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ABSTRACT The performance of one computer relative to another is traditionally characterized through
benchmarking, a practice occasionally deficient in statistical rigor. The performance is often trivialized
through simplified measures, such as the approach of central tendency, but doing so risks a loss of perspective
of the variability and non-determinism of modern computer systems. Authentic performance evaluations are
derived from statistical methods that accurately interpret and assess data. Methods that currently exist within
performance comparison frameworks are limited in efficacy, statistical inference is either overtly simplified
or altogether avoided. A prevalent criticism from computer performance literature suggests that the results
from difference hypothesis testing lack substance. To address this problem, we propose a new framework,
SPARC, that pioneers a synthesis of difference and equivalence hypothesis testing to provide relevant
conclusions. It is a union of three key components: (i) identifying either superiority or similarity through
difference and equivalence hypotheses (ii) scalable methodology (based on the number of benchmarks),
and (iii) a conditional feedback loop from test outcomes that produces informative conclusions of relevance,
equivalence, trivial, or indeterminant. We present an experimental analysis characterizing the performance of
a trio of RISC-V open-source processors to evaluate SPARC and its efficacy compared to similar frameworks.

INDEX TERMS Performance benchmarking, RISC-V, relevance testing, statistical analysis.

I. INTRODUCTION

B enchmarking is a conventional practice in the computing
domain for assessing a computer’s performance relative

to another. A standard set of representative programs are exe-
cuted, covering a wide range of functionality, in order to cap-
ture performance metrics. But, the resulting metrics often lack
sufficient statistical rigor for extensive analysis. A geomet-
ric mean, arithmetic mean, or performance ratio is reported
and accepted at face value without indication of the sample
distribution or a confidence level. It promotes misleading per-
formance evaluations that permeate throughout the computing
industry. Suffice to say, measures of central tendency have ap-
propriate uses, but in some circumstances, thorough statistical
analysis is needed for meaningful performance evaluation.

The Hierarchical Performance Testing (HPT) framework
in [1], VarCatcher framework in [2], and methodology in [3]
highlight the complexity of conducting a robust analysis and

the lack of statistical rigor surrounding traditional computer
performance comparisons. While [1] relies on difference hy-
pothesis testing with non-parametric statistics, [2] and [3] cite
the lack of relevant information at the conclusion of hypoth-
esis testing as motivation for their respective custom frame-
works. The challenge is developing a methodology that relies
on fundamental statistical inference common across fields of
research, is simple to customize based on user requirements,
and provides results relevant to the performance, rather than
a custom software framework. To achieve this, we address
the limitations of HPT with respect to hypothesis testing and
model a new framework that improves the efficacy of their
method.

This paper forces a clear distinction between two ideas that
are often pooled incorrectly in hypothesis testing: statistical
significance and practical relevance. Significance is the abil-
ity of our statistical test to detect an effect size [4] and is
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FIGURE 1. Comparing two distributions of execution time with an
algorithm enabled and disabled.

correlated to the type of test used. In difference hypothesis
testing [5], failing to reject H0 (i.e. lack of significance) does
not imply lack of effect. Conversely, a difference hypothesis
test that rejects H0 (i.e. detects significance) expresses nothing
about the practical relevance of the result. A statistical frame-
work that only uses difference hypothesis testing is limited
to identifying changes and does not address conditions of
equivalence, or similarity between population samples within
a margin.

To illustrate the limitation of difference tests, consider
an exploratory data study to evaluate the performance of a
security algorithm and its impacts to the Rocket RISC-V
processor. We instantiated Rocket on a field programmable
gate array (FPGA) and collected performance metrics. The
experiment was performed with and without the algorithm
enabled, 30 times each, and execution times were recorded.
For statistical analysis, we used the HPT framework on the
results to assess suitability towards the larger RISC-V pro-
cessor performance evaluation conducted later in the text. We
provide a density plot of two performance score distributions
in Fig. 1. Hereinafter, we limit decimal precision to three dig-
its with rounding for display purposes only, actual experiment
calculations are conducted without rounding. The difference
hypothesis test resulted in a statistical significance between
the two distributions as shown in the figure. The median
execution time of the program with the algorithm enabled
as compared to disabled is 263.287 seconds and disabled is
263.677 seconds, or a percentage difference of 0.148% be-
tween them. But, the practical relevance of 0.1479% in our
application was minuscule. We would have concluded the
two execution times as approximately equivalent. Primarily
conducting a difference hypothesis test excluded a condition
in which both distributions would be considered equivalent.

This analysis highlights another key limitation of difference
tests: the constructed null hypothesis is illogical and a differ-
ence is always detected with sufficient samples [6], [7]. In
our analysis, the null and alternate hypotheses tested either
a 0 difference between the two continuous response variables,
or a difference detected, respectively. The test is structured
given H0 being true and if the probability distribution of our
test statistic is low, then H0 is rejected. But, this structured

FIGURE 2. Comparing two distributions of execution time with the effects
of differing decimal precision.

argument for point or exact null is a fallacy and has been de-
bated for decades [6], [7], [8], [9], [10], [11]. The probability
that a continuous random variable assumes any specific value
is zero [12]. Likewise, with sufficient population samples the
test will always detect a difference [13].

In embedded system performance evaluation, inadvertent
data manipulation often occurs either due to rounding, or
with an insufficient context of data output. Both can lead to
incorrectly assuming that two response variables are equal or
that the difference between them is 0 and affect the study.
Returning to the example experiment, observe the original
density plot with and without the algorithm enabled in Fig. 2.
We graph the response variable density, execution time, which
defaults to decimal precision of 5 based on the output software
code. We overlaid the plots with a modified response variable
density, by deliberately rounding data to decimal precision of
1. As shown in the figure, the characterization of our data
distribution has altered significantly. Notably, the illustration
fails to capture how altered data can proliferate into a differ-
ence hypothesis test. The differences to the nth decimal that
once characterized our data are filtered out along with any
insightful conclusions that could be derived. While it might
seem obvious, we highlight the issue after encountering it in
computer performance analysis research within the field. The
aforementioned criticisms are not limited solely to computer
performance evaluations, but to the field of null difference
hypothesis testing in general.

