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Abstract: We present twisted spatiotemporal optical vortex (STOV) beams, which are
partially coherent light sources that possess a coherent optical vortex and a random twist
coupling their space and time dimensions. These beams have controllable partial coherence
and transverse orbital angular momentum (OAM), which distinguishes them from the more
common spatial vortex and twisted beams (known to carry longitudinal OAM) in the literature
and should ultimately make them useful in applications such as optical communications and
optical tweezing. We present the mathematical analysis of twisted STOV beams, deriving
the mutual coherence function and linear and angular momentum densities. We simulate
the synthesis of twisted STOV beams and investigate their free-space propagation charac-
teristics. We discuss how to physically generate twisted STOV fields and lastly conclude
with a summary and brief discussion of future research.

Index Terms: Light fields, optical beams, optical engineering, optical propagation, optical
pulse shaping, optical pulses, optical vortices.

1. Introduction
Nearly 30 years have passed since Allen et al.’s seminal paper showing that Laguerre-Gaussian
beams possess orbital angular momentum (OAM) [1]. In that time, research into OAM beams
(also called vortex or twisted light) has matured, giving rise to the field of singular optics [2]–[12].
OAM-carrying light beams have been successfully applied in optical communications [13]–[18],
optical tweezing [2], [4], [5], [17]–[23], astronomy [24]–[26], and laser ablation/structuring [27]–[29],
with uses in many other fields still being investigated.

To date, much of the OAM beam research has focused on fields with wavefront twists or vortices
coupling their transverse (to the direction of propagation) spatial dimensions. This results in beams
with axial or longitudinal (parallel to the propagation direction) OAM. As a result, there has been
significant interest in generating optical fields which possess transverse angular momentum. It
has been known for decades that evanescent waves excited by total internal reflection and tightly
focused Gaussian beams carry transverse spin angular momentum (SAM), also called photonic
wheels [30]–[32]. However, only in the last few years have fields with transverse SAM been
demonstrated for optical trapping, particle manipulation, optical field probing/reconstruction, and
spin-direction locking [18], [30]–[36]. More information on light that possesses transverse SAM and
potential applications can be found in Refs. [18], [30]–[32], [37].
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Optical beams that carry transverse OAM are a new phenomenon. In series of recent papers,
spatiotemporal optical vortex (STOV) and twisted space-time light beams were introduced [38]–
[44]. In the former case, an optical vortex couples the space and time dimensions of a coherent light
source; whereas in the latter, the space-time coupling (the twist) is random, such that the light beam
is partially coherent. The difference in OAM direction between vortex and twisted spatiotemporal
beams and their more common spatial (longitudinal OAM) counterparts discussed above creates
possibilities for STOV and twisted space-time fields to be applied in optical tweezing, atomic optics,
optical communications, and laser structuring in novel ways.

In this article, we combine STOV and twisted space-time beams to produce twisted STOV fields.
These partially coherent light beams possess both a random twist and a coherent vortex coupling
their space and time dimensions. This combination of controllable partial coherence and transverse
OAM should make these beams useful in existing OAM beam applications.

We begin with the mathematical derivation of twisted STOV beams and obtain expressions
for their mutual coherence function (MCF) and linear and angular momentum densities. We
then simulate the synthesis of twisted STOV beams and examine their free-space propagation
properties. We lastly conclude with a brief summary and a discussion of future work.

2. Methodology
2.1 Source-Plane Twisted STOV MCF

To find the MCF � of a twisted STOV beam, we begin with the superposition rule for partially
coherent fields originally derived by Gori and Santarsiero [45]:

� (x1, t1, x2, t2) =
∫∫ ∞

−∞
p (vx , vt ) H (x1, t1; vx , vt ) H∗ (x2, t2; vx , vt ) dvxdvt , (1)

where, in general, p is any real positive function and H is a kernel. As is customary for space-time
coupled beams, we ignore the beam’s spatial distribution in the y direction.

