
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Chancellor’s Honors Program Projects Supervised Undergraduate Student Research 
and Creative Work 

5-2021 

Attendio: Attendance Tracking Made Simple Attendio: Attendance Tracking Made Simple 

Benjamin L. Greenberg 
University of Tennessee, Knoxville, bgreenb3@vols.utk.edu 

Spencer L. Howell 
University of Tennessee, Knoxville, showel17@vols.utk.edu 

Tucker R. Miles 
University of Tennessee, Knoxville, tmiles7@vols.utk.edu 

Vicki Tang 
University of Tennessee, Knoxville, wph612@vols.utk.edu 

Daniel N. Troutman 
University of Tennessee, Knoxville, dtroutm1@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj 

 Part of the Software Engineering Commons 

Recommended Citation Recommended Citation 
Greenberg, Benjamin L.; Howell, Spencer L.; Miles, Tucker R.; Tang, Vicki; and Troutman, Daniel N., 
"Attendio: Attendance Tracking Made Simple" (2021). Chancellor’s Honors Program Projects. 
https://trace.tennessee.edu/utk_chanhonoproj/2432 

This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student 
Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for 
inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research 
and Creative Exchange. For more information, please contact trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_chanhonoproj
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


Attendio: Attendance Tracking Made Simple
Benjamin Greenberg Spencer Howell Tucker Miles

Vicki Tang Daniel Troutman

Detailed Design Report
ECE402/COSC402 Senior Design Practicum

Tickle College of Engineering
The University of Tennessee

Knoxville, Tennessee
May 3, 2020



Executive Summary 

 

In this report, we discuss the need for an attendance tracking solution 

and how we built one to fill this niche. Many student organizations on 

campus use a plethora of different websites, software, or even written 

paper to keep track of attendees. People almost always have their 

smartphones, so we implemented this with a cross-platform app. From 

the attendee's perspective, our app is as simple as scanning an event QR 

code and receiving a checked-in notification. From the event manager's 

perspective, they can generate new events and see who is checked in. 

Our app can enable both parties to maintain a reliable communication 

channel for events. Our app revolves around our five engineering 

characteristics to become a great solution for growing student 

organizations: security, usability, maintainability, adaptability, and 

aesthetics. 

 



3 

Table of Contents 

Executive Summary ...................................................................................................................................... 2 

Problem Definition & Background ............................................................................................................... 4 

Requirements Specification .......................................................................................................................... 4 

Technical Approach ...................................................................................................................................... 5 

Design Concepts, Evaluation & Selection .................................................................................................... 5 

Embodiment Design ...................................................................................................................................... 7 

Test Plan ....................................................................................................................................................... 8 

Project Deliverables ...................................................................................................................................... 9 

Project Management ..................................................................................................................................... 9 

Budget ......................................................................................................................................................... 10 

References ................................................................................................................................................... 10 

Appendix ..................................................................................................................................................... 11 

 

Table Number Description Page Number 

0 List of Tables 3 

1 List of Figures 3 

2 Customer Requirements 5 

3 Engineering Characteristics 5 

4 Platform-Benefits Matrix 6 

5 Framework-Benefits Matrix 6 

6 Backend-Benefits Matrix 7 

7 Deep Linking Technologies 8 

Table 0: List of Tables 

 

Figure Letter Description Page Number 

A Business Model Canvas 11 

B Gantt Chart 11 

C Screenshots 12 

Table 1: List of Figures 



Attendio: Attendance Tracking Made Simple
Benjamin Greenberg
University of Tennessee
Knoxville, Tennessee
bgreenb3@vols.utk.edu

Spencer Howell
University of Tennessee
Knoxville, Tennessee

showel17@vols.utk.edu

Tucker Miles
University of Tennessee
Knoxville, Tennessee
tmiles7@vols.utk.edu

Vicki Tang
University of Tennessee
Knoxville, Tennessee
wph612@vols.utk.edu

Daniel Troutman
University of Tennessee
Knoxville, Tennessee
dtroutm1@vols.utk.edu