To address the limitations illustrated above, we propose an
improved statistical framework called SPARC. This appears
to be the first computer performance analysis approach to
combine difference and equivalence hypotheses tests and use
the results to form four conclusions [14], [15] relevant to
a computer performance evaluation under study. The main
contributions of this paper are summarized below.
� Proposed a non-parametric framework, permitting anal-

ysis under distribution-free statistics tests, and developed
with a straightforward procedure for implementation.
Difference tests are conducted with a Wilcoxon Signed-
Rank Test for paired computer performance observa-
tions for detecting statistically significant distributions.
Subsequently, equivalence within a median tolerance
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is assessed for distributions statistically significant but
practically irrelevant.

� Developed a methodology inspired by HPT [1]. Mini-
mized the false positive error rate using a multiple hy-
potheses error correction. It provides scalability based
on the number of benchmark programs executed without
inflating the error rate.

� Implemented SPARC framework enhances analysis with
a conditional feedback loop that discriminates between
overpowered or underpowered performance evaluations.

� Evaluated the new methodology with a performance
evaluation consisting of a trio of RISC-V softcore pro-
cessors instantiated on a field programmable gate array
(FPGA).

The remainder of this paper is organized as follows.
Section II summarizes related work and introduces the moti-
vating HPT framework. Section III provides key fundamentals
of statistical analysis with respect to difference and equiv-
alence hypothesis testing. In-depth procedures are listed for
constructing an equivalence margin and to conduct analysis
with the framework. It also addresses limitations of non-
parametric statistics in error correction and sample size es-
timation. In Section IV, an experiment is conducted between
RISC-V softcore processors and the performance comparison
analyzed with SPARC. Section V concludes the text with final
remarks and future work.

II. RELATED WORK
This section summarizes the Hierarchical Performance Test-
ing (HPT) framework methodology published in [1], which
provides a statistical analysis framework for comparing the
performance between two computers. Additionally, we review
research that models the distribution of computer performance
data through clustering. The following section will then estab-
lish our methodology inspired by the HPT framework.

A. BENCHMARKS
There are several benchmark programs specifically developed
to evaluate a computer system’s performance, often bundled
together as a suite of applications. The System Performance
Evaluation Corporation (SPEC) [16] is a popular example of
a benchmark suite that can be compiled and executed on a
variety of computer architectures. To compare two systems,
one merely needs to execute a given benchmark on each sys-
tem, after which the execution times can then be appropriately
compared.

In some cases, benchmark programs may be very special-
ized in order to test specific functionality of a system un-
der test (SUT); examples include testing floating-point oper-
ations or integer multiplication. After the SUT completes a
benchmark, performance metrics are reported as time-based
or throughput. Often, they are developed as separate software
applications rather than originating from a sole benchmark
suite such as SPEC. Over time, users consolidate the appli-
cations into a suite that is suitable for their requirements.

An example is the benchmark suite, RV8, compiled for the
RISC-V instruction set architecture used later in the text.

B. HPT FRAMEWORK
In [1], the authors developed the non-parametric HPT frame-
work to promote statistically sound computer performance
evaluations. The framework is a methodology using difference
hypothesis tests to compare benchmark suite results between
two computers to determine superiority. The authors reveal
common errors made with respect to parametric and non-
parametric statistics while conducting performance evalua-
tions.

Chen et al. illustrates the improper use of parametric statis-
tical tests, such as the t-test, on non-normally distributed com-
puter performance data. If the data collected from a computer
benchmark is not properly characterized prior to statistical
analysis, it could be incorrectly assumed to be parametric
instead of non-parametric. Without appropriate verification
tests, an assumption of the underlying distribution of the data
may contribute to a faulty analysis and misled conclusion
of the comparison. They evaluate a SPEC benchmark suite
comparison that displayed a skewed non-normal distribution
using the t-test which resulted in transforming the data to
normality. The t-test concluded the under performing com-
puter was superior, demonstrating the deficiency in assuming
a distribution.

The Central Limit Theorem (CLT) is often used to char-
acterize distributions as approximately normal given a large
sample size [4]. Frequently, a minimum sample size of 30 or
more is referenced in statistics to employ the CLT. Although,
this was disputed for computer performance distributions
in [1] with an experiment consisting of 32 000 benchmark
performance scores. The analysis reveals that a sample size of
approximately 500 observations still deviated from normality,
but could be sufficient to utilize the CLT. Executing a number
of benchmarks within a suite, 500 times each, appears ineffi-
cient based on the inconsistency of the data.

Many sources of variability and non-determinism exist
within a computer system and the complex layers of in-
teractions they are comprised of, discussed in [1]. Further,
published performance evaluations routinely omit confidence
intervals (CI), which provides a measure of the randomness of
a variable and accuracy estimate of observed data [12].

Performance evaluations often report a collection of mean
completion times or relative speedups and declare one to be
superior, with little, if any, documentation of statistical meth-
ods used in the comparison. While the mean completion time
or speedup serves a purpose as a visual exploration of data,
incorporating additional statistics provides insight into the
origination, or population, of the sampled data. Such insight
is fundamental in determining the accuracy of observations
and conclusion. Excluding statistical analysis undermines the
original intent behind the performance comparison.

Thus, the authors in [1] developed the non-parametric
framework to promote statistically sound computer perfor-
mance evaluations. The HPT framework is a methodology
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using hypothesis tests to compare benchmark suite results
between two computers to determine superiority. The signif-
icance level, α, is chosen prior to conducting the hypothesis
tests; standard suggestion is 0.05 for one-tailed or 0.10 for
two-tailed hypothesis tests.