If we remove the vortex from a twisted STOV beam, the MCF should simplify to that of a twisted
space-time partially coherent field described in Ref. [44]. Thus, we should expect that the p and
H in Eq. (1) are very similar to those of twisted space-time beams. We therefore let p and H
equal

p (vx , vt ) =
√

αβ

π
exp

(−αv2
x

)
exp

(−βv2
t

)
H (x, t ; vx , vt ) = τ (x, t ) exp

(−σx x2) exp
(−σt t 2)exp [j (x − jαμt ) vx ] exp [j (t + jβμx ) vt ] , (2)

where σx , σt , α, and β are related to the beam’s spatial and temporal pulse and correlation widths
(Wx , Wt , δx , and δt , respectively), and μ is the twist parameter subject to the constraint |μ|δxδt ≤
1 [46].

With the exception of the complex function τ (described more below), the p and H in Eq. (2)
are the same as those in Ref. [44]. We can therefore substitute them into Eq. (1) and evaluate the
integrals to yield

� (x1, t1, x2, t2) = τ (x1, t1) τ ∗ (x2, t2) exp

(
−x2

1 + x2
2

4W 2
x

)
exp

(
− t 2

1 + t 2
2

4W 2
t

)

× exp

[
− (x1 − x2)2

2δ2
x

]
exp

[
− (t1 − t2)2

2δ2
t

]
exp [jμ (x1t2 − x2t1)] . (3)
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The p and H parameters (σx , σt , α, and β) relate to physical beam parameters Wx , Wt , δx , and δt

through the following system of nonlinear equations:

1
4W 2

x
= σx − βμ2

2
1

2δ2
x

= 1
4α

+ βμ2

4

1

4W 2
t

= σt − αμ2

2
1

2δ2
t

= 1
4β

+ αμ2

4
, (4)

which unfortunately, for synthesis of twisted space-time beams, cannot be inverted.
The MCF in Eq. (3) is organized such that the first four terms correspond to the beam’s

deterministic spatial and temporal (in general, complex) shapes, while the latter three define the
spatial and temporal correlation properties of the random beam. STOV beams, as discussed in
Refs. [39]–[43], are fully coherent, deterministic optical fields and take a form similar to that of
Laguerre-Gauss laser modes [39], [40], [42]. Thus, the spatiotemporal vortex should be completely
described in the first four terms of the MCF in Eq. (3). In addition, those terms should assume the
form of a Laguerre-Gauss mode [42], [47], [48], namely,

τ (x, t ) exp
(

− x2

4W 2
x

)
exp

(
− t 2

4W 2
t

)
=
(√

2
W

ρ

)|
|
exp

(
− ρ2

W 2

)
exp (j
φ) exp (−jωct ) , (5)

where ρ and φ are the spatial-temporal radial and azimuthal coordinates, ωc is the mean, or carrier
frequency of the light beam, W is the beam’s spatial-temporal radius, and 
 is the STOV order. In
Eq. (5), we have assumed a Laguerre-Gauss mode with radial index equal to zero.

From here, it is a rather simple matter of finding ρ, φ, and τ ; they are

ρ =
√(

W
2Wx

x
)2

+
(

W
2Wt

t
)2

φ = tan−1
(

Wx

Wt

t
x

)

τ (x, t ) =
[

x√
2Wx

+ j sgn (
)
t√
2Wt

]|
|
exp (−jωct ) , (6)

where sgn(x ) is the signum function. The twisted STOV MCF becomes

� (x1, t1, x2, t2) =
(

2ρ1ρ2

W 2

)|
|
exp

(
−ρ2

1 + ρ2
2

W 2

)
exp [j
 (φ1 − φ2)] exp [−jωc (t1 − t2)]

× exp

(
−
∣∣ρ1 − ρ2

∣∣2
δ2

)
exp [jξ ŷ · (ρ1 × ρ2)] , (7)

where ρ = x̂xW/(2Wx ) + t̂ tW/(2Wt ) and x̂ × t̂ = ŷ, ξ = 4μWxWt /W 2 is the overall space-time twist,
and δ = δx/(

√
2Wx ) = δt /(

√
2Wt ) is the spatial-temporal correlation radius. In addition to the relations

in Eq. (4), ασx = βσt .

