA/CD 

< 
•a 
O 

■o u 

o 
& 

25 
2.44 2.27 2.43 2.28 2.42 2.28 2.42 2.27 2.44 2.28 

2.45 2.30 2.43 2.27 2.44 2.29 2.43 2.29 2.45 2.27 

2.44 2.28 2.43 2.28 2.43 2.28 2.43 2.29 2.44 2.25 

50 
4.87 4.54 4.86 4.53 4.85 4.54 4.85 4.54 4.88 4.54 

4.89 4.58 4.86 4.55 4.86 4.54 4.86 4.53 4.89 4.54 

4.87 4.56 4.88 4.53 4.87 4.53 4.87 4.55 4.89 4.53 

75 
7.26 6.81 7.30 6.72 7.29 6.61 7.30 6.66 7.31 6.78 

7.27 6.84 7.30 6.74 7.30 6.62 7.30 6.68 7.31 6.77 

7.27 6.82 7.31 6.73 7.30 6.61 7.31 6.68 7.32 6.73 

100 
9.24 8.66 9.73 7.33 9.73 7.25 9.73 7.41 9.75 7.68 

9.23 8.67 9.74 7.27 9.75 7.24 9.74 7.40 9.73 7.67 

9.24 8.66 9.76 7.34 9.76 7.27 9.76 7.40 9.76 7.70 

200 
9.83 9.09 18.47 8.74 19.50 7.91 19.49 7.96 19.51 8.12 

9.83 9.09 18.46 8.73 19.49 7.87 19.48 7.94 19.49 8.13 

9.83 9.09 18.46 8.74 19.50 7.88 19.49 7.94 19.50 8.12 

400 
9.83 9.05 19.67 9.06 36.93 8.83 38.98 8.27 39.05 8.33 

9.83 9.05 19.67 9.06 36.94 8.84 38.98 8.27 38.95 8.32 

9.83 9.05 19.67 9.06 36.91 8.85 38.99 8.29 39.01 8.32 

The normal Q-Q plot revealed that the linearity assumption between the fac- 

tors and the throughput response was violated.   In analyzing the throughput re- 
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sponses in Figure 4.15 and 4.16 it is evident that there is not a linear relationship 

for the mean throughput performance. 

This resulted in a regression model with an R2 value of about 90%. This in and 

of itself was not necessarily a bad model. At lower loading levels, the relationship was 

very linear. However, at higher loads, the relationship looks more logarithmic. The 

ratio of ^^ was also very large. To reduce the range of the throughput response, 

a square root transform was applied to the data. 

This transform resulted in a regression model having an R2 value of approxi- 

mately 98% thus making the relationship of the responses to the predictor variable 

more linear. An ANOVA table was constructed on this transformed data with results 

identified in Table A.2. 

Table A.2.     ANOVA Table of Throughput 

Source of Variation Sum of Squares Percentage Variation Deerees of Freedom Mean Square F- Computed F- Statistic Significant 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Load 125.27 62.58 5 25.05 4.78E+06 2.45 

3.07 1.54 4 0.77 1.47E+05 2.61 

MAC 15.51 7.75 1 15.51 2.96E+06 4.08 

9.79 4.89 20 0.49 9.35E+04 1.84 

LoadXMAC 30.76 15.37 5 6.15 1.17E+06 2.45 

Stations X MAC 4.94 2.47 4 1.23 2.36E+05 2.61 

Load X Stations X MAC 10.84 5.42 20 0.54 1.03E+05 1.84 

Error 0.00 0.00 120 0.00 

Total 200.19 100.00 179  1 

Since the Network Offered Load factor constituted about 62% of the variability, 

separate ANOVA analysis was conducted at each of the loading levels (25% through 

400% respectively). The ANOVA tables for these loading levels are presented in 

Table A.3. 

The delay measurements also had a significant range in responses from about 

0.7 msec to above 94 msec of mean ETE delay. This is shown in Table A.4. 
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Table A.3.     ANOVA Tables of Throughput at the 5 Loading Levels 

ANOVA for Throughout (2), 25% Load 
Percentage Variation Degrees of Freedom Mean Sauare F- Comouted F- Statistic Significant 

0.00 0.18 4.00 0.04 9.81E-01 2.87 No 

MAC 0.18 98.57 1.00 98.57 2.17E+03 4.35 Yes 

Stations X MAC 0.00 0.35 4.00 0.09 1.91E+00 2.87 No 

0.00 0.91 20.00 0.05 

Total 0.19 100.00 29.00 

ANOVA for Throughput® 50% Load 

Sum of Sauares Percentage Variation Degrees of Freedom Mean Sauare F- Comouted F- Statistic Significant 

0.00 0.23 4.00 0.06 1.27E+00 2.87 No 

MAC 0.80 99.39 1.00 99.39 2.19E+03 4.35 Yes 

Stations X MAC 0.00 0.13 4.00 0.03 7.35E-01 2.87 No 

0.00 0.24 20.00 0.01 

Total 0.81 100.00 29.00 

ANOVA for Throughout <2>,75% Load 

Sum of Sauares Percentage Variation Degrees of Freedom Mean Sauare F- Comouted F- Statistic Significant 

0.03 1.31 4.00 0.33 7.20E+00 2.87 Yes 

MAC 2.50 96.71 1.00 96.71 2.13E+03 4.35 Yes 

Stations X MAC 0.05 1.88 4.00 0.47 1.04E+01 2.87 Yes 

0.00 0.10 20.00 0.00 

Total 2.59 100.00 29.00 

ANOVA for Throughout <S) 100% Load 
Sum of Sauares Percentage Variation Degrees of Freedom Mean Sauare F- Computed F- Statistic Significant 

Stations 0.83 2.43 4.00 0.61 1.34E+01 2.87 Yes 

MAC 29.39 86.21 1.00 86.21 1.90E+03 4.35 Yes 

Stations X MAC 3.86 11.34 4.00 2.83 6.25E+01 2.87 Yes 

0.01 0.02 20.00 0.00 

Total 34.09 100.00 29.00 

ANOVA for Throughout <S>, 200% Load 
Sum of Sauares Percentage Variation Degrees of Freedom Mean Sauare F- Comouted F- Statistic Significant 

86.63 10.49 4.00 2.62 5.78E+01 2.87 Yes 

MAC 607.57 73.59 1.00 73.59 1.62E+03 4.35 Yes 

Stations X MAC 131.38 15.91 4.00 3.98 8.77E+01 2.87 Yes 

0.00 0.00 20.00 0.00 

Total 825.58 100.00 29.00 

ANOVA for Throughout (2) 400% Load 
Sum of Sauares Percentage Variation Degrees of Freedom Mean Sauare F- Comouted F- Statistic Significant 

0.37 15.02 4.00 3.76 8.28E+01 2.87 Yes 

MAC 1.64 66.16 1.00 66.16 1.46E+03 4.35 Yes 

Stations X MAC 0.47 18.81 4.00 4.70 1.04E+02 2.87 Yes 

0.00 0.00 20.00 0.00 

Total 2.48 100.00 29.00 

It was also found that the normality assumption was also violated for these 

response as well. Again, the relationship varied depending on the offered load to 

the network. Numerous transforms were applied to the data, but none resulted in 

a model with an R2 greater than about 50%. Removing the Network Offered Load 

factor from the analysis, an ANOVA analysis was possible at the low to high loading 

levels. 
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Table A.4. Delay Measurements in msec 

Number of Transmitting Stations (B ) 

1 2 4 8 15 

MAC SchemeT C ) MAC Schemed C) MAC Schemef O MAC Schemef C ) MAC Schemef C ) 

DS/CDMA CSMA/CD DS/CDMA CSMA/CD DS/CDMA CSMA/CD DS/CDMA CSMA/CD DS/CDMA CSMA/CD 

< 

3 
I 
o 

1 z 
•8 .a 
"at 

25% 
1.41 0.73 1.33 0.74 1.29 0.74 1.27 0.74 1.26 0.74 

1.41 0.73 1.32 0.74 1.29 0.74 1.27 0.74 1.26 0.75 

1.41 0.73 1.33 0.74 1.29 0.74 1.27 0.74 1.26 0.74 

50% 
1.70 0.95 1.42 1.01 1.33 1.09 1.29 1.07 1.27 1.10 

1.70 0.96 1.41 1.01 1.33 1.05 1.29 1.07 1.27 1.09 

1.70 0.95 1.42 1.00 1.33 1.06 1.29 1.10 1.27 1.12 

75% 
2.36 1.57 1.53 2.36 1.37 4.47 1.31 6.41 1.28 7.02 

2.36 1.58 1.53 2.39 1.37 4.45 1.31 6.11 1.28 7.34 

2.37 1.56 1.53 2.43 1.37 4.36 1.31 6.28 1.28 6.80 

100% 
4.07 3.56 1.70 7.90 1.41 12.75 1.33 22.39 1.29 37.34 

4.07 3.63 1.70 8.06 1.42 12.57 1.33 22.22 1.29 37.17 

4.07 3.60 1.70 7.96 1.41 12.60 1.32 22.64 1.29 36.85 

200% 

6.73 6.53 4.07 10.86 1.70 23.56 1.41 44.52 1.33 79.37 

6.73 6.53 4.08 10.87 1.70 23.67 1.41 44.44 1.33 79.75 

6.73 6.54 4.07 10.88 1.70 23.64 1.41 44.42 1.33 79.47 

400% 
7.05 6.80 6.73 13.04 4.09 24.65 1.70 52.59 1.43 94.99 

7.05 6.80 6.73 13.05 4.09 24.76 1.70 52.57 1.43 94.96 

7.04 6.80 6.73 12.99 4.09 24.58 1.70 52.53 1.43 94.94 

The ANOVA table using the raw and transformed delay measurements are 

identified in Table A.5. 

