
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

5-2001 

Integer Approximation of Real Valued Preference Curves Integer Approximation of Real Valued Preference Curves 

Richard M. Antoine 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Business Administration, Management, and Operations Commons 

Recommended Citation Recommended Citation 
Antoine, Richard M., "Integer Approximation of Real Valued Preference Curves" (2001). Theses and 
Dissertations. 4557. 
https://scholar.afit.edu/etd/4557 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=scholar.afit.edu%2Fetd%2F4557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4557?utm_source=scholar.afit.edu%2Fetd%2F4557&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


INTEGER APPROXIMATION OF REAL 
VALUED PREFERENCE CURVES 

THESIS 

Richard M. Antoine, Captain, USAF 

AFIT/GLM/ENS/01J-01 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

20010619 008 



The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense or the U.S. 
Government. 



AFIT/GLM/ENS/OlJ-01 

INTEGER APPROXIMATION OF REAL VALUED PREFERENCE CURVES 

THESIS 

Presented to the Faculty 

Department of Operational Sciences 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Logistics Management 

Richard Antoine, B.S. 

Captain, USAF 

May 2001 

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 



AFIT/GLM/ENS/OlJ-01 

INTEGER APPROXIMATION OF REAL VALUED PREFERENCE CURVES 

Richard M. Antoine, B.S., M.S. 
Captain, USAF 

Approved: 

Lt Col Alan W. Johnson, Advisor Date 
Assistant Professor of Logistics Management 
Department of Operational Sciences 

Major Stephen M. Swartz, Co-Advisor Date 
Assistant Professor of Logistics Management 
Department of Operational Sciences 



ACKNOWLEDGEMENTS 

Thank you, wife, for patience and understanding. Thank you, daughter, whose mere 

presence reminded me what was really important. Thank you, mother, for teaching me 

perseverance. Thank you, father, for demonstrating a tireless work ethic. Thank you, 

God, for blessing me with all of them. 

Richard M. Antoine 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS iv 

LIST OF FIGURES vii 

LIST OF TABLES viii 

ABSTRACT ix 

I. INTODUCTION 1 

BACKGROUND 1 
PROBLEM STATEMENT 2 
SCOPE 3 
RESEARCH QUESTIONS 3 
METHODOLOGY 4 

II. LITERATURE REVIEW 5 

INTRODUCTION 5 
METHODS REVIEWED 5 
COMPUTATIONAL GEOMETRY 6 
INTEGER PROGRAMMING 6 
LINE DRAWING ALGORITHMS 8 
MR VAT INTEGER ESTIMATION ALGORITHM 14 
RELATIVE SLOPE ALGORITHM 15 
CONTINUOUS SEGMENT ALGORITHM 18 
METHOD SELECTION 21 
CONCLUSION 24 

III. METHODOLOGY 25 

INTRODUCTION 25 
DDA TRANSFORMATION 25 
ERROR CALCULATION 28 
EXPERIMENTAL DESIGN 33 
CONCLUSION 35 

IV.RESULTS 36 

INTRODUCTION 36 
HIGH SLOPE VARIATION 37 
MEDIUM SLOPE VARIATION 38 
Low SLOPE VARIATION 39 
ALGORITHM COMPLICATION 40 
CONCLUSION 41 

V. CONCLUSIONS AND RECCOMMENDATIONS 43 

INTRODUCTION 43 
SUMMARY OF RESULTS 43 
RECOMMENDATIONS 44 



APPENDIX A: ALGORITHM TEST RESULTS 45 

APPENDIX B: SAMPLE OUTPUT EXAMPLES (3D) 48 

MIEA Sample Output: 48 

RSA Sample Output: 50 

CSA Sample Output: 52 

SCA Sample Output: 54 

APPENDIX C: MIEA SOURCE CODE 56 

APPENDIX D: RSA SOURCE CODE 72 

APPENDIX E: CSA SOURCE CODE 80 

APPENDIX F: SCA SOURCE CODE 85 

APPENDIX G: ERROR CALCULATION SUBROUTINE 99 

BIBLIOGRAPHY 103 

VITA 105 

VI 



LIST OF FIGURES 

FIGURE 1: Preference Curve With MRR Assignments 2 

FIGURE 2: MIEA Approximation 15 

FIGURE 3: RSA Approximation 18 

FIGURE 4: CSA Approximation 20 

FIGURE 5: SCA Approximation 28 

FIGURE 6: Parametric Equation Example 29 

FIGURE 7: Error Measurements on Preference Curve Example 32 



LIST OF TABLES 

TABLE 1: MIEA DELTA VALUE COMPARISON 14 

TABLE 2: MIEA COORDLNATE SEQUENCE 15 

TABLE 3: RSA DELTA VALUE COMPARISON 16 

TABLE 4: RSA SLOPE INCREMENT 17 

TABLE 5: RSA ROUNDED INCREMENT VALUES 17 

TABLE 6: RSA COORDINATE SEQUENCE 17 

TABLE 7: CSA ALPHA CALCULATION 19 

TABLE 8: CSA SLOPE INCREMENT 19 

TABLE 9: CSA ROUNDED COORDINATE VALUES 19 

TABLE 10: CSA COORDLNATE SEQUENCE 20 

TABLE 11: SCA POINT VALUES 27 

TABLE 12: SCA COORDLNATE SEQUENCE 27 

TABLE 13: SCA ERROR CHARACTERIZATION 31 

TABLE 14: TEST SOLUTION END POINTS 35 

TABLE 15: SAMPLE RESULTS 36 

TABLE 16: HIGH SLOPE MAX DEVIATIONS 37 

TABLE 17: HIGH SLOPE RUN TIMES 38 

TABLE 18: MED SLOPE MAX DEVIATIONS 38 

TABLE 19: MED SLOPE RUN TIMES 38 

TABLE 20: LOW SLOPE MAX DEVIATIONS 39 

TABLE 21: LOW SLOPE RUN TIMES 40 

Vlll 



AFIT/GLM/ENS/OlJ-01 

ABSTRACT 

A primary challenge of the AFIT Mission Resource Value Assessment Tool is to 

approximate a given preference curve with integer valued mission ready resources. This 

thesis evaluated four candidate methods of accomplishing this approximation. 

The thesis evaluated the implementation of the integer estimation approximation from 

a purely mathematical perspective. The models were measured against six quality and 

error measurement standards: convergence on an endpoint, convergence on any interior 

integer points, characterization of the overall error between the sequence of integer 

coordinates and the real valued linear function and characterization of the error in each 

individual dimension of the problem space.   Finally, computer processing time was 

measured and a comparison of the lengths of the real valued linear function and the 

sequence of integer coordinates used to approximate the function were compared. 

Based on these measures the Relative Slope Algorithm (RSA) was selected. RSA 

demonstrated the minimal error and consistently quick processing time. This algorithm 

will improve the Mission Resource Value Assessment Tool and further its impact on the 

Advanced Logistic project. 



When you 're up against a trouble meet it squarely face to face. 
Lift your chin, set your shoulders, plant your feet and take a brace. 
It may be vain to try to dodge, but do the best that you can do. 
You may fail but, you may conquer see it through. 

Black may be the clouds about you and your future may seem grim. 
But, don't let your nerve desert you; keep yourself in fighting trim. 
If the worst is bound to happen spite of all that you can do, 
Running from it will not save you, see it through. 

Even hope may be but futile when with troubles you 're beset. 
But, remember you are facing just what other men have met. 
You may fail but fall still fighting, don't give up what e 'er you do. 
Eyes front, head high to the finish. See it through. 

Edgar Guest 



INTEGER APPROXIMATION OF REAL VALUED PREFERENCE CURVES 

I. INTODUCTION 

BACKGROUND 

This research supports the Air Force Institute of Technology's contribution to the 

Advanced Logistics Project (ALP), which is sponsored by the Defense Advanced 

Research Proj ects Agency (D ARP A).   The Air Force Institute of Technology (AFIT) 

research contribution focuses on the development of the Mission Resource Value 

Assessment Tool (MRVAT) (Johnson, Swartz and Allen, 2000). The goal of this project 

is to improve deployment planning and execution for military combat forces. The 

research will result in an information technology system capable of integrating 

information from existing DoD logistics databases and producing a "best solution" to 

requested mission requirements. AFIT and the Air Force Research Laboratory (AFRL) 

have been asked to investigate some specific areas of the project (Buzo, 00:1). A critical 

goal of the ALP is to quickly develop mission solutions. Mission alternatives will be 

provided in a matter of hours instead of days (Buzo, 00:1). AFIT is developing the 

MRVAT software to demonstrate this aspect of the ALP technology. This research 

examines how the MRVAT can best assign Mission Ready Resources (MRRs) to an 

existing commander's stated mission preferences (represented by a real valued line 

function). An MRR is a resource configured for a particular purpose, such as an F-16 

with a specified weapons and fuel load out (Swartz, 1999).   Figure 1 illustrates a 

preference curve based on two competing tasks or missions. For example, in this 

scenario, the commander wishes to fly three daily Suppression of Enemy 



fc-SEAD 

FIGURE 1: Preference curve with MRR assignments 

(Johnson, Swartz and Allen, 2000) 

Air Defense (SEAD) missions for every two Close Air Support (CAS) missions. We 

wish to allocate MRRs to missions one-at-a-time, to establish a priority order for 

deployment. Consider the coordinate (3,2) representing three daily SEAD missions and 

two CAS missions. We could sequentially allocate MRRs first to the three SEAD 

missions and then to the two CAS missions, as shown in Figure 1. However, nine other 

sequences can be constructed from the origin to the coordinate (3,2). Hence, which 

sequence is best? In other words, which sequence best preserves the commander's 

desired ratio of missions flown? A problem with several tasks and hundreds of assets 

would produce a much greater number of sequences. A method is required that can 

generate the sequence which most accurately approximates the task preference curve. 

PROBLEM STATEMENT 

What is the most efficient method of approximating a real valued linear function 

with a sequence of integer coordinates, where each coordinate is a unit distance from its 



adjacent coordinates? Note that for any two vectors x = (xl,x2,x3) and y = (yx, y2, y3), 

n 

the distance between x and y is defined as llx - vll = "V |x. - y, I. This research examines 
II *  II        .^^JI    '        *^ ' I 

1=1 

the method by which MR VAT and three alternate algorithms fit the integer number of 

resources available to the given real valued mission preference curve. 

SCOPE 

The research effort will review existing methods of plotting integer data with the 

intent of approximating a continuous and linear curve. Methods of determining the error 

between the sequence of integer coordinates and the continuous curve will also be 

examined. This research will be limited to the development of a mathematical research 

model. Actual MRRs and mission preferences will not be modeled. This will allow the 

model to draw from an unconstrained set of integers with which to map the continuous 

curve. The research results will present an effective, minimum error method of matching 

integers to a known continuous curve. The problem will be modeled in seven dimensions 

in order to demonstrate a robust multi-dimensional method that can be applied to the ALP 

MRVAT research effort. Note that other research (Wakefield, 2001) examines the 

optimization of MRR selection for a given set of mission preferences. 

RESEARCH QUESTIONS 

-What processes exist for approximating a real valued curve with a sequence of integer 

coordinates, each a unit distance from its adjacent coordinates? 



-What methods will measure the error between a given real valued linear function and the 

sequence of integer coordinates? 

-Can the problem be modeled in seven dimensions? 

-What impacts will the research results have and how will they be used? 

METHODOLOGY 

Four methods of matching a sequence of integer coordinates to a real valued 

linear function will be evaluated. These algorithms will be modeled in Visual Basic and 

the resulting approximation will be compared to the real valued linear function. The 

error between the real valued linear function and the competing integer coordinate 

approximations will be characterized. 

The model should converge on an end point, converge on any integer coordinates 

interior to the real line and the overall error between the sequence of integer coordinates 

and the real valued linear function should be characterized. The error in each individual 

dimension of the problem space should also be characterized. Finally, computer 

processing time shall be measured and a comparison of the lengths of the real valued 

linear function and the sequence of integer coordinates used to approximate the function 

will also be accomplished. 



II. LITERATURE REVIEW 

INTRODUCTION 

Chapter II will address the focus of this research and discuss various 

methods which can potentially solve the problem. The chapter begins with an overview 

of the MR VAT. It then provides information on computational geometry, integer 

programming and line drawing algorithms. Once these subjects have been discussed, 

characteristics that may influence method selection are presented. 

The MRVAT software created by the AFIT/ ALP research is essentially a 

technology demonstrator. The objective of the ALP research is to convert stated mission 

requirements into logistic needs. The MRVAT will provide theater commanders with the 

maximum combat capability possible within the logistical constraints (airlift) on 

transportation. The research focuses on an Air Expeditionary Force scenario with respect 

to solution generation (Johnson, Swartz and Allen, 2000). 

This research attempts to discover an algorithm that can quickly generate a 

sequence of integer coordinates that accurately approximate a real valued linear function. 

The only link between this current effort and the AFIT/ ALP research is the similarity 

between the real valued linear function and the task preference curve described in 

Chapter 1. 

METHODS REVIEWED 

In order to solve the research problem, methods were sought to provide the 

approximation. Subjects that are reviewed and discussed include computational 

geometry, integer programming and line drawing algorithms. 



Computational Geometry 

Geometric design problems arise in many industries. "The unique designs of 

aircraft, cars and other modern machines require innovative ways of modeling the 

surfaces of these machines. In many cases a designer may draw a curve to approximately 

fit several points in some given plane" (Bu-Qing and Ding-Yaun, 1989:1). The formal 

definition of computational geometry is a "computer-based representation, analysis, 

synthesis (design) and computer-controlled manufacture of two and three dimensional 

shapes" (Bu-Qing and Ding-Yaun, 1989:1). In this situation, representation refers to the 

creation of a mathematical model, such as the equation of a line. Once the model is 

formed, information about the curve must be determined in order to evaluate points on 

the curve. Discovering unwanted loops or inflection points are activities that fall under 

synthesis and analysis. 

The most applicable computational geometry method is range search. Range- 

search problems are of particular interest with respect to our thesis problem. Range- 

search problems require that a collection of points be represented in a space. In this case 

the query is a space in which a set of points reside. The query space can be described as 

a standard geometric shape (i.e. ball or box). The range search is essentially the retrieval 

or counting of all points in the query space (Shamos and others, 1990:40). 

Integer Programming 

Integer programming (IP) has a wide range of applicability. This method is used 

when modeling the use of resources that logically must be represented by integer 

numbers (i.e. airplanes, cars or houses). For certain items, it does not make sense to have 

a fractional amount ofthat resource. 



IP's have great risk associated with regard to problem solving. Mathematically, 

IP models require much more computation time than a similarly sized linear program 

(LP). There is a great possibility that an IP model may not be solvable in a reasonable 

time period. Consider that in comparison to an LP that can be rapidly solved with 

thousands of constraints and variables (Williams, 1985). 

Sometimes it is difficult to determine when an IP is applicable. In this section we 

will discuss some of the types of problems IP's can solve. 

The most obvious case was previously mentioned. When a problem requires 

whole numbers of products or uses integral units of a resource, it is a problem with 

discrete inputs and outputs. An IP formulation would be appropriate for these situations. 

Many problems have a large number of feasible solutions arising from different 

orders of performing operations or the allocation of items to certain positions. These 

types of problems are called combinatorial problems. This category can be further 

divided into sequencing problems and allocation problems. 

Sequencing would take the form of a scheduling operation, Job-Shop scheduling 

or the optimal ordering of operations on different machines in a Job-Shop (Williams, 

1985). Another example of sequencing is the traveling salesman problem. This problem 

seeks a solution that describes the optimal order in which to visit a number of cities and 

return home within the minimum distance. 

The market share problem is a good example of an allocation problem. The 

allocation of customers to divisions in a company depending on service is the objective of 

this problem. Another example of an allocation problem is the assembly line balancing 



problem. The goal of this problem is to assign workers to tasks in order to achieve a 

certain rate of production. 

Our problem requires a method that will minimize the distance between the 

coordinates used for approximation and the real valued linear function. An integer 

program with a minimizing objective function may be appropriate. 

Line Drawing Algorithms 

The subject of line drawing comes from a study of computer graphics models. 

Line, circle and surface drawing are methods by which lines and other geometric objects 

are properly represented in graphics. "Incremental computing techniques are a form of 

iterative computation, in which each iterative step is simplified by maintaining a small 

amount of state, or memory, about the progress of the computation" (Newman & Sproull, 

1979:19). Incremental methods are very useful due to their simplicity and accuracy. 

These methods allow the user to determine which pixels on the computer screen to 

illuminate, and ultimately provide the most exact graphical representation of the line. 

There are three important characteristics a line drawing algorithm must have in 

computer graphics. The line must appear straight, terminate accurately and have constant 

density (Newman & Sproull, 1979:21). A line can have a well defined end point and 

start point, while its entire set of interior points do not pass through any integer 

coordinates. If an algorithm approximates the interior points accurately the line will 

appear straight. Lines must be plotted accurately in order to prevent gaps between the 

end point of one line and the start point of the following line. Density is important so that 

the line has a consistent resolution from beginning to end (no light spots). These 

characteristics are directly applicable to the MR VAT problem. We do not want our 



sequence of integer coordinates to wander through the problem space as the solution is 

approximated. We wish the approximation to appear straight, and to closely match the 

real line being approximated. Our algorithm must also terminate accurately if it is to 

converge on the solution (end point) that we have selected. Finally, density is also 

important. The algorithm must converge on the solution in one unit increments. 

Two methods of line drawing that are directly applicable to this thesis problem 

were found. These are the Digital Differential Analyzer (DDA) algorithm and 

Bresenham's Line Drawing Algorithm (BLDA). 

Before discussing DDA we shall review a few basic concepts. The slope intercept 

equation describing a straight line is: 

y = m-x + b (1-1) 

where m is the slope and b is the y intercept. For any two coordinate pairs (x{, y{) and 

(x2, y2), we have slope m and intercept b defined in equations 1.2 and 1.3: 

m = yiZA (1.2) 

b = yl-m-xl (1-3) 

These simple equations provide the basis for algorithms that display straight lines in two 

dimensional space. For a given x-interval (Ax) on a line we can compute the ^-interval 

(Ay) from equation 1.2. 

Ay = m-Ax (1.4) 

Equation 1.5 shows us how to obtain the x-interval. 