I. PROBLEM DEFINITION AND BACKGROUND

A. What is the problem? Why is the current situation unsat-
isfactory?

Our technology is attempting to solve a problem that exists
in numerous places, but we are primarily focusing on student
organizations in the beginning stages. The problem arises from
the fact that there exists a great amount of inconsistency in
the way that student organizations track events and meeting
attendance. As an example, many organizations will have
attendees scan a QR code that links to a Google form. Then,
attendees will have to spend much more time than necessary
just to prove that they have attended an event. This leads to
valuable time being lost in what are already typically short
meetings and workshops, and could also lead to lowering
attendance in the future.

B. Who is having this problem? Who are the would-be cus-
tomers for a solution?

As mentioned previously, student organizations are having
this issue. If thought about much more broadly, these same
issues exist in numerous places including workplaces, class-
rooms, and other similar events. The customers for our solution
would be the leaders of these organizations. Our solution
would allow them to easily track attendance.

C. What basic functions must the design perform?

The solution must allow organization officers to easily set
up events, track attendance at these events, and view overall
attendance statistics for each member. This process needs to
be seamless, so organizations can quickly take attendance and
move on with their meeting. The individual members need
to be able to launch the app on their phone, scan the QR
code, and receive a success message as they sign in. Other
convenience functions, such as removing members from the
roster, and marking members as “excused” from meetings,
should be supported as well.

D. How will the design be used by the customer(s)?

The app will be used in meetings that occur on campus.
Most of these meeting rooms will have projectors that display
the slides for the meeting, but they might not be available in
all rooms. The students who are present at the meeting will
likely have either a phone or a laptop to use. In the case that a
projector is not available, a QR code could be displayed on a
laptop screen, or a link could be shared to an organization

group chat. Since meeting time is short and valuable, our
solution should integrate seamlessly with the current practices
of the organization and take less time than existing solutions
do to take attendance.

E. What is the underlying theory or background that needs to
be understood in order to address this problem?

To address this problem, a background in app development
and/or UI/UX would be helpful for quickly and effectively
building an app that is both secure and usable.

F. What prior work has been done on this problem?

There are several companies that have made attendance
tracking software. Many of these only have paid options and
offer features that can make the program seem complicated.

G. What products, currently available, were not designed or
intended for this particular application but could be used to
perform a similar function?

Other products that could be used to perform a similar
functionality of our technology would be employee timesheet
software, survey softwares, Google Forms, any type of spread-
sheet software, VOLink, and clickers. However, the majority
of the attendance tracker softwares made by other companies
are more focused on employees and employers rather than
student organizations and instructors.

II. REQUIREMENTS SPECIFICATION

The final product of our team’s development is an at-
tendance tracking app that works for both web and mobile
devices. The primary user base is student organizations, so
we targeted our initial efforts for them directly. However, our
product should also be capable of supporting other use cases,
such as professors and students in classrooms and other events
where attendance is tracked.

Keeping in mind these varied user segments, our customer
requirements are as follows, ranked from most important to
least important:

4



TABLE 2
CUSTOMER REQUIREMENTS FOR THE ATTENDANCE TRACKING APP,

LISTED FROM MOST IMPORTANT TO LEAST IMPORTANT.

These customer requirements come from our own experi-
ences as members and leaders in student organizations, as well
as general knowledge of app usability and best practices.

In addition to the customer requirements, we have generated
a list of Engineering Characteristics, based on these require-
ments, that will allow us to measure our progress and ensure
that it aligns with the needs of the customer. Each of these
characteristics is either a constraint, that we cannot change, or
a variable that we can experiment with. Below in Table 2 is a
list of our characteristics.

TABLE 3
ENGINEERING CHARACTERISTICS

III. TECHNICAL APPROACH

In order to create an application that conforms to all of our
stated criteria, the team will need to have a specified technical
approach. This approach consists of what tools we use, what
practices we employ, and what processes we follow during
development.