Although the raw responses did not follow a linear relationship to the factors, 

transformation of the data helped to satisfy the ANOVA assumptions and allowed 

analysis using this approach. Curvilinear regression was a possibility. However, since 

only the variation due to the factors was needed and prediction of future responses 

were not, an ANOVA analysis using R2 values from 85% and higher were assumed 

adequate. 
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Table A.5.     ANOVA Tables of Delay at the 5 Loading Levels 

ANOVA for Delay ffl 25% Load 

Source of Variation Sum of Squares Percentage Variation Deerees of Freedom Mean Square F- Computed F- Statistic Sieniflcant 

Stations 0.02 0.79 4.00 0.20 1.15E+03 2.87 Yes 

MAC 2.47 98.15 1.00 98.15 5.73E+05 4.35 Yes 

Stations X MAC 0.03 1.06 4.00 0.26 1.55E+03 2.87 Yes 

0.00 0.00 20.00 0.00 

Total 2.51 100.00 29.00 

ANOVA for Delav ® 50% Load 
Source of Variation Sum of Sauares Percentaee Variation Deerees of Freedom Mean Sauare F- Computed F- Statistic Sieniflcant 

Stations 0.08 6.12 4.00 1.53 8.94E+03 2.87 Yes 

MAC 0.96 69.63 1.00 69.63 4.07E+05 4.35 Yes 

Stations X MAC 0.33 24.11 4.00 6.03 3.52E+04 2.87 Yes 

Error 0.00 0.14 20.00 0.01 

Total 1.37 100.00 29.00 

ANOVA for Delay ® 75% Load 
Source of Variation Sum of Sauares Percentaee Variation Deerees of Freedom Mean Sauare F- Computed F- Statistic Sieniflcant 

Stations 0.02 0.90 4.00 0.22 1.31E+03 2.87 Yes 

MAC 0.98 54.58 1.00 54.58 3.19E+05 4.35 Yes 

Stations X MAC 0.80 44.51 4.00 11.13 6.50E+04 2.87 Yes 

Error 0.00 0.01 20.00 0.00 

Total 1.79 100.00 29.00 

ANOVA for Delay (a), 100% Load 

Source of Variation Sum of Sauares Percentaee Variation Deerees of Freedom Mean Sauare F- Computed F- Statistic Sieniflcant 

Stations 0.13 0.77 4.00 0.19 1.12E403 2.87 Yes 

MAC 11.86 72.69 1.00 72.69 4.24E+05 4.35 Yes 

Stations X MAC 4.33 26.54 4.00 6.64 3.88E+04 2.87 Yes 

Error 0.00 0.00 20.00 0.00 

Total 16.32 100.00 29.00 

ANOVA for Delay (ffi, 200% Load 
Source of Variation Sum of Sauares Percentaee Variation Deerees of Freedom Mean Sauare F- Computed F- Statistic Sieniflcant 

Stations 0.11 0.60 4.00 0.15 8.77E+02 2.87 Yes 

MAC 12.28 66.36 1.00 66.36 3.88E+05 4.35 Yes 

Stations X MAC 6.11 33.04 4.00 8.26 4.82E+04 2.87 Yes 

Error 0.00 0.00 20.00 0.00 
Total 18.51 100.00 29.00 

ANOVA for Delay (a), 400% Load 
Source of Variation Sum of Sauares Percentaee Variation Deerees of Freedom Mean Sauare F- Computed F- Statistic Sieniflcant 

Stations 0.16 9.32 4.00 2.33 1.36E+04 2.87 Yes 

MAC 0.91 53.29 1.00 53.29 3.11E+05 4.35 Yes 

Stations X MAC 0.64 37.39 4.00 9.35 5.46E+04 2.87 Yes 

Error 0.00 0.00 20.00 0.00 

Total 1.72 100.00 29.00 
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Appendix B.   Model Validation 

This section elaborates on the model validation conducted in Chapter 4. There are 

three types of tests conducted to ensure the model assumptions were not violated. 

These tests include: 

• Visual Residual Plots 

• R2 Test for Linearity 

• Levene's Test for Homogeneity of Variances 

B.l    Normal Quantile-Quantile Plot 

The F-test used in the ANOVA analysis assumes a linear relationship between 

the responses and the factors and that the errors are normally distributed. To test 

normality, a normal quantile-quantile (Q-Q) plot is constructed. The x-axis is the 

quantilies of the normal distribution with respect to the number of observations in 

the analysis. The y-axis is the rank-ordered responses. If the responses do not follow 

a linear relationship with respect to the normal quantiles, then the assumption is 

violated and the conclusions drawn from the ANOVA are compromised [Jai91]. 

B.2   R2 Linearity Test 

The normal Q-Q plot is a visual test for normality. However, a visual deter- 

mination of a linear relationship is very subjective. The coefficient of determination 

statistic, more commonly known as the R-squared value, can be interpreted as the 

proportion of the variation in the dependent variable that is statistically explained 

by the associated independent variable from the regression model [Jai91]. It is a 

more analytic method of determining linearity and is defined as 

2 bbR b b 1    — b b hi ,_      > 
= ~SST =       SST [  ' ' 
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An R? value of 1 indicates that 100% of the variation of the dependent variable 

may be explained by the linear relationship with the independent variable. An R2 of 

0% indicates that there is no relationship between the dependent and independent 

variables. Another way of interpreting the R2 value is that the closer it is to 100%, 

the closer the relationship between the response and the factors is linear. So, R2 is 

a measure of linearity. 

B.S   Residual Scatter Plots 

Another F-test assumption for ANOVA is that the errors, or residuals, are 

independent and have a constant standard deviation. A scatter plot of the residuals 

versus the predicted values can be used as a visual test. If there are no trends in 

the points, the assumption of independence is upheld. Furthermore, if the residual 

deviation from zero is relatively constant, then the assumption of constant standard 

deviation is upheld. Instead of the predicted values, the scatter plot can also be 

used by plotting the residuals versus the experiment number. This also will produce 

trends, if applicable, that will test for assumption violation [Jai91]. 

B-4    Normality Test Results 

Visual residual plots present the residuals (errors) of the data and plot them 

with respect to quantiles of a specified distribution, fitted (average) responses, or 

experiment number. The purpose of these plots is to notice a trend in the residuals 

which will either support of contradict the assumptions of the ANOVA analysis. 

The first of these tests is the assumption of normally distributed errors. This can be 

tested using a normal quantile-quantile plot of the residuals versus quantiles of the 

the normal distribution. These plots are identified in Figures B.l and B.2. 

Initially, the R2 value for the delay response was 0.57 which is not very close 

to 1. A value of 1 indicates near perfect linearity. Many transforms were applied, 

but none resulted in R2 much better than the untransformed results. As identified 
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Delay Quantile-Quantile Plots 

(b)SO%Lt»d 

Figure B.l.     Normal Q-Q Plot of the Delay Residuals 

in Appendix A, the Network Offered Load factor was removed from consideration 

and ANOVA was conducted on the 25% through 400% offered load levels. The 25% 

offered load resulted in an R2 value of 96%, thus no transform was needed. Without 

transforming the other levels, most had R2 values far below 90%. Due to the high 

variability at the higher loading levels, a few transforms were needed. These are 

identified in Table B.l. 

Table B.l.     Data Transforms 

Loading Level Transform 
25% None 
50% None 
75% 

-b 
y — x 4 

100% y = LOG(x - 1) 
200% y = LOG{x - 1) 
400% 

-ii 
y = x i7 

These transforms result in the normal Q-Q plots in Figure B.l. These were the 

best fitted transforms that could be found. Since prediction of responses based on 
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the regression equation is not needed, an R2 value of 

acceptable to satisfy the ANOVA assumptions. 

85% and above was considered 

Throughput Quantfle-Quantfle Plots 

Figure B.2.     Normal Q-Q Plot of the Throughput Residuals 

Figure B.2 shows the normal Q-Q plot of the raw and transformed throughput 

data. The use of a transform was only needed at the 400% loading level. Initially, 

the raw data resulted in an R2 value of less than 56%. Applying a y = LOG(x) 

resulted in an R2 value of 91%. Using the same reasoning as above, the normal Q-Q 

plots all pass the test. Thus, the use of the visual plots and the R2 test verified that 

the assumption of normally distributed error for the respective ANOVA analyses. 

B.5   Scatter Plot Test Results 

The next assumption deals with the independently distributed errors with con- 

stant standard deviation. This can be verified with a scatter plot of the residuals 

with respect to the fitted values or the experiment number. For a numerical equiv- 

B-4 



alent, the Levene test for homogeneity may also be employed.   The plots for this 

verification is in Figures B.3, B.4, B.5, and B.6. 

Delay Scatter Plots: Residuals Vs. Experiment Number 

(i) 25% U»d (b) 50% Losd 
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Figure B.3.     Scatter Plot of Residuals Vs. Experiment Number of Delay Responses 

As can be seen, most of the scatter plot of the residuals of both the delay and 

throughput in Figures B.5 and B.6 do not show any noticeable trend. Some look as 

though there may be some clustering when plotting with respect the fitted values. In 

these circumstances, Levene's test is needed to quantify the trend if any. However, 

when plotting with respect to the observation number, there are no noticeable trends. 