Ax = ^- (1.5) 
m 

The DDA works on the principle that we simultaneously increment x and v in small steps 

proportional to Ay and Ax (Newman & Sproull, 1979:22-23). The first derivatives are 

constant and proportional to Ay and Ax when considering a straight line (Newman & 

Sproull, 1979:23). A sample of the line is taken at unit intervals in one direction and a 

calculation of the corresponding integer values nearest the line path if determined for the 

other direction (Hearn & Baker, 1997:86). The simple DDA requires that a line-length 

estimate be set equal to the larger of the magnitudes of Ax and Ay. This allows the 

increment value in the x or y direction to be of unit magnitude. This allows unit steps to 

be made in the direction of steepest ascent. We assume that m lies between 0 and 1. If m 

(Ay/Ax) is less than 1 then a 1 unit increment is made in the x direction and a rounding 

calculation is made in the y direction based on the slope. This assumes that the 

magnitude of x is greater than y. Successive v values are now determined by: 

The subscript k takes on integer values starting with one for the first point and increases 

by one until the end point of the line is reached (Hearn & Baker, 1997:86-87). If the line 

has a positive slope (Ay >Ax) then the roles of x and y are reversed. In this case the y 

direction is incremented by 1 integer unit and the rounding calculation is made in the x 

direction based on the slope. 

**+i=**+— (!-7) m 

10 



Equations 1.6 and 1.7 both operate on the assumption that the line will be approximated 

from the left end point (origin) to the right end point (solution point). In the case of 

approximating the line from right to left, the following modifications to these equations 

would be made: 

A* = -1->J;JH.I=J'*-'", (L8) 

Ay = -l...,xk+l=xk . (1.9) 
m 

When the slope of the line is negative then take the absolute value of the slope (\m\). 

Equations 1.6 through 1.9 would be used as previously described (Hearn & Baker, 

1997:86-87). 

Bresenham's line algorithm converts lines into graphical representations using 

incremental integer calculations that can be adapted to display circles and other types of 

curves. This algorithm also assumes that slope must be less than 1 (m < 1). BLDA also 

requires that the line be approximated from the left endpoint to the right endpoint. 

Incremental steps are made for each x position and the point whose v value is closest to 

the curve is plotted. Once point (xk,yk)is determined, then the next appropriate point to 

plot must be found. There are two choices at this point, (xk +1, yk) or (xk +1, yk +1). 

The vertical distances of the potential points at xk+l are called dx and d2. These points 

describe the vertical point separations from the given curve. The y coordinate on the 

curve will be calculated as follows: 

y = m-(xk+l) + b 

11 



dl=y-yk=m-(xk+\) + b-yk (1.11) 

d2=(yk+\)-y = yk+l-m-(xk+\)-b. (1.12) 

The following is the resulting difference equation: 

dl-d2=2-m-(xk+l)-2-yk+2-b-l. (1.13) 

A decision parameter pk at the Mi step in the algorithm can be found by manipulating 

equation 1.13 until it only involves integer calculations. This is achieved by substituting 

m =  y.   in place where Ay and Ax are the vertical and horizontal endpoint positions. 

The resulting equation is as follows: 

pk=Ax-(d1-d2) = 2-Ay-xk-2-Ax-yk+c. (1-14) 

If it turns out that the point at yk is closer to the curve than the point at yk+] (dx <d2) 

then this makes the sign of pk negative. In this situation we would like to plot the lower 

point or else plot the upper point. Coordinate changes along the line occur in incremental 

integer steps in either the x or v directions. This means that the values of the successive 

decision parameters can use incremental calculations. At step HI we can use equation 

1.14 with the following adjustments: 

^+i=2-AJ;-^+i-2-Ax-vyl+1+c. (1.15) 

Now subtract equation 1.14 from 1.15 to get the following: 

PM-Pk=2-*y<xk+\-
xk)-1-*x-{yk+l-yk) (1.16) 

and now by substitution xk+] =xk+l 

A+i=A+2-Aj;-2-Ax-(vA.+1-v,) (1.17) 

12 



where yM -yk is either 0 or 1 (Hearn and Baker, 1997:88-90). This recursive 

calculation for the decision parameters is accomplished at each integer x position. The 

calculation is made from the left endpoint to the right endpoint. To begin the algorithm, 

the parameter p0 is calculated using equation 1.18. The start point at (x0, y0) is used in 

the slope equation (m = Ay/Ax). The following starting equation results: 

p0=2-Ay-Ax. (1.18) 

The BLDA uses decision parameters to determine the best axis direction to 

increment. Equation 1.18 is used to calculate the initial decision parameter. The decision 

parameter pk must be evaluated. If pk is less than zero (pk < 0) then equation (1.19) is 

used. The decision also requires the next coordinate plotted be, (xk+l, yk). 

pk+l=pk+2-Ay (1.19) 

If pk is greater than or equal 0 (pk > 0) then equation (1.20) is used. This decision 

requires that the next coordinate plotted be (xk +1, yk +1). 

pM=pk+2-Ay-2-Ax (1.20) 

The decision parameter p0 is only used for the initial decision. Once p0 is compared to 

zero and a coordinate set is chosen for the next increment, equations 1.19 and 1.20 are 

used for the remainder of the increment decisions until the solution point is reached 

(Hearn and Baker, 1997:88-90). 

13 



MRVAT Integer Estimation Algorithm 

The approach that MRVAT currently takes to incrementing integer values uses a 

relative slope approach. The difference between the origin (0,0) and end point (3,2) of 

the line (real valued linear function) are inspected for the largest delta value. The largest 

delta value becomes the denominator for the slope calculations. The axis values 

(preferences) are incremented by integer units according to the order of largest slope 

value to lowest slope value. Table 1 contains the start point (0,0) and the end point (3,2), 

and also provides the corresponding delta values. 

TABLE 1: MIEA DELTA VALUE COMPARISON 

X y 
0 0 
3 2 

LW- — J\i-> """"* -A-1   — J &y = y2-yi =2 

The current MRVAT approach selects Ax as the largest delta value. The Ax and Av 

values are each divided by Ax. This produces the following relative slope values: Ax/Ax 

= 3/3 and Ay Ax = 2/3. The relative slopes dictate the order in which the approximation 

increments. The axis value with the higher slope is incremented until the corresponding 

end point is reached. In this example the x-axis value has the higher slope value (m=\). 

The approximation increments from 0 to 3 in the x direction. The v axis has the next 

highest slope (m=2/3). The approximation increments in the y direction accordingly. 

The algorithm increments from 0 to 2 in the v direction. This series of increments brings 

us to the solution point (3,2). The coordinate sequence is shown in Table 2. 

14 



TABLE 2: MIEA COORDINATE SEQUENCE 

Program Output 1 2 3 4 5 

X 1 2 3 3 3 

y 0 0 0 1 2 

The MIEA converges upon the solution by incrementing along each axis direction 

until the end coordinate in that direction is reached (Thomas, 2001). This series of 

coordinates takes the longest route possible along the exterior faces of the query space to 

the solution. The coordinate sequence is further described in Figure 2. 

CAS 

-s—f 
»£..... .m„„t._ >SEAD 

FIGURE 2: MIEA APPROXIMATION 

Relative Slope Algorithm 

The Relative Slope Algorithm (RSA) is a line approximation method developed 

by AFIT researchers in support of MRVAT (Swartz, 2001). This approach is also based 

on a form of slope comparison. The difference between the start point and end point in 

each dimension is calculated. The largest delta value is used as the denominator for slope 

calculations in all directions (see Table 3). 

15 



TABLE 3: RSA DELTA VALUE COMPARISON 

X y 
0 0 
3 2 

i_W        »A"i        ./v i -3 *y = y2-yi =2 

The example in Table 3 leads us to use the Ax value as the denominator for the slopes 

calculated for each axis direction (ml = 3/3, ml =2/3). Slopes ml and ml tell us how to 

increment in x and y in order to approximate the line with integer values. The starting x 

coordinate will be incremented by units of one until it reaches the end point. The starting 

x coordinate will be incremented by the rounded (RND) value of its slope until it reaches 

its respective endpoint. See the following equation 1.21 (Swartz, 2001): 

P„ = (x0 + RND(n ■ mx ), y0 + RND(n ■ my ), z0 + RND(n ■ mz)) (1.21) 

Equation 1.21 describes how any pointy = (xn,yn,zn) is calculated. In this equation the 

starting point is identified by the coordinate (x0,y0,zQ). The relative slopes are 

identified by mx, my and mz. The value of n is equal to the number of points or 

increments away from the starting point. The n value is incremented by one with respect 

to each increment from the origin in each axis direction until the incremental values equal 

the end point coordinate values. The RSA approach requires that only one increment be 

made at a time in any direction. The unit steps will follow the order of steepest to 

shallowest slope (ml, ml) (Swartz, 2001).   Table 4 demonstrates the first pass of the 

algorithm in which the relative slopes are added until the solution point (3,2) is reached. 

16 



TABLE 4: RSA SLOPE INCREMENT 

Program Output 1 2 3 

X 1 2 3 

y 0.667 1.333 2 

Once the RSA has made all of its increments and converged on a solution, it rounds the 

incremented values and back fills all the gaps that may exist between the points it has 

identified (Swartz, 2001). This is illustrated in Tables 5 and 6. 

TABLE 5: RSA ROUNDED COORDINATE VALUES 

RD Table 1 2 3 

X 1 2 3 

y 1 1 2 

The algorithm must now fill in the increment steps between the rounded coordinate 

values. The increment will follow the order of steepest to shallowest slope as mentioned 

above. In this example the x direction will be incremented once and then the v direction. 

This order will be used between each coordinate starting with the origin. The final filled 

in coordinate sequence is provided in Table 6. 

TABLE 6: RSA COORDINATE SEQUENCE 

Fill In Table 1 2 3 4 5 6 

X 0 1 1 2 3 3 

y 0 0 1 1 1 2 

Table 6 demonstrates the use of the relative slope between the rounded coordinates. The 

algorithm increments from the (0,0) to (1,1), from (1,1) to (2,1), and from (2,1) to (3,2). 

Between each coordinate it increments in the x direction and then the v direction 
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according to the relative slopes previously identified. The example is graphically 

depicted in Figure 3. 

CAS 

^►SEAD 

FIGURE 3: RSA Approximation 

The RSA method fills our requirements by incrementing in each axis direction by one 

unit at a time. The algorithm performs division and rounding operations on its first two 

passes (Table 4, Table 5). These operations can potentially slow the computer 

processing. Further analysis of the algorithm will be discussed in Chapter IV. 

Continuous Segment Algorithm 

The Continuous Segment Algorithm (CSA) follows the same logic as the RSA. 

The difference between the two algorithms lies in the manner in which the slopes are 

determined. The CSA uses the product of the largest delta value and the number of 

dimensions that define the problem space. This number can be referred to as an alpha 

value. All deltas in each dimension are divided by the alpha value (i.e., a = (Ay).(7 

dimensions)) (Swartz, 2001). This provides the modified slope that is ultimately used to 

increment the values in their respective dimensions. Table 7 demonstrates the procedure. 



TABLE 7: CSA ALPHA VALUE CALCULATION 

X y 
0 0 
3 2 

1 V/V — J\J ■j        ^A/-i   — J Av = 72-^1 =2 

a = Ax • 2 Dimensions a = (3)(2) = 6 

The example in Table 7 demonstrates the calculation of the alpha value using the largest 

delta value and the number of dimensions. The alpha value is then used to calculate the 

relative slopes that determine order in which each axis direction will be incremented. 

The slopes (ml = 3/6, m2 = 2/6) are used to increment from the start point (0,0) to the 

end point (3,2) as demonstrated in Table 8. 

TABLE 8: CSA SLOPE INCREMENT 

Program 
Output 1 2 3 4 5 6 

X 0.5 1 1.5 2 2.5 3 

y 0.333 0.667 1 1.333 1.667 2 

Similarly to the RSA, once the CSA has made all of its increments and converged on the 

solution, it rounds the incremented values and eliminates any duplicate points that are 

created during the rounding procedure (Swartz, 2001). Table 9 contains the results of the 

rounding procedure. 

TABLE 9: CSA ROUNDED COORDINATE VALUES 

RD Table 1 2 3 4 5 6 

X 1 1 2 2 3 3 

y 0 1 1 1 2 2 
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The algorithm must now eliminate any duplicate coordinates and simultaneously fill in 

increment steps where required. Once a coordinate has been recorded at this step it is not 

repeated which results in the elimination of duplicates. If a gap is identified then it is 

filled by incrementing in the appropriate axis direction. In our example the x direction is 

incremented first and the y direction is incremented second according to the order of the 

relative slopes. The final fill in and duplicate elimination coordinate sequence is 

provided in Table 10. 

TABLE 10: CSA COORDINATE SEQUENCE 

Fill In Table 1 2 3 4 5 6 
X 0 1 1 2 3 3 

y 0 0 1 1 1 2 

We can also compare Table 9 with Table 10 and observe where the duplicate points were 

eliminated and additional points were added. Unit increments were made between 

rounded coordinate (2,1) and rounded coordinate (3,2). The duplicate rounded 

coordinates of (2,1) and (3,2) are eliminated during the final step. The example is 

graphically depicted in Figure 4. 

t ^SEA 

FIGURE 4: CSA Approximation 
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It should be noted that in this case, the point between (2,1) and (3,2) was "filled" using 

the same method as RSA. If the a value were made larger (resulting in smaller 

increments and more duplicates), the RSA "fill method" would not be required. This is 

potentially a subject for future exploration. 

METHOD SELECTION 

Computational geometry provides location and range-search approaches to 

finding points. These approaches require that the solution space be partitioned and the 

integer points found or identified. This approach does not meet the requirement for a one 

unit increment towards the solution.   Our problem does not require that all the points be 

identified in a space. This would be very inefficient. The points that keep the sequence 

on integer coordinates within a minimum distance of the real valued linear function will 

provide the best answer. 

Integer programming provides a method of minimizing an objective function 

according to a set of constraints while constraining the problem to integer solutions. Our 

problem requires that the distance be minimized between the selected integer points that 

are used in the sequence of integer coordinates and the real valued linear function itself. 

This approach loses its applicability when the constraints must be selected. The 

limitations on our problem do not lend themselves to an integer program problem. The 

increments must happen in unit steps as stated above but, the number of units is 

unconstrained. 

Bresenham's Line Drawing Algorithm (BLDA) is designed for a two dimensional 

problem and it allows incremental moves in the x and v directions. BLDA requires the 

use of decision parameters for determining how far to move in each dimension. This 
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would create a messy transition from a two dimensional problem to a n-dimensional 

problem. BLDA's incremental calculations are integer based and do not rely on floating 

point calculations or rounding functions for any of its decision parameters or unit 

increments. This algorithm specifically benefits the graphic designer. The integer based 

calculations increases the speed at which the program can draw the line if not the 

accuracy. 

The Digital Differential Analyzer (DDA) is also designed to operate in a two 

dimensional space. Once the slope comparison portion of the algorithm indicates which 

slope combination is increasing at a greater rate, it then begins incrementing. The 

algorithm increments by unit steps in the direction of steepest ascent that is less than or 

equal to one. It increments in the other direction by adding the slope value and rounding 

that value to a whole number. This second increment involves a floating point 

calculation (division to find slope). This will cause the DDA program to run slower than 

the BLDA program. However, the BLDA algorithm does not provide a more accurate 

solution than the DDA. "Sproull has shown that the Bresenham algorithm can be derived 

from the differential analyzer, thus establishing that both generate identical output 

moves" (Earmshaw, 1985:135). 

The current MR VAT Integer approximation method also uses the slope to 

determine which axis direction to increment. This approach satisfies our need to perform 

only one unit step at a time as opposed to the DDA and BLDA algorithms which 

increment in both directions simultaneously. The current MR VAT approach is also 

capable of providing an n-dimensional solution. However, it requires that each direction 
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chosen must be incremented until the endpoint is reached in that direction. This may lead 

to error in the approximation. 

The relative slope method requires that a unit step increment be made in the axis 

direction of steepest accent. Again, the direction is based on a comparison of the slopes. 

The other axis directions are incremented according to the slope with respect to that axis 

direction. This requires that a floating point and rounding calculation be made in the 

remaining axis directions. In addition to slowing the program down, there will be an 

opportunity for rounding error. RSA also requires that calculations be made in order to 

fill in any gaps between the increments that it has made on its first pass. 

The CSA approach is subject to the same pros and cons as the RSA. An 

additional "con" of the CSA is its method of line segmentation. The CSA algorithm 

divides its real valued linear function into much smaller segments than the RSA. This is 

due to the alpha value used as the divisor (i.e. Ay/d) tends to be much larger than the 

largest relative slope value used by RSA. This increases the number of addition and 

rounding operations that must be performed. If there is a significant amount of extra 

work, there may be a significant amount of extra computation time. 

Ultimately, the method that is selected must allow us to solve a multi-dimensional 

problem while taking only one unit step at a time towards the solution. The approach 

must also meet our five quality/error measurements stated in the methodology section of 

chapter one. Another potential approach based on the DDA algorithm will be discussed 

in Chapter III. 
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CONCLUSION 

Chapter II provided a general description of how the MR VAT program requires 

integer approximations to a real line and provided a basis for the thesis problem. 

Information was presented on computational geometry, integer programming and line 

drawing. The pros and cons of these methods were also discussed with respect to our 

thesis problem. The next chapter will discuss the development of the Slope Comparison 

Algorithm, which was developed by the thesis author. The error measurement methods 

will also be described. Finally, the experimental design will be detailed. 
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III. METHODOLOGY 

INTRODUCTION 

Chapter III will discuss the development of the Slope Comparison Algorithm, 

which draws some of its evaluation rules from the Digital Differential Analyzer. The 

error calculation method will also be presented. The chapter ends with a discussion of 

the experimental design for this research. 

DDA Transformation 

The first step in this process is converting the given two dimensional version of 

the Digital Differential Analyzer to a multi-dimensional algorithm. The DDA algorithm 

uses the largest value of x ory and uses that number as the denominator of the slope 

calculation. For example, a large v value indicates a faster increase in the y direction 

versus the x direction. The slope must be between 0 and 1 (0 < w < 1) (Jaccobs, 2001). 

