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ABSTRACT 

 

An Analysis of Coordinated Responding 

 

Brian Katz 

 

Experimental analyses of coordinated responding (i.e., cooperation) have been derived from a 

procedure described by Skinner (1962) in which reinforcers were delivered to a pair of subjects 

(a dyad) if both responded within a short interval, thus satisfying a mutual-reinforcement 

contingency. Although it has been suggested that this contingency enhances rates of temporally 

coordinated responding, limitations of past experiments have raised questions concerning this 

conclusion. The present experiments assessed three of those limitations by holding the schedule 

of reinforcement (Experiment 1: fixed-ratio 1; Experiment 2; variable-interval 20 s) constant (1) 

across phases and (2) between dyad members, and (3) varying the number of keys across which 

responses could be coordinated. Greater percentages of coordinated responding were observed 

under mutual- than under independent-reinforcement phases in most conditions. The one 

exception during the one-key condition of Experiment 1 appeared to be a consequence of 

variability during the independent-reinforcement phase. Furthermore, coordination percentages 

decreased systematically with increasing response options. The present results thus confirm that 

mutual-reinforcement contingencies induce higher rates of temporally coordinated responding 

than independent-reinforcement contingencies. The results further indicate that the effects of 

mutual-reinforcement contingences can be influenced by the environmental context in which 

those contingencies operate. 

 

Keywords: social behavior, cooperation, coordination, pigeons 
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An Analysis of Coordinated Responding 

As a social species, interactions between individuals are fundamental to human life. In 

fact, given how ubiquitous group contingencies are in social settings, they may be greater 

determinants of behavior in such contexts than individual contingencies. Thus, an understanding 

of the antecedents and consequences that govern social interaction is necessary for a 

comprehensive experimental analysis of human behavior and an understanding of why people 

behave as they do (Skinner, 1953). 

One such class of social behavior that has been subjected to experimental analysis is 

cooperation. Colloquially, cooperation describes the behavior of two or more organisms 

responding together to accomplish some task and achieve some goal. Although this is sufficient 

for everyday discourse, defining behavior in the context of future events is incompatible with a 

functional analysis of behavior governed by the identification of antecedents and past 

consequences. To this end, it may prove useful to pursue an experimental analysis of coordinated 

responding rather than cooperation. 

Experimental analyses of coordinated responding have been conducted using procedures 

in which reinforcers are distributed equally to a pair of co-actors, provided that their behavior is 

synchronized (Hake & Vukelich, 1972, 1973). Three limitations, however, have impeded 

analyses of the coordinated behavior produced under these procedures. Changes in multiple 

variables across phases of the experiments, differences in the schedule functionally in place 

between pairs of cooperating subjects, and the absence of requirements for spatial coordination 

all have raised questions regarding whether functional control of coordinated responding has 

been demonstrated conclusively. Furthermore, coordinated responding predominantly has been 

studied under ratio schedules of reinforcement, with comparatively little attention given to 



  2 
 

interval schedules. Demonstrating functional control of coordinated responding under a wider 

range of conditions would attest to its generality. The following literature review considers these 

limitations of previous procedures in turn and then is followed by two experiments designed to 

address the documented procedural limitations and explore coordinated responding under 

different schedules of reinforcement. 

Literature Review 

From Cooperation to Coordination 

Experimental analyses of cooperation have involved procedures in which, “(1) …the 

reinforcers of both individuals are at least in part dependent on the responses of the other 

individual, and (2) …the procedure allows such responses, designated as cooperative responses, 

to result in an equitable division of responses and reinforcers” (Hake & Vukelich, 1972, p. 333). 

Hake and Vukelich (1972) further stated that individual instances of cooperation need not be 

quid pro quo or reciprocal (i.e., include a comparable allocation of responses and reinforcers). 

Instead, it is only over an extended time frame in which several opportunities to cooperate occur 

that the distribution of responses and reinforcers must be equitable across cooperating co-actors. 

Therefore, cooperation may be defined as responses from two or more co-actors that together 

produce reinforcers, with the stipulation that these responses and reinforcers are distributed 

equitably over an undefined but extended time frame. 

Although this definition provides a useful starting point for an experimental analysis of 

cooperation, it suffers from two shortcomings. First, as outlined by Hake and Vukelich (1972), to 

constitute cooperation the responses made and reinforcers earned by two or more organisms 

eventually must be equal. This then raises the question of what to call situations in which 

responses, reinforcers, or both never are equated. According to Hake and Vukelich’s definition, 
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two organisms that either earned different numbers of reinforcers for the same number of 

responses or performed different numbers of responses for the same number of reinforcers would 

not have cooperated. Cooperation can be said to have occurred only once distributions of 

responses and reinforcers across co-actors have been equated at a later point in time (thereby 

ensuring reciprocity). The stipulation that cooperation only may occur when responses and 

reinforcers are distributed perfectly equitably over time is restrictive, and eliminates from 

consideration situations in which, although reciprocity never is obtained, responses from two 

organisms still are required for reinforcement. 

The second shortcoming stems from the use of the word “cooperation” as the label for 

this class of joint behavior by two or more organisms. The teleological, lay definition of 

cooperation given above is laden with intention, and therefore is at odds with a functional 

analysis of behavior governed by the identification of antecedents and consequences.  

It thus may prove fruitful to replace cooperation with a different, not goal-oriented, term. 

Coordination may serve as an appropriate replacement given that it simply describes what is 

occurring without asserting a reason. Were coordination to be adopted, attention would be 

shifted from an experimental analysis of cooperation to one of inter-organism coordinated 

responding (hereafter referred to as coordinated responding), which in turn is defined as two or 

more responses, each from a different organism, that together produce reinforcers for both co-

actors. 

Early Coordination Research 

With a working definition of coordination, it is possible for the class of behavior thus 

defined to be measured and subjected to empirical study. One of the earliest behavior-analytic 

assessments of coordinated responding was a demonstration by Skinner (1962). Pairs of pigeons 
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(hereafter referred to as dyads) each were given access to three vertically mounted response 

keys. Reinforcers were delivered to both dyad members whenever both responded on a 

correspondingly positioned pair of keys within 100 ms of one another. If responses from dyad 

members were directed to different pairs of keys or occurred more than 100 ms apart, then 

reinforcers were not delivered. 

Skinner (1962) therefore enacted a mutual-reinforcement contingency (Tan & 

Hackenberg, 2016) with a fixed-ratio (FR) 1 schedule. A mutual-reinforcement contingency 

specifies that only temporally coordinated responses from dyad members can be followed by the 

delivery of a reinforcer. Temporally coordinated responses are defined as pairs of alternating 

responses (i.e., one from each dyad member) that occur within a short time of one another. Thus, 

only pairs of responses that meet the criteria for another active schedule are reinforced. For 

instance, if a 500-ms mutual-reinforcement contingency were implemented along with a fixed-

interval (FI) schedule, a reinforcer would only be delivered if, after the interval elapsed, both 

subjects responded within 500 ms of each other. 

 Using variations of this procedure, mutual-reinforcement contingencies have been 

suggested to establish temporally coordinated responding (e.g., de Carvalho et al., 2018, 2019, 

2020; Łopuch & Popik, 2011; Tan & Hackenberg, 2016). For instance, Łopuch and Popik (2011) 

reinforced pairs of nose pokes by rat dyads that satisfied a 2000-ms mutual-reinforcement 

contingency (i.e., two responses, one from each dyad member, must occur within 2000 ms of one 

another) according to an FR 1 schedule. With these two contingencies in effect, coordinated 

responding was established and maintained across a series of conditions in which either an 

opaque or mesh barrier was inserted into the chamber to separate the subjects during the 

coordinated task. Coordination ratios (the ratio of pairs of responses that satisfied the mutual-
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reinforcement contingency to all other responses during a session) were lowest when the opaque 

barrier was in place and highest when no barrier separated the dyad members. The authors 

concluded that social contact potentiated coordinated responding. 