2.2 Propagation of the Twisted STOV MCF

Not surprisingly, Eq. (7) is very similar in form to the source-plane (z = 0) cross-spectral den-
sity function for spatially twisted Laguerre-Gaussian Schell-model beams [49], [50]. Despite this
similarity, twisted STOV beams propagate differently than traditional spatially twisted partially
coherent fields because of spatiotemporal coupling. Assuming the field is relatively narrowband,
i.e., ωc � max(1/Wt , 1/δt ), the twisted STOV MCF at any transverse plane z > 0 in free space can
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be found by evaluating

� (x1, t1, x2, t2, z) ≈ 1
λcz

∫∫ ∞

−∞
�

[
x ′

1, t1 − z
c

−
(
x1 − x ′

1

)2
2cz

, x ′
2, t2 − z

c
−
(
x2 − x ′

2

)2
2cz

]
dx ′

1dx ′
2, (8)

where c is the speed of light and λc is the beam’s carrier wavelength. Substituting Eq. (7) into
Eq. (8) yields

� (x1, t1, x2, t2, z) = 2|
| exp
[−jωc

(
t̄1 − t̄2

)]
λcz

exp

(
− t̄ 2

1 + t̄ 2
2

4W 2
t

)
exp

[
−
(
t̄1 − t̄2

)2
2δ2

t

]

×
∫∫ ∞

−∞

[
x ′

1

2Wx
+ j

sgn (
)
2Wt

(
t̄1 + x1
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x ′

1 − x ′2
1

2cz

)]|
|

×
[

x ′
2

2Wx
− j

sgn (
)
2Wt

(
t̄2 + x2
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x ′

2 − x ′2
2

2cz

)]|
|

× exp
[
−j

μ
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(x1 − x2) x ′

1x ′
2

]
exp

[
−j
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z

(
x1 − μz
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t̄2

)
x ′

1

]
exp

[
j
kc

z

(
x2 − μz

kc
t̄1

)
x ′

2

]

× exp

(
−x ′2

1 + x ′2
2

4W 2
x

)
exp

[
−
(
x ′

1 − x ′
2

)2
2δ2

x

]
exp

[
jkc

2z

(
x ′2

1 − x ′2
2

)]
dx ′

1dx ′
2, (9)

where kc = ωc/c and t̄ = t − z/c − x2/(2cz).
Following approaches similar to those employed in Refs. [49], [51], it might be possible to

evaluate Eq. (9) analytically. The general procedure would be to expand the 
th-order polynomials
using the binomial theorem and then evaluate the resulting powers-times-Gaussian integrals.
Ultimately, the MCF would be expressed in the form of multidimensional sums. Computationally,
there is little difference evaluating multidimensional sums vice integrals; thus, we choose the latter.

In the following section, we discuss the details of this computation. We also explain how to
synthesize realizations of twisted STOV beams and discuss the particulars of the wave-optics
simulations. The theoretical MCF and simulation results are then presented in Section IV.

2.3 Linear and Angular Momentum Densities

Before proceeding to the computational details, it is worth discussing the OAM of twisted STOV
beams. We begin with the linear P and angular L momentum densities for coherent paraxial beams
propagating in the z direction originally derived by Allen et al. [1]:

P (ρ, z) = ωε0 Im [U (ρ, z) ∇U ∗ (ρ, z)] + ẑkωε0 |U (ρ, z)|2

L (ρ, z) = r × P (ρ, z) , (10)

where ε0 is the vacuum permittivity and r = ρ̂ρ + ẑz is the position vector.
The first term of P, after neglecting the relatively weak ∂U/∂z, is the transverse linear momentum

density. For beams with an x-y (spatial) vortex or twist, this term, via the cross-product with r and
subsequent integration over the beam’s cross section, gives rise to a z-directed total OAM [1], [3],
[9], [51]–[53]. For twisted STOV beams, the mathematics is similar; however, as we show, the total
OAM is y directed.

Twisted STOV beams are partially coherent, narrowband fields, and therefore, we are interested
in the ensemble averages of P and L, such that

〈P (ρ, z)〉 ≈ ωcε0 Im [∇2� (ρ1, ρ2, z)]
∣∣
ρ1=ρ2=ρ

+ ẑkcωcε0〈I (ρ, z)〉
〈L (ρ, z)〉 = r × 〈P (ρ, z)〉, (11)
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where ∇2 operates on the subscript “2” coordinates of the MCF [9], [52], [53]. Using Eqs. (6)–(9),
the del operator in spatial-temporal cylindrical coordinates is

∇ = ∂

∂ρ

(
x̂

W
2Wx

cos φ + t̂
W
2Wt

sin φ

)
+ 1

ρ

∂

∂φ

(
−x̂

W
2Wx

sin φ + t̂
W
2Wt

cos φ

)