The denominator variable of the slope is incremented by one integer step and the 

numerator variable of the slope is incremented by a rounded value of the slope itself. In 

the following example the slope is Ay/Ax(Hearns and Baker, 1997:88): 

■^increment ~ X0 """ * 

In order to approximate a line in seven dimensional space, we must consider slopes based 

on seven axes. The axes for this problem are labeled x, y, z, t, u, v, and w. The slope 

calculation can only be made with points from two of the dimensions at a time. Our 

problem will compare each possible slope value versus dividing by the largest axis 

coordinate value. The number of dimensions tells us that a "seven choose two" 

permutation must be used in order to determine the number of potential slope 
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combinations.   Any ordered sequence of k objects taken from a set of n distinct objects 

is called a permutation of size k of the objects.    In other words, permutations are used 

when order matters.   The order of the coordinates used in the problem space matters 

because there is a difference between xly and ylx (Devore, 2000:70). 

n' 
pkn=  0-22) *•"    k\{n-k)\ 

Equation 1.22 is used to make the permutation calculation.   Forty-two slope 

combinations are necessary in order to properly consider this seven dimensional problem. 

Once the DDA algorithm is used to decide which axes to increment, both the axes in the 

two - dimensional problem are incremented simultaneously as indicated in the above 

DDA example. Our problem requires that only one integer unit step be taken in the axis 

of choice at a time. The program compares the forty-two slope calculations based on the 

DDA criteria requiring that the slope fall in between 0 and 1 (0 < m < 1) and the slope 

value must also be the closest to one. A unit increment is made in the axis direction 

associated with the variable in the denominator. This axis is the only direction that is 

incremented per iteration. The appropriate axis values are updated with the new 

coordinates and all the slopes are re-calculated based on the last step (the step is used as 

the new starting point in the slope calculations). All forty-two new slopes are compared 

and the next increment is made based on the criteria previously described. The program 

goes through this routine until the values (coordinates) associated with each axis are 

equal to the endpoint of the line. Our transformed DDA will be referred to as the Slope 

Comparison Algorithm (SCA). Table 11 provides an example starting and ending point. 
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TABLE 11: SCA POINT VALUES 

X y 
0 0 
3 2 

The Slope Comparison Algorithm's user would enter the defining points of the line that 

will be approximated. Table 12 demonstrates a sequence of integer coordinates used to 

approximate the line defined by the input coordinates in Table 11. 

TABLE 12: SCA COORDINATE SEQUENCE 

Axis 1 2 3 4 5 6 
X 0 1 1 2 2 3 

y 0 0 1 1 2 2 

Based on slope comparisons, each axis direction is incremented by one unit until the 

ending point is reached. All possible slopes are calculated based on the difference 

between the end point and the current starting point. The slope is judged on the criteria 

described earlier and the increment is made based on that decision. The starting point is 

equal to the coordinates identified at each previous iteration. The initial starting point is 

obviously, the point (0,0) originally entered. The next starting point is (1,0). This 

process progresses until the solution is reached. Figure 5 provides a graphical depiction 

of the sequence described in Table 12. 
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►SEAD 

FIGURE 5: SCA Approximation 

Once the SCA algorithm has approximated the curve and converged on the 

solution we must ascertain the quality of the fit. This will be accomplished by using a 

parametric distance equation. The process will be discussed in the next section. 

Error Calculation 

We shall now recall the six quality measurements that are required to validate the 

most efficient line approximation algorithm among the given algorithms. The model 

should converge on an end point, converge on any interior integer points and the overall 

error between the integer approximation and the real line (preference curve) should be 

characterized. The error in each individual dimension of the problem space should also 

be characterized. The computer processing time measurement and a comparison of the 

lengths of the integer line with the real line will also be made. 

Convergence on the model solution point and interior points will be verified by 

running a series of tests using the experimental problem and other test information 

discussed in the experimental design section. The computer processing time can be 

measured by modifying the source code to report the elapsed time between the start and 
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end of a given program. The remaining quality criteria can be evaluated using a 

parametric distance equation and some other variations in the source code. 

A parametric distance equation is required for the distance calculation because of 

the multiple dimensions in our problem. The distance calculation is made from the point 

on the real line that is perpendicular to the off curve integer point used to approximate it. 

"The distance from a point to a line is defined as the minimum of all distances from the 

point to points on the line. This minimum will occur when the line from R to the point on 

the line is perpendicular to the line" (Foley and others, 1990:1100). The problem can be 

further described by Figure 6 and equation 1.23. 

(R-P(t))-v = 0 (1.23) 

FIGURE 6: Parametric Equation Example 
(Baker, 2001) 

In equation 1.23 the function P(t) is subtracted from the off curve integer point R and 

multiplied by the vector v. The difference between R and P(t) will provide us with the 

distance E. The equation must be set equal to zero in order for the solution E to be 

perpendicular to the real line P0 to Px. The variable t represents the distance from the 

origin (start point) of the line while v defines the direction of the line. R represents the 

off curve integer coordinate which is produced by the integer approximation. 
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(R-Po)-v 
t = - -— (1.24) 

v-v 

Equation 1.24 can be derived from equation 1.23 by substituting P0 +tv in place of P(t) 

(Foley and others, 1990:1100). After we compute the value of t it must be substituted 

into equation 1.25. 

Po+t-v = 0 (1.25) 

In our problem v is defined as i> -P0 (Baker,2001). The value ns multiplied times v 

forming a new vector tv which is added to the vector P0. Equation 1.25 ultimately 

provides us with the point on the real valued linear function as seen in Figure 3 (real line 

point). The minimum distance d between the off curve integer point R and the real line 

point can be calculated using equation 1.26. 

d = V(#, -RP,? +(R2 -RP2? +(R3 -RP3f (1-26) 

R is a vector which contains the coordinates of the off-curve integer point. RP is short 

hand for real line point. RP represents each of the coordinates that represent the point on 

the real line. The parametric distance equation is used to find the point on the real valued 

linear function (real line) which is the minimum (parallel) distance from the off-curve 

integer point. The distance equation is then used to calculate the magnitude of the 

distance between the points identified. This procedure is repeated for every integer point 

the algorithm creates as it determines the sequence of integer coordinates used to 

approximate the given real valued linear function. 

The distance calculations made at each point provides us with an average distance 

between the sequence of integer coordinates and the real valued linear function. This 
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information will characterize the overall error between the two lines. The error in each 

dimension is described by considering the average of the distances at each point in only 

one dimension at a time. Table 13 provides us with sample output of the error calculation 

program. PoCurveA: represents the actual point (x,y) on the real valued linear function 

which is perpendicular to the off-curve integer coordinate produced by the integer 

approximation. The variable d represents the distance between those two points. The 

distance in each single dimension is represented by x distance, y distance, etc. For 

example, this is just the distance for between integer coordinate (x) and real coordinate 

(x). The real valued linear function length is represented by the term Real Line Distance 

and Integer Line Distance represents the length of the sequence of integer coordinates. 

TABLE 13: SCA ERROR CHARCTERIZATION OUTPUT 

Axis 1 2 3 4 5 

Po Curvel 0.693 1.154 1.846 2.307 3 

Po Curve2 0.462 0.769 1.231 1.538 2 

d 0.5547    0.2774   0.2774   0.5547        0 

d sum 1.664 davg 0.3328 

1 2 3 4 5 

x distance 0.3077 0.1538 0.1538 0.3077 0 

y distance 0.4615 0.2308 0.2308 0.4615 0 
Real Line 
Distance 0.8321 1.3868 2.2188 2.7735 3.6055 
Integer 
Line Dist. 1 2 3 4 5 

The final error that must be calculated is the difference between the Real Line Distance 

and the Integer Line Distance. The distance equation can be used to measure the distance 

from the origin to the end of the real valued linear function as shown in equation 1.27. 

d = J(Rm-P0)
2 (1.27) 
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The sequence of integer coordinates (integer line) cannot be calculated as a straight line. 

In order to obtain the approximated numbers the algorithm must move along the adjacent 

and opposite sides with respect to the real valued linear function (real line). For each 

iteration of the problem there is a number of such moves which are made to obtain the 

off-curve integer coordinate. In the SCA the number of moves are restricted to one unit 

movement per iteration. This means the integer distance increases by one unit per 

iteration. In the last line of Table 13 we observe the increasing value of the integer until 

it reaches five. For our problem, the integer line distance is simply an addition of all the 

unit moves made by the algorithm as it converges on the solution point (end point). 

Figure 7 illustrates the error measurements along the curve. 

toSEAD 

FIGURE 7: Error Measurements on Preference Curve Example 

The real valued linear function (real line) is defined by the coordinates (0,0) to (3,2). The 

sequence of integer coordinates are represented by the dashed line. The integer 

coordinates are labeled as R. The line extending from each coordinate R to the real line is 

the perpendicular distance between the off-curve integer coordinate (R) and the 
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coordinate on the real line. Note that the origin and endpoint fall on the solid real line 

and the dashed integer line. The distance is measured at each of the five integer 

coordinates used to approximate the real line. The length of the real line is measured by 

performing a distance calculation using the coordinates (0,0) and (3,2). The length of the 

integer line is equal to the five segments of the dashed line that begins at point (0,0) and 

ends at (3,2). 

The source code for the Slope Comparison Algorithm can found in Appendix F. 

Now we will examine the set up necessary for comparing the four candidate algorithms 

and determining the error and quality of each. 

Experimental Design 

We will now consider the evaluation of four approaches to the integer estimation 

of a preference curve. Each of the methods has been coded using Microsoft Visual Basic 

6.0. The programs were run on a Dell Inspiron 7500 laptop computer. The Excel 

program being run was the only active application during the experiment. These 

measures ensured that the computer resources were devoted to running the program. The 

programs for each method were created to interact with an Excel spreadsheet. The 

programs pull data from and send data to the spreadsheet as they approximate the given 

line. The starting and ending coordinates must be provided for each programmed 

method. The MIEA, RSA and CSA methods all require the number of dimensions to be 

entered. The four approximation methods assume that the line is being approximated 

from the left hand coordinate to the right hand coordinate. It was also assumed that the 

ending points will be higher in magnitude to their corresponding starting points. Each of 
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the four programs were limited to a maximum of seven dimensions. The solution data 

was recorded in the Excel sheet by row. Excel limited our solutions to 32,767 rows due 

to the integer defined counters in the programs. 

The MIEA, SCA, RSA and CSA methods were evaluated on the basis of the six 

quality and error measurements described in Chapter I. The model should converge on 

an end point, converge on any interior integer points and the overall error between the 

sequence of integer coordinates and the real valued linear function (preference curve) was 

characterized. The error in each individual dimension of the problem space should also 

be characterized. The computer processing time and a comparison of the lengths of the 

integer line with the real line were also be made. 

Convergence on an endpoint and interior points are simply a matter of observation 

and reporting. As the algorithms were evaluated with various data sets, it was determined 

whether these first two quality criteria are met. The remaining four criteria must be 

evaluated based on a formal test plan. 

The experiment evaluated the algorithms using 3 dimensional, 5 dimensional, and 

7 dimensional problem spaces. In each problem space, three sets of start and end points 

were identified. The first set had an end point with a high difference between individual 

variable slopes. The second set had a medium distance in slope and the third set had no 

difference in slope. Each algorithm was tested using these same sets (start and end 

points) entered into the software and run to a solution. The test points are presented in 

Table 14. 
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TABLE 14: TEST SOLUTION END POINTS 

Dimensions High Difference Medium Difference No Difference 

3 (2,2,100) (10,50,100) (100,100,100) 

5 (2,2,2,100) (10,50,50,100,100) (100,100,100,100,100) 

7 (2,2,2,2,100,100,100) (10,10,50,50,100,100,100) (100,100,100,100,100,100,100) 

The start points for all test cases was the origin (0,0,.. .,0). The program run time, real 

line length, integer line length and point deviations were recorded for each test run. All 

four algorithms will be compared based on program time and line length. Integer and 

real line lengths for the algorithms was calculated within each dimension. The program 

time will also be evaluated across all the algorithms. The point deviations will be used to 

produce a maximum deviation, average deviation and sum of all deviations per test run. 

These three point deviation characteristics will also be compared with in each dimension. 

There were three test runs for each dimension for a total of nine runs per algorithm. This 

required a total of thirty- six runs in order to accomplish the experiment. 

CONCLUSION 

This chapter discussed the development of the Slope Comparison Algorithm and 

the error calculation program. The experimental design that was used to evaluate the 

SCA, MIEA, RSA and CSA approximation methods was also presented. The next 

chapter will discuss the results of our tests. 
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IV.       RESULTS 

Introduction 

Chapter IV will discuss the results of our experiment. The MIEA, RSA, CSA, 

and SCA methods were tested using high, medium and low slope variations. All of the 

algorithms were tested in 3, 5 and 7 dimensional problem spaces. This required a run for 

each dimension for every slope variation. Ultimately, there were 36 test runs 

accomplished to cover all four algorithms. The algorithms were evaluated based on the 

real line length, integer line length, maximum deviation, average distance, sum of the 

distances and run time. 

The real and integer line lengths were equal for algorithms tested using the same 

dimension and slope variation (See Appendix A). It was observed that all algorithms 

converged on the solution point and found all interior integer points (See Appendix B). 

The average distance between the real line and the off curve integer point, the sum of 

those distances, and the maximum distances (deviation) have the same variation 

according to each algorithm (see Table 15). 

TABLE 15: SAMPLE RESULTS 

3-D Med Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time 

MIEA 112.2497 160 45.42568 22.32562 3572.099 2.483 
RSA 112.2497 160 0.684291 0.447049 71.52777 5.188 
CSA 112.2497 160 0.684291 0.448475 71.75592 15.032 

SCA 112.2497 160 22.71284 11.92676 1908.281 1.272 

The highlighted columns in Table 15 demonstrate the trend in the maximum deviation, 

average distance and sum of the distances. This trend allows the direct comparison of 

one of these criteria with the reasonable expectation that the other two will behave 
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similarly. The maximum deviation was chosen as the primary criterion. The maximum 

deviation tells us the largest distance between an off-curve integer coordinate and the real 

line. In other words, this distance is the greatest error of all integer coordinates used to 

approximate the given line by a given algorithm. Computation time is the second 

criterion that was used for the run by run comparison of the algorithms. 

High Slope Variation 

The RSA and CSA methods are the most accurate algorithms for high slope. 

They are the same for the 3 and 5 dimensional cases. The difference in maximum slope 

deviation is negligible between RSA and CSA in the seventh dimension. The MIEA and 

SCA methods fall third and fourth in accuracy for this case. There is not much difference 

between these two until the 7 dimensional scenario. SCA has a maximum deviation of 

31.90, while at 92.93 the MIEA has a maximum deviation that is nearly three times as 

great (see Table 16). 

TABLE 16: HIGH SLOPE MAX DEVIATIONS 

Hi Slope 3-D max dev 5-D max dev 7-D max dev 

MIEA 2.827296432 3.99680384 92.93203773 
RSA 0.707106781 1 1.201325026 
CSA 0.707106781 1 1.12815215 
SCA 2.235263492 3.60283656 31.90397524 

The SCA algorithm has the fastest computation time for the high slope test runs. 

The times for the MIEA, CSA and SCA algorithms all show steady increases. The RSA 

algorithm has the third fastest computation time, but those times fluctuate between 5.158 

seconds and 5.828 seconds (see Table 17). 
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TABLE 17: HIGH SLOPE RUN TIMES 

Hi Slope 3-D run time 5-D run time 7-D run time 

MIEA 2.373 3.775 5.598 
RSA 5.158 5.137 5.828 
CSA 14.931 24.735 36.162 
SCA 0.831 0.891 3.375 

The CSA algorithm has the slowest run time in all three dimension scenarios for the high 

slope variation case. 

Medium Slope Variation 

The RSA and CSA methods show the most precision in the medium slope case. 

The maximum deviations are the same in the third and fourth dimensions, but there is 

slightly greater precision in the seventh dimension for the CSA. The SCA and MIEA 

finish third and fourth with respect to precision (see Table 18). 

TABLE 18: MED SLOPE MAX DEVIATIONS 

Med Slope 3-D max dev 5-D max dev 7-D max dev 

MIEA 45.42567626 77.5624668 92.93203773 
RSA 0.684290851 0.95517046 1.201325026 
CSA 0.684290851 0.89040928 1.12815215 
SCA 22.71283813 30.9463615 31.90397524 

The MIEA and SCA methods show large deviations for all three dimension scenarios. 

The MIEA has three times as much deviation in the seventh dimensional scenario. 

The SCA method demonstrates the fastest run time for the medium slope case. 

The CSA method has the slowest run times (see Table 19). 

TABLE 19: MED SLOPE RUN TIMES 

Med Slope 3-D run time 5-D run time 7-D run time 

MIEA 2.483 4.046 5.598 
RSA 5.188 5.438 5.828 
CSA 15.032 25.316 36.162 
SCA 1.272 2.504 3.375 
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The RSA algorithm had the third fastest run times in all three dimension scenarios. The 

computation times for RSA had little variance. For dimensions 3 through 7, the times 

were 5.188 to 5.828 seconds. The MIEA, CSA, and SCA methods show steady 

processing time increases as the dimension increases. 

Low Slope Variation 

RSA and CSA demonstrate the greatest precision for the low slope variation case. 

In this case, the two algorithms have identical maximum deviations for all three 

dimension size scenarios. The SCA method shows greater precision for the low slope 

case than either of the previous slope variation cases (see Table 20). 

TABLE 20: LOW SLOPE MAX DEVIATIONS 

Low Slope 3-D max dev 5-D max dev 7-D max dev 

MIEA 81.64965809 109.544512 130.9307341 
RSA 0.816496581 1.09544512 1.309307341 
CSA 0.816496581 1.09544512 1.309307341 
SCA 1.414213562 3.16227766 5.291502622 

In the high slope case SCA had deviations of 2.23, 3.60 and 31.90 for the corresponding 

dimensions (3d, 5d, 7d). In the low slope case the deviations never get higher than 5.29 

in the seventh dimension. The MIEA method has its worse performance in the low slope 

case. The deviations are 81.64, 109.54 and 130.93 for the corresponding dimensions (3d, 

5d, 7d). 

Once again the SCA method proves to be the fastest algorithm (although by a 

small amount). The MIEA algorithm has the second fastest run time while the CSA 

method has the slowest time in all three dimensions (see Table 21). 
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TABLE 21: LOW SLOPE RUN TIMES 

Low Slope 3-D run time 5-D run time 7-D run time 

MIEA 2.653 4.336 5.979 
RSA 5.437 5.658 5.989 
CSA 15.362 25.327 35.921 
SCA 2.393 4.045 5.758 

The RSA had the third fastest times. Those times had little variation and ranged between 

5.437 seconds and 5.979 seconds. 

Algorithm Complication 

The effects of algorithm complication on run time must also be considered. 