B.5.0.1 Levene Test for Homogeneity of Variances. An analytic test 

to determine the constant standard deviation of errors is to test for homogeneity 

of the variances. Homogeneity of variances is roughly equivalent to equal standard 

variations across samples. Since the F-test in ANOVA is particularly sensitive to 

the assumption of constant or equal standard deviations, Levene's test can be used 

to analytically determine the conclusion which could be drawn from a scatter plot 

[MÜ86]. 
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Throughput Scatter Plots: Residuals Vs. Experiment Number 

(a) 25% Load (b) 50% Load 
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Figure B.4.     Scatter Plot of Residuals Vs.    Experiment Number of Throughput 
Responses 

Delay Scatter Plots: Residuals Vs. Fitted Values 
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Figure B.5.     Scatter Plot of Residuals Vs. Fitted Values of Delay Responses 
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Throughput Scatter Plots: Residuals Vs. Fitted Values 
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Figure B.6.     Scatter Plot of Residuals Vs. Fitted Values of Throughput Responses 

Levene's test is an alternative to Bartlett's test which is most commonly used. 

Levene's test is preferred since it is not as sensitive to the assumption of normality 

as is Bartlett's test. Levene's test uses the variable W defined as 

W (B.2) 

where N is the sample size, k is the number of subgroups, Nt is the sample size of 

the ith subgroup and Z is defined as 

7.. — ly.. _ y. 
■*i] V 

(B.3) 

where Y is the given variable and YL can be either the mean or the median value. 

If the variances are not homogenous or the standard deviations are not equal, then 
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W > F(i-a)t(k-i),(N-k) where F is the F-distribution with k-l and N - 1 degrees 

of freedom at a significance level of a. 

Visually, it seems that these responses have no real trend. But this is a sub- 

jective conclusion. Using the Levene Test for Homogeneity of Variances, it can be 

seen in Table B.2 that all the responses have a constant standard deviation. 

Table B.2.     Levene Test Results 
Test Plot W-Calculated F-Statistic Constant st. dev.? 

Throughput  25% Load 0.01 2.18 Yes 

Throughput  50% Load 0.01 2.18 Yes 

Throughput  75% Load 0.08 2.18 Yes 

Throughput  100% Load 0.16 2.18 Yes 

Throughput  200% Load 0.73 2.18 Yes 

Throughput  400% Load 1.10 2.18 Yes 

Delay 25% Load 0.05 2.18 Yes 

Delay 50% Load 0.41 2.18 Yes 
Delay 75% Load 0.00 2.18 Yes 

Delay  100% Load 0.05 2.18 Yes 

Delay 200% Load 0.04 2.18 Yes 

Delay 400% Load 0.64 2.18 Yes 

The ANOVA assumptions hold and the confidence in the results is substanti- 

ated. 
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Appendix C.   DS/CDMA Failure Point Prediction 

This section details the analysis used to calculate the maximum number of simul- 

taneous communication links that the DS/CDMA system employed in this research 

could maintain. It was found that 98 is the theoretical maximum limit this sys- 

tem may hold. This is far less than the 513 available spreading codes in the Gold 

code family chosen. Increases in the number of users is possible by redefining the 

parameters such as the code family, the available bandwidth, and the data rate. Spe- 

cial calculation decisions were made due to how OPNET uses the radio transceiver 

pipeline to perform the SNR and BER calculations. 

The DS/CDMA system should fail when the bit error rate rises above 1 x 10~4. 

This is the upper limit when the number of bit errors exceeds the maximum that 

a data network can tolerate [Skl88]. Since there was no special coding involved in 

the transmission, BPSK is used since it is the optimum uncoded modulation scheme 

[Skl88]. The system is operating at baseband which limits the effective bandwidth 

and processing gain of the signal. Consider the following frequency response of a 

baseband signal. Since it is baseband, the signal is centered about 0 Hz in a sine2 

curve as depicted in Figure C.l 

Bandwidth of Digital Data Signal 

General Shape of 
Power Spectral Density 

Figure C.l.     Baseband BPSK Signal Spectrum 
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The signal actually occupies both positive and negative frequencies. However, 

only positive frequencies are of interest. This effectively eliminates half the power of 

the signal. Frequently, the ratio jfc is used to calculate a probability of error. For 

BPSK modulation, probability of error, Pe, or BER is [Skl88] 

*=<#(£)) (c-i) 
where Q is the complementary error function already presented in Chapter 3. This 

calculation for BER assumes additive white gaussian noise, matched filter detection, 

and a constant noise power spectral density of ^. 

Since OPNET assumes a baseband signal and calculates a signal-to-noise ratio, 

conversion of f6- to SNR is a simple algebraic manipulation. Eb is the energy per 

bit and can be calculated by dividing the baseband signal power by the data rate or 

Eb=^ (C.2) 

where S is the power of the signal of interest and R is the data rate of the signal 

and the subscript BB denotes a baseband signal. The inverse of R yields the symbol 

time, Ts which is the duration, in seconds, of the data bit. Since the data rate is 

fixed at 10 Mbps, and assuming the modulation yields l|^ results in a R = 10 MHz. 

This yields a Ts of 100 ns. Average baseband noise is calculated as 

NBB = *f£ (OS) 

where N0 is the noise power spectral density and WBB is the bandwidth the baseband 

signal occupies. From Figure C.l, the baseband null-to-null bandwidth of the data 

signal is simply 
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WBB = ^ = Rs (C.4) 
-* s 

Without the inclusion of the processing gain (this will be included later in the cal- 

culations), the j^- is 

E± =   ^   =     SBB WBB = SNRBP (Q 5) 

N  ~ ^BX2      2xNBB
X   Rs 2 

WBB 

where the subscript BP represents a bandpass signal. Thus, the BER is 

(Pe)BB = Q (1/^) = (Q/SNRBP) (C.6) 

The ultimate effect of spreading the signal across the full capacity of the channel 

is a reduction in the noise power by the processing gain of the system [Skl88]. In 

effect, the effective SNR is 

SNREffective = J: = I x GP = ^    +GPdB (C7) 

The noise in the system is only due to the transmission of the other users in the 

network. Hence, every transmission other than the signal of interest is considered a 

noise source. Since each user is also in the same gold code family, there will be some 

extra power allowed to pass on to the demodulator with its effect quantified by the 

cross-correlation coefficient, a = 0.0176. The total amount of power received is the 

portion, a, of the sum of the powers of all other transmissions reduced by processing 

gain of the system. Recall that the processing gain of the system given in EQ 3.1 

is the ratio of the bandwidth divided by the data rate where the bandwidth is the 

full capacity of the RG-58 (400 MHz) and the data rate is 10 Mbps. This processing 

gain is effectively halved due to the use of a baseband signal. Therefore, a factor 

of two must be removed in the OPNET calculations to compensate for this type of 
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signalling. Thus, the total calculated noise system power from OPNET due to the 

multiple access interferes is 

Po™eT x Number of Interfers x a . „. n. 
MBB = -^ m  (C.8) 

2 

Since the upper limit on the BER is 1 x 10~4, it can be found that the argument 

of the Q function must be no less than 3.5. Thus 

SNRBP > 3.5 -»■ SNR > 12.25 

The power received is a constant 1 Watt due to the assumption of perfect 

power control. Thus, the total number of users that may be permitted in the system 

without increasing the BER above 1 x 10~4 is 

N < 1W/12.25 = 81.63 mW 

Number of users >  Pmner\ 
User 

8l.63mW x (f) 
= ^—- = 98 maximum users 

\W x 0.0176 

Thus, the total number of users this system can support is 98 concurrent com- 

munication links within its own LAN. This maximum number could be increased 

redefining the Gold code used. This will change the total number of available codes 

and the associated cross-correlation coefficient. Also, the data rate could be de- 

creased which increases the processing gain of the system. This value was verified in 

the simulation. 
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Appendix D.   Pipeline Stage Code 

The following pages list the code used in the DSSS pipeline stages. All 14 stages of 

the pipeline are listed. 
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/* STAGE 0 */ 
/* Filename: dsss_rxgroup.ps.c */ 
/* Description: */ 
/*    Receiver group model for wireless */ 
/*    spread spectrum link Transceiver Pipeline */ 
/* Author: Robert J. Bonner */ 
/*********************************#**********##***/ 

#include "opnet.h" 

#if defined ( cplusplus) 
extern "C" 
#endif 
int 
dsss_rxgroup (Objid tx_obid, Objid rx_obid) 

{ 
/** Determine the potential for communication between      **/ 
/** given transmitter and receiver channel objects. **/ 
FIN (dsss_rxgroup (tx_obid, rx_obid)); 

/* By default, all receivers are considered */ 
/* as potential destinations. */ 
FRET (OPC_TRUE); 
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/* STAGE 1 */ 
/* Filename: dsss_txdel.ps.c */ 
/* Description: */ 
/*    Transmission delay model for wireless */ 
/*    spread spectrum link Transceiver Pipeline */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*    - Original Opnet code: "drajxdel.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 

#include "opnet.h" 

#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_txdel (Packet * pkptr) 

{ 
int pklen; 
double tx_drate, tx_delay; 

/** Compute the transmission delay associated with the transmission of a 
packet over a radio link. **/ 

FIN (dsss_txdel (pkptr)); 

/* Obtain the transmission rate of that channel. */ 
tx_drate = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_DRATE); 

/* Obtain length of packet.     */ 
pklen = op_pk_total_size_get (pkptr); 

/* Compute time required to complete transmission of packet. */ 
tx_delay = pklen / tx_drate; 