= ∂

∂ρ

(
x̂

W
2Wx

cos φ + ẑ
W

2Wz
sin φ

)
+ 1

ρ

∂

∂φ

(
−x̂

W
2Wx

sin φ + ẑ
W

2Wz
cos φ

)
, (12)

where the t and z directions are parallel via t̄ , such that Wz = cWt (note, in general, Wz = vgWt ,
where vg is the group velocity of the pulse) and the twisted STOV MCF is assumed invariant in the
y direction. As a result of this last assumption, the position vector r = ρ = x̂xW/(2Wx ) + ẑzW/(2Wz ).

Substituting Eqs. (7) (the source-plane MCF) and (12) into Eq. (11) and simplifying yields the
source-plane linear momentum density:

〈P (ρ)〉 = ωcε0

(
2ρ2

W 2

)|
|
exp

(
−2ρ2

W 2

){
−x̂

W
2Wx

sin φ

(
ξρ − 


ρ

)

+ẑ
[

W
2Wz

cos φ

(
ξρ − 


ρ

)
+ kc

]}
. (13)

We can now derive the angular momentum density 〈L〉 by taking the cross product of r and 〈P〉,
viz.,

〈L (ρ)〉 = ŷωcε0

(
2ρ2

W 2

)|
|
exp

(
−2ρ2

W 2

)[
x cos φ

W 2

4WxWz

(
ξρ − 


ρ

)

+z sin φ
W 2

4WxWz

(
ξρ − 


ρ

)
+ x

W
2Wx

kc

]
. (14)

By noting that xW/(2Wx ) = ρ cos φ and zW/(2Wz ) = ρ sin φ, 〈L〉 simplifies to

〈Ly (ρ)〉 = ωcε0

(
2ρ2

W 2

)|
|
exp

(
−2ρ2

W 2

)[(
ξρ2 − 


) ( W
2Wz

cos2 φ + W
2Wx

sin2 φ

)
+ kcρ cos φ

]
. (15)

Integration over the x and z (or t ) dimensions of the beam yields the total OAM:

〈Ly〉 =
∫∫ ∞

−∞
〈Ly (ρ)〉dxdz

= ωcε0 |
|!πW 2

4

(
W

2Wx
+ W

2Wz

)(
−
 + W 2

2
ξ + W 2

2
ξ |
|

). (16)

Like the source-plane MCF given in Eq. (7), this expression for the total OAM is very similar in
form to that derived in Refs. [49], [51] for spatially twisted vortex beams. The critical difference
being direction—longitudinal or axial OAM in Refs. [49], [51], transverse OAM here. It is well known
that beams which carry longitudinal OAM rotate in the transverse plane as they propagate [6], [54],
[55]. Similarly, twisted STOV beams—carrying transverse OAM—rotate in a plane parallel to the
propagation direction. We discuss this in more detail in Section IV.

3. Calculation
3.1 Computing the Twisted STOV MCF At Any Plane z > 0

We begin this section with the numerical calculation of the MCF in Eq. (9). The integrand in Eq. (9)
is expressed as the product of a six-dimensional function (lines 2 and 3) h(x1, t1, x2, t2; x ′

1, x ′
2) and a

two-dimensional (2D) function χ (x ′
1, x ′

2) (line 4). The subsequent integrals over x ′
1 and x ′

2 form a 2D
superposition integral. Equation (9), in its entirety, can be evaluated as the Hadamard product of a
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matrix-vector product, namely,

� = t̄ � [Hx] �x ′
1�x ′

2, (17)

where �x ′
1 and �x ′

2 are the grid spacings in the source x ′
1-x ′

2 plane; t̄ is a vector representing the “t̄
terms” (line 1); H is a matrix corresponding to h with the observation (x1, t1, x2, and t2) and source
coordinates along the rows and columns, respectively; and lastly, x is a vector representing χ . The
MCF � in Eq. (17) is a vector which should be reshaped into a more physically meaningful form.

The main challenge with evaluating Eq. (9) in this manner is the size of H. Indeed, H becomes
prohibitive for even small computational grids, and it is therefore impractical to find � at every
combination of x1, t1, x2, and t2. Fortunately, the MCF’s behavior as a function of z can be determined
from 2D planar cuts through the four-dimensional (4D) MCF. This reduces H to a more manageable
size. In the theoretical MCF results presented in the next section, we compute Eq. (9), for several
propagation distances, under the following conditions:

� Letting x1 = x2 and t1 = t2, we find the ensemble-averaged, or pulse-averaged intensity
〈I(x, t , z)〉.

