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ABSTRACT 

 

 

Analysis of cell signaling perturbations in response to chronic localized 

infections 
 

Nicole Prince 
  

The tissue-level response to pathogens involves an intricate series of signal transduction 

events, influenced by immune and healing mediators that alert the host to danger and eliminate the 

infection. Disruptions to normal signaling events can compromise the host’s ability to respond and 

lead to the development of chronic infections that cannot be resolved without clinical intervention. 

Prolonged inflammation due to chronic infection can damage tissues and compromise healing 

processes, thus, the interactions of immune and healing mediators in signaling cascades are 

intimately linked to tissue health outcomes. Studying signaling networks relevant to these 

responses provided a more thorough understanding of localized tissue health to identify the drivers 

of disruptions to signaling cascades, and this knowledge can lead to the development of improved 

diagnostic and therapeutic biomarkers to combat chronic infections. The work presented here 

focused on elucidating the relationships between immune and wound healing factors in an in vivo 

rodent model and a clinical cohort to understand the tissue-level responses to chronic inflammation 

and infection. Specifically, extracellular inflammatory immune responses (i.e., cytokines and 

chemokines) related to intracellular signaling (i.e., phosphorylation of proteins) were investigated 

to identify alterations in native responses compared to those provoked by chronic inflammation 

and infection. Reponses in native tissues were compared to tissues with inflammatory and 

infectious stimuli to test if levels of immune related cytokines were elevated in response to chronic 

joint infections. Wound healing phosphoproteins were also included to look for shifts in wound 

healing-related processes across groups. Traditional statistical approaches and network analysis 

were used to dissect these complex biological datasets and identified drivers of network disruptions 

in response to inflammation and infection. The spatial analysis suggested that changes in biological 

responses were related to proximity to inflammation and infection, and the degree of response 

differed across spatial gradients, which demonstrated the ability for these chronic insults to affect 

disparate tissues in a clinically-relevant manner. The objective of this research and future related 

research is to facilitate new clinical strategies to combat chronic infection, and monitoring 

alterations to cell signaling pathways in this work highlighted the value of using network analysis 

to approach biological interrogation of signal disruptions related to these insults. 
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Chapter 1 

 

Introduction to cellular signaling networks of infection and strategies for 
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 Overview of biological cell signaling 

1.1.1 Components of biological cell signaling 

Cells respond to cues from their environments through relays of complex signaling 

networks, creating a path for adaptation towards survival, proliferation, or death. Understanding 

these signal transduction networks is crucial when studying complex biological responses, such as 

those observed in chronic inflammation and infection. Cell signaling was first observed in 

hormonal studies by Claude Bernard in 1855, who described that hormones released into the 

bloodstream produced effects in distant cells [1]. Bernard created a new concept of the “milieu 

intérieur” which described regulation through complex cellular feedback signaling to maintain 

homeostasis. Specifically, he described how interstitial fluid in the extracellular environment can 

provide a protective barrier for cells and tissues to preserve stability in response to stimuli. Since 

then, biological signaling has been pursued by a wide variety of biochemical researchers, and the 

term “signal transduction” as it is known now was first coined in the 1970s, providing the basis 

for the modern model of cell signaling, consisting of receptors, transducers, and amplifiers [2]. 

When a signal ligand binds to a receptor, this information is transduced into the intracellular space 

and amplified within the cell to produce a response, and examples of signal ligands include growth 

factors, hormones, cytokines, neurotransmitters, and many other small molecules. The release of 

these signals can reflect perturbations to the homeostatic state, and signal transduction is the 

primary means for communicating this information within and between cells. A simplified diagram 

of the incorporation of external stimuli to produce cell signaling changes in cells is shown in 

Figure 1.1. 
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Figure 1. 1. Cellular Response to External Stimuli. When a change occurs in the external 

environment, cells respond to this input through receptors. Sensors convert this to communicate 

signals that are meaningful to the organism. A controller compares this signal to a desired “set 

point” of the homeostatic state to alert the cell if there is a discrepancy. Activators interact with 

effectos to initiate a response, and this feedback communicates to the original receptor whether or 

not homeostasis has been achieved. This phenomenon describes how external cues to initiate 

changes within the cell. 

 

Signal transduction provides instructions for the cell relevant to cell communication, cell 

cycle control, pathogen sensing, neurotransmission, and many other biological processes that 

affect target cells within the organism through the initiation of one of four modes of signaling: 

autocrine signaling, direct signaling, paracrine signaling, and endocrine signaling [3]. Autocrine 

signaling is a self-activation in which a ligand acts on the same cell that released it, as shown in 

Figure 1.2.a. Direct cell signaling, as the name suggests, involves direct communication between 

cells in contact with one another and is often mediated by gap junctions, which are clusters of 

intercellular channels that allow direct transfer of small molecules and ions. This type of signaling 

is alternatively referred to as juxtacrine signaling (Fig. 1.2.b). Signaling can also occur between 

neighboring cells not in direct contact via paracrine signaling. In paracrine signaling, signal ligands 

diffuse a short distance through the extracellular space to activate the target cell (Fig. 1.2.c). Finally, 
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signaling can occur between distant cells. Endocrine signaling is achieved through secreted 

molecules that travel through the bloodstream to activate target cells that are further away from 

the signaling cell. This type of signaling is often utilized by hormones (Fig. 1.2.d). 

 

Figure 1. 2. Modes of cellular signal transduction. Signals can be transmitted through four primary 

mechanisms: (a) autocrine signaling, in which a ligand activates a receptor on the same cell that 

released it; (b) direct signaling between two cells in contact with one another; (c) paracrine 

signaling, in which the ligand travels a short distance to bind to a receptor on a target cell; and (d) 

endocrine signaling occurs when ligands travel through the bloodstream to activate target cells. 

 

Signaling networks can produce immune-related responses through any of these four 

mechanisms, and sometimes the multiple mechanisms can be employed by the same molecule. 

Cytokines represent a diverse group of immune-related molecules that participate in these 

signaling pathways to transmit intracellular and intercellular signals and are an integral part of 

inflammation and the response to pathogens. The term “cytokine” represents a broad group of 
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chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors that play critical 

roles in cell communication. They typically achieve this through autocrine (Fig. 1.2a) and 

paracrine (Fig 1.2c) signaling but can simultaneously use multiple signaling mechanisms. 

Cytokines are often associated with localized signaling to alert and recruit immune cells [4], but 

many cytokines have illustrated communication via long-range endocrine signaling (Fig. 1.2.d), 

such as interleukin(IL)-1 transport through the bloodstream to alert distant cells to the presence of 

pathogens [5].  

 

Once an initiating signal has been produced through any of these mechanisms, it can bind 

to cell surface receptors. Cell surface receptors traverse the plasma membrane and have specific 

signal binding domains in the extracellular space, converting external stimuli into an intracellular 

signal. Upon binding, there is a conformational change to activate the receptor’s cytoplasmic 

domain, often provoking enzyme activity from kinases, phosphatases, and adaptor molecules [6]. 

Intracellular receptors are present on the nucleus, cytosol, mitochondria, endoplasmic reticulum, 

and Golgi apparatus and serve to propagate and amplify the signaling events initiated through this 

extracellular binding. Intracellular binding targets widely vary and frequently affect transcription 

and gene expression [3], illustrating the connection between external stimuli and intracellular 

signal transduction pathways, such as activation of the mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway and the Janus kinase/signal 

transducers and activators of transcription (JAK/STAT) pathway. Extracellular signals (e.g., 

cytokines) produced in response to stressors, like inflammation and infection, ultimately affect the 

intracellular pathways that dictate growth, proliferation, survival, and cell death [7].  
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External cues can produce various effects in cells, highlighting the importance of 

specificity in these signal transduction cascades. Specificity in cell signaling events is a hallmark 

of ligand binding and allows the cell to be highly adaptive while also producing diverse responses, 

and this specificity is achieved in two ways. First, receptors exhibit a high affinity for ligands, 

resulting in specificity of the ligand binding interaction. Receptor specificity depends on the 

ligand’s binding affinity and binding domains, so these specific ligand interactions ultimately 

dictate the biological effect. Specificity in cytokine binding to members of the JAK/STAT family 

allows for diverse bioactivity, as is the case with the IL-6 versus IL-10. While both cytokines 

activate STAT3, IL-6 produces pro-inflammatory effects while IL-10 has an anti-inflammatory 

role [8]. Another mechanism to achieve specificity in cells is the varied expression of types and 

proportions of receptors, both inside and outside the cell. Therefore, cell types can be specialized 

for specific functions depending on the receptors expressed. Immune-related cells express specific 

and distinct cell surface receptors critical for the host response to pathogens. Antigen-presenting 

cells (APCs) are essential in the early response to pathogens, and they respond to environmental 

stimuli through toll-like receptors (TLRs) for pathogen identification [9]. Receptor expression 

allows diversity of signaling events related to cell type. 

 

Signal transduction networks in the immune response to infection involve an 

extraordinarily complex system of cascades, and actions of these signaling mediators have 

consequences for cellular fate. The binding of extracellular signals affects intracellular signaling 

and produces bioactivity that directs the cell towards survival or death. Specificity of cell signaling 

is crucial because it allows cells to perceive a wide range of stimuli while maintaining strictly 
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regulated biological outputs. Ultimately, these tightly regulated networks enable external cues and 

stressors to determine cell fate. 

 

1.1.2 Interactions of cell signaling pathways 

While specific ligand-receptor interactions and varied receptor expression allow for a high 

degree of specificity, interactions between signaling pathways add another layer of complexity, 

involving mutual influences of signals originating from disparate pathways. Following the initial 

signal relay through receptor binding, activation of small molecule second messengers like cAMP, 

calcium, and DAG can promote second messenger interactions with other pathways. The extent of 

pathway interactions during immune and inflammatory responses is unknown, but evidence 

suggests it occurs between different inflammatory cell types, immune-related cytokines, and in 

intracellular signaling pathways like MAPK/ERK and JAK/STAT [10]. Overlap and integration 

of cell signaling pathways primarily occur in three different ways: (1) multiple inputs that converge 

to produce a response, (2) signal gating, in which a signal output from one pathway is regulated 

by a second pathway, and (3) the establishment of feedback loops. All three of these regulating 

mechanisms have been observed in signaling networks related to the immune response to infection. 

These types of interactions between cell signaling pathways highlight the functional specificity of 

signaling mediators, a term to describe how structurally similar proteins can produce distinct 

outcomes, introducing more diversity in response.  

 

Coincidence detection is the convergence of two cellular pathways to produce one output; 

the important distinction from single pathway signaling is that both inputs must be present to elicit 

a response, and the combined response is different than the individual products of each activation 
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(Figure 1.3a). T cell survival is dependent on T cell antigen receptor signaling convergence with 

IL-2 and IL-7 cytokine activation, and, without the presence of IL-2 or IL-7, pro-apoptotic proteins 

FasL and Bim are up-regulated, leading to apoptosis of T cells [11]. Coincidence detection of these 

cytokines in conjunction with T cell antigen receptor signals is critical for T cell survival. Many 

other examples exist in complex, highly conserved signaling pathways related to immunity, and 

these add diversity to the roles of signaling molecules. In response to different cytokines, 

JAK/STAT pathways can be activated in immune cells to produce distinct, cell-type-specific 

responses [12]. While many of these signaling events are not well defined, the dependence on 

multiple pathway convergence does enlighten the diversity of cell signaling outputs. 

 

Gating is another common form of pathway interaction in which one signaling pathway 

evokes a response and is modulated by a second pathway, resulting in either activation or inhibition 

of the first pathway (Fig. 1.3b). An important feature of regulation via gating is that one signaling 

pathway can regulate the flow of another pathway, thus stimulating or prohibiting its response [13]. 

The GTP binding protein Ras influences the ERK proliferative response through this mechanism 

via the second messenger cAMP. When cAMP levels increase, protein kinase A (PKA) is activated, 

which subsequently phosphorylates and deactivates Raf, leading to decreased ERK stimulation 

and reduced proliferation [14]. The gating mechanism creates a complex web of regulation to 

connect related cellular processes, ultimately allowing extracellular ligand action from one 

pathway to dictate intracellular actions related to growth and proliferation. 
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Feedback loops establish a direct relationship between cellular outputs and the initial input, 

and they are influential in signaling networks in homeostasis [15], metabolism [16], transcriptional 

regulation [17], and immune response to infection [18]. Negative feedback loops are a hallmark of 

almost all known signaling pathways, attenuating the allowed output through positive or negative 

feedback. The output signal is produced and converted before being fed back into the input, and 

this new input can subsequently activate or deactivate the initial pathway (Fig. 1.3c). This type of 

feedback is necessary for adaptation to the extracellular environment, as eukaryotic cell machinery 

is built to respond to changes, and cytokine-mediated inflammation employs feedback loops to 

regulate the degree of inflammation in response to infection or insult. In response to pathogens, 

IL-1β is released as an early initiator of infection, and subsequent IL-1β signaling elevates levels 

of its receptor, IL-1Ra, which- in turn- negatively regulates the production of IL-1β and allows a 

controlled reduction of the immune response [10]. In this way, the cells respond adaptively to 

changes in their environment rather than solely relying on absolute amounts of a particular signal. 

Positive feedback occurs when the output is fed back into the input unchanged, thereby amplifying 

the signal, and this feedforward regulation is also common in immune signaling [19]. In complex 

networks, signaling pathways can have multiple feedback loops and mixed loops, which contain 

both positive and negative components. 
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Interactions of cell signaling pathways add complexity and allow more variety in biological 

outputs. Coincidence detection, gating, and feedback loops illustrate three mechanisms by which 

cells can diversify the responses based on the presence of two or more signaling molecules, which 

may partially explain the benefit of the pleiotropic and redundant nature of signaling molecules 

(e.g., cytokines) and how this relates to functional specificity [8]. Gaining insights into the 

interactions of disparate immune-related signaling pathways will certainly enlighten 

understanding of the correlations between immune signals and responses when multiple cytokines 

and immune-related mediators are involved. 

 

Figure 1. 3. Interactions of Cell Signaling Pathways. Overlap of cell signaling pathways can 

produce a response in different ways. A) Coincidental detection involves two signals converging 

to produce one response. B) Gating is a mechanism in which one signal pathway (Signal A) can 

stimulate or inhibit another pathway (Signal B).  C) Feedback loops allow a signal (Signal C) to 

activate a pathway (Signal A) while also providing regulation of that pathway (Signal B). 

 

1.1.3 Protein phosphorylation in cell signaling 

Post-translational modifications (PTMs) are a frequently observed mechanism for 

regulating protein activity in cell signaling cascades, primarily via small covalent changes to their 

chemical structures (Figure 1.4). PTMs add diversity to the proteome and can modify protein 

activity through the addition of complex molecules, peptides, chemical groups, and cleavage of 

B C A 
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functional subunits [20]. The addition of these groups often acts as an on/off switch for protein 

activity, and PTMs serve as regulatory mechanisms for many signal transduction pathways, often 

through previously-discussed regulatory mechanisms like feedback loops (Fig. 1.3). Protein 

modifications can also regulate activity via gating by inducing conformational changes that lead 

to active or inactive states, which can promote or inhibit binding to receptors.  

 

 

 

Figure 1. 4. Mechanism of phosphorylation and dephosphorylation. Kinases perform a hydrolysis 

reaction to covalently attach a phosphate group from ATP to a protein at polar R groups of amino 

acids. ATP coordination with Mg2+ (shown in green) is essential for the transfer of a phosphate 

group. Phosphorylated proteins can be dephosphorylated by phosphatases, which hydrolyze the 

phosphoric acid monoesters, which results in ADP converting back to ATP. A free hydroxyl group 

remains on the protein after removal of the phosphate group. Reproduced with permission from 

John Wiley & Sons, Inc. 
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Protein phosphorylation was one of the first PTMs identified, and it has a role of regulation 

in key biological processes through simple biding of a phosphate group. In 1956, Krebs and Fischer 

demonstrated that reversible phosphorylation controlled glucose storage [21]. Through kinase 

activity, phosphate groups are added to polar R groups of serine, threonine, or tyrosine residues. 

The addition of a PO4 group causes a conformational change, which can aid or prevent protein-

protein interactions. Phosphorylation is negatively regulated by phosphatase enzymes, which can 

remove the phosphate group, and the mechanism of phosphorylation/dephosphorylation is 

illustrated in Figure 1.4 [22]. These processes influence energy availability, making 

phosphorylation an especially important PTM in cellular signaling. Energy availability is 

predictive of cellular fate, and this can be experimentally observed by monitoring protein 

phosphorylation as a marker of mitochondrially-driven kinase activity [23]. Phosphorylation has 

been studied in bacterial and mammalian systems and has demonstrated a role in a broad range of 

cellular processes, such as membrane transport, protein degradation, and enzyme regulation. The 

biological implications of these activities are important in bioenergetics, cell proliferation, and the 

development of disease states. Monitoring phosphorylation events, especially concerning immune 

signaling, has proven useful in understanding the disrupted cell signaling events that can delay 

healing [24]. 

 

Historically, cell signaling research has focused on distinct pieces of signaling cascades to 

understand specific regulators, but spatial and temporal regulation of these signals, including 

PTMs, is an increasingly compelling problem to study in the field of biochemistry. New 

developments in multi-‘omics technologies have made the investigation of a large number of 

related targets more accessible than ever before. Recent research efforts have focused on 
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understanding not only the individual components of cell signaling pathways, but they have also 

expanded to investigate interactions between pathways. Many researchers have begun to approach 

this problem by studying signaling pathways as a whole to understand the influence of individual 

components and their respective relationships. Future research can continue to understand how 

these complex signaling pathways interact to produce diverse biological consequences. 

 

 The immune response to infection 

1.2.1 Acute immune response 

The mammalian immune system serves to protect the host from harmful pathogens, and 

this response involves the coordination of multiple cell signaling pathways, including cytokine 

immune mediation [25], MAPK/ERK activation [26], and JAK/STAT signaling [27]. The immune 

system’s primary function is to eliminate pathogenic microbes if they breach the mucosal barrier, 

and both innate and adaptive immune strategies are utilized to identify and target harmful 

pathogens via pathogen recognition receptors (PRRs). PRRs recognize specific structures of 

pathogens known as pathogen-associated molecular patterns (PAMPs), and this initiates a cascade 

to eliminate the pathogen [28]. The acute immune response is the initial attempt to combat the 

infection.  Cytokines are essential mediators of this response, acting as communicators to recruit 

immune cells and resolve infection through short-range autocrine signaling and paracrine signaling 

[4, 5], and long-range endocrine signaling [29]. Cytokines are produced by immune-specific cells 

such as B lymphocytes, T lymphocytes, macrophages, and mast cells [30], or by endothelial cells, 

fibroblasts, and stromal cells [31], which are all capable of releasing cytokines as an “alert” to the 

localized environment. Murine models have established that this acute response period commences 

at pathogen recognition and can persist to approximately 21 days post-infection [32]. The initial 
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inflammatory response activates NF-κB and MAPK pathways, resulting in the production of 

cytokines IL-1α, IL-1β, TNF-α, IL-2, and IL-18 [33]. These cytokines regulate the activities of T-

helper cells, macrophages, and neutrophils to control immune cell differentiation and maturation 

[34], interact with growth factors that control angiogenesis [35], and influence cellular fate by 

activation of NF-κB signaling to regulate apoptosis [33]. Extracellular cytokines bind to receptors 

to propagate these intracellular signaling cascades, impacting the transcription of proteins central 

to these cellular processes. Cytokines like IL-6, IL-10, IL-12, IL-4, IL-13, and IFN-α/β activate 

STAT proteins, activating TH1-related responses to propagate immune cell activity [27]. The 

effects of early cytokine activity produce a robust inflammatory response that is beneficial for 

resolving pathogens, but it is somewhat unregulated. 

 

The potent inflammatory response elicited early on by cytokines can combat bacterial 

invasion, but it can also result in tissue damage if left unregulated. The initial cytokine response 

functions much like a sensor of infection, followed by a more targeted approach adopted by the 

immune system following this uncontrolled release of cytokines, with careful control of activity 

through gating, feedback mechanisms, and signaling crosstalk. The downstream activity of 

cytokine activation through receptor binding often serves as a negative regulator of cytokine 

activity [10], so cells can adapt following the initial cytokine surge. Sophisticated communication 

between multiple cell signaling pathways, including MAPK/ERK, NF-κB, and JAK/STAT 

signaling [29] to balance the activity of pro-inflammatory and anti-inflammatory cytokines 

facilitate this adaptation to resolve infection most efficiently. The cytokine response to infection 

persists until the infection has been eliminated from the host. Balancing the initial inflammatory 
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response and activation of effectors achieves pathogen resolution without producing harmful 

effects in surrounding tissues.  

 

1.2.2 Chronic infections and immune response 

When the acute response to infection cannot resolve or fully eliminate the pathogen, the 

infection can transition into a chronic state, and both environmental and biological factors can 

contribute to this outcome. The causes for failure of acute response are not fully understood, but 

several risk factors have been identified, including autoimmune disease, obesity, and age [36]. 

During infection, a critical balance must be struck by immune mediators to prevent tissue damage, 

but chronic infections result in persistent activation of inflammation until immune cells become 

exhausted [37], causing a variety of consequences for cell signaling. In chronic bacterial infections, 

disrupted immune responses are marked by continuous stimulation of Th1/Th17 lymphocyte pro-

inflammatory mediators and a failure of Th2 anti-inflammatory mediators [38]. Reduction of anti-

inflammatory influence causes the signaling networks to be shifted towards excessive cell death, 

which disrupts immune cells’ ability to resolve the infection and damages the surrounding tissue, 

thereby perpetuating the infection. Network analysis of chronic infection states has revealed 

distinct shifts away from growth, proliferative, and immune differentiation metabolic activities 

hallmark of the acute response towards heavy metabolic activity with increased progression 

towards apoptosis and programmed cell death [39]. 

 

Errant cell signaling has also been attributed to failures in signal transduction regulatory 

loops. In chronic infections, the deactivation of crucial downstream regulators of cytokine activity 
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has been observed, such as dephosphorylation in c-Jun, p38, and ERK1/2 [40]. Phosphorylation 

of these proteins typically serve as negative regulators of inflammatory cytokine activity, but this 

represents one example of disrupted cell signaling cascades in chronic infection states. While this 

has not been explicitly linked to the disrupted cytokine activity and reduced anti-inflammatory 

capacity, it introduces a potential explanation for how a shift in the cytokine pro- and anti-

inflammatory balance may eventually stimulate increased cell death [41]. The reduced capacity of 

immune cells observed in persistent infection suggests that these signaling disruptions overwhelm 

host immunity, causing an inability to resolve the infection. Disruptions to signaling networks can 

be influenced by infection duration, infecting organism, and tissue type. 

 

1.2.3 Bacterial hijacking of host cell signaling 

While the mechanisms of disrupted cell signaling in infection are not entirely understood, 

microbial agents have demonstrated the ability to hijack host cell signaling machinery to decrease 

the efficacy of host defense strategies, and some of these effects play a role in the transition to 

chronic infection. One way bacteria affect host immune response is by producing toxins that 

corrupt cell signaling cascades and dampen the effects of mediators critical for the early 

recognition of pathogens [42]. Without this initial alert and warning to the host immune system, 

pathogens can go undetected, ultimately disrupting the normal sequence of pathogen clearance via 

immune signaling [43]. The VacA cytotoxin of H. pylori has been shown to delete genes in host 

immune cells vital to inflammatory response, blocking several early pro-inflammatory cytokines 

involved in early infection response like IL-6 and IL-8 [44]. Similarly, M. tuberculosis subverts 

macrophages to downregulate TNF-α, IL-12, and IL-1β and shut down pro-inflammatory 

responses [45]. Bacteria like Yersinia ssp., Shigella ssp., and E. coli produce other peptides or 
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small molecules that can interfere with cell signaling cascades by inhibiting critical signaling 

mediators and coopt entire signaling systems, resulting in a decreased ability for pathogen 

recognition [46]. These bacteria cause deleterious effects through the exploitation of host signaling. 

 

Bacterial hijacking of cell machinery has been observed for many pathogens, and the exact 

mechanisms of disruption vary depending on infecting organism and the extracellular environment. 

