
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

5-2001

Integer Approximation of Real Valued Preference Curves Integer Approximation of Real Valued Preference Curves

Richard M. Antoine

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Business Administration, Management, and Operations Commons

Recommended Citation Recommended Citation
Antoine, Richard M., "Integer Approximation of Real Valued Preference Curves" (2001). Theses and
Dissertations. 4557.
https://scholar.afit.edu/etd/4557

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=scholar.afit.edu%2Fetd%2F4557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4557?utm_source=scholar.afit.edu%2Fetd%2F4557&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

INTEGER APPROXIMATION OF REAL
VALUED PREFERENCE CURVES

THESIS

Richard M. Antoine, Captain, USAF

AFIT/GLM/ENS/01J-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20010619 008

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense or the U.S.
Government.

AFIT/GLM/ENS/OlJ-01

INTEGER APPROXIMATION OF REAL VALUED PREFERENCE CURVES

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Logistics Management

Richard Antoine, B.S.

Captain, USAF

May 2001

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

AFIT/GLM/ENS/OlJ-01

INTEGER APPROXIMATION OF REAL VALUED PREFERENCE CURVES

Richard M. Antoine, B.S., M.S.
Captain, USAF

Approved:

Lt Col Alan W. Johnson, Advisor Date
Assistant Professor of Logistics Management
Department of Operational Sciences

Major Stephen M. Swartz, Co-Advisor Date
Assistant Professor of Logistics Management
Department of Operational Sciences

ACKNOWLEDGEMENTS

Thank you, wife, for patience and understanding. Thank you, daughter, whose mere

presence reminded me what was really important. Thank you, mother, for teaching me

perseverance. Thank you, father, for demonstrating a tireless work ethic. Thank you,

God, for blessing me with all of them.

Richard M. Antoine

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

ABSTRACT ix

I. INTODUCTION 1

BACKGROUND 1
PROBLEM STATEMENT 2
SCOPE 3
RESEARCH QUESTIONS 3
METHODOLOGY 4

II. LITERATURE REVIEW 5

INTRODUCTION 5
METHODS REVIEWED 5
COMPUTATIONAL GEOMETRY 6
INTEGER PROGRAMMING 6
LINE DRAWING ALGORITHMS 8
MR VAT INTEGER ESTIMATION ALGORITHM 14
RELATIVE SLOPE ALGORITHM 15
CONTINUOUS SEGMENT ALGORITHM 18
METHOD SELECTION 21
CONCLUSION 24

III. METHODOLOGY 25

INTRODUCTION 25
DDA TRANSFORMATION 25
ERROR CALCULATION 28
EXPERIMENTAL DESIGN 33
CONCLUSION 35

IV.RESULTS 36

INTRODUCTION 36
HIGH SLOPE VARIATION 37
MEDIUM SLOPE VARIATION 38
Low SLOPE VARIATION 39
ALGORITHM COMPLICATION 40
CONCLUSION 41

V. CONCLUSIONS AND RECCOMMENDATIONS 43

INTRODUCTION 43
SUMMARY OF RESULTS 43
RECOMMENDATIONS 44

APPENDIX A: ALGORITHM TEST RESULTS 45

APPENDIX B: SAMPLE OUTPUT EXAMPLES (3D) 48

MIEA Sample Output: 48

RSA Sample Output: 50

CSA Sample Output: 52

SCA Sample Output: 54

APPENDIX C: MIEA SOURCE CODE 56

APPENDIX D: RSA SOURCE CODE 72

APPENDIX E: CSA SOURCE CODE 80

APPENDIX F: SCA SOURCE CODE 85

APPENDIX G: ERROR CALCULATION SUBROUTINE 99

BIBLIOGRAPHY 103

VITA 105

VI

LIST OF FIGURES

FIGURE 1: Preference Curve With MRR Assignments 2

FIGURE 2: MIEA Approximation 15

FIGURE 3: RSA Approximation 18

FIGURE 4: CSA Approximation 20

FIGURE 5: SCA Approximation 28

FIGURE 6: Parametric Equation Example 29

FIGURE 7: Error Measurements on Preference Curve Example 32

LIST OF TABLES

TABLE 1: MIEA DELTA VALUE COMPARISON 14

TABLE 2: MIEA COORDLNATE SEQUENCE 15

TABLE 3: RSA DELTA VALUE COMPARISON 16

TABLE 4: RSA SLOPE INCREMENT 17

TABLE 5: RSA ROUNDED INCREMENT VALUES 17

TABLE 6: RSA COORDINATE SEQUENCE 17

TABLE 7: CSA ALPHA CALCULATION 19

TABLE 8: CSA SLOPE INCREMENT 19

TABLE 9: CSA ROUNDED COORDINATE VALUES 19

TABLE 10: CSA COORDLNATE SEQUENCE 20

TABLE 11: SCA POINT VALUES 27

TABLE 12: SCA COORDLNATE SEQUENCE 27

TABLE 13: SCA ERROR CHARACTERIZATION 31

TABLE 14: TEST SOLUTION END POINTS 35

TABLE 15: SAMPLE RESULTS 36

TABLE 16: HIGH SLOPE MAX DEVIATIONS 37

TABLE 17: HIGH SLOPE RUN TIMES 38

TABLE 18: MED SLOPE MAX DEVIATIONS 38

TABLE 19: MED SLOPE RUN TIMES 38

TABLE 20: LOW SLOPE MAX DEVIATIONS 39

TABLE 21: LOW SLOPE RUN TIMES 40

Vlll

AFIT/GLM/ENS/OlJ-01

ABSTRACT

A primary challenge of the AFIT Mission Resource Value Assessment Tool is to

approximate a given preference curve with integer valued mission ready resources. This

thesis evaluated four candidate methods of accomplishing this approximation.

The thesis evaluated the implementation of the integer estimation approximation from

a purely mathematical perspective. The models were measured against six quality and

error measurement standards: convergence on an endpoint, convergence on any interior

integer points, characterization of the overall error between the sequence of integer

coordinates and the real valued linear function and characterization of the error in each

individual dimension of the problem space. Finally, computer processing time was

measured and a comparison of the lengths of the real valued linear function and the

sequence of integer coordinates used to approximate the function were compared.

Based on these measures the Relative Slope Algorithm (RSA) was selected. RSA

demonstrated the minimal error and consistently quick processing time. This algorithm

will improve the Mission Resource Value Assessment Tool and further its impact on the

Advanced Logistic project.

When you 're up against a trouble meet it squarely face to face.
Lift your chin, set your shoulders, plant your feet and take a brace.
It may be vain to try to dodge, but do the best that you can do.
You may fail but, you may conquer see it through.

Black may be the clouds about you and your future may seem grim.
But, don't let your nerve desert you; keep yourself in fighting trim.
If the worst is bound to happen spite of all that you can do,
Running from it will not save you, see it through.

Even hope may be but futile when with troubles you 're beset.
But, remember you are facing just what other men have met.
You may fail but fall still fighting, don't give up what e 'er you do.
Eyes front, head high to the finish. See it through.

Edgar Guest

INTEGER APPROXIMATION OF REAL VALUED PREFERENCE CURVES

I. INTODUCTION

BACKGROUND

This research supports the Air Force Institute of Technology's contribution to the

Advanced Logistics Project (ALP), which is sponsored by the Defense Advanced

Research Proj ects Agency (D ARP A). The Air Force Institute of Technology (AFIT)

research contribution focuses on the development of the Mission Resource Value

Assessment Tool (MRVAT) (Johnson, Swartz and Allen, 2000). The goal of this project

is to improve deployment planning and execution for military combat forces. The

research will result in an information technology system capable of integrating

information from existing DoD logistics databases and producing a "best solution" to

requested mission requirements. AFIT and the Air Force Research Laboratory (AFRL)

have been asked to investigate some specific areas of the project (Buzo, 00:1). A critical

goal of the ALP is to quickly develop mission solutions. Mission alternatives will be

provided in a matter of hours instead of days (Buzo, 00:1). AFIT is developing the

MRVAT software to demonstrate this aspect of the ALP technology. This research

examines how the MRVAT can best assign Mission Ready Resources (MRRs) to an

existing commander's stated mission preferences (represented by a real valued line

function). An MRR is a resource configured for a particular purpose, such as an F-16

with a specified weapons and fuel load out (Swartz, 1999). Figure 1 illustrates a

preference curve based on two competing tasks or missions. For example, in this

scenario, the commander wishes to fly three daily Suppression of Enemy

fc-SEAD

FIGURE 1: Preference curve with MRR assignments

(Johnson, Swartz and Allen, 2000)

Air Defense (SEAD) missions for every two Close Air Support (CAS) missions. We

wish to allocate MRRs to missions one-at-a-time, to establish a priority order for

deployment. Consider the coordinate (3,2) representing three daily SEAD missions and

two CAS missions. We could sequentially allocate MRRs first to the three SEAD

missions and then to the two CAS missions, as shown in Figure 1. However, nine other

sequences can be constructed from the origin to the coordinate (3,2). Hence, which

sequence is best? In other words, which sequence best preserves the commander's

desired ratio of missions flown? A problem with several tasks and hundreds of assets

would produce a much greater number of sequences. A method is required that can

generate the sequence which most accurately approximates the task preference curve.

PROBLEM STATEMENT

What is the most efficient method of approximating a real valued linear function

with a sequence of integer coordinates, where each coordinate is a unit distance from its

adjacent coordinates? Note that for any two vectors x = (xl,x2,x3) and y = (yx, y2, y3),

n

the distance between x and y is defined as llx - vll = "V |x. - y, I. This research examines
II * II .^^JI ' *^ ' I

1=1

the method by which MR VAT and three alternate algorithms fit the integer number of

resources available to the given real valued mission preference curve.

SCOPE

The research effort will review existing methods of plotting integer data with the

intent of approximating a continuous and linear curve. Methods of determining the error

between the sequence of integer coordinates and the continuous curve will also be

examined. This research will be limited to the development of a mathematical research

model. Actual MRRs and mission preferences will not be modeled. This will allow the

model to draw from an unconstrained set of integers with which to map the continuous

curve. The research results will present an effective, minimum error method of matching

integers to a known continuous curve. The problem will be modeled in seven dimensions

in order to demonstrate a robust multi-dimensional method that can be applied to the ALP

MRVAT research effort. Note that other research (Wakefield, 2001) examines the

optimization of MRR selection for a given set of mission preferences.

RESEARCH QUESTIONS

-What processes exist for approximating a real valued curve with a sequence of integer

coordinates, each a unit distance from its adjacent coordinates?

-What methods will measure the error between a given real valued linear function and the

sequence of integer coordinates?

-Can the problem be modeled in seven dimensions?

-What impacts will the research results have and how will they be used?

METHODOLOGY

Four methods of matching a sequence of integer coordinates to a real valued

linear function will be evaluated. These algorithms will be modeled in Visual Basic and

the resulting approximation will be compared to the real valued linear function. The

error between the real valued linear function and the competing integer coordinate

approximations will be characterized.

The model should converge on an end point, converge on any integer coordinates

interior to the real line and the overall error between the sequence of integer coordinates

and the real valued linear function should be characterized. The error in each individual

dimension of the problem space should also be characterized. Finally, computer

processing time shall be measured and a comparison of the lengths of the real valued

linear function and the sequence of integer coordinates used to approximate the function

will also be accomplished.

II. LITERATURE REVIEW

INTRODUCTION

Chapter II will address the focus of this research and discuss various

methods which can potentially solve the problem. The chapter begins with an overview

of the MR VAT. It then provides information on computational geometry, integer

programming and line drawing algorithms. Once these subjects have been discussed,

characteristics that may influence method selection are presented.

The MRVAT software created by the AFIT/ ALP research is essentially a

technology demonstrator. The objective of the ALP research is to convert stated mission

requirements into logistic needs. The MRVAT will provide theater commanders with the

maximum combat capability possible within the logistical constraints (airlift) on

transportation. The research focuses on an Air Expeditionary Force scenario with respect

to solution generation (Johnson, Swartz and Allen, 2000).

This research attempts to discover an algorithm that can quickly generate a

sequence of integer coordinates that accurately approximate a real valued linear function.

The only link between this current effort and the AFIT/ ALP research is the similarity

between the real valued linear function and the task preference curve described in

Chapter 1.

METHODS REVIEWED

In order to solve the research problem, methods were sought to provide the

approximation. Subjects that are reviewed and discussed include computational

geometry, integer programming and line drawing algorithms.

Computational Geometry

Geometric design problems arise in many industries. "The unique designs of

aircraft, cars and other modern machines require innovative ways of modeling the

surfaces of these machines. In many cases a designer may draw a curve to approximately

fit several points in some given plane" (Bu-Qing and Ding-Yaun, 1989:1). The formal

definition of computational geometry is a "computer-based representation, analysis,

synthesis (design) and computer-controlled manufacture of two and three dimensional

shapes" (Bu-Qing and Ding-Yaun, 1989:1). In this situation, representation refers to the

creation of a mathematical model, such as the equation of a line. Once the model is

formed, information about the curve must be determined in order to evaluate points on

the curve. Discovering unwanted loops or inflection points are activities that fall under

synthesis and analysis.

The most applicable computational geometry method is range search. Range-

search problems are of particular interest with respect to our thesis problem. Range-

search problems require that a collection of points be represented in a space. In this case

the query is a space in which a set of points reside. The query space can be described as

a standard geometric shape (i.e. ball or box). The range search is essentially the retrieval

or counting of all points in the query space (Shamos and others, 1990:40).

Integer Programming

Integer programming (IP) has a wide range of applicability. This method is used

when modeling the use of resources that logically must be represented by integer

numbers (i.e. airplanes, cars or houses). For certain items, it does not make sense to have

a fractional amount ofthat resource.

IP's have great risk associated with regard to problem solving. Mathematically,

IP models require much more computation time than a similarly sized linear program

(LP). There is a great possibility that an IP model may not be solvable in a reasonable

time period. Consider that in comparison to an LP that can be rapidly solved with

thousands of constraints and variables (Williams, 1985).

Sometimes it is difficult to determine when an IP is applicable. In this section we

will discuss some of the types of problems IP's can solve.

The most obvious case was previously mentioned. When a problem requires

whole numbers of products or uses integral units of a resource, it is a problem with

discrete inputs and outputs. An IP formulation would be appropriate for these situations.

Many problems have a large number of feasible solutions arising from different

orders of performing operations or the allocation of items to certain positions. These

types of problems are called combinatorial problems. This category can be further

divided into sequencing problems and allocation problems.

Sequencing would take the form of a scheduling operation, Job-Shop scheduling

or the optimal ordering of operations on different machines in a Job-Shop (Williams,

1985). Another example of sequencing is the traveling salesman problem. This problem

seeks a solution that describes the optimal order in which to visit a number of cities and

return home within the minimum distance.

The market share problem is a good example of an allocation problem. The

allocation of customers to divisions in a company depending on service is the objective of

this problem. Another example of an allocation problem is the assembly line balancing

problem. The goal of this problem is to assign workers to tasks in order to achieve a

certain rate of production.

Our problem requires a method that will minimize the distance between the

coordinates used for approximation and the real valued linear function. An integer

program with a minimizing objective function may be appropriate.

Line Drawing Algorithms

The subject of line drawing comes from a study of computer graphics models.

Line, circle and surface drawing are methods by which lines and other geometric objects

are properly represented in graphics. "Incremental computing techniques are a form of

iterative computation, in which each iterative step is simplified by maintaining a small

amount of state, or memory, about the progress of the computation" (Newman & Sproull,

1979:19). Incremental methods are very useful due to their simplicity and accuracy.

These methods allow the user to determine which pixels on the computer screen to

illuminate, and ultimately provide the most exact graphical representation of the line.

There are three important characteristics a line drawing algorithm must have in

computer graphics. The line must appear straight, terminate accurately and have constant

density (Newman & Sproull, 1979:21). A line can have a well defined end point and

start point, while its entire set of interior points do not pass through any integer

coordinates. If an algorithm approximates the interior points accurately the line will

appear straight. Lines must be plotted accurately in order to prevent gaps between the

end point of one line and the start point of the following line. Density is important so that

the line has a consistent resolution from beginning to end (no light spots). These

characteristics are directly applicable to the MR VAT problem. We do not want our

sequence of integer coordinates to wander through the problem space as the solution is

approximated. We wish the approximation to appear straight, and to closely match the

real line being approximated. Our algorithm must also terminate accurately if it is to

converge on the solution (end point) that we have selected. Finally, density is also

important. The algorithm must converge on the solution in one unit increments.

Two methods of line drawing that are directly applicable to this thesis problem

were found. These are the Digital Differential Analyzer (DDA) algorithm and

Bresenham's Line Drawing Algorithm (BLDA).

Before discussing DDA we shall review a few basic concepts. The slope intercept

equation describing a straight line is:

y = m-x + b (1-1)

where m is the slope and b is the y intercept. For any two coordinate pairs (x{, y{) and

(x2, y2), we have slope m and intercept b defined in equations 1.2 and 1.3:

m = yiZA (1.2)

b = yl-m-xl (1-3)

These simple equations provide the basis for algorithms that display straight lines in two

dimensional space. For a given x-interval (Ax) on a line we can compute the ^-interval

(Ay) from equation 1.2.

Ay = m-Ax (1.4)

Equation 1.5 shows us how to obtain the x-interval.

Ax = ^- (1.5)
m

The DDA works on the principle that we simultaneously increment x and v in small steps

proportional to Ay and Ax (Newman & Sproull, 1979:22-23). The first derivatives are

constant and proportional to Ay and Ax when considering a straight line (Newman &

Sproull, 1979:23). A sample of the line is taken at unit intervals in one direction and a

calculation of the corresponding integer values nearest the line path if determined for the

other direction (Hearn & Baker, 1997:86). The simple DDA requires that a line-length

estimate be set equal to the larger of the magnitudes of Ax and Ay. This allows the

increment value in the x or y direction to be of unit magnitude. This allows unit steps to

be made in the direction of steepest ascent. We assume that m lies between 0 and 1. If m

(Ay/Ax) is less than 1 then a 1 unit increment is made in the x direction and a rounding

calculation is made in the y direction based on the slope. This assumes that the

magnitude of x is greater than y. Successive v values are now determined by:

The subscript k takes on integer values starting with one for the first point and increases

by one until the end point of the line is reached (Hearn & Baker, 1997:86-87). If the line

has a positive slope (Ay >Ax) then the roles of x and y are reversed. In this case the y

direction is incremented by 1 integer unit and the rounding calculation is made in the x

direction based on the slope.