Functional Control of Coordination 

Although it appears that mutual-reinforcement contingencies may induce coordinated 

responding, functional control of coordinated responding by such contingencies has not been 

demonstrated unequivocally. Skinner (1962) claimed that the apparatus and contingencies 

previously described “sufficed to build cooperative behavior without further attention [once dyad 

members were paired]”, but did not report empirical findings (i.e., coordination ratios) by which 

to measure the amount of coordination observed. Furthermore, behavior resulting from the 

described conditions was not compared with that from a control phase under which a mutual-

reinforcement contingency was not present. Similarly, Łopuch and Popik (2011) also did not 

include a control phase in which the mutual-reinforcement contingency was suspended. Thus, 

both experimenters failed to show that the presence of a mutual-reinforcement contingency was 

the sole cause of the observed coordinated responding. Instead, it is possible that what appeared 

to be coordinated responding was, in fact, a consequence of the incidental synchronization of 

each dyad member’s individual response patterns under the same FR 1 schedule of 

reinforcement. This phenomenon, termed “byproduct mutualism,” previously has been proposed 

as an explanation for responding that, at first glance, appears to be coordinated (Chalmeau et al., 

1997; Visalberghi et al., 2000). 

 To determine if mutual-reinforcement contingencies truly induce coordinated responding 

as opposed to byproduct mutualism, Tan and Hackenberg (2016) investigated coordinated 

responding in rats in both the presence and absence of a mutual-reinforcement contingency using 
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an ABACA reversal design. In the A phase, both an FR 1 schedule and a 500-ms mutual-

reinforcement contingency were in effect. Thus, only pairs of temporally coordinated responses 

counted towards satisfying the requirements of the FR 1 schedule. Conversely, in the B and C 

phases the mutual-reinforcement contingency was removed and reinforcers were delivered 

simultaneously to both dyad members independently of temporally coordinated responding 

according to either a variable-time (VT) or variable-interval (VI) schedule, respectively. To 

ensure that reinforcement rates did not change across phases, the intervals for each VT and VI 

schedule were yoked to the inter-reinforcer intervals (IRIs) of the preceding A phases. 

 Comparisons across phases revealed that coordination ratios were significantly larger in 

the A phase. Furthermore, alternating inter-response times (IRT; IRTs started by one dyad 

member and ended by another) shorter than 500 ms primarily occurred when the mutual-

reinforcement contingency was in effect. Thus, Tan and Hackenberg (2016) concluded that 

coordinated responding was under the control of the mutual-reinforcement contingency. 

 Such control also was suggested when temporally coordinated responses were reinforced 

according to a schedule of intermittent reinforcement (de Carvalho et al., 2018). In a mutual-

reinforcement (A) phase, a 500-ms mutual-reinforcement contingency was enacted along with an 

FR 6 schedule of reinforcement. Conversely, in a yoked control (B) phase, a VI schedule with 

intervals yoked to the IRIs of the preceding A phase was enacted. As with Tan and Hackenberg 

(2016), coordination ratios were significantly larger in the A phases when the mutual-

reinforcement contingency was in effect. Thus, de Carvalho et al. (2018) concluded that 

coordinated responding was sensitive to the prevailing contingencies of reinforcement. 

Limitations of Prior Designs 
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Based on the findings of Tan and Hackenberg (2016) and de Carvalho et al. (2018), 

mutual-reinforcement contingencies may serve as a promising avenue for an experimental 

analysis of interorganism coordination. Three methodological aspects of their procedures, 

however, raise questions regarding whether conclusions of functional control are sound. These 

procedural limitations are examined further in the following sections. 

Global Changes Across Phases 

As described previously, Tan and Hackenberg (2016) delivered reinforcers according to 

an FR 1 schedule in their mutual-reinforcement phase, and either a VT or VI schedule in the two 

yoked control phases. Similarly, de Carvalho et al. (2018) reinforced temporally coordinated 

responses according to an FR 6 schedule in the mutual-reinforcement phase, and reinforced 

responses independently of coordination according to a VI schedule during the yoked control 

phase. The use of either a yoked VT or yoked VI schedule during these control phases equated 

reinforcement rates to those of the mutual-reinforcement phases, ensuring that changes in 

coordinated responding could not be attributed to changes in reinforcement rate across phases. 

Given that the reinforcement schedule changed across phases however, the differences in 

coordination ratios cannot be taken as definitive evidence of changes in coordinated responding. 

Instead, the discrepancies may have been, at least in part, a consequence of the shift in the 

schedule of reinforcement, as different schedules of reinforcement may engender different levels 

of coordinated responding. In a subsequent experiment, de Carvalho et al. (2018) established a 

500-ms mutual-reinforcement contingency along with different schedules of reinforcement to 

determine if temporally coordinated responding is “a social behavioral unit under the functional 

control of contingencies of reinforcement” (p. 122). Across conditions, temporally coordinated 

responses were reinforced according to FR 1, FR 10, or variable-ratio (VR) 10 schedules of 
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reinforcement. Coordination ratios were significantly greater under intermittent schedules of 

reinforcement (i.e., VR 10 and FR 10) compared to continuous schedules of reinforcement (i.e., 

FR 1), and under VR schedules compared to FR schedules. 

Additionally, under the FR 10 schedule temporally coordinated responses followed a 

break-and-run pattern, whereas under the VR 10 schedule they occurred at a steady, constant 

rate. These patterns are similar to those observed when individual organisms respond under FR 

and VR schedules, respectively (Crossman et al., 1987, 1974; Felton & Lyon, 1966; Ferster & 

Skinner, 1957; Lattal, 1991; Powell, 1968). Thus, de Carvalho et al. (2018) concluded that 

schedules of reinforcement influence both individual and coordinated responding similarly, and 

that therefore patterns and rates of coordinated responding may vary across other schedules of 

reinforcement as well. 

Given these differences across schedules, the lower coordination ratios in the control 

phases of both Tan and Hackenberg (2016) and de Carvalho et al. (2018) may be the result of the 

shift to a VI schedule of reinforcement. As response rates of individual subjects are substantially 

lower on VI than VR schedules (Davison & McCarthy, 1988; Ferster & Skinner, 1957) and, as 

illustrated by de Carvalho et al., schedules of reinforcement influence both individual and 

coordinated responding similarly, the possibility that levels of coordinated responding are larger 

under ratio schedules than interval schedules cannot be ignored. Coordination under FR and VI 

schedules with yoked reinforcement rates was explored directly by de Carvalho et al. (2019), 

who reported consistently higher rates of coordinated responding under the former than the latter, 

and unsystematic differences in coordination ratios across the two schedules. Given these 

differences in coordinated performance, control over coordinated responding has not been 

established unequivocally. For such control to be demonstrated, both reinforcement rate and the 
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schedule of reinforcement would need to be held constant across phases while altering only the 

presence of the mutual reinforcement contingency.  

This was accomplished by de Carvalho et al. (2019), who reinforced responding 

according to the same VI schedule across mutual-reinforcement and independent-reinforcement 

control phases. Greater coordination ratios occurred during phases in which the mutual-

reinforcement contingency was in effect, which the authors argued supported their prior findings 

by demonstrating functional control of the mutual-reinforcement contingency over coordination. 