The presence of non-infectious inflammatory stimuli, such as those associated with obesity or 

chronic inflammatory conditions, can influence how bacteria interact with host cell signaling 

pathways. The unique environment created by inflammatory disease coupled to infection is more 

complex than bacterial invasion alone because the cascades initiated by recognition of PAMPs 

often overlap with those triggered by damage-associated molecular patterns (DAMPs) from non-

infectious stimuli. Both PAMPs and DAMPs cause persistent activation of pro-inflammatory 

mediators through activation of NF-κB and p38 MAPK pathways [47], so the overlap of chronic 

inflammatory disease and infection may not have the same effect as the sum of the individual 

insults. The intersection of chronic inflammatory conditions and subsequent infection is not well 

studied, but obesity and rheumatoid arthritis are two conditions that are frequently plagued by 

concurrent infection. Obesity impairs the immune response to infection by promoting T cell 

senescence, which affects the production of early pro-inflammatory cytokines [48]. Although the 

mechanistic effects have not been explicitly studied, increased incidence of chronic infection in 

obese patients compared to non-obese individuals suggest the suppressive effects on cell signaling 

may be advantageous for bacterial interference with signaling cascades. Rheumatoid arthritis is 

another disease that alters immune-related cell signaling and has been associated with an increased 

risk of chronic infection. Several cytokines, like 1L-1α, IL-1β, and TNF-α, are up-regulated in 
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arthritis, and chronic activation of these pro-inflammatory mediators can cause damage to bone 

and cartilage [49]. Damaged tissue creates an ideal environment for infection, so the compromised 

tissue combined with immunomodulatory effects of the disease may create an environment that is 

conducive to bacterial disruption of immune function. Altered immune signaling when both 

infectious and non-infectious sources are present continues to be an intriguing problem, and the 

rising prevalence of chronic inflammatory conditions like obesity and rheumatoid arthritis in the 

United States makes them an extremely relevant problem to study [50]. 

 

 Disruptions to cell signaling pathways observed in pathological conditions 

1.3.1 Periprosthetic joint infection (PJI) and immune signaling 

Elucidating changes in cell signaling networks provoked by chronic infection may provide 

a better understanding of the drivers of dysregulation in a range of clinical pathologies. One 

example of a chronic infection is periprosthetic joint infection (PJI), a devastating post-operative 

complication following total knee arthroplasty (TKA) and total knee revision (TKR) procedures, 

and these infections have high clinical relevance for the field of Orthopaedics. Over one million 

joint revision procedures are conducted in the United States every year, and the popularity of TKA 

procedures is projected to grow rapidly [51]. While joint replacement is a life-enhancing procedure 

for many people, infections can develop and affect both the joint prosthesis and surrounding tissues. 

PJIs occur in approximately 2% of joint revisions and affect tens of thousands of patients per year, 

imposing high emotional and financial burdens on these individuals [52, 53]. They can be caused 

by a variety of bacteria, but Staphylococcus aureus is the most common pathogen implicated [54]. 

Many PJIs become chronic due to bacteria’s ability to evade host response by forming protective 
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biofilm barriers and interference with host immune efforts [55], and changes in cytokine and 

immune signaling pathways have been observed.  

 

The localized PJI environment is affected both by inflammation due to foreign body 

implants and the modulatory effects of the bacteria. Surrounding tissues often exhibit elevated 

levels of localized cytokines due to prosthesis alone [56], and the presence of S. aureus can have 

additional effects on host adaptive immunity. PJIs due to S. aureus have been shown to dampen 

leukocyte activity and reduce phagocytosis following bacterial invasion. S. aureus also employs 

countermeasures, including provocation of anti-inflammatory mediators, to combat the robust pro-

inflammatory response of surrounding tissues [57], similar to previously discussed bacterial 

hijacking strategies to target early pathogen recognition. The prevailing theory of why PJIs become 

chronic and difficult to treat is the devastation to the localized environment overcomes the immune 

system’s ability to combat the infection, so it is critical to dissect the specific influences of PJIs on 

surrounding tissues. The effects of chronic PJI on localized tissues have recently become of interest 

for researchers in the field of Orthopaedics [58-60]. 

 

Studying the specific deviations in immune signaling could lead to the identification of 

tissue-level biomarkers of PJI relevant to treatment. Once chronic PJI is established, it is difficult 

to treat, but surgical strategies can manage the infection. The gold standard involves debridement 

and irrigation of the wound area to remove infected tissues, either decreasing the bacterial load to 

a level the immune system can overcome or completely removing the infected tissues. While this 

strategy shows the highest rates of success in persistent PJI, it is expensive and often requires 
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additional surgical intervention [52]. Further, debridement is a subjective technique in which the 

surgeon is tasked with visually inspecting the tissue to determine viability. While Orthopaedic 

surgeons undergo extensive training, it can be challenging to eradicate infected tissue using only 

visual inspection. Even a small number of bacteria remaining (i.e., a few colonies) can lead to re-

infection of the joint [61]. Failure rates of procedures can reach as high as 50% in infected joints, 

partly because subjective measures of debridement are not sufficient [62]. Delineating healthy and 

infected tissues in PJI is critical, but no tissue-level biomarkers are established for intra-operative 

assessment to inform treatment.  

 

Several biomarkers have been identified for their diagnostic utility in PJI but have not been 

investigated for their ability to identify healthy versus infected tissues. While serum and synovial 

fluid measurements of cytokines like IL-1β, IL-6, IL-10, and IL-8 have been incorporated into 

clinical protocols for PJI diagnosis [63], they do not provide information about tissue viability. 

Establishing diagnostic biomarkers of infected tissues in PJI requires a high degree of sensitivity 

and specificity [64]. Sensitivity is a measure of how well the biomarker identifies true positives 

(e.g., how many tissues are correctly identified as infected; Equation 1.1). Low sensitivity can lead 

to a high number of false negatives, or type II error. Specificity describes how well the biomarker 

determines true negatives (e.g., how many healthy tissues can be identified as non-infected; 

Equation 1.2). Low specificity can lead to a high number of false positives, or type I error. In 

biomarker development, there is a balance between sensitivity and specificity, with higher 

sensitivity leading to lower specificity and vice versa.  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (1.1) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (1.2) 

 

Biomarker analysis through enzyme-linked immunosorbent assays (ELISAs) is an 

attractive analytical technique to investigate targets related to tissue health in PJI. Due to the 

complexity of the inflammatory environment, it would likely be advantageous to study a suite of 

immune-related targets and the healing cascades associated with tissue damage in chronic infection 

and inflammation. Many immune and healing mediators exhibit low homeostatic concentrations 

in blood or localized fluids (e.g., picomolar) [65, 66], but stimulation by inflammatory stressors 

like infection can cause increases of up to 1,000-fold [67]. Cost-effective, high throughput 

multiplexed ELISAs offer a solution to investigate multiple targets related to immune and healing 

processes simultaneously. Multiplexed assays use multiple antibodies immobilized to the surface 

of a polystyrene bead, and measurements are made using a dual-laser flow cytometric system [68]. 

Multiple detection antibodies are used, and dyes correspond to the analyte of interest, and up to 

100 different antibody-antigen combinations can be included per bead [69]. A classification laser 

identifies the unique signature of each analyte region, and a reporter laser measures the 

fluorescence intensity of the signal (Figure 1.5). The accuracy of this method is dependent on CV, 

upper and lower limits of quantitation [70], and quality of the calibration curve but has shown 

analytical performance comparable to a singleplex ELISA [71].  
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Figure 1. 5. Bead-based ELISA. Microsphere beads have multiple antibodies immobilized to the 

surface, corresponding to different antigens. A two-laser system consists of: (1) one detection to 

measure emission of dye specific to each analyte, and (2) another detection to measure the emission 

of Streptavidin-PE (or similar fluorophore) to measure the fluorescence intensity and quantify each 

analyte. The multiplexed assay format proceeds similar to a traditional sandwich ELISA, but many 

capture antibodies are immobilized on the surface. The biotinylated detection antibody shown in 

blue recognizes a separate epitope of your desired analyte. The biotinylated detection antibody 

then binds with the fluorescent reporter, streptavidin-phycoerythrin (shown in green), due to the 

extremely high binding affinity of biotin for streptavidin. This image was modified with 

permission from Vrana 2015 [72]. 

 

1.3.2 Dysregulation of cell signaling in other conditions 

Disrupted cell signaling processes are common in many other conditions, such as 

autoimmune disorders, cancer, and Alzheimer’s Disease, and investigating signaling networks has 

led to advances in diagnostics and therapeutics for these pathologies. Here, a few examples are 

discussed to highlight the potential for similar research to provide insight for chronic infections 

like PJI.  
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Cytokines IL-4 and IL-13 are potent initiators of allergic response, and the IL-4/IL-

13/STAT6 pathway is central to asthma modulating [73]. Elevation of these factors has been 

observed in inflammatory airways of asthmatics, and some asthma drugs target IL-4/IL-13/STAT6 

to suppress the inflammatory response. Targeting cell signaling pathways in asthma has not only 

led to better drug targets, but differential network analysis has also revealed disparate hub genes 

associated with inflammation, apoptosis, and T cell activity for allergic responses [74]. Networks 

associated with various cancers have also been probed to identify new therapeutic targets. Many 

cancers involve disrupted cell signaling, especially processes related to proliferation and survival. 

Novel therapies for hepatocellular carcinoma have been reached through targeting of 

Ras/Raf/MAPK [75], PI3K/AKT/mTOR [76], Wnt/β-catenin [77], and hedgehog signaling 

pathways [78], four highly evolutionarily conserved pathways relevant to a number of critical 

cellular processes. Recently, studies of Alzheimer’s Disease illustrated that new immune-related 

targets HLA-B, IL-10, C1QB, and CD86 could be pursued to prevent disease and that disease 

etiology of Alzheimer’s showed similarities to antigen presentation through network analysis [79]. 

Dissecting the complex signaling pathways in these conditions provided a better understanding of 

the alterations to normal cell signaling provoked by disease states. These represent a few of the 

many examples to illustrate the utility of investigating signal transduction networks in disease.  

 

 Bioinformatics approaches to understand complex biological responses 

Biomarkers for diagnosis and treatment have been elucidated for many diseases, from 

infection to autoimmune inflammatory disorders to cancer and beyond, and researchers employ 

different statistical approaches and methodologies to understand these complex responses. It is 

often advantageous to approach these using network analysis rather than traditional statistical 
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testing like t-tests and ANOVAs, and studying chronic infection like PJI through network analysis 

may provide a better understanding of the complex inflammatory environment. Network analysis 

approaches can involve the integration of different data types and allow researchers to investigate 

interactions of different targets involved (i.e., transcripts, proteins, metabolites) [80]. These 

approaches have expanded on classical statistical techniques to probe beyond the investigation of 

a single molecular entity. Recent accessibility of multi-‘omics technologies have made network-

wide assessments more common when studying disease states, and new multi-‘omics studies of 

disease have led to the discovery of biomarkers with higher specificity than those identified in 

classical statistical testing (e.g., ANOVA, t-test, ROC), and this may be due to the ability to 

consider the entire network as a whole rather than analyzing each target in isolation [81]. Database 

searching software applications and mathematical modeling techniques have been utilized in a 

variety of diseases to understand underlying molecular patterns of disease etiology.  

 

1.4.1 Background on common network methodologies 

Biological network analysis is central to understanding complex biological processes, and 

recent technologies have shifted research towards large-scale biological datasets that measure 

many parameters. Multi-‘omics studies (e.g., transcriptomics, genomics, proteomics, 

metabolomics, interactomics) are the primary ways researchers approach network studies, 

covering every portion of the journey from DNA to protein to protein-protein interactions in 

signaling [82-84]. Ultimately, studying biological responses through these various platforms 

allows a holistic view of cells and tissues to identify which targets are most important for survival 

or death. High-throughput technologies like next-generation sequencing, microarrays, and hybrid 

screening to identify interactions of biological network components have made it possible to 
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collect a large amount of data with relative ease and allowed exponential growth of network 

repositories and databases to aid in the analysis of cellular network data. Cutting-edge mass 

spectrometry techniques allow for global assessment of proteins, metabolites, and other species of 

interest in biological samples [85]. The advent of multi-‘omics approaches has paved an exciting 

path forward, allowing for a more complete understanding of complex biological interactions. 

These technologies can be applied for biomarker identification [86], drug discovery [87], and in 

the future of personalized medicine [88]. 

 

Researchers that take advantage of these techniques produce hearty data sets with large 

amounts of information, but this presents a problem of its own: what is the best way to analyze, 

integrate, and interpret the data? Biological networks and interactions of proteins within the 

network can be constructed from literature-derived and experimental data. Additionally, data can 

be acquired in many forms, including protein-protein interactions, protein function prediction, 

association with canonical networks, and more. Some commonly-used network methodologies are 

based on graph theory, Bayesian approaches, and correlations to draw connections between 

individual targets to form a network [81]. These approaches can be used to answer a wide range 

of biological questions concerning genetic causes of disease, target identification for biomarkers 

of drug discovery, and monitoring of treatment [89].  

 

1.4.2 Databases and model repositories 

Databases and repositories are commonly used in biological network analysis, and they often 

take both literature-derived data and the researcher’s experimental data into account. Many 

databases exist primarily to analyze network data, and the researcher must consider the nature of 
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the data, application, and interpretation when deciding which database(s) to utilize. Model 

organisms, tissue types, and diseases may also be considered; databases and model repositories 

are carefully curated, but some may be more appropriate for different etiologies [90]. These 

network-based studies are often carried out in model organisms, including both in vitro and in vivo 

research. These are considerations when choosing which database(s) to use and what caveats must 

be acknowledged when interpreting the data. Some examples include the Reactome Pathway 

Knowledge Base [91], KEGG genome database [92], Gene Ontology (GO) GOnet [93], Ingenuity 

Pathway Analysis (IPA) [94], and Cytoscape [95]. Most of these tools rely on basic statistical tests 

to identify significant targets. Reactome uses a simple binomial test to calculate significant 

deviations from expected observations and create links between different entities. KEGG and GO 

use hypergeometric probabilities to enrich data sets by identifying associations with individual 

nodes of interest. IPA connects individual targets through Fisher’s Exact Test to construct a 

network of biological nodes. Some tools, like Cytoscape, allow the user to have more control over 

the tests for significance, which provides more flexibility when working with different types of 

data. Databases differ in analysis methods, so researchers must thoroughly understand what 

information the database can provide and its limitations. Some common databases and repositories 

used to interpret biological networks are discussed in the following paragraphs. 

 

Systems biology approaches have centered around network analysis, and these techniques 

have demonstrated broad utility in addressing questions of disease etiology to therapeutics, making 

them extremely attractive to researchers. Studies cover a wide range of data types, collection 

methods, statistical analysis approaches, and aims, demonstrating the highly diverse studies that 

benefit from network analysis techniques. Network analysis using databases and repositories have 
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led to better targets for cancer therapeutics [96], a better understanding of the immune response to 

asthma [97], and biomarkers of disease progression in Amyotrophic Lateral Sclerosis (ALS) [98], 

to name a few of the many pathological states that have been investigated. While it is often 

advantageous to use network approaches, problems can arise due to insufficiencies in data related 

to a particular model organism, the number of relevant studies in the database for a specific disease, 

and lack of spatial and temporal information (i.e., mismatches in time points or distance from 

injury) [89]. Progress in data analysis in the future will depend on broadening the model organisms 

and scopes of disease, including the inclusion of multiple ‘omics platforms for diseases. The more 

data within the repositories these databases use, the more accurate the machine learning algorithms 

can become, ultimately providing better answers to systems biology questions. Network 

approaches have expanded the knowledge of biological systems and have proven to be an essential 

asset for the future of signal transduction research.     

 

1.4.3 Advanced mathematical network analysis approaches 

The use of biological network applications to analyze a dataset is highly beneficial for 

many researchers, especially in disease states that have been well studied. Challenges can arise 

when investigating diseases that have not been well characterized and only have a small number 

of studies relevant to signal transduction mediators. For these cases, advanced statistical 

techniques like mathematical modeling offer an alternative, as they rely solely on the parameters 

the investigator includes. Network centrality is one approach, and it is based upon graph theory, 

which mathematically organizes the different parameters to create a “map” of their interactions 

and interconnectivity [99]. In graph theoretical analysis, the network consists of nodes and edges. 

Nodes are parameters within the network (i.e., proteins, genes, metabolites), and edges represent 
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the interactions of node pairs. Using graph theory, researchers can characterize the biological 

network by connecting nodes and assigning quantitative values to their influence on the network 

as a whole. A common approach for interpretation of these networks is to analyze through a lens 

of network centrality, as this can properly weight the interactions of the network, providing 

information on highly interconnected nodes vs. peripheral nodes, which can then be interpreted 

for their biological roles [100].  

 

Many other advanced mathematical modeling and statistical techniques have been 

employed to analyze networks, including principal component analysis (PCA), partial least squares 

discriminant analysis (PLS-DA), and hierarchical clustering [101]. These techniques reduce the 

dimensions of the dataset and combine parameters to model the system, thereby significantly 

reducing the complexity and allowing interpretation. Predictive modeling can be integrated into 

these techniques to evaluate the model’s ability to accurately group proteins, genes, etc., to 

describe an altered biological state. New tools that utilize advanced statistical principles to dissect 

large biological network data are being developed in the field, and many of them are based upon 

these techniques. For example, new statistical strategies have been employed to integrate multi-

‘omics data based on orthogonal PLS approaches, illustrating the potential to narrow variables of 

interest [102]. The probabilistic modeling technique ProbRules was developed to predict the 

behavior of dynamic signaling networks based on differential equations, allowing the ability to 

focus wet-lab experiments a priori [103]. Williams et al. developed a “functional heatmap” to 

quickly assess time-series multi-‘omics data based on cluster analysis, providing the means to 

quickly assess patterns in large data sets [104]. These represent only a few examples of the 

possibilities of new tools developed to support signal transduction research. At their cores, 
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traditional multivariate statistical approaches laid the foundation for these tools and allowed 

researchers to expand their use to handle multi-‘omics data sets. 

 

Choosing which mathematical technique is appropriate for a data set is dependent on the 

format of the data, desired outcomes, and goals of the research. All of the described analysis 

methods have been proven in the literature to manage large, complex biological datasets, and 

researchers are developing new techniques to integrate multi-‘omics data sets for their own 

purposes. As multi-‘omics techniques become more widely adopted for studies of biological 

networks, network analysis through database searching, mathematical modeling, and repositories 

highlight a new frontier to dissect complex biological milieu to understand diseases like chronic 

infection. 

 

The work presented in the following chapters describes comparisons of immune-related 

cytokines and wound healing phosphoproteins in response to implants and infection in order to 

understand cell signaling changes in response to these stimuli. Based on previous work to 

understand cytokine responses in PJI on a serum level [52, 53], the prevailing hypothesis was that 

higher concentrations of cytokines would be present in septic tissues, and these could be developed 

into tissue-level biomarkers of infection. Phosphoproteins related to wound healing processes were 

also tested to probe the interactions between inflammatory immune cytokines and tissue healing 

mediators. The purpose of this work was to provide a novel tissue-level investigation to provide 

new insights into changes related to implants and chronic infection. 
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2. Localized Cytokine Responses to Total Knee Arthroplasty and Total Knee Revision 

Complications1 

 The study of localized immune-related factors has proven beneficial for a variety of 

conditions, and one area of interest in the field of orthopaedics is the impact of implants and 

localized infections on immune response. Several cytokines have shown increased systemic 

concentrations in serum/plasma due to implants and infection, but tissue-level cytokines have not 

been investigated as thoroughly. This exploratory study investigated tissue-level cytokines in a 

cohort of patients (N=17) in response to total knee arthroplasty and total knee revision to better 

understand the immune response to implants and localized infection (e.g., prosthetic joint 

infection). The overall goal of this study was to provide insight into the localized cytokine response 

of tissues and identify tissue-level markers specific to inflammation caused by implants versus 

inflammation caused by infection. Tissues were collected across several anatomical locations and 

assayed with a panel of twenty human inflammatory cytokines to understand spatial differences in 

cytokine levels. In this study, six cytokines were elevated in implanted joints, as compared to 

native joints: IL-10, IL-12p70, IL-13, IL-17A, IL-4, and TNF-α (p<0.05). Seven cytokines showed 

infection-dependent increases in localized tissues: IL-1α, IL-1β, IL-6, IL-8, MCP-1, MIP-1α, and 

MIP-1β (p<0.05). This study demonstrated that differences exist in tissue-level cytokines in 

response to presence of implant, and some cytokines were specifically elevated for infection; these 

responses may be informative of overall tissue health. These results highlight the utility of 

investigating localized cytokine concentrations to offer novel insights for total knee arthroplasty 

and total knee revision procedures, as well as their complications. Ultimately, this information 

 
1 Parts of this chapter have been published previously from Prince N, Penatzer JA, Dietz, MJ, and Boyd, JW. 

Localized Cytokine Responses to Total Knee Arthroplasty and Total Knee Revision Complications. Journal of 

Translational Medicine. 18, 330 (2020). 
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could provide additional, quantitative measurements of tissue to aid clinical decision making and 

patient treatment options. 

 Introduction 

 The inflammatory response to infection involves a series of biological events regulated by 

a number of immune mediators, and the actions of these immune factors are partially reliant on 

the cytokines and chemokines produced in response to pathogens, foreign bodies, and other stimuli 

[1-3]. These responses are of interest to the field of orthopaedics, especially with regard to the 

immune response to implants, infection, and chronic inflammation [4-6]. An elevated immune 

response has been observed following total knee arthroplasty (TKA) procedures, and increased 

levels of cytokines, particularly interleukin (IL)-1, IL-4, IL-6, IL-10, and tumor necrosis factor 

alpha (TNF-α), have been observed on a systemic level (i.e., serum/plasma) as well as on a more 

localized level (i.e., synovial fluid) [7-9]. However, many aspects of this response are not well 

understood, so the inflammatory response in orthpaedic implants and implant infections remain 

uncharacterized. A majority of TKA procedures are successful, but implant-related and infection-

related complications can negatively affect a patient’s quality of life. Properly addressing these 

issues is of high priority to the field of orthopaedics, especially considering the increasing demand 

for joint replacement [10].  Many studies have noted the pain, inflammation, and dissatisfaction 

that can occur following these procedures, affecting approximately 20% of patients undergoing 

TKA [11, 12], but it is not entirely known what role cytokines play in this chronic inflammatory 

response. 

 

Infections, such as prosthetic joint infection (PJI), are serious complications and the source 

of excessive joint inflammation, leading to higher rates of total joint failure [13]. PJI is a localized 
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infection surrounding a prosthetic joint and can result following implantation, often necessitating 

surgical intervention [14]. PJI is a major concern following TKA/total knee revision (TKR) 

procedures and can be difficult to treat. The infections are often persistent and unable to be 

resolved using conventional methods, presenting a challenge for clinicians [15]. The systemic 

immune response to PJI has been studied extensively, but the localized tissue response is not as 

well understood. In order to better understand the immune response to implants and localized 

infection, this study investigated levels of twenty inflammatory cytokines in localized tissue 

surrounding the joint. While defining the localized response to implants and infection can be 

difficult [7-9], localized cytokine responses have been investigated for other pathological 

conditions. A few studies have characterized localized cytokine responses in trauma [16-18] and 

respiratory infection [19], and these studies demonstrated that the local cytokine environment 

differs when compared to systemically circulating levels. Currie et al. showed that differences in 

cytokine concentrations exist in skeletal muscle samples in a spatially-dependent manner using an 

animal model of traumatic injury [16]. Similarly, Hauser et al. observed differences in levels of 

cytokines at the site of injury compared to systemic levels in response to trauma in humans [18]. 

Other research groups have observed spatially-related differences of other immune-related factors 

for stroke [20], and in response to allergens [21] in animal models. These studies introduced the 

concept of using immune markers on a localized level to better understand these conditions.  

 

TKA and TKR procedures trigger inflammatory cascades, initiating cytokine responses 

and elevating systemic cytokine concentrations; higher levels of cytokines have been observed 

following these surgeries. The elevation in cytokine levels has been attributed to the trauma of 

surgery as well as the introduction of implants into the body [22, 23]. However, this inflammation 
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is sometimes prolonged, which can cause major complications for patients. The causes of chronic 

inflammation following these procedures are still unknown, and resolution of the inflammation is 

challenging [24]. Therefore, understanding the changes in inflammatory response specific to 

implant-related inflammation is beneficial to improving the outcome of these individuals.  

 

Tissue-level response to PJI has not been characterized to understand the local immune 

modulation in these cases. Many studies have investigated systemically circulating levels of 

interleukins and other cytokines for their roles in infection, and several cytokines are used as 

diagnostics of PJI [25-27]. Several studies have specifically focused on the utility of measuring 

IL-6 and IL-8 levels in serum for diagnosing and monitoring PJI, both of which have increased 

specificity over conventional methods; this knowledge has greatly benefitted the clinical treatment 

options for PJI [28, 29]. However, PJI remains one of the most serious complications following 

revision knee arthroplasty. In fact, infection is one of the most common causes for revision, being 

implicated in 20.4% of all revision TKA procedures between 2009 and 2013 [30]. While defining 

the systemic response to sepsis and infection has paved the way for improved diagnostics [31-33], 

less is known about the environment of localized infections and what role cytokines play in 

determining tissue health.  