� Letting x2 = 0 and t1 = z/c (i.e., t̄1 ≈ 0), we find �(x1, 0, z/c, t2, z), which shows the twisted
STOV beam’s spatiotemporal coupling.

The particular twisted STOV beam parameter values (Wx , Wt , δx , δt , μ, and 
), computational grid
sizes and spacings, and propagation distances are presented at the end of this section.

3.2 Generating Twisted STOV Realizations

We now turn to generating stochastic realizations of twisted STOV beams. The goal is to generate
optical fields which are sample functions drawn from the set of all such functions whose ensemble-
averaged autocorrelation is given by the MCF in Eq. (7). Starting with a vector of zero-mean,
unit-variance, independent, complex Gaussian random numbers r , a twisted STOV field instance
can be generated by evaluating

U (x, t ) = τ (x, t ) exp
(−σx x2)exp

(−σt t 2)
×
∫∫ ∞

−∞
r (vx , vt )

√
p (vx , vt ) /2 exp [j (x − jαμt ) vx ] exp [j (t + jβμx ) vt ] dvxdvt , (18)

where p is given in Eq. (2) and τ is given in Eq. (6) [44], [56].
Since r is delta correlated, i.e., 〈r (vx1, vt1)r∗(vx2, vt2)〉 = 2δ(vx1 − vx2)δ(vt1 − vt2), the 2D integral

in Eq. (18) can be evaluated as the product of two one-dimensional integrals. In discrete form,
Eq. (18) becomes

U = τ �
[

Vx
(√

pvx � rvx

)√�vx

2

]
�
[

Vt
(√

pvt � rvt

)√�vt

2

]
, (19)

where �vx and �vt are the spacings in the vx and vt directions, τ is a vector representing the
functions on line 1 of Eq. (18), and Vx and Vt are matrices corresponding to the Fourier-like kernels
in Eq. (18). The other symbols are vectors corresponding to r and p. Like �, U is a vector which
should be reshaped into a matrix to physically represent the optical field.

In contrast to Eq. (18), where a linear operation is performed on a matrix of Gaussian random
numbers, Eq. (19) contains the product of two independent normal random vectors. Therefore,
the U generated using Eq. (19) are not Gaussian distributed. Nevertheless, Eq. (19) produces U
realizations with the desired twisted STOV MCF.

3.3 Simulation Setup

With Eqs. (17) and (19), we can now examine the propagation behaviors of twisted STOV beams.
We considered three circular (i.e., Wx = cWt ) twisted STOV beams in this analysis: an “incoherent”
case where δx = 3Wx/4 and δt = 3Wt /4, a “partially coherent” case where δx = Wx and δt = Wt , and a
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TABLE 1

Twisted STOV Beam Parameters

“coherent” case where δx = 3Wx/2 and δt = 3Wt /2. Because of the constraints on parameter values
[recall Eq. (4), |μ|δxδt ≤ 1, and ασx = βσt ], the twist μ was forced to vary from case to case. For this
study, we would have preferred to hold μ constant; however, we were able to saturate the twists,
such that |μ|δxδt = 1 [57]. In addition, we set μ < 0 so that the twist OAM component was in the
same direction as that of the vortex [see Eqs. (15) and (16)]. All parameter values are reported in
Table 1.

We propagated these three beams to five z locations, i.e., z = 70.59 m, 141.18 m, 282.35 m,
564.70 m, and 1129.41 m, corresponding to Fresnel numbers NF = 4πW 2

x /(λcz) = 10, 5, 2.5, 1.25,
and 0.625, to examine how the beams evolved from the near to far zones. We found the theoretical
MCFs by computing Eq. (17) as described above.

For the twisted STOV field instances U , generated via Eq. (19), we first transformed U to the
x-ω domain by performing a fast Fourier transform (FFT) along the t dimension of U . We then
propagated U (x, ω) to the z locations listed above by evaluating the Fresnel integral [58]–[60]
using a FFT computed along U ’s x dimension. Lastly, we transformed U (x, ω, z) back to the x-t
domain using a FFT computed along U ’s ω dimension resulting in U (x, t , z). From 15000 statistically
independent U (x, t , z), we computed the pulse-averaged intensity 〈I(x, t , z)〉 and �(x1, 0, z/c, t2, z)
to compare to Eq. (17).