This design, however, like that of de Carvalho et al. (2018), included simultaneous changes in 

two variables across phases. During independent-reinforcement phases, reinforcers were 

delivered to both subjects simultaneously only after a response from each satisfied the 

programmed VI schedule. Although this ensured that, as in the mutual-reinforcement phase, both 

dyad members received reinforcers at the same rate, it also introduced unsignaled delays to 

reinforcement for one dyad member – whichever completed the VI schedule first – that varied in 

duration from trial to trial. Unsignaled delays also were characteristic of the mutual-

reinforcement phases, but those delays consistently were at most 0.5 s – the duration of the 

mutual-reinforcement contingency – which have been shown to increase response rates 

moderately when following VI schedules (Arbuckle & Lattal, 1988; Lattal & Ziegler, 1982; 

Richards, 1981; Sizemore & Lattal, 1978). Conversely, in the independent-reinforcement phase, 

the unsignaled delays could be longer and more variable. Given that delays greater than 0.5 s 

decrease response rates (Arbuckle & Lattal, 1988; Lattal, 2010; Richards, 1981; Sizemore & 

Lattal, 1978), it is possible that differences in delays to reinforcement across phases influenced 

the reported coordination ratios.  
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Therefore, control over coordinated responding has yet to be established conclusively as 

no comparisons exclusively between phases with and without a mutual-reinforcement 

contingency have been conducted. To accomplish this, the schedule of reinforcement, rate of 

reinforcement, and delay to reinforcement all would need to be held constant as the presence of 

the mutual-reinforcement contingency was altered.  

Individual Schedule Differences Between Subjects 

As mutual-reinforcement contingencies selectively reinforce pairs of temporally 

coordinated responses, dyad members in the mutual-reinforcement phases of past experiments 

(e.g., de Carvalho et al., 2018; Tan & Hackenberg, 2016) responded according to the same ratio 

schedule of reinforcement and earned reinforcers at approximately the exact same time. In the VI 

control phases however, the mutual reinforcement contingency was removed, and thus 

temporally coordinated responses were not required for reinforcement. Instead, the first response 

by either dyad member that satisfied the requirements of the VI schedule produced a reinforcer 

for both members. Thus, as in the mutual-reinforcement phase, reinforcers were delivered at the 

same point in time for both subjects, but the dyad members’ responses were not controlled by the 

same schedule of reinforcement.  

When arranged in a procedure requiring coordinated responding, dyad members 

reportedly adopted a leader-follower dynamic in which one co-actor (the leader) either 

responded at a higher rate than the other (e.g., de Carvalho et al., 2018; Tan & Hackenberg, 

2016) or initiated coordinated responses (e.g., Hake & Vukelich, 1973; Skinner, 1962; Tan & 

Hackenberg, 2016). An early account of this disparity between dyad members was reported by 

Skinner (1962), who observed that: 
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In general, there was a division of labor with respect to the two tasks [satisfying the 

mutual-reinforcement contingency]. One pigeon (the “leader”) explored – that is, it struck 

the three buttons in some order…. The other pigeon (the “follower”) struck the button 

opposite that being struck by the leader (p. 533). 

As the coordinated task was learned over several successive training trials, coordinated responses 

came to be initiated predominantly by one pigeon in the dyad directing responses to each of the 

three response keys. Just as this pigeon adopted the role of the “leader,” the other dyad member 

came into the role of the “follower” by making responses to the same key as the leader and 

completing coordinated responses. 

Similar dynamics among dyad members also were reported by Tan and Hackenberg 

(2016) and de Carvalho et al. (2018). In both experiments, one dyad member consistently 

responded at a higher rate than the other across both mutual-reinforcement and control phases. 

Additionally, Tan and Hackenberg noted that these disparities in response rate were linked to the 

initiation and completion of temporally coordinated responses, as “high-rate responders tended to 

initiate, whereas low-rate responders tended to complete the reinforced sequences” (p. 16). As 

these differences in response rates between dyad members persisted throughout both the mutual-

reinforcement and VI control phases, it is possible that in the latter phase only responses from 

the leader were reinforced according to a VI schedule. Reinforcers were delivered following the 

first response from either dyad member that met the requirements of the VI schedule, meaning 

that the leader, with its substantially higher response rate, likely was the member to respond first 

after the interval elapsed and produce reinforcement according to the VI schedule. Because these 

reinforcers were delivered at the same time to both subjects, the follower with its lower response 

rate likely began to receive reinforcers independently of responding according to a VT schedule. 
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The notion that the programmed VI schedule instead began to function as a VT schedule 

for the lower-response-rate rat is supported by Tan and Hackenberg’s (2016) observations of 

individual response frequencies for each dyad member. The overall frequency of responding for 

the follower in each dyad substantially decreased following the transition from the mutual-

reinforcement phase to the VI control phase. As coordination requires responding from both 

subjects, a cessation in responding by one subject will bring about a sharp decline in levels of 

coordinated responding. Such declines, however, would not reflect a specific decrease in 

coordination. Therefore, given the overall decrease in responding by one dyad member in the VI 

control phases, the declines in coordination in such phases cannot be attributed definitively to the 

removal of the mutual reinforcement contingency. This is the second limitation concerning why 

control of coordinated responding has not been shown. For control to be demonstrated, 

coordinated responding would need to decrease during control phases as individual responding 

by both dyad members persisted.  

This pattern of results was found by de Carvalho et al. (2019) who, as described in the 

previous section, reinforced responding according to the same VI schedule across mutual-

reinforcement and independent-reinforcement control phases. Because responses from both dyad 

members were required for reinforcement during independent-reinforcement phases, individual 

responding by both dyad members was maintained even as rates of coordinated responding and 

coordination ratios decreased. Although the requirement of a response from both dyad members 

during the independent-reinforcement phase dealt with the discrepancy in schedules across dyad 

members described previously, it also introduced the confound of variable, unsignaled delays to 

reinforcement for one dyad member as described in the previous section. To demonstrate 

functional control over coordinated responding, reinforcers produced during independent-
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reinforcement phases would need to be delivered immediately and according to the same 

schedule of reinforcement across dyad members. This could be accomplished by holding the 

schedule of reinforcement constant across mutual-reinforcement and control phases, as with de 

Carvalho et al. (2019), but enacting two completely independent schedules of reinforcement 

during the control phase as opposed to a single schedule for both dyad members. This method of 

scheduling independent reinforcement is yet to be explored. 

Absence of Spatial Coordination 

 There are at least two ways that two discrete responses may be coordinated. One is for 

responses to be synchronized based on the passage of time – temporal coordination. For two 

responses to be temporally coordinated, a certain minimum or maximum amount of time must 

pass between them. Responses also can be synchronized spatially – spatial coordination. For two 

responses to be spatially coordinated, they must each occur at a specific location. 

 Tan and Hackenberg (2016) and de Carvalho et al. (2018, 2019) enacted a mutual 

reinforcement contingency in which reinforcement depended on the temporal coordination of 

two dyad members’ responses. The chambers used in these three experiments were designed for 

programming temporal coordination and thus only included one response lever each. 

Consequently, all recorded responses necessarily were spatially coordinated because there were 

no other operanda on which responses could occur to produce reinforcers. Thus, although Tan 

and Hackenberg and de Carvalho et al. stated that their experimental goals were to demonstrate 

control of coordinated responding, it is more precise to say that they attempted to demonstrate 

control only of temporally coordinated responding. 