 

The present study focused on understanding differences in localized distributions of 

cytokines in TKA and TKR procedures, with and without presence of infection, using PJI as the 

model for localized infections. The ultimate goal of this study was to characterize the immune 

modulation on a tissue level that occurs in response to joint implantation and infection to better 
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understand localized tissue health. The information gained could aid clinical management of these 

complications by narrowing down cytokines that are indicative of response to PJI. It represents the 

first known investigation of tissue-level cytokines in response to implant-related and infection-

related complications, to our knowledge. 

 

 Materials and methods 

2.2.1 Patient cohort 

Following Institutional Review Board (IRB) approval (IRB Protocol #1709745853) and 

patient consent, six patients undergoing primary total knee arthroplasty (TKA) and eleven patients 

undergoing total knee revision (TKR) procedures participated in the study (8 males, 9 females; 

aged 45-82 years; body max index [BMI] 24.6-43.7). Subjects were recruited over a 12-month 

period. All six primary TKA patients were undergoing elective surgery for total replacement of 

the knee joint with a diagnosis of osteoarthritis. At the time of this study, this was the first 

arthroplasty procedure on either knee joint. In the TKR group, patients were further characterized 

into aseptic and septic revision procedures. Patients with aseptic revisions (N=5) were undergoing 

revisions due to failures of the prosthetic joint but did not show presence of infection. For ease of 

the reader, samples from these patients will be referred to as aseptic TKR tissues. Patients with 

septic revisions (N=6) met clinical criteria for a PJI diagnosis as defined by the Musculoskeletal 

Infection Society (MSIS) criteria [13]. Samples from these patients will be referred to as septic 

TKR tissues. All six patients diagnosed with PJI were tissue culture positive: four tested culture 

positive for Staphylococcus epidermidis, one for Methicillin-sensitive Staphylococcus aureus 

(MSSA), and one for Enterobacter cloacae. More patient information can be found in Table 2.1 

below. Systemic C-reactive protein (CRP) levels in serum are additionally listed as reference. 
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Table 2. 1. Patient Information. Six primary TKA and eleven revision TKR patients were enrolled 

in the study, creating a heterogenous cohort of males and females varying in age (45-82 years) and 

comorbidities. Primary TKA patients have ID format P#; revision TKR patients have ID format 

F#. This table lists general patient information including the pathogen for which each septic patient 

tested culture-positive following testing on the day of surgery. Serum CRP values were obtained 

pre-operatively in the revision setting. Cultures were obtained from intraoperative tissue samples.   

 

ID Sex TKA/TKR BMI(kg/m2) Diabetic (Y/N) CRP (mg/L) Culture 

P1 F TKA 33.8 N N/A Negative 

P2 F TKA 39.8 N N/A Negative 

P3 F TKA 39.8 N N/A Negative 

P4 M TKA 29.7 Y N/A Negative 

P5 M TKA 24.6 N N/A Negative 

P6 M TKA 27.2 N N/A Negative 

F1 F TKR- Aseptic 28.2 N 4.3 Negative 

F2 F TKR- Aseptic 29.8 N 0.2 Negative 

F3 F TKR- Aseptic 33.9 N <1 Negative 

F4 M TKR- Aseptic 40.4 Y 3.6 Negative 

F5 M TKR- Aseptic 26.2 N 2.1 Negative 

F6 F TKR- Septic 43.7 N 28.8 S. epidermidis 

F7 F TKR- Septic 30.8 Y 161.4 S. epidermidis 

F8 F TKR- Septic 41.9 N 21.7 E. cloaecae 

F9 M TKR- Septic 36.2 N 33.5 MSSA 

F10 M TKR- Septic 33.8 Y 3.8 S. epidermidis 

F11 M TKR- Septic 31.9 N 111.9 S. epidermidis 

 



49 

 

2.2.2 Collection of tissue samples 

All TKA and TKR procedures were performed by a single surgeon with standard 

debridement and washing protocols. Tissues were collected at a total of four distinct anatomical 

locations, broadly characterized into two tissue layers: four adjacent tissue layer (ATL) samples 

and three radial tissue layer (RTL) samples. The ATL samples came from the initial debridement. 

Tissues from the ATL layer were closer to the knee joint (or prosthetic implant). Conversely, RTL 

samples were taken from a tissue layer further removed from the joint (or prosthetic implant) after 

the surgeon completed debridement. The difference in depth of the RTL tissues and ATL tissues 

was approximately 5-10 mm and was dependent on the individual patient. Measurements were 

made from point of origin to standardize tissue samples taken between patients. Tissues were taken 

at four anatomical locations illustrated in Figure 2.1. Briefly, the solid line circle represents 

location 1) medial femoral condyle (F); the dashed line circle represents location 2) medial tibial 

plateau (T); the solid line square represents location 3) lateral gutter (LG); and the dashed line 

square represents location 4) posterior capsule (PC). Anatomical locations 1-4 were collected for 

the ATL layer, and locations 1-3 were collected for the RTL layer. Location 4, PC, could not be 

taken in the RTL layer due to proximity to neurovascular structures. Therefore, a total of seven 

tissue samples were taken for each patient. 
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Figure 2. 1. Map of approximate tissue collection locations, shown with prosthetic implant 

illustrated. Seven tissue samples were taken for each patient; 1) the solid circle represents the 

medial femoral condyle (denoted as F); 2) the dashed circle represents the medial tibial plateau 

(denoted as T); 3) the solid square represents the lateral gutter (denoted as LG); 4) the dashed 

square represents the posterior capsule (denoted as PC). Locations 1-4 were taken for the ATL 

layer, and locations 1-3 were taken for the RTL layer; separation between ATL (closer to joint) 

and RTL (further from joint) was approximately 5-10 mm, depending on individual patient. 

 

2.2.3 Sample preparation 

Tissues were collected during TKA and TKR procedures in the operating room and 

immediately stored on dry ice. Once all tissues had been collected for an individual patient, they 

were washed with 1X cold phosphate-buffered saline (PBS) to remove blood and debris. Tissues 

were grossly dissected using a scalpel to remove scar tissue or cement, then stored at -80 ºC. When 

samples had been collected for all patients, tissues were thawed on ice and cut into sections 

approximately 30 mg in size; tissues were homogenized by sonication in 500 µL cell lysis solution 

1 

2 

3 
4 
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(Bio-Rad, Hercules, CA) containing 20 mM phenylmethylsulfonyl fluoride (Sigma-Aldrich, St. 

Louis, MO). Protein extraction was performed using methods adapted from Hulse et al. [34]. 

Thawed samples were vortexed for 1-3 s and centrifuged at 5,000 x g for 5 minutes at 4 °C. The 

supernatant was collected and tested for total protein content using a Pierce BCA Protein Assay 

Kit (Thermo Scientific, Waltham, MA), according to manufacturer’s instructions. Absorbance 

values for total protein content were determined on an Infinite M1000 multimode plate reader 

(Tecan, Raleigh, NC). 

 

2.2.4 Cytokine measurement 

To standardize samples for total protein content, tissue homogenates were individually 

diluted to a total protein concentration of 900 µg/mL with cell lysis buffer (Bio-Rad). Cytokine 

quantification was performed using a magnetic bead-based multiplex Inflammation Human 

ProcartaPlex panel assay (Invitrogen, Carlsbad, CA) and measured using a Bio-Plex 200 

suspension array system and Pro II Wash Station (Bio-Rad), according to the manufacturer’s 

instructions. Cytokine concentrations were averaged to represent values for the ATL and RTL. 

Four tissues were averaged to calculate ATL average (LG, F, T, PC), and three tissues were 

averaged to calculate RTL average (LG, F, T). A table of cytokine values at ATL and RTL and 

graphs of cytokine concentrations at individual tissue locations are available in Appendix A. 

 

2.2.5 Statistical analysis 

Data were analyzed using Prism 5 (GraphPad, San Diego, CA) and SAS JMP (Cary, NC). 

Standard curves were generated for each protein using either a four- (4PL) or five-parameter 

logistic (5PL) regression model, depending on the individual protein. Cytokine concentrations 
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were determined using standard curve interpolation, then corrected by dilution factor to compare 

tissue homogenates. Cytokine concentrations are expressed as picograms of cytokine per milliliter 

of tissue homogenate (pg/mL). Samples with fluorescence intensity values below the lower limit 

of quantitation (LLOQ) or above the upper limit of quantitation (ULOQ) were omitted from 

statistical comparisons. Outliers were identified using the 1.5 X interquartile range (IQR) rule and 

omitted from analysis. Two-way analysis of variance (ANOVA) with Bonferroni’s post-test was 

used to determine significant differences between primary TKA, aseptic TKR, and septic TKR 

tissue samples at each tissue location. Each tissue homogenate was tested in duplicate for cytokine 

concentration. Data are expressed as the mean ± standard error of the mean (SEM). 

 

Quadratic discriminant analysis was conducted to evaluate the combined capacity of 

cytokine response to predict the state of tissue. Using SAS JMP, all measured responses were cast 

as covariates, and the “group” was assigned as a classification category (primary TKA, aseptic 

TKR, septic TKR). The Shrink Covariances option was applied to account for the different 

covariances within the categories. Quadratic discriminant analysis is a predictive modeling tool, 

and when there are a large number of variables compared to observations, as is the case in this 

study, Shrink Covariances is frequently employed to improve the stability and reduce prediction 

variance [35]. This analysis included 13 covariates; only those cytokines that produced statistically 

significant two-way ANOVA comparisons for either infection-specific or implant-specific 

comparisons were included: IL-1α, IL-1β, IL-6, IL-8, monocyte chemoattractant protein (MCP)-

1, macrophage inflammatory protein (MIP)-1α, MIP-1β, IL-10, IL-12p70, IL-13, IL-17A, and 

TNF-α. Biplot rays are plotted to indicate how each covariate influences the canonical space, with 
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the direction and magnitude signifying the degree of association with the respective group (primary 

TKA, aseptic TKR, septic TKR). 

 

Due to the limited sample size, this study was not able to control for age, sex, BMI, or other 

comorbidities. Pearson correlations were run between cytokine concentrations and age, sex, and 

BMI for each patient to analyze the contribution of these variables. Bonferroni’s correction was 

applied to correct for multiple inferences, as previously described by Bland et al. [36].  

 

 Results 

Changes in cytokine concentrations were observed for comparisons of primary TKA vs. 

aseptic TKR vs. septic TKR tissues. Overall, cytokine concentrations were generally elevated in 

TKR (both septic and aseptic) compared to TKA, and septic TKR exhibited higher cytokine levels 

than aseptic TKR for several cytokines. Seven cytokines (IL-1α, IL-1β, IL-6, IL-8, MCP-1, MIP-

1α, and MIP-1β) showed increased concentrations in septic TKR tissues compared to both aseptic 

TKR tissues and primary TKA tissues (p<0.05). Six cytokines (IL-10, IL-12p70, IL-13, IL-17A, 

IL-4, and TNF-α) showed differences in concentration between primary TKA and TKR (both 

aseptic and septic) (p<0.05), but these six cytokines were not significantly different between 

aseptic TKR and septic TKR. These comparisons are described in detail over the following 

sections. Additional human inflammatory cytokines were tested, but they did not produce 

statistically significant comparisons at p<0.05 in this study: E-Selectin, granulocyte-macrophage 

colony-stimulating factor (GM-CSF), interferon-alpha (IFN-α), interferon-gamma (IFN-), and 

interferon gamma-induced protein 10 (IP-10).  
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2.3.1 Seven cytokines exhibited infection-specific elevations in concentration 

Seven cytokines showed an increase in concentration that was dependent on the presence 

of localized infection: IL-1α, IL-1β, IL-6, IL-8, MCP-1, MIP-1α, and MIP-1β (p<0.05). For these 

cytokines, primary TKA averages were lowest, with an increase in aseptic TKR and further 

increase in septic TKR. For IL-1α, the average concentration of primary TKA tissues was 

1.1 pg/mL, and rose to 11.8 pg/mL in aseptic TKR; the concentration was elevated to 30.3 pg/mL 

in septic TKR. Further, in the septic TKA group, there was a statistically significant difference 

between ATL and RTL averages (p<0.05). IL-1β showed a similar trend, with a mean of 1.7 pg/mL 

in primary TKA tissues, which rose to 5.4 pg/mL in aseptic TKR, and further elevated to 

39.1 pg/mL in septic TKR. IL-1β also reflected the spatial disparity in concentration between ATL 

and RTL in the septic TKR group (Fig. 2.2). IL-6 followed, with an average of 8.5 pg/mL in 

primary TKA, rising to 24.2 pg/mL in aseptic TKR, and finally 610.7 pg/mL in septic TKR. IL-8 

levels were 7.6 pg/mL in primary TKA, which increased to 91.1 pg/mL in aseptic TKR, and rose 

to 553.9 pg/mL in septic TKR. For MCP-1, the average of primary TKA tissues was 113.0 pg/mL, 

which increased to 258.8 pg/mL for aseptic TKR, and further increased to 565.1 pg/mL for septic 

TKR. MIP-1α followed the same trend, with an average of 7.8 pg/mL for primary TKA, which 

rose to 27.8 pg/mL in aseptic TKR, and was elevated to 81.6 pg/mL in septic TKR. ATL locations 

showed the most significant increases in MIP-1α between groups (Fig. 2.2, p<0.05). For MIP-1β, 

primary TKA tissues showed an average of 21.3 pg/mL and were increased to 46.0 pg/mL for 

aseptic TKR and further increased to 123.4 pg/mL in septic TKR. As shown in Figure 2.2, cytokine 

concentrations in the ATL layer locations were generally higher than the RTL layer locations for 

all of these cytokines except MCP-1. 
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Figure 2. 2. Seven cytokines showed infection-dependent elevation in localized tissues. Average 

cytokine concentration for ATL and RTL are shown for all groups. Two-way ANOVAs with 

Bonferroni’s post-test were conducted to test for significant differences between groups at each 

tissue depth (p<0.05). Significant differences between groups at a particular location are marked 

as: P denotes significant difference from primary TKA (N=6); A denotes significant difference 

from aseptic TKR (N=5); S denotes significant difference from septic TKR (N=6); all symbols 

denote significance at the p<0.05 level. 



56 

 

2.3.2 Six cytokines exhibited implant-related elevations in concentration (Primary TKA 

vs. Aseptic/Septic TKR) 

Six cytokines, IL-10, IL-12p70, IL-13, IL-17A, IL-4, and TNF-α, exhibited higher levels 

in TKR tissues as compared to primary TKA tissues ( Fig. 2.3 p<0.05). In other words, there were 

significant differences (p<0.05) between primary TKA and aseptic/septic TKR, but there were no 

significant elevations in concentration from aseptic TKR to septic TKR. For IL-10, the average 

value in primary TKA was 0.9 pg/mL, 8.4 pg/mL in aseptic TKR, and 6.6 pg/mL in septic TKR. 

With the same general trend, IL-12p70 had an average of 5.7 pg/mL in primary TKA, 30.7 pg/mL 

in aseptic TKR, and 20.7 pg/mL in septic TKR. For IL-13, the average in primary TKA was 

1.8 pg/mL, 9.6 pg/mL in aseptic TKR, and 9.9 pg/mL in septic TKR. Following this trend, IL-17A 

average concentrations were 5.3 pg/mL in primary TKA, 16.3 pg/mL in aseptic TKR, and 

18.9 pg/mL in septic TKR. For IL-4, average concentration in primary TKA was 6.9 pg/mL, which 

rose to 19.6 pg/mL in aseptic TKR, and further to 24.8 pg/mL in septic TKR. Finally, TNF-α 

followed the same trend, with an average concentration of 16.9 pg/mL in primary TKA, 

71.1 pg/mL in aseptic TKR, and 86.8 pg/mL in septic TKR. None of these six cytokines showed 

significant spatial disparities between the ATL and RTL layers at p<0.05. 
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Figure 2. 3. Six cytokines showed implant-related elevation in localized tissues that was not 

infection-dependent. Average cytokine concentrations for ATL and RTL are shown for all groups. 

Two-way ANOVAs with Bonferroni’s post-test were conducted to test for significant differences 

between groups at each tissue depth (p<0.05). Significant differences between groups at a 

particular location are marked as: P denotes significant difference from primary TKA (N=6); A 

denotes significant difference from aseptic TKR (N=5); S denotes significant difference from 

septic TKR (N=6); all symbols denote significance at the p<0.05 level. 
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2.3.3 Quadratic discriminant analysis (QDA) cytokine profiles for TKA vs. TKR 

The two-way ANOVA comparisons of cytokines between different groups revealed seven 

cytokines that showed infection-specific elevation (beyond inflammation caused by implants), and 

six cytokines that showed increases due to implants, but not infection (Figures 2.2 and 2.3). To 

further probe the structure of these cytokine profiles between groups, quadratic discriminant 

analysis was conducted. These thirteen cytokines were included as covariates. The analysis 

classified the combined observed responses into pre-determined groups of primary TKA, aseptic 

TKR, and septic TKR. The group was predicted based on the covariate responses associated with 

each group, respectively. For each group, all seven locations were included for all individuals in 

that group, which means there were 42 counts for primary TKA (7 tissue locations, 6 patients), 35 

values for aseptic TKR (7 tissue locations, 5 patients), and 42 counts for septic TKR (7 tissue 

locations, 6 patients). In total, of 119 counts, only 8 were misclassified, indicating a good 

prediction ability of the model. All 8 misclassifications were errors of a prediction of aseptic TKR 

group, when the values were originally from the septic TKR group. In other words, these 

individuals were falsely classified as aseptic based on cytokine profiles while they were actually 

septic. Further, there is overlap between the 95% confidence intervals for cytokine profiles of 

aseptic TKR and septic TKR patients (Figure 2.4), which may be responsible for the 

misclassification. 
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Figure 2. 4. Quadratic discriminant analysis (QDA) revealed distinct groupings for primary TKA 

vs. TKR (aseptic or septic). Cytokines with significant infection-dependent or implant-related 

elevations via two-way ANOVA were analyzed via quadratic discriminant analysis. Canonical 

scores for each cytokine (covariate) were calculated, and the 95% confidence interval is shown for 

primary TKA (green), aseptic TKR (red), and septic TKR (blue). The + symbol represents the 

mean of each group. Biplot rays describe the degree of association of a certain cytokine with 

canonical variables. 
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2.3.4 Effects of age, sex, and BMI on cytokine concentrations 

The research presented here did not control for age, sex, or BMI due to the limited sample 

size of this exploratory study. To better understand the connections between cytokines of interest 

(IL-1α, IL-1β, IL-6, IL-8, MCP-1, MIP-1α, MIP-1β, IFN-γ, IL-10, IL-13, IL-17A, IL-4, and TNF-

α) and these factors, Pearson correlations were run and analyzed for statistical significance. When 

the Bonferroni’s correction was applied, as described in [36], none of the correlations between 

cytokine levels and age, sex, or BMI were significant (p>0.05), but the correlations are displayed 

in Table 2.2 for transparency. Although there is an established connection in the literature between 

inflammatory cytokine levels and age, sex, and BMI, the lack of significant Pearson correlation p-

values indicates these were not confounding variables for this study [37-39].  
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Table 2. 2. Pairwise Pearson Correlation Values Between Cytokine Concentrations and Age, Sex, 

and BMI. The pairwise correlation values are listed for each of the three groups: primary TKA, 

aseptic TKR, and septic TKR. Pearson correlation values are rounded to two decimal places. No 

correlations were found to be significant at the p<0.05 level after Bonferroni’s correction. 

 

 Primary TKA Aseptic TKR Septic TKR 

Cytokine Age Sex BMI Age Sex BMI Age Sex BMI 

IL-1α 0.00 0.47 0.28 0.20 0.22 -0.54 -0.15 0.25 -0.05 

IL-1β -0.19 -0.06 -0.04 -0.30 -0.30 0.08 0.03 0.26 0.05 

IL-6 0.00 -0.09 -0.12 0.03 -0.19 -0.21 0.00 0.22 -0.02 

IL-8 0.03 0.59 0.25 0.06 -0.07 -0.32 -0.13 0.14 -0.14 

MCP-1 0.04 0.13 0.14 -0.18 -0.44 0.45 -0.07 0.20 -0.15 

MIP-1α -0.10 0.13 -0.04 -0.05 -0.30 0.09 0.33 0.08 -0.13 

MIP-1β -0.04 0.19 0.03 0.23 -0.06 -0.38 0.21 0.13 -0.16 

IL-10 -0.26 0.29 0.17 -0.31 0.00 -0.20 -0.11 -0.25 0.30 

IL-12p70 -0.06 0.02 0.03 -0.03 0.49 -0.32 -0.30 -0.18 0.33 

IL-13 -0.19 0.49 0.28 -0.06 0.41 -0.06 -0.22 -0.23 0.22 

IL-17A 0.00 -0.08 -0.31 0.31 0.85 -0.45 -0.34 0.06 0.32 

IL-4 -0.32 0.20 0.29 0.34 0.35 -0.55 0.21 0.02 -0.11 

TNF-α -0.22 0.34 0.25 0.45 0.72 -0.38 -0.45 -0.12 0.25 
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 Discussion 

Understanding inflammation in response to implants and infection following TKA and 

TKR procedures is a high priority for clinicians, as excessive inflammation can cause serious 

problems for patients. However, not much is known about the local immune response in these 

complex environments. While a variety of cytokines have been researched from a systemic view 

[40, 41], their clinical use is still debated [31-33, 42], and the cytokine responses have not been as 

well characterized on a localized tissue level. The tissue-level cytokine response may add further 

understanding of the localized environment and give insight into tissue health to aid clinicians in 

the management of these post-surgical complications. Tissue-level cytokines have been measured 

with respect to spatial gradients in traumatic injury [16-18], respiratory infection [19], stroke [20], 

and allergic response [21], and these studies provided useful information regarding the respective 

immune responses. These have established a basis for this study to investigate the use of cytokines 

to enlighten tissue viability following localized implant-related and infection-specific 

inflammation. 

 

This study focused on defining the tissue-level cytokine response to implants and infection 

across several anatomical locations. Many human inflammatory cytokines have been implicated 

in the systemic response to implants (i.e., in serum/plasma) [43-45] and now aid in diagnosis of 

infection [46, 47]. However, this investigation is the first, to our knowledge, to assess multiple 

tissue locations surrounding the joint to address implant-related vs. infection-specific responses. 

Seven cytokines were identified as infection-specific, showing elevated concentrations in the 

septic TKR cohort compared to both the aseptic TKR and primary TKA cohorts: IL-1α, IL-1β, IL-

6, IL-8, MCP-1, MIP-1α, and MIP-1β (p<0.05). Several of these cytokines have demonstrated 
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utility in previous studies for diagnosis of PJI (i.e., IL-1α, IL-1β, IL-6, IL-8), but this is the first 

instance of their investigation for tissue health and debridement [30-33]. Generally, these seven 

cytokines were elevated in the ATL depth compared to RTL, which brings to light the importance 

of proximity to joint in dictating cytokine response. Pro-inflammatory cytokines like IL-1α, IL-1β, 

IL-6, and IL-8 have been noted for their roles in early infection response, producing a warning 

signal of pathogen invasion, and this response was present in septic TKR tissues [48, 49]. These 

early cytokine indicators recruit factors like MCP-1, MIP-1a, and MIP-1b that propagate the 

response to pathogens through Th1 and Th2 immune signaling cascades [50, 51]. IL-1α and IL-1β 

in particular showed a statistically significant elevation in the ATL of the septic TKR group 

compared to the RTL of the septic TKR group, which suggested that these cytokines may be 

capable of distinguishing healthy and unhealthy tissue in PJI.   