Typically, floating point calculations require the most computer computation time. All 

four of the algorithms tested require floating point calculations. "Furthermore, the 

rounding operations and floating-point arithmetic in procedure line DDA are still time- 

consuming" (Hearn and Baker, 1997:88). Floating point arithmetic occurs when division 

or multiplication is needed in a computation. The MIEA, RSA and CSA all perform the 

division of all difference variables by the largest difference (Ax, Ay, Az....). The first 

pass of the algorithm requires the addition of these relative slopes until the solution value 

is found. For more information on the algorithms, refer to Chapter II and Chapter III. 

The values are then rounded and manipulated according to that algorithms logic through 

addition type operations. For these three algorithms there will be a one time division 

calculation for every dimension of the problem. For example, a 3 dimensional problem 

(x, y, z) will require three division operations at the start of the algorithm. The next step 

is rounding the fractional values that have been added together. The SCA method 

compares every possible slope combination. The number of slopes required is calculated 

based on a permutation calculation. For a seven dimensional problem a "seven choose 
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two" permutation would be required (see Chapter III). This means a 7 dimensional 

problem would require 42 slope calculations for every integer step that the SCA 

performed in order to approximate a real valued linear function using a sequence of 

integer valued coordinates. Even though 42 division operations are taking place each 

step, the actual integer moves are merely an addition of one unit at a time. As a result 

there are no rounding steps in the SCA. The results previously discussed do not support 

any negative time effects due to floating point operations in these four algorithms. If this 

were the case, then the SCA would run the slowest. The CSA runs slowly due to the 

alpha value used to segment the real line (see chapter II). This value breaks the line into 

smaller segments than the RSAs slope and requires more addition steps to arrive at the 

same solution. It is proposed that the deliberate selection of an alpha value would 

improve the efficiency of the CSA approach. 

Conclusion 

The MIEA, CSA and SCA methods all required more run time as the dimension 

size of the problem increased. This did not always hold true for changes in slope for the 

MIEA, RSA and CSA. The SCA did have increases in time due to dimension size and 

reduction in slope. The RSA algorithm had the least amount of variation in its run time 

through out all its tests, regardless of dimension size or slope. RSA times ranged from 

5.156 seconds (3d and high slope) to 5.989 seconds (7d and low slope). 

The MIEA demonstrated decreasing precision as the slope varied from high to 

low. MIEA precision also decreased as the dimension size increased from three to seven. 

There is a very dramatic decrease in precision in the high slope case when the dimension 

size increases from five to seven. The SCA has relatively poor precision in the high and 
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medium slope cases. In the low slope case, SCA demonstrates acceptable precision. The 

greatest deviation in this last case was 5.29 in seven dimensions. The RSA and CSA 

algorithms demonstrated the greatest precision. Their maximum deviations were nearly 

exact in all but three scenarios. They are as follows: 7d and high slope, 5d and medium 

slope, and 7d and high slope. The difference in all three of these scenarios is negligible. 

The RSA method demonstrated fast and consistent run time speed as well as best 

precision. The run time speed is what allows it to break the tie with the CSA method. 

Another aspect of the RSA run time is its consistency. The RSA ran all problem 

scenarios regardless of dimension or slope with in 5 to 6 seconds. The precision and 

quickness of RSA provides us with the best overall solution. 
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V. CONCLUSIONS AND RECCOMMENDATIONS 

INTRODUCTION 

The goal of this thesis was to find the most efficient method of approximating a 

real valued linear function with a sequence of integer coordinates.   This was 

accomplished through the evaluation of the MR VAT Integer Estimation Algorithm, 

Relative Slope Algorithm, Continuous Segment Algorithm and Slope Comparison 

Algorithm. These algorithms were evaluated based on six quality and error criteria: The 

algorithms should converge on an end point, converge on any interior integer points and 

the overall error between the sequence of integer coordinates and the real valued linear 

function (preference curve) should be characterized. The error in each individual 

dimension of the problem space should also be characterized. Finally, the computer 

processing time and the difference between the distance lengths of the sequence of 

integer coordinates and the real valued linear function should be determined. 

The algorithms were modeled in Visual Basic 6.0. An error calculation program 

was used to provide the individual integer point to real line distances, the maximum 

distance (deviation), the average distance, and the sum of the distances. The real and 

integer line lengths were also provided by this subroutine. 

SUMMARY OF RESULTS 

It was observed that all algorithms found the interior points and converged on the 

solution points (See Appendix B). The four algorithms were each tested in high, medium 

and low slope cases. In each of these cases a test was run for three, five, and seven 
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dimensions. This resulted in a total of 36 runs being completed. The primary criteria 

used for run to run analysis were the maximum deviation and the run time. 

It was discovered that the MIEA algorithm was least accurate by a significant 

amount. This lack of precision increased with a change in slope from high to low and an 

increase in dimension from 3d to 7d. The SCA method also proved to be relatively 

imprecise. The precision was acceptable in the low slope cases, but there were large 

deviations in the 7d and high slope scenario and in all dimension scenarios for the 

medium slope case. The CSA and RSA slope were found to be the most precise of the 

algorithms. The largest deviation for either of the algorithms was 1.309. 

The CSA algorithm proved to be extremely slow in all slope cases and dimension 

scenarios compared to the other three algorithms. The SCA had the quickest run time of 

all algorithms evaluated during this thesis. The MIEA required 5.97 seconds for its 

longest test run for a 7d/ low slope problem. The RSA algorithm had run times that 

ranged between 5.148 seconds and 5.989 seconds. RSA ran the third in computation 

speed and consistently solved the approximation problem in 5 to 6 seconds. 

RECOMMENDATIONS 

Based on the results of this thesis, it is recommended that the Relative Slope 

Algorithm be utilized in the Mission Resource Value Assessment Tool program. This is 

the next step in testing the effectiveness of the RSA and judging its impact on the 

MRVAT. It is also recommended that the RSA be expanded to a 20 dimensional 

problem. A problem of this size would further demonstrate the applicability of an 

improved MRVAT to the Advanced Logistics Project. 
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Appendix A: Algorithm Test Results 

Three Dimensional Case: 

End 2 2 100 

Start 0 0 0 

3-D Hi Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time 
MIEA 100.04 104 2.827296 1.423203 148.0131 2.373 
RSA 100.04 104 0.707107 0.36701 38.16907 5.158 
CSA 100.04 104 0.707107 0.36701 38.16907 14.931 
SCA 100.04 104 2.235263 1.185098 123.2502 0.831 

End 10 50 100 
Start 0 0 0 

3-D Med Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time 

MIEA 112.2497 160 45.42568 22.32562 3572.099 2.483 
RSA 112.2497 160 0.684291 0.447049 71.52777 5.188 
CSA 112.2497 160 0.684291 0.448475 71.75592 15.032 
SCA 112.2497 160 22.71284 11.92676 1908.281 1.272 

End 100 100 100 

Start 0 0 0 

3-D Low Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time 
MIEA 173.2051 300 81.64966 52.03772 15611.32 2.653 
RSA 173.2051 300 0.816497 0.544331 163.2993 5.437 
CSA 173.2051 300 0.816497 0.544331 163.2993 15.362 
SCA 173.2051 300 1.414214 1.011022 303.3065 2.393 
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Five Dimensional Case: 

End 2 2 2 2 100 

Start 0 0 0 0 0 

5-DHi Real_L Integer L Max dev. Avg. Dist. Sum Dist. Run Time 

MIEA 100.08 108 3.996804 2.036701 219.9638 3.775 
RSA 100.08 108 1 0.536645 57.95765 5.137 
CSA 100.08 108 1 0.536645 57.95765 24.735 
SCA 100.08 108 3.602837 1.878339 202.8606 0.891 

End 10 50 50 100 100 

Start 0 0 0 0 0 

5-D Med Real L lnteger_L Max dev. Avg. Dist. Sum Dist. Run Time 

MIEA 158.4298 310 77.56247 45.89123 14226.28 4.046 
RSA 158.4298 310 0.95517 0.676949 209.8541 5.438 
CSA 158.4298 310 0.890409 0.678624 210.3735 25.316 
SCA 158.4298 310 30.94636 15.448 4788.879 2.504 

End 100 100 100 100 100 

Start 0 0 0 0 0 

5-D Low Real L lnteger_L Max dev. Avg. Dist. Sum Dist. Run Time 

MIEA 223.6068 500 109.5445 75.67659 37838.3 4.336 
RSA 223.6068 500 1.095445 0.795949 397.9745 5.658 
CSA 223.6068 500 1.095445 0.795949 397.9745 25.327 
SCA 223.6068 500 3.162278 2.552431 1276.215 4.045 
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Seven Dimensional Case: 

End 2 2 2 2 100 100 100 

Start 0 0 0 0 0 0 0 

7-DHi Real L lnteger_L Max dev. Avg. Dist, Sum Dist. Run Time 

MIEA 
RSA 
CSA 
SCA 

173.2513 308 81.69317 50.87788 15670.39 
173.2513 308 1.280492 0.830661 255.8436 
173.2513 308 1.280492 0.830661 255.8436 
173.2513 308 3.286088 2.236041 688.7007 

5.428 
5.397 

35.411 
2.564 

End 10 10 50 50 100 100 100 

Start 0 0 0 0 0 0 0 

7-D Med Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time 

MIEA 187.6166 420 92.93204 57.22633 24035.06 5.598 
RSA 187.6166 420 1.201325 0.827896 347.7164 5.828 
CSA 187.6166 420 1.128152 0.829251 348.2854 36.162 
SCA 187.6166 420 31.90398 16.02219 6729.32 3.375 

End 100 100 100 100 100 100 100 

Start 0 0 0 0 0 0 0 

7-D Low Real L IntegerJ. Max dev. Avg. Dist. Sum Dist. Run Time 

MIEA 264.5751 700 130.9307 93.72438 65607.07 5.979 
RSA 264.5751 700 1.309307 0.980102 686.0712 5.989 
CSA 264.5751 700 1.309307 0.980102 686.0712 35.921 
SCA 264.5751 700 5.291503 4.478259 3134.781 5.758 
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Appendix B: Sample Output Examples (3d) 

End: (5, 10, 15) 
Start: (0, 0, 0) 

MIEA Sample Output: 

Integer Points 

Iterations X y z t u V w 

1 1 0 0 0 0 
2 2 0 0 0 0 
3 3 0 0 0 0 
4 4 0 0 0 0 
5 5 0 0 0 0 
6 6 0 0 0 0 
7 7 0 0 0 0 
8 8 0 0 0 0 
9 9 0 0 0 0 
10 10 0 0 _j 0 0 
11 11 0 0 0 0 
12 12 0 0 0 0 
13 13 0 0 0 0 
14 14 0 0 0 0 
15 15 0 0 0 0 
16 1 15 0 0 0 0 
17 2 15 0 0 0 0 
18 3 15 0 0 0 0 
19 4 15 0 0 0 0 
20 5 15 0 0 0 0 
21 6 15 0 0 0 0 
22 7 15 0 0 0 0 
23 8 15 0 0 0 0 
24 9 15 0 0 0 0 
25 10 15 0 0 0 0 
26 1 10 15 0 0 0 0 
27 2 10 15 0 0 0 0 
28 3 10 15 0 0 0 0 
29 4 10 15 0 0 0 o 
30   I   5 10 15 0 0 0 o  I 
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Real Line Points 

Iterations PoCurvel PoCurve2 PoCurve3 
1 0.214286 0.428571 0.642857 
2 0.428571 0.857143 1.285714 
3 0.642857 1.285714 1.928571 
4 0.857143 1.714286 2.571429 
5 1.071429 2.142857 3.214286 
6 1.285714 2.571429 3.857143 
7 1.5 3 4.5 
8 1.714286 3.428571 5.142857 
9 1.928571 3.857143 5.785714 

10 2.14286 4.28571 6.42857 
11 2.357143 4.714286 7.071429 
12 2.571429 5.142857 7.714286 
13 2.785714 5.571429 8.357143 
14 3 6 9 
15 3.214286 6.428571 9.642857 
16 3.357143 6.714286 10.07143 
17 3.5 7 10.5 
18 3.642857 7.285714 10.92857 
19 3.785714 7.571429 11.35714 
20 3.928571 7.857143 11.78571 
21 4.071429 8.142857 12.21429 
22 4.214286 8.428571 12.64286 
23 4.357143 8.714286 13.07143 
24 4.5 9 13.5 
25 4.642857 9.285714 13.92857 
26 4.714286 9.428571 14.14286 
27 4.785714 9.571429 14.35714 
28 4.85714 9.71429 14.5714 
29 4.928571 9.857143 14.78571 
30 5 10 15 
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RSA Sample Output: 

Integer Points 

Iteration X y z t u V w 

1 0 0 1 0 0 0 0 
2 0 1 1 0 0 0 0 
3 0 1 2 0 0 0 0 
4 1 2 0 0 0 0 
5 1 3 0 0 0 0 
6 2 3 0 0 0 0 
7 2 4 0 0 0 0 
8 3 4 0 0 0 0 
9 3 5 0 0 0 0 
10 2 3 5 0 0 0 0 
11 2 3 6 0 0 0 0 
12 2 4 6 0 0 0 0 
13 2 4 7 0 0 0 0 
14 2 5 7 0 0 0 0 
15 2 5 8 0 0 0 0 
16 3 5 8 0 0 0 0 
17 3 5 9 0 0 0 0 
18 3 6 9 0 0 0 0 
19 3 6 10 0 0 0 0 
20 3 7 10 0 0 0 0 
21 3 7 11 0 0 0 0 
22 4 7 11 0 0 0 0 
23 4 7 12 0 0 0 0 
24 4 8 12 0 0 0 0 
25 4 8 13 0 0 0 0 
26 4 9 13 0 0 0 0 
27 4 9 14 0 0 0 0 
28 5 9 14 0 0 0 0 
29 5 9 15 0 0 0 0 
30 5 10 15 0 0 0 0 
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Real Line Points 

Iteration PoCurvel PoCurve2 PoCurve3 

1 0.214285714 0.428571429 0.642857143 

2 0.357142857 0.714285714 1.071428571 

3 0.571428571 1.142857143 1.714285714 

4 0.642857143 1.285714286 1.928571429 

5 0.857142857 1.714285714 2.571428571 

6 1 2 3 

7 1.214285714 2.428571429 3.642857143 

8 1.357142857 2.714285714 4.071428571 

9 1.571428571 3.142857143 4.714285714 

10 1.642857143 3.285714286 4.928571429 

11 1.857142857 3.714285714 5.571428571 

12 2 4 6 

13 2.214285714 4.428571429 6.642857143 

14 2.357142857 4.714285714 7.071428571 

15 2.571428571 5.142857143 7.714285714 

16 2.642857143 5.285714286 7.928571429 

17 2.857142857 5.714285714 8.571428571 

18 3 6 9 

19 3.214285714 6.428571429 9.642857143 

20 3.357142857 6.714285714 10.07142857 

21 3.571428571 7.142857143 10.71428571 

22 3.642857143 7.285714286 10.92857143 

23 3.857142857 7.714285714 11.57142857 

24 4 8 12 

25 4.214285714 8.428571429 12.64285714 

26 4.357142857 8.714285714 13.07142857 

27 4.571428571 9.142857143 13.71428571 

28 4.642857143 9.285714286 13.92857143 

29 4.857142857 9.714285714 14.57142857 

30 5 10 15 
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CSA Sample Output: 

Integer Points 

Iteration X y z                f u V w 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

0 0 1 0 0 0 0 
0 1 1 0 0 0 0 
0 1 2 0 0 0 0 

1 2 0 0 0 0 

2 2 0 0 0 0 
2 3 0 0 0 0 
2 4 0 0 0 0 

3 4 0 0 0 0 

3 5 0 0 0 0 

2 3 5 0 0 0 0 
2 4 5 0 0 0 0 
2 4 6 0 0 0 0 
2 4 7 0 0 0 0 
2 5 7 0 0 0 0 
2 5 8 0 0 0 0 

3 5 8 0 0 0 0 

3 6 8 0 0 0 0 
3 6 9 0 0 0 0 
3 6 10 0 0 0 0 
3 7 10 0 0 0 0 
3 7 11 0 0 0 0 
4 7 11 0 0 0 0 
4 8 11 0 0 0 0 
4 8 12 0 0 0 0 
4 8 13 0 0 0 0 
4 9 13 0 0 0 0 
4 9 14 0 0 0 0 
5 9 14 0 0 0 0 
5 10 14 0 0 0 0 

.    5 10 15 0 0 0 0 
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Real Line Points 

Iteration PoCurvel PoCurve2 PoCurve3 

1 0.214285714 0.428571429 0.642857143 
2 0.357142857 0.714285714 1.071428571 

3 0.571428571 1.142857143 1.714285714 
4 0.642857143 1.285714286 1.928571429 
5 0.785714286 1.571428571 2.357142857 
6 1 2 3 
7 1.214285714 2.428571429 3.642857143 
8 1.357142857 2.714285714 4.071428571 

9 1.571428571 3.142857143 4.714285714 
10 1.642857143 3.285714286 4.928571429 
11 1.785714286 3.571428571 5.357142857 
12 2 4 6 
13 2.214285714 4.428571429 6.642857143 
14 2.357142857 4.714285714 7.071428571 

15 2.571428571 5.142857143 7.714285714 

16 2.642857143 5.285714286 7.928571429 

17 2.785714286 5.571428571 8.357142857 
18 3 6 9 
19 3.214285714 6.428571429 9.642857143 
20 3.357142857 6.714285714 10.07142857 
21 3.571428571 7.142857143 10.71428571 
22 3.642857143 7.285714286 10.92857143 
23 3.785714286 7.571428571 11.35714286 
24 4 8 12 
25 4.214285714 8.428571429 12.64285714 

26 4.357142857 8.714285714 13.07142857 
27 4.571428571 9.142857143 13.71428571 
28 4.642857143 9.285714286 13.92857143 
29 4.785714286 9.571428571 14.35714286 
30 5 10 15 
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SCA Sample Output: 