Spatial coordination is a prominent component of many social interactions that may be 

considered cooperative. For instance, consider a family that has moved into a new home and now 
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is rearranging their furniture. Although certain items like lamps, chairs, or end tables are small 

enough to be moved by one person, others like couches, beds, and dressers are too heavy. These 

pieces of furniture only can be moved to their new locations if the family members work together 

to carry them. To move a heavy couch, the individuals who will carry it must (1) position 

themselves at opposite ends of the couch and then (2) lift at the same time. This synchronization 

of responding in space and time constitutes spatial and temporal coordination, respectively. If 

either does not occur then lifting the couch (i.e., cooperation) will be impossible. Given the 

myriad situations in which reinforcement is dependent on spatial coordination in addition to or in 

place of temporal coordination, the failure to examine spatial coordination in experimental 

analyses of coordinated responding reflects a fundamental limitation of the scope of past 

experiments. Both temporal and spatial coordination must be subjected to experimentation for a 

comprehensive analysis of coordinated responding. 

To assess both temporal and spatial coordination simultaneously, and thus demonstrate 

coordinated responding, dyad members each would need more than one operandum on which to 

respond. With its three pairs of response keys, the previously described apparatus designed by 

Skinner (1962) fits this requirement and thus provides a means of assessing both temporal and 

spatial coordination concurrently. Using this design in tandem with the control phases proposed 

by Tan and Hackenberg (2016) and de Carvalho et al. (2018, 2019) – with the adjustments noted 

in the preceding two sections – would allow for a more comprehensive analysis of the effects of 

a mutual-reinforcement contingency on coordinated responding. 

Statement of the Problem 

Despite nearly 60 years of research on coordinated responding, functional control of such 

has not been demonstrated conclusively. Skinner (1962) trained two pigeons to each peck, “at the 
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same time” (p. 532), the same pair of response keys from an array of options, and thus claimed to 

have demonstrated both temporal and spatial coordination. No empirical data were reported, 

however, nor was a control phase included in which coordination was not required for 

reinforcement as a means of comparison. Although subsequent experiments (de Carvalho et al., 

2018, 2019; Tan & Hackenberg, 2016) addressed these shortcomings of Skinner’s design and 

purportedly showed functional control of coordinated responding, as the literature reviewed in 

the preceding sections outlined, at least three procedural limitations of those experiments limit 

the conclusions that may be drawn.  

First, differences in the schedules of reinforcement according to which responses were 

reinforced across mutual-reinforcement and control phases means that any changes in 

coordinated responding cannot be attributed definitively to the presence or absence of the 

mutual-reinforcement contingency. Second, the contingencies enacted during independent-

reinforcement control phases differed between dyad members and in some cases only maintained 

responding by one subject. Thus, the declines in coordinated responding observed when the 

mutual-reinforcement contingency was removed could not be attributed to decreases in 

coordination specifically, as they may have been a side effect of extinction of the responding of 

one dyad member. Even when these two concerns were addressed by holding the schedule of 

reinforcement constant across phases and between dyad members (i.e., de Carvalho et al., 2019), 

variable, unsignaled delays to reinforcement during the control phase may have been responsible 

for the decreases in coordinated responding that occurred. Finally, past assessments of 

coordination have focused on temporal coordination exclusively at the expense of a systematic 

assessment of spatial coordination as described by Skinner, leaving unanswered questions 

regarding coordinated responding across multiple, topographically distinct responses. Empirical 
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assessments of coordinated responding with multiple response options have not been reported, 

nor have the potential effects of the number of response options on amounts of coordination been 

parametrically evaluated. 

The purpose of the present experiments, therefore, was threefold. First, by incorporating 

the control phases proposed by Tan and Hackenberg (2016) and de Carvalho et al. (2018, 2019) 

– with the modifications outlined above – to Skinner’s (1962) design, the effects of a mutual-

reinforcement contingency on coordinated responding according to a schedule of continuous 

reinforcement was assessed. Second, the limitations of assessments of coordinated responding 

under VI schedules (i.e., de Carvalho et al., 2019) were addressed to assess the generality of the 

effects of a mutual-reinforcement contingency on coordinated responding. Third, coordination 

across topographically distinct responses was investigated as a function of a systematic change in 

the number of available response options.  

Experiment 1 

Experiment 1 was designed to (1) further assess whether the mutual reinforcement 

contingency or byproduct mutualism underlies coordinated responding on an FR 1 schedule by 

including appropriate control procedures, and (2) empirically evaluate the effects of the number 

of response options on levels of coordinated responding.  

Method 

Subjects 

Six mature male White Carneau pigeons were maintained at 80% of their free-feeding 

weight. Each was housed in a separate cage in a vivarium under a 12:12-hr light/dark cycle and 

had continuous access to water and health grit in their home cages. 

Apparatus 



  17 
 

A single operant chamber enclosed in a 113-cm by 61-cm sound-attenuating, ventilated 

enclosure was used (see Figure 1). A transparent plastic partition (A) running lengthwise through 

the center of the chamber separated it into two equal-sized left and right compartments. 

Positioned at the front of each compartment was an aluminum work panel. A bend in that panel 

at a 55-degree angle created an approximately 14-cm-wide portion (the response panel) 

perpendicular with the central divider, and an approximately 30.5-cm portion (the feeder panel) 

angled away from the center of the chamber. Three 2.5-cm response keys (B) were mounted 

vertically on the response panel and were visible from both compartments. A fourth key (C), 

unused in this experiment and therefore not described further, was mounted on the feeder panel. 

Each key required a force of approximately 0.15 N to operate and could be transilluminated red, 

yellow, or green. The top pair of keys was transilluminated red, the middle pair yellow, and the 

bottom pair green. 

 Reinforcement was 3-s access to Purina Nutri-Blend™ pellets delivered from a standard 

food hopper (D) accessible through an approximately 5-cm by 5-cm aperture located on the 

feeder panel. Each compartment in the chamber had its own feeder and aperture for food access. 

Two houselights (E), one in each compartment, were on throughout each session except during 

food presentations when the hopper was illuminated instead. Contingencies were programmed, 

and data recorded, using a desktop computer operating with Med-PC® software and interface 

equipment located in a room adjacent to the one housing the chamber. 

Procedure 

The six pigeons were paired to form three dyads for the duration of the experiment. Each 

member of a dyad was assigned to one of the two compartments in the chamber (left or right) 

and completed all sessions in that compartment. Sessions occurred seven days a week at  
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Figure 1 

A diagram of the operant chamber that will be used for these experiments. 

 

Note. The above figure is not to scale. The chamber was divided into two equally sized 

compartments by a central transparent barrier (A). A work panel in each compartment was bent 

to create a response panel perpendicular to the central divider and a feeder panel that met the 

response panel at a 55-degree angle. Three choice keys (B) were located on each response panel 

and were visible from both compartments. A fourth, unused, key (C) was located on the feeder 

panel. An aperture through which reinforcers were delivered (D) and houselight (E) also were 

located on each feeder panel. 
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approximately the same time each day and were preceded by a 3-min blackout in the chamber to 

minimize the effects of handling on responding. After the blackout, the start of each session was 

signaled by the onset of the houselight and choice keys. All sessions ended after 30 reinforcer 

deliveries to each dyad member.  

Training. Both members of a dyad were placed in their respective compartments 

simultaneously and individually exposed to an FR 1 schedule of reinforcement. During each trial 

(comprised of the time between two reinforcer presentations) of these sessions the FR 1 schedule 

was in effect on only one of the three keys in each compartment. The key with the schedule in 

effect varied semirandomly across trials so that an equal number of reinforcers was delivered for 

responses to each key. The FR 1 schedule was in effect for at least 10 sessions, and until (1) 

there were no increasing or decreasing trends in response rate over the last three sessions and (2) 

none of the final five sessions contained either the minimum or maximum response rate observed 

during these sessions (cf. Tan & Hackenberg, 2016). 

