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Introduction 

         Many insect species form symbiotic associations with microbes. These relationships are 

often classified into  two types:obligate symbionts and facultative symbionts. Obligate symbionts 

typically perform essential roles in the host organism such as providing the host with vital 

nutrients only found in scarce quantities in the environment. Obligate symbionts are required for 
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host survival, and some have been found to provide essential amino acids necessary for the host 

to survive (Feng, 2019). Alternatively, facultative symbionts are known to have a much wider 

array of effects such as manipulation of reproduction or benefits like protection against biotic or 

abiotic stressors (Ferrari, 2011). For example, the Gram-negative bacterial symbiont Serratia 

symbiotica offers protection to its aphid host from high environmental temperatures and 

Hamiltonella defensa offers protection from parasitoid wasps that parasitize pea aphids (Oliver et 

al. 2010). The different phenotypic effects that facultative symbiont species have on aphids 

likely contributes to individuals harboring different symbionts depending on their environment. 

Variable combinations of facultative symbionts are possible because these symbionts are not 

necessary for the host survival and are therefore able to affect host fitness by providing unique 

benefits. 

         Many insect hosts harbor multiple symbiont species that live in different tissues in the 

organism. Additionally, some insects host symbionts that coexist together with different strains 

of the same species will live in a host. Studies have shown that some insects have complex 

symbiont relationships that help give them vital nutrients (McCutcheon, 2007).  However, the 

details of how symbiont strains and species interact within a host and their impact on host 

phenotypes is not well researched (McLean, 2016). 

         One important aspect of the aphid system  is the transfer of symbionts to offspring 

(vertical transmission) and between different host lines (horizontal transmission), thus allowing 

for unique combinations of symbionts of varying titers. The different combinations may produce 

different phenotypic results that can increase or decrease fitness (McLean, 2016). For example, 

some combinations may increase strain on the host because more energy is required to maintain 

multiple symbiont species. While there are drawbacks like a weakened immune system and 
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reduced reproductive capability, the host may gain extra benefits that increase the overall fitness 

of the organism. Understanding how the presence of one symbiont impacts the establishment of 

other symbionts as well as how the host regulates symbiont(s) is therefore important.   

Pea aphids (Acyrthosiphon Pisum) are ideal organisms to use to study facultative symbiont 

community interactions because they have bacterial communities with a small number of 

facultative symbionts that provide well-studied benefits to the host. The small bacterial 

communities along with the fact that pea aphids are asexual means changes in phenotype as a 

result of the bacterial community are easily measured. It is thought that few pea aphids are 

coinfected with multiple symbiont species because of the fecundity costs associated with 

maintaining multiple symbiont species. However, some researchers argue that many pea aphids 

sustain coinfections that go undocumented because only a small number of symbionts are 

surveyed (Ferrari, 2012). Past research has shown different combinations of symbionts are more 

or less likely to happen than would normally occur based on chance (Ferrari, 2012). This means 

the symbiont populations are not controlled solely by chance. The aphid symbiont communities 

could be controlled by symbiont competition, the fitness provided to pea aphids by symbionts via 

selective pressure, or the aphid’s immune regulation. Some combination of these three factors 

could also be at play. 

There is still much research that needs to be done to understand symbiont interaction and 

regulation within the host. This study analyzed coinfections in pea aphids to determine symbiont 

persistence in coinfections. We used aphids that had no symbionts and coinjected symbionts into 

the aphids. Two strains from different phylogenetic clades  of Regiella insecticola and one strain 

of Hamiltonella defensa were used in this study. Regiella and Hamiltonella confer different 

benefits to the pea aphid host. Regiella protects against the fungal pathogen  Pandora neoaphidis 
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that infects and kills aphids, and Hamiltonella protects the aphid host from parasitoid wasps 

(Oliver, 2010). Regiella is taxonomically split into two distinct clades (Parker, 2017).  The two 

different clades of Regiella were used because Clade 1, represented by .LSR in this study, 

maintains itself at low titers in the host while Clade 2, represented by .313, maintains itself at a 

higher titer in the hemolymph (Nichols, 2021). This could tell us whether the titer at which a 

symbiont lives in the host impacts that ability for a coinfection to happen. It is our hypothesis 

that symbionts living at higher titers put more strain on the host and make coinfections less likely 

to occur.  