 

Six cytokines were showed implant-related increases in concentration, with elevations in 

aseptic and septic TKR vs. primary TKA: IL-10, IL-12p70, IL-13, IL-17A, IL-4, and TNF-α 

(p<0.05). The elevated concentrations of these cytokines highlighted the degree of inflammation 

in implanted joints without the presence of infection, which is likely due to the presence of a 

foreign body. The implant-related inflammation reflected less of the macrophage activation 

present in the septic TKR group but exhibited elevation in anti-inflammatory cytokines like IL-10, 

IL-4, and IL-13 frequently associated with bone healing [7]. IL-17A and IL-12p70 have both pro- 

and anti-inflammatory roles, but the specific contributions to foreign body response are not well 

understood. Increased levels of these cytokines, as well as TNF-α, implies there may be 

dysregulation of inflammatory response due to implant. These cytokines were not significantly 

different in the septic TKR group compared to aseptic TKR at the p<0.05 level, so they may be 
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considered as indicators of aseptic or chronic inflammation that could be addressed with future 

research associated with TKA. The QDA analysis illustrated that cytokine profiles are distinct 

between all three cohorts, but there is significant overlap in the 95% confidence intervals of aseptic 

TKR and septic TKR. While there are several cytokines that distinctly separate these two cohorts, 

this analysis indicated that the degree of inflammation experienced between these groups is 

comparable. This finding agrees with the clinical decision to address inflammation and perform 

revision surgery, and these markers (IL-10, IL-12p70, IL-13, IL-17A, IL-4, and TNF-α) may show 

promise as helpful diagnostic monitoring markers for patients suffering from inflammatory 

complications in the absence of infection.  

 

While this study had several limitations (i.e., single operating surgeon, heterogeneous 

cohort of patients, pathogen variability), it represents a novel characterization of tissue-level 

cytokines across different anatomical locations in response to implants as well as infection-specific 

inflammation. These cytokines may give insight into the health of localized tissue following these 

procedures, and the results highlight the utility of investigating a localized view of tissue health by 

testing tissues surrounding the joint following these procedures. At the time of publication, all 

patients had reached at least the one-year post-operative follow up without need for revision with 

no recurrent infections, and the predictive value of these cytokines for successful surgical 

outcomes is of interest in future studies. These cytokines could potentially be incorporated to intra-

operatively assess the degree of inflammation during surgery, providing information in real time 

about the viability of tissues for debridement. A more focused investigation of infection-specific 

markers IL-1α, IL-1β, IL-6, IL-8, MCP-1, MIP-1α, and MIP-1β could provide insight into the 

power of these cytokines to discriminate aseptic vs. septic tissues. 
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 Conclusions 

In conclusion, this exploratory pilot study identified several cytokines that exhibited higher 

concentrations in response to implant-related and infection-specific post-operative inflammation. 

Some of these cytokines have been previously implicated in chronic inflammation and infection 

following TKA and TKR on a systemic level [11, 12, 30-33], and this study confirmed this trend 

on a localized tissue level and identified implant-related and infection-specific tissue-level 

cytokines. Previous studies have already illustrated that local inflammation is much more 

important for early post-operative recovery for a few markers [6], and this study expanded on that 

knowledge to provide an extended view of inflammatory cytokines involved in tissue health. 

Additionally, spatially dependent responses in cytokine concentrations were observed for IL-1α 

and IL-1β when both implant and infection were present, indicating that proximity to infection is 

important in the response to PJI. Future work will focus on understanding the upstream and 

downstream factors associated with cytokine response in these chronic inflammatory scenarios. 

 

Overall, investigating the localized tissue-level cytokines to understand implant-related 

and infection-specific inflammatory complications following knee arthroplasty offered insight into 

localized response and the disparities between septic and aseptic inflammation in these surgical 

scenarios. Although this study did not control for age, sex, or BMI, these cytokines were not 

significantly correlated to these variables, suggesting these were not confounding factors (Table 2) 

in this study. Future work will include a larger cohort of patients to control for these factors and 

other comorbidities. Ultimately, this study provided a basis to study these cytokines in surgical 

scenarios as a quantitative means to understand localized tissue health for debridement. 
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Chapter 3 
 

Tissue-Level Cytokines in a Rodent Model of Chronic Implant-

Associated Inflammation and Infection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 

 

3. Tissue-Level Cytokines in a Rodent Model of Implant-Associated Inflammation and 

Infection2 

Systemic cytokine concentrations have been extensively studied in implant-associated 

infections, providing sensitive diagnostic markers. However, less is known about the relationships 

of tissue-level cytokines surrounding the joint. The aim of this study was to define the cytokine 

profiles of tissues to investigate the use of these cytokines as markers of debridement in chronic 

joint infection. Using a rodent model, muscle samples were obtained from rats following Kirschner 

wire implantation and infection with Staphylococcus aureus to determine if: 1) differences exist 

in cytokine concentrations with proximity to infection, and 2) localized infection-specific markers 

can be identified on a tissue level to potentially serve as debridement markers in the future. 

Samples were collected from 4 distinct locations, and the concentrations of IL-1α, IL-1β, IL-4, IL-

5, IL-6, IL-10, IL-12p70, IL-13, GM-CSF, IFN-, and TNF-α were quantified in each sample, 

relative to the amount of tissue. Cytokine concentrations differed with proximity to the joint when 

implant or infection was present, and tissues at the operative knee joint showed the highest levels 

of most cytokines. Additionally, IL-1β, IL-4, and IL-6 showed promise, beyond diagnostics, as 

tissue-level indicators of infection response. Ultimately, this study illustrated that tissue-level 

evaluation provided insight into infection-specific response, and these markers may be useful for 

guiding debridement of implant-associated infections. 

 

 
2 Parts of this chapter have been published previously from Prince N, Penatzer JA, Shackleford TL, Stewart, EK, 

Dietz, MJ, and Boyd, JW. Tissue-Level Cytokines in a Rodent Model of Implant-Associated Infection. Journal of 

Orthopaedic Research. 9, 167 (2020). Reproduced with permission from Wiley. 
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 Introduction 

Implant-associated infections are a post-operative complication following total knee 

arthroplasty (TKA) procedures, affecting tens of thousands of patients per year in the United States 

[1]. Prosthesis-related infections, such as periprosthetic joint infection (PJI), affect the implant and 

surrounding tissues, and they can become chronic if bacteria form a biofilm on the prosthesis, 

creating a barrier against host response and antibiotic treatment [2]. This pressure on the host’s 

immune system combined with antibiotic resistance of the bacteria makes these infections difficult 

to reconcile and often results in high failure rates for treatment. Failure rates for all TKA 

procedures remain around 5% but are much higher with infected joints, with reported failure rates 

ranging from 14-25% [3-5].  

 

Early diagnosis of infection is critical, and a range of sensitive and specific biomarkers, 

including C-reactive protein (CRP), alpha-defensin, D-dimer, as well as cytokines like interleukin 

(IL)-1β, and IL-6, have been highlighted for their diagnostic utility in implant-associated infections 

like PJI [6-9]. Cultures, biopsies, and imaging techniques like PET-MRI and PET-CT have also 

been utilized with high sensitivity [10]. Prompt diagnosis can lead to better outcomes in surgical 

treatment, and serum biomarkers are most often used to aid diagnostic accuracy [11]. CRP is the 

most common diagnostic marker for implant infections, as it is both inexpensive and rapid [12], 

however, it suffers from low specificity. CRP levels can be high in a wide range of inflammatory 

processes, including the healing process following TKA procedures [13], so a high CRP level 

alone cannot positively confirm presence of infection. More recently, diagnostic efforts have 

shifted towards the identification and validation of cytokine markers.  
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The cytokine response to infection involves both pro- and anti-inflammatory cytokines that 

are recruited to the site [14-16]. Due to cytokines’ central roles in infection response, recent studies 

have investigated cytokine measurements for their diagnostic utility, especially in infections due 

to Staphylococcus aureus, the most common pathogen implicated in implant-associated infections. 

Pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) were first 

analyzed in synovial fluid of total hip arthroplasty (THA) patients and showed the ability to 

discriminate between aseptic and septic joints [17]. Since then, a variety of other cytokines, 

including interferon gamma (IFN-) [18], IL-4 [19], and IL-10 have also been pursued [20]. 

Frangiamore et al. identified IL-6 and IL-1β not only as markers with excellent diagnostic strength, 

but also noted their efficacy for monitoring response to infection treatment in synovial fluid [18]. 

While these cytokines have shown increased sensitivity and specificity for diagnosis in serum and 

synovial fluid, they have not been evaluated to expand their use beyond diagnostics into indicators 

of inflammatory immune response to aid treatment. 

 

Surgical debridement is utilized to treat chronic implant infections, but it relies heavily on 

subjective assessment of the state of the tissues surrounding the joint [21]. Understanding local 

tissue health is important for debridement of infected joints, as surgeons must delineate healthy 

from non-healthy tissue to promote infection resolution [22]. Complete removal of infected tissue 

is critical, as re-infection only requires a small number of bacteria [23].  Discerning healthy tissue 

from infected tissue can be challenging for clinicians, and insufficient debridement is a possible 

source for failure of treatment [24]. However, tissues are not intra-operatively analyzed beyond 

identification of the “4 C’s”- Color, Consistency, Contractility, and Capacity to bleed- and 

quantification of white blood cells.  Rarely, the presence or absence of bacteria via culture or 
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polymerase chain reaction (PCR) is utilized [17, 25]. Intra-operative assessment of tissues 

surrounding the joint for inflammatory cytokine markers could reveal important insights into tissue 

health, as these biomarkers are intimately related to infection response [6-8, 26] and wound 

resolution [27]. Further, identification of markers to guide debridement would benefit clinical 

decision making and allow surgeons to quantitatively assess the state of tissue in infected joints. 

Cytokine biomarkers that have previously been utilized for their roles in diagnostics may provide 

an avenue to pursue quantitative markers of debridement margins. Defining the tissue-level 

concentrations is the first step to evaluating the ability of cytokines as markers of healthy and non-

healthy tissue in chronic implant-associated joint infection. 

 

The purpose of this study was to assess tissue-level cytokine responses in a rodent model 

of chronic implant-associated infection, specifically with the purpose of highlighting new 

biomarkers of debridement for PJI. Cytokine concentrations were measured in skeletal muscle 

samples taken from Sprague-Dawley rats implanted with a Kirschner wire (K-wire) and exposed 

to S. aureus in the joint cavity. Levels of pro-inflammatory and anti-inflammatory cytokines were 

measured for the following targets: IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IFN-γ, 

TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF). These factors were 

specifically chosen because of their use as diagnostic markers [28], roles in tissue healing [27], 

and the ability to give insight into overall tissue health [29]. Ultimately, this study aimed to expand 

on the diagnostic roles of these cytokines and investigate them as markers of debridement margins. 
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 Materials and methods 

3.2.1 Animals 

All procedures were performed under the guidelines approved by the West Virginia 

University Animal Care and Use Committee (Approval #1803013294). Adult male and female 

Sprague-Dawley rats (Charles River, Wilmington, MA) were housed individually with a 12:12 

light/dark cycle and ad libitum access to standard chow and water. Animals were divided into 3 

groups: Sham (N=6), Implant Only (N=6), and Infection+Implant (Inf+Implant; N=6). Animal 

numbers for each group were obtained by performing a statistical power analysis using an alpha 

value of 0.05 and a difference to detect of 2. The power analysis was based on previous work to 

detect trauma-related cytokines, specifically IL-1β [30]. The power analysis necessitated a group 

size of N=6 when including both male and female rodents. All procedures were based on previous 

models of implant-associated infections in rats with K-wire implant [31-35], and tissues and blood 

were collected from all animals 21 days post-surgery.  

 

3.2.2 Experimental rat model of chronic localized infection 

Chronic joint infection was established based on literature protocols and previous work. 

Briefly, after adequate isoflurane anesthesia, the right leg was shaved and prepared for surgery. 

Under sterile conditions, the knee joint was exposed, and a hole was drilled into the medullary 

cavity of the femur. For Implant Only and Inf+Implant groups, a 3-cm (male) or 2-cm (female) by 

1-mm stainless steel K-wire was implanted into the bone. For Inf+Implant groups, 20 µL of 

1.8x107 CFU/mL suspension of Methicillin-sensitive Staphylococcus aureus (MSSA; ATCC 

25923, clinical isolate [Manassas, VA]) was injected into the medullary cavity after insertion of 

K-wire. This dose was chosen based on previous models to create a chronic localized infection but 
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to avoid systemic sepsis [36]. Additionally, a previous study found that inflammation due to 

surgery can persist until the 21-day time point, so this time point was chosen for tissue collection 

to optimize the measurement of infection-specific inflammatory cytokine responses [36]. Body 

temperature was monitored throughout the 21-day time period for presence of fever to ensure no 

systemic sepsis occurred. For all groups, the exposed joint was closed with 3-0 vicryl (Ethicon, 

Inc., Somerville, NJ) and staples, then Vetbond tissue adhesive (3M, St. Paul, MN) was applied 

externally. Buprenorphine SR (ZooPharm, Fort Collins, CO) was administered subcutaneously as 

an analgesic providing 72-hour pain relief [37]. Following closure of the knee joint, X-rays were 

taken at the 21-day time point and graded according to Aktekin et al [38]. Detailed methods and 

results for X-rays can be found in Appendix B. 

 

3.2.3 Tissue collection 

At 21-days post-surgery, the animals were again placed under anesthesia, as described 

above, and tissue and blood samples were collected. The 21-day post-surgery time point was 

chosen for sample collection as it allowed for the local effects in bone and soft tissue [31, 33, 36]. 

Once samples were collected, the animals were euthanized under isoflurane anesthesia with 

cardiac puncture, and one cc of Euthasol (Patterson Veterinary, Greenly, CO) was administered. 

Blood was collected in BD Vacutainer SST collection tubes (Becton Dickinson Vacutainer, 

Franklin Lakes, NJ), and serum was separated per manufacturer’s instructions. Blood samples 

were tested for white blood cell count (WBC) and red blood cell count (RBC) via standard medical 

lab testing; CRP (Invitrogen, Carlsbad, CA) and IL-6 levels (Invitrogen) were tested via enzyme-

linked immunosorbent assay (ELISA) in serum. These systemic measurement parameters can be 

found in Table 3.1. For tissue collection, four tissue locations were gently dissected from fascial 
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attachments, and skeletal muscle was collected. These locations were chosen to compare tissue-

level cytokines directly at the infected joint to nearby locations to evaluate infection-specific tissue 

responses across spatial gradients. Muscle samples were harvested from the following four 

locations: at the operative knee joint; 1.5±0.2 cm proximal from operative knee joint; 1.0±0.2 cm 

distal from operative knee joint; and from the contralateral leg knee joint. Figure 3.1 illustrates the 

sampling locations, labeled as A-D. Tissue samples were cultured to confirm presence or absence 

of S. aureus infection at 21 days post-surgery using established methods [39]. Bacterial load at the 

operative knee location for the three groups can be found in Table 3.1.  

 

 

Figure 3. 1. Sampling locations for muscle samples collected at 21 days post-surgery. Immediately 

prior to euthanasia, tissue samples were collected by gently dissecting skeletal muscle from fascial 

attachments. Four tissue locations were taken, denoted A-D. A) Contralateral leg knee joint; B) 

Operative leg, 1.5 cm proximal from knee joint; C) Operative leg knee joint; D) Operative leg, 

1.0 distal from knee joint. 
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3.2.4 Sample preparation 

Samples were washed immediately with 1X cold phosphate-buffered saline (PBS) to 

remove blood and debris. Tissues were grossly dissected using a scalpel to remove scar and 

connective tissue, then stored at -80ºC. Samples were ground cryogenically and lyophilized for 24 

hours. For analysis, lyophilized tissue was thawed for 10 min at 4°C in 1 mL of cell lysis buffer 

(Bio-Rad, Hercules, CA) containing 20 mM phenylmethylsulfonyl fluoride (Sigma-Aldrich, St. 

Louis, MO). Protein extraction was performed using methods adapted from Hulse et al [40]. 

Thawed samples were vortexed for 1-3 seconds and centrifuged at 5,000 x g for 5 minutes at 4°C. 

The supernatant was collected and tested for total protein content using a Pierce BCA Protein 

Assay Kit (Thermo Scientific, Waltham, MA), according to manufacturer’s instructions. 

Absorbance values for total protein content were determined on an Infinite M1000 multimode 

plate reader (Tecan, Raleigh, NC). 

 

3.2.5 Cytokine and phosphoprotein measurement 

To standardize samples for total protein content, tissue homogenates were individually 

diluted to a total protein concentration of 900 µg/mL with cell lysis buffer (Bio-Rad). Cytokine 

quantification was performed using a magnetic bead-based multiplex Rat Cytokine Th1/Th2 Kit 

(Bio-Rad) and measured using a Bio-Plex 200 suspension array system and Pro II Wash Station 

(Bio-Rad), according to the manufacturer’s instructions. The Th1/Th2 kit included the following 

cytokines: IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, GM-CSF, IFN-, and TNF-α. 

Results for these 11 cytokines were included in this analysis. Additionally, a total of 20 

phosphoproteins related to wound healing were tested via custom Bio-Rad multiplex 

phosphoprotein ELISA panels. The following targets were assessed, and sites of phosphorylation 
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are indicated in parenthesis. CREB (S133), HSP27 (S78), IκB-α (S32/S36), MEK1 (S217/S221), 

RPS6 (S235/S236), Smad2 (S165/S167), Src (Y416), Syk (Y352), c-Jun (S63), AKT (S473), p53 

(S15), p38 (Y180/Y182), p70S6K (T389), PTEN (S380), ZAP-70 (Y319), BAD (S136), ERK1/2 

(T202/Y204 T185/Y187), p90RSK (S380), VEGFR2 (Y1175), and NF-κB p65 (S536). 

Phosphoprotein results are discussed following the discussion of cytokines in section 3.4. 

 

3.2.6 Statistical analysis 

Data were analyzed using Prism 5 (GraphPad, San Diego, CA) and SAS JMP (Cary, NC). 

Standard curves for cytokine concentrations were generated for each protein using either a four- 

(4PL) or five-parameter logistic (5PL) regression model, depending on individual protein. 

Cytokine concentrations were determined using standard curve interpolation, then corrected by 

dilution factor. To compare cytokines, these values were standardized by tissue weight and 

converted to nanograms of cytokine per gram of tissue (ng/g). Implant and Inf+Implant groups 

were analyzed with respect to relative fluorescence compared to Sham group. Samples with 

fluorescence intensity values below the lower limit of quantitation (LLOQ) or above the upper 

limit of quantitation (ULOQ) were omitted from statistical comparisons. Outliers were identified 

using the 1.5 X interquartile range (IQR) rule and omitted from analysis. Two-way analysis of 

variance (ANOVA) with Bonferroni’s post-test was used to determine significant differences 

between Sham (N=6), Implant Only (N=6), and Inf+Implant (N=6) groups as well as between 

locations (i.e., in the Sham group, operative knee joint vs. operative leg proximal). Each tissue 

homogenate was tested in duplicate for cytokine concentration. Data are expressed as the mean ± 

standard error of the mean (SEM).  
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Table 3. 1. Clinically-Relevant Parameters at 21 Days Post-Surgery. At 21 days post-surgery, 

blood was collected and tested for RBC and WBC; IL-6 and CRP were measured in rat serum. 

Additionally, skeletal muscle samples were cultured to calculate bacterial load at the joint. RBC 

are shown in scientific notation as million(s) per microliter of blood; similarly, WBC are shown 

as thousand(s) per microliter of blood. CRP is shown in milligrams of CRP per liter of serum, and 

IL-6 is shown as picograms of protein per milliliter of serum. Bacterial load is shown as colony-

forming units (CFUs) per gram of tissue. Significance at p<0.05 is denoted with superscripts “S” 

for different than Sham, “C” for different than Implant Only, and “I” for different than Inf+Implant. 

Comparisons between groups were identified by one-way ANOVA with Tukey’s post-test. N.D. 

is an abbreviation for “not detected.” 

 

 

*Note: Bacterial load was calculated in tissue cultures, while all other parameters in Table 3.1 

were measured in serum. 

 

 

 

 Cytokine Analysis of Rodent Tissues Between Sham, Implant Only, and Inf+Implant 

Groups 

Changes in tissue-level cytokine concentrations were observed between Sham, Implant 

Only, and Inf+Implant groups in implant-related and infection-specific manners. Overall, cytokine 

concentrations were higher for Implant Only and Inf+Implant groups compared to Sham. Intra-

group differences between locations were also investigated. Tissues at the operative knee (i.e., the 

site of debridement) were compared to all other locations. Cytokine profiles were compared 

 SHAM IMPLANT ONLY INF+IMPLANT 

RBC (x106/µL) 8.14±0.53 7.98±0.54 7.69±0.60 

WBC (x103/µL) 3.97±0.78 2.90±2.14 3.63±1.40 

CRP (mg/L) 428.51±164.92 620.24±296.11 789.39±181.20 

IL-6 (pg/mL) 24.50±0.69C,I 68.18±15.94S 118.06±13.50S 

Bacterial load 

(CFU/g)* 

N.D. N.D. 1.12x106±6.58x105 
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between these locations to look for spatially-dependent differences relevant for debridement. The 

operative knee and operative leg distal locations generally produced higher cytokine 

concentrations than the contralateral knee and operative leg proximal locations. The specific 

results are discussed over the following sections and can be seen in Figures 3.2-3.4. 

 

3.3.1 Eight cytokines elevated in implant-related manner 

Of the eleven cytokines, eight produced increases in both Implant Only and Inf+Implant 

groups compared to Sham (Figure 3.2): IL-1α, IL-5, IL-10, IL-12p70, IL-13, GM-CSF, IFN-, and 

TNF-α. These cytokines showed elevated concentrations at the operative knee and operative distal 

locations compared to Sham (p<0.05), but there were generally no significant differences between 

Implant Only and Inf+Implant groups (exceptions: IL-5 and IL-10 at the operative distal location). 

The profiles for Implant Only and Inf+Implant groups across different locations were similar for 

all eight of these cytokines. Group-dependent differences at p<0.05 are marked with letters S 

(significantly different than Sham group), C (significantly different than Implant Only group), and 

I (significantly different than Inf+Implant group). Additionally, all tissue locations were compared 

to the operative knee site to understand spatial differences, and significant differences at p<0.05 

between locations are marked with striped bars. The average values ± SEM can be found in 

Appendix B. 
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Figure 3. 2. IL-1α, IL-5, IL-10, IL-12p70, IL-13, GM-CSF, IFN-, and TNF-α concentrations in 

response to implant and infection. Concentrations are expressed as nanogram of cytokine per gram 

of tissue (ng/g). Statistically significant differences (p<0.05) in protein concentration between 

Sham (N=6), Implant Only (N=6), and Inf+Implant (N=6) groups are marked for each location: 

“S” represents different than Sham group; “C” denotes different than Implant Only group; “I” 

denotes different than Inf+Implant group. All locations were compared to the operative knee site 

within each group, and statistically significant differences between locations are marked with 

striped bars to indicate difference in concentration compared to the operative knee at p<0.05. 
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3.3.2 Three cytokines showed infection-specific response 

For three of the eleven cytokines, there was an increase in the Implant Only group, and a 

further increase in concentration was observed for the Inf+Implant group. IL-1β, IL-4, and IL-6 

showed an infection-specific trend, with the highest concentrations at the operative knee location 

(Fig. 3.3). The contralateral knee and operative leg proximal locations were not significantly 

different between Sham, Implant Only, and Inf+Implant groups (p>0.05). Group-dependent 

differences at p<0.05 are marked with letters S (significantly different than Sham group), C 

(significantly different than Implant Only group), and I (significantly different than Inf+Implant 

group) in Figure 3.3. Additionally, all tissue locations were compared to the operative knee site, 

and significant differences at p<0.05 between locations are marked with striped bars. The average 

values ± SEM can be found in Appendix B.  
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Figure 3. 3. IL-1β, IL-4, and IL-6 tissue concentrations in response to implant and infection. 

Concentrations are expressed as nanogram of cytokine per gram of tissue (ng/g). Statistically 

significant differences (p<0.05) in protein concentration between Sham (N=6), Implant Only 

(N=6), and Inf+Implant (N=6) groups are marked for each location: “S” represents different than 

Sham group; “C” denotes different than Implant Only group; “I” denotes different than 

Inf+Implant group. All locations were compared to the operative knee site within each group, and 

statistically significant differences between locations are marked with striped bars to indicate the 

concentration at that location is different than the operative knee at p<0.05. All labeling is 

consistent with Figure 3.2. 
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3.3.3 Quadratic discriminant analysis and heat maps of cytokine profiles  

Total cytokine profiles were analyzed via QDA with SAS JMP on all measured cytokine 

responses at the operative knee location to compare Implant Only and Inf+Implant groups. The 

ANOVA data indicated that cytokine profiles were elevated in both of these groups, and QDA 

focused on the disparate profiles between Implant Only and Inf+Implant to identify cytokines most 

specific for infection on a tissue level. This analysis classified the combined concentrations of all 

cytokines observed into pre-determined groups (Implant Only, Inf+Implant) by plotting canonical 

scores calculated by the quadratic model. The 95% confidence intervals (CIs) are shown for each 

group, with Implant Only in red and Inf+Implant in blue. Biplot rays are shown to denote the 

degree of association of each cytokine with each group. There were no misclassifications in the 

model. Heat maps were constructed to show relative cytokine concentrations and compare the 

influence of cytokines on the cumulative cytokine profile for each group. Cytokine concentrations 

in ng/g were normalized between 0 (lowest value) and 1 (highest value) for each cytokine. Green 

represents a low relative cytokine concentration, and red represents a high relative cytokine 

concentration; the intensity of color denotes the degree of polarization. Relative levels in the Sham 

group were in the lowest 10th percentile for all cytokines, which can be observed by the intense 

green color. Colors in the Implant Only and Inf+Implant ranged from the 43rd percentile (mild 

green-yellow) to 100th percentile (bright red). The heat map results complement the findings of the 

QDA by illustrating the contrast in relative concentrations between Implant Only and Inf+Implant 

groups for IL-1β, IL-4, IL-6, and IL-12p70. 