Assessment of Independent Variables. Dyads were exposed to a series of four 

conditions with differing numbers of transilluminated choice keys, each with reversals between 

independent- (A) and mutual- (B) reinforcement phases (described below). Across conditions, a 

different number of pairs of choice keys (one, two, or three) were transilluminated during 

sessions. The order of these conditions, the arrangement of independent- and mutual-

reinforcement phases within each reversal design, and the number of sessions comprising each 

manipulation for each dyad are shown in the top half of Table 1. Transitions between phases 

occurred when (1) at least 10 sessions had been conducted and (2), across the final four sessions, 

the average coordination percentages (see the Data Analysis section below) of the first and last 

two sessions were within 5% of the grand mean of these four sessions (cf. Sidman, 1960). There  



  20 
 

  T
ab

le
 1

N
u
m

b
er

 o
f 

k
ey

s 
a
n
d
 o

rd
er

 o
f 

p
h
a
se

s 
fo

r 
ea

ch
 o

f 
th

e 
re

v
er

sa
l 
d
es

ig
n
s 

in
 E

x
p
er

im
en

ts
 1

 a
n
d
 2

N
um

b
er

 

o
f 
K

ey
s

P
ha

se
 

S
eq

ue
nc

e

N
um

b
er

 o
f 

S
es

si
o
ns

N
um

b
er

 

o
f 
K

ey
s

P
ha

se
 

S
eq

ue
nc

e

N
um

b
er

 o
f 

S
es

si
o
ns

N
um

b
er

 

o
f 
K

ey
s

P
ha

se
 

S
eq

ue
nc

e

N
um

b
er

 o
f 

S
es

si
o
ns

N
um

b
er

 

o
f 
K

ey
s

P
ha

se
 

S
eq

ue
nc

e

N
um

b
er

 o
f 

S
es

si
o
ns

N
um

b
er

 

o
f 
K

ey
s

P
ha

se
 

S
eq

ue
nc

e

N
um

b
er

 o
f 

S
es

si
o
ns

8
2
4
/2

2
1
5

3
A

B
A

1
5
, 
1
0
, 
1
6

1
A

B
A

2
1
, 
1
0
, 
2
7

2
A

B
A

1
0
, 
1
1
, 
1
5

3
A

B
A

1
0
, 
1
2
, 
1
3

-
-

-

8
9
6
4
/1

9
8
4
1

3
A

B
1
2
, 
1
0

1
A

B
A

2
3
, 
1
6
, 
2
3

2
A

B
A

1
2
, 
1
0
, 
1
9

3
A

B
A

1
0
, 
1
0
, 
1
1

-
-

-

4
0
7
9
/7

4
7
2

3
A

B
1
2
, 
7

1
A

B
A

2
6
, 
1
1
, 
1
3

2
A

1
1

-
-

-
-

-
-

1
9
2
2
2
/1

9
9
5
7

1
B

A
B

1
5
, 
1
5
, 
1
0

2
A

B
A

1
0
, 
1
1
, 
1
0

3
A

B
A

1
0
, 
1
0
, 
1
1

2
A

B
A

1
4
, 
1
0
, 
1
1

-
-

-

1
8
0
5
7
/1

1
8
2
9

1
B

A
B

1
0
, 
1
5
, 
1
0

2
A

B
A

1
6
, 
1
0
, 
1
1

3
A

B
A

1
3
, 
1
0
, 
1
1

2
A

B
A

1
0
, 
1
2
, 
1
1

-
-

-

1
8
3
9
0
/2

1
0
5
5

1
B

A
B

1
5
, 
1
6
, 
1
1

2
A

B
A

1
0
, 
1
0
, 
1
1

3
A

B
A

1
1
, 
1
0
, 
1
1

3
A

B
A

1
0
, 
1
3
, 
1
1

3
A

B
A

1
1
, 
1
0
, 
1
1

5
th

 C
o
nd

iti
o
n

2
nd

 C
o
nd

iti
o
n

3
rd

 C
o
nd

iti
o
n

4
th

 C
o
nd

iti
o
n

1 2

E
xp

er
im

en
t

D
ya

d

1
st

 C
o
nd

iti
o
n



  21 
 

were four exceptions to the stability criteria and sequence of phases outlined above. During the 

mutual-reinforcement phase of the three-key condition for Dyad 4079-7427, only seven sessions 

were conducted before behavior extinguished and the phase was terminated. For that same dyad, 

the full sequence of phases at the two-key condition was not completed due to the death of one 

pigeon. Finally, neither Dyad 8964-19841 nor 4079-7472 finished the full sequences of phases at 

the three-key condition due to an absence of changes across phases. 

Sessions consisted of 30 trials (each defined as the time between two reinforcer 

presentations). Reinforcers were delivered on an FR 1 schedule only for pecks on a preselected 

pair of keys (hereafter labeled the active pair). The active pair was selected semirandomly at the 

beginning of each trial so that each of the three pairs of keys served as an active pair on one third 

of the trials in a session. Depending on the condition, none, one, or both (corresponding to the 

one-, two-, and three-key conditions, respectively) of the other pairs of keys were 

transilluminated concurrently with the active pair. Regardless of condition, responses to the other 

two pairs of keys, transilluminated or not, had no programmed consequences. 

Independent-Reinforcement Phase (A). Key-peck-produced reinforcers arranged 

according to the FR 1 schedules in effect on each key within the active pair were delivered 

independently of the other dyad member’s key pecks. That is, coordinated responses were not 

required for reinforcement. On each trial a reinforcer was delivered to a dyad member following 

the first response directed to a choice key within the active pair, independent of the other 

member’s responding. 

Mutual-Reinforcement Phase (B). On each trial the first pair of responses (i.e., one from 

each member of a dyad) to the active keys that occurred within 500 ms of each other (de 

Carvalho et al. 2018, 2019; Tan & Hackenberg, 2016) procured the reinforcer. Thus, once 
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reinforcers were arranged by the FR 1 schedule on a given trial, they were delivered to both dyad 

members only after they each responded on their respective active key within 500 ms of one 

another. Once a trial began, the reinforcer remained available until this requirement was fulfilled. 

Data Analysis. Total responses made and reinforcers earned by each dyad member were 

divided by the total session time to yield each member’s response and reinforcement rates for a 

given session. Furthermore, a coordination percentage (cf., coordination ratio; de Carvalho et al., 

2018) representing the relative frequency of coordination was calculated for each session by 

dividing the total number of coordinated responses (pairs of alternating responses from each 

dyad member that occurred within 500 ms of one another) by the total number of responses 

throughout the session that could have been coordinated and multiplying by 100.  

The number of responses that could have been coordinated were required to calculate 

coordination percentages because the FR 1 schedules for dyad members in the independent-

reinforcement phase were independent of one another. As a result, it was possible for one dyad 

member to respond on a given key while that same key was not transilluminated in the other 

dyad member’s compartment. During all three key conditions, this could occur if one dyad 

member responded while the other was consuming a reinforcer or already had finished the 

session. Additionally, during the one- and two-key conditions, this was a possibility if dyad 

members were on different trials with different arrangements of transilluminated keys (during the 

three-key condition all three keys were transilluminated on every trial). So as not to artificially 

deflate the coordinated percentage by including in the calculation these responses that could not 

possibly have been coordinated, they were subtracted from the total number of responses to yield 

the total number of responses that could have been coordinated. The total number of coordinated 
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responses then was divided by this number and multiplied by 100 to yield the coordination 

percentage. 