+i=+— (!-7) m

10

Equations 1.6 and 1.7 both operate on the assumption that the line will be approximated

from the left end point (origin) to the right end point (solution point). In the case of

approximating the line from right to left, the following modifications to these equations

would be made:

A* = -1->J;JH.I=J'*-'", (L8)

Ay = -l...,xk+l=xk . (1.9)
m

When the slope of the line is negative then take the absolute value of the slope (\m\).

Equations 1.6 through 1.9 would be used as previously described (Hearn & Baker,

1997:86-87).

Bresenham's line algorithm converts lines into graphical representations using

incremental integer calculations that can be adapted to display circles and other types of

curves. This algorithm also assumes that slope must be less than 1 (m < 1). BLDA also

requires that the line be approximated from the left endpoint to the right endpoint.

Incremental steps are made for each x position and the point whose v value is closest to

the curve is plotted. Once point (xk,yk)is determined, then the next appropriate point to

plot must be found. There are two choices at this point, (xk +1, yk) or (xk +1, yk +1).

The vertical distances of the potential points at xk+l are called dx and d2. These points

describe the vertical point separations from the given curve. The y coordinate on the

curve will be calculated as follows:

y = m-(xk+l) + b

11

dl=y-yk=m-(xk+\) + b-yk (1.11)

d2=(yk+\)-y = yk+l-m-(xk+\)-b. (1.12)

The following is the resulting difference equation:

dl-d2=2-m-(xk+l)-2-yk+2-b-l. (1.13)

A decision parameter pk at the Mi step in the algorithm can be found by manipulating

equation 1.13 until it only involves integer calculations. This is achieved by substituting

m = y. in place where Ay and Ax are the vertical and horizontal endpoint positions.

The resulting equation is as follows:

pk=Ax-(d1-d2) = 2-Ay-xk-2-Ax-yk+c. (1-14)

If it turns out that the point at yk is closer to the curve than the point at yk+] (dx <d2)

then this makes the sign of pk negative. In this situation we would like to plot the lower

point or else plot the upper point. Coordinate changes along the line occur in incremental

integer steps in either the x or v directions. This means that the values of the successive

decision parameters can use incremental calculations. At step HI we can use equation

1.14 with the following adjustments:

^+i=2-AJ;-^+i-2-Ax-vyl+1+c. (1.15)

Now subtract equation 1.14 from 1.15 to get the following:

PM-Pk=2-*y<xk+\-
xk)-1-*x-{yk+l-yk) (1.16)

and now by substitution xk+] =xk+l

A+i=A+2-Aj;-2-Ax-(vA.+1-v,) (1.17)

12

where yM -yk is either 0 or 1 (Hearn and Baker, 1997:88-90). This recursive

calculation for the decision parameters is accomplished at each integer x position. The

calculation is made from the left endpoint to the right endpoint. To begin the algorithm,

the parameter p0 is calculated using equation 1.18. The start point at (x0, y0) is used in

the slope equation (m = Ay/Ax). The following starting equation results:

p0=2-Ay-Ax. (1.18)

The BLDA uses decision parameters to determine the best axis direction to

increment. Equation 1.18 is used to calculate the initial decision parameter. The decision

parameter pk must be evaluated. If pk is less than zero (pk < 0) then equation (1.19) is

used. The decision also requires the next coordinate plotted be, (xk+l, yk).

pk+l=pk+2-Ay (1.19)

If pk is greater than or equal 0 (pk > 0) then equation (1.20) is used. This decision

requires that the next coordinate plotted be (xk +1, yk +1).

pM=pk+2-Ay-2-Ax (1.20)

The decision parameter p0 is only used for the initial decision. Once p0 is compared to

zero and a coordinate set is chosen for the next increment, equations 1.19 and 1.20 are

used for the remainder of the increment decisions until the solution point is reached

(Hearn and Baker, 1997:88-90).

13

MRVAT Integer Estimation Algorithm

The approach that MRVAT currently takes to incrementing integer values uses a

relative slope approach. The difference between the origin (0,0) and end point (3,2) of

the line (real valued linear function) are inspected for the largest delta value. The largest

delta value becomes the denominator for the slope calculations. The axis values

(preferences) are incremented by integer units according to the order of largest slope

value to lowest slope value. Table 1 contains the start point (0,0) and the end point (3,2),

and also provides the corresponding delta values.

TABLE 1: MIEA DELTA VALUE COMPARISON

X y
0 0
3 2

LW- — J\i-> """"* -A-1 — J &y = y2-yi =2

The current MRVAT approach selects Ax as the largest delta value. The Ax and Av

values are each divided by Ax. This produces the following relative slope values: Ax/Ax

= 3/3 and Ay Ax = 2/3. The relative slopes dictate the order in which the approximation

increments. The axis value with the higher slope is incremented until the corresponding

end point is reached. In this example the x-axis value has the higher slope value (m=\).

The approximation increments from 0 to 3 in the x direction. The v axis has the next

highest slope (m=2/3). The approximation increments in the y direction accordingly.

The algorithm increments from 0 to 2 in the v direction. This series of increments brings

us to the solution point (3,2). The coordinate sequence is shown in Table 2.

14

TABLE 2: MIEA COORDINATE SEQUENCE

Program Output 1 2 3 4 5

X 1 2 3 3 3

y 0 0 0 1 2

The MIEA converges upon the solution by incrementing along each axis direction

until the end coordinate in that direction is reached (Thomas, 2001). This series of

coordinates takes the longest route possible along the exterior faces of the query space to

the solution. The coordinate sequence is further described in Figure 2.

CAS

-s—f
»£..... .m„„t._ >SEAD

FIGURE 2: MIEA APPROXIMATION

Relative Slope Algorithm

The Relative Slope Algorithm (RSA) is a line approximation method developed

by AFIT researchers in support of MRVAT (Swartz, 2001). This approach is also based

on a form of slope comparison. The difference between the start point and end point in

each dimension is calculated. The largest delta value is used as the denominator for slope

calculations in all directions (see Table 3).

15

TABLE 3: RSA DELTA VALUE COMPARISON

X y
0 0
3 2

i_W »A"i ./v i -3 *y = y2-yi =2

The example in Table 3 leads us to use the Ax value as the denominator for the slopes

calculated for each axis direction (ml = 3/3, ml =2/3). Slopes ml and ml tell us how to

increment in x and y in order to approximate the line with integer values. The starting x

coordinate will be incremented by units of one until it reaches the end point. The starting

x coordinate will be incremented by the rounded (RND) value of its slope until it reaches

its respective endpoint. See the following equation 1.21 (Swartz, 2001):

P„ = (x0 + RND(n ■ mx), y0 + RND(n ■ my), z0 + RND(n ■ mz)) (1.21)

Equation 1.21 describes how any pointy = (xn,yn,zn) is calculated. In this equation the

starting point is identified by the coordinate (x0,y0,zQ). The relative slopes are

identified by mx, my and mz. The value of n is equal to the number of points or

increments away from the starting point. The n value is incremented by one with respect

to each increment from the origin in each axis direction until the incremental values equal

the end point coordinate values. The RSA approach requires that only one increment be

made at a time in any direction. The unit steps will follow the order of steepest to

shallowest slope (ml, ml) (Swartz, 2001). Table 4 demonstrates the first pass of the

algorithm in which the relative slopes are added until the solution point (3,2) is reached.

16

TABLE 4: RSA SLOPE INCREMENT

Program Output 1 2 3

X 1 2 3

y 0.667 1.333 2

Once the RSA has made all of its increments and converged on a solution, it rounds the

incremented values and back fills all the gaps that may exist between the points it has

identified (Swartz, 2001). This is illustrated in Tables 5 and 6.

TABLE 5: RSA ROUNDED COORDINATE VALUES

RD Table 1 2 3

X 1 2 3

y 1 1 2

The algorithm must now fill in the increment steps between the rounded coordinate

values. The increment will follow the order of steepest to shallowest slope as mentioned

above. In this example the x direction will be incremented once and then the v direction.

This order will be used between each coordinate starting with the origin. The final filled

in coordinate sequence is provided in Table 6.

TABLE 6: RSA COORDINATE SEQUENCE

Fill In Table 1 2 3 4 5 6

X 0 1 1 2 3 3

y 0 0 1 1 1 2

Table 6 demonstrates the use of the relative slope between the rounded coordinates. The

algorithm increments from the (0,0) to (1,1), from (1,1) to (2,1), and from (2,1) to (3,2).

Between each coordinate it increments in the x direction and then the v direction

17

according to the relative slopes previously identified. The example is graphically

depicted in Figure 3.

CAS

^►SEAD

FIGURE 3: RSA Approximation

The RSA method fills our requirements by incrementing in each axis direction by one

unit at a time. The algorithm performs division and rounding operations on its first two

passes (Table 4, Table 5). These operations can potentially slow the computer

processing. Further analysis of the algorithm will be discussed in Chapter IV.

Continuous Segment Algorithm

The Continuous Segment Algorithm (CSA) follows the same logic as the RSA.

The difference between the two algorithms lies in the manner in which the slopes are

determined. The CSA uses the product of the largest delta value and the number of

dimensions that define the problem space. This number can be referred to as an alpha

value. All deltas in each dimension are divided by the alpha value (i.e., a = (Ay).(7

dimensions)) (Swartz, 2001). This provides the modified slope that is ultimately used to

increment the values in their respective dimensions. Table 7 demonstrates the procedure.

TABLE 7: CSA ALPHA VALUE CALCULATION

X y
0 0
3 2

1 V/V — J\J ■j ^A/-i — J Av = 72-^1 =2

a = Ax • 2 Dimensions a = (3)(2) = 6

The example in Table 7 demonstrates the calculation of the alpha value using the largest

delta value and the number of dimensions. The alpha value is then used to calculate the

relative slopes that determine order in which each axis direction will be incremented.

The slopes (ml = 3/6, m2 = 2/6) are used to increment from the start point (0,0) to the

end point (3,2) as demonstrated in Table 8.

TABLE 8: CSA SLOPE INCREMENT

Program
Output 1 2 3 4 5 6

X 0.5 1 1.5 2 2.5 3

y 0.333 0.667 1 1.333 1.667 2

Similarly to the RSA, once the CSA has made all of its increments and converged on the

solution, it rounds the incremented values and eliminates any duplicate points that are

created during the rounding procedure (Swartz, 2001). Table 9 contains the results of the

rounding procedure.

TABLE 9: CSA ROUNDED COORDINATE VALUES

RD Table 1 2 3 4 5 6

X 1 1 2 2 3 3

y 0 1 1 1 2 2

19

The algorithm must now eliminate any duplicate coordinates and simultaneously fill in

increment steps where required. Once a coordinate has been recorded at this step it is not

repeated which results in the elimination of duplicates. If a gap is identified then it is

filled by incrementing in the appropriate axis direction. In our example the x direction is

incremented first and the y direction is incremented second according to the order of the

relative slopes. The final fill in and duplicate elimination coordinate sequence is

provided in Table 10.

TABLE 10: CSA COORDINATE SEQUENCE

Fill In Table 1 2 3 4 5 6
X 0 1 1 2 3 3

y 0 0 1 1 1 2

We can also compare Table 9 with Table 10 and observe where the duplicate points were

eliminated and additional points were added. Unit increments were made between

rounded coordinate (2,1) and rounded coordinate (3,2). The duplicate rounded

coordinates of (2,1) and (3,2) are eliminated during the final step. The example is

graphically depicted in Figure 4.

t ^SEA

FIGURE 4: CSA Approximation

20

It should be noted that in this case, the point between (2,1) and (3,2) was "filled" using

the same method as RSA. If the a value were made larger (resulting in smaller

increments and more duplicates), the RSA "fill method" would not be required. This is

potentially a subject for future exploration.

METHOD SELECTION

Computational geometry provides location and range-search approaches to

finding points. These approaches require that the solution space be partitioned and the

integer points found or identified. This approach does not meet the requirement for a one

unit increment towards the solution. Our problem does not require that all the points be

identified in a space. This would be very inefficient. The points that keep the sequence

on integer coordinates within a minimum distance of the real valued linear function will

provide the best answer.

Integer programming provides a method of minimizing an objective function

according to a set of constraints while constraining the problem to integer solutions. Our

problem requires that the distance be minimized between the selected integer points that

are used in the sequence of integer coordinates and the real valued linear function itself.

This approach loses its applicability when the constraints must be selected. The

limitations on our problem do not lend themselves to an integer program problem. The

increments must happen in unit steps as stated above but, the number of units is

unconstrained.

Bresenham's Line Drawing Algorithm (BLDA) is designed for a two dimensional

problem and it allows incremental moves in the x and v directions. BLDA requires the

use of decision parameters for determining how far to move in each dimension. This

21

would create a messy transition from a two dimensional problem to a n-dimensional

problem. BLDA's incremental calculations are integer based and do not rely on floating

point calculations or rounding functions for any of its decision parameters or unit

increments. This algorithm specifically benefits the graphic designer. The integer based

calculations increases the speed at which the program can draw the line if not the

accuracy.

The Digital Differential Analyzer (DDA) is also designed to operate in a two

dimensional space. Once the slope comparison portion of the algorithm indicates which

slope combination is increasing at a greater rate, it then begins incrementing. The

algorithm increments by unit steps in the direction of steepest ascent that is less than or

equal to one. It increments in the other direction by adding the slope value and rounding

that value to a whole number. This second increment involves a floating point

calculation (division to find slope). This will cause the DDA program to run slower than

the BLDA program. However, the BLDA algorithm does not provide a more accurate

solution than the DDA. "Sproull has shown that the Bresenham algorithm can be derived

from the differential analyzer, thus establishing that both generate identical output

moves" (Earmshaw, 1985:135).

The current MR VAT Integer approximation method also uses the slope to

determine which axis direction to increment. This approach satisfies our need to perform

only one unit step at a time as opposed to the DDA and BLDA algorithms which

increment in both directions simultaneously. The current MR VAT approach is also

capable of providing an n-dimensional solution. However, it requires that each direction

22

chosen must be incremented until the endpoint is reached in that direction. This may lead

to error in the approximation.

The relative slope method requires that a unit step increment be made in the axis

direction of steepest accent. Again, the direction is based on a comparison of the slopes.

The other axis directions are incremented according to the slope with respect to that axis

direction. This requires that a floating point and rounding calculation be made in the

remaining axis directions. In addition to slowing the program down, there will be an

opportunity for rounding error. RSA also requires that calculations be made in order to

fill in any gaps between the increments that it has made on its first pass.

The CSA approach is subject to the same pros and cons as the RSA. An

additional "con" of the CSA is its method of line segmentation. The CSA algorithm

divides its real valued linear function into much smaller segments than the RSA. This is

due to the alpha value used as the divisor (i.e. Ay/d) tends to be much larger than the

largest relative slope value used by RSA. This increases the number of addition and

rounding operations that must be performed. If there is a significant amount of extra

work, there may be a significant amount of extra computation time.

Ultimately, the method that is selected must allow us to solve a multi-dimensional

problem while taking only one unit step at a time towards the solution. The approach

must also meet our five quality/error measurements stated in the methodology section of

chapter one. Another potential approach based on the DDA algorithm will be discussed

in Chapter III.

23

CONCLUSION

Chapter II provided a general description of how the MR VAT program requires

integer approximations to a real line and provided a basis for the thesis problem.

Information was presented on computational geometry, integer programming and line

drawing. The pros and cons of these methods were also discussed with respect to our

thesis problem. The next chapter will discuss the development of the Slope Comparison

Algorithm, which was developed by the thesis author. The error measurement methods

will also be described. Finally, the experimental design will be detailed.

24

III. METHODOLOGY

INTRODUCTION

Chapter III will discuss the development of the Slope Comparison Algorithm,

which draws some of its evaluation rules from the Digital Differential Analyzer. The

error calculation method will also be presented. The chapter ends with a discussion of

the experimental design for this research.

DDA Transformation

The first step in this process is converting the given two dimensional version of

the Digital Differential Analyzer to a multi-dimensional algorithm. The DDA algorithm

uses the largest value of x ory and uses that number as the denominator of the slope

calculation. For example, a large v value indicates a faster increase in the y direction

versus the x direction. The slope must be between 0 and 1 (0 < w < 1) (Jaccobs, 2001).

The denominator variable of the slope is incremented by one integer step and the

numerator variable of the slope is incremented by a rounded value of the slope itself. In

the following example the slope is Ay/Ax(Hearns and Baker, 1997:88):

■^increment ~ X0 """ *

In order to approximate a line in seven dimensional space, we must consider slopes based

on seven axes. The axes for this problem are labeled x, y, z, t, u, v, and w. The slope

calculation can only be made with points from two of the dimensions at a time. Our

problem will compare each possible slope value versus dividing by the largest axis

coordinate value. The number of dimensions tells us that a "seven choose two"

permutation must be used in order to determine the number of potential slope

25

combinations. Any ordered sequence of k objects taken from a set of n distinct objects

is called a permutation of size k of the objects. In other words, permutations are used

when order matters. The order of the coordinates used in the problem space matters

because there is a difference between xly and ylx (Devore, 2000:70).

n'
pkn= 0-22) *•" k\{n-k)\

Equation 1.22 is used to make the permutation calculation. Forty-two slope

combinations are necessary in order to properly consider this seven dimensional problem.

Once the DDA algorithm is used to decide which axes to increment, both the axes in the

two - dimensional problem are incremented simultaneously as indicated in the above

DDA example. Our problem requires that only one integer unit step be taken in the axis

of choice at a time. The program compares the forty-two slope calculations based on the

DDA criteria requiring that the slope fall in between 0 and 1 (0 < m < 1) and the slope

value must also be the closest to one. A unit increment is made in the axis direction

associated with the variable in the denominator. This axis is the only direction that is

incremented per iteration. The appropriate axis values are updated with the new

coordinates and all the slopes are re-calculated based on the last step (the step is used as

the new starting point in the slope calculations). All forty-two new slopes are compared

and the next increment is made based on the criteria previously described. The program

goes through this routine until the values (coordinates) associated with each axis are

equal to the endpoint of the line. Our transformed DDA will be referred to as the Slope

Comparison Algorithm (SCA). Table 11 provides an example starting and ending point.

26

TABLE 11: SCA POINT VALUES

X y
0 0
3 2

The Slope Comparison Algorithm's user would enter the defining points of the line that

will be approximated. Table 12 demonstrates a sequence of integer coordinates used to

approximate the line defined by the input coordinates in Table 11.