 

 

 



89 

 

 

 

 

 

 

Figure 3. 4. QDA analysis (a) and heat map of relative cytokine concentrations (b). QDA analysis 

(a) shows the influence of the eleven cytokines on classification into Implant Only (red) or 

Inf+Implant (blue) groups. Biplot rays illustrate the degree of association with each group, and 

ellipses are drawn to show the mean ± 95% CI for the cumulative cytokine profiles. Heat maps of 

relative cytokine concentrations (b) illustrate the relative increases in concentration between the 

three groups for direct comparison between cytokines. For heat maps, cytokine concentrations 

(ng/g) were normalized between 0 and 1 for each cytokine to show relative increases. Green 

represents a low relative concentration, and red represents a high relative concentration.  
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 Discussion of cytokine concentrations in response to implant and infection 

Implant-associated infections like PJI are devastating post-surgical complications and are 

the leading cause of implant failure in TKA procedures [1]. Diagnosis and treatment impose a 

significant burden for the health care system as well as individual patients, and the annual cost of 

infected revisions is projected to exceed $1.5 billion by the end of 2020 [41]. Cytokine 

measurements in synovial fluid and serum of patients suffering from chronic PJI have illustrated 

high sensitivity and specificity of these targets for diagnostic purposes [20]. However, the primary 

method for treatment of chronic, recurrent implant-associated infections is debridement, which has 

highly subjective endpoints [21]. Treatment has not progressed to more objective metrics, 

presenting a challenge for clinicians who are tasked with precise, complete removal of infected 

tissues. Cytokine biomarkers currently used for diagnostics may provide potential for use as 

quantitative markers for establishing intra-operative debridement margins between healthy and 

non-healthy tissue. In this study, eleven cytokines were analyzed in a rodent model of chronic 

implant-associated infection to identify biomarkers that have the potential to delineate infected vs. 

non-infected tissues. Ultimately, these cytokines could aid clinicians in establishing debridement 

margins using reliable, quantitative metrics.  

 

Eight cytokines exhibited implant-related increases in concentration at the operative knee: 

IL-1α, IL-5, IL-10, IL-12p70, IL-13, GM-CSF, IFN-, and TNF-α (Fig. 3.2). For these cytokines, 

Implant Only and Inf+Implant groups showed higher concentrations than the Sham group (p<0.05), 

but there were no significant differences between Implant Only and Inf+Implant groups directly 

at the operative knee. These cytokines have previously been linked to inflammation associated 

with prosthetics [42], and our results indicated that inflammation at the joint can be attributed to 
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the presence of a K-wire implant (Fig. 3.2). All of these cytokines gave the highest response 

directly at the operative knee location, with the exception of IL-1α for the Inf+Implant group, 

which had an unclear trend. Decreased cytokine profiles would suggest a return to healthy tissue 

[29], which is relevant to debridement, so all tissue locations were compared to the operative knee 

to investigate the spatially-disparate responses. IL-1α, IFN-, and TNF-α did not show the ability 

to reliably discriminate tissues across locations, and previous studies have noted low specificity in 

serum for these cytokines in implant-associated infections [43]. The ANOVA data in this study 

suggested they would not be reliable debridement markers (Fig. 3.2). Disparities between operative 

knee and operative distal sites for the Inf+Implant group were observed for IL-5, IL-10, IL-13, and 

IL-12p70, but these differences were not present in the Implant Only group. The Implant Only 

group still maintained elevated IL-5, IL-10, and IL-13 concentrations at the operative distal site 

(Fig. 3.2; p<0.05), but the Inf+Implant group showed a decrease at this location. These are three 

anti-inflammatory cytokines [44], and they all showed elevation at tissues downstream of the joint 

in the Implant Only group. IL-12p70 also appeared to follow this trend, but not at a statistically 

significant level (Fig. 3.2; p>0.05). IL-12p70 is an immunoregulatory cytokine with both pro- and 

anti-inflammatory functions and plays a role in cell proliferation during wound healing [45]. The 

exact mechanisms of cytokine dysregulation due to implant and infection are unknown, but the 

spatially disparate downstream effects observed for these cytokines could be due to a variety of 

factors, including vascular supply [46], atrophy [35], or differences in wound healing stages [47]. 

While outside the scope of this manuscript, the spatially disparate profiles of these cytokines due 

to foreign body implant warrant future investigation. GM-CSF was the only implant-related 

cytokine to show the expected spatially-dependent trend for both the Implant Only and Inf+Implant 

groups (Fig. 3.2; p<0.05). GM-CSF has been noted for its role in inflammatory autoimmune 
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diseases and has shown increased concentrations in response to pro-inflammatory stimuli [48]. 

However, the QDA illustrated it was not a good differentiator of inflammation due to implants vs. 

inflammation due to infection (Fig. 3.4). Overall, the data in this study indicated that none of the 

implant-related cytokines were good indicators of debridement margins at the operative knee.  

 

Infection-specific trends in cytokine responses were present for IL-1β, IL-4, and IL-6 in 

this study (p<0.05). These cytokines have been noted for their roles in infection, demonstrating 

increases in serum concentrations in response to joint infection [49-51]. In this study, these 

cytokines showed the highest increase in response directly at the operative knee (Fig. 3.3), 

highlighting the importance of tissue-level disparities in response to infection. IL-1β and IL-6, two 

pro-inflammatory cytokines, have demonstrated diagnostic utility and were elevated in response 

to infection in this study [52]. Infection with S. aureus is known to trigger IL-1β release and is 

concomitant with cell death [53]. IL-6 is synthesized in infectious lesions to send out a warning 

signal of tissue damage, which is then recognized by pathogen-recognition receptors (PRRs), and 

it is an early initiator of infection-related inflammation [54]. Both IL-1β and IL-6 produce signals 

during infection that ultimately trigger cell death pathways [55]. For IL-1β, all locations were 

significantly different than the operative knee (p<0.05) for both Implant Only and Inf+Implant 

groups (Fig. 3.3). IL-6 only reflected this trend in the Inf+Implant group, but the increased 

concentrations at the operative knee location compared to Implant Only suggested it is still a good 

indicator of infection presence (p<0.05, Fig. 3.3). IL-4, an anti-inflammatory cytokine, activates 

the Stat6 pathway in infection and suppresses cell-mediated death [56]. IL-4 trends were similar 

to IL-6, and only the Inf+Implant group showed a significant decrease in concentration at the 

operative distal location (p<0.05). QDA and heat maps were constructed to comparatively assess 
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the contributions of these cytokines to each of the groups. The heat maps showed relative 

concentrations of cytokines and suggested IL-1β, IL-4, and IL-6 may all serve as good indicators 

of infected tissues at the joint. Further analysis of QDA data indicated IL-1β and IL-6 are strongly 

indicative of Inf+Implant tissues (Fig. 3.4), while IL-4 plays a role in both Implant Only and 

Inf+Implant groups when considering total cytokine contributions. The QDA demonstrated that 

IL-1β and IL-6 show a stronger relationship to Inf+Implant tissues and may serve as better 

indicators for debridement.  

 

The results of this study demonstrated that tissue-level concentrations of IL-1β and IL-6 

are strongly indicative of infected tissues through ANOVA comparisons as well as QDA 

classifications. These cytokines have previously been validated for diagnostics of implant-

associated infections in serum, and they have established roles in infection response. The findings 

presented here offer an opportunity to expand their utility beyond diagnostics as tissue-level 

indicators of infection. These results provided evidence that these cytokines are worth pursuing in 

the development of objective biomarkers to guide debridement and treatment of chronic implant-

associated infections. Ultimately, this study laid the foundation to develop quantitative, tissue-

level biomarkers to aid surgical decision making. In the future, these cytokines could be 

investigated for their ability to guide intra-operative debridement. 
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 Phosphoprotein and Ingenuity Pathway Analysis (IPA) to understand spatially-

disparate responses 

 The cytokine analysis in this study provided important insights into the tissue-level immune 

response to chronic infection and highlighted biomarkers that could be used for debridement of 

chronically infected tissues, but the analysis also provoked questions regarding the responses of 

tissues upstream and downstream of the operative site. The initial cytokine study primarily 

addressed the response directly at the operative knee, as this is the most relevant for surgical 

debridement, but the responses of proximal and distal tissues also showed altered concentrations 

of some cytokines. Increases in all cytokines, either due to implant or infection, suggested some 

disruption of normal inflammatory immune response (Figs. 3.2 and 3.3), and evidence suggests 

that excessive inflammation caused by these cytokines can delay wound healing [62]. Elevated 

cytokine levels at proximal or distal locations could suggest that healing processes in these tissues 

are compromised, so wound healing phosphoproteins were also assayed to investigate the 

responses proximal and distal to the operative knee. 

 

 GM-CSF, IL-4, and IL-1β all showed the expected trend with elevation at the operative knee, 

and other locations in the Implant Only and Inf+Implant groups were statistically significantly 

different from the operative knee at p<0.05 (with one exception: IL-4 in the Implant Only group 

operative knee vs. operative distal, but it appeared to follow the trend; Figs. 3.2 and 3.3). However, 

the other cytokines showed elevated cytokine concentrations either at the op prox or op dist 

locations. Four cytokines, IL-5, IL-10, IL-12p70, and IL-13 showed elevated levels in response to 

implant, and the operative distal location maintained higher concentrations of these cytokines (Fig. 

3.2). While IL-6, one of the infection-specific cytokines, showed significant differences between 
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locations in the Inf+Implant group (p<0.05), the Implant Only group did not show any significant 

differences between locations. Other cytokines, IL-1α, IFN-γ, TNF-α showed less spatial disparity 

and did not inform differential wound healing responses between locations. All of these cytokines 

have established roles in acute infection response [6-9, 14-16, 18-20], but chronic infections can 

disrupt cell signaling networks associated with these responses [63, 64]. The inflammation due to 

foreign body implant, infection, or both may be negatively impacting the ability of tissues to heal, 

but cytokines alone are not enough to understand these wound healing cascades. 

 

 To investigate the networks of tissue healing between disparate locations, phosphoprotein 

analysis was conducted as a follow-up to the cytokine work. Network analysis can give 

information about the connectivity of wound healing signaling and highlight key mediators of the 

response [65, 66]. QIAGEN’s Ingenuity Pathway Analysis (IPA) software application is a 

commonly used tool for creating and analyzing complex biological networks. This method uses 

both experimental and literature-derived data to connect different targets, referred to as “nodes,” 

resulting in a model of response. IPA utilizes the Ingenuity Knowledge Base, a repository derived 

and curated from previous studies, to identify highly interconnected “Focus Genes” and construct 

a network [67]. Top molecular and cellular function associated with the networks are also reported 

by IPA, which allows researchers to further probe into which cellular processes may be activated 

and which nodes are most important in the network.    
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 Methods for phosphoprotein and network analysis 

3.6.1 Statistical analysis of phosphoproteins 

Phosphoprotein data was acquired using multiplexed magnetic bead-based assays (Bio-

Rad) and measured using a  Bio-Plex 200 suspension array system (Bio-Rad), as described in 

section 3.2.5. Data were analyzed using Prism 5 (GraphPad, San Diego, CA), and relative 

phosphorylation levels were calculated from fluorescence intensity values. Differences between 

groups and tissue locations were compared based on relative phosphorylation in samples 

standardized to a total protein concentration of 900 µg/mL. Samples with fluorescence intensity 

values below the lower limit of quantitation (LLOQ) or above the upper limit of quantitation 

(ULOQ) were omitted from statistical comparisons. Outliers were identified using the 1.5 

X interquartile range (IQR) rule and removed. Two-way analysis of variance (ANOVA) with 

Bonferroni’s post-test was used to determine significant differences between Sham (N=6), Implant 

Only (N=6), and Inf+Implant (N=6) groups as well as between locations (i.e., in the Sham group, 

operative knee joint vs. operative leg proximal). Each tissue homogenate was tested in duplicate. 

Data are expressed as the mean ± standard error of the mean (SEM). ANOVAs are shown for 16 

out of the total 20 phosphoproteins tested. Five phosphoproteins, HSP27 (S78), Src (Y416), p53 

(S15), ZAP-70 (Y319), and NF-κB p65 (S536), did not produce statistically significant trends (data 

not shown). 

 

3.6.2 Construction of IPA networks 

 Both cytokines and phosphoproteins were included in the creation of IPA networks, and all 

31 targets were included (11 cytokines and 20 phosphoproteins), regardless of whether or not they 

produced statistically significant ANOVA comparisons between groups or locations at p<0.05. 
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IPA uses the relative up- and down-regulation of targets compared to a control to construct 

networks, so all 31 targets were normalized by correcting the concentration/relative 

phosphorylation values at each location to the contralateral leg for every individual animal. This 

method allowed for correction arising from biological variability and provided some correction for 

systemic inflammation. These normalized responses were investigated with QIAGEN’s 

Ingenuity® Pathway Analysis (IPA®, QIAGEN, Redwood City), and proposed networks were 

created for each group (Sham, Implant Only, Inf+Implant) at each of the three locations (Op Prox, 

Op Knee, Op Dist). The IPA networks consist of nodes from the experimental dataset and 

literature-derived projected nodes likely to be involved, identified by Ingenuity Knowledge Base. 

Up- and down-regulated responses are color coded using red and green, respectively. IPA also 

reported top up- and down-regulated targets for each of the nine networks, based on changes in 

expression across groups.   

 

 Results of phosphoprotein data and IPA networks 

3.7.1 Ten phosphoproteins were elevated in response to implant or infection 

 Phosphoprotein levels were compared between groups and locations, and ten of the twenty 

phosphoproteins tested exhibited increased phosphorylation levels when implant or infection was 

present: MEK1 (S217/S221), RPS6 (S235/S236), p70S6K (T389), PTEN (S380), BAD (S136), 

p90RSK (S380), VEGFR2 (Y1175), ERK1/2 (T202/Y204 T185/Y187), IκB-α (S32/S36), and c-

Jun (S63). Trends between the three groups are specifically discussed in the following paragraphs. 

 MEK1, RPS6, p70S6K, PTEN, BAD, p90RSK, VEGFR2, and IκB-α showed increases in 

both Implant Only and Inf+Implant groups compared to Sham at a statistically significant level 

(p<0.05) at a minimum of one tissue location. ERK1/2 also appeared to follow this trend, but it 
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did not produce statistically different phosphorylation levels compared to the Sham group (Fig. 

3.5). Additionally, some of these cytokines produced significant comparisons between the Implant 

Only and Inf+Implant groups at p<0.05 at certain tissue locations. p70S6K and BAD showed 

differences between Implant Only and Inf+Implant proximal to the operative site (p<0.05), and 

p90RSK was significantly higher in Inf+Implant compared to Sham and Implant Only directly at 

the operative site (Fig. 3.5, p<0.05). c-Jun did not show as much of a disparity in relative 

phosphorylation levels between the three groups compared to the other targets tested, with the only 

significant comparison at p<0.05 being Inf+Implant at the operative knee compared to both Sham 

and Implant Only at this location (Fig. 3.5). 
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Figure 3. 5. Ten phosphoproteins showed elevated levels in response to implant and infection. 

Relative phosphorylation levels were compared between all samples at a concentration of 

900 µg/mL total protein. Statistically significant differences (p<0.05) in relative phosphorylation 

between Sham (N=6), Implant Only (N=6), and Inf+Implant (N=6) groups are marked for each 

location: “S” represents different than Sham group; “C” denotes different than Implant Only group; 

“I” denotes different than Inf+Implant group. All locations were compared to the operative knee 

site within each group, and statistically significant differences between locations are marked with 

striped bars to indicate the concentration at that location is different than the operative knee at 

p<0.05.  
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3.7.2 Five phosphoproteins showed increased responses proximal or distal to the 

operative knee 

 Of the twenty phosphoproteins tested, five showed trends of increased phosphorylation levels 

proximal or distal to the operative knee in either the Implant Only group, Inf+Implant group, or 

both. CREB (S133), Smad2 (S165/S167), and Syk (Y352) showed phosphorylation levels at the 

operative distal site that were significantly higher than the Implant Only or Sham groups (p<0.05). 

For all three of these targets, the operative distal location was not significantly different at p<0.05 

from the operative knee site within the Inf+Implant group. In other words, phosphorylation of 

CREB, Smad2, and Syk in the Inf+Implant group was similar between these two locations and 

significantly higher (p<0.05) than the other two groups. 

 

 Phosphorylation levels of AKT (S473) and p38 (Y180/Y182) trended upward in both the 

Implant Only and Inf+Implant groups and were higher than levels in the Sham group (Fig. 3.6). 

Phosphorylated p38 was significantly higher at the operative distal site than the operative knee in 

the Inf+Implant group (p<0.05); the Implant Only group only exhibited an increase, but it was not 

at a statistically significant level. Additionally, both AKT and p38 were present at significantly 

higher levels in the operative proximal tissues compared to operative knee in the Implant Only 

group. However, this was not the case for the Inf+Implant group (Fig. 3.6). 
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Figure 3. 6. Five phosphoproteins showed elevated levels proximal or distal to the opeartive knee 

site. Relative phosphorylation levels were compared between all samples at a concentration of 

900 µg/mL total protein. Statistically significant differences (p<0.05) in relative phosphorylation 

between Sham (N=6), Implant Only (N=6), and Inf+Implant (N=6) groups are marked for each 

location: “S” represents different than Sham group; “C” denotes different than Implant Only group; 

“I” denotes different than Inf+Implant group. All locations were compared to the operative knee 

site within each group, and statistically significant differences between locations are marked with 

striped bars to indicate the concentration at that location is different than the operative knee at 

p<0.05.  
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3.7.3 IPA revealed differences in wound healing responses 

 IPA was used to construct network of responses for all nine networks (3 groups, 3 tissue 

locations) from experimentally-derived and literature-derived data (Fig. 3.7). A qualitative 

analysis of connectivity of the networks was conducted by quantifying the number of edges in 

each individual network. An “edge” is a connection between two nodes, and IPA draws edges 

between nodes by quantifying the overlap via a Fisher’s Exact Test with significance set to p<0.01. 

A higher number of edges in a network signifies greater connectivity, since there are more 

relationships between sets of nodes. In this study, the following number of edges were identified 

in each network (with number of edges shown in parenthesis after the network name): Op Prox 

Sham (101), Op Knee Sham (99), Op Dist Sham (101), Op Prox Implant Only (98), Op Knee 

Implant Only (104), Op Dist Implant Only (99), Op Prox Inf+Implant (99), Op Knee Inf+Implant 

(99), Op Dist Inf+Implant (96). The average number of edges was 99.6, so all networks were 

within 5 edges of the average.  

 

 While the connectivity was similar between all nine networks, construction (i.e., the position 

of nodes) differed. An analysis of important up- and down-regulated targets was conducted to 

better understand which nodes may differ between the networks. Changes in expression were 

compared, with a positive change signifying up-regulation and a negative change denoting down-

regulation. The top three nodes for up- and down-regulation from the experimental data set were 

identified at the operative knee joint, and the behavior of these nodes is graphed between all three 

locations to show a comparison between Op Prox, Op Knee, and Op Dist (Fig. 3.8).  
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Figure 3. 7. Ingenuity Pathway Analysis (IPA)-generated networks. Proposed networks used 

relative cytokine and phosphoprotein responses. Nodes are illustrated in a “heat map” coloring 

scheme, with red denoting up-regulation, green denoting down-regulation, and the intensity of 

color correlates to the intensity of relative response. The networks are supplemented with other 

nodes likely to be involved, as identified in the Ingenuity Knowledge Base. A solid line represents 

a direct interaction between two nodes, while a dotted line denotes an indirect relationship. 
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Figure 3. 8. Comparison of top up- and down-regulated nodes compared to the operative knee. 

Differences in expression for the top three up-regulated and down-regulated nodes from the 

experimental data set are shown for each of the three groups. The average expression change ± 

SEM is shown for each node. 
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 Discussion of Wound Healing Network Analysis  

 Network analysis provided some clarity on the aspects of tissues upstream and downstream 

from the operative knee that may affect immune response at operative knee location. It is well 

established that the cytokines investigated in this study play important roles in the inflammatory 

response to implants or infection [2], and to better understand the impacts on cell signaling related 

to wound healing, phosphoproteins were included in a follow-up analysis. These phosphoproteins 

are related to wound healing processes such as proliferation [68-70], fibrosis and establishment of 

connective tissue [71-73], and inflammatory apoptosis [74-76]. Changes in expression levels of 

these targets between locations may highlight some of the disruptions observed for cytokines at 

the operative proximal or operative distal sites.  

 

 While the overall connectivity of networks of cytokines and phosphoproteins analyzed by 

IPA was similar based on the number of edges, the construction differed as well as the up- and 

down-expression of nodes. Top contributors were identified in each of the nine networks by 

highlighting the top three up-regulated and down-regulated nodes. Changes between tissue 

locations for these top network contributors may indicate targets that highly influence the response 

[77]. Within the Sham group, comparison of the top up- and down-regulated targets between 

locations revealed that phosphoproteins p70S6K and ERK1/2 were higher at proximal and distal 

locations compared to the operative knee (p<0.05), and both of these phosphoproteins are 

important for proliferative processes in wound healing [70]. Cytokine IL-5 expressed higher 

directly at the joint than the proximal location (p<0.05) but was not significantly different than the 

distal location (Fig. 3.8). IL-5 is a mediator of TH2 immunity and promotes eosinophil-mediated 

inflammation [78], so its elevation at the operative knee and operative distal locations may signify 
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that there is a higher degree of inflammation at these locations, which agrees with the cytokine 

data as a whole (Figs. 3.2 and 3.3). In the Implant Only group, pro-inflammatory IL-1β was 

significantly lower at the proximal and distal locations compared to the operative knee (p<0.05), 

and IL-12p70 showed the same trend at the proximal tissue (p<0.05), suggesting that a potent pro-

inflammatory response is present at the operative knee in response to implants. Three 

phosphoproteins, MEK1, p38, and p53 were all significantly higher at both the proximal and distal 

locations compared to the operative knee (p<0.05). These phosphoproteins are important for 

wound healing during multiple stages, including proliferation [69], migration [74], and apoptotic 

processes in wound healing [71]. Following the same trend at the Sham group, the Implant Only 

group showed higher cytokine expression at the operative knee and lower levels of wound healing 

phosphoproteins. In the Inf+Implant group, pro-inflammatory IL-1β was significantly higher at 

the operative knee than proximal and distal to this site (p<0.05), and TNF-α was lower in proximal 

tissues (p<0.05). Phosphoprotein p38 was expressed in higher levels at the operative distal location 

compared to the joint site (p<0.05). 

 

There were several limitations to this study. The cytokine concentrations were measured 

in rodents that were treated with anesthetics and analgesics. Many studies have observed 

suppression of cytokine production following administration of these agents [57, 58]. The use of 

isoflurane and buprenorphine was specifically chosen to avoid significant modulation of cytokine 

response [37]. Buprenorphine has been shown to have no significant effect on cytokine production 

in rodents [59]. While isoflurane has been shown to increase levels of pro-inflammatory cytokines 

like IL-1β, IL-6, and TNF-α [60], comparison with the Sham group still illustrated an increase in 

levels of these cytokines due to both implants and infection. Many approaches to studying chronic 
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joint infections like PJI have been pursued in literature [61], and this study represents only one 

infecting organism, S. aureus, at one post-surgical time point in a non-load bearing K-wire implant 

model. Future studies will focus on varying durations of infection, include other infecting 

organisms, and multiple inoculation doses. 