In order to analyze the performance between two computers
on a suite of benchmarks, a series of steps, which comprise
the HPT framework were outlined by [1]. We provide the
following abridged procedure for reference, and build upon
it later in the text. Suppose a benchmark suite is used that
contains n benchmarks and each benchmark is repeated m
times. Matrices CA = [ai, j]n×m and CB = [bi, j]n×m must be
constructed for both computers; rows represent the nth bench-
mark and columns represent the mth benchmark repeat of
performance scores [1].

For each benchmark, a null (H0) and alternative (H1) hy-
potheses are tested for significance using a Wilcoxon Rank-
Sum Test. If the results show statistical significance, reject H0

that both computers are equivalent; else fail to reject H0. After
the Wilcoxon Rank-Sum Test is complete for all n bench-
marks, assign to a new column the score representing differ-
ence in medians on significant results for each benchmark or
assign a 0 for insignificant results.

Concluding HPT is a comprehensive hypotheses test con-
sisting of H0 of general equivalent performance or H1 general
superior performance [1]. A Wilcoxon Signed-Rank Test is
completed on the difference in median performance scores to
either reject H0 or fail to reject H0 at the significance level.

C. CLUSTER METHOD TO DESCRIBE UNDERLYING
PERFORMANCE SCORE DISTRIBUTIONS
In [17], the authors established a clustering method to model
distributions of computer performance metrics. Observed data
from benchmarking was non-parametric and density plots in-
dicated bimodal and multimodal distributions. They surmised
that the non-parametric distributions are a Gaussian mixture,
a combination of multiple Gaussian distributions of clustered
multivariate data. The clustering method determines popu-
lation estimation parameters that could be used with more
powerful parametric statistical tests over non-parametric.

III. PROPOSED FRAMEWORK METHODOLOGY
In this section, we introduce our SPARC method, which in-
corporates equivalence tests and family-wise error correction
associated with multiple hypotheses tests. It reduces Type I
errors and supports various conclusions for relevant and prac-
tical results of a performance evaluation.

A. ELEMENTS OF RELEVANT STATISTICAL
PERFORMANCE EVALUATION
A key element in any statistical experiment, including bench-
marking, is designing the experiment such that results provide
valid statistical information required for analysis. Design of
experiments [18] is a field of study dedicated to this aim. Our
methodology focuses primarily on non-parametric statistical
tests after benchmarking data has been collected and assumes

the experiment uses an appropriate design. But we address
three essential elements for consideration prior to conducting
any data collection: 1) standardized hypotheses notation; 2)
family-wise error correction; and 3) sample size estimation.
Error correction and sample size estimation are implicitly
linked when considering multiple benchmarks for statistical
analysis; the number of samples affects the significance of
a statistical analysis and the significance is affected by the
overall error rate for the evaluation.

1) STANDARDIZED HYPOTHESES NOTATION
Before we formally present the rationale behind equivalence
tests, we provide a standardized hypotheses notation used
throughout the rest of this paper. In the introduction, we dis-
cussed limitations of an analysis that uses difference hypothe-
ses which motivated the addition of equivalence tests. First,
we introduce the term positivist theory derived from [19], to
describe difference hypothesis tests. That is, the null hypoth-
esis of a difference test H0 is often defined as the lack of an
effect or no difference between effects and is tested against
an alternative hypothesis H1 of significant effect or differ-
ence [5]. Positivist theory simply denotes H0 and H1 hypothe-
ses of difference tests as H+

0 and H+
1 , incorporating the +

symbol to reflect testing for a significant effect. Likewise, we
introduce the term negativist theory [19], to describe equiva-
lence hypotheses that test for a lack of effect (i.e. equivalence).
Negativist theory defines the equivalence hypotheses H0 and
H1, as H−

0 and H−
1 . We use the positivist and negativist theory

notations H+
0 , H+

1 , H−
0 , and H−

1 in this text to differentiate
between difference and equivalence hypotheses.

2) MULTIPLE HYPOTHESIS ERROR CORRECTION
In the following, let X = xi,1, xi,2, . . . , xi,m and Y =
yi,1, yi,2, . . . , yi,m for i = 1, 2, . . . , n denote independent sam-
ples of performance scores from Computer X and Computer
Y on the nth benchmark, respectively. Each hypothesis test
performed in a multiple evaluation experiment increases the
probability of rejecting H0 when H0 is true (Type I error)
defined as the Family-Wise Error Rate (FWER) [20]. In other
words, in a family of comparisons that are related the false
positive error rate increases [20]. The worst-case FWER for n
total benchmarks tested at an αn is:

FW ER ≤ 1 − (1 − αn)β+1, (1)

where β is the number of benchmark tests plus an additional
overall hypothesis of general performance.

Using an appropriate error correction method, we can con-
trol the family-wise error in the performance evaluation while
still providing statistically significant results [20]. Each hy-
pothesis test used to analyze a benchmark increases the FWER
and requires correction. There are two methods we introduce
here, the Bonferroni Correction [21] and Holm-Bonferroni
Correction [22]. Each α correction method has its advantages
and disadvantages that should be considered depending on a
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study’s requirements. In the RISC-V evaluation later in the
text, we use the Bonferroni Correction.

There are two benefits for using the Bonferroni Correction.
First, it is a simple correction applied to every test in our study
and, second, it allows calculating confidence intervals across
benchmark comparisons [22]. It is widely used but has also
been criticized as overcorrecting α to reduce Type I errors
and subsequently reducing the probability of detecting any
significance [20]. The method to calculate an error corrected
αNew is as follows:

αNew = αOld

(n + 1)
, (2)

where n is the total number of benchmarks planned plus the
overall hypothesis test and αOld is the overall requested alpha
(0.05 for one-tailed, 0.10 for two-tailed tests).