TABLE 12: SCA COORDINATE SEQUENCE

Axis 1 2 3 4 5 6
X 0 1 1 2 2 3

y 0 0 1 1 2 2

Based on slope comparisons, each axis direction is incremented by one unit until the

ending point is reached. All possible slopes are calculated based on the difference

between the end point and the current starting point. The slope is judged on the criteria

described earlier and the increment is made based on that decision. The starting point is

equal to the coordinates identified at each previous iteration. The initial starting point is

obviously, the point (0,0) originally entered. The next starting point is (1,0). This

process progresses until the solution is reached. Figure 5 provides a graphical depiction

of the sequence described in Table 12.

27

►SEAD

FIGURE 5: SCA Approximation

Once the SCA algorithm has approximated the curve and converged on the

solution we must ascertain the quality of the fit. This will be accomplished by using a

parametric distance equation. The process will be discussed in the next section.

Error Calculation

We shall now recall the six quality measurements that are required to validate the

most efficient line approximation algorithm among the given algorithms. The model

should converge on an end point, converge on any interior integer points and the overall

error between the integer approximation and the real line (preference curve) should be

characterized. The error in each individual dimension of the problem space should also

be characterized. The computer processing time measurement and a comparison of the

lengths of the integer line with the real line will also be made.

Convergence on the model solution point and interior points will be verified by

running a series of tests using the experimental problem and other test information

discussed in the experimental design section. The computer processing time can be

measured by modifying the source code to report the elapsed time between the start and

28

end of a given program. The remaining quality criteria can be evaluated using a

parametric distance equation and some other variations in the source code.

A parametric distance equation is required for the distance calculation because of

the multiple dimensions in our problem. The distance calculation is made from the point

on the real line that is perpendicular to the off curve integer point used to approximate it.

"The distance from a point to a line is defined as the minimum of all distances from the

point to points on the line. This minimum will occur when the line from R to the point on

the line is perpendicular to the line" (Foley and others, 1990:1100). The problem can be

further described by Figure 6 and equation 1.23.

(R-P(t))-v = 0 (1.23)

FIGURE 6: Parametric Equation Example
(Baker, 2001)

In equation 1.23 the function P(t) is subtracted from the off curve integer point R and

multiplied by the vector v. The difference between R and P(t) will provide us with the

distance E. The equation must be set equal to zero in order for the solution E to be

perpendicular to the real line P0 to Px. The variable t represents the distance from the

origin (start point) of the line while v defines the direction of the line. R represents the

off curve integer coordinate which is produced by the integer approximation.

29

(R-Po)-v
t = - -— (1.24)

v-v

Equation 1.24 can be derived from equation 1.23 by substituting P0 +tv in place of P(t)

(Foley and others, 1990:1100). After we compute the value of t it must be substituted

into equation 1.25.

Po+t-v = 0 (1.25)

In our problem v is defined as i> -P0 (Baker,2001). The value ns multiplied times v

forming a new vector tv which is added to the vector P0. Equation 1.25 ultimately

provides us with the point on the real valued linear function as seen in Figure 3 (real line

point). The minimum distance d between the off curve integer point R and the real line

point can be calculated using equation 1.26.

d = V(#, -RP,? +(R2 -RP2? +(R3 -RP3f (1-26)

R is a vector which contains the coordinates of the off-curve integer point. RP is short

hand for real line point. RP represents each of the coordinates that represent the point on

the real line. The parametric distance equation is used to find the point on the real valued

linear function (real line) which is the minimum (parallel) distance from the off-curve

integer point. The distance equation is then used to calculate the magnitude of the

distance between the points identified. This procedure is repeated for every integer point

the algorithm creates as it determines the sequence of integer coordinates used to

approximate the given real valued linear function.

The distance calculations made at each point provides us with an average distance

between the sequence of integer coordinates and the real valued linear function. This

30

information will characterize the overall error between the two lines. The error in each

dimension is described by considering the average of the distances at each point in only

one dimension at a time. Table 13 provides us with sample output of the error calculation

program. PoCurveA: represents the actual point (x,y) on the real valued linear function

which is perpendicular to the off-curve integer coordinate produced by the integer

approximation. The variable d represents the distance between those two points. The

distance in each single dimension is represented by x distance, y distance, etc. For

example, this is just the distance for between integer coordinate (x) and real coordinate

(x). The real valued linear function length is represented by the term Real Line Distance

and Integer Line Distance represents the length of the sequence of integer coordinates.

TABLE 13: SCA ERROR CHARCTERIZATION OUTPUT

Axis 1 2 3 4 5

Po Curvel 0.693 1.154 1.846 2.307 3

Po Curve2 0.462 0.769 1.231 1.538 2

d 0.5547 0.2774 0.2774 0.5547 0

d sum 1.664 davg 0.3328

1 2 3 4 5

x distance 0.3077 0.1538 0.1538 0.3077 0

y distance 0.4615 0.2308 0.2308 0.4615 0
Real Line
Distance 0.8321 1.3868 2.2188 2.7735 3.6055
Integer
Line Dist. 1 2 3 4 5

The final error that must be calculated is the difference between the Real Line Distance

and the Integer Line Distance. The distance equation can be used to measure the distance

from the origin to the end of the real valued linear function as shown in equation 1.27.

d = J(Rm-P0)
2 (1.27)

31

The sequence of integer coordinates (integer line) cannot be calculated as a straight line.

In order to obtain the approximated numbers the algorithm must move along the adjacent

and opposite sides with respect to the real valued linear function (real line). For each

iteration of the problem there is a number of such moves which are made to obtain the

off-curve integer coordinate. In the SCA the number of moves are restricted to one unit

movement per iteration. This means the integer distance increases by one unit per

iteration. In the last line of Table 13 we observe the increasing value of the integer until

it reaches five. For our problem, the integer line distance is simply an addition of all the

unit moves made by the algorithm as it converges on the solution point (end point).

Figure 7 illustrates the error measurements along the curve.

toSEAD

FIGURE 7: Error Measurements on Preference Curve Example

The real valued linear function (real line) is defined by the coordinates (0,0) to (3,2). The

sequence of integer coordinates are represented by the dashed line. The integer

coordinates are labeled as R. The line extending from each coordinate R to the real line is

the perpendicular distance between the off-curve integer coordinate (R) and the

32

coordinate on the real line. Note that the origin and endpoint fall on the solid real line

and the dashed integer line. The distance is measured at each of the five integer

coordinates used to approximate the real line. The length of the real line is measured by

performing a distance calculation using the coordinates (0,0) and (3,2). The length of the

integer line is equal to the five segments of the dashed line that begins at point (0,0) and

ends at (3,2).

The source code for the Slope Comparison Algorithm can found in Appendix F.

Now we will examine the set up necessary for comparing the four candidate algorithms

and determining the error and quality of each.

Experimental Design

We will now consider the evaluation of four approaches to the integer estimation

of a preference curve. Each of the methods has been coded using Microsoft Visual Basic

6.0. The programs were run on a Dell Inspiron 7500 laptop computer. The Excel

program being run was the only active application during the experiment. These

measures ensured that the computer resources were devoted to running the program. The

programs for each method were created to interact with an Excel spreadsheet. The

programs pull data from and send data to the spreadsheet as they approximate the given

line. The starting and ending coordinates must be provided for each programmed

method. The MIEA, RSA and CSA methods all require the number of dimensions to be

entered. The four approximation methods assume that the line is being approximated

from the left hand coordinate to the right hand coordinate. It was also assumed that the

ending points will be higher in magnitude to their corresponding starting points. Each of

33

the four programs were limited to a maximum of seven dimensions. The solution data

was recorded in the Excel sheet by row. Excel limited our solutions to 32,767 rows due

to the integer defined counters in the programs.

The MIEA, SCA, RSA and CSA methods were evaluated on the basis of the six

quality and error measurements described in Chapter I. The model should converge on

an end point, converge on any interior integer points and the overall error between the

sequence of integer coordinates and the real valued linear function (preference curve) was

characterized. The error in each individual dimension of the problem space should also

be characterized. The computer processing time and a comparison of the lengths of the

integer line with the real line were also be made.

Convergence on an endpoint and interior points are simply a matter of observation

and reporting. As the algorithms were evaluated with various data sets, it was determined

whether these first two quality criteria are met. The remaining four criteria must be

evaluated based on a formal test plan.

The experiment evaluated the algorithms using 3 dimensional, 5 dimensional, and

7 dimensional problem spaces. In each problem space, three sets of start and end points

were identified. The first set had an end point with a high difference between individual

variable slopes. The second set had a medium distance in slope and the third set had no

difference in slope. Each algorithm was tested using these same sets (start and end

points) entered into the software and run to a solution. The test points are presented in

Table 14.

34

TABLE 14: TEST SOLUTION END POINTS

Dimensions High Difference Medium Difference No Difference

3 (2,2,100) (10,50,100) (100,100,100)

5 (2,2,2,100) (10,50,50,100,100) (100,100,100,100,100)

7 (2,2,2,2,100,100,100) (10,10,50,50,100,100,100) (100,100,100,100,100,100,100)

The start points for all test cases was the origin (0,0,.. .,0). The program run time, real

line length, integer line length and point deviations were recorded for each test run. All

four algorithms will be compared based on program time and line length. Integer and

real line lengths for the algorithms was calculated within each dimension. The program

time will also be evaluated across all the algorithms. The point deviations will be used to

produce a maximum deviation, average deviation and sum of all deviations per test run.

These three point deviation characteristics will also be compared with in each dimension.

There were three test runs for each dimension for a total of nine runs per algorithm. This

required a total of thirty- six runs in order to accomplish the experiment.

CONCLUSION

This chapter discussed the development of the Slope Comparison Algorithm and

the error calculation program. The experimental design that was used to evaluate the

SCA, MIEA, RSA and CSA approximation methods was also presented. The next

chapter will discuss the results of our tests.

35

IV. RESULTS

Introduction

Chapter IV will discuss the results of our experiment. The MIEA, RSA, CSA,

and SCA methods were tested using high, medium and low slope variations. All of the

algorithms were tested in 3, 5 and 7 dimensional problem spaces. This required a run for

each dimension for every slope variation. Ultimately, there were 36 test runs

accomplished to cover all four algorithms. The algorithms were evaluated based on the

real line length, integer line length, maximum deviation, average distance, sum of the

distances and run time.

The real and integer line lengths were equal for algorithms tested using the same

dimension and slope variation (See Appendix A). It was observed that all algorithms

converged on the solution point and found all interior integer points (See Appendix B).

The average distance between the real line and the off curve integer point, the sum of

those distances, and the maximum distances (deviation) have the same variation

according to each algorithm (see Table 15).

TABLE 15: SAMPLE RESULTS

3-D Med Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time

MIEA 112.2497 160 45.42568 22.32562 3572.099 2.483
RSA 112.2497 160 0.684291 0.447049 71.52777 5.188
CSA 112.2497 160 0.684291 0.448475 71.75592 15.032

SCA 112.2497 160 22.71284 11.92676 1908.281 1.272

The highlighted columns in Table 15 demonstrate the trend in the maximum deviation,

average distance and sum of the distances. This trend allows the direct comparison of

one of these criteria with the reasonable expectation that the other two will behave

36

similarly. The maximum deviation was chosen as the primary criterion. The maximum

deviation tells us the largest distance between an off-curve integer coordinate and the real

line. In other words, this distance is the greatest error of all integer coordinates used to

approximate the given line by a given algorithm. Computation time is the second

criterion that was used for the run by run comparison of the algorithms.

High Slope Variation

The RSA and CSA methods are the most accurate algorithms for high slope.

They are the same for the 3 and 5 dimensional cases. The difference in maximum slope

deviation is negligible between RSA and CSA in the seventh dimension. The MIEA and

SCA methods fall third and fourth in accuracy for this case. There is not much difference

between these two until the 7 dimensional scenario. SCA has a maximum deviation of

31.90, while at 92.93 the MIEA has a maximum deviation that is nearly three times as

great (see Table 16).

TABLE 16: HIGH SLOPE MAX DEVIATIONS

Hi Slope 3-D max dev 5-D max dev 7-D max dev

MIEA 2.827296432 3.99680384 92.93203773
RSA 0.707106781 1 1.201325026
CSA 0.707106781 1 1.12815215
SCA 2.235263492 3.60283656 31.90397524

The SCA algorithm has the fastest computation time for the high slope test runs.

The times for the MIEA, CSA and SCA algorithms all show steady increases. The RSA

algorithm has the third fastest computation time, but those times fluctuate between 5.158

seconds and 5.828 seconds (see Table 17).

37

TABLE 17: HIGH SLOPE RUN TIMES

Hi Slope 3-D run time 5-D run time 7-D run time

MIEA 2.373 3.775 5.598
RSA 5.158 5.137 5.828
CSA 14.931 24.735 36.162
SCA 0.831 0.891 3.375

The CSA algorithm has the slowest run time in all three dimension scenarios for the high

slope variation case.

Medium Slope Variation

The RSA and CSA methods show the most precision in the medium slope case.

The maximum deviations are the same in the third and fourth dimensions, but there is

slightly greater precision in the seventh dimension for the CSA. The SCA and MIEA

finish third and fourth with respect to precision (see Table 18).

TABLE 18: MED SLOPE MAX DEVIATIONS

Med Slope 3-D max dev 5-D max dev 7-D max dev

MIEA 45.42567626 77.5624668 92.93203773
RSA 0.684290851 0.95517046 1.201325026
CSA 0.684290851 0.89040928 1.12815215
SCA 22.71283813 30.9463615 31.90397524

The MIEA and SCA methods show large deviations for all three dimension scenarios.

The MIEA has three times as much deviation in the seventh dimensional scenario.

The SCA method demonstrates the fastest run time for the medium slope case.

The CSA method has the slowest run times (see Table 19).

TABLE 19: MED SLOPE RUN TIMES

Med Slope 3-D run time 5-D run time 7-D run time

MIEA 2.483 4.046 5.598
RSA 5.188 5.438 5.828
CSA 15.032 25.316 36.162
SCA 1.272 2.504 3.375

38

The RSA algorithm had the third fastest run times in all three dimension scenarios. The

computation times for RSA had little variance. For dimensions 3 through 7, the times

were 5.188 to 5.828 seconds. The MIEA, CSA, and SCA methods show steady

processing time increases as the dimension increases.

Low Slope Variation

RSA and CSA demonstrate the greatest precision for the low slope variation case.

In this case, the two algorithms have identical maximum deviations for all three

dimension size scenarios. The SCA method shows greater precision for the low slope

case than either of the previous slope variation cases (see Table 20).

TABLE 20: LOW SLOPE MAX DEVIATIONS

Low Slope 3-D max dev 5-D max dev 7-D max dev

MIEA 81.64965809 109.544512 130.9307341
RSA 0.816496581 1.09544512 1.309307341
CSA 0.816496581 1.09544512 1.309307341
SCA 1.414213562 3.16227766 5.291502622

In the high slope case SCA had deviations of 2.23, 3.60 and 31.90 for the corresponding

dimensions (3d, 5d, 7d). In the low slope case the deviations never get higher than 5.29

in the seventh dimension. The MIEA method has its worse performance in the low slope

case. The deviations are 81.64, 109.54 and 130.93 for the corresponding dimensions (3d,

5d, 7d).

Once again the SCA method proves to be the fastest algorithm (although by a

small amount). The MIEA algorithm has the second fastest run time while the CSA

method has the slowest time in all three dimensions (see Table 21).

39

TABLE 21: LOW SLOPE RUN TIMES

Low Slope 3-D run time 5-D run time 7-D run time

MIEA 2.653 4.336 5.979
RSA 5.437 5.658 5.989
CSA 15.362 25.327 35.921
SCA 2.393 4.045 5.758

The RSA had the third fastest times. Those times had little variation and ranged between

5.437 seconds and 5.979 seconds.

Algorithm Complication

The effects of algorithm complication on run time must also be considered.

Typically, floating point calculations require the most computer computation time. All

four of the algorithms tested require floating point calculations. "Furthermore, the

rounding operations and floating-point arithmetic in procedure line DDA are still time-

consuming" (Hearn and Baker, 1997:88). Floating point arithmetic occurs when division

or multiplication is needed in a computation. The MIEA, RSA and CSA all perform the

division of all difference variables by the largest difference (Ax, Ay, Az....). The first

pass of the algorithm requires the addition of these relative slopes until the solution value

is found. For more information on the algorithms, refer to Chapter II and Chapter III.

The values are then rounded and manipulated according to that algorithms logic through

addition type operations. For these three algorithms there will be a one time division

calculation for every dimension of the problem. For example, a 3 dimensional problem

(x, y, z) will require three division operations at the start of the algorithm. The next step

is rounding the fractional values that have been added together. The SCA method

compares every possible slope combination. The number of slopes required is calculated

based on a permutation calculation. For a seven dimensional problem a "seven choose

40

two" permutation would be required (see Chapter III). This means a 7 dimensional

problem would require 42 slope calculations for every integer step that the SCA

performed in order to approximate a real valued linear function using a sequence of

integer valued coordinates. Even though 42 division operations are taking place each

step, the actual integer moves are merely an addition of one unit at a time. As a result

there are no rounding steps in the SCA. The results previously discussed do not support

any negative time effects due to floating point operations in these four algorithms. If this

were the case, then the SCA would run the slowest. The CSA runs slowly due to the

alpha value used to segment the real line (see chapter II). This value breaks the line into

smaller segments than the RSAs slope and requires more addition steps to arrive at the

same solution. It is proposed that the deliberate selection of an alpha value would

improve the efficiency of the CSA approach.

Conclusion

The MIEA, CSA and SCA methods all required more run time as the dimension

size of the problem increased. This did not always hold true for changes in slope for the

MIEA, RSA and CSA. The SCA did have increases in time due to dimension size and

reduction in slope. The RSA algorithm had the least amount of variation in its run time

through out all its tests, regardless of dimension size or slope. RSA times ranged from

5.156 seconds (3d and high slope) to 5.989 seconds (7d and low slope).

The MIEA demonstrated decreasing precision as the slope varied from high to

low. MIEA precision also decreased as the dimension size increased from three to seven.

There is a very dramatic decrease in precision in the high slope case when the dimension

size increases from five to seven. The SCA has relatively poor precision in the high and

41

medium slope cases. In the low slope case, SCA demonstrates acceptable precision. The

greatest deviation in this last case was 5.29 in seven dimensions. The RSA and CSA

algorithms demonstrated the greatest precision. Their maximum deviations were nearly

exact in all but three scenarios. They are as follows: 7d and high slope, 5d and medium

slope, and 7d and high slope. The difference in all three of these scenarios is negligible.