/* Place transmission delay result in packet's reserved transmission data 
attribute.     */ 

op_td_set_dbl (pkptr, OPC_TDA_RA_TX_DELAY, tx_delay); 

FOUT; 
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/* STAGE 2 */ 
/* Filename: dsss_closure_all.ps.c */ 
/* Description: */ 
/*    Closure model for wireless spread spectrum */ 
/*    link Transceiver Pipeline. This model assumes */ 
/*    that all receivers are capable of receiving */ 
/*    a transmission from any transmitter */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*    - Original Opnet code: "dra_closure_all.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 

#include "opnet.h" 

/*#*** pipeijne procedure *****/ 

#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_closure_all (Packet * pkptr) 

{ 
/** Guarantee closure between transmitter and receiver. **/ 

FIN (dsss_closure_all (pkptr)); 

/* Place closure status in packet transmission data block. */ 
op_td_set_int (pkptr, OPC_TDA_RA_CLOSURE, OPC_TRUE); 

FOUT; 
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/* STAGE 3 */ 
/* Filename: dsss_chanmatch.ps.c */ 
/* Description: */ 
/*    Channel match model for wireless */ 
/*    spread spectrum link Transceiver Pipeline */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*    - Original Opnet code: "dra_chanmatch.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 
/*    - Updated: 3Oct00 */ 
/*    - - Added in "code_family" check for match */ 
/*    - Updated: 40ctOO */ 
/* - - Revised to support if "code_family" */ 
/* attribute doesn't exist. */ 
/*****************#*********#********************/ 

#include "opnet.h" 
#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_chanmatch (Packet * pkptr) 

{ 
int tx_code_family, tx_id, my_id, rx_code_family, rx_id; 
double tx_freq, tx_bw, tx_drate, tx_code; 
double rx_freq, rx_bw, rx_drate, rx_code; 
Vartype tx_mod, rx_mod; 
/^Determine the compatibility between transmitter and receiver channels. 
FIN (dsss_chanmatch (pkptr)); 
/* Obtain transmitting channel attributes. */ 
tx_freq = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_FREQ); 
tx_bw = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_BW); 
tx_drate = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_DRATE); 
tx_code = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_CODE); 
tx_mod = op_td_get_ptr (pkptr, OPC_TDA_RA_TX_MOD); 
my_id = op_td_get_int (pkptr, OPC_TDA_RA_TX_OBJID); 
tx_id = op_topo_parent (my_id); 
/* Obtain receiving channel attributes. */ 
rx_freq = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_FREQ); 
rx_bw = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_BW); 
rx_drate = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_DRATE); 
rx_code = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_CODE); 
rx_mod = op_td_get_ptr (pkptr, OPC_TDA_RA_RX_MOD); 
my_id = op_td_get_int (pkptr, OPC_TDA_RA_RX_OBJID); 
rx_id = op_topo_parent (my_id); 
/* If code_family is specified, then get value, otherwise transmission is 
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not spread.*/ 
if (op_ima_obj_attr_exists(tx_id, "code_family")) 

{op_ima_obj_attr_get (tx_id, "code_family", &tx_code_family);} 
if (op_ima_obj_attr_exists(rx_id, "code_family")) 

{op_ima_obj_attr_get (rx_id, "code_family", &rx_code_family);} 
/* For non-overlapping bands, the packet has no       */ 
/* effect; such packets are ignored entirely. */ 
if ((tx_freq > rx_freq + rx_bw) || (tx_freq + tx_bw < rx_freq)) 

{op_td_set_int (pkptr, OPC_TDA_RA_MATCH_STATUS, 
OPC_TDA_RA_MATCH_IGNORE); 

FOUT;} 
/* Otherwise check for channel attribute mismatches which would */ 
/* cause the in-band packet to be considered as noise. */ 
/* If the code_family attribute is specified, then the signal is spread 
/* and check to see if transmitting in the same code family */ 
if ((op_ima_obj_attr_exists(rx_id, "code_family")) && 

(op_ima_obj_attr_exists(tx_id, "codejfamily"))) 
{if ((tx_freq != rx_freq) || (tx_bw != rx_bw) || 

(tx_drate != rx_drate) || (tx_code != rx_code) || 
(tx_code_family != rx_code_family) || (tx_mod != rx_mod)) 
{op_td_set_int (pkptr, OPC_TDA_RA_MATCH_STATUS, 

OPC_TDA_RA_MATCH_NOISE); 
FOUT;}; 
} 

/* If the code_family is not specified, then don't perform the code_family 
attribute check */ 

if ((tx_freq != rx_freq) || (tx_bw != rx_bw) || 
(tx_drate != rx_drate) || (tx_code != rx_code) || (tx_mod != rx_mod)) 

{ 
op_td_set_int (pkptr, OPC_TDA_RA_MATCH_STATUS, 

OPC_TDA_RA_MATCH_NOISE); 
FOUT; 
} 

/* Otherwise the packet is considered a valid transmission which    */ 
/* could eventually be accepted at the error correction stage. */ 
op_td_set_int (pkptr, OPC_TDA_RA_MATCH_STATUS, 

OPC_TDA_RA_MATCH_VALID); 
FOUT; 
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/* STAGE 4 */ 
/* Filename: dsss_tagain.ps.c */ 
/* Description: */ 
/*    Transmitter antenna gain model for wireless */ 
/*    spread spectrum link Transceiver Pipeline */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*    - Original Opnet code: "dra_tagain.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 
/He***********************************************/ 

#include "opnet.h" 
#include <math.h> 

/***** constants *****/ 

#define RAD_TO_DEG        (180.0 / 3.1415927) 
#define DEG_TO_RAD (1.0/ RAD_TO_DEG) 

/***** pipeline procedure *****/ 

#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_tagain (Packet * pkptr) 

{ 
double tx_x, tx_y, tx_z; 
double rx_x, rx_y, rx_z; 
double dif_x, dif_y, dif_z, dist_xy; 
double rotl_x, rotl_y, rotl_z; 
double rot2_x, rot2_y, rot2_z; 
double rot3_x, rot3_y, rot3_z; 
double cos_pt_th, sin_pt_th; 
double cos_sw_th, sin_sw_th, cos_sw_ph, sin_sw_ph; 
double rx_phi, rx_theta, point_phi, point_theta; 
double bore_phi, bore_theta, lookup_phi, lookup_theta, gain; 
Vartype pattern_table; 
double sweep_phi, sweep_theta; 

/** Compute the gain associated with the transmitter's antenna. **/ 

FIN (dsss_tagain (pkptr)); 

/* Obtain handle on receiving antenna's gain. */ 
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pattern_table = op_td_get_ptr (pkptr, OPC_TDA_RA_TX_PATTERN); 

/* Special case: by convention a nil table address indicates an isotropic 
/* antenna pattern. Thus no calculations are necessary. 
/* For a wired spread spectrum implementation in Opnet, be sure to set the 
/* antenna pattern attribute to "isotropic" to nullify the calculations 

for receiver antenna gain. */ 
if (pattern_table == OPC_NIL) 

{ 
/* Assign zero dB gain regardless of transmission direction. */ 
op_td_set_dbl (pkptr, OPC_TDA_RA_TX_GAIN, 0.0); 
FOUT; 
} 

/* Obtain the geocentric coordinates of the transmitter. */ 
tx_x = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_GEO_X); 
tx_y = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_GEO_Y); 
tx_z = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_GEO_Z); 

/* Obtain the geocentric coordinates of the receiver. */ 
rx_x = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_GEO_X); 
rx_y = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_GEO_Y); 
rx_z = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_GEO_Z); 

/* Compute the vector from the transmitter to the receiver. */ 
dif_x = rx_x - tx_x; 
dif_y = rx_y - tx_y; 
dif_z = rx_z - tx_z; 

/* Determine phi, theta pointing directions for antenna. */ 
/* These are computed based on the target point of the antenna       */ 
/* module and the position of the transmitter. */ 
point_phi = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_PHI_POrNT); 
point_theta = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_THETA_POINT); 

/* Determine antenna pointing reference direction */ 
/* (usually boresight cell of pattern). */ 
/* Note that the difference in selected coordinate systems */ 
/* between the antenna definiton and the geocentric axes, */ 
/* is accomodated for here by modifying the given phi value. */ 
bore_phi = 90.0 - op_td_get_dbl (pkptr, OPC_TDA_RA_TX_BORESIGHT_PHI); 
bore_theta = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_BORESIGHT_THETA); 

/* Setup a new coord, system where x axis is in same theta plane    */ 
/* as pointing direction. This allows simple computation of effect*/ 
/* of phi rotation on the transmission vector. */ 
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cos_pt_th = cos (DEG_TO_RAD * point_theta); 
sin_pt_th = sin (DEG_TO_RAD * point_theta); 
rotl_x = dif_x * cos_pt_th - dif_y * sin_pt_th; 
rotl_y = dif_x * sin_pt_th + dif_y * cos_pt_th; 
rotl_z = dif_z; 

/* Rotate the boresight direction into the pointing direction */ 
/* and compute the effect of this on the transmission vector.*/ 
sweep_phi = bore_phi - point_phi; 
sweep_theta = bore_theta - point_theta; 
cos_sw_th = cos (DEG_TO_RAD * sweep_theta); 
cos_sw_ph = cos (DEG_TO_RAD * sweep_phi); 
sin_sw_th = sin (DEG_TO_RAD * sweep_theta); 
sin_sw_ph = sin (DEG_TO_RAD * sweep_phi); 
rot2_x = (rotl_x * cos_sw_ph - rotl_z * sin_sw_ph) * cos_sw_th + rotl_y * 

sin_sw_th; 
rot2_y = rotl_y * cos_sw_th - (rotl_x * cos_sw_ph - rotl_z * sin_sw_ph) * 

sin_sw_th; 
rot2_z = rotl_x * sin_sw_ph + rotl_z * cos_sw_ph; 

/* Reverse the initial coordinate system transform */ 
/* which was done to permit proper phi rotation. */ 
rot3_x = rot2_x * cos_pt_th + rot2_y * sin_pt_th; 
rot3_y = rot2_y * cos_pt_th - rot2_x * sin_pt_th; 
rot3_z = rot2_z; 

/* Determine x-y projected distance. */ 
dist_xy = sqrt (rot3_x * rot3_x + rot3_y * rot3_y); 

/* For the vector to the receiver, determine phi-deflection from */ 
/* the x-y plane (in degress) and determine theta deflection from */ 
/* the positive x axis. 