The first choice that our team must make for our technical
approach is what development platform we build our solution
on top of. As described in the Design Concepts, Evaluation
& Selection section below, our team has decided to use the
Flutter framework as it best suits our business needs, as well
as aligning with our team’s previous experience.

While building a Flutter application, our team will follow
best practices as defined by Google in their Effective Dart
guide [2]. This will ensure that our code is free from language-
based vulnerabilities and is easily refactorable and maintain-
able, helping us achieve our desired Engineering Characteristic
measurements. In addition, we will follow Flutter’s defined
best practices for performance [3] to ensure that our app is
not bloated and will perform at acceptable levels on a wide
range of devices.

Developing an app with a team of our size requires co-
ordination and a defined strategy. Therefore, we will follow
proven development processes in order to organize our efforts
and respond to feedback. Our team is adopting an Agile
development philosophy, as defined by the famous Manifesto
for Agile Software Development [4]. Our team plans to utilize
GitHub’s Agile Board features to create tickets for each
feature or implementation to be developed, which will then
be divided up into defined “sprints” for development tracking.
By breaking up our development into pieces, we have the
opportunity to test out our ideas with customers and change
our priorities if required. This will help us to serve the needs
of the customer and remain flexible in our work.

As a part of this Agile process, our team will participate
in a code review process, where all submitted code is vetted
and learned from by other members of the team. This will help
ensure our app is secure, as potential vulnerabilities are caught
and corrected before even being merged into the codebase.
Further, it will allow our team to learn from each other and
develop a shared code style for the project through discussion.
This process will help ensure the security and maintainability
of our application.

By following this technical approach, our team can ensure
that development efforts are well-directed and as productive as
possible. We can write maintainable and secure code, iterate
quickly, and change direction if needed. All of these benefits
will directly serve our customers as outlined in the Customer
Requirements and Engineering Characteristics.

IV. DESIGN CONCEPTS, EVALUATION AND SELECTION

There are many ways we can create an attendance tracking
application. While we hope to expand our application and port
it to as many platforms as possible, we have to start with one
for our project. Once our first platform was decided, we needed
to pick a language to develop in. Since our application must
communicate and store shared information, we also needed
to find a backend that integrates with all of our tools and
software. For each decision, we have a description of each
option as well as their strengths and weaknesses. We also
have a decision matrix with ratings for several categories. The
higher the rating, the better that option is to the user or us.

A. Platform

Since the customers will be using this application on their
device, it is important for us to decide which type to target
first. The first thought that comes to mind may be a website
where people can sign into their accounts and check into

5



events. This has the benefit of being extremely accessible as
it doesn’t matter what kind of device you have, as long as
it can access the internet. There is no app to install so new
people will be able to jump on board very quickly. As far as
experience goes, not many of us are experienced in developing
web applications, but we were able to include a website as an
option for users. We will also address this platform a bit in
the frameworks decision section.

Our next possible platform is a desktop application. Several
of us have experience with desktop app development in
Electron.JS from our COSC 340 class. A severe downside of
this platform is the lack of portability and accessibility. Most
of the time, people will not be bringing their laptops with
them and if they do, it might be in a powered-off state. The
installation of an app like this would also be the most intensive
of the three on a desktop platform. Users would have to visit
a website, download the installer, then install the application.

Our third option would be a mobile application. Like the
desktop platform, we have members of our group with mobile
app development experience gained from COSC 340. Since
virtually everyone has a smartphone on them, a mobile app
will have great accessibility. While there is something to install
on the device, the process is not as burdensome as the desktop
platform.

TABLE 4
PLATFORM BENEFITS MATRIX

Our final decision was to go with a mobile and web
application approach. We feel it has the best features to start
off with and we have the necessary experience to implement
it. While the other platforms can fill other niches, we wanted
to pick the ones that have the best availability. When the app
was sufficiently fleshed out, we ported it to the web along with
some changes that best fit the platform.