Methods 

Aphid Rearing:  

The aphid line (LSR1-01) used in this experiment was collected in Ithaca, NY, USA in 

1999 (Genome, 2010). The symbionts were collected in the UK and USA. Regiella: LSR 

Regiella col. With LSR1 genotype; 313 was collected in the UK (Parker, 2021). Hamiltonella 

was collected in upstate NY (Chung, 2020). Aphids lines are maintained on Vicia faba plants and 

are kept under a light regime of 16L:8D at 20°C. The longer daylight regime makes the aphids 

reproduce via apomictic parthenogenesis, meaning the offspring are clones of the mother. This 

allows us to use genetically identical aphids throughout the study. All aphid lines were screened 

for seven common facultative symbionts before use in experiments as in Henry et al. (2013) 

Current Biology. Antibiotics were used to clear symbiont infections from lines, if needed, before 

use in experiments.  

Symbiont injection protocols:  
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 Bacterial symbionts were injected into symbiont-free aphids using a microcapillary 

needle. To do this, donor aphids that were confirmed to have either Regiella or Hamiltonella 

were used. In order to confirm the presence of the symbiont, DNA extraction was performed on 

the whole aphid followed by PCR. The PCR used symbiont-specific primers that were then 

visualized via gel electrophoresis. Hemolymph was removed from the donor aphids using the 

same capillary needle in an alternating fashion, and the fluid was then injected into the first instar 

symbiont-free aphids. Aphids were then allowed to generate offspring that were then tested for 

the presence of Regiella and Hamiltonella. All data collected is from the first generation of 

aphids following injection.   

DNA Extraction Protocol: 

DNA was extracted via the bender buffer technique. Aphids were placed in Eppendorf 

tubes and crushed using a pestle. 50 uL of Bender Buffer was added followed by 1.25uL of 

proteinase K. The tubes were then incubated at 65C for 1.5-2 hours. While tubes are warm, 7uL 

of 8M KoAc. Tubes were then vortexed and stored on ice for at least 30 minutes, but for better 

results overnight is best. Tubes are then centrifuged for 15 minutes and the supernatant was 

transferred to a new tube. 100uL of cold 100% EtOH was then added, vortexed, and allowed to 

sit for 5 minutes. Tubes were then centrifuged for 15 minutes. Remove all of the EtOH, being 

sure not to disturb the pellet at the bottom of the tube. Then add 100uL of cold 70% EtOH to 

wash the DNA, centrifuge for 5 minutes, and then again remove the EtOH. Finally, add 200uL of 

cold 100% EtOH, centrifuge, and remove all EtOH. Air dry the tubes overnight or air dry for 15 

minutes, add 5uL of the resuspension media, and incubate at 55C for 15 minutes. Tubes can be 

stored at 4C.   
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Symbiont Screening and Identification:  

Symbionts were screened withPCR using symbiont-specific primers. All primers were 

targeted towards specific regions of the 16s rRNA genes. The forward primer for both 

Hamilronella and Regiella used was 5’ - AGTTTGATCATGGCTCAGATTG - 3’, the reverse 

primer used for Hamiltonella was 5’ - AAATGGTATTSGCATTTATCG - 3’, and the reverse 

primer used for Regiella was 5’ - GGTAACGTCAATCGATAAGCA - 3’. Each aphid was 

screened for the presence of both symbionts using the following PCR protocol followed by gel 

electrophoresis. Amplification was achieved through a “touchdown” PCR ((94°C 2 min, 11 

cycles of (94°C 20s, 56°C (declining 1°C each cycle) 50 s, 72°C 30 s), 25 cycles of 94°C 2 min, 

45°C 50 s, 72°C 2 min and a final extension of 72°C 5 min).  

Statistical design:  

PCR results were analyzed using generalized linear models with a quasi-binomial error 

structure in Rstudio v.4.0.2. The presence or absence of each symbiont was analyzed separately. 

Treatment (co-infection vs. single injection) was modeled as a fixed effect, and statistical 

significance was determined using model comparisons via ANOVA and F-tests.  

Results 
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 Figure 1: The success rate of Clade 2 was compared alone and in the presence of Hamiltonella. 

Hamiltonella had no significant effect on the rate of successful establishment of Clade 2 Regiella. Generalized linear 

regression model used along with F test and p test gave F = 0.7858, 1DF, p = 0.3859.  