*/ 
if (dist_xy == 0.0) 

{ 
if (rot3_z < 0.0) 

rx_phi = -90.0; 
else 

rx_phi = 90.0; 
rx_theta = 0.0; 
} 

else 

rx_phi = RAD_TO_DEG * atan (rot3_z / dist_xy); 

if (rot3_y > 0.0) 
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rx_theta = -RAD_TO_DEG * acos (rot3_x / dist_xy); 
else 

rx_theta = RAD_TO_DEG * acos (rot3_x / dist_xy); 

} 

/* Setup the angles at which to lookup gain. */ 
/* In the rotated coordinate system, these are really */ 
/* just the angles of the transmission vector. However, */ 
/* note that here again the difference in the coordinate */ 
/* systems of the antenna and the geocentric axes is */ 
/* accomodated for by modiftying the phi angle. */ 
lookup_phi = 90.0 - rx_phi; 
lookup_theta = rx_theta; 

/* Obtain gain of antenna pattern at given angles. */ 
gain = op_tbl_pat_gain (pattern_table, lookup_phi, lookup_theta); 
/* Set gain=0 due to wired DSSS implementation */ 
gain = 0.0; 
/* Set the tx antenna gain in the packet's transmission data attribute. */ 
op_td_set_dbl (pkptr, OPC_TDA_RA_TX_GAIN, gain); 

FOUT; 
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/* STAGE 5 */ 
/* Filename: dsss_propdel.ps.c */ 
/* Description: */ 
/*    Propagation delay model for wireless */ 
/*    spread spectrum link Transceiver Pipeline */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*    - Original Opnet code: "dra_propdel.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 
/He**:):********************************************/ 

#include "opnet.h" 
/***** constants *****/ 
/* propagation velocity of signal in wire is 2/3 speed of light(m/s) */ 
#define PROP_VELOCITY   2.0E+08 
/***** pipeline procedure *****/ 
#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_propdel (Packet * pkptr) 

{ 
double start_prop_delay, end_prop_delay; 
double start_prop_distance, end_prop_distance; 

/** Compute the propagation delay separating the    **/ 
/** radio transmitter from the radio receiver. **/ 
FIN (dsss_propdel (pkptr)); 

/** If the transmitter is mobile, then there will be a start distance and 
an end distance. If the transmitter is not moving then start and end 
distance will be the same. Get the start distance between transmitter 
and receiver. **/ 

start_prop_distance = op_td_get_dbl (pkptr, OPC_TDA_RA_START_DIST); 
/* Get the end distance between transmitter and receiver. */ 
end_prop_distance = op_td_get_dbl (pkptr, OPC_TDA_RA_END_DIST); 
/* Compute propagation delay to start of reception. */ 
start_prop_delay = start_prop_distance / PROPJVELOCITY; 
/* Compute propagation delay to end of reception. */ 
end_prop_delay = end_prop_distance / PROPJVELOCITY; 
/* Place both propagation delays in packet transmission data attributes. 
op_td_set_dbl (pkptr, OPC_TDA_RA_START_PROPDEL, start_prop_delay); 
op_td_set_dbl (pkptr, OPC_TDA_RA_END_PROPDEL, end_prop_delay); 
FOUT; 
} 
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/* STAGE 6 */ 
/* Filename: dsss_ragain.ps.c */ 
/* Description: */ 
/*    Receiver gain model for wireless */ 
/*    spread spectrum link Transceiver Pipeline */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*    - Original Opnet code: "dra_ragain.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 

#include "opnet.h" 
#include <math.h> 

/***** constants *****/ 

#define RAD_TO_DEG        57.29578 
#define DEG_TO_RAD (1.0/57.29578) 

/***** pipeline procedure *****/ 

#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_ragain (Packet * pkptr) 

{ 
double tx_x, tx_y, tx_z; 
double rx_x, rx_y, rx_z; 
double dif_x, dif_y, dif_z, dist_xy; 
double rotl_x, rotl_y, rotl_z; 
double rot2_x, rot2_y, rot2_z; 
double rot3_x, rot3_y, rot3_z; 
double cos_pt_th, sin_pt_th; 
double cos_sw_th, sin_sw_th, cos_sw_ph, sin_sw_ph; 
double tx_phi, tx_theta, point_phi, point_theta; 
double bore_phi, bore_theta, lookup_phi, lookup_theta, gain; 
Vartype pattern_table; 
double sweep_phi, sweep_theta; 

/** Compute the gain associated with the receiver's antenna. **/ 

FIN (dsss_ragain (pkptr)); 

/* Obtain handle on receiving antenna's gain. */ 
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pattern_table = op_td_get_ptr (pkptr, OPC_TDA_RA_RX_PATTERN); 

/* Special case: by convention a nil table address indicates an isotropic 
/* antenna pattern. Thus no calculations are necessary. 
/* For a wired spread spectrum implementation in Opnet, be sure to set the 
/* antenna pattern attribute to "isotropic" to nullify the calculations 

for receiver antenna gain. * 
if (pattern_table == OPC_NIL) 

{ 
/* Assign zero dB gain regardless of transmission direction. */ 
op_td_set_dbl (pkptr, OPC_TDA_RA_RX_GAIN, 0.0); 
FOUT; 
} 

/* Obtain the geocentric coordinates of the transmitter. */ 
tx_x = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_GEO_X); 
tx_y = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_GEO_Y); 
tx_z = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_GEO_Z); 

/* Obtain the geocentric coordinates of the receiver. */ 
rx_x = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_GEO_X); 
rx_y = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_GEO_Y); 
rx_z = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_GEO_Z); 

/* Compute the vector from the receiver to the transmitter. */ 
dif_x = tx_x - rx_x; 
dif_y = tx_y - rx_y; 
dif_z = tx_z - rx_z; 

/* Determine phi, theta pointing directions for antenna. */ 
/* These are computed based on the target point of the antenna       */ 
/* module and the position of the receiver. */ 
point_phi = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_PHI_POINT); 
pointjheta = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_THETA_POINT); 

/* Determine antenna pointing reference direction */ 
/* (usually boresight cell of pattern). */ 
/* Note that the difference in selected coordinate systems */ 
/* between the antenna definiton and the geocentric axes */ 
/* is accomodated for here by modifying the given phi value. */ 
bore_phi = 90.0 - op_td_get_dbl (pkptr, OPC_TDA_RA_RX_BORESIGHT_PHI); 
bore_theta = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_BORESIGHT_THETA); 

/* Setup a new coord system where x axis is in same theta plane     */ 
/* as pointing direction. This allows simple computation of */ 
/* effect of phi rotation on the transmission vector. */ 
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cos_pt_th = cos (DEG_TO_RAD * point_theta); 
sin_pt_th = sin (DEG_TO_RAD * point_theta); 
rotl_x = dif_x * cos_pt_th - dif_y * sin_pt_th; 
rotl_y = dif_x * sin_pt_th + dif_y * cos_pt_th; 
rotl_z = dif_z; 

/* Rotate the boresight direction into the pointing direction */ 
/* and compute the effect of this on the transmission vector.*/ 
sweep_phi = bore_phi - point_phi; 
sweep_theta = bore_theta - pointjheta; 
cos_sw_th = cos (DEG_TO_RAD * sweep_theta); 
cos_sw_ph = cos (DEG_TO_RAD * sweep_phi); 
sin_sw_th = sin (DEG_TO_RAD * sweep_theta); 
sin_sw_ph = sin (DEG_TO_RAD * sweep_phi); 
rot2_x = (rotl_x * cos_sw_ph - rotl_z * sin_sw_ph) * cos_sw_th + rotl_y * 

sin_sw_th; 
rot2_y = rotl_y * cos_sw_th - (rotl_x * cos_sw_ph - rotl_z * sin_sw_ph) * 

sin_sw_th; 
rot2_z = rotl_x * sin_sw_ph + rotl_z * cos_sw_ph; 

/* Reverse the initial coordinate system transform    */ 
/* which was done to permit proper phi rotation.      */ 
rot3_x = rot2_x * cos_pt_th + rot2_y * sin_pt_th; 
rot3_y = rot2_y * cos_pt_th - rot2_x * sin_pt_th; 
rot3_z = rot2_z; 

/* Determine x-y projected distance. */ 
dist_xy = sqrt (rot3_x * rot3_x + rot3_y * rot3_y); 

/* For the vector to the transmitter, determine phi-deflection */ 
/* from the x-y plane (in degress) and determine theta- */ 
/* deflection from the positive x axis. */ 
if (dist_xy == 0.0) 