 

 In conclusion, the follow-up network analysis provided some insight into the spatially-

dependent tissue response, which may have implications healing. When comparing the operative 

proximal and operative distal locations to the operative knee, phosphoproteins identified in IPA as 

top contributors- p70S6K, ERK1/2, MEK1, p38, and p53- were consistently higher at proximal 

and distal sites (Fig. 3.8). Cytokines IL-5, IL-1b, IL-12p70, and TNF-α were also identified as top 

contributors in IPA, and these were consistently higher at the operative knee. Further, IL-5, IL-

12p70, and TNF-α were significantly lower proximal to the joint in the Sham, Implant Only, and 

Inf+Implant groups, respectively, suggesting that the distal location may maintain a higher degree 

of inflammation similar to the operative site. The network analysis allowed identification of likely 

contributors to differences in healing responses, and these results suggested that cytokines 

dominate the healing response at the operative knee in all three groups, while wound healing-

related phosphoproteins govern the response at proximal and distal sites.     
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Chapter 4 
 

Impact of Cytokines and Phosphoproteins in Response to Chronic Joint 

Infection 
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4. Impact of Cytokines and Phosphoproteins in Response to Chronic Joint Infection3 

 The early cellular response to infection has been investigated extensively, generating 

valuable information regarding the mediators of acute infection response. Various cytokines have 

been highlighted for their critical roles, and the actions of these cytokines are related to intracellular 

phosphorylation changes to promote infection resolution. However, the development of chronic 

infections has not been thoroughly investigated. While it is known that wound healing processes 

are disrupted, the interactions of cytokines and phosphoproteins that contribute to this 

dysregulation are not well understood. To investigate these relationships, this study used a network 

centrality approach to assess the impact of individual cytokines and phosphoproteins during 

chronic inflammation and infection. Tissues were taken from patients undergoing total knee 

arthroplasty (TKA) and total knee revision (TKR) procedures across two tissue depths to 

understand which proteins are contributing most to the dysregulation observed at the joint. Notably, 

p-c-Jun, p-CREB, p-BAD, IL-10, IL-12p70, IL-13, and IFN-γ contributed highly to the network 

of proteins involved in aseptic inflammation caused by implants. Similarly, p-PTEN, IL-4, IL-10, 

IL-13, IFN-γ, and TNF-α appear to be central to signaling disruptions observed in septic joints. 

Ultimately, the network centrality approach provided insight into the altered tissue responses 

observed in chronic inflammation and infection. 

 

 

 

 

 
3 Parts of this chapter have been published previously from Prince N, Penatzer JA, Dietz, MJ, and Boyd, JW. Impact 

of Cytokines and Phosphoproteins in Response to Chronic Joint Infection. Biology. 9, 167 (2020). 
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 Introduction 

 Acute responses to inflammation and infection have been well studied in literature, and 

these studies have highlighted important roles for many cytokines [1–3] and phosphoproteins [4,5] 

in early inflammatory immune processes. The coordinated series of signaling events involves the 

recruitment of pro-inflammatory regulators like IL-1α, IL-1β, and IL-6 [6–8] to the site, provoking 

intracellular phosphorylation changes of many mitogen-activated protein kinase (MAPK/ERK) 

mediators [9–11]. This acute inflammatory response to infection is predictable. However, less is 

known about the transition that leads to the development of chronic infections [12]. Chronic, 

persistent infections are challenging to treat and can present a challenge for clinicians [13]. 

Periprosthetic joint infection (PJI) is an infection surrounding a prosthetic knee and represents one 

example of localized infections that can transition into a chronic state. Dysregulation of immune 

mediators has been observed systemically for PJI [14,15], but the mechanisms that lead to these 

signaling disruptions have not been investigated [16]. PJI affects approximately 40,000 patients 

per year in the United States [17], and resolving these chronic infections is a high priority for 

clinicians. These patients suffer from chronic inflammation surrounding the joint due to presence 

of implant as well as infection [18,19]. This compound inflammation makes the tissue-level 

response difficult to understand using traditional statistical approaches. Further investigation into 

the tissue-level disruptions that lead to chronic infection and inflammation may allow a better 

understanding of how best to address these conditions. 

 

Network analysis approaches allow for a global evaluation of these complex, tissue-level 

disruptions [20]. Traditional statistical methods for evaluating these contributions may be limited, 

as they can only evaluate one component individually. Conversely, network analysis approaches 
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allow for an understanding of the interactions of different components with respect to the entire 

signaling network [20]. Currently, pathway analysis software like Ingenuity Pathway Analysis 

(IPA), Cytoscape, and iPathway Guide are used to analyze these types of datasets from a network 

perspective, and these tools offer an enriched understanding of biological networks. These 

applications allow users to construct networks, analyze molecular functions, and identify disease 

states using experimental and literature-derived data [21,22]. 

 

Beyond literature-based enrichment of data, mathematical modeling, such as network 

centrality parameter analysis, can be used to dissect large datasets and understand relationships 

between the individual components. Network centrality parameters assign quantitative values to 

every measured target (node) to describe how central each target is relative to all other nodes in 

the network. Some examples of centrality parameters are degree (number of direct neighbors), 

diameter (maximum distance between nodes in the network), and radiality (shortest path between 

a node and all other nodes, normalized to network diameter) [23]. 

 

A node with a high radiality indicates that node is central to the network, and networks 

with mostly high radiality nodes are behaving in an organized manner. Conversely, nodes with 

low centrality values have peripheral roles, and networks with many low radiality nodes may be 

interpreted as an open cluster of proteins that are connecting to other regulatory molecules [23]. 

By focusing on the nodes with low centrality outcomes, it may be possible to understand which 

peripheral nodes are contributing to the dysregulation observed in networks of chronic 

inflammation and infection that occur in TKR patients, especially those suffering from PJI. 
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Radiality has been used in literature to probe biological networks and garner information about 

protein-protein interactions to understand chronic inflammatory conditions like diabetes [24], 

cancer [25], and chronic viral infections [26]. Ultimately, using radiality to evaluate these signaling 

networks allowed an opportunity to identify new therapeutic targets to combat these conditions. 

Evaluating the nodes that are most central and most peripheral in chronic infections like PJI may 

yield similar benefits. 

 

In this study, nine cytokines and twenty-one phosphoproteins were measured in tissues 

surrounding the knee joint to evaluate differences between native response in primary TKA, 

chronic inflammatory response in aseptic TKR, and chronic infection response in septic TKR. Two 

tissue depths were evaluated for each group: adjacent tissue layer (ATL), unhealthy tissue that is 

close to the joint and requires removal; and radial tissue layer (RTL), healthy tissue that does not 

need to be removed. The dataset was examined using IPA and network centrality radiality to allow 

both qualitative and quantitative evaluations of cytokine and phosphoprotein contributions. A 

comparison of radiality values between primary TKA, aseptic TKR, and septic TKR allowed for 

a narrowing of the nodes with particularly distinct responses. These nodes may have important 

contributions to the disruption of normal cell signaling events. In the future, a focused analysis of 

these protein targets may facilitate the development of new therapeutics to combat persistent 

inflammation and infection observed in these patients. 
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 Materials and methods 

4.2.1 Patient cohort 

All subjects gave informed consent for inclusion in the study, and the study was conducted 

in accordance with the Declaration of Helsinki. Following Institutional Review Board (IRB) 

approval (IRB protocol #1709745853) and patient consent, six patients undergoing primary total 

knee arthroplasty (TKA) and eleven patients undergoing total knee revision (TKR) procedures 

participated in the study (8 males and 9 females; aged 45–82 years; body max index [BMI] 24.6–

43.7; information can be found in Table 4.1), and subjects were recruited over a 12-month period. 

All six primary TKA patients were undergoing elective surgery for total replacement of the knee 

joint with a diagnosis of osteoarthritis. In the TKR group, patients were further characterized into 

aseptic and septic revision procedures. Patients with aseptic revisions (N = 5) were undergoing 

revisions due to failures of the prosthetic joint but did not show presence of infection. Patients with 

septic revisions (N = 6) met clinical criteria for a PJI diagnosis, as defined by the Musculoskeletal 

Infection Society (MSIS) criteria [27]. All six patients diagnosed with PJI had positive tissue 

cultures on the day of surgery: four tested culture positive for Staphylococcus epidermidis, one for 

Methicillin-sensitive Staphylococcus aureus (MSSA), and one for Enterobacter cloacae. All 

groups of patients received the same pre-operative pain relief and anesthesia, per standard clinical 

procedures. 
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Table 4. 1. Patient Information. Six primary TKA and eleven revision TKR patients were enrolled 

in the study, creating a heterogenous cohort of males and females varying in age (45-82 years) and 

comorbidities. Primary TKA patients have ID format P#; revision TKR patients have ID format 

F#. This table lists general patient information including the pathogen for which each septic patient 

tested culture-positive following testing on the day of surgery. Serum CRP values were obtained 

pre-operatively in the revision setting. Cultures were obtained from intraoperative tissue samples.   

 

ID Sex TKA/TKR BMI(kg/m2) Diabetic (Y/N) CRP (mg/L) Culture 

P1 F TKA 33.8 N N/A Negative 

P2 F TKA 39.8 N N/A Negative 

P3 F TKA 39.8 N N/A Negative 

P4 M TKA 29.7 Y N/A Negative 

P5 M TKA 24.6 N N/A Negative 

P6 M TKA 27.2 N N/A Negative 

F1 F TKR- Aseptic 28.2 N 4.3 Negative 

F2 F TKR- Aseptic 29.8 N 0.2 Negative 

F3 F TKR- Aseptic 33.9 N <1 Negative 

F4 M TKR- Aseptic 40.4 Y 3.6 Negative 

F5 M TKR- Aseptic 26.2 N 2.1 Negative 

F6 F TKR- Septic 43.7 N 28.8 S. epidermidis 

F7 F TKR- Septic 30.8 Y 161.4 S. epidermidis 

F8 F TKR- Septic 41.9 N 21.7 E. cloaecae 

F9 M TKR- Septic 36.2 N 33.5 MSSA 

F10 M TKR- Septic 33.8 Y 3.8 S. epidermidis 

F11 M TKR- Septic 31.9 N 111.9 S. epidermidis 
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4.2.2 Collection of tissue samples 

 All TKA and TKR procedures were performed by a single surgeon with standard 

debridement and washing protocols. Debridement during TKA and TKR is the removal of 

unhealthy tissue surrounding the joint [28]. Tissues were collected at a total of four distinct 

anatomical locations, shown in Figure 4.1. The solid line circle represents location 1: medial 

femoral condyle (F); the dashed line circle represents location 2: medial tibial plateau (T); the solid 

line square represents location 3: lateral gutter (LG); and the dashed line square represents location 

4: posterior capsule (PC). These tissues were collected at two tissue layers, the adjacent tissue 

layer (ATL) and radial tissue layer (RTL). The ATL samples came from the initial debridement; 

these tissues are removed during surgery to promote better wound healing. RTL samples were 

taken from a tissue layer further removed from the joint after the surgeon completed debridement. 

The difference in depth of the RTL tissues and ATL tissues was ~1 cm. Anatomical locations 1–4 

were collected for the ATL layer, and locations 1–3 were collected for the RTL layer. Location 4 

(PC) could not be taken in the RTL layer due to proximity to neurovascular structures. Therefore, 

a total of seven tissue samples were taken for each patient. 
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Figure 4. 1. Map of approximate tissue collection locations, shown with prosthetic implant. 

Seven tissue samples were taken for each patient; (1) the solid circle represents the medial 

femoral condyle (denoted as F); (2) the dashed circle represents the medial tibial plateau 

(denoted as T); (3) the solid square represents the lateral gutter (denoted as LG); (4) the dashed 

square represents the posterior capsule (denoted as PC). Locations 1–4 were taken for the ATL 

layer, and locations 1–3 were taken for the RTL layer; separation between ATL (unhealthy 

tissue, closer to joint) and RTL (healthy tissue, further from joint) was approximately 1 cm, 

depending on individual patient. 

 

4.2.3 Sample preparation 

Tissues were collected during TKA and TKR procedures in the operating room and 

immediately stored on dry ice. Once all tissues had been collected for an individual patient, they 

were washed with 1X cold phosphate-buffered saline (PBS) to remove blood and debris. Tissues 

were grossly dissected using a scalpel to remove scar tissue, then stored at −80 °C. When samples 

had been collected for all patients, tissues were thawed on ice and cut into sections approximately 

30 mg in size; tissues were homogenized by sonication in 500 µL cell lysis solution (Bio-Rad, 

Hercules, CA) containing 20 mM phenylmethylsulfonyl fluoride (Sigma-Aldrich, St. Louis, MO). 
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Protein extraction was performed using methods adapted from Hulse et al. [29]. Thawed samples 

were vortexed for 1–3 s and centrifuged at 5000× g for 5 min at 4 °C. The supernatant was collected 

and tested for total protein content using a Pierce BCA Protein Assay Kit (Thermo Scientific, 

Waltham, MA), according to the manufacturer’s instructions. Absorbance values for total protein 

content were determined on an Infinite M1000 multimode plate reader (Tecan, Raleigh, NC). 

 

4.2.4 Cytokine and phosphoprotein measurement 

To standardize samples for total protein content, tissue homogenates were individually 

diluted to a total protein concentration of 900 µg/mL with cell lysis buffer (Bio-Rad). Cytokine 

and phosphoprotein measurements were performed using magnetic bead-based multiplex 

Inflammation Human ProcartaPlex panel assays (Invitrogen, Carlsbad, CA) and custom Bio-Plex 

human phosphoprotein multiplex kits. Targets were measured using a Bio-Plex 200 suspension 

array system and Pro II Wash Station (Bio-Rad), according to the manufacturer’s instructions. All 

cytokines and phosphoproteins measured in the study are listed in Tables 4.2 and 4.3 along with 

references for their roles in tissue healing. 
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Table 4. 2. Cytokine Targets Measured in Tissue Samples. All cytokines measured in this study 

are listed along with relevant functions during wound healing. Citations are noted in brackets. 

 

Cytokine Relevant Functions in Acute Wound Healing Response 

 

IL-1β Early initiator of infection-driven inflammation [2] 

IL-4 Anti-inflammatory cytokine that activates Stat6, suppressing cell death [42] 

IL-6 Initiator of early inflammatory response to implants and infection [2] 

IL-1α Early recruitment of immune cells in response to infection [2] 

IL-10 
Down-regulator of several inflammatory cytokines (i.e., IL-1, IL-6, IL-12, IFN-γ, 

TNF-α) [43] 

IL-

12p70 

Pro-inflammatory cytokine involved in adaptive immunity, produced by activated 

immune cells [43] 

IL-13 Th2-associated cytokine critical in tissue remodeling [44] 

IFN-γ 
Anti-inflammatory cytokine that has been associated with inhibition of wound 

healing [43] 

TNF-α Early pro-inflammatory mediator of inflammation [2] 
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Table 4. 3. Phosphoprotein Targets Measured in Tissue Samples. All phosphoproteins measured 

in this study are listed as well as the site of phosphorylation and roles in wound healing response. 

Citations are noted in brackets. 

 

Phosphoprotein (site) Relevant Functions in Acute Wound Healing Response 

p-CREB (Ser133) 
Inhibition of CREB via phosphorylation promotes wound closure 

[30] 

p-HSP27 (Ser78) Activation of HSP27 may inhibit stress-induced apoptosis [31] 

p-IκBα (Ser32/Ser36) Pro-wound healing, inhibits actions of NF-κB [32] 

p-MEK1 

(Ser217/Ser221) 
Essential for migration of epithelial layers [33] 

p-S6RP 

(Ser235/Ser236) 
Activated during proliferative growth phase [30] 

p-Smad2 

(Ser465/Ser467) 
Regulates keratinocyte migration during proliferation [34] 

p-Src (Tyr416) Promotes keratinocyte migration in wound healing [32] 

p-Syk (Tyr352) Important for cellular migration in wound healing [35] 

p-c-Jun (Ser63) Induces apoptosis of immune cells in skin wound healing [33] 

p-AKT (Ser473) Phosphorylation of AKT promotes wound closure [30] 

p-p53 (Ser15) 
Activated p53 accelerates cutaneous wound healing by increasing 

cell proliferation [36] 

p-p38 (Thr180/Tyr182) Activated p38 involved in muscle catabolism [32] 

p-p70S6K (Ser380) Growth factor associated with cell proliferation [37] 

p-PTEN (Ser380) Pro-apoptotic, inhibits acute wound healing [38] 

p-ZAP-70 (Tyr319) Stimulates cell migration during wound healing [35] 

p-BAD (Ser136) Phosphorylation of BAD activates pro-apoptotic functions [39] 

p-ERK1/2 

(Thr202/Tyr204) 
Important for early proliferative response in wound healing [37] 

p-GSK-3α/β 

(Ser21/Ser9) 
Controls wound healing and fibrosis progression [30] 

p-p90RSK (Ser380) 
Downstream effector of MEK/ERK pathway in wound healing, 

regulator of cell migration [40] 

p-VEGFR2 (Tyr1175) Stimulates angiogenic cascade during re-epithelialization [41] 

p-NF-κB p65 (Ser536) Linked to muscle atrophy and catabolism [32] 
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4.2.5 Data processing and statistical analysis 

Data were analyzed using Prism 5 (GraphPad, San Diego, CA) and SAS JMP (Cary, NC). 

Cytokine standard curves were generated using either a four- (4PL) or five-parameter logistic (5PL) 

regression model, depending on the individual protein. Cytokine concentrations are expressed as 

picograms of cytokine per milliliter of tissue homogenate (pg/mL). For purposes of network 

analyses, these values were normalized to the highest value for each cytokine. For phosphoproteins, 

relative phosphoprotein levels were measured via multiplex enzyme-linked immunosorbent assay 

(ELISA), and compared to negative control. These values were normalized to the highest value for 

each phosphoprotein. Contributions of cytokines and phosphoproteins were analyzed for the ATL 

and RTL layers. All four tissues from the ATL layer were averaged together to represent ATL 

depth. The three tissues from the RTL layer were averaged together to represent RTL depth. 

Samples with fluorescence intensity values below the lower limit of quantitation (LLOQ) or above 

the upper limit of quantitation (ULOQ) were omitted from statistical comparisons of cytokines and 

phosphoproteins. Outliers were identified using the 1.5 X interquartile range (IQR) rule and 

omitted from analysis [45]; these were removed on a case-by-case basis to exclude errant values 

that may have resulted due to assay variability. Two-way analysis of variance (ANOVA) with 

Bonferroni’s post-test was used to determine significant differences between primary TKA, aseptic 

TKR, and septic TKR tissue samples at each tissue depth, ATL and RTL. Data are expressed as 

the mean ± standard error of the mean (SEM). To examine any potential confounding factors in 

this cohort, Pearson correlations were analyzed between age, sex, and BMI and all 30 measured 

targets. A Bonferroni’s correction was applied, as described in [46], and the correlations were 

analyzed for statistical significance at p < 0.05. Although there are established correlations in 

literature between inflammatory mediators and age, sex, and BMI, there were no statistically 
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significant correlations observed for this study, which indicates that these parameters were not 

confounding factors (data not shown). 

 

4.2.6 Network evaluation with Ingenuity Pathway Analysis (IPA) 

 The normalized responses of each target were investigated with QIAGEN’s Ingenuity® 

Pathway Analysis (IPA®, QIAGEN, Redwood City). Proposed signaling networks of cytokines 

and phosphoproteins were created for all groups (primary TKA, aseptic TKR, septic TKR) at the 

ATL depth. All networks consist of nodes from the experimental dataset and literature-derived 

projected nodes likely to be involved, identified by Ingenuity Knowledge Base. Up- and down-

regulated responses are color coded using red and green, respectively. Briefly, IPA constructs 

networks building on “Focus Genes” or nodes that are highly interconnected [47]. Values from the 

experimental dataset influence which nodes are designated as “Focus Genes” and may alter the 

structure of the networks. IPA also reported top molecular and cellular functions related to the 

network, with corresponding scores (negative log10 [p-value of Fisher’s exact test]). The Fisher’s 

exact test (p-value) gives the likelihood of finding the identified Focus Genes by random chance 

in the Global Molecular Network used by IPA. 

 

4.2.7 Network centrality parameter analysis 

 Euclidean distances between pairs of normalized observations (cytokines and 

phosphoproteins) were determined for each group (primary, aseptic, septic) and depth (ATL and 

RTL). The definition of Euclidean distance is given in Equation 4.1: 
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   𝐸(𝜐, 𝜔) = √∑ ((𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝜐𝑖
) − (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝜔𝑖

))
2

 

𝑛

𝑖=1

  (4.1) 

 

where υ and ω represent the 2 responses for which the distance between is being calculated, and n 

signifies the replicate number. To construct networks of the relative responses of each group, 

Euclidean distances for each pair of nodes were used to calculate the node centrality parameter, 

radiality. Radiality is defined as: 

 

𝐶𝑟𝑎𝑑(𝜐) =
∑ (𝐺 + 1 − 𝑑𝑖𝑠𝑡(𝜐, 𝜔))𝜔𝜖𝑁

𝑛 − 1
 (4.2) 

 

where G represents the network (N) diameter (maximal path length of the network), dist(υ,ω) is 

the shortest path between a pair of nodes υ and ω, and n is the number of nodes in the network 

(Equation 4.2). To allow for comparisons between networks, radiality values were normalized to 

the average radiality for all nodes in the network. Significant radiality values were identified using 

a threshold value of the average radiality ± the standard deviation. 

 

 Results 

4.3.1 Relative spatial cytokine responses 

Nine cytokines were measured in this study: IL-1α, IL-1β, IL-4, IL-6, IL-10, IL-12p70, IL-

13, IFN-γ, and TNF-α. The responses of these cytokines are shown in Figure 4.2. Cytokine levels 

were normalized across groups (primary TKA, aseptic TKR, septic TKR) and debridement depths 

(ATL, RTL) to the highest value for each cytokine. Normalizing by this method is important to 
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appropriately weight cytokines equally for network analysis rather than relying on raw 

concentrations. This weighting is performed to understand the contributions of each node to the 

network, relative to other nodes. Group-dependent differences were observed, as were spatial 

differences between debridement depths. Briefly, the aseptic TKR and septic TKR groups had 

higher cytokine responses than the primary TKA group for all cytokines. IL-1α, IL-1β, IL-4, and 

IL-6 had higher levels in septic TKR than aseptic TKR at a statistically significant level (p < 0.05). 

IL-10 was the only cytokine with a lower relative response in the septic TKR when compared to 

aseptic TKR at a statistically significant level (p < 0.05). IL-12p70 seemed to show the same trend, 

but was not significant at p < 0.05. There were also differences between ATL and RTL in septic 

TKR tissues. For IL-1α, IL-1β, and IL-4, there were statistically significant differences between 

ATL and RTL depths for the septic group (p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 



133 

 

 

 

IL-1

ATL RTL
0

50

100

*

*

R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

IL-1

ATL RTL
0

50

100

*

*

R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

IL-4

ATL RTL
0

50

100
*

*

R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

IL-6

ATL RTL
0

50

100

R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

IL-10

ATL RTL
0

50

100

*

*

R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

IL-12p70

ATL RTL
0

50

100

R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

IL-13

ATL RTL
0

50

100

R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

IFN-

ATL RTL
0

50

100

Primary TKA Aseptic TKR Septic TKR

R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

TNF-

ATL RTL
0

50

100

R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

 

 

Figure 4. 2. Relative cytokine levels measured in tissues from primary TKA, aseptic TKR, and 

septic TKR at adjacent tissue layer (ATL) and radial tissue layer (RTL) debridement depths. 

Relative cytokine responses (normalized to highest cytokine signal) were observed for all three 

patient groups: primary, aseptic, and septic at two debridement depths: ATL is closer to the knee 

joint, and RTL is approximately 1 cm removed from the knee joint. Statistically significant 

differences (p < 0.05) were determined by two-way ANOVA with Bonferroni’s post-test to 

examine group-dependent and spatially-dependent differences in cytokine relative response. 

Differences for the same group (i.e., septic) between ATL and RTL are marked with an asterisk 

(*). Differences between groups within a tissue layer are denoted with bars. Responses are shown 

as the mean ± SEM. 
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4.3.2 Relative spatial phosphoprotein responses 

 To further investigate the impact of the observed cytokines on tissue response, twenty-one 

phosphoproteins were measured: p-CREB, p-HSP27, p-IκB-α, p-MEK1, p-S6RP, p-Smad2, p-Src, 

p-Syk, p-c-Jun, p-AKT, p-p53, p-p38, p-p70S6K, p-PTEN, p-ZAP-70, p-BAD, p-ERK1/2, p-

GSK-3α/β, p-p90RSK, pVEGFR2, and p-NF-κB (more information can be found in Table 4.3). 