Integer Points 

Iterations X y z t u V w 

1 0 0 1 0 0 0 0 
2 0 0 2 0 0 0 0 
3 0 0 3 0 0 0 0 
4 0 0 4 0 0 0 0 
5 0 0 5 0 0 0 0 
6 0 1 5 0 0 0 0 
7 0 1 6 0 0 0 0 
8 0 2 6 0 0 0 0 
9 0 2 7 0 0 0 0 
10 0 3 7 0 0 0 0 
11 0 3 8 0 0 0 0 
12 0 4 8 0 0 0 0 
13 0 4 9 0 0 0 0 
14 0 5 9 0 0 0 0 
15 0 6 9 0 0 0 0 
16 0 6 10 0 0 0 0 
17 1 6 10 0 0 0 0 
18 1 7 10 0 0 0 0 
19 1 7 11 0 0 0 0 
20 2 7 11 0 0 0 0 
21 2 8 11 0 0 0 0 
22 2 8 12 0 0 0 0 
23 3 8 12 0 0 0 0 
24 3 9 12 0 0 0 0 
25 3 9 13 0 0 0 0 
26 4 9 13 0 0 0 0 
27 4 10 13 0 0 0 0 
28 4 10 14 0 0 0 0 
29 ' 5 10 14 0 0 0 0 
30 5 10 15 0 0 0 0 
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Real Line Points 

Iterations PoCurvel PoCurvel PoCurve3 
1 0.214286 0.428571 0.642857 
2 0.428571 0.857143 1.285714 
3 0.642857 1.285714 1.928571 
4 0.857143 1.714286 2.571429 
5 1.071429 2.142857 3.214286 
6 1.214286 2.428571 3.642857 
7 1.428571 2.857143 4.285714 
8 1.571429 3.142857 4.714286 
9 1.785714 3.571429 5.357143 

10 1.928571 3.857143 5.785714 
11 2.142857 4.285714 6.428571 
12 2.285714 4.571429 6.857143 
13 2.5 5 7.5 
14 2.642857 5.285714 7.928571 
15 2.785714 5.571429 8.357143 
16 3 6 9 
17 3.071429 6.142857 9.214286 
18 3.214286 6.428571 9.642857 
19 3.428571 6.857143 10.28571 
20 3.5 7 10.5 
21 3.642857 7.285714 10.92857 
22 3.857143 7.714286 11.57143 
23 3.92857 7.85714 11.7857 
24 4.071429 8.142857 12.21429 
25 4.285714 8.571429 12.85714 
26 4.357143 8.714286 13.07143 
27 4.5 9 13.5 
28 4.714286 9.428571 14.14286 
29 4.785714 9.571429 14.35714 
30 5 10 15 
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Appendix C: MIEA SOURCE CODE 

Sub Mslope() 
t 

' Mslope Macro 
' Macro recorded 4/13/2001 by rantoine 

Dim ValueX As Double 
Dim ValueY As Double 
Dim ValueZ As Double 
Dim ValueT As Double 
Dim ValueU As Double 
Dim ValueV As Double 
Dim ValueW As Double 

Dim X2 As Integer 
Dim Y2 As Integer 
Dim Z2 As Integer 
Dim T2 As Integer 
Dim U2 As Integer 
Dim V2 As Integer 
Dim W2 As Integer 

Dim i As Integer 
Dim n As Integer 
Dim z As Integer 

Dim num As Integer 
Dim Denominator As Integer 
Dim Biggest As Integer 
Dim Increment As Double 

Dim Xincrement As Double 
Dim Yincrement As Double 
Dim Zincrement As Double 
Dim Tincrement As Double 
Dim Uincrement As Double 
Dim Vincrement As Double 
Dim Wincrement As Double 

Dim SortX As Double 
Dim SortY As Double 
Dim SortZ As Double 
Dim SortT As Double 
Dim SortU As Double 
Dim SortV As Double 
Dim SortW As Double 

'Get initial starting values 
ValueX = Cells(2, 2).Value 
ValueY = Cells(3, 2) Value 
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ValueZ = Cells(4, 2).Value 
ValueT = Cells(5, 2).Value 
ValueU = Cells(6, 2).Value 
ValueV = Cells(7, 2).Value 
ValueW = Cells(8, 2).Value 

'Get final values 
X2 = Cells(2, 3).Value 
Y2 = Cells(3, 3).Value 
Z2 = Cells(4, 3).Value 
T2 = Cells(5, 3).Value 
U2 = Cells(6, 3).Value 
V2 = Cells(7, 3).Value 
W2 = Cells(8, 3).Value 

z = 0 
num = 0 

For Biggest = 1 To 7 
Denominator = Cells(10 + z, 2).Value 
If Denominator > num Then 

num = Denominator 
Cells(18, 2) = num 

End If 

z = z+ 1 

Next Biggest 

'Get Slope Values for sorting 
SortX = Cells(21,2). Value 
SortY = Cells(22, 2).Value 
SortZ = Cells(23, 2).Value 
SortT = Cells(24, 2).Value 
SortU = Cells(25, 2).Value 
SortV = Cells(26, 2).Value 
SortW = Cells(27, 2).Value 

'Send slope values to sorter. 
Cells(21,3) = SortX 
Cells(22, 3) = SortY 
Cells(23, 3) = SortZ 
Cells(24, 3) = SortT 
Cells(25, 3) = SortU 
Cells(26, 3) = SortV 
Cells(27, 3) = SortW 

End Sub 

Sub Msort() 
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' Msort Macro 
' Macro recorded 4/13/2001 by rantoine 

Range("C21:C27").Select 
Selection.SORT Keyl:=Range("C21"), Orderl :=xlDescending, Header:=xlGuess. 

, OrderCustom:=l, MatchCase:=False, Orientation:=xlTopToBottom 
End Sub  

Sub MaddO 

Madd Macro 
Macro recorded 4/13/2001 by rantoine 

Dim ValueX As Double 
Dim ValueY As Double 
Dim ValueZ As Double 
Dim ValueT As Double 
Dim ValueU As Double 
Dim ValueV As Double 
Dim ValueW As Double 

Dim X2 As Integer 
Dim Y2 As Integer 
Dim Z2 As Integer 
Dim T2 As Integer 
Dim U2 As Integer 
Dim V2 As Integer 
Dim W2 As Integer 

Dim i As Integer 
Dim n As Integer 
Dim z As Integer 
Dim b As Integer 

Dim num As Integer 
Dim Denominator As Integer 
Dim Biggest As Integer 
Dim Increment As Double 
Dim Squeeze As Integer 

Dim Xincrement As Double 
Dim Yincrement As Double 
Dim Zincrement As Double 
Dim Tincrement As Double 
Dim Uincrement As Double 
Dim Vincrement As Double 
Dim Wincrement As Double 

Dim SortX As Double 
Dim SortY As Double 
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Dim SortZ As Double 
Dim SortT As Double 
Dim SortU As Double 
Dim SortV As Double 
Dim SortW As Double 

Dim Xroundl As Integer 
Dim Yroundl As Integer 
Dim Zroundl As Integer 
Dim Troundl As Integer 
Dim Uroundl As Integer 
Dim Vroundl As Integer 
Dim Wroundl As Integer 

Dim Xround2 As Integer 
Dim Yround2 As Integer 
Dim Zround2 As Integer 
Dim Tround2 As Integer 
Dim Uround2 As Integer 
Dim Vround2 As Integer 
Dim Wround2 As Integer 

Dim a As Integer 
Dim c As Integer 
Dim d As Integer 
Dim e As Integer 
Dim f As Integer 
Dim g As Integer 
Dim h As Integer 
Dimj As Integer 
Dim k As Integer 
Dim 1 As Integer 
Dim m As Integer 

Dim Xholder As Integer 
Dim Yholder As Integer 
Dim Zholder As Integer 
Dim Tholder As Integer 
Dim Uholder As Integer 
Dim Vholder As Integer 
Dim Wholder As Integer 

'Get initial starting values 
ValueX = Cells(2, 2).Value 
ValueY = Cells(3, 2).Value 
ValueZ = Cells(4, 2).Value 
ValueT = Cells(5, 2^ Value 
ValueU = Cells(6, 2).Value 
ValueV = Cells(7, 2).Value 
ValueW = Cells(8, 2).Value 

'Get final values 
X2 = Cells(2, 3).Value 
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Y2 = Cells(3, 3).Value 
Z2 = Cells(4, 3).Value 
T2 = Cells(5, 3).Value 
U2 = Cells(6, 3).Value 
V2 = Cells(7, 3).Value 
W2 = Cells(8, 3).Value 

i = 0 
n = 0 

Do 

Xincrement = ValueX 
Yincrement = ValueY 
Zincrement = ValueZ 
Tincrement = ValueT 
Uincrement = ValueU 
Vincrement = ValueV 
Wincrement = ValueW 

'Now increment values according to slope ratios 
If Cells(21, 2) = Cells(21 + n, 3) And ValueX < X2 Then 

Do 
ValueX = ValueX + Cells(21, 2) 
Cells(32 + i, 2) = ValueX 
i = i+l 

Loop While (ValueX < X2) 
End If 

If Cells(22, 2) = Cells(21 + n, 3) And ValueY < Y2 Then 
Do 

ValueY = ValueY + Cells(22, 2) 
Cells(32 + i, 3) = ValueY 
i = i+l 

Loop While (ValueY < Y2) 
End If 

If Cells(23, 2) = Cells(21 + n, 3) And ValueZ < Z2 Then 
Do 

ValueZ = ValueZ + Cells(23, 2) 
Cells(32 + i, 4) = ValueZ 
i = i+l 

Loop While (ValueZ < Z2) 
End If 

If Cells(24, 2) = Cells(21 + n, 3) And ValueT < T2 Then 
Do 

ValueT = ValueT + Cells(24, 2) 
Cells(32 + i, 5) = ValueT 
i = i+l 

Loop While (ValueT < T2) 
End If 
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If Cells(25, 2) = Cells(21 + n, 3) And ValueU < U2 Then 
Do 

ValueU = ValueU + Cells(25, 2) 
Cells(32 + i, 6) = ValueU 
i = i+l 

Loop While (ValueU < U2) 
End If 

If Cells(26, 2) = Cells(21 + n, 3) And ValueV < V2 Then 
Do 

ValueV = ValueV + Cells(26, 2) 
Cells(32 + i, 7) = ValueV 
i = i+l 

Loop While (ValueV < V2) 
End If 

If Cells(27, 2) = Cells(21 + n, 3) And ValueW < W2 Then 
Do 

ValueW = ValueW + Cells(27, 2) 
Cells(32•+ i, 8) = ValueW 
i = i+l 

Loop While (ValueW < W2) 
End If 

n = n+ 1 

Loop While ((ValueX < X2) Or (ValueY < Y2) Or (ValueZ < Z2) Or (ValueT < T2) Or (ValueU < U2) Or 
(ValueV < V2) Or (ValueW < W2)) 

Cells(2, ll) = i 

'b = 0 
'Now Squeeze or fill down the rounding Table. 

For Squeeze = 1 To i 

Xroundl = Cells(32 + b, 11) 
Yroundl = Cells(32 + b, 12) 
Zroundl = Cells(32 + b, 13) 
Troundl = Cells(32 + b, 14) 
Uroundl = Cells(32 + b, 15) 
Vroundl = Cells(32 + b, 16) 
Wroundl = Cells(32 + b, 17) 

Xround2 = Cells(33+b, 11) 
Yround2 = Cells(33 + b, 12) 
Zround2 = Cells(33+b, 13) 
Tround2 = Cells(33 + b, 14) 
Uround2 = Cells(33 + b, 15) 
Vround2 = Cells(33 + b, 16) 
Wround2 = Cells(33 + b, 17) 

If Xroundl < Xround2 Or Xroundl > Xround2 Then 
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Cells(32 + b, 20) = Xroundl 
Else 

If (Xroundl - Xround2) = 0 And Xroundl > 0 And Xround2 > 0 Then 
b = b 

End If 
End If 

If Yroundl < Yround2 Or Yroundl > Yround2 Then 
Cells(32 + b, 21) = Yroundl 

Else 
If (Yroundl - Yround2) = 0 And Yroundl > 0 And Yround2 > 0 Then 

b = b 
End If 

End If 

If Zroundl < Zround2 Or Zroundl > Zround2 Then 
Cells(32 + b, 22) = Zroundl 

Else 
If (Zroundl - Zround2) = 0 And Zroundl > 0 And Zround2 > 0 Then 

b = b 
End If 

End If 

If Troundl < Tround2 Or Troundl > Tround2 Then 
Cells(32 + b, 23) = Troundl 

Else 
If (Troundl - Tround2) = 0 And Troundl > 0 And Tround2 > 0 Then 

b = b 
End If 

End If 

If Uroundl < Uround2 Or Uroundl > Uround2 Then 
Cells(32 + b, 24) = Uroundl 

Else 
If (Uroundl - Uround2) = 0 And Uroundl > 0 And Uround2 > 0 Then 

b = b 
End If 

End If 

If Vroundl < Vround2 Or Vroundl > Vround2 Then 
Cells(32+b,25) = Vroundl 

Else 
If (Vroundl - Vround2) = 0 And Vroundl > 0 And Vround2 > 0 Then 

b = b 
End If 

End If 

If Wroundl < Wround2 Or Wroundl > Wround2 Then 
Cells(32 + b, 26) = Wroundl 

Else 
If (Wroundl - Wround2) = 0 And Wroundl > 0 And Wround2 > 0 Then 

b = b 
End If 

End If 
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b = b+l 
Next Squeeze 

'Second pass for fill down. This part searches the first fill down and writes the 
'values so there are no spaces in between the coordinate values. 

a = 0 
c = 0 

Do 
IfCells(32 + 

Xholder = 
Cells(32 4 
c = c+ 1 

Else 

a, 20) > 
Cells(32 
c, 29) = 

OThen 
! + a, 20) 
Xholder 

c = c 
End If 

a = a+ 1 
Loop While (Xholder < X2) 

a = 0 
c = 0 

Do 
If Cells(32 + 

Yholder = 
Cells(32 4 
c = c+ 1 

a,21)> 
■■ Cells(32 
- c, 30) = 

OThen 
» + a, 21) 
Yholder 

Else 
c = c 

End If 

a = a+l 
Loop While (Yholder < Y2) 

a = 0 
c = 0 

Do 
If Cells(32 4 

Zholder = 
Cells(32 4 
c = c+ 1 

a, 22) > 
Cells(32 
-c,31) = 

OThen 
. + a, 22) 
Zholder 

Else 
c = c 

End If 

a = a+ 1 
Loop While (Zholder < Z2) 

a = 0 
c = 0 
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Do 
If Cells(32 + a, 23) > 

Tholder = Cells(32 
Cells(32 + c, 32) = 
c = c+ 1 

Else 

OThen 
+ a, 23) 
Tholder 

c = c 
End If 

a = a+ 1 
Loop While (Tholder < T2) 

a = 0 
c = 0 

Do 
If Cells(32 + 

Uholder = 
Cells(32 i 
c = c+ 1 

Else 

a, 24) > 
Cells(32 

-c,33) = 

OThen 
. + a, 24) 
Uholder 

c = c 
End If 

a = a+l 
Loop While (Uholder < U2) 

a = 0 
c = 0 

Do 
IfCells(32 + a,25)>0Then 

Vholder = Cells(32 + a, 25) 
Cells(32 + c, 34) = Vholder 
c = c+ 1 

Else 
c = c 

End If 

a = a+ 1 
Loop While (Vholder < V2) 

a = 0 
c = 0 

Do 
IfCells(32 + a,26)>0Then 

Wholder=Cells(32 + a,26) 
Cells(32 + c, 35) = Wholder 
c = c+ 1 

Else 
c = c 

End If 
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a = a+ 1 
Loop While (Wholder < W2) 

3rd Fill Down, now we are taking each coordinate 
'set and setting them end to end. 

Dim xplace As Integer 
Dim yplace As Integer 
Dim zplace As Integer 
Dim tplace As Integer 
Dim uplace As Integer 
Dim vplace As Integer 
Dim wplace As Integer 

d = 0 
e = 0 
f=0 
g = 0 
h = 0 
j = 0 
k = 0 
1 = 0 
m = 0 

xplace = Cells(32 + d, 29).Value 
yplace = Cells(32 + d, 30).Value 
zplace = Cells(32 + d, 31).Value 
tplace = Cells(32 + d, 32).Value 
uplace = Cells(32 + d, 33).Value 
vplace = Cells(32 + d, 34).Value 
wplace = Cells(32 + d, 35).Value 

Do 

If Cells(21, 2).Value = Cells(21 + e, 3).Value And xplace < X2 Then 
Do 

xplace = Cells(32 + d, 29).Value 
If xplace > 0 Then 

Cells(32 + f 39).Value = xplace 
f=f+l 
d = d+l 

Else 
d = d 

End If 
Loop While (xplace < X2) 

End If 

If Cells(22, 2).Value = Cells(21 + e, 3).Value And yplace < Y2 Then 
Do 

yplace = Cells(32 + g, 30).Value 
If yplace > 0 Then 

Cells(32 + f, 40).Value = yplace 
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f=f+l 
g=g+l 

Else 
g = g 

End If 
Loop While (yplace < Y2) 

End If 

If Cells(23, 2).Value = Cells(21 + e, 3).Value And zplace < Z2 Then 
Do 

zplace = Cells(32 + h, 31).Value 
If zplace > 0 Then 

Cells(32 + f, 41).Value = zplace 
f=f+l 
h=h+l 

Else 
h = h 

End If 
Loop While (zplace < Z2) 

End If 

If Cells(24, 2).Value = Cells(21 + e, 3).Value And tplace < T2 Then 
Do 

tplace = Cells(32 + j, 32).Value 
If tplace > 0 Then 

Cells(32 + f, 42).Value = tplace 
f=f+l 

Else 
j=j 

End If 
Loop While (tplace < T2) 

End If 

If Cells(25, 2).Value = Cells(21 + e, 3) Value And uplace < U2 Then 
Do 

uplace = Cells(32 + k, 33).Value 
If uplace > 0 Then 

Cells(32 + f, 43)Value = uplace 
f=f+l 
k = k+l 

Else 
k = k 

End If 
Loop While (uplace < U2) 

End If 

If Cells(26, 2).Value = Cells(21 + e, 3).Value And vplace < V2 Then 
Do 

vplace = Cells(32 + 1, 34).Value 
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If vplace > 0 Then 
Cells(32 + f, 44).Value = vplace 
f=f+l 
1 = 1+1 

Else 
1 = 1 

End If 
Loop While (vplace < V2) 

End If 

If Cells(27, 2).Value = Cells(21 + e, 3).Value And wplace < W2 Then 
Do 

wplace = Cells(32 + m, 35).Value 
If wplace > 0 Then 

Cells(32 + f, 45).Value = wplace 
f=f+l 
m = m+ 1 

Else 
m = m 

End If 
Loop While (wplace < W2) 