The RSA method demonstrated fast and consistent run time speed as well as best

precision. The run time speed is what allows it to break the tie with the CSA method.

Another aspect of the RSA run time is its consistency. The RSA ran all problem

scenarios regardless of dimension or slope with in 5 to 6 seconds. The precision and

quickness of RSA provides us with the best overall solution.

42

V. CONCLUSIONS AND RECCOMMENDATIONS

INTRODUCTION

The goal of this thesis was to find the most efficient method of approximating a

real valued linear function with a sequence of integer coordinates. This was

accomplished through the evaluation of the MR VAT Integer Estimation Algorithm,

Relative Slope Algorithm, Continuous Segment Algorithm and Slope Comparison

Algorithm. These algorithms were evaluated based on six quality and error criteria: The

algorithms should converge on an end point, converge on any interior integer points and

the overall error between the sequence of integer coordinates and the real valued linear

function (preference curve) should be characterized. The error in each individual

dimension of the problem space should also be characterized. Finally, the computer

processing time and the difference between the distance lengths of the sequence of

integer coordinates and the real valued linear function should be determined.

The algorithms were modeled in Visual Basic 6.0. An error calculation program

was used to provide the individual integer point to real line distances, the maximum

distance (deviation), the average distance, and the sum of the distances. The real and

integer line lengths were also provided by this subroutine.

SUMMARY OF RESULTS

It was observed that all algorithms found the interior points and converged on the

solution points (See Appendix B). The four algorithms were each tested in high, medium

and low slope cases. In each of these cases a test was run for three, five, and seven

43

dimensions. This resulted in a total of 36 runs being completed. The primary criteria

used for run to run analysis were the maximum deviation and the run time.

It was discovered that the MIEA algorithm was least accurate by a significant

amount. This lack of precision increased with a change in slope from high to low and an

increase in dimension from 3d to 7d. The SCA method also proved to be relatively

imprecise. The precision was acceptable in the low slope cases, but there were large

deviations in the 7d and high slope scenario and in all dimension scenarios for the

medium slope case. The CSA and RSA slope were found to be the most precise of the

algorithms. The largest deviation for either of the algorithms was 1.309.

The CSA algorithm proved to be extremely slow in all slope cases and dimension

scenarios compared to the other three algorithms. The SCA had the quickest run time of

all algorithms evaluated during this thesis. The MIEA required 5.97 seconds for its

longest test run for a 7d/ low slope problem. The RSA algorithm had run times that

ranged between 5.148 seconds and 5.989 seconds. RSA ran the third in computation

speed and consistently solved the approximation problem in 5 to 6 seconds.

RECOMMENDATIONS

Based on the results of this thesis, it is recommended that the Relative Slope

Algorithm be utilized in the Mission Resource Value Assessment Tool program. This is

the next step in testing the effectiveness of the RSA and judging its impact on the

MRVAT. It is also recommended that the RSA be expanded to a 20 dimensional

problem. A problem of this size would further demonstrate the applicability of an

improved MRVAT to the Advanced Logistics Project.

44

Appendix A: Algorithm Test Results

Three Dimensional Case:

End 2 2 100

Start 0 0 0

3-D Hi Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time
MIEA 100.04 104 2.827296 1.423203 148.0131 2.373
RSA 100.04 104 0.707107 0.36701 38.16907 5.158
CSA 100.04 104 0.707107 0.36701 38.16907 14.931
SCA 100.04 104 2.235263 1.185098 123.2502 0.831

End 10 50 100
Start 0 0 0

3-D Med Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time

MIEA 112.2497 160 45.42568 22.32562 3572.099 2.483
RSA 112.2497 160 0.684291 0.447049 71.52777 5.188
CSA 112.2497 160 0.684291 0.448475 71.75592 15.032
SCA 112.2497 160 22.71284 11.92676 1908.281 1.272

End 100 100 100

Start 0 0 0

3-D Low Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time
MIEA 173.2051 300 81.64966 52.03772 15611.32 2.653
RSA 173.2051 300 0.816497 0.544331 163.2993 5.437
CSA 173.2051 300 0.816497 0.544331 163.2993 15.362
SCA 173.2051 300 1.414214 1.011022 303.3065 2.393

45

Five Dimensional Case:

End 2 2 2 2 100

Start 0 0 0 0 0

5-DHi Real_L Integer L Max dev. Avg. Dist. Sum Dist. Run Time

MIEA 100.08 108 3.996804 2.036701 219.9638 3.775
RSA 100.08 108 1 0.536645 57.95765 5.137
CSA 100.08 108 1 0.536645 57.95765 24.735
SCA 100.08 108 3.602837 1.878339 202.8606 0.891

End 10 50 50 100 100

Start 0 0 0 0 0

5-D Med Real L lnteger_L Max dev. Avg. Dist. Sum Dist. Run Time

MIEA 158.4298 310 77.56247 45.89123 14226.28 4.046
RSA 158.4298 310 0.95517 0.676949 209.8541 5.438
CSA 158.4298 310 0.890409 0.678624 210.3735 25.316
SCA 158.4298 310 30.94636 15.448 4788.879 2.504

End 100 100 100 100 100

Start 0 0 0 0 0

5-D Low Real L lnteger_L Max dev. Avg. Dist. Sum Dist. Run Time

MIEA 223.6068 500 109.5445 75.67659 37838.3 4.336
RSA 223.6068 500 1.095445 0.795949 397.9745 5.658
CSA 223.6068 500 1.095445 0.795949 397.9745 25.327
SCA 223.6068 500 3.162278 2.552431 1276.215 4.045

46

Seven Dimensional Case:

End 2 2 2 2 100 100 100

Start 0 0 0 0 0 0 0

7-DHi Real L lnteger_L Max dev. Avg. Dist, Sum Dist. Run Time

MIEA
RSA
CSA
SCA

173.2513 308 81.69317 50.87788 15670.39
173.2513 308 1.280492 0.830661 255.8436
173.2513 308 1.280492 0.830661 255.8436
173.2513 308 3.286088 2.236041 688.7007

5.428
5.397

35.411
2.564

End 10 10 50 50 100 100 100

Start 0 0 0 0 0 0 0

7-D Med Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time

MIEA 187.6166 420 92.93204 57.22633 24035.06 5.598
RSA 187.6166 420 1.201325 0.827896 347.7164 5.828
CSA 187.6166 420 1.128152 0.829251 348.2854 36.162
SCA 187.6166 420 31.90398 16.02219 6729.32 3.375

End 100 100 100 100 100 100 100

Start 0 0 0 0 0 0 0

7-D Low Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time

MIEA 264.5751 700 130.9307 93.72438 65607.07 5.979
RSA 264.5751 700 1.309307 0.980102 686.0712 5.989
CSA 264.5751 700 1.309307 0.980102 686.0712 35.921
SCA 264.5751 700 5.291503 4.478259 3134.781 5.758

47

Appendix B: Sample Output Examples (3d)

End: (5, 10, 15)
Start: (0, 0, 0)

MIEA Sample Output:

Integer Points

Iterations X y z t u V w

1 1 0 0 0 0
2 2 0 0 0 0
3 3 0 0 0 0
4 4 0 0 0 0
5 5 0 0 0 0
6 6 0 0 0 0
7 7 0 0 0 0
8 8 0 0 0 0
9 9 0 0 0 0
10 10 0 0 _j 0 0
11 11 0 0 0 0
12 12 0 0 0 0
13 13 0 0 0 0
14 14 0 0 0 0
15 15 0 0 0 0
16 1 15 0 0 0 0
17 2 15 0 0 0 0
18 3 15 0 0 0 0
19 4 15 0 0 0 0
20 5 15 0 0 0 0
21 6 15 0 0 0 0
22 7 15 0 0 0 0
23 8 15 0 0 0 0
24 9 15 0 0 0 0
25 10 15 0 0 0 0
26 1 10 15 0 0 0 0
27 2 10 15 0 0 0 0
28 3 10 15 0 0 0 0
29 4 10 15 0 0 0 o
30 I 5 10 15 0 0 0 o I

48

Real Line Points

Iterations PoCurvel PoCurve2 PoCurve3
1 0.214286 0.428571 0.642857
2 0.428571 0.857143 1.285714
3 0.642857 1.285714 1.928571
4 0.857143 1.714286 2.571429
5 1.071429 2.142857 3.214286
6 1.285714 2.571429 3.857143
7 1.5 3 4.5
8 1.714286 3.428571 5.142857
9 1.928571 3.857143 5.785714

10 2.14286 4.28571 6.42857
11 2.357143 4.714286 7.071429
12 2.571429 5.142857 7.714286
13 2.785714 5.571429 8.357143
14 3 6 9
15 3.214286 6.428571 9.642857
16 3.357143 6.714286 10.07143
17 3.5 7 10.5
18 3.642857 7.285714 10.92857
19 3.785714 7.571429 11.35714
20 3.928571 7.857143 11.78571
21 4.071429 8.142857 12.21429
22 4.214286 8.428571 12.64286
23 4.357143 8.714286 13.07143
24 4.5 9 13.5
25 4.642857 9.285714 13.92857
26 4.714286 9.428571 14.14286
27 4.785714 9.571429 14.35714
28 4.85714 9.71429 14.5714
29 4.928571 9.857143 14.78571
30 5 10 15

49

RSA Sample Output:

Integer Points

Iteration X y z t u V w

1 0 0 1 0 0 0 0
2 0 1 1 0 0 0 0
3 0 1 2 0 0 0 0
4 1 2 0 0 0 0
5 1 3 0 0 0 0
6 2 3 0 0 0 0
7 2 4 0 0 0 0
8 3 4 0 0 0 0
9 3 5 0 0 0 0
10 2 3 5 0 0 0 0
11 2 3 6 0 0 0 0
12 2 4 6 0 0 0 0
13 2 4 7 0 0 0 0
14 2 5 7 0 0 0 0
15 2 5 8 0 0 0 0
16 3 5 8 0 0 0 0
17 3 5 9 0 0 0 0
18 3 6 9 0 0 0 0
19 3 6 10 0 0 0 0
20 3 7 10 0 0 0 0
21 3 7 11 0 0 0 0
22 4 7 11 0 0 0 0
23 4 7 12 0 0 0 0
24 4 8 12 0 0 0 0
25 4 8 13 0 0 0 0
26 4 9 13 0 0 0 0
27 4 9 14 0 0 0 0
28 5 9 14 0 0 0 0
29 5 9 15 0 0 0 0
30 5 10 15 0 0 0 0

50

Real Line Points

Iteration PoCurvel PoCurve2 PoCurve3

1 0.214285714 0.428571429 0.642857143

2 0.357142857 0.714285714 1.071428571

3 0.571428571 1.142857143 1.714285714

4 0.642857143 1.285714286 1.928571429

5 0.857142857 1.714285714 2.571428571

6 1 2 3

7 1.214285714 2.428571429 3.642857143

8 1.357142857 2.714285714 4.071428571

9 1.571428571 3.142857143 4.714285714

10 1.642857143 3.285714286 4.928571429

11 1.857142857 3.714285714 5.571428571

12 2 4 6

13 2.214285714 4.428571429 6.642857143

14 2.357142857 4.714285714 7.071428571

15 2.571428571 5.142857143 7.714285714

16 2.642857143 5.285714286 7.928571429

17 2.857142857 5.714285714 8.571428571

18 3 6 9

19 3.214285714 6.428571429 9.642857143

20 3.357142857 6.714285714 10.07142857

21 3.571428571 7.142857143 10.71428571

22 3.642857143 7.285714286 10.92857143

23 3.857142857 7.714285714 11.57142857

24 4 8 12

25 4.214285714 8.428571429 12.64285714

26 4.357142857 8.714285714 13.07142857

27 4.571428571 9.142857143 13.71428571

28 4.642857143 9.285714286 13.92857143

29 4.857142857 9.714285714 14.57142857

30 5 10 15

51

CSA Sample Output:

Integer Points

Iteration X y z f u V w

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0 0 1 0 0 0 0
0 1 1 0 0 0 0
0 1 2 0 0 0 0

1 2 0 0 0 0

2 2 0 0 0 0
2 3 0 0 0 0
2 4 0 0 0 0

3 4 0 0 0 0

3 5 0 0 0 0

2 3 5 0 0 0 0
2 4 5 0 0 0 0
2 4 6 0 0 0 0
2 4 7 0 0 0 0
2 5 7 0 0 0 0
2 5 8 0 0 0 0

3 5 8 0 0 0 0

3 6 8 0 0 0 0
3 6 9 0 0 0 0
3 6 10 0 0 0 0
3 7 10 0 0 0 0
3 7 11 0 0 0 0
4 7 11 0 0 0 0
4 8 11 0 0 0 0
4 8 12 0 0 0 0
4 8 13 0 0 0 0
4 9 13 0 0 0 0
4 9 14 0 0 0 0
5 9 14 0 0 0 0
5 10 14 0 0 0 0

. 5 10 15 0 0 0 0

52

Real Line Points

Iteration PoCurvel PoCurve2 PoCurve3

1 0.214285714 0.428571429 0.642857143
2 0.357142857 0.714285714 1.071428571

3 0.571428571 1.142857143 1.714285714
4 0.642857143 1.285714286 1.928571429
5 0.785714286 1.571428571 2.357142857
6 1 2 3
7 1.214285714 2.428571429 3.642857143
8 1.357142857 2.714285714 4.071428571

9 1.571428571 3.142857143 4.714285714
10 1.642857143 3.285714286 4.928571429
11 1.785714286 3.571428571 5.357142857
12 2 4 6
13 2.214285714 4.428571429 6.642857143
14 2.357142857 4.714285714 7.071428571

15 2.571428571 5.142857143 7.714285714

16 2.642857143 5.285714286 7.928571429

17 2.785714286 5.571428571 8.357142857
18 3 6 9
19 3.214285714 6.428571429 9.642857143
20 3.357142857 6.714285714 10.07142857
21 3.571428571 7.142857143 10.71428571
22 3.642857143 7.285714286 10.92857143
23 3.785714286 7.571428571 11.35714286
24 4 8 12
25 4.214285714 8.428571429 12.64285714

26 4.357142857 8.714285714 13.07142857
27 4.571428571 9.142857143 13.71428571
28 4.642857143 9.285714286 13.92857143
29 4.785714286 9.571428571 14.35714286
30 5 10 15

53

SCA Sample Output:

Integer Points

Iterations X y z t u V w

1 0 0 1 0 0 0 0
2 0 0 2 0 0 0 0
3 0 0 3 0 0 0 0
4 0 0 4 0 0 0 0
5 0 0 5 0 0 0 0
6 0 1 5 0 0 0 0
7 0 1 6 0 0 0 0
8 0 2 6 0 0 0 0
9 0 2 7 0 0 0 0
10 0 3 7 0 0 0 0
11 0 3 8 0 0 0 0
12 0 4 8 0 0 0 0
13 0 4 9 0 0 0 0
14 0 5 9 0 0 0 0
15 0 6 9 0 0 0 0
16 0 6 10 0 0 0 0
17 1 6 10 0 0 0 0
18 1 7 10 0 0 0 0
19 1 7 11 0 0 0 0
20 2 7 11 0 0 0 0
21 2 8 11 0 0 0 0
22 2 8 12 0 0 0 0
23 3 8 12 0 0 0 0
24 3 9 12 0 0 0 0
25 3 9 13 0 0 0 0
26 4 9 13 0 0 0 0
27 4 10 13 0 0 0 0
28 4 10 14 0 0 0 0
29 ' 5 10 14 0 0 0 0
30 5 10 15 0 0 0 0

54

Real Line Points

Iterations PoCurvel PoCurvel PoCurve3
1 0.214286 0.428571 0.642857
2 0.428571 0.857143 1.285714
3 0.642857 1.285714 1.928571
4 0.857143 1.714286 2.571429
5 1.071429 2.142857 3.214286
6 1.214286 2.428571 3.642857
7 1.428571 2.857143 4.285714
8 1.571429 3.142857 4.714286
9 1.785714 3.571429 5.357143

10 1.928571 3.857143 5.785714
11 2.142857 4.285714 6.428571
12 2.285714 4.571429 6.857143
13 2.5 5 7.5
14 2.642857 5.285714 7.928571
15 2.785714 5.571429 8.357143
16 3 6 9
17 3.071429 6.142857 9.214286
18 3.214286 6.428571 9.642857
19 3.428571 6.857143 10.28571
20 3.5 7 10.5
21 3.642857 7.285714 10.92857
22 3.857143 7.714286 11.57143
23 3.92857 7.85714 11.7857
24 4.071429 8.142857 12.21429
25 4.285714 8.571429 12.85714
26 4.357143 8.714286 13.07143
27 4.5 9 13.5
28 4.714286 9.428571 14.14286
29 4.785714 9.571429 14.35714
30 5 10 15

55

Appendix C: MIEA SOURCE CODE

Sub Mslope()
t

' Mslope Macro
' Macro recorded 4/13/2001 by rantoine

Dim ValueX As Double
Dim ValueY As Double
Dim ValueZ As Double
Dim ValueT As Double
Dim ValueU As Double
Dim ValueV As Double
Dim ValueW As Double

Dim X2 As Integer
Dim Y2 As Integer
Dim Z2 As Integer
Dim T2 As Integer
Dim U2 As Integer
Dim V2 As Integer
Dim W2 As Integer

Dim i As Integer
Dim n As Integer
Dim z As Integer

Dim num As Integer
Dim Denominator As Integer
Dim Biggest As Integer
Dim Increment As Double

Dim Xincrement As Double
Dim Yincrement As Double
Dim Zincrement As Double
Dim Tincrement As Double
Dim Uincrement As Double
Dim Vincrement As Double
Dim Wincrement As Double

Dim SortX As Double
Dim SortY As Double
Dim SortZ As Double
Dim SortT As Double
Dim SortU As Double
Dim SortV As Double
Dim SortW As Double

'Get initial starting values
ValueX = Cells(2, 2).Value
ValueY = Cells(3, 2) Value

56

ValueZ = Cells(4, 2).Value
ValueT = Cells(5, 2).Value
ValueU = Cells(6, 2).Value
ValueV = Cells(7, 2).Value
ValueW = Cells(8, 2).Value

'Get final values
X2 = Cells(2, 3).Value
Y2 = Cells(3, 3).Value
Z2 = Cells(4, 3).Value
T2 = Cells(5, 3).Value
U2 = Cells(6, 3).Value
V2 = Cells(7, 3).Value
W2 = Cells(8, 3).Value

z = 0
num = 0

For Biggest = 1 To 7
Denominator = Cells(10 + z, 2).Value
If Denominator > num Then

num = Denominator
Cells(18, 2) = num

End If

z = z+ 1

Next Biggest

'Get Slope Values for sorting
SortX = Cells(21,2). Value
SortY = Cells(22, 2).Value
SortZ = Cells(23, 2).Value
SortT = Cells(24, 2).Value
SortU = Cells(25, 2).Value
SortV = Cells(26, 2).Value
SortW = Cells(27, 2).Value

'Send slope values to sorter.
Cells(21,3) = SortX
Cells(22, 3) = SortY
Cells(23, 3) = SortZ
Cells(24, 3) = SortT
Cells(25, 3) = SortU
Cells(26, 3) = SortV
Cells(27, 3) = SortW

End Sub

Sub Msort()

57

' Msort Macro
' Macro recorded 4/13/2001 by rantoine

Range("C21:C27").Select
Selection.SORT Keyl:=Range("C21"), Orderl :=xlDescending, Header:=xlGuess.