The data are spread over Figures 4.3, 4.4 and 4.5. Figure 4.3 includes phosphoproteins most 

associated with proliferative wound healing processes [30,36,37,39]. Phosphoproteins in Figure 

4.4 have roles in cell migration and fibrotic processes [2,30,32,34,35,40,41]. Finally, Figure 4.5 

includes the phosphoproteins that have pro-apoptotic roles and have been associated with delayed 

wound healing through their involvement in muscle catabolism [33,38–40]. Most phosphoproteins 

exhibited higher responses in the primary TKA tissues than in aseptic TKR and septic TKR tissues, 

for both ATL and RTL depths, and many exhibited group-dependent differences, especially in 

ATL depth. Some exceptions to this trend were p-c-Jun and p-BAD, which had the highest 

responses in aseptic TKR, then septic TKR, followed by primary TKA; also, p-PTEN showed the 

highest response in septic tissues (Figure 4.5). Specific group-dependent comparisons are shown 

in Figures 4.3–4.5. 

  

 Tissue depths were also compared for phosphoproteins. Responses in the ATL were higher 

than responses in the RTL for most phosphoproteins. However, several proteins showed notably 

higher levels in RTL than ATL for at least one of the three tissue groups: p-BAD, p-Src, p-IκB-α, 

p-HSP27, p-ERK1/2, and p-VEGFR2 (Figures 4.3–4.5). Comparisons of ATL vs. RTL for each 

group are shown in Figures 4.3–4.5. 
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Figure 4. 3. Relative levels of phosphoproteins associated with the proliferative processes in acute 

wound healing. Relative phosphoprotein responses (normalized to highest signal) were observed 

for all three patient groups: primary, aseptic, and septic at two debridement depths: ATL is closer 

to the knee joint, and RTL is approximately 1 cm removed from the knee joint. Statistically 

significant differences (p < 0.05) were determined by two-way ANOVA with Bonferroni’s post-

test to examine group-dependent and spatially-dependent differences in protein phosphorylation. 

Differences for the same group (i.e., septic) between ATL and RTL are marked with an asterisk 

(*). Differences between groups within a tissue layer are denoted with bars. Responses are shown 

as the mean ± SEM. 
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Figure 4. 4. Relative phosphoprotein levels associated with cell migration processes in acute 

wound healing. Relative phosphoprotein responses (normalized to highest signal) were observed 

for all three patient groups: primary, aseptic, and septic at two debridement depths: ATL is closer 

to the knee joint, and RTL is approximately 1 cm removed from the knee joint. Statistically 

significant differences (p < 0.05) were determined by two-way ANOVA with Bonferroni’s post-

test to examine group-dependent and spatially-dependent differences in protein phosphorylation. 

Differences for the same group (i.e., septic) between ATL and RTL are marked with an asterisk 

(*). Differences between groups within a tissue layer are denoted with bars. Responses are shown 

as the mean ± SEM. 
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Figure 4. 5. Relative levels of pro-apoptotic and inhibitory wound healing phosphoproteins in 

acute wound healing. Relative phosphoprotein responses (normalized to highest signal) were 

observed for all three patient groups: primary, aseptic, and septic at two debridement depths: ATL 

is closer to the knee joint, and RTL is approximately 1 cm removed from the knee joint. 

Statistically significant differences (p < 0.05) were determined by two-way ANOVA with 

Bonferroni’s post-test to examine group-dependent and spatially-dependent differences in protein 

phosphorylation. Differences for the same group (i.e., septic) between ATL and RTL are marked 

with an asterisk (*). Differences between groups within a tissue layer are denoted with bars. 

Responses are shown as the mean ± SEM. 
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4.3.3 IPA-generated networks 

Networks for the three groups (primary TKA, aseptic TKR, and septic TKR) were 

constructed from the same set of cytokines and phosphoproteins for the ATL layer. The network 

connectivity varied greatly between the three groups (Figure 4.6). Qualitatively, the primary TKA 

network showed higher connectivity and more experimentally validated up- and down-regulation 

of targets, as shown by the red and green coloring, respectively. Further, the connections between 

targets, also known as “edges,” varied between the three groups. Edges denote connections 

between nodes; in IPA, direct relationships are shown by solid lines, and indirect relationships are 

shown by dotted lines. The primary TKA network showed 139 edges; 23 of these edges were direct, 

and 116 were indirect. For aseptic TKR, 65 total edges were identified: 4 direct, 61 indirect. For 

septic TKR, 61 total edges are shown: 4 direct and 57 indirect. IPA uses the experimental dataset 

to identify related IPA networks, shown in Table 4.4. A p-score is shown for each IPA network 

match, and the p-score is calculated based on the -log10(p-value) for the Fisher’s exact test. A 

higher IPA p-score indicates a stronger match; p scores above 21 are generally considered good 

matches [48]. 
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Figure 4. 6. Ingenuity Pathway Analysis (IPA)-generated networks for primary TKA, aseptic TKR, 

and septic TKR groups based on cytokine and phosphoprotein datasets. Proposed networks used 

relative cytokine and phosphoprotein responses in the ATL depth, illustrating the differences in 

tissue responses for the three groups. The nodes are illustrated in a “heat map” coloring scheme, 

with red denoting up-regulation, green denoting down-regulation, and the intensity of color 

correlates to the intensity of relative response. The networks are supplemented with other nodes 

likely to be involved, as identified in the Ingenuity Knowledge Base. A solid line represents a 

direct interaction between two nodes, while a dotted line denotes an indirect relationship. 

 

 

Table 4. 4. Top 2 IPA Networks for Primary TKA, Aseptic TKR, and Septic TKR Groups. Network 

p-scores are calculated by IPA using the negative log10 (p-value) of Fisher’s exact test. The p-value 

describes the probability of finding the cytokines/phosphoproteins randomly in the databases 

utilized by IPA to construct the network. Networks with p-scores above the threshold of 21 are 

bolded. 

 

Primary TKA Aseptic TKR Septic TKR 

IPA Network 
p-

score 
IPA Network 

p-

score 
IPA Network 

p-

score 

Cell-mediated immune 

response, cellular 

development, cellular 

function and 

maintenance 

72 

Inflammatory response, 

cellular movement, cell 

death and survival 

16 

Cellular movement, 

inflammatory response, 

hematological 

development and 

function 

16 

Cancer, organismal injury 

and abnormalities, cell 

cycle 

2 

Cell-mediated immune 

response, cellular 

development, cellular 

function and 

maintenance 

9 

Cell death and survival, 

organismal injury and 

abnormalities, cellular 

development 

9 



140 

 

4.3.4 Normalized radiality of all 30 nodes 

 

 Based on the ANOVA data and IPA-generated networks, all of these cytokine and 

phosphoprotein targets have roles to play in both infection response and wound healing. To further 

understand the most important targets, network centrality parameter analysis was performed by 

analyzing a network centrality parameter, radiality. Radiality values were determined for each 

cytokine and phosphoprotein node and normalized to the average radiality for the network (e.g., 

primary TKA, ATL layer). These values are presented in Tables 4.5 and 4.6. Changes in significant 

radiality outcomes can allow for a better understanding of the “drivers” of each network and 

deviations from normal response (Figure 4.7). Nodes with significant radiality values are bolded; 

the significance threshold used was the average radiality ± standard deviation. Based on previous 

work [49], we expect significant radiality outcomes with low radiality values to be the most likely 

drivers of the dysregulation for persistent inflammation and infection of aseptic and septic TKR, 

respectively. 
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Table 4. 5. Normalized Radiality of Nodes in the ATL Layer. Significant target values for each 

individual network are bolded (significance threshold: the average radiality ± standard deviation). 

Node ATL Primary TKA ATL Aseptic TKR ATL Septic TKR 

p-CREB 0.96 0.77 1.15 

p-HSP27 1.13 1.14 1.15 

p-IκBα 1.13 1.16 1.10 

p-MEK1 1.13 1.08 1.10 

p-S6RP 1.13 0.98 1.13 

p-Smad2 1.13 1.15 1.14 

p-Src 1.13 1.15 1.15 

p-Syk 1.13 1.11 0.95 

p-c-Jun 1.04 0.77 1.03 

p-AKT 1.10 0.99 1.08 

p-p53 1.13 1.00 1.06 

p-p38 1.13 1.05 1.06 

p-p70SK6 1.13 1.15 1.07 

p-PTEN 1.09 1.02 0.76 

p-ZAP-70 1.13 1.16 1.07 

p-BAD 0.96 0.77 1.15 

p-ERK1/2 1.13 1.15 1.13 

p-GSK-3a/b 1.13 1.16 1.12 

p-p90RSK 1.13 0.99 1.04 

p-VEGFR2 1.13 0.99 1.11 

p-NF-kB 1.13 1.16 1.09 

IL-1b 0.62 0.91 0.76 

IL-4 0.90 1.01 0.76 

IL-6 0.60 0.82 0.76 

IL-1a 0.63 1.15 0.76 

IL-10 0.73 0.79 1.02 

IL-12p70 0.84 0.77 1.06 

IL-13 0.84 0.77 0.76 

IFN-y 0.85 0.96 0.76 

TNF-a 0.85 0.93 0.76 
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Table 4. 6. Normalized Radiality of Nodes in the RTL Layer. Significant target values for each 

individual network are bolded (significance threshold: the average radiality ± standard deviation). 

Node RTL Primary TKA RTL Aseptic TKR RTL Septic TKR 

p-CREB 1.12 0.79 1.06 

p-HSP27 0.87 1.12 1.03 

p-IκBα 1.07 1.13 1.01 

p-MEK1 0.99 1.05 1.08 

p-S6RP 1.06 0.98 1.02 

p-Smad2 1.12 1.11 1.10 

p-Src 0.97 1.08 1.04 

p-Syk 1.01 0.96 0.94 

p-c-Jun 1.11 0.97 0.99 

p-AKT 0.80 1.12 1.09 

p-p53 0.97 1.07 1.00 

p-p38 1.11 1.08 1.06 

p-p70SK6 0.80 1.13 1.00 

p-PTEN 1.12 1.12 1.05 

p-ZAP-70 1.11 0.96 1.07 

p-BAD 1.12 0.79 1.06 

p-ERK1/2 0.83 1.09 1.11 

p-GSK-3a/b 1.12 1.12 1.02 

p-p90RSK 1.10 1.00 0.95 

p-VEGFR2 1.09 1.13 1.10 

p-NF-kB 1.04 1.12 1.04 

IL-1b 0.85 0.99 1.08 

IL-4 1.04 1.03 1.00 

IL-6 0.82 0.89 1.11 

IL-1a 0.84 1.09 1.11 

IL-10 0.95 0.64 0.70 

IL-12p70 0.96 0.92 1.07 

IL-13 1.01 0.74 0.59 

IFN-y 1.01 0.75 0.73 

TNF-a 1.00 1.00 0.80 
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 While several nodes were significant within each of the six networks, respectively, some 

nodes showed a group-dependent trend in significance (Tables 4.5 and 4.6). There were changes 

in significance between the native primary TKA response and aseptic or septic TKR responses. In 

the primary TKA networks, IL-1α, IL-1β, IL-6, and IL-10 gave significant low radiality outcomes 

for the ATL; p-HSP27, p-AKT, p-ERK1/2, IL-1α, IL-1β, and IL-6 were significant in the RTL. 

Differences for the aseptic TKR group include p-CREB, p-c-Jun, p-BAD, IL12p70, and IL-13 in 

the ATL; p-CREB, p-BAD, IL-10, IL-13, and IFN-γ for the RTL. Deviations in the septic TKR 

group include p-PTEN, IL-4, IL-13, IFN-γ, and TNF-α in the ATL layer and IL-10, IL-13, IFN-γ, 

and TNF-α in the RTL layer. 
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Figure 4. 7. Changes in significant nodes between groups for low radiality outcomes. Nodes with 

low radiality outcomes that differed between primary TKA response and aseptic/septic TKR 

responses are shown (significance threshold: the average radiality ± standard deviation). Boxes 

indicate significance at varying depths. IL-10 is shown in red to highlight its presence in all three 

groups: primary TKA, aseptic TKR, and septic TKR. IL-13 (green) and IFN-γ (blue) are also 

colored to highlight overlap in both aseptic TKR and septic TKR groups. 
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 Discussion 

The cytokine and phosphoprotein targets measured in this study are known to be significant 

contributors to inflammatory responses in general [2], but the interconnected relationships of these 

targets remain to be elucidated for PJI. Further, many of these targets have not been studied on a 

tissue level for chronic inflammation and infection, so much of the dysregulation that occurs in 

immune response and wound healing processes remains unknown [12]. Relative cytokine and 

phosphoprotein responses were measured to understand the trends in response across three groups 

of patients: primary TKA, aseptic TKR, and septic TKR at two tissue depths: ATL and RTL. 

Higher relative cytokine levels were observed in either aseptic or septic TKR samples compared 

to primary TKA tissues. IL-1α, IL-1β, IL-4, and IL-6 showed infection-specific relative responses, 

with higher levels in septic TKR than both aseptic TKR and primary TKA (p < 0.05, Figure 4.2). 

These cytokines have been identified in literature as important early immune response mediators 

in PJI [50]. Additionally, there were spatial differences between ATL and RTL layers for IL-1α, 

IL-1β, IL-4, and IL-10 (Figure 4.2). The spatial discrepancies observed in this study suggested that 

the cytokine response is more robust in the ATL layer of septic tissues compared to the RTL. The 

spatial relationships were unclear for primary TKA and aseptic TKR using ANOVA comparisons 

(Figure 4.2). 

 

Phosphoproteins were also included in this analysis as many hold central roles in early 

infection response [4]. The phosphoproteome has not been thoroughly investigated for chronic 

joint inflammation and infection in PJI, but the relationships between cytokines and 

phosphoproteins may reveal important information considering the central role of these signaling 

proteins in cell cycle regulation [9], cell proliferation [36], inflammatory processes [49], and 
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wound healing [30]. Most phosphoproteins were found in higher levels in primary TKA tissues 

(Figures 4.3–4.5). While the septic TKR gave the highest response of most cytokines, it often 

showed the lowest levels of phosphoproteins (Figures 4.3–4.5). While many of the 

phosphoproteins tested are downstream targets of cytokines [2,32,33,38,40–43], decreased levels 

of wound healing-associated phosphoproteins have previously been observed in other studies 

[14,15]. Notable exceptions were p-c-Jun and p-BAD, which were highest in aseptic TKR, and p-

PTEN, which was highest in septic TKR (Figure 4.5). All three of these phosphoproteins have 

associated pro-apoptotic functions in acute wound healing [33,38,39], which may be related to 

their increased phosphorylation in aseptic and septic TKR tissues, respectively. Phosphoprotein 

levels also showed spatial trends between ATL and RTL at a statistically significant level (p < 

0.05) for p-IκB-α, p-GSK-3α/β, p-Smad2, and p-CREB (Figures 4.3,4.4). All four of these 

phosphoproteins are related to cell migration and proliferation, and have important roles for wound 

healing [30,32,34]. The results of this study showed higher levels for these phosphoproteins in the 

ATL of primary TKA, compared to RTL of primary TKA, which suggests tissues closer to the 

joint have increased wound healing activity (Figures 4.3,4.4). 

 

While traditional ANOVA comparisons gave information about the relative responses of 

cytokines and phosphoproteins, chronic inflammation and infection involve a series of deeply 

interconnected targets [3,12], which makes it difficult to fully understand the tissue responses 

when only considering each target in isolation. The ANOVA data alone do not fully explain which 

targets may be contributing most to the disruptions in responses observed in aseptic and septic 

TKR. IPA analysis was used to comparatively assess the connectivity between the three groups. 

IPA has proven to be a useful tool for visualizing the connectivity of different nodes (i.e., genes, 
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proteins, etc.) involved in networks [53]. Figure 4.6 illustrates the utility of IPA for comparing 

different networks qualitatively and depicts the differences between primary TKA, aseptic TKR, 

and septic TKR networks for each of the ATL layers. The primary TKA shows better connectivity 

between targets than aseptic TKR and septic TKR, suggesting there may be dysregulation 

occurring in both aseptic and septic TKR tissues (Figure 4.6). Additionally, Table 4.4 lists the top 

IPA network hits for each of the three networks. For proteomic analysis, a p-score above 21 is 

considered a good match [48]. Only the primary TKA network was able to make a match above 

this threshold. Based on the IPA analysis, both aseptic TKR and septic TKR networks show a lack 

of connectivity compared to primary TKA, which may prevent a reliable IPA network match 

(Table 4.4). 

 

A network centrality approach was also utilized to quantitatively assess which targets were 

close to (high radiality) or distant from (low radiality) the center of each of the networks. Radiality 

comparisons may reveal the most likely nodes contributing to the dysregulation observed in the 

IPA networks. Based on previous work in a rodent model of trauma [49], we expect that differences 

in nodes with low radiality between primary TKA response and aseptic or septic TKR responses 

may indicate the most likely causes of disruptions to normal signaling. In this study, low radiality 

outcomes were the most likely contributors to cell signaling dysregulation leading to chronic 

inflammation and infection. A significance threshold of the average radiality ± standard deviation 

was used to denote significant cytokine and phosphoprotein nodes (Tables 4.5 and 4.6). 

Differences existed in significant nodes across groups and between depths. 
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The primary TKA group represents the native response, as these tissues are not in contact 

with implants or infection that cause persistent inflammation [51,52]. In primary TKA, all 

significant nodes in the ATL had low radiality values, and all four were cytokines: IL-1α, IL-1β, 

IL-6, and IL-10. Within this network, these cytokines appear to be acting as regulatory molecules. 

IL-1α, IL-1β, and IL-6 are all pro-inflammatory cytokines vital for early inflammatory immune 

response [6,8]. The anti-inflammatory IL-10 is central for wound resolution [54]. In the RTL of 

primary TKA, nodes with significant low radiality values were p-HSP27, p-AKT, p-ERK1/2, IL-

1α, IL-1β, and IL-6 (Tables 4.5 and 4.6). This suggests that there is still a significant contribution 

of pro-inflammatory cytokines in healthy tissues spatially removed from the joint. p-HSP27, p-

AKT, and p-ERK1/2 have all been linked to early proliferative wound healing responses in trauma 

[55] and skin wounds [56]. Their low radiality outcomes suggested that these three 

phosphoproteins may be driving the tissue healing response. Additionally, in the RTL of primary 

TKA, seven phosphoproteins had significantly high radiality values (Table 4.6), suggesting that 

there is an organized wound healing response in tissues further away from the joint. 

 

The aseptic and septic TKR groups were compared to the primary TKA group to 

understand differences in radiality outcomes. In the aseptic ATL, nodes with significant low 

radiality outcomes were p-CREB, p-c-Jun, p-BAD, IL-6, IL-10, IL-12p70, and IL-13. Additionally, 

eight phosphoproteins and one cytokine had significant high radiality outcomes (Table 4.5). 

Overall, in the ATL of aseptic TKR, there appears to be a balance of regulated and dysregulated 

healing processes. In combination with the IPA network results, this suggested that dysregulation 

may be caused by reduced contributions for pro-inflammatory IL-1α and IL-1β and an increased 

role for anti-inflammatory IL-13 between primary TKA response and aseptic TKR response at the 
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joint (Figure 4.6). The pro-apoptotic actions of peripheral p-c-Jun and p-BAD [33,39], and 

inactivation of CREB [57] in aseptic TKR could also be driving these disruptions (Figures 4.6-

4.7). In the RTL of aseptic TKR, p-CREB, p-BAD, IL-10, IL-13, and IFN-γ gave significant low 

radiality outcomes (Table 4.6). The aseptic RTL tissues showed a shift to all significant nodes 

showing low radiality outcomes (Table 4.6). Compared to the primary RTL, there is a notable 

induction of anti-inflammatory cytokines IL-10, IL-13, and IFN-γ. Significance of p-CREB and 

p-BAD suggested these activated proteins may be promoting apoptosis [30,39] in presumably 

healthy aseptic tissues. Further, the coordinated healing response observed in primary RTL tissues 

is no longer present, as there were no significant high radiality outcomes in aseptic RTL (Table 

4.6). Even in the clinically “healthy” tissues for the aseptic group, there is a large amount of 

dysregulation present, and it appears to be primarily driven by these seven targets: p-c-Jun, p-

CREB, p-BAD, IL-10, IL-12p70, IL-13, and IFN-γ. 

 

In septic TKR, nodes with significant low radiality outcomes in the ATL were p-PTEN, 

IL-1α, IL-1β, IL-4, IL-6, IL-13, IFN-γ, and TNF-α. Notably, there were no significant high 

radiality outcomes (Table 4.5). While this may somewhat reflect the strong cytokine-dependent 

response observed in primary TKA, differences include increased contributions of anti-

inflammatory IL-4, IL-13, and IFN-γ, pro-inflammatory TNF-α, and pro-apoptotic p-PTEN in the 

septic TKR group. The ATL of septic TKR showed a notable induction of anti-inflammatory 

cytokines not observed in the primary TKA. In the septic RTL layer, IL-10, IL-13, IFN-γ, and 

TNF-α gave significant low radiality values. There were no significant outcomes with high 

radiality values in this network (Table 4.6). Additionally, there was no overlap in significant low 

radiality targets between primary TKA and septic TKR tissues at the RTL depth. This loss of 
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centrality for wound healing targets in the “healthy” septic TKR tissues reflects a disruption in 

normal response. 

 

There were some limitations to the study. A single surgeon collected all tissue samples for 

the cohort of patients involved. Treatment of PJI via debridement is a subjective assessment of 

tissue viability [28], so the delineation between “healthy” and “unhealthy” tissues may vary 

between surgeons. The results for the RTL depths of aseptic and septic TKR highlighted the 

disruptions still present in presumably healthy tissues removed from the joint, so a larger cohort 

of patients from different surgeons may aid future studies in analyzing these targets. Further, it is 

difficult to fully disentangle the inflammation present in native response from chronic 

inflammation and infection. The primary TKA group is expected to experience inflammation as a 

result of the surgery [58], which is why this study focused on outlining the differences between 

groups. These differences may not account for all inflammation occurring in the tissues, but the 

discrepancies between targets may help identify the dysregulation observed in aseptic and septic 

TKR. Differences in tissue composition (including bone, cartilage, and synovium) may also have 

played a role in introducing variability between cytokine and phosphoprotein levels; this study 

focused on including the most likely tissues taken from debridement, regardless of composition. 

Finally, the IPA analysis was only qualitatively useful in this case due to experimental constraints. 

While IPA can be used quantitatively for proteomics [59], the samples must be normalized to a 

control group. The primary TKA is not a true control, only a comparative group. In human subjects, 

we cannot ethically collect a true tissue control (i.e., healthy individuals with no inflammation 

present), which limited our ability to analyze via IPA. However, the qualitative comparison at the 
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joint still supported the network centrality analysis, and the IPA provided some confirmation of 

the roles of the targets involved. 

 

 Conclusion 

The acute intra- and extracellular responses to infection have been studied extensively, and 

these studies have provided valuable information for clinicians to develop diagnostics and 

therapeutics to combat these infections [50]. However, less is known about the dysregulation that 

occurs when inflammation and infections become chronic, which is the case in localized infections 

like PJI [12]. In this study, we aimed to define the impact of individual cytokines and 

phosphoproteins on chronic inflammation and infection in PJI using a network centrality parameter 

approach. Overall, network centrality analysis showed the native response in primary TKA tissues 

was dictated by a balance of pro- and anti-inflammatory cytokines. Tissues in the ATL were highly 

influenced by pro-inflammatory cytokines IL-1α, IL-1β, and IL-6 and anti-inflammatory IL-10. A 

variety of pro-inflammatory cytokines and wound healing phosphoproteins were central to the 

network in the RTL, and this response was reflective of normal tissue healing processes [8,30,43]. 

Deviations from this response were observed in both aseptic and septic TKR groups. In aseptic 

TKR tissues, a shift to increased peripheral roles for pro-apoptotic and anti-inflammatory targets 

was prevalent at both ATL and RTL tissue depths. In the septic ATL layer, pro-apoptotic p-PTEN 

and anti-inflammatory cytokines IL-4, IL-13, and IFN-γ showed significant losses of centrality 

compared to primary TKA. The high contributions of nodes with seemingly contradictory roles, 

combined with the loss of overall IPA network connectivity, highlights the dysregulation near the 

joint in septic TKR tissues. At the septic RTL depth, anti-inflammatory cytokines dominated the 

response, showing a hallmark absence of coordinated phosphoproteins linked to wound healing. 
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The radiality data as a whole suggested that disrupted signaling pathways are present for both 

aseptic and septic TKR, even in presumably “healthy” tissues. Targeting the proteins with 

significant radiality outcomes in chronic inflammation and infection may prove useful for 

developing more effective therapeutics, and future studies should focus on these proteins to 

promote tissue healing and infection resolution in PJI. 
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Chapter 5 
 

Conclusions and Future Directions: Translating Signal Transduction 

Research into Clinically-Relevant Tools 
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The work presented in this dissertation was aimed towards improving the understanding of 

chronic, localized infections through analysis of signal transduction pathways and represents one 

example of a basic research approach to a clinical problem, chronic infection. It began with an 

investigation of a clinical cohort to identify biomarkers of chronic PJI at two spatial gradients, then 

moved onto further probing of upstream and downstream effects of infection using an in vivo 

model. Finally, it culminated with validation of network centrality radiality analysis of signal 

mediators to understand drivers of disrupted responses observed in the clinical and in vivo studies. 