The first comparison made with the data yielded from the experiments was comparing 

successful Clade 2 Regiella establishment alone and in the presence of Hamiltonella. We found 

that Hamiltonella did not significantly change the establishment of Clade 2 Regiella when 

compared to single injections of solely Clade 2 Rigiella (F = 0.7858, 1DF, p = 0.3859). The 

presence of Hamiltonella does not have an impact on the establishment of Clade 2 Regiella. 
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 Figure 2: The percent establishment of Hamiltonella alone compared to its success in the presence of both 

Clade 1 and Clade 2 Regiella. A generalized linear model with binomial distribution was used along with F tests and 

p tests. For the comparison between Hamiltonella alone and clade 2, F = 4.11 and p = 0.05. In the comparison 

including Hamiltonella alone and clade 1, F = 5.292 and p = 0.029.  

 We also compared the establishment success of Hamiltonella in pea aphids alone as well 

as in the presence of both Clade 1 and 2 Regiella. Hamiltonella is significantly less likely to 

establish successfully in the presence of Clade 2 Regiella (F = 4.11, p = 0.05), the clade that 

naturally grows at a higher titer. However, Hamiltonella is more likely to establish itself in the 

hemolymph of pea aphids that also harbor Clade 1 Rigiella (F = 5.292, p = 0.029).  

Discussion and Conclusions 
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 The objective of this study was to determine if the presence of one symbiont would 

impact the establishment of another symbiont in the pea aphid model organism. To test this, 

uninfected pea aphids were simultaneously coinfected with two symbionts from donor aphids. 

We hope to use this data to not only provide a basis for future studies but also to expand the 

knowledge on the ecological dynamic of host-symbiont systems.  

 Hamiltonella does not impact whether Clade 2 Regiella will establish (Figure 1). What is 

most interesting about this relationship between Regiella and Hamiltonella is that the reverse is 

not true; the presence of Clade 2 Rigiella significantly decreases the chance that Hamiltonella 

will establish (Figure 2). One reason we believe Clade 2 Regiella influences Hamiltonella 

establishment but not the reverse is because Clade 2 Regiella naturally maintains itself at a much 

higher titer (Nichols, 2021). However, we do not know the exact mechanism as to why the 

higher titer prevents Hamiltonella from establishing. Possible explanations for the observed 

phenomena could be that Clade 2 Regiella prevents Hamiltonella from establishing by direct 

competition through chemical means, both Hamiltonella and Regiella require a specific 

biomolecule for metabolism and the higher titer of Rigiella uses all of the resources, or that the 

immune system of the aphid is limiting establishment through some immune response.  

Even more interestingly, the establishment rate of Hamiltonella in the presence of Clade 

1 Regiella is much higher than in Hamiltonella alone. This indicates that the symbionts are 

acting synergistically to have increased infectivity when paired together. One reason 

Hamiltonella coinfections with Clade 2 Regiella are more likely to persist could be from the 

increase in the bacterial burden, thus weakening the immune system. Pea aphids have simple 

immune systems, and it could be that the immune system is unable to deal with both symbionts 

and therefore allows Hamiltonella to establish. 
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Further investigations that could improve upon the data presented in this study includes 

the following. One aspect of the experiment that could have been analyzed but was not due to 

time constraints was to quantify the number of bacteria present rather than just the presence of 

the symbiont. This could have provided much more information and allowed us to draw more 

conclusions about what is happening in the host-symbiont system. Another example of 

something that could have been included in the study was the aphid reproductive capability and 

aphid lifespan among different types of infections. Lower fecundity when the aphid is sustaining 

multiple symbionts could indicate that the symbionts are a significant burden. Length of life 

could also provide information about why some combinations of symbionts are more likely to be 

seen in nature. If some symbiont combinations have higher survival costs, infected aphids would 

then have fewer offspring and the symbiont associated with a higher burden would have a lower 

occurrence.  

 One possible topic to investigate in future studies would be discerning the mechanisms 

behind why some symbionts are more viable during an infection. Insights on this topic found in 

the pea aphid model could potentially be applied to other insect species, thus allowing 

researchers to better understand ecological phenomena. For example, insights on the interactions 

of symbionts in pea aphids could prompt research focused on understanding more complex 

interactions in other insect species. It is widely accepted that many insects have relationships 

with symbionts. Better understanding the mechanisms behind how these relationships are 

controlled could be useful for many reasons. Data collected could be used to give insight into 

host-symbiont population dynamics, increase understanding of evolutionary pressures on tightly 

associated host-symbiont systems, and to better understand the immune systems of insects to 

name a few.  
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