After αNew is calculated, the p-value of each benchmark
hypothesis test is compared with αNew to either reject H0 or
fail to reject H0:

pn ≤ αNew, (3)

where pn represents the p-value of the nth benchmark.
An alternative method that does not overcorrect α is the

Holm-Bonferroni Correction [22]. The method corrects se-
quentially, calculating αNew for each p-value comparison.
While it provides stronger statistical power compared to Bon-
ferroni, there is added complexity to determine confidence
intervals based on a changing αNew. We present the procedure
as it pertains to our framework as an option if confidence
intervals are not required. Let pn be denoted as the p-value
calculated after conducting the Wilcoxon Signed-Rank Test,
for the nth benchmark. Sort in ascending order such that
p1 < p2 < · · · < pi for i = 1, 2, . . . , n. Assign αNew based
on ranks of the test until the first non-significant result is
found (failed to reject H0) and the correction is complete. Any
further benchmark hypothesis tests are non-significant. The
equation for this procedure is as follows:

pn <
αnew

i + 1 − n
(4)

3) SAMPLE SIZE
In computer performance evaluations, determining the proper
sample size is a fine balance between under or over sampling
for a proper test. The significance (p-value) of each bench-
mark analysis is correlated with the sample size [23]. If an
insufficient number of samples are collected from a bench-
mark, there is risk of an underpowered test (i.e. not providing
a significant result due to a low p-value). If an over abundance
of samples are collected, then the risk is an overpowered study
that inefficiently used resources.

There are multiple ways to calculate sample sizes for a
t-test statistic based on an effect size estimate, such as Co-
hen’s D [24], if the underlying distribution is known or as-
sumed. However, for non-parametric statistic tests we make
no assumptions on the underlying distribution. The methods
in [25], [26], however, illustrate how an estimated sample

size can be determined for the Wilcoxon Signed-Rank Test
if assumptions are made on the effect size and an unbiased
estimator through a resampling process. We conclude there is
merit in applying the techniques to a computer performance
evaluation to reduce the number of benchmark repeats or
increase power of the tests. At the same time, execution times
are often non-deterministic which suggests resampling obser-
vations with prior data could affect the outcome or provide
inaccurate sample size estimations. While there are no clear
methods available for sample size estimation suitable for our
framework, two of the resulting outcomes will report if a
benchmark test was underpowered or overpowered.

B. EQUIVALENCE TESTING
Instead of testing the significance that performance scores
from two computers are different, we introduce an approach
called equivalence testing [27], [28]. In difference testing, we
attempt to prove the alternative hypothesis H+

1 of a significant
statistical difference. If we fail to reject the null H+

0 of no dif-
ference, we can only conclude there was a lack of evidence to
reject H+

0 . We cannot conclude equivalence because it was not
tested. By adding equivalence hypotheses tests to the frame-
work, we have additional information to make inferences of a
performance evaluation.

Equivalence testing is often found in clinical settings to
assess whether the effect of two treatments or medications
are within a predefined equivalence margin [27]. The burden
of proof for equivalence resides in the alternative hypothesis
H−

1 . An equivalence margin [−δ, δ] establishes the range in
which two variables contained within are considered practi-
cally equivalent at δ. In our context, the equivalence margin
renders two statistically significant but practically irrelevant
performance score distributions as equivalent if the response
variable is within the predefined [−δ, δ] interval.

One widely used method for equivalence testing is the Two
One-Sided Tests (TOST) procedure in [29]. Choosing an ap-
propriate equivalence margin δ for the TOST is paramount
to a performance evaluation [27]; selecting a δ which is too
stringent risks excluding practically equivalent performance
scores and selecting a δ which is too broad risks false equiva-
lence. [27] proposed either using past studies or pilot studies
to establish a δ, but we consider this unsuitable for com-
puter performance evaluations as preexisting data is either
lacking or includes components specific to a system. Instead,
we suggest setting it tailored to the evaluation depending on
the motivation and context of the study. As an alternative, an
equivalence δ = 5% of the speedup ratio can be used between
two computers on a benchmark with an equivalence margin of
[0.95, 1.05]. The speedup ratio S is defined as:

S = Execution_TimeOld

Execution_TimeNew
(5)
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C. COMBINING DIFFERENCE AND EQUIVALENCE
HYPOTHESES
Combining hypotheses tests for difference and equivalence
leads to practical and relevant conclusions not possible in-
dividually. Hypothesis testing for difference supports con-
clusions for statistical significance but lacks conditions for
practical irrelevance or equivalence. Conversely, equivalence
testing supports conclusions on equivalent distributions but
lacks conditions for substantial performance differences that
are of interest. Therefore, the prevailing solution is a com-
bination of difference and equivalence testing for practical
relevance [14], [15].

This following outlines the procedures in our framework
for combining the two types of tests for a relevant perfor-
mance evaluation. Our method changes the Mann-Whitney
(Wilcoxon Rank-Sum) Test in [1] to a Wilcoxon Signed-Rank
Test for paired observations. Although, with minor alterations,
our procedures can still be applied to the Mann-Whitney Test.
The RISC-V processors evaluated in the next section necessi-
tated a paired non-parametric test.