, OrderCustom:=l, MatchCase:=False, Orientation:=xlTopToBottom
End Sub

Sub MaddO

Madd Macro
Macro recorded 4/13/2001 by rantoine

Dim ValueX As Double
Dim ValueY As Double
Dim ValueZ As Double
Dim ValueT As Double
Dim ValueU As Double
Dim ValueV As Double
Dim ValueW As Double

Dim X2 As Integer
Dim Y2 As Integer
Dim Z2 As Integer
Dim T2 As Integer
Dim U2 As Integer
Dim V2 As Integer
Dim W2 As Integer

Dim i As Integer
Dim n As Integer
Dim z As Integer
Dim b As Integer

Dim num As Integer
Dim Denominator As Integer
Dim Biggest As Integer
Dim Increment As Double
Dim Squeeze As Integer

Dim Xincrement As Double
Dim Yincrement As Double
Dim Zincrement As Double
Dim Tincrement As Double
Dim Uincrement As Double
Dim Vincrement As Double
Dim Wincrement As Double

Dim SortX As Double
Dim SortY As Double

58

Dim SortZ As Double
Dim SortT As Double
Dim SortU As Double
Dim SortV As Double
Dim SortW As Double

Dim Xroundl As Integer
Dim Yroundl As Integer
Dim Zroundl As Integer
Dim Troundl As Integer
Dim Uroundl As Integer
Dim Vroundl As Integer
Dim Wroundl As Integer

Dim Xround2 As Integer
Dim Yround2 As Integer
Dim Zround2 As Integer
Dim Tround2 As Integer
Dim Uround2 As Integer
Dim Vround2 As Integer
Dim Wround2 As Integer

Dim a As Integer
Dim c As Integer
Dim d As Integer
Dim e As Integer
Dim f As Integer
Dim g As Integer
Dim h As Integer
Dimj As Integer
Dim k As Integer
Dim 1 As Integer
Dim m As Integer

Dim Xholder As Integer
Dim Yholder As Integer
Dim Zholder As Integer
Dim Tholder As Integer
Dim Uholder As Integer
Dim Vholder As Integer
Dim Wholder As Integer

'Get initial starting values
ValueX = Cells(2, 2).Value
ValueY = Cells(3, 2).Value
ValueZ = Cells(4, 2).Value
ValueT = Cells(5, 2^ Value
ValueU = Cells(6, 2).Value
ValueV = Cells(7, 2).Value
ValueW = Cells(8, 2).Value

'Get final values
X2 = Cells(2, 3).Value

59

Y2 = Cells(3, 3).Value
Z2 = Cells(4, 3).Value
T2 = Cells(5, 3).Value
U2 = Cells(6, 3).Value
V2 = Cells(7, 3).Value
W2 = Cells(8, 3).Value

i = 0
n = 0

Do

Xincrement = ValueX
Yincrement = ValueY
Zincrement = ValueZ
Tincrement = ValueT
Uincrement = ValueU
Vincrement = ValueV
Wincrement = ValueW

'Now increment values according to slope ratios
If Cells(21, 2) = Cells(21 + n, 3) And ValueX < X2 Then

Do
ValueX = ValueX + Cells(21, 2)
Cells(32 + i, 2) = ValueX
i = i+l

Loop While (ValueX < X2)
End If

If Cells(22, 2) = Cells(21 + n, 3) And ValueY < Y2 Then
Do

ValueY = ValueY + Cells(22, 2)
Cells(32 + i, 3) = ValueY
i = i+l

Loop While (ValueY < Y2)
End If

If Cells(23, 2) = Cells(21 + n, 3) And ValueZ < Z2 Then
Do

ValueZ = ValueZ + Cells(23, 2)
Cells(32 + i, 4) = ValueZ
i = i+l

Loop While (ValueZ < Z2)
End If

If Cells(24, 2) = Cells(21 + n, 3) And ValueT < T2 Then
Do

ValueT = ValueT + Cells(24, 2)
Cells(32 + i, 5) = ValueT
i = i+l

Loop While (ValueT < T2)
End If

60

If Cells(25, 2) = Cells(21 + n, 3) And ValueU < U2 Then
Do

ValueU = ValueU + Cells(25, 2)
Cells(32 + i, 6) = ValueU
i = i+l

Loop While (ValueU < U2)
End If

If Cells(26, 2) = Cells(21 + n, 3) And ValueV < V2 Then
Do

ValueV = ValueV + Cells(26, 2)
Cells(32 + i, 7) = ValueV
i = i+l

Loop While (ValueV < V2)
End If

If Cells(27, 2) = Cells(21 + n, 3) And ValueW < W2 Then
Do

ValueW = ValueW + Cells(27, 2)
Cells(32•+ i, 8) = ValueW
i = i+l

Loop While (ValueW < W2)
End If

n = n+ 1

Loop While ((ValueX < X2) Or (ValueY < Y2) Or (ValueZ < Z2) Or (ValueT < T2) Or (ValueU < U2) Or
(ValueV < V2) Or (ValueW < W2))

Cells(2, ll) = i

'b = 0
'Now Squeeze or fill down the rounding Table.

For Squeeze = 1 To i

Xroundl = Cells(32 + b, 11)
Yroundl = Cells(32 + b, 12)
Zroundl = Cells(32 + b, 13)
Troundl = Cells(32 + b, 14)
Uroundl = Cells(32 + b, 15)
Vroundl = Cells(32 + b, 16)
Wroundl = Cells(32 + b, 17)

Xround2 = Cells(33+b, 11)
Yround2 = Cells(33 + b, 12)
Zround2 = Cells(33+b, 13)
Tround2 = Cells(33 + b, 14)
Uround2 = Cells(33 + b, 15)
Vround2 = Cells(33 + b, 16)
Wround2 = Cells(33 + b, 17)

If Xroundl < Xround2 Or Xroundl > Xround2 Then

61

Cells(32 + b, 20) = Xroundl
Else

If (Xroundl - Xround2) = 0 And Xroundl > 0 And Xround2 > 0 Then
b = b

End If
End If

If Yroundl < Yround2 Or Yroundl > Yround2 Then
Cells(32 + b, 21) = Yroundl

Else
If (Yroundl - Yround2) = 0 And Yroundl > 0 And Yround2 > 0 Then

b = b
End If

End If

If Zroundl < Zround2 Or Zroundl > Zround2 Then
Cells(32 + b, 22) = Zroundl

Else
If (Zroundl - Zround2) = 0 And Zroundl > 0 And Zround2 > 0 Then

b = b
End If

End If

If Troundl < Tround2 Or Troundl > Tround2 Then
Cells(32 + b, 23) = Troundl

Else
If (Troundl - Tround2) = 0 And Troundl > 0 And Tround2 > 0 Then

b = b
End If

End If

If Uroundl < Uround2 Or Uroundl > Uround2 Then
Cells(32 + b, 24) = Uroundl

Else
If (Uroundl - Uround2) = 0 And Uroundl > 0 And Uround2 > 0 Then

b = b
End If

End If

If Vroundl < Vround2 Or Vroundl > Vround2 Then
Cells(32+b,25) = Vroundl

Else
If (Vroundl - Vround2) = 0 And Vroundl > 0 And Vround2 > 0 Then

b = b
End If

End If

If Wroundl < Wround2 Or Wroundl > Wround2 Then
Cells(32 + b, 26) = Wroundl

Else
If (Wroundl - Wround2) = 0 And Wroundl > 0 And Wround2 > 0 Then

b = b
End If

End If

62

b = b+l
Next Squeeze

'Second pass for fill down. This part searches the first fill down and writes the
'values so there are no spaces in between the coordinate values.

a = 0
c = 0

Do
IfCells(32 +

Xholder =
Cells(32 4
c = c+ 1

Else

a, 20) >
Cells(32
c, 29) =

OThen
! + a, 20)
Xholder

c = c
End If

a = a+ 1
Loop While (Xholder < X2)

a = 0
c = 0

Do
If Cells(32 +

Yholder =
Cells(32 4
c = c+ 1

a,21)>
■■ Cells(32
- c, 30) =

OThen
» + a, 21)
Yholder

Else
c = c

End If

a = a+l
Loop While (Yholder < Y2)

a = 0
c = 0

Do
If Cells(32 4

Zholder =
Cells(32 4
c = c+ 1

a, 22) >
Cells(32
-c,31) =

OThen
. + a, 22)
Zholder

Else
c = c

End If

a = a+ 1
Loop While (Zholder < Z2)

a = 0
c = 0

63

Do
If Cells(32 + a, 23) >

Tholder = Cells(32
Cells(32 + c, 32) =
c = c+ 1

Else

OThen
+ a, 23)
Tholder

c = c
End If

a = a+ 1
Loop While (Tholder < T2)

a = 0
c = 0

Do
If Cells(32 +

Uholder =
Cells(32 i
c = c+ 1

Else

a, 24) >
Cells(32

-c,33) =

OThen
. + a, 24)
Uholder

c = c
End If

a = a+l
Loop While (Uholder < U2)

a = 0
c = 0

Do
IfCells(32 + a,25)>0Then

Vholder = Cells(32 + a, 25)
Cells(32 + c, 34) = Vholder
c = c+ 1

Else
c = c

End If

a = a+ 1
Loop While (Vholder < V2)

a = 0
c = 0

Do
IfCells(32 + a,26)>0Then

Wholder=Cells(32 + a,26)
Cells(32 + c, 35) = Wholder
c = c+ 1

Else
c = c

End If

64

a = a+ 1
Loop While (Wholder < W2)

3rd Fill Down, now we are taking each coordinate
'set and setting them end to end.

Dim xplace As Integer
Dim yplace As Integer
Dim zplace As Integer
Dim tplace As Integer
Dim uplace As Integer
Dim vplace As Integer
Dim wplace As Integer

d = 0
e = 0
f=0
g = 0
h = 0
j = 0
k = 0
1 = 0
m = 0

xplace = Cells(32 + d, 29).Value
yplace = Cells(32 + d, 30).Value
zplace = Cells(32 + d, 31).Value
tplace = Cells(32 + d, 32).Value
uplace = Cells(32 + d, 33).Value
vplace = Cells(32 + d, 34).Value
wplace = Cells(32 + d, 35).Value

Do

If Cells(21, 2).Value = Cells(21 + e, 3).Value And xplace < X2 Then
Do

xplace = Cells(32 + d, 29).Value
If xplace > 0 Then

Cells(32 + f 39).Value = xplace
f=f+l
d = d+l

Else
d = d

End If
Loop While (xplace < X2)

End If

If Cells(22, 2).Value = Cells(21 + e, 3).Value And yplace < Y2 Then
Do

yplace = Cells(32 + g, 30).Value
If yplace > 0 Then

Cells(32 + f, 40).Value = yplace

65

f=f+l
g=g+l

Else
g = g

End If
Loop While (yplace < Y2)

End If

If Cells(23, 2).Value = Cells(21 + e, 3).Value And zplace < Z2 Then
Do

zplace = Cells(32 + h, 31).Value
If zplace > 0 Then

Cells(32 + f, 41).Value = zplace
f=f+l
h=h+l

Else
h = h

End If
Loop While (zplace < Z2)

End If

If Cells(24, 2).Value = Cells(21 + e, 3).Value And tplace < T2 Then
Do

tplace = Cells(32 + j, 32).Value
If tplace > 0 Then

Cells(32 + f, 42).Value = tplace
f=f+l

Else
j=j

End If
Loop While (tplace < T2)

End If

If Cells(25, 2).Value = Cells(21 + e, 3) Value And uplace < U2 Then
Do

uplace = Cells(32 + k, 33).Value
If uplace > 0 Then

Cells(32 + f, 43)Value = uplace
f=f+l
k = k+l

Else
k = k

End If
Loop While (uplace < U2)

End If

If Cells(26, 2).Value = Cells(21 + e, 3).Value And vplace < V2 Then
Do

vplace = Cells(32 + 1, 34).Value

66

If vplace > 0 Then
Cells(32 + f, 44).Value = vplace
f=f+l
1 = 1+1

Else
1 = 1

End If
Loop While (vplace < V2)

End If

If Cells(27, 2).Value = Cells(21 + e, 3).Value And wplace < W2 Then
Do

wplace = Cells(32 + m, 35).Value
If wplace > 0 Then

Cells(32 + f, 45).Value = wplace
f=f+l
m = m+ 1

Else
m = m

End If
Loop While (wplace < W2)

End If

= e+l

Loop While ((xplace < XT) Or (yplace < Y2) Or (zplace < Z2) Or (tplace < T2) Or (uplace < U2) Or
(vplace < V2) Or (wplace < W2))

Cells(29,47) = f
'Cells(125, 2) = f

End Sub

Sub FinalFillO

' FinalFill Macro
' Macro recorded 4/24/2001 by rantoine

Dim xplace As Integer
Dim yplace As Integer
Dim zplace As Integer
Dim tplace As Integer
Dim uplace As Integer
Dim vplace As Integer
Dim wplace As Integer

Dim X2 As Integer
Dim Y2 As Integer
Dim Z2 As Integer
Dim T2 As Integer
Dim U2 As Integer

67

Dim V2 As Integer
Dim W2 As Integer

Dim xpart As Integer
Dim ypart As Integer
Dim zpart As Integer
Dim tpart As Integer
Dim upart As Integer
Dim vpart As Integer
Dim wart As Integer

Dim a As Integer
Dim b As Integer
Dim c As Integer
Dim d As Integer
Dim e As Integer
Dim f As Integer
Dim g As Integer
Dim h As Integer
Dim i As Integer
Dimj As Integer
Dim k As Integer
Dim 1 As Integer
Dim m As Integer
Dim n As Integer

'Get final values
X2 = Cells(2, 3).Value
Y2 = Cells(3, 3).Value
Z2 = Cells(4, 3).Value
T2 = Cells(5, 3).Value
U2 = Cells(6, 3).Value
V2 = Cells(7, 3).Value
W2 = Cells(8, 3).Value

FFill = Cells(29,47)

'Go variable by variable and fill from last number in
'column until the final(lowest in column) of any variable.
a = 0
b = 0

Do
xplace = Cells(32 + a, 39)

If xplace = X2 Then
For xpart = 1 To (FFill - a)
Cells(32 + a + b, 39) = xplace
b = b+l

Next xpart
Else

x = x
End If

68

a = a+ 1
Loop While (xplace < X2)

c = 0
d = 0

Do
yplace = Cells(32 + c, 40)

If yplace = Y2 Then
For ypart = 1 To (FFill - c)
Cells(32 + c + d, 40) = yplace
d = d+l

Next ypart
Else

x = x
End If

c = c+ 1
Loop While (yplace < Y2)

e = 0
f=0

Do
zplace = Cells(32 + e, 41)

If zplace = Z2 Then
For zpart = 1 To (FFill - e)
Cells(32 + e + f, 41) = zplace
f=f+l

Next zpart
Else

x = x
End If

e = e+l
Loop While (zplace < Z2)

g = 0
h = 0

Do
tplace = Cells(32 + g, 42)

Iftplace = T2Then
For tpart = 1 To (FFill - g)
Cells(32 + g + h, 42) = tplace
h = h+l

Next tpart
Else

69

End If

g = g+l
Loop While (tplace < T2)

i = 0
j = 0

Do
uplace = Cells(32 + i, 43)

If uplace = U2 Then
For upart = 1 To (FFill - i)
Cells(32 + i+j, 43) = uplace

Next upart
Else

x = x
End If

i = i+l
Loop While (uplace < U2)

k = 0
1 = 0

Do
vplace = Cells(32 + k, 44)

If vplace = V2 Then
For vpart = 1 To (FFill - k)
Cells(32 + k + 1, 44) = vplace
1 = 1+1

Next vpart
Else

x = x
End If

k = k+l
Loop While (vplace < V2)

m = 0
n = 0

Do
wplace = Cells(32 + m, 45)

If wplace = W2 Then
For wpart = 1 To (FFill - m)
Cells(32 + m + n, 45) = wplace
n = n+ 1

Next wpart
Else

x = x

70

End If

m = m+ 1
Loop While (wplace < W2)

End Sub

Sub BuildSlopeAndErrorO

' BuildSlopeAndError Macro
' Macro recorded 4/24/2001 by rantoine

Dim Start As Double
Dim Finish As Double
Dim TotalTime As Double
Dim CountProgram As Integer

n = 0

Start = Timer

For CountProgram = 1 To 1
Application.Run"MIEArow.xls!Mslope"
Application.Run "MIEArow.xlslMsort"
Application.Run"MIEArow.xls!Madd"
Application.Run "MIEArow.xlslFinalFill"
n = n+ 1

Next CountProgram

'Calculate Elapsed Time
Finish = Timer ' Set end time.
TotalTime = Finish - Start ' Calculate total time.