B. Framework

For our group’s current skill set, most of us have experience
with Javascript and Dart from previous projects. Because
the skill set of our group is specialized towards these two
languages, we ended up narrowing down our options to React
Native and Flutter as the frameworks for our app. Although
React Native can be brought to the desktop thanks to libraries
like Proton Native or support from Microsoft, if we wanted to
bring it to the web in the future it would require building a
separate ReactJS project as React Native was built for mobile.
While this is not necessarily too difficult to accomplish, it is an
extra step that could be better accomplished in an alternative
framework like Flutter that will have official native support
for the web.

Aside from everyone in this group already being familiar
with Dart and developing with the Flutter SDK, we can also
use this framework to bring our app to the web and desktop
in the future if we choose to. Another positive of Flutter over
React Native is that Flutter has native support for Material
UI design guidelines. This will allow us to more efficiently
design a clean and efficient UI/UX for our app instead of
having to install another library to a React Native project. For
the reasons of familiarity, native Material UI support, cross-
platform compatibility, and future platform development, we
have decided to go with the Flutter SDK for the framework
for our app.

TABLE 5
FRAMEWORK BENEFITS MATRIX

C. Backend

Along with the platform and framework for our project’s
app, we also needed to choose a suitable backend for authenti-
cation, hosting, storage, etc. The options we considered for this
project were AWS, Google Firebase, and possibly a custom
backend written in Django, Flask, etc. As we are developing
our app for this project, a custom backend seemed unnecessary
as we would have to handle hosting the backend as well as
handle any scalability issues if the user base of the app grew
in the future. Therefore our options for a backend were down
to AWS and Firebase. The deciding factors between AWS
and Firebase came down to the following options: database
requirements, complexity, free services vs. paid services, and
support for the Flutter SDK.

After comparing both AWS and Firebase and determining
which backend is more suitable for our app, we decided to
go with Firebase for our backend. Even though Firebase only
offers NoSQL databases while AWS allows for a choice of
which database to use, Firebase seemed more appropriate for
our app’s needs as we don’t expect our database requirements
to grow too complex. As we need a backend that’s relatively
easy to set up and communicate with, we found that with
Firebase it was easier to both set up and interact with callable
functions than in AWS. At the moment, Firebase provides
more services for free such as user authentication than AWS
does. Firebase also looks to be easier to set up than AWS
as even though it may offer fewer services out of the box, it
is enough for our app at this stage. Flutter even has official
support for the Flutter SDK whereas AWS does not. Due to
these reasons, we will be using Firebase as the backend for
our Flutter-based mobile app.

Now that we have all the major decisions out of the way,
we can get started with learning all about these services and
software. Since we decided on a mobile platform first, we

6



TABLE 6
BACKEND BENEFITS MATRIX

created our wireframes and mock-ups to fit the cell phone
format. We also were able to get a general idea of our web
application and created a wireframe for it. We have decided
on the overall layout, but were not able to fully implement the
design we created in our wireframes as we were more focused
on building a MVP under time constraint. Flutter is our chosen
platform due to its simple integration with the web, Android,
iPhone, and our backend. Our development experience with
the language is also a big plus and we started with brushing
up on various concepts to begin the application development.
Finally, we chose our backend with Firebase due to its ease
of setting up and overall experience. By already deciding
these major decisions together, we had a smooth transition
to implementation and these choices gave us the best chance
of success with planning and the logistics of the app.

V. EMBODIMENT DESIGN

A. Product Architecture

1) Modules:
a) Material UI: Material UI is a design language that

was released by Google. It uses grid-based layouts, responsive
animations and transitions, padding, and depth effects such
as lighting and shadows. This more or less defines the “look
and feel” of our application, and will provide users with a
familiar interface when using our application, as Material UI
is a standard used by many.

b) Firebase Authentication: To make the adoption of
our application easier for users, we decided to use Fire-
base Authentication as our authentication solution. Firebase
Authentication allows for a relatively simple implementation
and integration process to add authentication from sources
such as Google with ease. Firebase also allows for easy
integration with other authentication providers in the future
such as Facebook. As Firebase and Flutter are both products
from Google, they are more likely to work together reliably
than other authentication solutions for Flutter. This works well
for our use case as it saves us the time and effort of trying
to develop our own authentication solution while making
sure that it is secure and works with multiple authentication
providers.