In both the source and observation planes, we used grids that were N = 512 points per side with
spacings equal to �x ′

1 = �x ′
2 = �x ′ = min(δx )/10 and �x1 = �x2 = �x = λcz/(N�x ′), respectively.

For the t dimension, the spacings were �t = min(δt )/10 in both planes. Lastly, in Eq. (19), the
spacings in the vx -vt domain were �vx = 2π/(N�x ′) and �vt = 2π/(N�t ).

We have included the MATLAB.m files required to execute the simulations as supplementary
materials to this paper. In the next section, we present and discuss the results.

4. Results and Discussion
4.1 Twisted STOV Fields

We begin this section with twisted STOV field realizations shown in Fig. 1. These are included to
show what twisted STOV fields physically look like. Each row of the figure displays the magnitude
and phase of an example source-plane U (x, t ) from the incoherent (I), partially coherent (PC), and
coherent (C) beam cases described above. Row and column headings are included for the reader’s
convenience.

Examining the |U | images, the similarity of these beams, for lack of a better comparison, to Swiss
cheese is striking. Of course, the “holes” are caused by the phase vortices evident in the arg(U )
images. In each of these plots, one can clearly discern the second-order STOV at the origin. Being
deterministic, this phase dislocation is present in every twisted STOV realization.

The random twist arises from the first-order vortices that surround the on-axis STOV. The
locations of these “twist” vortices change from realization to realization, and clearly, the vortex
density decreases as the field becomes more coherent. In addition, all the twist vortices in the
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Fig. 1. Source-plane twisted STOV field realizations: (a) and (b) incoherent (I) |U (x, t )| and arg[U (x, t )];
(c) and (d) partially coherent (PC) |U (x, t )| and arg[U (x, t )]; and (e) and (f) coherent (C) |U (x, t )| and
arg[U (x, t )].

arg(U ) images have the same topological charge (positive in Fig. 1), and therefore, connect to
oppositely (negatively) charged vortices at infinity [9], [61], [62]. This produces the web-like patterns
in the arg(U ) plots.

All twist vortices have the same charge because the twist is saturated in the I, PC, and C cases.
In the opposite extreme, setting μ = 0 and 
 = 0, the twisted STOV MCF in Eq. (7) simplifies
to that of a Gaussian Schell-model (GSM) pulsed beam [63]–[65]. Fig. 2 shows GSM pulsed
beam realizations for the I, PC, and C beam cases. These instances were generated in the
same manner as the twisted STOV realizations described above. GSM pulsed beam realizations
are space-time speckle fields, and like spatial speckle fields, contain roughly equal numbers of
positively and negatively charged phase vortices [9], [61], [62]. This means, as |μ|δxδt < 1 and
ultimately approaches 0, twisted STOV field realizations (excluding the 
 = 0 deterministic on-axis
vortex) should evolve into traditional speckle fields, and more and more negatively charged vortices
(in our case) should appear in the arg(U ) images.

4.2 Source-Plane Moments

Continuing with the results, Figs. 3– 5 show the I, PC, and C source-plane pulse-averaged intensity
〈I(x, t )〉 and twisted STOV MCF 2D cuts, i.e, �(x1, 0, 0, t2), respectively. The layout of all three
figures is identical. Subfigures (a) and (b) show the theoretical and simulated 〈I(x, t )〉 encoded using
the same false color scale shown immediately to the right of (b). Subfigure (c) directly compares
the theoretical and simulated 〈I(x, x/c)〉 slices (anti-diagonals) of (a) and (b). The source-plane
theoretical [see Eq. (13)] and simulated linear momentums 〈P(x, t )〉 (neglecting the z-directed term
containing kc) are overlayed on their respective 〈I(x, t )〉.

Similarly organized to (a)–(c), subfigures (d) and (e) display the theoretical and simulated
Re[�(x1, 0, 0, t2)] [again encoded using the same color scale shown to the right of (e)], while (f)
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Fig. 2. Source-plane GSM pulsed beam realizations: (a) and (b) incoherent (I) |U (x, t )| and arg[U (x, t )];
(c) and (d) partially coherent (PC) |U (x, t )| and arg[U (x, t )]; and (e) and (f) coherent (C) |U (x, t )| and
arg[U (x, t )].