Results and Discussion 

Results from Experiment 1 are shown in Figures 2 through 7. For all but Figure 5, bars 

represent the mean of a given dependent measure from the final four sessions of a given phase 

(Figures 2, 3, and 4) or condition (Figures 6 and 7). In all figures, error bars – when present – 

represent ±1 standard error of the mean for those same four sessions. Details regarding Figure 5 

are outlined below. 

Effects of the Mutual-Reinforcement Contingency 

Changes in Coordination Percentages. Figure 2 shows changes in coordination 

percentages for all three dyads as a function of the presence or absence of the mutual-

reinforcement contingency. During the one-key condition (top panel), two different relations 

between mean coordination percentages across mutual-reinforcement (white bars) and 

independent-reinforcement phases (black bars) occurred. For two dyads (824-2215 and 8964-

19841), mean coordination percentages during mutual-reinforcement phases (24.7-29.8%) were 

larger than those during corresponding independent-reinforcement phases (21.5-23.4%). 

Conversely, for the third dyad (4079-7472), coordination percentages were lower during the 

single mutual-reinforcement phase (22.6%) than during either the preceding or following 

independent-reinforcement phase (24.8% and 30.8%, respectively). For all three dyads, however, 

variability in coordination percentages (expressed as ±1 standard error of the mean) during 

independent-reinforcement phases completely encompassed that of the mutual-reinforcement 

phase. Thus, it cannot be stated conclusively that coordination percentages during the 
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Figure 2 

Coordination percentages for each dyad in Experiment 1 as a function of the presence or 

absence of the mutual-reinforcement contingency. 

 

Note. Bars represent mean coordination percentages from the final four sessions of a phase, and 

error bars represent ±1 standard error of the mean for those same sessions. Data from the one-, 

two-, and three-key conditions are shown in the top, middle, and bottom panels of the figure, 

respectively. Solid vertical lines separate data from different dyads, whereas dashed vertical 

lines, when present, separate initial and secondary replications of the conditions.   
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mutual-reinforcement phase were greater than – or, in the case of the third dyad, less than – those 

during the independent-reinforcement phase. 

During the two-key condition (middle panel), larger coordination percentages occurred 

during mutual-reinforcement phases than during corresponding independent-reinforcement 

phases for both dyads that completed this condition. Across the dyads 14.3-18.4% of responses 

were coordinated during the mutual-reinforcement phases, and only 7.1-15.6% of responses were 

during the independent-reinforcement phases. 

The same general pattern of results obtained during the two-key condition was replicated 

during the three-key condition (bottom panel). For three of the five sequences, greater 

coordination percentages occurred during mutual-reinforcement phases (6.9-11.5%) than during 

corresponding independent-reinforcement phases (4.1-6.1%). For the first exposure for Dyad 

8964-19841, however, the coordination percentage from the independent-reinforcement phases 

(3.9%) exceeded that from the mutual-reinforcement phase (2.9%). On replication of the 

sequence for this dyad, the coordination percentage from the mutual-reinforcement phase (6.9%) 

was, as with other dyads, greater than those from the immediately preceding and following 

independent-reinforcement phases (5.2% and 4.2%, respectively). For Dyad 4079-7472, 

coordination percentage from the independent-reinforcement phases (3.8%) exceeded that from 

the mutual-reinforcement phase (0.15%). This was because coordinated responding completely 

extinguished after only seven mutual-reinforcement phase sessions because Pigeon 7472 ceased 

responding. 

Comparison to Previous Findings. Results from the one-key condition failed to 

replicate those previously reported by Tan and Hackenberg (2016) and de Carvalho et al. (2018) 

as coordination percentages during the mutual-reinforcement phase were not substantially greater 
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than those from the independent-reinforcement phase. For two of the three dyads (824-2215 and 

8964-19841) this was due to the substantial variability in coordination percentages observed 

during independent-reinforcement phases. The implications of this variability, which appears to 

be a consequence of pairing independent FR 1 schedules with the one-key condition, on 

conclusions and measurement of coordinated responding will be explored further in the General 

Discussion. 

During the two- and three-key conditions, overall a greater percentage of coordinated 

responses occurred during mutual- than independent-reinforcement phases. This was true of both 

dyads that completed the two-key condition and for three of the five replications at the three-key 

condition. Given that, in contrast to previous experiments, delays to reinforcement were 

eliminated from the independent-reinforcement phase and the schedule of reinforcement was 

held constant across phases, differences in coordinated responding cannot be attributed to 

changes in these two variables. The present results, therefore, support the assertion that 

coordinated responding during mutual-reinforcement phases was not a consequence of byproduct 

mutualism, and that coordinated responding is sensitive to the mutual reinforcement 

contingency. Furthermore, the replication of this finding at both the two- and three-key 

conditions both extends upon the findings from Tan and Hackenberg (2016) and de Carvalho et 

al. (2018, 2019) and supports the observations reported by Skinner (1962) by illustrating how 

mutual-reinforcement contingencies can be used to reinforce spatial coordination in addition to 

temporal coordination.  

Reinforcement- and Response-Rate Considerations. Reinforcement rates across 

phases were not equated because, in order to address the first two limitations noted in the 

introduction, the schedule of reinforcement was held constant across phases and delays to 
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reinforcement during independent-reinforcement phases were eliminated. Changes in 

reinforcement rates across phases for all six pigeons at all three key conditions are shown in 

Figure 3. Reinforcement rates during mutual-reinforcement phases consistently were lower than 

those from immediately preceding and following independent-reinforcement phases. Therefore, 

the previously described increases in coordination percentages during mutual-reinforcement 

phases at the two- and three-key conditions cannot be attributed to increases in reinforcement 

rates, which in turn supports the conclusion that mutual-reinforcement contingencies lead to 

greater levels of coordinated responding. 

Broadly, these declines in reinforcement rates cannot be attributed to declines in 

responding by either one or both dyad members during mutual-reinforcement phases. In Figure 4 

response rates are plotted as a function of the presence or absence of the mutual-reinforcement 

contingency under all key conditions for all six pigeons. For 18 of the 20 sequences with at least 

one independent- and mutual-reinforcement phase, response rates during mutual-reinforcement 

phases were comparable to those during corresponding independent-reinforcement phases. The 

only exceptions to this pattern were Pigeons 4079 and 7472 at the three-key condition, both of 

which responded at lower rates during mutual- than independent-reinforcement phases. This was 

because no coordinated responses occurred during mutual-reinforcement phases for this dyad, 

and thus key pecking extinguished for Pigeon 7472.  

As described in the introduction, in past experiments, the use of a single VI schedule 

during the independent-reinforcement phase for both dyad members may have contributed to 

declines in coordinated responding during this phase. In the present experiment, two distinct VI 

schedules were used to address this limitation. Because the two schedules were independent of 

one another, dyad members continued to earn reinforcers immediately upon satisfying the 
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Figure 3 

Reinforcement rates for each pigeon in Experiment 1 as a function of the presence or absence of 

the mutual-reinforcement contingency. 

 

Note. Bars represent mean reinforcement rates from the final four sessions of a phase, and error 

bars represent ±1 standard error of the mean for those same sessions. Data from the one-, two-, 

and three-key conditions are shown in the top, middle, and bottom panels of the figure, 

respectively. Solid vertical lines separate data from different dyads and dashed vertical lines 

separate data from different pigeons within the same dyad. 
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Figure 4 

Response rates for each pigeon in Experiment 1 as a function of the presence or absence of the 

mutual-reinforcement contingency. 