End If 

= e+l 

Loop While ((xplace < XT) Or (yplace < Y2) Or (zplace < Z2) Or (tplace < T2) Or (uplace < U2) Or 
(vplace < V2) Or (wplace < W2)) 

Cells(29,47) = f 
'Cells(125, 2) = f 

End Sub 

Sub FinalFillO 

' FinalFill Macro 
' Macro recorded 4/24/2001 by rantoine 

Dim xplace As Integer 
Dim yplace As Integer 
Dim zplace As Integer 
Dim tplace As Integer 
Dim uplace As Integer 
Dim vplace As Integer 
Dim wplace As Integer 

Dim X2 As Integer 
Dim Y2 As Integer 
Dim Z2 As Integer 
Dim T2 As Integer 
Dim U2 As Integer 

67 



Dim V2 As Integer 
Dim W2 As Integer 

Dim xpart As Integer 
Dim ypart As Integer 
Dim zpart As Integer 
Dim tpart As Integer 
Dim upart As Integer 
Dim vpart As Integer 
Dim wart As Integer 

Dim a As Integer 
Dim b As Integer 
Dim c As Integer 
Dim d As Integer 
Dim e As Integer 
Dim f As Integer 
Dim g As Integer 
Dim h As Integer 
Dim i As Integer 
Dimj As Integer 
Dim k As Integer 
Dim 1 As Integer 
Dim m As Integer 
Dim n As Integer 

'Get final values 
X2 = Cells(2, 3).Value 
Y2 = Cells(3, 3).Value 
Z2 = Cells(4, 3).Value 
T2 = Cells(5, 3).Value 
U2 = Cells(6, 3).Value 
V2 = Cells(7, 3).Value 
W2 = Cells(8, 3).Value 

FFill = Cells(29,47) 

'Go variable by variable and fill from last number in 
'column until the final(lowest in column) of any variable. 
a = 0 
b = 0 

Do 
xplace = Cells(32 + a, 39) 

If xplace = X2 Then 
For xpart = 1 To (FFill - a) 
Cells(32 + a + b, 39) = xplace 
b = b+l 

Next xpart 
Else 

x = x 
End If 
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a = a+ 1 
Loop While (xplace < X2) 

c = 0 
d = 0 

Do 
yplace = Cells(32 + c, 40) 

If yplace = Y2 Then 
For ypart = 1 To (FFill - c) 
Cells(32 + c + d, 40) = yplace 
d = d+l 

Next ypart 
Else 

x = x 
End If 

c = c+ 1 
Loop While (yplace < Y2) 

e = 0 
f=0 

Do 
zplace = Cells(32 + e, 41) 

If zplace = Z2 Then 
For zpart = 1 To (FFill - e) 
Cells(32 + e + f, 41) = zplace 
f=f+l 

Next zpart 
Else 

x = x 
End If 

e = e+l 
Loop While (zplace < Z2) 

g = 0 
h = 0 

Do 
tplace = Cells(32 + g, 42) 

Iftplace = T2Then 
For tpart = 1 To (FFill - g) 
Cells(32 + g + h, 42) = tplace 
h = h+l 

Next tpart 
Else 
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End If 

g = g+l 
Loop While (tplace < T2) 

i = 0 
j = 0 

Do 
uplace = Cells(32 + i, 43) 

If uplace = U2 Then 
For upart = 1 To (FFill - i) 
Cells(32 + i+j, 43) = uplace 

Next upart 
Else 

x = x 
End If 

i = i+l 
Loop While (uplace < U2) 

k = 0 
1 = 0 

Do 
vplace = Cells(32 + k, 44) 

If vplace = V2 Then 
For vpart = 1 To (FFill - k) 
Cells(32 + k + 1, 44) = vplace 
1 = 1+1 

Next vpart 
Else 

x = x 
End If 

k = k+l 
Loop While (vplace < V2) 

m = 0 
n = 0 

Do 
wplace = Cells(32 + m, 45) 

If wplace = W2 Then 
For wpart = 1 To (FFill - m) 
Cells(32 + m + n, 45) = wplace 
n = n+ 1 

Next wpart 
Else 

x = x 
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End If 

m = m+ 1 
Loop While (wplace < W2) 

End Sub 

Sub BuildSlopeAndErrorO 

' BuildSlopeAndError Macro 
' Macro recorded 4/24/2001 by rantoine 

Dim Start As Double 
Dim Finish As Double 
Dim TotalTime As Double 
Dim CountProgram As Integer 

n = 0 

Start = Timer 

For CountProgram = 1 To 1 
Application.Run"MIEArow.xls!Mslope" 
Application.Run "MIEArow.xlslMsort" 
Application.Run"MIEArow.xls!Madd" 
Application.Run "MIEArow.xlslFinalFill" 
n = n+ 1 

Next CountProgram 

'Calculate Elapsed Time 
Finish = Timer   ' Set end time. 
TotalTime = Finish - Start   ' Calculate total time. 

'Write program time to excel 
Cells(29, 4) = TotalTime 
Cells(32, 75) = TotalTime 
MsgBox "Program time is " & TotalTime & " seconds" 

Application.Run "MIEArow.xlslRSAError" 

End Sub 

71 



Appendix D: RSA SOURCE CODE 

Sub RelSlopeO 
t 

' RelSlope Macro 
' Macro recorded 4/9/2001 by rantoine 

Dim ValueX As Double 
Dim ValueY As Double 
Dim ValueZ As Double 
Dim ValueT As Double 
Dim ValueU As Double 
Dim ValueV As Double 
Dim ValueW As Double 

Dim X2 As Integer 
Dim Y2 As Integer 
Dim Z2 As Integer 
Dim T2 As Integer 
Dim U2 As Integer 
Dim V2 As Integer 
Dim W2 As Integer 

Dim i As Integer 
Dim n As Integer • 
Dim z As Integer 

Dim num As Integer 
Dim Denominator As Integer 
Dim Biggest As Integer 
Dim Increment As Double 

Dim Xincrement As Double 
Dim Yincrement As Double 
Dim Zincrement As Double 
Dim Tincrement As Double 
Dim Uincrement As Double 
Dim Vincrement As Double 
Dim Wincrement As Double 

Dim Sortx As Double 
Dim Sorty As Double 
Dim Sortz As Double 
Dim Sortt As Double 
Dim Sortu As Double 
Dim Sortv As Double 
Dim Sortw As Double 

'Get initial starting values 
ValueX = Cells(2, 2).Value 
ValueY = Cells(3,2).Value 
ValueZ = Cells(4, 2).Value 
ValueT = Cells(5, 2).Value 
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ValueU = Cells(6, 2).Value 
ValueV = Cells(7, 2).Value 
ValueW = Cells(8,.2).Value 

'Get final values 
X2 = Cells(2, 3).Value 
Y2 = Cells(3, 3).Value 
Z2 = Cells(4, 3).Value 
T2 = Cells(5, 3).Value 
U2 = Cells(6, 3).Value 
V2 = Cells(7, 3).Value 
W2 = Cells(8, 3).Value 

z = 0 
num = 0 

For Biggest = 1 To 7 
Denominator = Cells(10 + z, 2).Value 
If Denominator > num Then 

num = Denominator 
Cells(18, 2) = num 

End If 

z = z+ 1 

Next Biggest 

i = 0 
n = 0 

Do 

Xincrement = ValueX 
Yincrement = ValueY 
Zincrement = ValueZ 
Tincrement = ValueT 
Uincrement = ValueU 
Vincrement = ValueV 
Wincrement = ValueW 

"Now increment values according to slope ratios 
If ValueX < Cells(2, 3).Value Then 

ValueX = Xincrement + Cells(21, 2) 
End If 
If ValueY < Cells(3, 3)Value Then 

ValueY = Yincrement + Cells(22, 2) 
End If 
If ValueZ < Cells(4, 3)Value Then 

ValueZ = Zincrement + Cells(23, 2) 
End If 
If ValueT < Cells(5, 3).Value Then 

ValueT = Tincrement + Cells(24, 2) 
End If 
If ValueU < Cells(6, 3). Value Then 
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ValueU = Uincrement + Cells(25, 2) 
End If 
If ValueV < Cells(7, 3).Value Then 

ValueV = Vincrement + Cells(26, 2) 
End If 
If ValueW < Cells(8, 3).Value Then 

ValueW = Wincrement + Cells(27, 2) 
End If 

'Write current output vector. 

If ValueX <= Cells(2, 3) Then 
Cells(32 + i, 2) = ValueX 

Else 
IfValueX>Cells(2,3)Then 

Cells(32 + i, 2) = 0 
End If 

End If 

If Value Y <= Cells(3, 3) Then 
Cells(32 + i, 3) = ValueY 

Else 
IfValueY>Cells(3,3)Then 

Cells(32 + i, 3) = 0 
End If 

End If 

If ValueZ <= Cells(4, 3) Then 
Cells(32 + i, 4) = ValueZ 

Else 
If ValueZ > Cells(4, 3) Then 

Cells(32 + i, 4) = 0 
End If 

End If 

If ValueT <= Cells(5, 3) Then 
Cells(32 + i, 5) = ValueT 

Else 
If ValueT > Cells(5, 3) Then 

Cells(32 + i, 5) = 0 
End If 

End If 

If ValueU <= Cells(6, 3) Then 
Cells(32 + i, 6) = ValueU 

Else 
IfValueU>Cells(6,3)Then 

Cells(32 + i, 6) = 0 
End If 

End If 

If ValueV <= Cells(7, 3) Then 
Cells(32 + i, 7) = ValueV 
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Else 
IfValueV>Cells(7,3)Then 

Cells(32 + i, 7) = 0 
End If 

End If 

If ValueW <= Cells(8, 3) Then 
Cells(32 + i, 8) = ValueW 

Else 
If ValueW > Cells(8, 3) Then 

Cells(32 + i, 8) = 0 
End If 

End If 

'Write to sort table. 
Sortx = Cells(32, 2) 
Sorty=Cells(32,3) 
Sortz = Cells(32, 4) 
Sortt = Cells(32,5) 
Sortu = Cells(32, 6) 
Sortv = Cells(32, 7) 
Sortw=Cells(32, 8) 

Cells(32, 10) = Sortx 
Cells(33, 10) = Sorry 
Cells(34, 10) = Sortz 
Cells(35, 10) = Sortt 
Cells(36, 10) = Sortu 
Cells(37, 10) = Sortv 
Cells(38, 10) = Sortw 

i = i+l 

Loop While ((ValueX < X2) Or (ValueY < Y2) Or (ValueZ < Z2) Or (ValueT < T2) Or (ValueU < U2) Or 
(ValueV < V2) Or (ValueW < W2)) 

Cells(2, ll) = i 

End Sub 

Sub SORT() 

' SORT Macro 
' Macro recorded 4/23/2001 by rantoine 

Range("J32:J38").Select 
Selection.SORT Keyl:=Range("J32"), Orderl :=xlDescending, Header:=xlGuess 

, OrderCustom:=l, MatchCase:=False, Orientation:=xlTopToBottom 
End Sub 
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Sub FillerO 
l 

1 Filler Macro 
1 Macro recorded 4/11/2001 by rantoine 

Dim Xi As Integer 
Dim Yi As Integer 
Dim Zi As Integer 
Dim Ti As Integer 
Dim Ui As Integer 
Dim Vi As Integer. 
Dim Wi As Integer 

Dim Xcomp As Double 
Dim Ycomp As Double 
Dim Zcomp As Double 
Dim Tcomp As Double 
Dim Ucomp As Double 
Dim Vcomp As Double 
Dim Wcomp As Double 

Dim FILL As Integer 
Dim Fillin As Integer 

Xi = Cells(2, 2).Value 
Yi = Cells(3, 2).Value 
Zi = Cells(4, 2).Value 
Ti = Cells(5, 2).Value 
Ui = Cells(6, 2).Value 
Vi = Cells(7, 2).Value 
Wi = Cells(8, 2).Value 

Xcomp = Cells(21, 2).Value 
Ycomp = Cells(22, 2)Value 
Zcomp = Cells(23,'2).Value 
Tcomp = Cells(24, 2).Value 
Ucomp = Cells(25, 2).Value 
Vcomp = Cells(26, 2)Value 
Wcomp = Cells(27, 2).Value 

FILL = Cells(2, ll).Value 
a = 0 
b = 0 
c = 0 

For Fillin =1 To FILL 

Do 

Xtemp = Cells(32 + b, 13)Value 
Ytemp = Cells(32 + b, 14) Value 
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Ztemp = Cells(32 + b, 15).Value 
Ttemp = Cells(32 + b, 16). Value 
Utemp = Cells(32 + b, 17).Value 
Vtemp = Cells(32 + b, 18).Value 
Wtemp = Cells(32 + b, 19). Value 

If ((Xtemp - Xi) > 0) And (Xcomp = Cells(32 + c, 10)) Then 
Xi = 1 + Xi 
' Write x increment fill coordinate. 
Cells(32 + a, 22) = Xi 
Cells(32 + a, 23) = Yi 
Cells(32 + a, 24) = Zi 
Cells(32 + a, 25) = Ti 
Cells(32 + a, 26) = Ui 
Cells(32 + a, 27) = Vi 
Cells(32 + a, 28) = Wi 
a = a+ 1 

End If 

If ((Ytemp - Yi) > 0) And (Ycomp = Cells(32 + c, 10)) Then 
Yi = 1 + Yi 
' Write y increment fill coordinate. 
Cells(32 + a, 22) = Xi 
Cells(32 + a, 23) = Yi 
Cells(32 + a, 24) = Zi 
Cells(32 + a, 25) = Ti 
Cells(32 + a, 26) = Ui 
Cells(32 + a, 27) = Vi 
Cells(32 + a, 28) = Wi 
a = a+ 1 

End If 

If ((Ztemp - Zi) > 0) And (Zcomp = Cells(32 + c, 10)) Then 
Zi = 1 + Zi 
' Write z increment fill coordinate. 
Cells(32 + a, 22) = Xi 
Cells(32 + a, 23) = Yi 
Cells(32 + a, 24) = Zi 
Cells(32 + a, 25) = Ti 
Cells(32 + a, 26) = Ui 
Cells(32 + a, 27) = Vi 
Cells(32 + a, 28) = Wi 
a = a+ 1 

End If 

If ((Ttemp - Ti) > 0) And (Tcomp = Cells(32 + c, 10)) Then 
Ti = 1 + Ti 
' Write t increment fill coordinate. 
Cells(32 + a, 22) = Xi 
Cells(32 + a, 23) = Yi 
Cells(32 + a, 24) = Zi 
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Cells(32 + a, 25) = Ti 
Cells(32 + a, 26) = Ui 
Cells(32 + a, 27) = Vi 
Cells(32 + a, 28) = Wi 
a = a+ 1 

End If 

If ((Utemp - Ui) > 0) And (Ucomp = Cells(32 + c, 10)) Then 
Ui = 1 + Ui 
' Write u increment fill coordinate. 
Cells(32 + a, 22) = Xi 
Cells(32 + a, 23) = Yi 
Cells(32 + a, 24) = Zi 
Cells(32 + a, 25) = Ti 
Cells(32 + a, 26) = Ui 
Cells(32 + a, 27) = Vi 
Cells(32 + a, 28) = Wi 
a=a+ 1 

End If 

If ((Vtemp - Vi) > 0) And (Vcomp = Cells(32 + c, 10)) Then 
Vi = 1 + Vi 
' Write v increment fill coordinate. 
Cells(32 + a, 22) = Xi 
Cells(32 + a, 23) = Yi 
Cells(32 + a, 24) = Zi 
Cells(32 + a, 25) = Ti 
Cells(32 + a, 26) = Ui 
Cells(32 + a, 27) = Vi 
Cells(32 + a, 28) = Wi 
a = a+ 1 

End If 

If ((Wtemp - Wi) > 0) And (Wcomp = Cells(32 + c, 10)) Then 
Wi = 1 + Wi 
' Write w increment fill coordinate. 
Cells(32 + a, 22) = Xi 
Cells(32 + a, 23) = Yi 
Cells(32 + a, 24) = Zi 
Cells(32 + a, 25) = Ti 
Cells(32 + a, 26) = Ui 
Cells(32 + a, 27) = Vi 
Cells(32 + a, 28) = Wi 
a=a+ 1 

End If 

Ifc>(Cells(2,4)-l)Then 
c = 0 

Else 
c = c+ 1 
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End If 

Loop While ((Xi < Xtemp) Or (Yi < Ytemp) Or (Zi < Ztemp) Or (Ti < Ttemp) Or (Ui < Utemp) Or (Vi < 
Vtemp) Or (Wi < Wtemp)) 
c = 0 
b = b+l 

Next Fillin 

■Number of iterations after fill. 
Cells(30, 27) = a 

'Integer line length. 
Cells(32, 53) = a 

End Sub 

Sub BuildSlopeAndError() 

' BuildSlopeAndError Macro 
' Macro recorded 4/23/2001 by rantoine 

Dim Start As Double 
Dim Finish As Double 
Dim TotalTime As Double 
Dim SlopeProgram As Integer 

n = 0 

Start = Timer 

For SlopeProgram = 1 To 1 
Application.Run"RSArow.xls!RelSlope" 
Application.Run "RSArow.xls! SORT" 
Application.Run"RSArow.xls!Filler" 
n = n+ 1 

Next SlopeProgram 

'Calculate Elapsed Time 
Finish = Timer   ' Set end time. 
TotalTime = Finish - Start    ' Calculate total time. 