Suppose we are evaluating two computer’s performance on
a benchmark suite consisting of n benchmarks, each repeated
m-times. Let (xi, yi ) be the ith pair for i = 1, 2, . . . ,m for
Computer X and Computer Y of m observations on the nth
benchmark. Construct matrices Bn = [xi,1, yi,2, ri,3]m×3 for
n = 1, 2, . . . , n for n benchmarks. Let ri denote the pairwise
ratio xi/yi for i = 1, 2, . . . ,m and MX/Y denote the median
pairwise ratio of performance. We use the Wilcoxon Signed-
Rank Test under the assumption that the ratios ri are continu-
ous and symmetric around a common median θ = 1 [1]. Dif-
ference hypotheses for the two-tailed Wilcoxon Signed-Rank
Test are defined as:
� H+

0 : the median performance score ratio MX/Y of Com-
puter X, Computer Y on the nth benchmark is symmetric
around θ = 1 (corresponding with no location shift from
the benchmarks)

� H+
1 : the median performance score ratio MX/Y of Com-

puter X, Computer Y on the nth benchmark is not sym-
metric around θ = 1

Conduct a Wilcoxon Signed-Rank Test with an α corrected
for family-wise error to either reject H+

0 or fail to reject H+
0 .

For brevity, we omit the procedure as it is readily available
online or in statistics textbooks. However, we illustrate the
procedure in detail for equivalence within a margin.

We utilize the non-parametric TOST Wilcoxon Signed-
Rank Test for equivalence procedure in [30] with a median
ratio [31] δ chosen a priori. Two one-sided tests are conducted
to determine if the performance score distributions within the
margin [−δ, δ] are equivalent. Since we use a ratio perfor-
mance, our equivalence margin becomes [1 − δ, 1 + δ]. Both
tests must reject the null for equivalence to be established [15].
The upper bound equivalence 1 + δ and lower bound equiva-
lence 1 − δ signed ranks are computed and tested separately.

The upper bound equivalence, δ, null (H−
01) and alternative

(H−
11) hypotheses are defined as follows:

� H−
01: the performance score ratio distribution xi/yi on

the nth benchmark is greater than or equal to the upper
bound equivalence 1 + δ

� H−
11: the performance score ratio distribution xi/yi on the

nth benchmark is less than the upper bound equivalence
1 + δ

The lower bound equivalence, 1 − δ, null (H−
02) and alter-

native (H−
12) hypotheses are defined as follows:

� H−
02: the performance score ratio MX/Y on the nth bench-

mark is less than or equal to the lower bound equivalence
1 − δ

� H−
12: the performance score ratio MX/Y on the nth bench-

mark is greater than the lower bound equivalence 1 − δ

Let fi = (xi/yi ) − (1 + δ) for i = 1, 2, . . . ,m denote the
pairwise ratio for the mth observation minus upper bound
1 + δ for Computer X, Computer Y on the nth benchmark.
Let ψi denote the sign indicator of fi as:

ψi =
{

0, fi > 1

−1, fi < 1
(6)

Rank Ri for i = 1, 2, . . . ,m the absolute values
| f1|, . . . , | fi| in ascending order. The product Riφi denotes the
signed rank of fi. The test statistic, W −, for 1 + δ is the sum
of absolute values of negative ranks defined as:

W − =
m∑

i=1

Riφi, i = 1, 2, . . . ,m; (7)

where m denotes the number of m benchmark observations.
Similarly, let gi = (xi/yi ) − (1 − δ) for i = 1, 2, . . . ,m de-

note the pairwise ratio for the mth observation minus lower
bound 1 − δ for Computer X, Computer Y on the nth bench-
mark. Let ψi denote the sign indicator of gi as:

ψi =
{

1, gi > 1

0, gi < 1
(8)

Rank Ri for i = 1, 2, . . . ,m the absolute values
|g1|, . . . , |gi| in ascending order. The product Riφi denotes
the signed rank of gi. The test statistic, W +, for 1 − δ is the
sum of absolute values of positive ranks defined as:

W + =
m∑

i=1

Riφi, i = 1, 2, . . . ,m; (9)

where m denotes the number of m benchmark observations.
If (m < 6), determine the exact p-value from Wilcoxon

Signed-Rank Test tables for a one-sided test with α separately
for both W − and W +.

If (m ≥ 6), the rank distribution is approximately nor-
mal [32]. Therefore, calculate the z-score as follows:
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z1 = W − − M(M+1)
4√

M(M+1)(2M+1)
24

(10)

z2 = W + − M(M+1)
4√

M(M+1)(2M+1)
24

(11)

Reject H−
01 if z1 ≥ z1−α indicating MX/Y is within δ. If we

fail to reject H−
01, we do not calculate z2 because equivalence

does not hold. Conversely, if H−
01 is rejected then we proceed

with calculating z2. Finally, reject H−
02 if z2 ≥ z1−α indicating

MX/Y is within −δ.
The outcomes from the non-parametric TOST of equiva-

lence test and difference test are utilized together to determine
a conclusion on the performance comparison between Com-
puter X and Computer Y on the nth benchmark. In Table I and
below, we list four conclusions: trivial difference, indetermi-
nant, relevant difference, and equivalence [14], [15]:
� Indeterminant: fail to reject H+

0 and (H−
01 or H−

02). Indi-
cating additional benchmark samples are needed for the
evaluation.

� Trivial difference: reject H+
0 and (H−

01 and H−
02). Per-

formance distributions were statistically significant but
practically irrelevant.

� Relevant difference: reject H+
0 but fail to reject (H−

01 or
H−

02). Performance difference on a benchmark that was
outside the equivalence margin specified.

� Equivalence: fail to reject H+
0 but reject (H−

01 and H−
02).

Performance scores come from the same distribution.
After all n benchmarks have one of the four relevance test-

ing outcomes presented above, an optional Wilcoxon Signed-
Rank Test for difference can be conducted depending on the
results. In the case that all test’s outcomes are equivalence,
trivial difference, or a mixture of both, then the relevance
testing is completed. Tests with all indeterminant benchmark
results would likely require either additional samples or exper-
imental design changes. For any other test outcome cases, an
optional test can still be conducted with procedures detailed
further in the text. We provide recommendations for publish-
ing the results following the optional test procedure.