'Write program time to excel
Cells(29, 4) = TotalTime
Cells(32, 75) = TotalTime
MsgBox "Program time is " & TotalTime & " seconds"

Application.Run "MIEArow.xlslRSAError"

End Sub

71

Appendix D: RSA SOURCE CODE

Sub RelSlopeO
t

' RelSlope Macro
' Macro recorded 4/9/2001 by rantoine

Dim ValueX As Double
Dim ValueY As Double
Dim ValueZ As Double
Dim ValueT As Double
Dim ValueU As Double
Dim ValueV As Double
Dim ValueW As Double

Dim X2 As Integer
Dim Y2 As Integer
Dim Z2 As Integer
Dim T2 As Integer
Dim U2 As Integer
Dim V2 As Integer
Dim W2 As Integer

Dim i As Integer
Dim n As Integer •
Dim z As Integer

Dim num As Integer
Dim Denominator As Integer
Dim Biggest As Integer
Dim Increment As Double

Dim Xincrement As Double
Dim Yincrement As Double
Dim Zincrement As Double
Dim Tincrement As Double
Dim Uincrement As Double
Dim Vincrement As Double
Dim Wincrement As Double

Dim Sortx As Double
Dim Sorty As Double
Dim Sortz As Double
Dim Sortt As Double
Dim Sortu As Double
Dim Sortv As Double
Dim Sortw As Double

'Get initial starting values
ValueX = Cells(2, 2).Value
ValueY = Cells(3,2).Value
ValueZ = Cells(4, 2).Value
ValueT = Cells(5, 2).Value

72

ValueU = Cells(6, 2).Value
ValueV = Cells(7, 2).Value
ValueW = Cells(8,.2).Value

'Get final values
X2 = Cells(2, 3).Value
Y2 = Cells(3, 3).Value
Z2 = Cells(4, 3).Value
T2 = Cells(5, 3).Value
U2 = Cells(6, 3).Value
V2 = Cells(7, 3).Value
W2 = Cells(8, 3).Value

z = 0
num = 0

For Biggest = 1 To 7
Denominator = Cells(10 + z, 2).Value
If Denominator > num Then

num = Denominator
Cells(18, 2) = num

End If

z = z+ 1

Next Biggest

i = 0
n = 0

Do

Xincrement = ValueX
Yincrement = ValueY
Zincrement = ValueZ
Tincrement = ValueT
Uincrement = ValueU
Vincrement = ValueV
Wincrement = ValueW

"Now increment values according to slope ratios
If ValueX < Cells(2, 3).Value Then

ValueX = Xincrement + Cells(21, 2)
End If
If ValueY < Cells(3, 3)Value Then

ValueY = Yincrement + Cells(22, 2)
End If
If ValueZ < Cells(4, 3)Value Then

ValueZ = Zincrement + Cells(23, 2)
End If
If ValueT < Cells(5, 3).Value Then

ValueT = Tincrement + Cells(24, 2)
End If
If ValueU < Cells(6, 3). Value Then

73

ValueU = Uincrement + Cells(25, 2)
End If
If ValueV < Cells(7, 3).Value Then

ValueV = Vincrement + Cells(26, 2)
End If
If ValueW < Cells(8, 3).Value Then

ValueW = Wincrement + Cells(27, 2)
End If

'Write current output vector.

If ValueX <= Cells(2, 3) Then
Cells(32 + i, 2) = ValueX

Else
IfValueX>Cells(2,3)Then

Cells(32 + i, 2) = 0
End If

End If

If Value Y <= Cells(3, 3) Then
Cells(32 + i, 3) = ValueY

Else
IfValueY>Cells(3,3)Then

Cells(32 + i, 3) = 0
End If

End If

If ValueZ <= Cells(4, 3) Then
Cells(32 + i, 4) = ValueZ

Else
If ValueZ > Cells(4, 3) Then

Cells(32 + i, 4) = 0
End If

End If

If ValueT <= Cells(5, 3) Then
Cells(32 + i, 5) = ValueT

Else
If ValueT > Cells(5, 3) Then

Cells(32 + i, 5) = 0
End If

End If

If ValueU <= Cells(6, 3) Then
Cells(32 + i, 6) = ValueU

Else
IfValueU>Cells(6,3)Then

Cells(32 + i, 6) = 0
End If

End If

If ValueV <= Cells(7, 3) Then
Cells(32 + i, 7) = ValueV

74

Else
IfValueV>Cells(7,3)Then

Cells(32 + i, 7) = 0
End If

End If

If ValueW <= Cells(8, 3) Then
Cells(32 + i, 8) = ValueW

Else
If ValueW > Cells(8, 3) Then

Cells(32 + i, 8) = 0
End If

End If

'Write to sort table.
Sortx = Cells(32, 2)
Sorty=Cells(32,3)
Sortz = Cells(32, 4)
Sortt = Cells(32,5)
Sortu = Cells(32, 6)
Sortv = Cells(32, 7)
Sortw=Cells(32, 8)

Cells(32, 10) = Sortx
Cells(33, 10) = Sorry
Cells(34, 10) = Sortz
Cells(35, 10) = Sortt
Cells(36, 10) = Sortu
Cells(37, 10) = Sortv
Cells(38, 10) = Sortw

i = i+l

Loop While ((ValueX < X2) Or (ValueY < Y2) Or (ValueZ < Z2) Or (ValueT < T2) Or (ValueU < U2) Or
(ValueV < V2) Or (ValueW < W2))

Cells(2, ll) = i

End Sub

Sub SORT()

' SORT Macro
' Macro recorded 4/23/2001 by rantoine

Range("J32:J38").Select
Selection.SORT Keyl:=Range("J32"), Orderl :=xlDescending, Header:=xlGuess

, OrderCustom:=l, MatchCase:=False, Orientation:=xlTopToBottom
End Sub

75

Sub FillerO
l

1 Filler Macro
1 Macro recorded 4/11/2001 by rantoine

Dim Xi As Integer
Dim Yi As Integer
Dim Zi As Integer
Dim Ti As Integer
Dim Ui As Integer
Dim Vi As Integer.
Dim Wi As Integer

Dim Xcomp As Double
Dim Ycomp As Double
Dim Zcomp As Double
Dim Tcomp As Double
Dim Ucomp As Double
Dim Vcomp As Double
Dim Wcomp As Double

Dim FILL As Integer
Dim Fillin As Integer

Xi = Cells(2, 2).Value
Yi = Cells(3, 2).Value
Zi = Cells(4, 2).Value
Ti = Cells(5, 2).Value
Ui = Cells(6, 2).Value
Vi = Cells(7, 2).Value
Wi = Cells(8, 2).Value

Xcomp = Cells(21, 2).Value
Ycomp = Cells(22, 2)Value
Zcomp = Cells(23,'2).Value
Tcomp = Cells(24, 2).Value
Ucomp = Cells(25, 2).Value
Vcomp = Cells(26, 2)Value
Wcomp = Cells(27, 2).Value

FILL = Cells(2, ll).Value
a = 0
b = 0
c = 0

For Fillin =1 To FILL

Do

Xtemp = Cells(32 + b, 13)Value
Ytemp = Cells(32 + b, 14) Value

76

Ztemp = Cells(32 + b, 15).Value
Ttemp = Cells(32 + b, 16). Value
Utemp = Cells(32 + b, 17).Value
Vtemp = Cells(32 + b, 18).Value
Wtemp = Cells(32 + b, 19). Value

If ((Xtemp - Xi) > 0) And (Xcomp = Cells(32 + c, 10)) Then
Xi = 1 + Xi
' Write x increment fill coordinate.
Cells(32 + a, 22) = Xi
Cells(32 + a, 23) = Yi
Cells(32 + a, 24) = Zi
Cells(32 + a, 25) = Ti
Cells(32 + a, 26) = Ui
Cells(32 + a, 27) = Vi
Cells(32 + a, 28) = Wi
a = a+ 1

End If

If ((Ytemp - Yi) > 0) And (Ycomp = Cells(32 + c, 10)) Then
Yi = 1 + Yi
' Write y increment fill coordinate.
Cells(32 + a, 22) = Xi
Cells(32 + a, 23) = Yi
Cells(32 + a, 24) = Zi
Cells(32 + a, 25) = Ti
Cells(32 + a, 26) = Ui
Cells(32 + a, 27) = Vi
Cells(32 + a, 28) = Wi
a = a+ 1

End If

If ((Ztemp - Zi) > 0) And (Zcomp = Cells(32 + c, 10)) Then
Zi = 1 + Zi
' Write z increment fill coordinate.
Cells(32 + a, 22) = Xi
Cells(32 + a, 23) = Yi
Cells(32 + a, 24) = Zi
Cells(32 + a, 25) = Ti
Cells(32 + a, 26) = Ui
Cells(32 + a, 27) = Vi
Cells(32 + a, 28) = Wi
a = a+ 1

End If

If ((Ttemp - Ti) > 0) And (Tcomp = Cells(32 + c, 10)) Then
Ti = 1 + Ti
' Write t increment fill coordinate.
Cells(32 + a, 22) = Xi
Cells(32 + a, 23) = Yi
Cells(32 + a, 24) = Zi

77

Cells(32 + a, 25) = Ti
Cells(32 + a, 26) = Ui
Cells(32 + a, 27) = Vi
Cells(32 + a, 28) = Wi
a = a+ 1

End If

If ((Utemp - Ui) > 0) And (Ucomp = Cells(32 + c, 10)) Then
Ui = 1 + Ui
' Write u increment fill coordinate.
Cells(32 + a, 22) = Xi
Cells(32 + a, 23) = Yi
Cells(32 + a, 24) = Zi
Cells(32 + a, 25) = Ti
Cells(32 + a, 26) = Ui
Cells(32 + a, 27) = Vi
Cells(32 + a, 28) = Wi
a=a+ 1

End If

If ((Vtemp - Vi) > 0) And (Vcomp = Cells(32 + c, 10)) Then
Vi = 1 + Vi
' Write v increment fill coordinate.
Cells(32 + a, 22) = Xi
Cells(32 + a, 23) = Yi
Cells(32 + a, 24) = Zi
Cells(32 + a, 25) = Ti
Cells(32 + a, 26) = Ui
Cells(32 + a, 27) = Vi
Cells(32 + a, 28) = Wi
a = a+ 1

End If

If ((Wtemp - Wi) > 0) And (Wcomp = Cells(32 + c, 10)) Then
Wi = 1 + Wi
' Write w increment fill coordinate.
Cells(32 + a, 22) = Xi
Cells(32 + a, 23) = Yi
Cells(32 + a, 24) = Zi
Cells(32 + a, 25) = Ti
Cells(32 + a, 26) = Ui
Cells(32 + a, 27) = Vi
Cells(32 + a, 28) = Wi
a=a+ 1

End If

Ifc>(Cells(2,4)-l)Then
c = 0

Else
c = c+ 1

78

End If

Loop While ((Xi < Xtemp) Or (Yi < Ytemp) Or (Zi < Ztemp) Or (Ti < Ttemp) Or (Ui < Utemp) Or (Vi <
Vtemp) Or (Wi < Wtemp))
c = 0
b = b+l

Next Fillin

■Number of iterations after fill.
Cells(30, 27) = a

'Integer line length.
Cells(32, 53) = a

End Sub

Sub BuildSlopeAndError()

' BuildSlopeAndError Macro
' Macro recorded 4/23/2001 by rantoine

Dim Start As Double
Dim Finish As Double
Dim TotalTime As Double
Dim SlopeProgram As Integer

n = 0

Start = Timer

For SlopeProgram = 1 To 1
Application.Run"RSArow.xls!RelSlope"
Application.Run "RSArow.xls! SORT"
Application.Run"RSArow.xls!Filler"
n = n+ 1

Next SlopeProgram

'Calculate Elapsed Time
Finish = Timer ' Set end time.
TotalTime = Finish - Start ' Calculate total time.

'Write program time to excel
Cells(29,4) = TotalTime
Cells(32, 57) = TotalTime

MsgBox "Program time is " & TotalTime & " seconds"

Application.Run"RSArow.xls!RSAError"
End Sub

79

Appendix E: CSA SOURCE CODE

Sub RelSlope()
I

' RelSlope Macro
' Macro recorded 4/9/2001 by USAF

Dim ValueX As Double
Dim ValueY As Double
Dim ValueZ As Double
Dim ValueT As Double
Dim ValueU As Double
Dim ValueV As Double
Dim ValueW As Double

Dim X2 As Integer
Dim Y2 As Integer
Dim Z2 As Integer
Dim T2 As Integer
Dim U2 As Integer
Dim V2 As Integer
Dim W2 As Integer

Dim i As Integer
Dim n As Integer
Dim z As Integer

Dim num As Integer
Dim Denominator As Integer
Dim Biggest As Integer
Dim Increment As Double

Dim Xincrement As Double
Dim Yincrement As Double
Dim Zincrement As Double
Dim Tincrement As Double
Dim Uincrement As Double
Dim Vincrement As Double
Dim Wincrement As Double

Dim Sortx As Double
Dim Sorry As Double
Dim Sortz As Double
Dim Sortt As Double
Dim Sortu As Double
Dim Sortv As Double
Dim Sorrw As Double

'Get initial starting values
ValueX = Cells(2, 2).Value
ValueY = Cells(3, 2).Value
ValueZ = Cells(4, 2).Value

80

ValueT = Cells(5, 2).Value
ValueU = Cells(6, 2).Value
ValueV = Cells(7, 2).Value
ValueW = Cells(8, 2).Value

'Get final values
X2 = Cells(2, 3).Value
Y2 = Cells(3, 3).Value
Z2 = Cells(4, 3).Value
T2 = Cells(5, 3).Value
U2 = Cells(6, 3).Value
V2 = Cells(7, 3).Value
W2 = Cells(8, 3).Value

z = 0
num = 0

For Biggest = 1 To 7
Denominator = Cells(10 + z, 2).Value
If Denominator > num Then

num = Denominator
Cells(18,2) = num

End If

z = z+ 1

Next Biggest

i = 0
n = 0

Do

Xincrement = ValueX
Yincrement = ValueY
Zincrement = ValueZ
Tincrement = ValueT
Uincrement = ValueU
Vincrement = ValueV
Wincrement = ValueW

"Now increment values according to slope ratios
If ValueX < Cells(2, 3).Value Then

ValueX = Xincrement + Cells(21, 2)
End If
If ValueY < Cells(3, 3). Value Then

ValueY = Yincrement + Cells(22, 2)
End If
If ValueZ < Cells(4, 3).Value Then

ValueZ = Zincrement + Cells(23, 2)
End If
If ValueT < Cells(5, 3)Value Then

ValueT = Tincrement + Cells(24, 2)
End If

81

If ValueU < Cells(6, 3).Value Then
ValueU = Uincrement + Cells(25, 2)

End If
If Value V < Cells(7, 3).Value Then

ValueV = Vincrement + Cells(26, 2)
End If
If ValueW < Cells(8, 3).Value Then

ValueW = Wincrement + Cells(27, 2)
End If

'Write current output vector.

If ValueX <= Cells(2, 3) Then
Cells(32 + i, 2) = ValueX

Else
If ValueX > Cells(2, 3) Then

Cells(32 + i, 2) = 0
End If

End If

If ValueY <= Cells(3, 3) Then
Cells(32 + i, 3) = ValueY

Else
If ValueY > Cells(3, 3) Then

Cells(32 + i, 3) = 0
End If

End If

If ValueZ <= Cells(4, 3) Then
Cells(32 + i, 4) = ValueZ

Else
If ValueZ > Cells(4, 3) Then

Cells(32 + i, 4) = 0
End If

End If

If ValueT <= Cells(5, 3) Then
Cells(32 + i, 5) = ValueT

Else
IfValueT>Cells(5,3)Then

Cells(32 + i, 5) = 0
End If

End If

If ValueU <= Cells(6, 3) Then
Cells(32 + i, 6) = ValueU

Else
If ValueU > Cells(6, 3) Then

Cells(32 + i, 6) = 0
End If

End If

If ValueV <= Cells(7, 3) Then

82

Cells(32 + i, 7) = ValueV
Else

If ValueV > Cells(7, 3) Then
Cells(32 + i, 7) = 0

End If
End If

If ValueW <= Cells(8, 3) Then
Cells(32 + i, 8) = ValueW

Else
If ValueW > Cells(8, 3) Then

Cells(32 + i, 8) = 0
End If

End If

'Write to sort table.
Sortx = Cells(32, 2)
Sorty = Cells(32,3)
Sortz = Cells(32,4)
Sortt = Cells(32, 5)
Sortu = Cells(32, 6)
Sortv=Cells(32, 7)
Sortw=Cells(32, 8)

Cells(32, 10) = Sortx
Cells(33, 10) = Sorry
Cells(34, 10) = Sortz
Cells(35, 10) = Sortt
Cells(36, 10) = Sortu
Cells(37, 10) = Sortv
Cells(38, 10) = Sortw

i = i+l

Loop While ((ValueX < X2) Or (ValueY < Y2) Or (ValueZ < Z2) Or (ValueT < T2) Or (ValueU < U2) Or
(ValueV < V2) Or (ValueW < W2))

Cells(2, ll) = i

End Sub

Note: The Sort and Filler subroutines are the same as RSA source code.

Sub BuildSlopeAndError()
t

' BuildSlopeAndError Macro
' Macro recorded 4/23/2001 by rantoine

Dim Start As Double

83

Dim Finish As Double
Dim TotalTime As Double
Dim SegmentProgram As Integer

n = 0

Start = Timer

For SegmentProgram = 1 To 1
Application.Run"CSArow.xls!RelSlope"
Application.Run"CSArow.xls!SORT"
Application.Run "CSArow.xlsIFiller"

Next SegmentProgram

'Calculate Elapsed Time
Finish = Timer ' Set end time.
TotalTime = Finish - Start ' Calculate total time.