c) Cloud Firestore: Cloud Firestore is one of the options
that Firebase provides to use as a backend database for our
application. We chose Cloud Firestore because of its high
flexibility, scalability, and ease of use. It acts as a place for us
to store data, keeping it in sync across all of our applications

(iOS, Android, and web) while providing real-time listeners
which allow us to interact with it. Additionally, Firebase
and Flutter are both products from Google, and staying in
this environment gives developers some peace of mind when
it comes to implementing this, as it’s a very plug-and-play
solution that integrates seamlessly into our application.

d) Dynamic Links: Dynamic Links is an implementation
of the deep link concept. A deep link is like a hyperlink, but it
will send you to a specific part of an app instead of a website.
Other behavior like opening the app store or redirecting to
a web version is also possible if you do not have the app
installed. Dynamic Links is a service provided by the Firebase
platform that is already in our app. We use the service to create
links that redirect users to the check-in page for a particular
event in our app. Each dynamic link is unique because they
encode event information that our app will use to look up the
event.

e) Riverpod: Riverpod is a state management solution
based on the Provider package by the same developer. River-
pod offers improvements over the Provider package such
as catching programming errors at compile-time instead of
runtime, it removes the need for nesting when listening or
combining providers, and helps simplify testing state manage-
ment. Riverpod benefits our app directly by simplifying the
creation of state providers for the entire app and allowing
us to create them outside of the widget tree. Riverpod also
simplifies combining providers and abstracting data from one
provider into another. Another benefit of Riverpod is that any
widget within the provider scope tree can access the state of
any provider just by importing the provider. This removes the
need for us to nest the provider through every widget, cleaning
up and making our code more maintainable.

2) Inputs & Outputs:
a) Material UI: Material UI exists in every single com-

ponent of the front-end of our application. The Material UI of
Attendio is codified through defining trees of widgets, showing
how they interact, and styling them accordingly. Flutter looks
at this code, analyzing the sizes, layouts, and logic that we’ve
defined, and draws the user interface onto the screen.

b) Firebase Authentication: The Firebase Authentication
components of our app are seen in several places. First off,
it acts as the gateway to Attendio. When you launch the app,
you are greeted with a login screen. You give our Firebase
Authentication module your Google Credentials, and Google
sends back a token that uniquely identifies you and grants
you access to several resources. Additionally, this is used in
the profile section of Attendio. We are able to retrieve a user’s
name, profile photo, and unique ID from this communication

c) Cloud Firestore: Cloud Firestore is primarily used in
the “Events” section of Attendio. We send our backend a
user’s Firebase ID token which was retrieved from the Firebase
Authentication SDK, and this allows us to make requests on
behalf of the user. This token is passed to the backend along
with what we are requesting, and the backend sends back
whatever data we’ve requested.

7



d) Dynamic Links: Our dynamic link module is in sev-
eral parts of our app. When an event is created in Firestore, the
event id is passed to the dynamic link module and it includes
it in a link. A QR code is generated that encodes the dynamic
link for easy scanning on mobile devices. When someone
scans the QR code or goes to the dynamic link in their browser,
Attendio is opened and the check-in page is loaded. When the
check-in page is loaded, it will extract the event id from the
dynamic link that launched the page. The event id will then
be used to find and display the event information.

e) Riverpod: Our Riverpod code is in two parts of our
app. The first part is in our providers folder where we initialize
the providers and develop any logic related to purely state
management. The other part is within the UI widgets. By
using providers, we can have our app update whenever the
state changes. In our application, we used providers to share
the authentication state and information of the current user
to all widgets in the app that required either the state or
information. We were also able to use it to keep track of the
current tab the user was on so we could build the UI based
on the currently selected tab in the bottom navigation. Our
app also has a provider for our Dynamic Links. We use this
provider to share the same instance of our Dynamic Links
services class throughout the app, allowing us to access this
functionality without the need for nesting.