 

Note. Bars represent mean response rates from the final four sessions of a phase, and error bars 

represent ±1 standard error of the mean for those same sessions. Data from the one-, two-, and 

three-key conditions are shown in the top, middle, and bottom panels of the figure, respectively. 

Solid vertical lines separate data from different dyads and dashed vertical lines separate data 

from different pigeons within the same dyad.   
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programmed schedule requirements as in the mutual-reinforcement phase. Thus, no unsignaled 

delays to reinforcement occurred during independent-reinforcement phase sessions. Furthermore, 

during the two- and three-key conditions in the present experiment, lower coordination 

percentages (Figure 2) and similar response rates for both dyad members (Figure 4) occurred 

during independent-reinforcement phases compared to mutual-reinforcement phases. Thus, 

declines in coordinated responding during independent-reinforcement phases cannot be 

attributed to the prevention of coordination when one dyad member stops responding, but to a 

decrease in coordinated responding specifically as a consequence of the absence of a mutual-

reinforcement contingency.  

Coordination Magnitude. Coordination percentages from mutual-reinforcement phases 

during the one-key condition (25.7% on average across all dyads) were slightly larger than those 

obtained during the mutual-reinforcement phases previously reported by Tan and Hackenberg 

(2016; 18.6% on average) and de Carvalho et al. (2018, 2019; 20.3% and 20.6%, respectively). 

Conversely, coordination percentages from the individual-reinforcement phase of the present 

one-key condition were 24.3% on average across all dyads – substantially greater than the 2.9% 

(Tan & Hackenberg, 2016), 5.5% (de Carvalho et al., 2018), or 10.6% (de Carvalho et al., 2019) 

reported by those investigators. The implications of this disparity in independent-reinforcement 

phase coordination percentages across experiments will be addressed further in Experiment 2. 

Effects of Keylight Consistency Across Trials. As stated in the Method section, the 

active pair of keys on each trial was determined semirandomly to ensure that, during each 

session, an equal number of reinforcers were earned for responses to each key. The order in 

which keys served as members of the active pair – and thus were transilluminated during the 

one- and two-key conditions – however, was not held constant across sessions. Therefore, during 
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some sessions the same key(s) remained transilluminated for several trials in a row as the active 

pair did not change, whereas during others the transilluminated keylights frequently shifted as 

the active pair moved from key to key. Given how (1) each individual response from a dyad 

member only had the potential to be coordinated if that same key was transilluminated in the 

other dyad member’s compartment and (2) the dyad members could progress through trials in the 

independent-reinforcement phase asynchronously, coordination percentages from a given session 

may have been influenced by the frequency with which the active pair changed keys.  

Figure 5 shows coordination percentages as a function of the percentage of trial-to-trial 

transitions during which the transilluminated key(s) did not change. Data in the top four panels 

are from the one-key condition, and data from the bottom four panels are from the two-key 

condition. For both conditions, the bottom-right panel shows data for all three dyads together, 

whereas the remaining three panels show data for each of the three dyads individually. Data from 

the three-key condition are not shown because the transilluminated keylights did not change 

from trial to trial.  

During the one-key condition coordination percentages decreased slightly with increases 

in the frequency of consecutive-key trials for Dyad 824-2215, but a simple linear regression did 

not reveal a significant relation between the two variables (p = 0.64). For Dyads 8964-19841 and 

4079-7472, coordination percentages increased with increases in the percentage of consecutive-

key trials. However, simple linear regressions showed that only for Dyad 8964-19841 was there 

a significant relation between the two variables (p < 0.05). For Dyad 4079-7472 no significant 

relation was found (p = 0.23). When the data from all three dyads were compiled together, a 

simple linear regression revealed a significant relation between the two variables (p < 0.05). 
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Figure 5 

Coordination percentages for each dyad in Experiment 1 as a function of the percentage of trial-

to-trial transitions that the active pair remained constant.  

 

Note. The top and bottom four panels show data from the one- and two-key conditions, 

respectively. Within each condition, the first three panels show data from individual dyads, and 

the bottom-right panel shows data from all three dyads. Dashed lines show linear regressions 

calculated to fit the data.   
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During the two-key condition, coordination percentages increased slightly with increases in the 

frequency of consecutive-key trials for Dyads 824-2215 and 4079-7472. Simple linear 

regressions, however, did not show a significant relation between the two variables for either 

dyad (p = 0.77 and p = 0.29, respectively). The same was true of Dyad 8964-19841 (p = 0.21), 

for which coordination percentages decreased slightly with increases in the frequency of 

consecutive-key trials. When the data from all three dyads were compiled together coordination 

percentages slightly increased with increases in the frequency of consecutive-key trials, but a 

simple linear regression did not reveal a significant relation between the two variables (p = 0.15). 

The implications of this analysis will be explored in the General Discussion section. 

Effects of the Number of Keys 

Changes in Coordination Percentages. Mean coordination percentages from the final 

four sessions of each phase for all three dyads – the same data depicted in Figure 2 – are shown 

in Figure 6 as a function of the number of keys across which responses could be distributed. 

During the independent-reinforcement phase (top panel) lower coordination percentages 

occurred when additional pairs of keys were transilluminated along with the active pair. Across 

dyads, 21.5-30.8% of responses were coordinated with a single key, 7.1-15.6% with two keys, 

and 3.8-6.1% with all three keys. This same decrease in coordination percentages with additional 

keys occurred during the mutual-reinforcement phase (bottom panel). Across dyads, 22.6-29.8% 

of responses were coordinated with a single key, 14.3-18.4% with two keys, and 0.14-11.5% 

when all three keys were transilluminated (note that the ranges for the three-key conditions 

include data from both the initial exposure and replication). 

Comparison to Previous Findings. The analysis of the two- and three-key conditions in 

the present experiment extends previous findings by (1) providing empirical support for greater 



  34 
 

Figure 6 

Coordination percentages for each pigeon in Experiment 1 as a function of the number of 

transilluminated keys. 

 

Note. Bars represent mean coordination percentage from the final four sessions of a condition, 

and error bars represent ±1 standard error of the mean for those same sessions. Data from the 

independent- and mutual-reinforcement phases are shown in the top and bottom panels of the 

figure, respectively.   
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coordination percentages during mutual- than independent-reinforcement phases with multiple 

response options and (2) demonstrating the degradation of coordinated responding with the 

inclusion of pairs of keys other than the active pair. The fact that substantially lower coordination 

percentages were observed during independent- and mutual-reinforcement phase sessions in both 

two- and three- compared to one-key condition demonstrates the importance of the 

environmental context in determining how a mutual-reinforcement contingency influences 

coordinated responding. 

Furthermore, assessments of the magnitude of the change in coordination percentages as 

a function of the number of keys revealed an additional effect of multiple response options on 

coordination. The data in the top panel of Figure 6 show a negative, roughly logarithmic change 

in coordination percentages throughout the independent-reinforcement phase as the number of 

pairs of keys increases (comparisons during the mutual-reinforcement condition were not 

conducted because the full sequence of phases at the two- and three-key conditions were not 

completed for all dyads). When averaged across dyads, 24.3%, 11.7%, and 4.5% of responses 

were coordinated during the one-, two-, and three-key conditions, respectively. Thus, mean 

coordination percentages decreased by 12.6 percentage points across the one- and two-key 

conditions, but only by 7.2 percentage points with the addition of a third pair of keys. This 

suggests that most of the decrease in coordinated responding with additional response options 

occurs with the inclusion of just one other operandum, and that further response options produce 

smaller effects. This is an implication that invites further analysis through additional 

experimentation. 