'Write program time to excel
Cells(29,4) = TotalTime
Cells(32, 57) = TotalTime
MsgBox "Program time is " & TotalTime & " seconds"

Application.Run "CSArow.xlslRSAError"
End Sub

84

Appendix F: SCA SOURCE CODE

Sub SlopeCalculation()

' SlopeCalculation Macro
' Macro recorded 3/12/01 by Capt. Rich Antoine

Dim ValueX As Integer
Dim ValueY As Integer
Dim ValueZ As Integer
Dim ValueT As Integer
Dim ValueU As Integer
Dim ValueV As Integer
Dim ValueW As Integer
Dim X2 As Integer
Dim Y2 As Integer
Dim Z2 As Integer
Dim T2 As Integer
Dim U2 As Integer
Dim V2 As Integer
Dim W2 As Integer
Dim i As Integer
Dim n As Integer
Dim Dx As Double
Dim Dy As Double
Dim Dz As Double
Dim Dt As Double
Dim Du As Double
Dim Dv As Double
Dim Dw As Double
Dim BestDiml As Double
Dim BestDim2 As Double
Dim SlopeCompare As Integer
Dim ClosestSlope As Double
Dim NewDiml As Double
Dim NewDim2 As Double
Dim NewSlope As Double

Dim Valuelncrementl As Integer
Dim Valuelncrement2 As Integer

i = 0
NewSlope = 0
BestDiml = 0
BestDim2 = 0

'Get initial starting values
ValueX = Cells(2, 2).Value

85

ValueY = Cells(3,2).Value
ValueZ = Cells(4, 2).Value
ValueT = Cells(5, 2).Value
ValueU = Cells(6, 2).Value
ValueV = Cells(7, 2).Value
ValueW = Cells(8, 2).Value

'Get final values
X2 = Cells(2, 3).Value
Y2 = Cells(3, 3).Value
Z2 = Cells(4, 3).Value
T2 = Cells(5, 3).Value
U2 = Cells(6, 3).Value
V2 = Cells(7, 3).Value
W2 = Cells(8, 3).Value

Do

Dx = X2 - ValueX
Dy = Y2-ValueY
Dz = Z2 - ValueZ
Dt = T2-ValueT
Du = U2 - ValueU
Dv = V2-ValueV
Dw = W2-ValueW

'write Delta Values to Sheet
Cells(10,2) = Dx
Cells(ll,2) = Dy
Cells(12,2) = Dz
Cells(13,2) = Dt
Cells(14,2) = Du
Cells(15,2) = Dv
Cells(16,2) = Dw

'Slope Comparison
ClosestSlope = 0
n = 0

For SlopeCompare = 1 To 42

NewDiml=Cells(18 + n,4)
NewDim2 = Cells(18 + n, 5)

If NewDim2 = 0 Then
NewDim2 = NewDim2

Else
NewSlope = NewDiml / NewDim2

If (NewSlope >= ClosestSlope) And (NewSlope <= 1) Then
IfCells(18 + n, 5)>0Then
BestDiml = NewDiml
BestDim2 = NewDim2

86

ClosestSlope = BestDiml / BestDim2
End If

End If
End If

n=n+ 1

Next SlopeCompare

'Now Check Which Value Should Update

If (BestDiml = Dx) And (BestDim2 = Dy) Then
Valuelncrementl = ValueX
Valuelncrement2 = ValueY
'1
'ValueX = Int(Valuelncrementl + NewSlope + 0.5)
ValueY = (Valuelncrement2 +1)

Else
If (BestDiml = Dy) And (BestDim2 = Dx) Then

Valuelncrementl = ValueY
Valuelncrement2 = ValueX
'2
'ValueY = Int(Valuelncrementl + NewSlope + 0.5)
ValueX = (Valuelncrement2 +1)

Else
If (BestDiml = Dz) And (BestDim2 = Dy) Then

Valuelncrementl = ValueZ
Valuelncrement2 = ValueY
'3
'ValueZ = Int(ValueIncrementl + NewSlope + 0.5)
ValueY = (Valuelncrement2 +1)

Else
If (BestDiml = Dy) And (BestDim2 = Dz) Then

Valuelncrementl = ValueY
Valuelncrement2 = ValueZ
'4
'ValueY = Int(Valuelncrementl + NewSlope + 0.5)
ValueZ = (Valuelncrement2 +1)

Else
If (BestDiml = Dt) And (BestDim2 = Dy) Then

Valuelncrementl = ValueT
Valuelncrement2 = ValueY
'5
'ValueT = Int(ValueIncrementl + NewSlope + 0.5)
ValueY = (Valuelncrement2 +1)

Else
If (BestDiml = Dy) And (BestDim2 = Dt) Then

Valuelncrementl = ValueY
Valuelncrement2 = ValueT
'6
'ValueY = Int(Valuelncrementl + NewSlope + 0.5)
ValueT = (Valuelncrement2 +1)

87

Else
If (BestDiml = Du) And (BestDim2 = Dy) Then

Valuelncrementl = ValueU
Valuelncrement2 = ValueY
'7
'ValueU = Int(Valuelncrementl + NewSlope + 0.5)
ValueY = (Valuelncrement2 +1)

Else
If (BestDiml = Dy) And (BestDim2 = Du) Then

Valuelncrementl = ValueY
Valuelncrement2 = ValueU
'8
'ValueY = Int(Valuelncrementl + NewSlope + 0.5)
ValueU = (Valuelncrement2 +1)

Else
If (BestDiml = Dv) And (BestDim2 = Dy) Then

Valuelncrementl = Value V
Valuelncrement2 = ValueY
•9
'ValueV = Int(Valuelncrementl + NewSlope + 0.5)
ValueY = (Valuelncrement2 +1)

Else
If (BestDiml = Dy) And (BestDim2 = Dv) Then

Valuelncrementl = ValueY
Valuelncrement2 = ValueV
'10
'ValueY = Int(Valuelncrementl + NewSlope + 0.5)
ValueV = (Valuelncrement2 +1)

Else
If (BestDiml = Dw) And (BestDim2 = Dy) Then

Valuelncrementl = ValueW
Valuelncrement2 = ValueY
'11
'ValueW = Int(Valuelncrementl + NewSlope + 0.5)
ValueY = (Valuelncrement2 +1)

Else
If (BestDiml = Dy) And (BestDim2 = Dw) Then

Valuelncrementl = ValueY
Valuelncrement2 = ValueW
'12
'ValueY = Int(ValueIncrementl + NewSlope + 0.5)
ValueW = (Valuelncrement2 +1)

Else
If (BestDiml = Dt) And (BestDim2 = Dx) Then

Valuelncrementl = ValueT
Valuelncrement2 = ValueX
'13
'ValueT = Int(Valuelncrementl + NewSlope + 0.5)
ValueX = (Valuelncrement2 +1)

Else
If (BestDiml = Dx) And (BestDim2 = Dt) Then

Valuelncrementl = ValueX
Valuelncrement2 = ValueT
'14

'ValueX = Int(ValueIncrementl + NewSlope + 0.5)
ValueT = (Valuelncrement2 +1)

Else
If (BestDiml = Dz) And (BestDim2 = Dx) Then

Valuelncrementl = ValueZ
Valuelncrement2 = ValueX
'15
'ValueZ = Int(ValueIncrementl + NewSlope + 0.5)
ValueX = (Valuelncrement2 + 1)

Else
If (BestDiml = Dx) And (BestDim2 = Dz) Then

Valuelncrementl = ValueX
Valuelncrement2 = ValueZ
'16
'ValueX = Int(Valuelncrementl + NewSlope + 0.5)
ValueZ = (Valuelncrement2 + 1)

Else
If (BestDiml = Du) And (BestDim2 = Dx) Then

Valuelncrementl = ValueU
Valuelncrement2 = ValueX
'17
'ValueU = Int(Valuelncrementl + NewSlope + 0.5)
ValueX = (Valuelncrement2 +1)

Else
If (BestDiml = Dx) And (BestDim2 = Du) Then

Valuelncrementl = ValueX
Valuelncrement2 = ValueU
'18
'ValueX = Int(Valuelncrementl + NewSlope + 0.5)
ValueU = (Valuelncrement2 +1)

Else
If (BestDiml = Dv) And (BestDim2 = Dx) Then

Valuelncrementl = Value V
Valuelncrement2 = ValueX
'19
'ValueV = Int(Valuelncrementl + NewSlope + 0.5)
ValueX = (Valuelncrement2 +1)

Else
If (BestDiml = Dx) And (BestDim2 = Dv) Then

Valuelncrementl = ValueX
Valuelncrement2 = ValueV
'20
'ValueX = Int(Valuelncrementl + NewSlope + 0.5)
ValueV = (Valuelncrement2 +1)

Else
If (BestDiml = Dw) And (BestDim2 = Dx) Then

Valuelncrementl = ValueW
Valuelncrement2 = ValueX
'21
'ValueW = Int(ValueIncrementl + NewSlope + 0.5)
ValueX = (Valuelncrement2 +1)

Else
If (BestDiml = Dx) And (BestDim2 = Dw) Then

Valuelncrementl = ValueX

89

Valuelncrement2 = ValueW
'22
'ValueX = Int(ValueIncrementl + NewSlope + 0.5)
ValueW = (Valuelncrement2 + 1)

Else
If (BestDiml = Dt) And (BestDim2 = Dz) Then

Valuelncrementl = ValueT
Valuelncrement2 = ValueZ
'23
'ValueT = Int(Valuelncrementl + NewSlope + 0.5)
ValueZ = (Valuelncrement2 + 1)

Else
If (BestDiml = Dz) And (BestDim2 = Dt) Then

Valuelncrementl = ValueZ
Valuelncrement2 = ValueT
'24
'ValueZ = Int(ValueIncrementl + NewSlope + 0.5)
ValueT = (Valuelncrement2 + 1)

Else
If (BestDiml = Du) And (BestDim2 = Dz) Then

Valuelncrementl = ValueU
Valuelncrement2 = ValueZ
'25
'ValueU = Int(ValueIncrementl + NewSlope + 0.5)
ValueZ = (Valuelncrement2 +1)

Else
If (BestDiml = Dz) And (BestDim2 = Du) Then

Valuelncrementl = ValueZ
Valuelncrement2 = ValueU
'26
'ValueZ = Int(Valuelncrementl + NewSlope + 0.5)
ValueU = (Valuelncrement2 +1)

Else
If (BestDiml = Dv) And (BestDim2 = Dz) Then

Valuelncrementl = ValueV
Valuelncrement2 = ValueZ
'27
'ValueV = Int(Valuelncrementl + NewSlope + 0.5)
ValueZ = (Valuelncrement2 +1)

Else
If (BestDiml = Dz) And (BestDim2 = Dv) Then

Valuelncrementl = ValueZ
Valuelncrement2 = ValueV
'28
'ValueZ = Int(ValueIncrementl + NewSlope + 0.5)
ValueV = (Valuelncrement2 +1)

Else
If (BestDiml = Dw) And (BestDim2 = Dz) Then

Valuelncrementl = ValueW
Valuelncrement2 = ValueZ
'29
'ValueW = Int(ValueIncrementl + NewSlope + 0.5)
ValueZ = (Valuelncrement2 +1)

90

Else
If (BestDiml = Dz) And (BestDim2 = Dw) Then

Valuelncrementl = ValueZ
Valuelncrement2 = ValueW
'30
'ValueZ = Int(Valuelncrementl + NewSlope + 0.5)
ValueW = (Valuelncrement2 +1)

Else
If (BestDiml = Du) And (BestDim2 = Dt) Then

Valuelncrementl = ValueU
Valuelncrement2 = ValueT
"31
'ValueU = Int(Valuelncrementl + NewSlope + 0.5)
ValueT = (Valuelncrement2 + 1)

Else
If (BestDiml = Dt) And (BestDim2 = Du) Then

Valuelncrementl = ValueT
Valuelncrement2 = ValueU
'32
'ValueT = Int(ValueIncrementl + NewSlope + 0.5)
ValueU = (Valuelncrement2 + 1)

Else
If (BestDiml = Dv) And (BestDim2 = Dt) Then

Valuelncrementl = ValueV
Valuelncrement2 = ValueT
'33
'ValueV = Int(Valuelncrementl + NewSlope + 0.5)
ValueT = (Valuelncrement2 +1)

Else
If (BestDiml = Dt) And (BestDim2 = Dv) Then

Valuelncrementl = ValueT
Valuelncrement2 = ValueV
'34
'ValueT = Int(ValueIncrementl + NewSlope + 0.5)
ValueV = (Valuelncrement2 + 1)

Else
If (BestDiml = Dw) And (BestDim2 = Dt) Then

Valuelncrementl = ValueW
Valuelncrement2 = ValueT
'35
'ValueW = Int(Valuelncrementl + NewSlope + 0.5)
ValueT = (Valuelncrement2 +1)

Else
If (BestDiml = Dt) And (BestDim2 = Dw) Then

Valuelncrementl = ValueT
Valuelncrement2 = ValueW
'36
'ValueT = Int(ValueIncrementl + NewSlope + 0.5)
ValueW = (Valuelncrement2 +1)

Else
If (BestDiml = Dv) And (BestDim2 = Du) Then

Valuelncrementl = ValueV
Valuelncremeht2 = ValueU
'37

91

'ValueV = Int(ValueIncrementl + NewSlope + 0.5)
ValueU = (Valuelncrement2 +1)

Else
If (BestDiml = Du) And (BestDim2 = Dv) Then

Valuelncrementl = ValueU
Valuelncrement2 = ValueV
'38
ValueU = Int(Valuelncrementl + NewSlope + 0.5)
ValueV = (Valuelncrement2 +1)

Else
If (BestDiml = Dw) And (BestDim2 = Du) Then

Valuelncrementl = ValueW
Valuelncrement2 = ValueU
'39
'ValueW = Int(ValueIncrementl + NewSlope + 0.5)
ValueU = (Valuelncrement2 +1)

Else
If (BestDiml = Du) And (BestDim2 = Dw) Then

Valuelncrementl = ValueU
Valuelncrement2 = ValueW
'40
'ValueU = Int(Valuelncrementl + NewSlope + 0.5)
ValueW = (Valuelncrement2 + 1)

Else
If (BestDiml = Dw) And (BestDim2 = Dv) Then

Valuelncrementl = ValueW
Valuelncrement2 = ValueV
'41
'ValueW = Int(Valuelncrementl + NewSlope + 0.5)
ValueV = (Valuelncrement2 +1)

Else
If (BestDiml = Dv) And (BestDim2 = Dw) Then

Valuelncrementl = ValueV
Valuelncrement2 = ValueW
'42
'ValueV = Int(Valuelncrementl + NewSlope + 0.5)
ValueW = (Valuelncrement2 + 1)

End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If

92

End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If

'write current output vector
Cells(65 + i, 2) = ValueX
Cells(65 + i, 3) = ValueY
Cells(65 + i, 4) = ValueZ
Cells(65 + i, 5) = ValueT
Cells(65 + i, 6) = ValueU
Cells(65 + i, 7) = ValueV
Cells(65 + i, 8) = ValueW

i=i+l

Loop While ((ValueX < X2) Or (ValueY < Y2) Or (ValueZ < Z2) Or (ValueT < T2) Or (ValueU < U2) Or
(ValueV < V2) Or (ValueW < W2))

Cells(2, ll) = i

End Sub
Sub ErrorCalculation()

' ErrorCalculation Macro
' Macro recorded 3/12/01 by SC

93

Dim t As Double
Dim tvl As Double
Dim tv2 As Double
Dim tv3 As Double
Dim tv4 As Double
Dim tv5 As Double
Dim tv6 As Double
Dim tv7 As Double
Dim n As Integer
Dim Tcalc As Integer
Dim NumSlope As Integer

Dim xdist As Double
Dim ydist As Double
Dim zdist As Double
Dim tdist As Double
Dim udist As Double
Dim vdist As Double
Dim wdist As Double

Dim Real_d As Double
Dim Integerd As Double

Dim Po(l To 7) As Double
Dim Pl(l To 7) As Double
Dim V(l To 7) As Double
Dim R(l To 7) As Double

Dim RminusPol As Double
Dim RminusPo2 As Double
Dim RminusPo3 As Double
Dim RminusPo4 As Double
Dim RminusPo5 As Double
Dim RminusPoö As Double
Dim RminusPo7 As Double
Dim RminusPoxV As Double

Dim VxV As Double

Dim PoCurvel As Double
Dim PoCurve2 As Double
Dim PoCurve3 As Double
Dim PoCurve4 As Double
Dim PoCurve5 As Double
Dim PoCurveö As Double
Dim PoCurve7 As Double

Dim d As Double

'Origin Points
Po(l) = Cells(2, 7).Value
Po(2) = Cells(3, 7).Value
Po(3) = Cells(4, 7).Value
Po(4) = Cells(5, 7).Value

94

Dim t As Double
Dim tvl As Double
Dim tv2 As Double
Dim tv3 As Double
Dim tv4 As Double
Dim tv5 As Double
Dim tv6 As Double
Dim tv7 As Double
Dim n As Integer
Dim Tcalc As Integer
Dim NumSlope As Integer

Dim xdist As Double
Dim ydist As Double
Dim zdist As Double
Dim tdist As Double
Dim udist As Double
Dim vdist As Double
Dim wdist As Double

Dim Reald As Double
Dim Integerd As Double

Dim Po(l To 7) As Double
Dim Pl(l To 7) As Double
Dim V(l To 7) As Double
Dim R(l To 7) As Double

Dim RminusPo 1 As Double
Dim RminusPo2 As Double
Dim RminusPo3 As Double
Dim RminusPo4 As Double
Dim RminusPo5 As Double
Dim RminusPoö As Double
Dim RminusPo7 As Double
Dim RminusPoxV As Double

Dim VxV As Double

Dim PoCurvel As Double
Dim PoCurve2 As Double
Dim PoCurve3 As Double
Dim PoCurve4 As Double
Dim PoCurve5 As Double
Dim PoCurveö As Double
Dim PoCurve7 As Double

Dim d As Double

'Origin Points
Po(l) = Cells(2, 7).Value
Po(2) = Cells(3, 7).Value
Po(3) = Cells(4, 7).Value
Po(4) = Cells(5, 7).Value

94

Po(5) = Cells(6, 7) Value
Po(6) = Cells(7, 7).Value
Po(7) = Cells(8, 7).Value

'End Points

Pl(l) = Cells(2, 8).Value
Pl(2) = Cells(3, 8).Value
Pl(3) = Cells(4, 8).Value
Pl(4) = Cells(5, 8)Value
Pl(5) = Cells(6, 8).Value
Pl(6) = Cells(7, 8).Value
Pl(7) = Cells(8, 8).Value

'Line Definition Vector, V = PI - Po
V(l) = Cells(2, 9).Value
V(2) = Cells(3, 9).Value
V(3) = Cells(4, 9).Value
V(4) = Cells(5, 9).Value
V(5) = Cells(6, 9).Value
V(6) = Cells(7, 9).Value
V(7) = Cells(8, 9).Value

'Multiply V column vector times V column Vector

VxV = (V(l) * V(l)) + (V(2) * V(2)) + (V(3) * V(3)) + (V(4) * V(4)) + (V(5) * V(5)) + (V(6) * V(6)) +
(V(7)*V(7))

'Get the value of counter i from slope comparison at top spreadsheet and call it NumSlope

NumSlope = Cells(2, 1 l).Value

n = 0
For Tcalc = 1 To NumSlope

R(l) = Cells(65 + n, 2)
R(2) = Cells(65 + n, 3)
R(3) = Cells(65 + n, 4)
R(4) = Cells(65 + n, 5)
R(5) = Cells(65 + n, 6)
R(6) = Cells(65 + n, 7)
R(7) = Cells(65 + n, 8)

"Now subtract Po column vector from R Column vector

RminusPol = R(l) - Po(l)
RminusPo2 = R(2) - Po(2)
RminusPo3 = R(3) - Po(3)
RminusPo4 = R(4) - Po(4)
RminusPo5 = R(5) - Po(5)
RminusPo6 = R(6) - Po(6)
RminusPo7 = R(7) - Po(7)

'Now multiply RminusPo Column Vector times the V Column Vector

95

RminusPoxV = (RminusPol * V(l)) + (RminusPo2 * V(2)) + (RminusPo3 * V(3)) + (RminusPo4 * V(4))
+ (RminusPo5 * V(5)) + (RminusPo6 * V(6)) + (RminusPo7 * V(7»

'Now divide RminusPoxV by VxV to get a value for t
t = (RminusPoxV / VxV)

'Now multiply t times v

tvl=t*V(l)
tv2 = t * V(2)
tv3 = t * V(3)
tv4 = t * V(4)
tv5 = t * V(5)
tv6 = t * V(6)
tv7 = t * V(7)

'Now create the on curve solution point to be used in the error (Po + tv = 0)

PoCurvel = tvl + Po(l)
PoCurve2 = tv2 + Po(2)
PoCurve3 = tv3 + Po(3)
PoCurve4 = tv4 + Po(4)
PoCurve5 = tv5 + Po(5)
PoCurve6 = tv6 + Po(6)
PoCurve7 = tv7 + Po(7)

'Write the on curve solution point to the spreadsheet

Cells(65 + n, 10) = PoCurvel
Cells(65 + n, H) = PoCurve2
Cells(65 + n, 12) = PoCurve3
Cells(65 + n, 13) = PoCurve4
Cells(65 + n, 14) = PoCurve5
Cells(65 + n, 15) = PoCurve6
Cells(65 + n, 16) = PoCurve7

'Now calculate d (distance) from of curve point R to the on curve solution point.

d = ((((R(l) - PoCurvel) A 2) + ((R(2) - PoCurve2) A 2) + ((R(3) - PoCurve3) A 2) + ((R(4) - PoCurve4) A

2) + ((R(5) - PoCurve5) A 2) + ((R(6) - PoCurve6) A 2) + ((R(7) - PoCurve7) A 2))) A (1 / 2)

'Write the value of d to the spreadsheet

Cells(65 + n, 18) = d
Cells(65 + n, 31) = d

'Calculate distance in each dimension (x,y,z,t,u,v,w).

xdist = ((R(l) - PoCurvel) A 2) A (1 / 2)
ydist = ((R(2) - PoCurve2) A 2) A (1 / 2)
zdist = ((R(3) - PoCurve3) A 2) A (1 / 2)
tdist = ((R(4) - PoCurve4) A 2) A (1 / 2)
udist = ((R(5) - PoCurve5) A 2) A (1 / 2)

96

vdist = ((R(6) - PoCurveö) A 2) A (1 / 2)
wdist = ((R(7) - PoCurve7) A 2) A (1 / 2)

'Write the individual dimension distances to the spreadsheet.