It represented a novel approach to prospective, tissue-level investigations of cell signaling changes 

in response to inflammatory stimuli, and the analyses demonstrated that distinct inflammatory 

immune and wound healing profiles exist in response to implants and chronic implant infections 

compared to native tissues. Based on this work, it was clear that both implants and chronic joint 

infections provoke cell signaling changes that negatively impact immune and wound healing 

responses on a tissue level.  

 

This research laid a foundation to better understand the tissue-level response to chronic 

infection, but there is more work to be done before it can be translated into the clinic. The final 

chapter of this dissertation will discuss important next steps for this work and implications for 

similar investigations. This work was the initial attempt to investigate the implications of tissue-

level disruptions caused by chronic infection (e.g., tissue viability), and the use of ‘omics 

technologies and newly emerging analytical techniques promise exciting progress in follow-up 

investigations of these signal transduction networks. The success in translation of this signal 

transduction work into the clinic will rely on comprehensive analyses of mediators involved, use 

of data integration techniques, and compatibility with expeditious results and interpretation. 
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 Localized vs. Systemic Investigations of Clinical Pathologies  

 An important consideration for signal transduction studies is whether to focus efforts on the 

localized response in individual organs or tissues or the systemic response in blood and other 

biological samples. The research goals of the study dictate the correct choice, and a variety of 

studies have investigated relationships between localized and systemic responses in disease states. 

Systemic measurements can prove beneficial for a variety of non-invasive applications, such as 

point-of-care diagnostics, in which samples can easily be acquired from blood or other fluids with 

minimal processing, providing a rapid means of obtaining clinical information. Studies concerned 

with infection or sepsis have concluded that both local and systemic information can be useful, 

and immune-related factors- such as cytokines- have been utilized as biomarkers on either level. 

Monitoring circulating levels of immune-related cytokines has proven useful for a range of 

clinically-relevant applications, including determining the presence of infection [1, 2], monitoring 

risk and severity of sepsis [3], and differentiating between types of infections [4, 5]. Systemic 

levels of immune mediators have also been pursued for other pathological conditions. Serum 

biomarkers have been identified in cancers to monitor drug efficacy [6] or predict adverse 

outcomes [7]. Concentrations of extracellular matrix proteins in serum have shown utility for 

monitoring tissue healing in chronic obstructive pulmonary disorder (COPD) [8]. Even tears [9] 

and saliva [10] have been used as mediums to better understand the immune response to stress and 

disease. Most of these systemic measurements are best suited for monitoring immune response 

over time or predicting adverse outcomes.  

 

 Localized investigations can highlight the ability of specific organs or tissue types to counter 

immune-related insults like infection, and these responses may differ with proximity, as 
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demonstrated in Chapters 2 and 3. Different tissues are composed of different cell types, and 

variability of responses may arise due to tissue composition, further highlighting the importance 

of considering a localized perspective for signal transduction research. Several studies have 

demonstrated differences between local and systemic immune environments [11], and localized 

profiles of immune mediators have been investigated in models of infection to understand the 

tissue-specific response [12, 13], including the work presented in this dissertation. Localized 

investigations have also been pursued for other conditions, and Hauser et al. demonstrated that the 

immune microenvironment differs between localized and circulating levels in response to human 

fracture and soft-tissue trauma [14]. Similarly, Currie et al. characterized the spatial gradients of 

immune and wound healing factors in a traumatic injury model in rodents to show that proximity 

dictates the response [15, 16]. Differences in localized and systemic profiles were investigated in 

organ failure with similar conclusions, that these localized perspectives offered tissue-specific 

insights relevant to disease management [17]. These studies illustrated that these responses might 

vary considerably depending on tissue type, and a localized approach is necessary to understand 

the specific responses of tissues and the effects on signal transduction cascades that arise following 

these insults. The spatial investigation conducted in this work demonstrated that spatial gradients 

exist in the tissue-level response to implants and infection, and tissues closer to the joint showed 

higher concentrations of cytokines and higher degrees of protein phosphorylation, so proximity is 

an important factor in the immune and wound healing responses. In the future, a comparison of 

serum would inform clinicians of systemic-level inflammation, which is likely higher in patients 

with aseptic and septic joints and could have negative implications for overall health. 

Understanding the systemic effects of joint implants and joint infections is an important 

consideration for Orthopaedists, but has not yet been addressed.  
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 Depending on an individual study’s intended outcomes, different spatial approaches may be 

suitable. Systemic responses are beneficial for biomarker identification and non-invasive 

monitoring of disease states, but studying localized responses in individual tissues or organs will 

be critical to making clinical assessments of tissue health (e.g., debridement) more objective. A 

localized approach was essential in this work to create a network of tissue-level responses to best 

understand the response to infection, and similar studies may benefit when aiming to identify 

healthy versus non-healthy tissues in response to stress, insults, and other diseases. 

 

 Integrating Multi-‘Omics Data to Approach Clinical Problems  

Probing biological networks on a tissue level in response to infection elucidated the 

interactions of highly interconnected targets, resulting in improved knowledge of the drivers of 

signaling and the potential points of disruption. In Chapter 4, changes in networks resulting from 

implant and infection were analyzed; Using network centrality radiality, it became possible to 

identify which targets were likely driving the dysregulated response observed in these 

inflammatory states. A thorough investigation of biological networks using mathematical 

modeling is a relatively new analysis strategy in developing improved diagnostic and therapeutics 

for many diseases [18, 19]. These network approaches often involve analyzing many targets 

simultaneously, and these data can be acquired from multiple ‘omics platforms. This creates a 

situation in which there are many more variables being tested than the number of replicates in the 

study, which has introduced new challenges for interpretation. 

 

Researchers must carefully consider what type of data to acquire and how best to integrate 

different data sources to support their hypothesis. To fully understand a disease or insult, it may 
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be necessary to investigate genetic factors, bioenergetics, immune response, or other elements. 

While acquiring more data is often beneficial, it has become essential to develop new methods to 

deal with these large data sets [20-22]. Translating multi-‘omics data into clinically-relevant 

information is the next challenge in identifying markers of tissue health in chronic infection, and 

these strategies could be applied to other investigations of cell signaling disruptions relevant to 

disease. While the initial research into tissue health in chronic infection was pursued in Chapter 4 

using network centrality, implementing other ‘omics techniques in the future- like metabolomics 

and transcriptomics- could better inform the distinction between healthy and non-healthy tissue, 

which is essential to develop useful clinical tools.  

 

Investigating metabolomic profiles related to implants and chronic infection is the logical 

next step towards improving tissue-level treatment. The cytokine and phosphoprotein data showed 

shifts in tissue responses, but they did not fully explain the implications for tissue health. Cellular 

metabolism changes are intimately linked to inflammatory response [30], and altered metabolite 

profiles have been observed in response to inflammatory stimuli [31]. Studies of polar metabolites 

have been used in literature to identify specific disruptions for a variety of pathological conditions 

[32], as many polar metabolites play key roles in growth, development, and conversion of nutrients. 

Targeting changes in these compounds could enlighten the distinct effects of chronic infection on 

these wound healing-related processes. Metabolomic analysis coupled to previously collected 

proteomic data on cytokines and phosphoproteins provides a means for pinpointing the specific 

infection-related disruptions between aseptic and septic joints. Based on literature investigations 

of skeletal muscle in other disease states, the prevailing hypothesis is that tissues responding to 

implants and infection will show lower levels of important polar metabolites related to energy 
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consumption (e.g., glucose, lactose). This shift will reflect the altered cellular states resulting from 

chronic exposure to inflammatory stimuli. Long-term metabolic health of these tissues is of the 

utmost importance to surgeons tasked with removing unhealthy and non-viable tissues. 

 

 New Technologies for Rapid Analysis  

 While many techniques are available to acquire data through multi-‘omics platforms, 

clinical relevance is dependent on ease of acquisition and interpretation. Biological network 

analysis of signal transduction networks is a complicated field, and researchers must keep this in 

mind when seeking to translate their findings into clinically-relevant information. The work 

presented in Chapters 2-4 heavily relied on multiplexed ELISA for data acquisition, but these 

assays required 4-20 hours for data acquisition alone. While the specificity of ELISA techniques 

was beneficial to lay the groundwork to understand targets of interest, this approach would not be 

appropriate for intra-operative use to treat these chronic infections, so future research should 

investigate the use of rapid analytical techniques to achieve this goal. 

 

Advances in the field, such as rapid ELISA platforms [23, 24], miniature field-applicable 

mass spectrometry [25], and other point-of-care testing have opened doors to advance the science 

of biomarker detection [26, 27],  and these platforms will prove essential to creating clinically-

relevant means of analysis. While basic science investigations, like the work presented here, can 

initially be used to identify markers of interest for disease, the ultimate goal is to provide a rapid, 

sensitive platform for acquisition with results that can be easily interpreted in the clinic. Future 

work to understand tissue viability in chronic infection or other disease states will benefit from 
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utilizing these newly emerging analytical tools to provide this information quickly. Shotgun 

metagenomic sequencing has been explored for fast identification of bacterial infection in synovial 

fluids in infection and showed faster results than traditional ELISAs [28]. Ultrafast qRT-PCR gene 

profiling coupled to machine learning algorithms has also demonstrated utility in establishing 

biomarkers of tissue health, and a study by Fillerova et al. represents one of the few attempts to 

characterize infection networks directly on a tissue level [29]. While this study included a smaller 

cohort, researchers achieved 94.5% sensitivity and 95.7% specificity for infection diagnosis using 

their algorithm and could provide diagnostic results within 45 minutes of sample collection.  

 

The future of signal transduction-focused research to understand chronic inflammation and 

infection will benefit from comparing local vs. systemic measurements and incorporating multi-

‘omics strategies to understand tissue health. Enrolling larger cohorts to include patients from 

multiple surgeons is the next step to tackling these problems, allowing a broader spectrum of 

expertise to delineate between healthy and unhealthy tissues and providing more tissue samples 

dedicated to other ‘omics platforms. Additional animal studies should be performed to investigate 

the temporal progression of immune and wound healing dysfunctions via transcriptomic and 

metabolomic analyses, which could provide insight into the transition from acute to chronic 

inflammatory states and enhance understanding of overall tissue viability relevant to surgical 

debridement. Rapid analytical platforms will be critical in developing clinical tools from the 

biomarkers identified in these studies to combat chronic inflammation and infection in the future. 

Approaching these clinically-relevant problems through signal transduction network investigation 

is key to improving current treatment methods, and the strategies utilized in these studies could be 

applied to other disease states. 
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APPENDIX A: CHAPTER 2 SUPPLEMENTARY FIGURES 

Table A. 1. Average cytokine concentrations in the adjacent tissue layer (ATL). Concentrations in 

the LG, F, T, and PC individual tissue locations were averaged to represent the response in the 

ATL. Standard error of the mean (SEM) and number of patients in each of the primary TKA, 

aseptic TKR, and septic TKR groups are also reported. 

 
  Primary TKA Aseptic TKR Septic TKR 

  ATL Avg SEM N ATL Avg SEM N ATL Avg SEM N 

IL-1α 1.26 0.34 6 14.25 3.96 5 38.70 8.75 6 

IL-1β 1.77 0.47 6 5.78 1.72 5 51.87 23.97 6 

IL-6 10.53 2.87 6 33.11 13.90 5 763.08 401.51 6 

IL-8 8.23 2.70 6 101.01 62.20 5 648.39 160.55 6 

MIP-1α 7.35 2.76 6 29.08 9.86 5 105.74 43.13 6 

MIP-1β 24.12 5.36 6 51.66 20.73 5 130.03 49.93 6 

MCP-1 151.55 27.13 6 359.90 174.07 5 475.19 195.67 6 

IL-4 7.48 1.59 6 21.04 3.78 5 28.37 5.03 6 

IL-10 0.89 0.17 6 8.38 0.23 5 5.71 1.38 6 

IL-12p70 6.57 1.62 6 33.21 10.88 5 21.51 5.74 6 

IL-13 1.98 0.42 6 10.14 2.59 5 9.52 2.65 6 

IL-17A 6.04 2.43 6 17.37 3.85 5 20.16 2.80 6 

TNF-α 18.68 3.44 6 79.12 20.42 5 93.12 16.60 6 

 

Table A. 2. Average cytokine concentrations in the radial tissue layer (RTL). Concentrations in 

the LG, F, and T individual tissue locations were averaged to represent the response in the RTL. 

Standard error of the mean (SEM) and number of patients in each of the primary TKA, aseptic 

TKR, and septic TKR groups are also reported. 

 
  Primary TKA Aseptic TKR Septic TKR 

  RTL Avg SEM N RTL Avg SEM N RTL Avg SEM N 

IL-1α 0.89 0.25 6 8.23 1.94 5 16.15 3.29 6 

IL-1β 1.80 0.47 6 5.10 0.96 5 13.41 5.29 6 

IL-6 6.10 1.35 6 11.58 5.31 5 288.59 205.91 6 

IL-8 6.06 1.91 6 46.37 21.58 5 350.06 188.02 6 

MIP-1α 8.76 3.62 6 23.76 13.68 5 42.20 17.64 6 

MIP-1β 17.23 3.50 6 36.52 19.98 5 79.97 27.68 6 

MCP-1 59.79 11.09 6 126.70 51.58 5 538.87 223.47 6 

IL-4 5.96 1.60 6 17.66 2.44 5 19.60 3.40 6 

IL-10 0.88 0.19 6 8.50 0.16 5 7.78 1.09 6 

IL-12p70 4.10 1.18 6 24.55 7.13 5 19.66 6.39 6 

IL-13 1.61 0.31 6 9.10 2.43 5 9.64 2.06 6 

IL-17A 4.37 1.75 6 14.90 3.88 5 17.31 2.71 6 

TNF-α 14.27 3.99 6 61.69 14.55 5 78.48 16.21 6 
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CYTOKINE CONCENTRATIONS AT INDIVIDUAL LOCATION- INFECTION-

SPECIFIC CYTOKINES 
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Figure A. 1. Cytokine profiles in localized tissues in infection-specific inflammation. Average 

cytokine concentration at individual tissue locations are shown for all groups. Two-way ANOVAs 

with Bonferroni’s post-test were conducted to test for significant differences between groups at 

each tissue depth (p<0.05). Significant differences between groups at a particular location are 

marked as: P denotes significant difference from primary TKA (N=6); A denotes significant 

difference from aseptic TKR (N=5); S denotes significant difference from septic TKR (N=6); all 

symbols denote significance at the p<0.05 level. 
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CYTOKINE CONCENTRATIONS AT INDIVIDUAL LOCATION- IMPLANT-

RELATED CYTOKINES 
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Figure A. 2. Cytokine profiles in localized tissues in implant-related inflammation. Average 

cytokine concentration at individual tissue locations are shown for all groups. Two-way ANOVAs 

with Bonferroni’s post-test were conducted to test for significant differences between groups at 

each tissue depth (p<0.05). Significant differences between groups at a particular location are 

marked as: P denotes significant difference from primary TKA (N=6); A denotes significant 

difference from aseptic TKR (N=5); S denotes significant difference from septic TKR (N=6); all 

symbols denote significance at the p<0.05 level.  
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CYTOKINE CALIBRATION CURVES 
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Figure A. 3. Cytokine calibration curves for human inflammatory cytokines. Calibration curves 

for cytokines were calculated using a four-parameter logistic (4PL) model in Bio-Plex Manager 

4.1.1. Five calibration standards were used for each cytokine, and averages of duplicates are shown 

with error bars denoting 2 standard deviations from the mean. Each graph title additionally shows 

a number that indicates the bead region for that target in the Bio-Plex system.  
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APPENDIX B: CHAPTER 3 SUPPLEMENTARY FIGURES 

Table B. 1. Cytokine concentrations for Sham, Implant Only, and Inf+Implant groups. Values are expressed as nanograms of cytokine 

per gram of tissue; average values ± SEM are listed. Note: all cytokines had associated error, but error is rounded to two decimal places. 

Significant comparisons (p<0.05) between locations for each cytokine within each group are denoted with letters; contralateral knee: A; 

operative leg proximal: B; operative knee: C; operative leg distal: D. For ease of reader, the significant comparisons between locations 

(p<0.05) are simply marked via superscript letters to denote which locations are different. All comparisons were done via two-way 

ANOVA followed by Bonferroni’s post-test. 

 

 
Sham Implant Only Inf+Implant 

Contra Op Prox Op Knee Op Dist Contra Op Prox Op Knee Op Dist Contra Op Prox Op Knee Op Dist 

IL-1α 
0.07± 

0.03 

0.30± 

0.13 

0.22± 

0.09 

0.26± 

0.03 

0.50± 

0.09C,D 

0.54± 

0.17C 

2.07± 

0.23A,B 

1.58± 

0.27A 

0.26± 

0.05C,D 

0.77± 

0.30D 

2.09± 

0.36A,B 

2.54± 

1.26A,B 

IL-1β 
0.02± 

0.00 

0.11± 

0.05 

0.18± 

0.00 

0.20± 

0.06 

0.52± 

0.10C 

0.72± 

0.18C,D 

6.19± 

0.98A,B 

1.77± 

0.21B 

0.80± 

0.28C 

1.09± 

0.53C,D 

10.08± 

0.10A,B 

2.03± 

0.33B 

IL-4 
0.11± 

0.05 

0.37± 

0.08 

0.07± 

0.04 

0.37± 

0.12 

1.35± 

0.04C 

0.82± 

0.36C 

6.93± 

2.0 A,B 

3.77± 

1.75 

1.56± 

0.58C 

0.79± 

0.68C,D 

13.15± 

1.98A,B 

1.69± 

1.64B 

IL-5 
0.57± 

0.01 

0.07± 

0.04 

0.45± 

0.34 

0.14± 

0.00 

1.77± 

0.32C,D 

1.78± 

0.34C,D 

5.38± 

0.70A,B 

4.93± 

0.89A,B 

1.13± 

0.29C 

1.62± 

1.07C 

5.79± 

0.70A,B,D 

1.54± 

0.35C 

IL-6 
0.90± 

0.38 

0.62± 

0.00 

0.29± 

0.04 

0.94± 

0.31 

1.82± 

0.98 

1.20± 

0.00 

7.71± 

1.27 

7.90± 

2.81 

1.17± 

0.16C 

0.73± 

0.20C 

17.27± 

6.70A,B,D 

4.15± 

2.65C 

IL-10 
0.18± 

0.12 

0.55± 

0.39 

0.41± 

0.01 

0.19± 

0.12 

1.73± 

0.45C,D 

1.37± 

0.32C,D 

6.89± 

1.24A,B 

5.71± 

1.35A,B 

1.17± 

0.04C 

1.33± 

0.66C 

6.43± 

0.07A,B,D 

1.30± 

0.80C 

IL-12p70 
0.98± 

0.27 

1.58± 

0.43 

1.58± 

0.39 

1.93± 

0.51 

5.38± 

0.95C,D 

5.60± 

1.25C,D 

25.51± 

2.96A,B 

17.37± 

4.49A,B 

5.58± 

0.62C 

3.93± 

2.81C 

18.14± 

5.08A,B 

6.98± 

1.38 

IL-13 
0.81± 

0.30 

0.26± 

0.12 

0.39± 

0.10 

0.35± 

0.00 

2.03± 

0.74C 

1.32± 

0.27C,D 

6.58± 

1.56A,B 

4.89± 

1.11B 

1.50± 

0.28C 

1.22± 

0.30C 

6.20± 

0.95A,B,C 

1.47± 

0.03C 

GM-CSF 
0.17± 

0.06 

0.23± 

0.02 

0.32± 

0.09 

0.64± 

0.15 

1.08± 

0.29C 

0.52± 

0.22C 

6.65± 

1.23A,B,D 

2.56± 

0.98C 

1.09± 

0.26C 

0.86± 

0.66C 

5.85± 

0.47A,B,D 

0.90± 

0.64C 

IFN- 
0.49± 

0.24 

0.50± 

0.09 

0.92± 

0.31 

0.76± 

0.18 

3.87± 

0.78C 

6.40± 

2.74 

10.97± 

3.04A 

9.14± 

1.83 

2.84± 

0.23C 

2.83± 

1.78D 

12.57± 

3.13A 

5.04± 

1.73B 

TNF-α 
0.85± 

0.36 

1.87± 

0.51 

1.53± 

0.01 

3.96± 

0.85 

4.66± 

1.16 

3.08± 

0.70C 

11.11± 

3.03B 

7.41± 

2.3 

5.78± 

2.56 

4.97± 

4.21 

9.79± 

3.35 

6.02± 

2.42 
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X-RAY IMAGES OF RODENTS AT 21 DAYS POST-SURGERY 

 

Methods 

Grading and Analysis of X-Rays 

X-rays were taken on the day of operation as well as 21 days post-operation to compare joint 

conditions. X-rays at each time point were graded using methods established by Aktekin, et al. to 

evaluate the following parameters: periosteal reaction, diaphyseal widening, osteolysis, bone 

formation, sequestrum, joint effusion, and swelling. Results for each of the three groups: Sham, 

Implant Only, and Inf+Implant are displayed in Table S2. Representative x-ray images for each 

group are displayed, labeled with group. X-rays are shown at 21 days post-operation, and a red 

arrow points to the operative right knee joint. For some animals, staples can be seen on the right 

hind limb. For Implant Only and Inf+Implant groups, K-wire implant is denoted at the red arrow. 

X-Ray Analysis, Grading, and Results 

Table B. 2. X-Ray Grading Scores for Sham (N=6), Implant Only (N=6), and Inf+Implant (N=6) 

Groups at Post-Operative Day 0 (POD-0) and POD-21. X-rays were graded according to methods 

established by Aktekin, et al.  

 SHAM IMPLANT ONLY INF+IMPLANT 
 POD 0 POD 21 POD 0 POD 21 POD 0 POD 21 

Periosteal reaction 0.04167 0.08333 0.04167 0.08333 0 1.08333 

Diaphyseal widening 0 0 0 0.125 0 0.875 

Osteolysis 0.08333 0.08333 0.04167 0.20833 0 1.20833 

Bone formation 0 0 0 0.04167 0 0.75 

Sequestrum 0 0 0 0 0 0.16667 

Joint effusion 0 0 0 0 0 0.04167 

Swelling 0 0 0 0 0 0 
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X-Ray Images of Sham, Implant Only, and Inf+Implant Groups 

Sham Group X-rays at 21-day Time Point 

 

Figure B. 1. X-ray images of Sham group rats at 21 days post-surgery. Radiographs are shown of 

animals in the sham group. In some animals, staples can be seen. Red arrows indicate operative 

knee.  

 

Implant Only Group X-rays at 21-day Time Point 

 

Figure B. 2. X-ray images of Impant Only group rats at 21 days post-surgery. Radiographs are 

shown of animals in the Implant Only group. In some animals, staples can be seen. Red arrows 

indicate operative knee.  
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Inf+Implant Only Group X-rays at 21-day Time Point 

 

 
 

Figure B. 3. X-ray images of Inf+Impant group rats at 21 days post-surgery. Radiographs are 

shown of animals in the Inf+Implant group. In some animals, staples can be seen. Red arrows 

indicate operative knee.  
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CYTOKINE CONCENTRATIONS IN SERUM OF RODENTS AT 21 DAYS POST-

OPERATION 
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Figure B. 4. Cytokine profiles in localized tissues in infection-specific inflammation. Average 

cytokine concentration in the serum of rats at the 21 day time point are shown for Sham, Implant 

Only, and Inf+Implant groups. Two-way ANOVAs with Bonferroni’s post-test were conducted to 

test for significant differences between groups, but no significant differences were observed at 

p<0.05. 
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CYTOKINE CALIBRATION CURVES 
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Figure B. 5. Cytokine calibration curves for rodent inflammatory cytokines. Calibration curves 

for cytokines were calculated using a four-parameter logistic (4PL) model in Bio-Plex Manager 

4.1.1. Five calibration standards were used for each cytokine, and averages of duplicates are shown 

with error bars denoting 2 standard deviations from the mean. Each graph title additionally shows 

a number that indicates the bead region for that target in the Bio-Plex system.  
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