'Write program time to excel 
Cells(29,4) = TotalTime 
Cells(32, 57) = TotalTime 

MsgBox "Program time is " & TotalTime & " seconds" 

Application.Run"RSArow.xls!RSAError" 
End Sub 
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Appendix E: CSA SOURCE CODE 

Sub RelSlope() 
I 

' RelSlope Macro 
' Macro recorded 4/9/2001 by USAF 

Dim ValueX As Double 
Dim ValueY As Double 
Dim ValueZ As Double 
Dim ValueT As Double 
Dim ValueU As Double 
Dim ValueV As Double 
Dim ValueW As Double 

Dim X2 As Integer 
Dim Y2 As Integer 
Dim Z2 As Integer 
Dim T2 As Integer 
Dim U2 As Integer 
Dim V2 As Integer 
Dim W2 As Integer 

Dim i As Integer 
Dim n As Integer 
Dim z As Integer 

Dim num As Integer 
Dim Denominator As Integer 
Dim Biggest As Integer 
Dim Increment As Double 

Dim Xincrement As Double 
Dim Yincrement As Double 
Dim Zincrement As Double 
Dim Tincrement As Double 
Dim Uincrement As Double 
Dim Vincrement As Double 
Dim Wincrement As Double 

Dim Sortx As Double 
Dim Sorry As Double 
Dim Sortz As Double 
Dim Sortt As Double 
Dim Sortu As Double 
Dim Sortv As Double 
Dim Sorrw As Double 

'Get initial starting values 
ValueX = Cells(2, 2).Value 
ValueY = Cells(3, 2).Value 
ValueZ = Cells(4, 2).Value 
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ValueT = Cells(5, 2).Value 
ValueU = Cells(6, 2).Value 
ValueV = Cells(7, 2).Value 
ValueW = Cells(8, 2).Value 

'Get final values 
X2 = Cells(2, 3).Value 
Y2 = Cells(3, 3).Value 
Z2 = Cells(4, 3).Value 
T2 = Cells(5, 3).Value 
U2 = Cells(6, 3).Value 
V2 = Cells(7, 3).Value 
W2 = Cells(8, 3).Value 

z = 0 
num = 0 

For Biggest = 1 To 7 
Denominator = Cells(10 + z, 2).Value 
If Denominator > num Then 

num = Denominator 
Cells(18,2) = num 

End If 

z = z+ 1 

Next Biggest 

i = 0 
n = 0 

Do 

Xincrement = ValueX 
Yincrement = ValueY 
Zincrement = ValueZ 
Tincrement = ValueT 
Uincrement = ValueU 
Vincrement = ValueV 
Wincrement = ValueW 

"Now increment values according to slope ratios 
If ValueX < Cells(2, 3).Value Then 

ValueX = Xincrement + Cells(21, 2) 
End If 
If ValueY < Cells(3, 3). Value Then 

ValueY = Yincrement + Cells(22, 2) 
End If 
If ValueZ < Cells(4, 3).Value Then 

ValueZ = Zincrement + Cells(23, 2) 
End If 
If ValueT < Cells(5, 3)Value Then 

ValueT = Tincrement + Cells(24, 2) 
End If 
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If ValueU < Cells(6, 3).Value Then 
ValueU = Uincrement + Cells(25, 2) 

End If 
If Value V < Cells(7, 3).Value Then 

ValueV = Vincrement + Cells(26, 2) 
End If 
If ValueW < Cells(8, 3).Value Then 

ValueW = Wincrement + Cells(27, 2) 
End If 

'Write current output vector. 

If ValueX <= Cells(2, 3) Then 
Cells(32 + i, 2) = ValueX 

Else 
If ValueX > Cells(2, 3) Then 

Cells(32 + i, 2) = 0 
End If 

End If 

If ValueY <= Cells(3, 3) Then 
Cells(32 + i, 3) = ValueY 

Else 
If ValueY > Cells(3, 3) Then 

Cells(32 + i, 3) = 0 
End If 

End If 

If ValueZ <= Cells(4, 3) Then 
Cells(32 + i, 4) = ValueZ 

Else 
If ValueZ > Cells(4, 3) Then 

Cells(32 + i, 4) = 0 
End If 

End If 

If ValueT <= Cells(5, 3) Then 
Cells(32 + i, 5) = ValueT 

Else 
IfValueT>Cells(5,3)Then 

Cells(32 + i, 5) = 0 
End If 

End If 

If ValueU <= Cells(6, 3) Then 
Cells(32 + i, 6) = ValueU 

Else 
If ValueU > Cells(6, 3) Then 

Cells(32 + i, 6) = 0 
End If 

End If 

If ValueV <= Cells(7, 3) Then 
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Cells(32 + i, 7) = ValueV 
Else 

If ValueV > Cells(7, 3) Then 
Cells(32 + i, 7) = 0 

End If 
End If 

If ValueW <= Cells(8, 3) Then 
Cells(32 + i, 8) = ValueW 

Else 
If ValueW > Cells(8, 3) Then 

Cells(32 + i, 8) = 0 
End If 

End If 

'Write to sort table. 
Sortx = Cells(32, 2) 
Sorty = Cells(32,3) 
Sortz = Cells(32,4) 
Sortt = Cells(32, 5) 
Sortu = Cells(32, 6) 
Sortv=Cells(32, 7) 
Sortw=Cells(32, 8) 

Cells(32, 10) = Sortx 
Cells(33, 10) = Sorry 
Cells(34, 10) = Sortz 
Cells(35, 10) = Sortt 
Cells(36, 10) = Sortu 
Cells(37, 10) = Sortv 
Cells(38, 10) = Sortw 

i = i+l 

Loop While ((ValueX < X2) Or (ValueY < Y2) Or (ValueZ < Z2) Or (ValueT < T2) Or (ValueU < U2) Or 
(ValueV < V2) Or (ValueW < W2)) 

Cells(2, ll) = i 

End Sub 

Note: The Sort and Filler subroutines are the same as RSA source code. 

Sub BuildSlopeAndError() 
t 

' BuildSlopeAndError Macro 
' Macro recorded 4/23/2001 by rantoine 

Dim Start As Double 
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Dim Finish As Double 
Dim TotalTime As Double 
Dim SegmentProgram As Integer 

n = 0 

Start = Timer 

For SegmentProgram = 1 To 1 
Application.Run"CSArow.xls!RelSlope" 
Application.Run"CSArow.xls!SORT" 
Application.Run "CSArow.xlsIFiller" 

Next SegmentProgram 

'Calculate Elapsed Time 
Finish = Timer   ' Set end time. 
TotalTime = Finish - Start   ' Calculate total time. 

'Write program time to excel 
Cells(29,4) = TotalTime 
Cells(32, 57) = TotalTime 
MsgBox "Program time is " & TotalTime & " seconds" 

Application.Run "CSArow.xlslRSAError" 
End Sub 
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Appendix F: SCA SOURCE CODE 

Sub SlopeCalculation() 

' SlopeCalculation Macro 
' Macro recorded 3/12/01 by Capt. Rich Antoine 

Dim ValueX As Integer 
Dim ValueY As Integer 
Dim ValueZ As Integer 
Dim ValueT As Integer 
Dim ValueU As Integer 
Dim ValueV As Integer 
Dim ValueW As Integer 
Dim X2 As Integer 
Dim Y2 As Integer 
Dim Z2 As Integer 
Dim T2 As Integer 
Dim U2 As Integer 
Dim V2 As Integer 
Dim W2 As Integer 
Dim i As Integer 
Dim n As Integer 
Dim Dx As Double 
Dim Dy As Double 
Dim Dz As Double 
Dim Dt As Double 
Dim Du As Double 
Dim Dv As Double 
Dim Dw As Double 
Dim BestDiml As Double 
Dim BestDim2 As Double 
Dim SlopeCompare As Integer 
Dim ClosestSlope As Double 
Dim NewDiml As Double 
Dim NewDim2 As Double 
Dim NewSlope As Double 

Dim Valuelncrementl As Integer 
Dim Valuelncrement2 As Integer 

i = 0 
NewSlope = 0 
BestDiml = 0 
BestDim2 = 0 

'Get initial starting values 
ValueX = Cells(2, 2).Value 
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ValueY = Cells(3,2).Value 
ValueZ = Cells(4, 2).Value 
ValueT = Cells(5, 2).Value 
ValueU = Cells(6, 2).Value 
ValueV = Cells(7, 2).Value 
ValueW = Cells(8, 2).Value 

'Get final values 
X2 = Cells(2, 3).Value 
Y2 = Cells(3, 3).Value 
Z2 = Cells(4, 3).Value 
T2 = Cells(5, 3).Value 
U2 = Cells(6, 3).Value 
V2 = Cells(7, 3).Value 
W2 = Cells(8, 3).Value 

Do 

Dx = X2 - ValueX 
Dy = Y2-ValueY 
Dz = Z2 - ValueZ 
Dt = T2-ValueT 
Du = U2 - ValueU 
Dv = V2-ValueV 
Dw = W2-ValueW 

'write Delta Values to Sheet 
Cells(10,2) = Dx 
Cells(ll,2) = Dy 
Cells(12,2) = Dz 
Cells(13,2) = Dt 
Cells(14,2) = Du 
Cells(15,2) = Dv 
Cells(16,2) = Dw 

'Slope Comparison 
ClosestSlope = 0 
n = 0 

For SlopeCompare = 1 To 42 

NewDiml=Cells(18 + n,4) 
NewDim2 = Cells(18 + n, 5) 

If NewDim2 = 0 Then 
NewDim2 = NewDim2 

Else 
NewSlope = NewDiml / NewDim2 

If (NewSlope >= ClosestSlope) And (NewSlope <= 1) Then 
IfCells(18 + n, 5)>0Then 
BestDiml = NewDiml 
BestDim2 = NewDim2 
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ClosestSlope = BestDiml / BestDim2 
End If 

End If 
End If 

n=n+ 1 

Next SlopeCompare 

'Now Check Which Value Should Update 

If (BestDiml = Dx) And (BestDim2 = Dy) Then 
Valuelncrementl = ValueX 
Valuelncrement2 = ValueY 
'1 
'ValueX = Int( Valuelncrementl + NewSlope + 0.5) 
ValueY = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dy) And (BestDim2 = Dx) Then 

Valuelncrementl = ValueY 
Valuelncrement2 = ValueX 
'2 
'ValueY = Int( Valuelncrementl + NewSlope + 0.5) 
ValueX = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dz) And (BestDim2 = Dy) Then 

Valuelncrementl = ValueZ 
Valuelncrement2 = ValueY 
'3 
'ValueZ = Int(ValueIncrementl + NewSlope + 0.5) 
ValueY = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dy) And (BestDim2 = Dz) Then 

Valuelncrementl = ValueY 
Valuelncrement2 = ValueZ 
'4 
'ValueY = Int( Valuelncrementl + NewSlope + 0.5) 
ValueZ = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dt) And (BestDim2 = Dy) Then 

Valuelncrementl = ValueT 
Valuelncrement2 = ValueY 
'5 
'ValueT = Int(ValueIncrementl + NewSlope + 0.5) 
ValueY = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dy) And (BestDim2 = Dt) Then 

Valuelncrementl = ValueY 
Valuelncrement2 = ValueT 
'6 
'ValueY = Int( Valuelncrementl + NewSlope + 0.5) 
ValueT = (Valuelncrement2 +1) 
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Else 
If (BestDiml = Du) And (BestDim2 = Dy) Then 

Valuelncrementl = ValueU 
Valuelncrement2 = ValueY 
'7 
'ValueU = Int( Valuelncrementl + NewSlope + 0.5) 
ValueY = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dy) And (BestDim2 = Du) Then 

Valuelncrementl = ValueY 
Valuelncrement2 = ValueU 
'8 
'ValueY = Int( Valuelncrementl + NewSlope + 0.5) 
ValueU = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dv) And (BestDim2 = Dy) Then 

Valuelncrementl = Value V 
Valuelncrement2 = ValueY 
•9 
'ValueV = Int( Valuelncrementl + NewSlope + 0.5) 
ValueY = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dy) And (BestDim2 = Dv) Then 

Valuelncrementl = ValueY 
Valuelncrement2 = ValueV 
'10 
'ValueY = Int( Valuelncrementl + NewSlope + 0.5) 
ValueV = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dw) And (BestDim2 = Dy) Then 

Valuelncrementl = ValueW 
Valuelncrement2 = ValueY 
'11 
'ValueW = Int( Valuelncrementl + NewSlope + 0.5) 
ValueY = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dy) And (BestDim2 = Dw) Then 

Valuelncrementl = ValueY 
Valuelncrement2 = ValueW 
'12 
'ValueY = Int(ValueIncrementl + NewSlope + 0.5) 
ValueW = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dt) And (BestDim2 = Dx) Then 

Valuelncrementl = ValueT 
Valuelncrement2 = ValueX 
'13 
'ValueT = Int( Valuelncrementl + NewSlope + 0.5) 
ValueX = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dx) And (BestDim2 = Dt) Then 

Valuelncrementl = ValueX 
Valuelncrement2 = ValueT 
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'ValueX = Int(ValueIncrementl + NewSlope + 0.5) 
ValueT = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dz) And (BestDim2 = Dx) Then 

Valuelncrementl = ValueZ 
Valuelncrement2 = ValueX 
'15 
'ValueZ = Int(ValueIncrementl + NewSlope + 0.5) 
ValueX = (Valuelncrement2 + 1) 

Else 
If (BestDiml = Dx) And (BestDim2 = Dz) Then 

Valuelncrementl = ValueX 
Valuelncrement2 = ValueZ 
'16 
'ValueX = Int( Valuelncrementl + NewSlope + 0.5) 
ValueZ = (Valuelncrement2 + 1) 

Else 
If (BestDiml = Du) And (BestDim2 = Dx) Then 

Valuelncrementl = ValueU 
Valuelncrement2 = ValueX 
'17 
'ValueU = Int( Valuelncrementl + NewSlope + 0.5) 
ValueX = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dx) And (BestDim2 = Du) Then 

Valuelncrementl = ValueX 
Valuelncrement2 = ValueU 
'18 
'ValueX = Int( Valuelncrementl + NewSlope + 0.5) 
ValueU = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dv) And (BestDim2 = Dx) Then 

Valuelncrementl = Value V 
Valuelncrement2 = ValueX 
'19 
'ValueV = Int( Valuelncrementl + NewSlope + 0.5) 
ValueX = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dx) And (BestDim2 = Dv) Then 

Valuelncrementl = ValueX 
Valuelncrement2 = ValueV 
'20 
'ValueX = Int( Valuelncrementl + NewSlope + 0.5) 
ValueV = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dw) And (BestDim2 = Dx) Then 

Valuelncrementl = ValueW 
Valuelncrement2 = ValueX 
'21 
'ValueW = Int(ValueIncrementl + NewSlope + 0.5) 
ValueX = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dx) And (BestDim2 = Dw) Then 

Valuelncrementl = ValueX 
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Valuelncrement2 = ValueW 
'22 
'ValueX = Int(ValueIncrementl + NewSlope + 0.5) 
ValueW = (Valuelncrement2 + 1) 

Else 
If (BestDiml = Dt) And (BestDim2 = Dz) Then 

Valuelncrementl = ValueT 
Valuelncrement2 = ValueZ 
'23 
'ValueT = Int( Valuelncrementl + NewSlope + 0.5) 
ValueZ = (Valuelncrement2 + 1) 

Else 
If (BestDiml = Dz) And (BestDim2 = Dt) Then 

Valuelncrementl = ValueZ 
Valuelncrement2 = ValueT 
'24 
'ValueZ = Int(ValueIncrementl + NewSlope + 0.5) 
ValueT = (Valuelncrement2 + 1) 

Else 
If (BestDiml = Du) And (BestDim2 = Dz) Then 

Valuelncrementl = ValueU 
Valuelncrement2 = ValueZ 
'25 
'ValueU = Int(ValueIncrementl + NewSlope + 0.5) 
ValueZ = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dz) And (BestDim2 = Du) Then 

Valuelncrementl = ValueZ 
Valuelncrement2 = ValueU 
'26 
'ValueZ = Int( Valuelncrementl + NewSlope + 0.5) 
ValueU = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dv) And (BestDim2 = Dz) Then 

Valuelncrementl = ValueV 
Valuelncrement2 = ValueZ 
'27 
'ValueV = Int( Valuelncrementl + NewSlope + 0.5) 
ValueZ = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dz) And (BestDim2 = Dv) Then 

Valuelncrementl = ValueZ 
Valuelncrement2 = ValueV 
'28 
'ValueZ = Int(ValueIncrementl + NewSlope + 0.5) 
ValueV = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dw) And (BestDim2 = Dz) Then 

Valuelncrementl = ValueW 
Valuelncrement2 = ValueZ 
'29 
'ValueW = Int(ValueIncrementl + NewSlope + 0.5) 
ValueZ = (Valuelncrement2 +1) 
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Else 
If (BestDiml = Dz) And (BestDim2 = Dw) Then 

Valuelncrementl = ValueZ 
Valuelncrement2 = ValueW 
'30 
'ValueZ = Int( Valuelncrementl + NewSlope + 0.5) 
ValueW = (Valuelncrement2 +1) 

Else 
If (BestDiml = Du) And (BestDim2 = Dt) Then 

Valuelncrementl = ValueU 
Valuelncrement2 = ValueT 
"31 
'ValueU = Int( Valuelncrementl + NewSlope + 0.5) 
ValueT = (Valuelncrement2 + 1) 

Else 
If (BestDiml = Dt) And (BestDim2 = Du) Then 

Valuelncrementl = ValueT 
Valuelncrement2 = ValueU 
'32 
'ValueT = Int(ValueIncrementl + NewSlope + 0.5) 
ValueU = (Valuelncrement2 + 1) 

Else 
If (BestDiml = Dv) And (BestDim2 = Dt) Then 

Valuelncrementl = ValueV 
Valuelncrement2 = ValueT 
'33 
'ValueV = Int( Valuelncrementl + NewSlope + 0.5) 
ValueT = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dt) And (BestDim2 = Dv) Then 

Valuelncrementl = ValueT 
Valuelncrement2 = ValueV 
'34 
'ValueT = Int(ValueIncrementl + NewSlope + 0.5) 
ValueV = (Valuelncrement2 + 1) 

Else 
If (BestDiml = Dw) And (BestDim2 = Dt) Then 

Valuelncrementl = ValueW 
Valuelncrement2 = ValueT 
'35 
'ValueW = Int( Valuelncrementl + NewSlope + 0.5) 
ValueT = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dt) And (BestDim2 = Dw) Then 

Valuelncrementl = ValueT 
Valuelncrement2 = ValueW 
'36 
'ValueT = Int(ValueIncrementl + NewSlope + 0.5) 
ValueW = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dv) And (BestDim2 = Du) Then 

Valuelncrementl = ValueV 
Valuelncremeht2 = ValueU 
'37 
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'ValueV = Int(ValueIncrementl + NewSlope + 0.5) 
ValueU = (Valuelncrement2 +1) 

Else 
If (BestDiml = Du) And (BestDim2 = Dv) Then 

Valuelncrementl = ValueU 
Valuelncrement2 = ValueV 
'38 
ValueU = Int( Valuelncrementl + NewSlope + 0.5) 
ValueV = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dw) And (BestDim2 = Du) Then 

Valuelncrementl = ValueW 
Valuelncrement2 = ValueU 
'39 
'ValueW = Int(ValueIncrementl + NewSlope + 0.5) 
ValueU = (Valuelncrement2 +1) 