We can employ the optional Wilcoxon Signed-Rank Test
for difference to determine an overall general performance
comparison on the benchmark suite. Let Ri = MX/Y for i =
1, 2, . . . , n denote the median ratio on the nth benchmark.
For benchmarks not concluded as relevant difference, assign

TABLE II. Softcore Processor FPGA Configurations

Ri = 0; exclude it from the tests and reduce n, the number of
benchmarks in the sample size, to n = n − 1 [12]. The test
is excluded because the assumption of continuous variables
under the null in a Wilcoxon Signed-Rank Test does not hold.
The original family-wise error corrected α calculated prior
to the evaluation remains unchanged to account for multiple
hypotheses tests. Using the same procedures in the text above,
the difference hypotheses for general performance compari-
son for a one-tailed Wilcoxon Signed-Rank Test are defined
as:
� H+

0 : the benchmark suite performance score ratios of
Computer X, Computer Y are symmetric around θ = 1
(corresponding with no location shift from the bench-
mark suite)

� H+
1 : the benchmark suite performance score ratios of

Computer X, Computer Y are symmetric around theta
θ > 1 (or θ < 1)

Our framework provides outcomes that are practical and
relevant to the study or performance comparison under con-
sideration. We demonstrate the procedures with an evaluation
of three RISC-V processors in the next section. Finally, we
suggest writing a conclusion that includes the number of tests,
outcomes (indeterminant, trivial difference, relevant differ-
ence, or equivalence), p-values, effect size in terms of loca-
tion shift, α or confidence level, equivalence margin [−δ, δ],
and justification for the equivalence margin for performance
evaluations.

IV. RISC-V EVALUATION
In this section, we evaluate three RISC-V softcore proces-
sors on an FPGA with SPARC and evaluate the analysis in
comparison to HPT. The experimental configuration, captured
performance metrics, and test assumptions are discussed prior
to the evaluation.

A. EXPERIMENT SETUP
Our evaluation consists of three RISC-V softcore processors
instantiated on a FPGA and a benchmark suite containing
eight benchmarks to validate our methodology. The RISC-
V processors Shakti [33], Ariane [34], and Rocket [35] are
open-source softcore IP designs implemented in hardware
descriptive languages for synthesis on an FPGA. Each pro-
cessor has its own system-on-a-chip design integrated within
the build that includes, but is not limited to: L1 and L2
cache, DDR3 memory controller, and universal asynchronous
receiver-transmitter. We instantiated them in a Xilinx Virtex-7
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TABLE III. Benchmark Descriptions

XC7VX485 T on a FPGA VC707 Evaluation Kit, using the
Xilinx 2018.3 Vivado Design Suite. Both Ariane and Rocket
had VC707 build configurations available, but Shakti required
customization to port an existing FPGA build generation to
the VC707. Shakti was customized by adding peripherals
present on Rocket or Ariane, but absent from the Shakti build
and did not affect the datapath of the processor. We imple-
mented the softcores to operate at 50 MHz clock rate and the
system configurations are listed in Table II.

We evaluated the processors with the benchmark suite,
RV8, consisting of eight common benchmarks compiled for
the RISC-V ISA and list their descriptions in Table III.

For each processor, Vivado synthesizes the system-on-a-
chip design and generates an FPGA-specific bitstream, which
it loads to the VC707. We compile the operating system,
Linux version 5.3, as the main execution environment for the
software and use a script to batch execute each benchmark 30
times to capture the number of clock cycles to complete it. The
performance metric, number of clock cycles, is our response
variable. In the experiment, we chose a sample size of 30 for
each benchmark to examine suitability of its distribution for
applying the Central Limit Theorem in our analysis.

B. PERFORMANCE METRIC MEASUREMENT
Within each benchmark, we inserted code to capture the
clock cycles with inline assembly through a RISC-V specific
pseudo-instruction, rdcycle [36]. The code executes at pro-
gram start and program completion to calculate the number
of clock cycles and then divided by the clock rate to derive
the execution time L as follows:

L = CyclesEnd − CyclesStart

ClockRate
(12)

L is used to calculate the speedup ratio S between pairwise
comparisons defined as:

S = LA

LB
(13)

We use the speed ratio to abstract out units of time and identify
performance shifts that occur between processor comparisons.

C. SPARC FRAMEWORK SPECIFIC
To show correct application of our equivalence tests and con-
clusions, we define a wide [1 − δ, 1 + δ] equivalence margin
for analysis. Specifically, we use δ = 0.50 and [0.50, 1.50]

FIGURE 3. Rocket with Ariane quantile-quantile plots for each benchmark.
Data points are the ratio, Rocket to Ariane, compared to a theoretical
normal distribution line.

as the primary equivalence margin for our softcore processor
performance comparison. The bounds are purposefully large
to illustrate the effect of equivalence tests and relevance out-
comes on an analysis.

For our two primary RISC-V evaluations, there are a total
of 34 hypotheses tests 2(8 + 8 + 1) conducted. There are two
pairwise comparisons, Rocket to Ariane and Rocket to Shakti.
A comparison between Ariane and Shakti was omitted here
for space considerations. For the pairwise comparison Rocket
to Ariane, we conduct 8 difference hypotheses tests for loca-
tion shifts plus 8 equivalence hypotheses tests plus 1 for the
overall analysis. The tests are repeated for the second pairwise
comparison of Rocket to Shakti. Therefore, we set the overall
evaluation error α = 0.05 which translates to a FW ER ≤
0.82 518 using (1). We use the Bonferroni Correction method
(2) to control the FW ER but still allow (1 − α/m) confidence
intervals calculated. The error corrected αNew = 0.0 014 706
which is compared to each benchmark test pi to reject H0 or
fail to reject H0.