{ 
if (rot3_z < 0.0) 

tx_phi = -90.0; 
else 

tx_phi = 90.0; 
tx_theta = 0.0; 
} 

else 

tx_phi = RAD_TO_DEG * atan (rot3_z / dist_xy); 

if (rot3_y > 0.0) 
tx_theta = -RAD_TO_DEG * acos (rot3_x / dist_xy); 
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else 
tx_theta = RAD_TO_DEG * acos (rot3_x / dist_xy); 

} 

/* Setup the angles at which to lookup gain. */ 
/* In the rotated coordinate system, these are really */ 
/* just the angles of the transmission vector. However,        */ 
/* note that here again the difference in the coordinate */ 
/* systems of the antenna and the geocentric axes is */ 
/* accomodated for by modifying the phi angle. */ 
lookup_phi = 90.0 - tx_phi; 
lookup_theta = tx_theta; 

/* Obtain gain of antenna pattern at given angles. */ 
gain = op_tbl_pat_gain (patternjable, lookup_phi, lookup_theta); 
/* Set Gain=0 for wired DSSS implementation */ 

gain = 0.0; 
/* Set the rx antenna gain in the packet's transmission data attribute. */ 
op_td_set_dbl (pkptr, OPC_TDA_RA_RX_GAIN, gain); 

FOUT; 
} 
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/* STAGE 7 */ 
/* Filename: dsss_power.ps.c */ 
/* Description: */ 
/*    Received Power model for wireless spread */ 
/*    spectrum link Transceiver Pipeline. */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*    - Original Opnet code: "dra_power.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 

#include "opnet.h" 
#include <math.h> 

/***** constants *****/ 

#defineC 3.0E+08 x /* speed of light (m/s) */ 
#define SIXTEEN_PI_SQ 157.91367 /* 16 times pi-squared */ 

static const char*        PowI_Err_Hdr = "Error in radio power computation pipeline stage 
(dsss_power):"; 

/***** pipeiine procedure *****/ 

#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_power (Packet * pkptr) 

{ 
double prop_distance, rcvd_power, path_loss; 
double tx_power, tx_base_freq, tx_bandwidth, tx_center_freq; 
double lambda, rx_ant_gain, tx_ant_gain; 
Boolean sig_lock; 
Objid rx_ch_obid; 
double in_band_tx_power, band_max, band_min; 
double rx_base_freq, rx_bandwidth; 

/** Compute the average power in Watts of the        **/ 
/** signal associated with a transmitted packet.        **/ 

FIN (dsss_power (pkptr)); 

/* If the incoming packet is 'valid', it may cause the receiver to       */ 
/* lock onto it. However, if the receiving node is disabled, then       */ 
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/* the channel match should be set to noise. */ 
if (op_td_get_int (pkptr, OPC_TDA_RA_MATCH_STATUS) == 

OPC_TDA_RA_MATCH_VALID) 

{ 
if (op_td_is_set (pkptr, OPC_TDA_RA_ND_FAIL)) 

{ 
/* The receiving node is disabled. Change   */ 
/* the channel match status to noise. */ 
op_td_set_int (pkptr, OPC_TDA_RA_MATCH_STATUS, 

OPC_TDA_RA_MATCH_NOISE); 

else 
{ 
/* The receiving node is enabled. Get */ 
/* the address of the receiver channel. */ 
rx_ch_obid = op_td_get_int (pkptr, OPC_TDA_RA_RX_CH_OBJID); 

/* If the receiver channel is already locked, */ 
/* the packet will now be considered to be noise. */ 
/* This prevents simultaneous reception of multiple */ 
/* valid packets on any given radio channel. */ 
if (op_ima_obj_attr_get (rx_ch_obid, "signal lock", &sig_lock) 

== OPC_COMPCODE_FAILURE) 

{ 
op_sim_end (PowI_Err_Hdr, 

"Unable to get signal lock flag from channel 
attribute.", 

OPC_NIL, OPC_NIL); 
} 

if (sig_lock) 
op_td_set_int (pkptr, OPC_TDA_RA_MATCH_STATUS, 

OPC_TDA_RA_MATCH_NOISE); 
else 

{ 
/* Otherwise, the receiver channel will become        */ 
/* locked until the packet reception ends. */ 
sigjock = OPC_BOOLINT_ENABLED; 
if (op_ima_obj_attr_set (rx_ch_obid, "signal lock", 

sigjock) == OPC_COMPCODE_FAILURE) 
{ 
op_sim_end (PowI_Err_Hdr, 

"Unable to set receiver channel attribute 
(signal lock).", 

OPC_NIL, OPC_NTL); 
} 
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/* Get power allotted to transmitter channel. */ 
tx_power = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_POWER); 

/* Get transmission frequency in Hz. */ 
tx_base_freq = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_FREQ); 
tx_bandwidth = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_BW); 
tx_center_freq = tx_base_freq + (tx_bandwidth / 2.0); 

/* Calculate wavelength (in meters). */ 
lambda = C / tx_center_freq; 

/* Get distance between transmitter and receiver (in meters). */ 
prop_distance = op_td_get_dbl (pkptr, OPC_TDA_RA_START_DIST); 

/* When using TMM, the TDA OPC_TDA_RA_RCVD_POWER will already      */ 
/* have a raw value for the path loss. */ 
if (op_td_is_set (pkptr, OPC_TDA_RA_RCVD_POWER)) 

{ 
pathjoss = op_td_get_dbl (pkptr, OPC_TDA_RA_RCVD_POWER); 

} 
else 

{ 
/* Compute the path loss for this distance and wavelength. */ 
if (prop_di stance > 0.0) 

{ 
pathjoss = (lambda * lambda) / 

(SIXTEEN_PI_SQ * prop_distance * prop_distance); 
} 

else 
pathjoss = 1.0; 

} 

/* Determine the receiver bandwidth and base frequency. */ 
rx_base_freq = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_FREQ); 
rx_bandwidth = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_BW); 

/* Use these values to determine the band overlap with the transmitter.       */ 
/* Note that if there were no overlap at all, the packet would already */ 
/* have been filtered by the channel match stage. */ 

/* The base of the overlap band is the highest base frequency. */ 
if (rx_base_freq > tx_base_freq) 

band_min = rx_base_freq; 
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else 
bandjmin = tx_base_freq; 

/* The top of the overlap band is the lowest end frequency. */ 
if (rx_base_freq + rx_bandwidth > tx_base_freq + tx_bandwidth) 

bandjmax = tx_base_freq + tx_bandwidth; 
else 

bandjmax = rx_base_freq + rx_bandwidth; 

/* Compute the amount of in-band transmitter power. */ 
in_band_tx_power = tx_power * (band_max - band_min) / tx_bandwidth; 

/* Get antenna gains (raw form, not in dB). */ 
tx_ant_gain = pow (10.0, op_td_get_dbl (pkptr, OPC_TDA_RA_TX_GAIN) / 

10.0); 
rx_ant_gain = pow (10.0, op_td_get_dbl (pkptr, OPC_TDA_RA_RX_GAIN) / 

10.0); 

/* Calculate received power level. In order to simulate perfect power 
control.let the received power equal the transmitted power 
where transmitted power is defined to be the effective received power 
to the input to the receiver. This also neglects power loss due to 
attenuation in the coaxial cable */ 

rcvd_power = tx_power; 

/* Assign the received power level (in Watts) */ 
/* to the packet transmission data attribute. */ 

op_td_set_dbl (pkptr, OPC_TDA_RA_RCVD_POWER, rcvd_power); 
FOUT; 
} 
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/* STAGE 8 */ 
/* Filename: dsss_bkgnoise.ps.c */ 
/* Description: */ 
/*    Background noise model for wireless */ 
/*    spread spectrum link Transceiver Pipeline */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*    - Original Opnet code: "dra_bkgnoise.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 

#include "opnet.h" 

/***** constants *****/ 
#define BOLTZMANN 1.379E-23 
#define BKG_TEMP 290.0 
// Background noise is near zero for a wire, so ambient noise level must be VERY small to 

facilitate OPNET's calculations. 
#define AMB_NOISE_LEVEL 1.0E-26 

/** Procedure **/ 
#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_bkgnoise (Packet * pkptr) 

{ 
double rx_noisefig, rx_temp, rx_bw; 
double bkg_temp, bkg_noise, amb_noise; 

/*Compute noise sources other than transmission interference.*/ 
FIN (dsss_bkgnoise (pkptr)); 

/* Get receiver noise figure. */ 
rx_noisefig = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_NOISEFIG); 

/* Calculate effective receiver temperature. */ 
rx_temp = (rx_noisefig - 1.0) * 290.0; 

/* Set the effective background temperature. */ 
bkg_temp = BKG_TEMP; 

/* Get receiver channel bandwidth (in Hz). */ 
rx_bw = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_BW); 

/* Calculate in-band noise from both background and thermal 
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sources. */ 
bkg_noise = (rx_temp + bkg_temp) * rx_bw * BOLTZMANN; 

/* Calculate in-band ambient noise. */ 
ambjioise = rx_bw * AMB_NOISE_LEVEL; 

/* Put the sum of both noise sources in the packet transmission 
data attribute. */ 

op_td_set_dbl (pkptr, OPC_TDA_RA_BKGNOISE, (ambjioise + 
bkg_noise)); 