Else 
If (BestDiml = Du) And (BestDim2 = Dw) Then 

Valuelncrementl = ValueU 
Valuelncrement2 = ValueW 
'40 
'ValueU = Int( Valuelncrementl + NewSlope + 0.5) 
ValueW = (Valuelncrement2 + 1) 

Else 
If (BestDiml = Dw) And (BestDim2 = Dv) Then 

Valuelncrementl = ValueW 
Valuelncrement2 = ValueV 
'41 
'ValueW = Int( Valuelncrementl + NewSlope + 0.5) 
ValueV = (Valuelncrement2 +1) 

Else 
If (BestDiml = Dv) And (BestDim2 = Dw) Then 

Valuelncrementl = ValueV 
Valuelncrement2 = ValueW 
'42 
'ValueV = Int( Valuelncrementl + NewSlope + 0.5) 
ValueW = (Valuelncrement2 + 1) 

End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
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End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 

'write current output vector 
Cells(65 + i, 2) = ValueX 
Cells(65 + i, 3) = ValueY 
Cells(65 + i, 4) = ValueZ 
Cells(65 + i, 5) = ValueT 
Cells(65 + i, 6) = ValueU 
Cells(65 + i, 7) = ValueV 
Cells(65 + i, 8) = ValueW 

i=i+l 

Loop While ((ValueX < X2) Or (ValueY < Y2) Or (ValueZ < Z2) Or (ValueT < T2) Or (ValueU < U2) Or 
(ValueV < V2) Or (ValueW < W2)) 

Cells(2, ll) = i 

End Sub 
Sub ErrorCalculation() 

' ErrorCalculation Macro 
' Macro recorded 3/12/01 by SC 
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Dim t As Double 
Dim tvl As Double 
Dim tv2 As Double 
Dim tv3 As Double 
Dim tv4 As Double 
Dim tv5 As Double 
Dim tv6 As Double 
Dim tv7 As Double 
Dim n As Integer 
Dim Tcalc As Integer 
Dim NumSlope As Integer 

Dim xdist As Double 
Dim ydist As Double 
Dim zdist As Double 
Dim tdist As Double 
Dim udist As Double 
Dim vdist As Double 
Dim wdist As Double 

Dim Real_d As Double 
Dim Integerd As Double 

Dim Po(l To 7) As Double 
Dim Pl(l To 7) As Double 
Dim V(l To 7) As Double 
Dim R(l To 7) As Double 

Dim RminusPol As Double 
Dim RminusPo2 As Double 
Dim RminusPo3 As Double 
Dim RminusPo4 As Double 
Dim RminusPo5 As Double 
Dim RminusPoö As Double 
Dim RminusPo7 As Double 
Dim RminusPoxV As Double 

Dim VxV As Double 

Dim PoCurvel As Double 
Dim PoCurve2 As Double 
Dim PoCurve3 As Double 
Dim PoCurve4 As Double 
Dim PoCurve5 As Double 
Dim PoCurveö As Double 
Dim PoCurve7 As Double 

Dim d As Double 

'Origin Points 
Po(l) = Cells(2, 7).Value 
Po(2) = Cells(3, 7).Value 
Po(3) = Cells(4, 7).Value 
Po(4) = Cells(5, 7).Value 
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Dim t As Double 
Dim tvl As Double 
Dim tv2 As Double 
Dim tv3 As Double 
Dim tv4 As Double 
Dim tv5 As Double 
Dim tv6 As Double 
Dim tv7 As Double 
Dim n As Integer 
Dim Tcalc As Integer 
Dim NumSlope As Integer 

Dim xdist As Double 
Dim ydist As Double 
Dim zdist As Double 
Dim tdist As Double 
Dim udist As Double 
Dim vdist As Double 
Dim wdist As Double 

Dim Reald As Double 
Dim Integerd As Double 

Dim Po(l To 7) As Double 
Dim Pl(l To 7) As Double 
Dim V(l To 7) As Double 
Dim R(l To 7) As Double 

Dim RminusPo 1 As Double 
Dim RminusPo2 As Double 
Dim RminusPo3 As Double 
Dim RminusPo4 As Double 
Dim RminusPo5 As Double 
Dim RminusPoö As Double 
Dim RminusPo7 As Double 
Dim RminusPoxV As Double 

Dim VxV As Double 

Dim PoCurvel As Double 
Dim PoCurve2 As Double 
Dim PoCurve3 As Double 
Dim PoCurve4 As Double 
Dim PoCurve5 As Double 
Dim PoCurveö As Double 
Dim PoCurve7 As Double 

Dim d As Double 

'Origin Points 
Po(l) = Cells(2, 7).Value 
Po(2) = Cells(3, 7).Value 
Po(3) = Cells(4, 7).Value 
Po(4) = Cells(5, 7).Value 
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Po(5) = Cells(6, 7) Value 
Po(6) = Cells(7, 7).Value 
Po(7) = Cells(8, 7).Value 

'End Points 

Pl(l) = Cells(2, 8).Value 
Pl(2) = Cells(3, 8).Value 
Pl(3) = Cells(4, 8).Value 
Pl(4) = Cells(5, 8)Value 
Pl(5) = Cells(6, 8).Value 
Pl(6) = Cells(7, 8).Value 
Pl(7) = Cells(8, 8).Value 

'Line Definition Vector, V = PI - Po 
V(l) = Cells(2, 9).Value 
V(2) = Cells(3, 9).Value 
V(3) = Cells(4, 9).Value 
V(4) = Cells(5, 9).Value 
V(5) = Cells(6, 9).Value 
V(6) = Cells(7, 9).Value 
V(7) = Cells(8, 9).Value 

'Multiply V column vector times V column Vector 

VxV = (V(l) * V(l)) + (V(2) * V(2)) + (V(3) * V(3)) + (V(4) * V(4)) + (V(5) * V(5)) + (V(6) * V(6)) + 
(V(7)*V(7)) 

'Get the value of counter i from slope comparison at top spreadsheet and call it NumSlope 

NumSlope = Cells(2, 1 l).Value 

n = 0 
For Tcalc = 1 To NumSlope 

R(l) = Cells(65 + n, 2) 
R(2) = Cells(65 + n, 3) 
R(3) = Cells(65 + n, 4) 
R(4) = Cells(65 + n, 5) 
R(5) = Cells(65 + n, 6) 
R(6) = Cells(65 + n, 7) 
R(7) = Cells(65 + n, 8) 

"Now subtract Po column vector from R Column vector 

RminusPol = R(l) - Po(l) 
RminusPo2 = R(2) - Po(2) 
RminusPo3 = R(3) - Po(3) 
RminusPo4 = R(4) - Po(4) 
RminusPo5 = R(5) - Po(5) 
RminusPo6 = R(6) - Po(6) 
RminusPo7 = R(7) - Po(7) 

'Now multiply RminusPo Column Vector times the V Column Vector 

95 



RminusPoxV = (RminusPol * V(l)) + (RminusPo2 * V(2)) + (RminusPo3 * V(3)) + (RminusPo4 * V(4)) 
+ (RminusPo5 * V(5)) + (RminusPo6 * V(6)) + (RminusPo7 * V(7» 

'Now divide RminusPoxV by VxV to get a value for t 
t = (RminusPoxV / VxV) 

'Now multiply t times v 

tvl=t*V(l) 
tv2 = t * V(2) 
tv3 = t * V(3) 
tv4 = t * V(4) 
tv5 = t * V(5) 
tv6 = t * V(6) 
tv7 = t * V(7) 

'Now create the on curve solution point to be used in the error (Po + tv = 0) 

PoCurvel = tvl + Po(l) 
PoCurve2 = tv2 + Po(2) 
PoCurve3 = tv3 + Po(3) 
PoCurve4 = tv4 + Po(4) 
PoCurve5 = tv5 + Po(5) 
PoCurve6 = tv6 + Po(6) 
PoCurve7 = tv7 + Po(7) 

'Write the on curve solution point to the spreadsheet 

Cells(65 + n, 10) = PoCurvel 
Cells(65 + n, H) = PoCurve2 
Cells(65 + n, 12) = PoCurve3 
Cells(65 + n, 13) = PoCurve4 
Cells(65 + n, 14) = PoCurve5 
Cells(65 + n, 15) = PoCurve6 
Cells(65 + n, 16) = PoCurve7 

'Now calculate d (distance) from of curve point R to the on curve solution point. 

d = ((((R(l) - PoCurvel) A 2) + ((R(2) - PoCurve2) A 2) + ((R(3) - PoCurve3) A 2) + ((R(4) - PoCurve4) A 

2) + ((R(5) - PoCurve5) A 2) + ((R(6) - PoCurve6) A 2) + ((R(7) - PoCurve7) A 2))) A (1 / 2) 

'Write the value of d to the spreadsheet 

Cells(65 + n, 18) = d 
Cells(65 + n, 31) = d 

'Calculate distance in each dimension (x,y,z,t,u,v,w). 

xdist = ((R(l) - PoCurvel) A 2) A (1 / 2) 
ydist = ((R(2) - PoCurve2) A 2) A (1 / 2) 
zdist = ((R(3) - PoCurve3) A 2) A (1 / 2) 
tdist = ((R(4) - PoCurve4) A 2) A (1 / 2) 
udist = ((R(5) - PoCurve5) A 2) A (1 / 2) 

96 



vdist = ((R(6) - PoCurveö) A 2) A (1 / 2) 
wdist = ((R(7) - PoCurve7) A 2) A (1 / 2) 

'Write the individual dimension distances to the spreadsheet. 

Cells(65 + n, 22) = xdist 
Cells(65 + n, 23) = ydist 
Cells(65 + n, 24) = zdist 
Cells(65 + n, 25) = tdist 
Cells(65 + n, 26) = udist 
Cells(65 + n, 27) = vdist 
Cells(65 + n, 28) = wdist 

'Measure the real line distance from start point to end point. 

Real_d = ((((Po(l) - PoCurvel) A 2) + ((Po(2) - PoCurve2) A 2) + ((Po(3) - PoCurve3) A 2) + ((Po(4) - 
PoCurve4) A 2) + ((Po(5) - PoCurve5) A 2) + ((Po(6) - PoCurve6) A 2) + ((Po(7) - PoCurve7) A 2))) A (1 / 2) 

Cells(65 + n, 32) = Real_d 
Cells(65, 33) = NumSlope 

n = n+ 1 
Next Tcalc 

End Sub 

Sub BuildSlopeAndError() 

' BuildSlopeAndError Macro 
' Macro recorded 4/23/2001 by rantoine 

Dim Start As Double 
Dim Finish As Double 
Dim TotalTime As Double 
Dim SlopeProgram As Integer 

n = 0 

Start = Timer 

For SlopeProgram = 1 To 1 
Application.Run "SCArow.xls! SlopeCalculation" 
n = n+ 1 

Next SlopeProgram 

'Calculate Elapsed Time 
Finish = Timer    ' Set end time. 
TotalTime = Finish - Start    ' Calculate total time. 
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'Write program time to excel 
Cells(62, 2) = TotalTime 
Cells(65, 37) = TotalTime 
MsgBox "Program time is " & TotalTime & " seconds" 

Application.Run "SCArow.xls!ErrorCalculation" 
End Sub 
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Appendix G: Error Calculation Subroutine 

Sub ErrorCalculation() 

' ErrorCalculation Macro 
' Macro recorded 3/12/01 by SC 

Dim t As Double 
Dim tvl As Double 
Dim tv2 As Double 
Dim tv3 As Double 
Dim tv4 As Double 
Dim rv5 As Double 
Dim tv6 As Double 
Dim tv7 As Double 
Dim n As Integer 
Dim Tcalc As Integer 
Dim NumSlope As Integer 

Dim xdist As Double 
Dim ydist As Double 
Dim zdist As Double 
Dim tdist As Double 
Dim udist As Double 
Dim vdist As Double 
Dim wdist As Double 

Dim Reald As Double 
Dim Integer_d As Double 

Dim Po(l To 7) As Double 
Dim P 1(1 To 7) As Double 
Dim V(l To 7) As Double 
Dim R(l To 7) As Double 

Dim RminusPol As Double 
Dim RminusPo2 As Double 
Dim RminusPo3 As Double 
Dim RminusPo4 As Double 
Dim RminusPo5 As Double 
Dim RminusPoö As Double 
Dim RminusPo7 As Double 
Dim RminusPoxV As Double 

Dim VxV As Double 

Dim PoCurvel As Double 
Dim PoCurve2 As Double 
Dim PoCurve3 As Double 
Dim PoCurve4 As Double 
Dim PoCurve5 As Double 
Dim PoCurveö As Double 
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Dim PoCurve7 As Double 

Dim d As Double 

'Origin Points 
Po(l) = Cells(2,7).Value 
Po(2) = Cells(3, 7).Value 
Po(3) = Cells(4, 7).Value 
Po(4) = Cells(5, 7).Value 
Po(5) = Cells(6, 7).Value 
Po(6) = Cells(7, 7).Value 
Po(7) = Cells(8, 7).Value 

'End Points 

Pl(l) = Cells(2,8).Value 
Pl(2) = Cells(3,8).Value- 
Pl(3) = Cells(4, 8).Value 
Pl(4) = Cells(5, 8).Value 
Pl(5) = Cells(6, 8).Value 
Pl(6) = Cells(7, 8).Value 
Pl(7) = Cells(8, 8).Value 

'Line Definition Vector, V = PI - Po 
V(l) = Cells(2,9).Value 
V(2) = Cells(3, 9).Value 
V(3) = Cells(4, 9).Value 
V(4) = Cells(5, 9).Value 
V(5) = Cells(6, 9).Value 
V(6) = Cells(7, 9).Value 
V(7) = Cells(8, 9).Value 

'Multiply V column vector times V column Vector 

VxV = (V(l) * V(l)) + (V(2) * V(2)) + (V(3) * V(3)) + (V(4) * V(4)) + (V(5) * V(5)) + (V(6) * V(6)) + 
(V(7)*V(7)) 

'Get the value of counter i from slope comparison at top spreadsheet and call it NumSlope 

NumSlope = Cells(2, 11). Value 

n=0 
For Tcalc = 1 To NumSlope 

R(l) = Cells(65 + n, 2) 
R(2) = Cells(65 + n, 3) 
R(3) = Cells(65 + n, 4) 
R(4) = Cells(65 + n, 5) 
R(5) = Cells(65 + n, 6) 
R(6) = Cells(65 + n, 7) 
R(7) = Cells(65 + n, 8) 

'Now subtract Po column vector from R Column vector 

100 



RminusPol=R(l)-Po(l) 
RminusPo2 = R(2) - Po(2) 
RminusPo3 = R(3) - Po(3) 
RminusPo4 = R(4) - Po(4) 
RminusPo5 = R(5) - Po(5) 
RminusPo6 = R(6) - Po(6) 
RminusPo7 = R(7) - Po(7) 

'Now multiply RminusPo Column Vector times the V Column Vector 

RminusPoxV = (RminusPol * V(l)) + (RminusPo2 * V(2)) + (RminusPo3 * V(3)) + (RminusPo4 * V(4)) 
+ (RminusPo5 * V(5)) + (RminusPo6 * V(6)) + (RminusPo7 * V(7)) 

'Now divide RminusPoxV by VxV to get a value for t 
t = (RminusPoxV / VxV) 

'Now multiply t times v 

tvl=t*V(l) 
tv2 = t * V(2) 
tv3 = t * V(3) 
tv4 = t * V(4) 
tv5 = t * V(5) 
tv6 = t * V(6) 
rv7 = t * V(7) 

'Now create the on curve solution point to be used in the error (Po + tv = 0) 

PoCurvel=tvl+Po(l) 
PoCurve2 = tv2 + Po(2) 
PoCurve3 = tv3 + Po(3) 
PoCurve4 = tv4 + Po(4) 
PoCurve5 = tv5 + Po(5) 
PoCurve6 = tv6 + Po(6) 
PoCurve7 = tv7 + Po(7) 

'Write the on curve solution point to the spreadsheet 

Cells(65 + n, 10) = PoCurvel 
Cells(65 + n, H) = PoCurve2 
Cells(65 + n, 12) = PoCurve3 
Cells(65 + n, 13) = PoCurve4 
Cells(65 + n, 14) = PoCurve5 
Cells(65 + n, 15) = PoCurve6 
Cells(65 + n, 16) = PoCurve7 

T^Tow calculate d (distance) from of curve point R to the on curve solution point. 

d = ((((R(l) - PoCurvel) A 2) + ((R(2) - PoCurve2) A 2) + ((R(3) - PoCurve3) A 2) + ((R(4) - PoCurve4) A 

2) + ((R(5) - PoCurve5) A 2) + ((R(6) - PoCurve6) A 2) + ((R(7) - PoCurve7) A 2))) A (1 / 2) 

'Write the value of d to the spreadsheet 

Cells(65 + n, 18) = d 
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Cells(65 + n, 31) = d 

'Calculate distance in each dimension (x,y,z,t,u,v,w). 

xdist = ((R(l) - PoCurvel) A 2) A (1 / 2) 
ydist = ((R(2) - PoCurve2) A 2) A (1 / 2) 
zdist = ((R(3) - PoCurve3) A 2) A (1 / 2) 
tdist = ((R(4) - PoCurve4) A 2) A (1 / 2) 
udist = ((R(5) - PoCurve5) A 2) A (1 / 2) 
vdist = ((R(6) - PoCurve6) A 2) A (1 / 2) 
wdist = ((R(7) - PoCurve7) A 2) A (1 / 2) 

'Write the individual dimension distances to the spreadsheet. 

Cells(65 + n, 22) = xdist 
Cells(65 + n, 23) = ydist 
Cells(65 + n, 24) = zdist 
Cells(65 + n, 25) = tdist 
Cells(65 + n, 26) = udist 
Cells(65 + n, 27) = vdist 
Cells(65 + n, 28) = wdist 

'Measure the real line distance from start point to end point. 

Real_d = ((((Po(l) - PoCurvel) A 2) + ((Po(2) - PoCurve2) A 2) + ((Po(3) - PoCurve3) A 2) + ((Po(4) - 
PoCurve4) A 2) + ((Po(5) - PoCurve5) A 2) + ((Po(6) - PoCurve6) A 2) + ((Po(7) - PoCurve7) A 2))) A (1 / 2) 

Cells(65 + n, 32) = Reald 
Cells(65, 33) = NumSlope 

n = n+ 1 
Next Tcalc 

End Sub 

Note: Error Calculation subroutine was modified to fit each algorithm. 
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