D. RISC-V PERFORMANCE EVALUATIONS WITH
SPARC FRAMEWORK
We present results to evaluate the efficacy of using the
new methodology for performance comparisons beginning
with Rocket to Ariane. In Fig. 3, we illustrate quantile-
quantile plots for each benchmark with data points as paired-
observation ratios against a theoretical normal distribution
line. Visually, the plots for AES, Bigint, Norx, and Primes
indicate non-normal distributions not suitable for paramet-
ric tests. The sharp curved data points around the normal
line on AES and Norx are due to heavy tails and the large
gap in data points on Bigint and Primes suggest bimodal
distributions. In Fig. 4, benchmark densities are plotted and
affirm multimodal distributions. We conducted Shapiro-Wilk
Tests [37] and Kolmogorov-Smirnov Tests [38] for normality
to affirm our visual analysis listed in Table VI and Table VII,
respectively. We test each benchmark distribution against the
Shapiro-Wilk and Kolmogorov-Smirnov H+

0 that the distri-
bution is normal; rejecting H+

0 signifies the distribution is
not normal. The Shapiro-Wilk Tests found Dhrystone and
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TABLE IV. SPARC Framework Results for Difference and Equivalence At [0.50, 1.50] in Rocket to Ariane Comparison Tests

TABLE V. SPARC Framework Results for Difference and Equivalence At [0.50, 1.50] Rocket to Shakti Comparison Tests

FIGURE 4. Rocket to Ariane density plots for each benchmark.

TABLE VI. Shapiro-Wilk Tests for Normality

SHA512 are the only two normal distributions of the Rocket
to Ariane evaluation. Whereas the Kolmogorov-Smirnov Tests
found Qsort and SHA512 are non-normal. Therefore, we can-
not rely on the Central Limit Theorem despite a larger sample
size.

Proceeding with the new relevance framework, we con-
ducted difference and equivalence hypotheses tests on the

TABLE VII. Kolmogorov-Smirnov Tests for Normality

FIGURE 5. Median Rocket and median Ariane bar graph for each
benchmark.

speedup ratio and the results are listed in Table IV. The
median speedup ratio MX /MY for Rocket (MX ) and Ariane
(MY ) shows a speedup to a faster time if greater than 1 and a
slowdown if less than 1. The ideal ratio is 1 if the processors
were equal in median execution time. Fig. 5 presents a bar
graph plotting the median execution times listed in Table IV of
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FIGURE 6. Rocket with Shakti quantile-quantile plots for each benchmark.
Data points are the ratio, Rocket to Shakti, compared to a theoretical
normal distribution line.

FIGURE 7. Rocket to Shakti density plots for each benchmark.

Rocket and Ariane within each benchmark. Each benchmark
difference test rejected H+

0 , or that the performance score dis-
tributions are symmetric around θ = 1. In other words, there
was a distribution location shift of the median speedup ratio.
Further, the tests of equivalence at δ = 0.50 rejected H−

0 in all
but the AES and Dhrystone benchmarks. The hypothesis test
results, together with the four possible relevance choices from
Section III-C, allow us to conclude that there is a relevant dif-
ference in median performance of the speedup ratio between
the Rocket and Ariane RISC-V processors in 2 benchmarks,
and a trivial difference in 6 benchmarks. We recommended
previously in the text that the effect sizes should be listed,
either in the evaluation conclusion, or as we listed in Table IV.

In the performance evaluation of Rocket to Shakti, we
present quantile-quantile plots in Fig. 6. The plots show non-
normal distributions in all benchmarks except for Bigint and
SHA512. In contrast to quantile-quantile plots in Fig. 3, the
distributions in Dhrystone, Norx, Miniz, and Qsort are highly
skewed left and include heavy tails. The heavy tail in Dhrys-
tone is caused by an outlier data point at −65 seconds. Simi-
larly, outlier data points in Norx result in a heavy tail distribu-
tion and signify parametric tests could be affected if they were
used. Further, density plots in Fig. 7 illustrate non-normal
benchmark distributions. Results from Shapiro-Wilk Tests and
Kolmogorov-Smirnov Tests for normality listed in Table VI
and Table VII confirm that all benchmarks are non-normal
except for AES, Bigint and SHA512.

FIGURE 8. Median Rocket and median Shakti bar graph for each
benchmark.

We could perhaps employ a different statistical analysis,
examining the outlying data points to determine if they can
be removed and then testing for normality again. This would
require altering the α correction again, accounting for the
additional hypotheses tests, and also adding justification for
outlier data point removal. But if the process was success-
ful and produced normal distributions, then parametric sta-
tistical tests could have been performed. We refrained from
employing this technique because of the extensive time and
experience required to distinguish between data points that
are outliers versus data points that indicate a problem with
the experimental design. Instead, SPARC was designed to test
population medians with consideration that outlier data points
are not removed.

Instead of removing any outlier data points though, we
present results from the difference and equivalence hypothe-
ses tests performed on the median speedup ratio of execution
times for Rocket (MX ) and Shakti (MY ) in Table V. The
bar graph in Fig. 8 plots median execution times for Rocket
and Shakti within each benchmark comparison. Again, the
difference tests rejected H+

0 , indicating a distribution location
shift of median speedup ratio. Alternatively, the tests of equiv-
alence at δ = 0.50 rejected H−

0 in all benchmarks except for
AES. Here, we can conclude that there is a relevant difference
in the median speedup ratio performance between Rocket and
Shakti on 1 out of 8 benchmarks and a trivial difference in the
other 7. We also conclude from the effect sizes in Table V as
the speedup ratio of median performance, Rocket only had a
relevant difference of faster median speedup ratio over Shakti
in 1 of the 8 benchmarks.