B. Configuration Design

1) Component Selection:
a) Material UI: Material UI was chosen for our applica-

tion for its simplicity to implement as well as it’s popularity
among users. Material UI is much more minimalistic than
other design options, making it much simpler to implement.
This allowed us to focus more on adding functionality to
our application rather than getting stuck on defining the look
and feel. Additionally, Material UI is common among many
applications, and following these design recommendations will
allow us to greet our users with an application that seems
familiar.

b) Authentication (Google Sign-in): We used Google
Authentication because of how easy it was to integrate into our
Application. To get this up and running in its most basic way,
the work consisted of nothing more than adding the necessary
packages to our application and using them. Secondly, this is
in the Google environment, and since Flutter is in this same
environment, integration is seamless. Lastly, using Google
Sign-in keeps us from having to store a bunch of user data,
such as ids, photos, and any other metadata that is attached to
a user. All of this combined allowed us as developers to spend
time on other critical components of the application and not
get caught up in the hurdles that can exist with authentication.

c) Cloud Firestore: The biggest contributor to why we
chose Cloud Firestore as our backend was its flexibility as
well as the simpleness of its implementation in Flutter. Flutter
and Cloud Firestore are both Google products, and this allows
for a very smooth integration process. To use it, the overhead
consisted of nothing more than adding the package to our

application. To speak on Cloud Firestore’s flexibility, it is
a NoSQL database which means it is not modeled through
tabular relations as seen in relational databases. This allows
us to place our data how we want it, where we want it, and
in the exact structure we want it, all without having to worry
about relationships.

d) Dynamic Links: There are several reasons we went
with Dynamic Links over the other deep linking protocols.
Android and iOS use different ways that they interpret links
and offer multiple libraries. iOS can use custom URL schemes
or Universal Links while Android can use App Links or Deep
Links. There are many differences between all of these with
the main one being specific hosts and files [5].

TABLE 7
DEEP LINKING TECHNOLOGIES

We want to support as many platforms as possible but
having specific platform channels that handle it differently
would make the app very complicated and hard to maintain.
With Dynamic Links, all of the OS-dependent operations are
abstracted away so you get a single link that works with
all platforms. Since we already had Firebase in our app, the
decision to use this service was even simpler.

e) Riverpod: Although Riverpod is still relatively new
and not quite ready for production-grade applications, the
benefits it offers over the Provider package outweigh this risk
for the scope of this project. Being based in Dart instead
of Flutter, any Riverpod provider can be used outside of
the widget tree. Riverpod simplifies combining providers by
providing a reference parameter when creating the provider
that can read the state of other providers. This package also
provides an observer that can be very helpful for debugging
any issues with Riverpod providers and state management.
Riverpod also offers a variant package called hooks riverpod
that further simplifies using providers by providing a custom
“hook” function that can be used with the Flutter Hooks
package.

VI. TEST PLAN

A. Security Test

The first engineering characteristic we listed is security.
Security is very important to us because we want users to trust
us with their information. If any user information got stolen,
it would be very embarrassing and hurt the app’s reputation.
Adversaries could also use user data to gain knowledge about
people that they may not want to be public. To minimize
vulnerabilities, we should try to patch as many bugs as we can.
A simple way to find bugs is just by providing a bug reporting
system within the app. Once the app is more stable and there
are fewer vulnerabilities found, we could add some sort of

8



bug bounty program. This program would reward people for
finding vulnerabilities in our service. There are several ways to
go about this but we could start with a crowdsourcing platform
like Bugcrowd. Researchers on this website will try to find
parts of apps to break and they get a reward for exposing them.
If crowdsourcing was not appealing, we could have a security
engineer probe the app to see if they can find any revealing
information or exploits that could compromise our app. One
member of our team currently works in this type of position, so
locating the right person would not be a challenge. No software
is perfect so if there is ever a time where a vulnerability is
found, we hope to fix it and update as soon as possible.