FOUT;} 
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/* STAGE 9 */ 
/* Filename: dsss_mai_noise.ps.c */ 
/* Description: */ 
/*    Multiple access interference noise model */ 
/*    for wireless spread spectrum link */ 
/*    Transceiver Pipeline. */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*        - Original Opnet code: "dra_inoise.ps.c" */ 
/*        - Modified for Spread Spectrum: 20ctOO */ 
/*        - Updated: 90ctOO */ 
/*        - - Modified to accommodate family code */ 
/*        - Updated: 120ctOO */ 
/*        - - Revised to make seperate calculations for */ 
/*        - - MAI and regular non-spread interferers. */ 
/******************************************************/ 

#include "opnet.h" 
#include "math.h" 

#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_mai_noise (Packet * pkptr_prev, Packet * pkptr_arriv) 

{ 
int arriv_match, prev_match, chip; 
int my_id, tx_id_a, rx_id_a; 
int tx_id_p, rx_id_p; 
int tx_code_family, rx_code_family; 
double prev_rcvd_power, arriv_rcvd_power, correlation, noise; 
double arriv_noise_accum, prev_noise_accum, proc_gain, 

spread_gain, gain; 

/** Evaluate a collision due to arrival of 'pkptr_arriv' **/ 
/** where 'pkptr_prev' is the packet that is currently **/ 
/** being received. **/ 

FIN (dsss_mai_noise (pkptr_prev, pkptr_arriv)); 

/* If the previous packet ends just as the new one begins, this is not */ 
/* a collision (just a near miss, or perhaps back-to-back packets). */ 

if (op_td_get_dbl (pkptr_prev, OPC_TDA_RA_END_RX) != op_sim_time ()) 
{ 
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/* Increment the number of collisions in previous packet. */ 
op_td_set_int (pkptr_prev, OPC_TDA_RA_NUM_COLLS, op_td_get_int 

(pkptr_prev, OPC_TDA_RA_NUM_COLLS) + 1); 

/* Increment number of collisions in arriving packet. */ 
op_td_set_int (pkptr_arriv, OPC_TDA_RA_NUM_COLLS, op_td_get_int 

(pkptr_arriv, OPC_TDA_RA_NUM_COLLS) + 1); 

/* Determine if previous packet is valid or noise. */ 
prevmatch = op_td_get_int (pkptr_prev, OPC_TDA_RA_MATCH_STATUS); 

/* Determine if arriving packet is valid or noise. */ 
arriv_match = op_td_get_int (pkptr_arriv, OPC_TDA_RA_MATCH_STATUS); 

/* Get received power levels for both packets. */ 
prev_rcvd_power = op_td_get_dbl (pkptr_prev, OPC_TDA_RA_RCVD_POWER); 
arriv_rcvd_power = op_td_get_dbl (pkptr_arriv, 

OPC_TDA_RA_RCVD_POWER); 

/* Get Object IDs of TX/RX pairs for previous and arriving packet. 
my_id = op_td_get_int (pkptr_prev, OPC_TDA_RA_TX_OBJID); 
tx_id_p = op_topo_parent (my_id); 
my_id = op_td_get_int (pkptr_prev, OPC_TDA_RA_RX_OBJID); 
rx_id_p = op_topo_parent (my_id); 

my_id = op_td_get_int (pkptr_arriv, OPC_TDA_RA_TX_OBJID); 
tx_id_a = op_topo_parent (my_id); 
my_id = op_td_get_int (pkptr_arriv, OPC_TDA_RA_RX_OBJID); 
rx_id_a = op_topo_parent (my_id); 

/* If the arriving packet is valid, then calculate interference of 
previous packet on arriving one.    */ 

if (arriv_match == OPC_TDA_RA_MATCH_VALID) 
{ 
/* If the spread spectrum atrtributes exists, then calculate 

spread noise effects. */ 
if ((op_ima_obj_attr_exists(rx_id_a, "code_family")) && 

(op_ima_obj_attr_exists(tx_id_p, "code_family")) && 
(op_ima_obj_attr_exists(rx_id_a, "correlation_coeff"))) 

{ 
/* Get Spread Spectrum Attributes. */ 
op_ima_obj_attr_get (tx_id_p, "code_family", 

&tx_code_family); 
op_ima_obj_attr_get (rx_id_a, "code_family", 

&rx_code_f amily); 
op_ima_obj_attr_get (rx_id_a, "correlation_coeff", 
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&correlation); 
op_ima_obj_attr_get (rx_id_p, "spreading_gain", 

&spread_gain); 
proc_gain = op_td_get_dbl (pkptr_arriv, 

OPC_TDA_RA_PROC_GAIN); 
/* If the code families match, then interference is due 

to multiple access. */ 
if (tx_code_family == rx_code_family) 

{ 
arriv_noise_accum = op_td_get_dbl (pkptr_arriv, 

OPC_TDA_RA_NOISE_ACCUM); 
op_td_set_dbl (pkptr_arriv, 

OPC_TDA_RA_NOISE_ACCUM, 
arriv_noise_accum + 
(prev_rcvd_power * correlation * 
proc_gain)); 

} 
/* Else, the interference is considered a result of 

jamming (Narrowband or Wideband). */ 
else 

{ 
arriv_noise_accum = op_td_get_dbl (pkptr_arriv, 

OPC_TDA_RA_NOISE_ACCUM); 
op_td_set_dbl (pkptr_arriv, 

OPC_TDA_RA_NOISE_ACCUM, 
arriv_noise_accum + 
(prev_rcvd_power * spread_gain)); 

} 
} 

/* Else, the transmission is occurring between non-spread 
stations, so use default radio calculations. */ 

else 
{ 
arriv_noise_accum = op_td_get_dbl (pkptr_arriv, 

OPC_TDA_RA_NOISE_ACCUM); 
op_td_set_dbl (pkptr_arriv, OPC_TDA_RA_NOISE_ACCUM, 

arriv_noise_accum + prev_rcvd_power); 

} 

/* If the previous packet is valid, then calculate the interference 
of arriving packet on previous one. */ 

if (prev_match == OPC_TDA_RA_MATCH_VALID) 
{ 
/* If the spread spectrum atrtributes exists, then calculate 

spread noise effects. */ 
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if ((op_ima_obj_attr_exists(rx_id_p, "code_family")) && 
(op_ima_obj_attr_exists(tx_id_a, "code_family")) && 

(op_ima_obj_attr_exists(rx_id_p, "correlation_coeff")) && 
(op_ima_obj_attr_exists(tx_id_p, "chip_rate"))) 

{ 
/* Get Spread Spectrum attributes. */ 
op_ima_obj_attr_get (tx_id_a, "code_family", 

&tx_code_family); 
op_ima_obj_attr_get (rx_id_p, "code_family", 

&rx_code_family); 
op_ima_obj_attr_get (rx_id_p, "correlation_coeff", 

&correlation); 
op_ima_obj_attr_get (rx_id_p, "spreading_gain", 

&spread_gain); 
proc_gain = pow (10.0, op_td_get_dbl (pkptr_prev, 

OPC_TDA_RA_PROC_GAIN) / 10.0); 
/* If the code families match, then interference is due 

to multiple access. */ 
if (tx_code_family == rx_code_family) 

{ 
prev_noise_accum = op_td_get_dbl (pkptr_prev, 

OPC_TDA_RA_NOISE_ACCUM); 
op_td_set_dbl (pkptr_prev, 

OPC_TDA_RA_NOISE_ACCUM, 
prev_noise_accum + 
(arriv_rcvd_power * correlation * 
proc_gain)); 

} 
/* Else, the interference is considered a result of 

jamming (Narrowband or Wideband). */ 
else 

{ 
prev_noise_accum = op_td_get_dbl (pkptr_prev, 

OPC_TDA_RA_NOISE_ACCUM); 
op_td_set_dbl (pkptr_prev, 

OPC_TDA_RA_NOISE_ACCUM, 
prev_noise_accum + 
(arriv_rcvd_power * spread_gain)); 

} 
} 

/* Else, the transmission is occurring between non-spread 
stations, so use default radio calculations. */ 

else 
{ 
prev_noise_accum = op_td_get_dbl (pkptr_prev, 

OPC_TDA_RA_NOISE_ACCUM); 
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op_td_set_dbl (pkptr_prev, OPC_TDA_RA_NOISE_ACCUM, 
prev_noise_accum + arriv_rcvd_power); 

FOUT; 
} 

D-26 



/* STAGE 10 */ 
/* Filename: dsss_sir.ps.c */ 
/* Description: */ 
/*    Signal-to-Interference Ratio (SIR) model for wireless spread */ 
/*    spectrum link Transceiver Pipeline. SIR is the effective SNR   */ 
/*    at IF filter output. Probability of error is based on this SIR */ 
/*    rather than SNR. */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*        - Original Opnet code: "dra_snr.ps.c" */ 
/*        - Modified for Spread Spectrum: 20ctOO */ 
/* - Modified: 120ctOO */ 
/* - - Incorporated processing gain noise */ 
/* - - reduction calculation */ 
/******************************************************/ 

#include "opnet.h" 
#include <math.h> 
#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_sir (Packet * pkptr) 