In addition to the benchmark tests, we conducted a fi-
nal Wilcoxon Signed-Rank Test for an overall relevant dif-
ference between Rocket to Ariane, and Rocket to Shakti,
in Table VIII. Each test previously found trivial differences
between Rocket and Ariane on 6 benchmarks, therefore we
reduced the sample size by 6 since this test is only concerned
with relevant differences. In the Rocket to Ariane general per-
formance comparison, we fail to reject H+

0 , which indicates
that there is not enough evidence to support a conclusion
of a relevant difference in performance between Rocket and
Ariane. A similar test was conducted for the Rocket to Shakti
general performance comparison, with a similar outcome. In
the previous tests, 1 resulted in a relevant difference between

126 VOLUME 2, 2021



TABLE VIII. SPARC General Performance Results for Both Comparisons

Rocket and Shakti for AES. Therefore, we remove any trivial
difference tests from consideration as stated in Section III-C
and reduced the sample size by 7. Out of 8 benchmarks,
there was only a relevant difference in performance between
Rocket and Shakti in 1 benchmark, and subsequently the test
fails to reject H+

0 . The results are not unexpected. It is rea-
sonable to assume that two processors with similar levels of
performance would require more than 1 benchmark to reach
a conclusion. The insight gained from the test of general
performance between Rocket to Shakti is that we failed to
reject H+

0 of equal performance and a follow-on experiment
with additional benchmarks would be required for further
determination.

E. FRAMEWORK IN COMPARISON TO HPT
In order to compare the efficacy of SPARC to the HPT [1]
framework, we consider some differences with respect to the
benchmark statistics tests. As noted in Section IV-C, the ob-
servations are pairwise between processors and more appro-
priate for the Wilcoxon Signed-Rank Test used in SPARC. In
HPT, the Wilcoxon Rank-Sum Test is usable on pairwise com-
parisons, but some information common to both populations
is lost. Tests suitable for a difference of observations, likely
remove variability shared between the two observations. In
contrast to the Wilcoxon Rank-Sum Test, which compares two
independent observations.

The test statistic is another key difference between SPARC
and HPT. In SPARC, we specifically identify the speedup
ratio between processors as the test statistic, whereas HPT
designates an unspecified performance score. Again, the key
disparity derives from using Wilcoxon Signed-Rank Test or
Wilcoxon Rank-Sum Test and how each framework classifies
response variables as paired or unpaired. We perform the HPT
tests according to the procedures in [1], but use a paired
Wilcoxon Rank-Sum Test with the speedup ratio in order to
provide a standardized comparison between frameworks.

In Section III-A, family-wise error was discussed, in ad-
dition to possible risks to a study if α is not corrected. De-
termining if the data tested is within a family, and there-
fore affected by FWER, can be subjective. To illustrate the

FIGURE 9. Family-Wise Error Rate of HPT and SPARC frameworks.

TABLE IX. HPT Framework Results for Wilcoxon Rank-Sum Tests in
Both Comparisons

probability of making a Type I error, the FWER for SPARC
and HPT is illustrated in Fig. 9. While our evaluation only
used 8 benchmarks, without an α correction the FWER is
36.98% with HPT. But, the HPT framework lacks discussion
on multiple hypothesis testing, nor does it discuss methods to
correct α. This paper considers the omission as accidental and
we purposefully discussed FWER in the SPARC procedures
to remove ambiguity.

For HPT, two-tailed Wilcoxon Rank-Sum Tests were per-
formed for each benchmark to determine whether Rocket or
Ariane has a difference in median speedup ratio performance,
listed in Table IX. The median speedup ratios are unchanged
from Table V, therefore we only list the test results. For each
test, H+

0 was rejected at α = 0.10 indicating a difference in
benchmark speedup ratio performance between the two pro-
cessors. Similarly, we performed the same tests for Rocket to
Shakti with results listed in Table IX. For each benchmark,
H+

0 was rejected indicating a difference in speedup ratio per-
formance between Rocket and Shakti.

Finally, a two-tailed Wilcoxon Signed-Rank Test is per-
formed as HPT’s general performance comparison across all
benchmarks. The test was conducted twice, on Rocket to Ar-
iane and Rocket to Shakti, listed in Table X. On both general
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TABLE X. HPT General Performance Results for Both Comparisons

performance tests, HPT rejected H+
0 which indicated a differ-

ence in performance.
In comparison to SPARC, the individual benchmark re-

sults by HPT illustrate the difference between each frame-
work’s concluding information. Specifically, in HPT each
benchmark H+

0 was rejected compared to the 6 trivial dif-
ference results for Rocket to Ariane and 7 trivial difference
results for Rocket to Shakti in SPARC. As indicated by the
follow-on equivalence tests, the difference in performance
was within the [0.50, 1.50] margin and subsequently each
benchmark removed from the general performance compar-
ison. The SPARC framework provides a method to establish
an equivalency margin that the study has defined as similarly
performing systems, compared to only detecting a difference
in HPT. SPARC concluded there was only a trivial difference
in performance in the majority of the benchmarks for both
comparisons and resulted in a lack of evidence that supported
a difference in performance.

Further, a difference will always be detected in HPT for
evaluations similar to the example discussed in the introduc-
tion and illustrated in Fig. 3. The SPARC framework excels in
conditions of similar performance or equivalence, and we are
able to use the additional insights from SPARC to influence
follow-on experimental design.

V. CONCLUSION
In this paper, the statistical framework SPARC is proposed
for a scalable and distribution-free performance evaluation of
computers. SPARC identifies superiority or equivalence with
hypotheses tests for each benchmark that conditionally result
in four relevance conclusions. Through the application of an
error correction method in SPARC, error inflation is reduced
in multiple benchmark scenarios. Our performance compari-
son of three RISC-V softcore processor’s performance on an
FPGA indicated the efficacy of SPARC in relation to a similar
framework. The additional insight from relevance conclusions
enhances the study results and refines discussion for further
experimentation if required.
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