B. Usability Test

If our app is not very user-friendly, then people will not
want to use it for their events. One way we can test usability
is with a small group of volunteers. These participants will
have a few tasks to do and can be observed doing them. We
can note what parts of the app are confusing and what mistakes
are made. This feedback is great to see how usable Attendio
is to the average user. The app should be simple enough to
not need a tutorial, but it may be necessary as more features
are added.

C. Maintainability Test

To make sure the application is robust and is reliable with
every update, we can use automated testing. Since it is hard
to test every function in the app for potential breaking, we
can write unit tests to take advantage of our app’s modularity.
These tests can tell us if functions no longer behave as they
should. Since it is all automated, we can run tests after every
feature that gets added. While automated testing is not perfect,
it can be a great way to ensure parts of our app do not get
overlooked. As Attendio gets more complicated, we can write
more complex integration tests to make sure the entire modules
are working accordingly.

D. Adaptability Test

This engineering characteristic is a bit more abstract. We
want to be very adaptable and support as many devices as
possible. We used a cross-platform language that makes this
easier for us to support many devices. While the language
gives compatibility with the underlying systems, we still need
to make sure devices have an easy way to update. This can
be accomplished with CI/CD or continuous integration and
continuous deployment. Whenever we have updates to the app,
we can set it up so all platforms will receive the latest versions
that are ready to be installed. Easy updates are important to
make sure users apply security patches and have access to the
latest features.

E. Aesthetics

The last engineering characteristic is more subjective. While
everyone has their own opinions on how an app should look,
there are best practices to make sure content is presented
clearly and pleasing. We can get feedback from our app

by sending out a survey on MTurk. MTurk would let us
crowdsource feedback for a relatively inexpensive price. The
survey can include several screenshots of Attendio pages and
ask various questions about the looks. If there is significant
concern about colors, buttons, layout, or other UI features, we
may need to reconsider how the app looks. We can even have
an area for feedback to see if any user has ideas that would
improve the design.

VII. PROJECT DELIVERABLES

As a starting point our project has two main deliverables, a
phone application and a web application. These products can
be seen as our turn-in deliverables, but our true deliverable is
to create a tool which provides users with our service through
whatever means necessary. Fortunately, we have picked tools
which allowed us to reach this objective, and our methods
are described in detail within this proposal as well. These
deliverables are applications which possess the functionality
that has been previously mentioned in the background sections
of this proposal. Our first deliverable was in the form of an
Android mobile application. Developing a web application for
our project is built into the timeline; however, in the event of
setbacks, this portion of the project would have been the first
item to be withdrawn from the project requirements, as our
main focus was initially on completing our minimum viable
product as a phone application.

However, we were able to successfully build not only a
phone application, but also an adaptive web application that
allows our users to access our service using any device with
a web browser. Lastly, our chosen framework allows us to
create our mobile application in both an Android and an iOS
environment with minimal code changes. While our team was
not able to complete this deliverable due to time and hardware
constraints, we plan on continuing development on the project
and including an iOS build in future releases.

VIII. PROJECT MANAGEMENT

During the planning phase of the project, our team created
a blueprint for the application in terms of user design and
user experience by using Figma, a vector graphics editor
and prototyping tool. We discussed various design problems,
created solutions, and developed a unique look and feel for
our application.

We used this initial product design to list out milestones
of the project that are significant for the minimum viable
project. After organizing our work and dividing it up, we began
active development in early January 2021. Our development
schedule was organized into a series of sprints with bi-weekly
and weekly goals in mind.

We assigned a variety of roles to each team member during
the development process. As we only have five members on the
team, we each had to take on a variety of roles with different
skill sets required. All team members actively participated in
the software development lifecycle, but certain team members
specialized in areas of the process.