{ 
double bkg_noise, accum_noise, rcvd_power, proc_gain, eff_snr, snr, noise; 
/** Compute the signal-to-noise ratio for the given packet. **/ 
FIN (dsss_sir (pkptr)); 
/* Get the packet's received power level. */ 
rcvd_power = op_td_get_dbl (pkptr, OPC_TDA_RA_RCVD_POWER); 
/* Get the packet's accumulated noise levels calculated by the 

interference and background noise stages. */ 
accum_noise = op_td_get_dbl (pkptr, OPC_TDA_RA_NOISE_ACCUM); 
bkg_noise = op_td_get_dbl (pkptr, OPC_TDA_RA_BKGNOISE); 
noise = accum_noise+bkg_noise; 
/* Get the processing gain associated with the packet. Assigned as dB        */ 
proc_gain = op_td_get_dbl (pkptr, OPC_TDA_RA_PROC_GAIN); 
/* Calculate SNR and convert to dB  */ 
snr = 10.0 * loglO (rcvd_power / noise); 
/*        Calculate effective SNR incorporating processing gain. */ 
eff_snr = snr + proc_gain; 
/* Assign the effective SNR in dB. */ 
op_td_set_dbl (pkptr, OPC_TDA_RA_SNR, eff_snr); 
/* Set field indicating the time at which SNR was calculated. */ 
op_td_set_dbl (pkptr, OPC_TDA_RA_SNR_CALC_TIME, op_sim_time ()); 
FOUT; 
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/* STAGE 11 */ 
/* Filename: dsss_ber.ps.c */ 
/* Description: */ 
/*    Bit-Error-Rate (BER) model for wireless */ 
/*    spread spectrum link Transceiver Pipeline */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*   - Original Opnet code: "dra_ber.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 
/* - - Revised Comments */ 
/* - Updated 21 OctOO */ 
/* - - Removed effective SNR calculation */ 
/* - - and used it in Stage 10 (SNR) */ 

#include "opnet.h" 

#if defined ( cplusplus) 
extern "C" 
#endif 

void 
dsss_ber (Packet * pkptr) 

{ 
double ber, snr, proc_gain, eff_snr,test; 
Vartype modulation_table; 

/** Calculate the average bit error rate affecting given packet. **/ 
FIN (dsss_ber (pkptr)); 
/* Determine current value of Signal-to-Noise-Ratio (SNR). */ 
snr = op_td_get_dbl (pkptr, OPC_TDA_RA_SNR); 
/* Determine address of modulation table. */ 
modulation_table = op_td_get_ptr (pkptr, OPC_TDA_RA_RX_MOD); 
/* Derive expected BER from effective SNR. */ 
ber = op_tbl_mod_ber (modulation_table, snr); 
/* Place the BER in the packet's transmission data. */ 
op_td_set_dbl (pkptr, OPC_TDA_RA_BER, ber); 
FOUT; 
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/* STAGE 12 */ 
/* Filename: dsss_error.ps.c */ 
/* Description: */ 
/*    Error Allocation model for wireless */ 
/*    spread spectrum link Transceiver Pipeline */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*    - Original Opnet code: "dra_error.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 

#include "opnet.h" 
#include <math.h> 

/* Define a convenient macro for computing */ 
/* factorials using the gamma function. */ 
#define log_factorial(n) lgamma ((double) n + 1.0) 
extern double lgamma (double); 

#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_error (Packet * pkptr) 

{ 
double pe, r, p_accum, p_exact; 
double data_rate, elap_time; 
double log_pl, log_p2, log_arrange; 
int seg_size, num_errs, prev_num_errs; 
int invert_errors = OPC_FALSE; 

/** Compute the number of errors assigned to a segment of bits within 
/** a packet based on its length and the bit error probability. **/ 

FIN (dsss_error (pkptr)); 

/* Obtain the expected Bit-Error-Rate 'pe' */ 
pe = op_td_get_dbl (pkptr, OPC_TDA_RA_BER); 

/* Calculate time elapsed since last BER change */ 
elap_time = op_sim_time () - op_td_get_dbl (pkptr, 

OPC_TDA_RA_SNR_CALC_TIME); 

/* Use datarate to determine how many bits in the segment. */ 
data_rate = op_td_get_dbl (pkptr, OPC_TDA_RA_RX_DRATE); 
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seg_size = elap_time * data_rate; 

/* Case 1: if the bit error rate is zero, so is the number of errors.      */ 
if (pe == 0.0 || seg_size == 0) 

num_errs = 0; 

/* Case 2: if the bit error rate is 1.0, then all the bits are in error. 
/* (note however, that bit error rates should not normally exceed 0.5). 
else if (pe>= 1.0) 

num_errs = seg_size; 

/* Case 3: The bit error rate is not zero or one. */ 
else 

{ 
/* If the bit error rate is greater than 0.5 and less than 1.0, 

invert the problem to find instead the number of bits that are not in 
error in order to accelerate the performance of the algorithm. Set a 
flag to indicate that the result will then have to be inverted. */ 

if(pe>0.5) 
{ 
pe= 1.0 -pe; 
invert_errors = OPC_TRUE; 
} 

/* The error count can be obtained by mapping a uniform random 
number in [0, 1[ via the inverse of the cumulative mass function (CMF) 
for the bit error count distribution. Obtain a uniform random number in [0, 1[ to 
represent the value of the CDF at the outcome that will be produced.     */ 

r = op_dist_uniform (1.0); 

/* Integrate probability mass over possible outcomes until r is 
exceeded. The loop iteratively corresponds to "inverting" the CMF since it 
finds the bit error count at which the CMF first meets or exceeds the 
value r.        */ 

for (p_accum = 0.0, num_errs = 0; num_errs <= seg_size; num_errs++) 
{ 
/* Compute the probability of exactly 'num_errs' bit errors 

occurring. The probability that the first 'num_errs' bits will be in 
error is given by pow (pe, num_errs). Here it is obtained in 
logarithmic form to avoid underflow for small 'pe' or large 'num_errs'. */ 

log_pl = (double) num_errs * log (pe); 

/* Similarly, obtain the probability that the remaining bits 
will not be in error. The combination of these two events 
represents one possible configuration of bits yielding a 
total of 'num errs' errors.*/ 
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log_p2 = (double) (seg_size - num_errs) * log (1.0 - pe); 

/* Compute the number of arrangements that are possible with 
the same number of bits in error as the particular case 
above. Again obtain this number in logarithmic form (to 
avoid overflow in this case). This result is expressed as 
the logarithmic form of the formula for the number N of 
combinations of k items from n: N = n!/(n-k)!k! */ 

log_arrange = log_factorial (seg_size) - 
log_factorial (num_errs) - 
log_factorial (seg_size - num_errs); 

/* Compure the probability that exactly 'num_errs' are present 
in the segment of bits, in any arrangement. */ 

p_exact = exp (log_arrange + log_pl + log_p2); 

/* Add this to the probability mass accumulated so far for 
previously tested outcomes to obtain the value of the CMF 
at outcome = num_errs.*/ 

p_accum += p_exact; 

/*'num_errs' is the outcome for this trial if the CMF meets or 
exceeds the uniform random value selected earlier. */ 

if (p_accum >= r) 
{ break; } 

/* If the bit error rate was inverted to compute correct bits 
instead, then Reinvert the result to obtain the number of bits in 
error. */ 

if (invert_errors == OPC_TRUE) 
num_errs = seg_size - num_errs; 

} 

/* Increase number of bit errors in packet transmission data attribute. */ 
prev_num_errs = op_td_get_int (pkptr, OPC_TDA_RA_NUM_ERRORS); 
op_td_set_int (pkptr, OPC_TDA_RA_NUM_ERRORS, num_errs + prev_num_errs); 

/* Assign actual (allocated) bit-error rate over tested segment. */ 
if (seg_size != 0) 

op_td_set_dbl (pkptr, OPC_TDA_RA_ACTUAL_BER, (double) num_errs / 
seg_size); 

else op_td_set_dbl (pkptr, OPC_TDA_RA_ACTUAL_BER, pe); 

FOUT; 
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/* STAGE 13 */ 
/* Filename: dsss_ecc.ps.c */ 
/* Description: */ 
/*   Error Correction model for wireless */ 
/*    spread spectrum link Transceiver Pipeline */ 
/* Author: Robert J. Bonner */ 
/* History: */ 
/*    - Original Opnet code: "dra_ecc.ps.c" */ 
/*    - Modified for Spread Spectrum: 20ctOO */ 

#include "opnet.h" 
#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dsss_ecc (Packet * pkptr) 

{ 
int pklen, num_errs, accept; 
Objid rx_ch_obid; 
double ecc_thresh; 

/** Determine acceptability of given packet at receiver. **/ 
FIN (dsss_ecc (pkptr)); 
/* Do not accept packets that were received */ 
/* when the node was disabled. */ 
if (op_td_is_set (pkptr, OPC_TDA_RA_ND_FAIL)) 

accept = OPC_FALSE; 
else 

{ 
/* Obtain the error correction threshold of the receiver. */ 
ecc_thresh = op_td_get_dbl (pkptr, OPC_TDA_RA_ECC_THRESH); 

/* Obtain length of packet. */ 
pklen = op_pk_total_size_get (pkptr); 

/* Obtain number of errors in packet. */ 
num_errs = op_td_get_int (pkptr, OPC_TDA_RA_NUM_ERRORS); 

/* Test if bit errors exceed threshold. */ 
if (pklen == 0) 

accept = OPC_TRUE; 
else 

accept = ((((double) num_errs) / pklen) <= ecc_thresh) ? 
OPC_TRUE : OPC_FALSE; 

} 
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/* Place flag indicating accept/reject in transmission data block. */ 
op_td_set_int (pkptr, OPC_TDA_RA_PK_ACCEPT, accept); 

/* In either case the receiver channel is no longer locked. */ 
rx_ch_obid = op_td_get_int (pkptr, OPC_TDA_RA_RX_CH_OBJID); 
op_ima_obj_attr_set (rx_ch_obid, "signal lock", OPC_BOOLINT_DISABLED); 

FOUT; 
} 
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