Fig. 3. Incoherent case source-plane 〈I(x, t )〉 and �(x1, 0, 0, t2): (a) and (b) theory and simulation
〈I(x, t )〉 with overlayed 〈P(x, t )〉, (c) theory versus simulation 〈I(x, x/c)〉; (d) and (e) theory and simulation
Re[�(x1, 0, 0, t2)], (f) theory versus simulation Re[�(x1, 0, 0, x1/c)]; and (g) and (h) theory and simulation
Im[�(x1, 0, 0, t2)], (i) theory versus simulation Im[�(x1, 0, 0, x1/c)].
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Fig. 4. Partially coherent case source-plane 〈I(x, t )〉 and �(x1, 0, 0, t2): (a) and (b) theory and simulation
〈I(x, t )〉 with overlayed 〈P(x, t )〉, (c) theory versus simulation 〈I(x, x/c)〉; (d) and (e) theory and simulation
Re[�(x1, 0, 0, t2)], (f) theory versus simulation Re[�(x1, 0, 0, x1/c)]; and (g) and (h) theory and simulation
Im[�(x1, 0, 0, t2)], (i) theory versus simulation Im[�(x1, 0, 0, x1/c)].

Fig. 5. Coherent case source-plane 〈I(x, t )〉 and �(x1, 0, 0, t2): (a) and (b) theory and simulation 〈I(x, t )〉
with overlayed 〈P(x, t )〉, (c) theory versus simulation 〈I(x, x/c)〉; (d) and (e) theory and simulation
Re[�(x1, 0, 0, t2)], (f) theory versus simulation Re[�(x1, 0, 0, x1/c)]; and (g) and (h) theory and simulation
Im[�(x1, 0, 0, t2)], (i) theory versus simulation Im[�(x1, 0, 0, x1/c)].
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Fig. 6. Theoretical twisted STOV beam 〈I(x, t , z)〉. Rows 1–3 show the incoherent (I), partially coherent
(PC), and coherent (C) 〈I(x, t , z)〉, while columns 1–6 show 〈I(x, t , z)〉 for Fresnel numbers NF = ∞, 10,
5, 2.5, 1.25, and 0.625, respectively.

directly compares the theoretical and simulated Re[�(x1, 0, 0, x1/c)] slices (anti-diagonals) of (d)
and (e). Lastly, subfigures (g)– (i) report the Im[�(x1, 0, 0, t2)] results in the same manner as (d)–(f).

Except for some differences in the �(x1, 0, 0, t2) results, visible outside the central MCF features
in Fig. 3(f) and (i) and Fig. 4(f) and (i), the agreement between theory and simulation is very good.
These results prove that we are indeed producing twisted STOV field realizations with the proper
statistics.

4.3 Propagation Behavior

Lastly, Figs. 6 and 7 show how the pulse-averaged intensity of a twisted STOV beam evolves as it
propagates in free space. The figures show the theoretical and simulated results, respectively, and
both are organized in the same manner. Rows 1–3 show 〈I(x, t , z)〉 for the I, PC, and C beam cases,
respectively. The 〈I(x, t , z)〉 in each row are encoded using the same false color scale defined by
the color bars at rows’ end. Columns 1–6 show the 〈I(x, t , z)〉 versus Fresnel number NF . Fig. 8
shows the theoretical 〈I(x, t , z)〉 for the GSM pulsed beam and is included for comparison. To aid
the reader, row and column headings have been added to Figs. 6–8.

Considering the quality of the source-plane results presented in Figs. 3–5, it is not surprising that
Figs. 6 and 7 are in excellent agreement. In addition, we can see the effect of space-time coupling
by comparing the 〈I(x, t , z)〉 in Figs. 6 and 7 to the corresponding GSM pulsed beam intensities
in Fig. 8. The GSM pulsed beam, with no spatiotemporal coupling, is unchanged and diffracts in
the t and x dimensions, respectively. As a result, the orientations of the Gaussian ellipses in Fig. 8
do not change. On the other hand, for the twisted STOV beam, spatiotemporal coupling causes
diffraction to affect both the beam’s temporal and spatial pulse widths. The relationship between
these widths and the subsequent redistribution of intensity manifests as beam rotation. This can
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Fig. 7. Simulated twisted STOV beam 〈I(x, t , z)〉. Rows 1–3 show the incoherent (I), partially coherent
(PC), and coherent (C) 〈I(x, t , z)〉, while columns 1–6 show 〈I(x, t , z)〉 for Fresnel numbers NF = ∞, 10,
5, 2.5, 1.25, and 0.625, respectively.