9



Benjamin focused on setting up a Continuous Integration
system to test our builds as we made changes, as well
as implemented the Riverpod state management solution to
ensure the quality and maintainability of our software. Daniel
created the dynamic link system that allows a user to scan
our QR codes from any camera app and be automatically
redirected to our application. Vicki acted as lead mobile
designer for the application, including implementing many
of the user interfaces on the mobile application. Spencer
was responsible for the web design mockups, as well as
implementing a variety of screens on the mobile and web apps.
Finally, Tucker served as the project manager for the duration
of the project, organizing team meetings and managing tasks
on the agile board, as well as development tasks including the
user authentication system.

Due to the fact that we are developing a software ap-
plication, we did not require any external funding for our
application. We used free software to build our project and the
cost will be based on maintaining our database and information
within the application. We have not yet reached a scale where
we need to pay for our database usage, and therefore did not
need to acquire external funding. In the future, we might need
to begin using a paid data plan if our storage requirements
increase. In addition, in order to release on the Apple App
Store, our team would need to acquire an Apple Developer
License, which would cost $100.

Security protection is one aspect that posed the greatest
risk in our application. For authentication, we ended up using
Google since it is widely used and well vetted. Our databases
are stored in the Firebase platform so they are protected by
our development credentials and not stored in Attendio.

Overall, the project went smoothly due to a detailed plan
and a great development team. We completed all the team
and class milestones to achieve project viability. We might
continue work on this project to finish up some additional
features and polish it around the edges. Attendio was a great
learning experience where we practiced agile app development
and team collaboration.

IX. BUDGET

A. Google Firebase - Free

Although we don’t expect for our app to have enough traffic
to warrant fees from Firebase initially, we have a budget of
$100 for any possible fees we may encounter should our app’s
traffic grow large enough. With our small amount of testing
and basic use, we did not get anywhere near the thresholds
that the Firebase free tier constrained us to.

B. Github - Free

To host our code and enable collaboration between group
members, we used Github. By using Github, we could work
on different parts of the same project at the same time while
keeping the repository private if we need to.

C. Flutter - Free

We based our codebase on the Flutter SDK by Google as
this allowed us to develop our app both at a low cost in terms
of money and time. The Flutter SDK also has native support
for Material design guidelines as they’re both by Google,
allowing us to easily create a desirable UI/UX. With Flutter,
we will also be able to easily bring the app to the desktop if
we decide to go in that direction.

D. Android Studio/Visual Studio Code - Free

Our group used both Android Studio and Visual Studio
Code to develop our app. This means each developer could
choose which IDE they use as long as they could work on the
app without affecting the codebase itself.

X. REFERENCES

[1] B. Kopf, “The Power of Figma as a Design Tool,” toptal.com.[Online].
Available: https://www.toptal.com/designers/ui/figma-design-tool. [Ac-
cessed November 20, 2020].

[2] “Effective Dart,” 2020. [Online]. Available:
https://dart.dev/guides/language/effective-dart. [Accessed: 20-Nov-
2020].

[3] “Performance Best Practices,” Flutter, 2020. [Online]. Available:
https://flutter.dev/docs/perf/rendering/best-practices. [Accessed: 20-Nov-
2020].

[4] K. Beck, Manifesto for Agile Software Development, 2001. [Online].
Available: https://agilemanifesto.org/. [Accessed: 20-Nov-2020].

[5] A. Denisov, “Deep Links and Flutter applications. How to handle
them properly.,” Medium, 03-Jul-2019. [Online]. Available:
https://medium.com/flutter-community/deep-links-and-flutter-
applications-how-to-handle-them-properly-8c9865af9283. [Accessed:
01-May-2021].

10



11 

 

Appendix A: Business Model Canvas 

This model helps give our team and project a direction in respect to our target audience and define its purpose. 

 
Appendix B: Gantt Chart 

This visual shows the timeline of tasks we have completed throughout this semester as build our project. 

 



12 

 

Appendix C: Screenshots 

These screenshots are from various pages within the mobile and web app. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Attendio: Attendance Tracking Made Simple
	Recommended Citation

	tmp.1620398687.pdf.pg98F