Cells(65 + n, 22) = xdist
Cells(65 + n, 23) = ydist
Cells(65 + n, 24) = zdist
Cells(65 + n, 25) = tdist
Cells(65 + n, 26) = udist
Cells(65 + n, 27) = vdist
Cells(65 + n, 28) = wdist

'Measure the real line distance from start point to end point.

Real_d = ((((Po(l) - PoCurvel) A 2) + ((Po(2) - PoCurve2) A 2) + ((Po(3) - PoCurve3) A 2) + ((Po(4) -
PoCurve4) A 2) + ((Po(5) - PoCurve5) A 2) + ((Po(6) - PoCurve6) A 2) + ((Po(7) - PoCurve7) A 2))) A (1 / 2)

Cells(65 + n, 32) = Real_d
Cells(65, 33) = NumSlope

n = n+ 1
Next Tcalc

End Sub

Sub BuildSlopeAndError()

' BuildSlopeAndError Macro
' Macro recorded 4/23/2001 by rantoine

Dim Start As Double
Dim Finish As Double
Dim TotalTime As Double
Dim SlopeProgram As Integer

n = 0

Start = Timer

For SlopeProgram = 1 To 1
Application.Run "SCArow.xls! SlopeCalculation"
n = n+ 1

Next SlopeProgram

'Calculate Elapsed Time
Finish = Timer ' Set end time.
TotalTime = Finish - Start ' Calculate total time.

97

'Write program time to excel
Cells(62, 2) = TotalTime
Cells(65, 37) = TotalTime
MsgBox "Program time is " & TotalTime & " seconds"

Application.Run "SCArow.xls!ErrorCalculation"
End Sub

98

Appendix G: Error Calculation Subroutine

Sub ErrorCalculation()

' ErrorCalculation Macro
' Macro recorded 3/12/01 by SC

Dim t As Double
Dim tvl As Double
Dim tv2 As Double
Dim tv3 As Double
Dim tv4 As Double
Dim rv5 As Double
Dim tv6 As Double
Dim tv7 As Double
Dim n As Integer
Dim Tcalc As Integer
Dim NumSlope As Integer

Dim xdist As Double
Dim ydist As Double
Dim zdist As Double
Dim tdist As Double
Dim udist As Double
Dim vdist As Double
Dim wdist As Double

Dim Reald As Double
Dim Integer_d As Double

Dim Po(l To 7) As Double
Dim P 1(1 To 7) As Double
Dim V(l To 7) As Double
Dim R(l To 7) As Double

Dim RminusPol As Double
Dim RminusPo2 As Double
Dim RminusPo3 As Double
Dim RminusPo4 As Double
Dim RminusPo5 As Double
Dim RminusPoö As Double
Dim RminusPo7 As Double
Dim RminusPoxV As Double

Dim VxV As Double

Dim PoCurvel As Double
Dim PoCurve2 As Double
Dim PoCurve3 As Double
Dim PoCurve4 As Double
Dim PoCurve5 As Double
Dim PoCurveö As Double

99

Dim PoCurve7 As Double

Dim d As Double

'Origin Points
Po(l) = Cells(2,7).Value
Po(2) = Cells(3, 7).Value
Po(3) = Cells(4, 7).Value
Po(4) = Cells(5, 7).Value
Po(5) = Cells(6, 7).Value
Po(6) = Cells(7, 7).Value
Po(7) = Cells(8, 7).Value

'End Points

Pl(l) = Cells(2,8).Value
Pl(2) = Cells(3,8).Value-
Pl(3) = Cells(4, 8).Value
Pl(4) = Cells(5, 8).Value
Pl(5) = Cells(6, 8).Value
Pl(6) = Cells(7, 8).Value
Pl(7) = Cells(8, 8).Value

'Line Definition Vector, V = PI - Po
V(l) = Cells(2,9).Value
V(2) = Cells(3, 9).Value
V(3) = Cells(4, 9).Value
V(4) = Cells(5, 9).Value
V(5) = Cells(6, 9).Value
V(6) = Cells(7, 9).Value
V(7) = Cells(8, 9).Value

'Multiply V column vector times V column Vector

VxV = (V(l) * V(l)) + (V(2) * V(2)) + (V(3) * V(3)) + (V(4) * V(4)) + (V(5) * V(5)) + (V(6) * V(6)) +
(V(7)*V(7))

'Get the value of counter i from slope comparison at top spreadsheet and call it NumSlope

NumSlope = Cells(2, 11). Value

n=0
For Tcalc = 1 To NumSlope

R(l) = Cells(65 + n, 2)
R(2) = Cells(65 + n, 3)
R(3) = Cells(65 + n, 4)
R(4) = Cells(65 + n, 5)
R(5) = Cells(65 + n, 6)
R(6) = Cells(65 + n, 7)
R(7) = Cells(65 + n, 8)

'Now subtract Po column vector from R Column vector

100

RminusPol=R(l)-Po(l)
RminusPo2 = R(2) - Po(2)
RminusPo3 = R(3) - Po(3)
RminusPo4 = R(4) - Po(4)
RminusPo5 = R(5) - Po(5)
RminusPo6 = R(6) - Po(6)
RminusPo7 = R(7) - Po(7)

'Now multiply RminusPo Column Vector times the V Column Vector

RminusPoxV = (RminusPol * V(l)) + (RminusPo2 * V(2)) + (RminusPo3 * V(3)) + (RminusPo4 * V(4))
+ (RminusPo5 * V(5)) + (RminusPo6 * V(6)) + (RminusPo7 * V(7))

'Now divide RminusPoxV by VxV to get a value for t
t = (RminusPoxV / VxV)

'Now multiply t times v

tvl=t*V(l)
tv2 = t * V(2)
tv3 = t * V(3)
tv4 = t * V(4)
tv5 = t * V(5)
tv6 = t * V(6)
rv7 = t * V(7)

'Now create the on curve solution point to be used in the error (Po + tv = 0)

PoCurvel=tvl+Po(l)
PoCurve2 = tv2 + Po(2)
PoCurve3 = tv3 + Po(3)
PoCurve4 = tv4 + Po(4)
PoCurve5 = tv5 + Po(5)
PoCurve6 = tv6 + Po(6)
PoCurve7 = tv7 + Po(7)

'Write the on curve solution point to the spreadsheet

Cells(65 + n, 10) = PoCurvel
Cells(65 + n, H) = PoCurve2
Cells(65 + n, 12) = PoCurve3
Cells(65 + n, 13) = PoCurve4
Cells(65 + n, 14) = PoCurve5
Cells(65 + n, 15) = PoCurve6
Cells(65 + n, 16) = PoCurve7

T^Tow calculate d (distance) from of curve point R to the on curve solution point.

d = ((((R(l) - PoCurvel) A 2) + ((R(2) - PoCurve2) A 2) + ((R(3) - PoCurve3) A 2) + ((R(4) - PoCurve4) A

2) + ((R(5) - PoCurve5) A 2) + ((R(6) - PoCurve6) A 2) + ((R(7) - PoCurve7) A 2))) A (1 / 2)

'Write the value of d to the spreadsheet

Cells(65 + n, 18) = d

101

Cells(65 + n, 31) = d

'Calculate distance in each dimension (x,y,z,t,u,v,w).

xdist = ((R(l) - PoCurvel) A 2) A (1 / 2)
ydist = ((R(2) - PoCurve2) A 2) A (1 / 2)
zdist = ((R(3) - PoCurve3) A 2) A (1 / 2)
tdist = ((R(4) - PoCurve4) A 2) A (1 / 2)
udist = ((R(5) - PoCurve5) A 2) A (1 / 2)
vdist = ((R(6) - PoCurve6) A 2) A (1 / 2)
wdist = ((R(7) - PoCurve7) A 2) A (1 / 2)

'Write the individual dimension distances to the spreadsheet.

Cells(65 + n, 22) = xdist
Cells(65 + n, 23) = ydist
Cells(65 + n, 24) = zdist
Cells(65 + n, 25) = tdist
Cells(65 + n, 26) = udist
Cells(65 + n, 27) = vdist
Cells(65 + n, 28) = wdist

'Measure the real line distance from start point to end point.

Real_d = ((((Po(l) - PoCurvel) A 2) + ((Po(2) - PoCurve2) A 2) + ((Po(3) - PoCurve3) A 2) + ((Po(4) -
PoCurve4) A 2) + ((Po(5) - PoCurve5) A 2) + ((Po(6) - PoCurve6) A 2) + ((Po(7) - PoCurve7) A 2))) A (1 / 2)

Cells(65 + n, 32) = Reald
Cells(65, 33) = NumSlope

n = n+ 1
Next Tcalc

End Sub

Note: Error Calculation subroutine was modified to fit each algorithm.

102

Bibliography

Arya, Jagdish C. and Lardner, Robin W. College Algebra with Applications. New
Jersey: Prentice-Hall, 1983.

Albright, S. Christian. VBA for Modelers. Pacific Grove CA: Duxbury Thomas
Learning, 2001.

Baker, William P. Assistant Professor of Logistics, Mathematics & Statistics, Air Force
Institute of Technology, Wright-Patterson AFB OH. Personal interview.
22 March 2001.

Boonin, Elisabeth. Using Excel Visual Basic for Applications. Indianapolis: Que, 1995.

Bresenham, J. E. "Algorithm for Computer Control of a Digital Plotter," IBM Systems
Journal/!-1:25-30 (1965).

Bu-Qing, Su and Ding-Yuan, Liu. Computational Geometry: Curve and Surface
Modeling. New York: Academic Press Inc., 1989.

Buzo, Christopher D. A Decision Support Tool to Aid Campaign Planners in Selecting
Combat Aircraft for Theater Crisis. MS Thesis, AFIT/GEE/ENS/00M-02. School
of Engineering and Management, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, March 2000.

Clark, Dean. "A 2-D DDA Algorithm for Fast Image Scaling," Dr. Dobb's Journal 22-
4:46-49(April 1997).

Devore, Jay L. Probability and Statistics For Engineering and the Sciences 51 Edition
Pacific Grove CA: Duxbury, 2000.

Earnshaw, R. A. Fundamenatal Algorithms for Computer Graphics. New York:
Springer-Verlag, 1985.

Earnshaw, R. A. "Line Tracking with Incremental Plotters," Computer Journal 23:46-52
(November 1978).

Foley, James D. and Others. Computer Graphics: Principle and Practice 2" Edition.
New York: Addison-Wesley Publishing Company, 1990.

Hearn, Donald and Baker, M. Pauline. Computer Graphics. New Jersey: Prentice Hall,
1997.

103

Jaccobs, Timothy M. Assistant Professor of Computer Engineering, Dept. Electrical and
Computer Engineering, Air Force Institute of Tech, Wright-Patterson AFB OH.
Personal interview. 17 March 2001.

Johnson, A. W., Swartz, S. M., and Allen, C. M. "AFIT/ AEF: Mission-Resource Value
Assessment Technique," DARPA/ISO Advanced Logistics Project Workshop
VII. Washington DC, 2000.

Newman, William M. and Sproull, Robert F. Principles of Interactive Computer Graphics
2nd Edition. New York: McGraw-Hill Book Company, 1979.

Pavlidis, Theo. Algorithms for Graphics and Image Processing. Rockville, MD:
Computer Sciences Press Inc., 1982.

Perry, Greg and Hettihewa, Sanjaya. SAMS Teach Yourself Visual Basic 6 in 24 Hours.
Indianapolis, SAMS MacMillan Computer Publishing, 1998.

Shamos, Michael Ian and Preparata, Franco P. Computational Geometry: An
Introduction. New York: Springer-Verlag, 1990.

Stockton, F. G. "Algorithm 162: X-Move Plotting," Communications of the ACM,6-
4:161 (April 1963).

Swartz, Stephen. "ALP Pilot Problem and Derivation of Mathematical Model."
Unpublished report. Wright-Patterson AFB OH, 1999.

Swartz, Stephen M. Assistant Professor of Logistics, Dept. Operational Sciences, Air
Force Institute of Tech, Wright-Patterson AFB OH. Personal interview.
02 April 2001.

Wakefield, David J. Identification of Preferred Operational Plan Force Mixes Using a
Multiobjective Methodology to Optimize Resource Suitability and Lift Cost. MS
Thesis, AFIT/GLM/ENS/01M-24. School of Engineering and Management, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2001.

Thomas, Edward. MR VAT Software Developer. Personal interview. 02 April 2001.

Walkenbach, John. Excel 2000 Power Programming with VBA. Chicago: IDG Books
World Wide, Inc., 1999.

Williams, H.P. Model Building in Mathematical Programming2nd Edition. New York:
John Wiley & Sons, 1985.

Xiang, Zhigang and Piastock, Roy. Computer Graphic 2nd Edition. New York: McGraw
Hill, 2000.

104

Vita

On 16 Dec 1994, Richard Antoine graduated with a B.S. in Mechanical

Engineering from Tuskegee University. Richard was commissioned as a 2nd Lieutenant

in the United States Air Force on the same day.

2nd Lieutenant Antoine reported to the 846th Test Squadron, 46th Test Group at

Holloman AFB, New Mexico in March 1995. There he served as a Rocket Sled Test

Engineer. He performed numerous countermeasure, GPS and technology development

sled tests.

In the summer of 1996, 2nd Lieutenant Antoine was selected for the NASA/DoD

exchange program. On 13 September of 1996, Lieutenant Antoine reported to Dryden

Flight Research Center were he served as Flight Test Operations Engineer on the F-15

ACTIVE program. After the one year assignment ended, 1st Lieutenant Antoine reported

to the 412th Test Wing at Edwards AFB, California. There he was matrixed to the F-22

Combined Test Force. Richard served as a Structures Flight Test Engineer were he

supported numerous F-22 flight test sorties.

In August of 1999, Captain Antoine was accepted and assigned to the Air Force

Institute of Technology. After graduating in May 2001, he will be assigned to the C-17

System Program Office at Wright-Patterson AFB. He will serve as an Integrated Logistic

Support Manager matrixed to the Air Vehicle IPT.

105

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
14-05-2001

2. REPORT TYPE
Master's Thesis

3. DATES COVERED (From - To)
1 Mar 2000-14 May 2001

4. TITLE AND SUBTITLE
INTEGER APPROXIMATION OF REAL VALUED PREFERENCE CURVES

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Antoine, Richard M., Capt, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GLM/ENS/01J-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Dr. Todd Carrico
DARP A/ISO
3701 North Fairfax Drive
Arlington, Virginia 22203-1714
(703) 526-6616

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A primary challenge of the AFIT Mission Resource Value Assessment Tool is to approximate a given preference curve with

integer valued mission ready resources. This thesis evaluated four candidate methods of accomplishing this approximation.
The thesis evaluated the implementation of the integer estimation approximation from a purely mathematical perspective. The

models were measured against six quality and error measurement standards: convergence on an endpoint, convergence on any interior
integer points, characterization of the overall error between the sequence of integer coordinates and the real valued linear function and
characterization of the error in each individual dimension of the problem space. Finally, computer processing time was measured
and a comparison of the lengths of the real valued linear function and the sequence of integer coordinates used to approximate the
function were compared.

Based on these measures the Relative Slope Algorithm (RSA) was selected. RSA demonstrated the minimal error and
consistently quick processing time. This algorithm will improve the Mission Resource Value Assessment Tool and further its impact
on the Advanced Logistic project.

15. SUBJECT TERMS
Line Drawing, Linear Approximation, Preference Curve, Point Fitting, Algorithms, Integer Approximation, Resource Allocation,
Integer Points, Real Valued Linear Curve
16. SECURITY CLASSIFICATION OF:

a. REPORT

u
b. ABSTRACT

u
c. THIS PAGE

u

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES
117

19a. NAME OF RESPONSIBLE PERSON
Lt Col Alan W. Johnson
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4284
Alan.Johnson@afit.af.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Integer Approximation of Real Valued Preference Curves
	Recommended Citation

	/tardir/tiffs/a390991.tiff