Fig. 8. Theoretical GSM pulsed beam 〈I(x, t , z)〉. Rows 1–3 show the incoherent (I), partially coherent
(PC), and coherent (C) 〈I(x, t , z)〉, while columns 1–6 show 〈I(x, t , z)〉 for Fresnel numbers NF = ∞, 10,
5, 2.5, 1.25, and 0.625, respectively.
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be seen in Figs. 6 and 7, where the ellipse orientations rotate counterclockwise as NF decreases
or z increases.

In all twisted STOV beam cases, the on-axis null (due to the second-order STOV) fades as a
result of partial coherence combined with propagation. As physically expected, the fading is the
slowest in the C beam case, where the effects of the coherent on-axis STOV are longer lasting.
Indeed, starting with the C beam NF = 2.5 column and proceeding to the right, we observe two
intensity minima (not complete nulls) produced by the splitting of the on-axis second-order STOV
into two first-order vortices. These details are lost in the I and PC results because of lower temporal
and spatial coherence.

4.4 Physical Beam Synthesis

Before concluding, we discuss how to physically generate twisted STOV beams. A twisted STOV
field realization can be synthesized using a Fourier transform pulse shaper (FTPS) [60], [66]–[69].
This optical device consists of two identical diffraction gratings separated by a 4f lens system
composed of two cylindrical lenses (CLs). At the center of the 4f system, i.e., in the back focal
plane of CL 1 and in the front focal plane of CL 2, is a spatial light modulator (SLM).

Assuming a coherent pulsed beam is input into the FTPS, the first grating-CL combination
performs a Fourier transform, mapping the input beam’s spectrum into physical space at the plane
of the SLM. The SLM modifies the field in the x-ω domain, producing a Fourier transformed instance
of a twisted STOV field. Note that since the SLM operates in the x-ω domain, a Fourier transform
must be performed on the t dimension of the kernel H in Eq. (2). Lastly, the second grating-CL
combination again Fourier transforms the field, reversing the spectrum-to-space mapping of the
first grating-CL system, resulting in a twisted STOV instance similar to those in Fig. 1. Partial
coherence manifests by incoherently summing many such realizations, or pulses.

Ideally, the SLM would operate at the source’s pulse repetition frequency (PRF). This would
result in a sequence of statistically independent pulses, and therefore, quick convergence to the
desired twisted STOV beam. If the SLM has a refresh rate less than the source’s PRF, pulses in the
sequence will be correlated. Nevertheless, the desired beam can still be realized just by integrating
more pulses [69].

5. Conclusion
In this paper, we introduced twisted STOV beams. These beams possessed a coherent optical
vortex and a random twist coupling their space and time dimensions, resulting in a stochastic
pulsed beam with controllable partial coherence and transverse OAM. This latter characteristic
distinguished twisted STOV fields from the more common spatial vortex and twisted beams, which
possess longitudinal OAM. This difference in OAM direction creates possibilities for twisted STOV
beams to be utilized in beam-control applications, such as optical tweezing, atomic optics, optical
communications, and laser ablation, in novel ways.

We began the paper with the mathematical derivation of the MCF for twisted STOV beams. We
then proceeded to derive relations for the linear and angular momentum densities, as well as an
integral expression for the propagation of the twisted STOV MCF (ultimately evaluated numerically).
We simulated the generation of twisted STOV beams and investigated their free-space propagation
properties. We compared the theoretical pulse-averaged intensity and 2D cuts through the 4D MCF
to the corresponding statistical moments computed from Monte Carlo simulations. The results were
found to be in good agreement, proving that we had successfully generated twisted STOV fields
with the desired statistics.

We lastly described how to physically realize twisted STOV beams. Constructing a Fourier
transform pulse shaper, generating field realizations, and experimenting with twisted STOV beams
are the next steps in this research.
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