Interaction Between the Mutual-Reinforcement Contingency and the Number of Keys 
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Figure 7 shows differences in coordination percentages between consecutive mutual- and 

independent-reinforcement phases during each of the three different key conditions for all three 

dyads. Coordination percentages did not increase under the mutual-reinforcement contingency 

for Dyad 4079-7472. For Dyad 824-2215, differences in mean coordination percentages between 

mutual- and independent-reinforcement phases increased as a function of the number of 

transilluminated keys. Mean coordination percentages were approximately 2.0, 3.6, and 5.0 

percentage points greater during mutual-reinforcement phases than independent-reinforcement 

phases at the one-, two-, and three-key conditions, respectively. Conversely, for Dyad 8964-

19841, the opposite relation was observed as differences in mean coordination percentages 

between mutual- and independent-reinforcement phases decreased with additional 

transilluminated keys. For this dyad, mean coordination percentages during mutual-

reinforcement phases were approximately 7.4, 5.6, and 1.1 percentage points greater than those 

during independent-reinforcement phases at the one-, two-, and three-key conditions, 

respectively.  

Conclusions 

Although Skinner (1962) asserted that coordination across multiple response options 

could be trained, no empirical data to support this conclusion were presented. Results from the 

three-key condition of Experiment 1 support Skinner’s conclusions by demonstrating greater 

coordination percentages during mutual- than independent-reinforcement phases. Furthermore, 

comparisons to conditions with fewer response options extended upon Skinner’s findings by 

revealing that less coordinated responding occurred when more operanda were included. When 

only one response key was included no increases in coordination percentages during mutual-

reinforcement phases occurred, contradicting previous findings by de Carvalho et al. (2018; see 



  37 
 

Figure 7 

Difference in percentage of coordinated responses across consecutive mutual- and independent-

reinforcement phases at each key condition for all three dyads in Experiment 1. 

 

Note. Bars represent differences in mean coordination percentage between each mutual-

reinforcement phase and either the immediately preceding (first bar) or following (second bar) 

independent-reinforcement phase.  
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also Tan & Hackenberg, 2016). In a subsequent experiment, de Carvalho et al. (2019) 

demonstrated increased coordinated responding during mutual- compared to independent-

reinforcement phases when responding to a single key was reinforced according to a VI schedule 

of reinforcement. Experiment 2, therefore, was designed to explore the role of intermittent 

reinforcement on coordinated responding. 

Experiment 2 

Experiment 2 was designed to (1) assess levels of coordinated responding under a VI 

schedule of reinforcement, and (2) further explore the effects of the number of response 

allocation options on levels of coordinated responding.  

Method 

Subjects and Apparatus 

Six new mature male White Carneau pigeons were used for Experiment 2. All were 

maintained at 80% of their free-feeding weight and housed in the same manner as described 

previously for Experiment 1. Similarly, the same apparatus as outlined above was used for 

Experiment 2.  

Procedure 

Details such as dyad pairings, compartment assignment, and session time were as 

described in Experiment 1. For two dyads (18057/11829 and 18390/21055) the same 3-min 

blackout described above preceded each session, but for the third (19222/19957) a 10-min 

blackout was used. 

Training. Dyads first were exposed to seven sessions of FR 1 training as described for 

Experiment 1. Following the completion of these sessions, an additional five sessions under an 

FR 5 schedule were conducted. Once all three keys were pecked consistently, key pecking to 
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each was reinforced according to a VI schedule beginning with the next session. As with the 

previous sessions, the key associated with the VI schedule varied semirandomly across trials. 

Across several sessions the average inter-reinforcer interval in effect for the VI schedule was 

increased gradually (VI 5 s, VI 10 s, VI 20 s, VI 40 s, and VI 60 s; see Bradshaw et al., 1978). 

The VI schedules in effect throughout these and all subsequent sessions were constructed using 

Fleshler and Hoffman’s (1962) distribution. The terminal VI 60-s schedule was in effect for at 

least 10 sessions, and until (1) there were no increasing or decreasing trends in response rate over 

the last three sessions and (2) none of the final five sessions contained either the minimum or 

maximum response rate observed during VI-60 sessions (cf. Tan & Hackenberg, 2016). The VI 

60-s schedule was used only during the Training phase. During all experimental sessions (see 

next section) a VI 20-s schedule was used. 

 Assessment of Independent Variables. Dyads were exposed to a series of four (Dyads 

19222-19957 and 18057-11829) or five (Dyad 18390-21055) reversal designs between 

independent- (A) and mutual- (B) reinforcement phases as described in Experiment 1. The only 

difference was that responses were reinforced according to a VI 20-s schedule instead of 

according to the FR 1 schedule used in the first experiment. All other aspects of the design – 

including the manner of transition across phases, details for individual sessions, selection of the 

active pair, requirements for the completion of the mutual reinforcement contingency, and 

recorded dependent measures – were as described in Experiment 1. The order of conditions, the 

arrangement of independent- and mutual-reinforcement phases within each reversal design, and 

the number of sessions comprising each manipulation for each dyad are shown in the bottom half 

of Table 1. 

Results and Discussion 
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Results from Experiment 2 are shown in Figures 8 through 13. Each of these figures was 

constructed as described for Figures 2 through 7, respectively. 

Effects of the Mutual-Reinforcement Contingency 

Changes in Coordination Percentages. Figure 8 shows coordination percentages for 

each dyad as a function of the presence or absence of the mutual-reinforcement contingency. For 

all three dyads during the one-key condition (top panel), greater coordination percentages 

occurred during mutual-reinforcement phases (white bars) than during corresponding 

independent-reinforcement phases (black bars). Across the dyads 20.2-24.0% of responses were 

coordinated during the mutual-reinforcement phases, and 16.1-17.2% of responses were during 

the independent-reinforcement phase. 

The same general findings from the one-key condition were replicated during the two-key 

condition (middle panel). For four of the five sequences in this condition, greater coordination 

percentages were observed during mutual-reinforcement phases (10.2-14.1%) than during 

corresponding independent-reinforcement phases (8.3-11.8%). The sole exception was the first 

sequence for Dyad 18057-11829, during which the average coordination percentage from the 

mutual-reinforcement phase exceeded those obtained from the immediately preceding and 

following independent-reinforcement phases by less than 1% (11.7% in the mutual-

reinforcement phase, and 11.0% and 11.5% in the preceding and following independent-

reinforcement phases, respectively). On replication of the sequence with this dyad, however, the 

coordination percentage from the mutual-reinforcement phase exceeded those obtained from the 

immediately preceding and following independent-reinforcement phases by 3.2% and 2.2% 

respectively, replicating results obtained with the other dyads. 
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Figure 8 

Coordination percentages for each dyad in Experiment 2 as a function of the presence or 

absence of the mutual-reinforcement contingency. 

 

Note. Bars represent mean coordination percentages from the final four sessions of a phase, and 

error bars represent ±1 standard error of the mean for those same sessions. Data from the one-, 

two-, and three-key conditions are shown in the top, middle, and bottom panels of the figure, 

respectively. Solid vertical lines separate data from different dyads, whereas dashed vertical 

lines, when present, separate initial, secondary, and tertiary replications of the conditions.   
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During the three-key condition (bottom panel), greater coordination percentages occurred 

during mutual-reinforcement phases (9.0-9.9%) than during corresponding independent-

reinforcement phases (5.1-9.5%). Across four of the five sequences the pattern of results 

observed during the one- and two-key conditions was replicated. For the second exposure to this 

condition for Dyad 18390-21055, however, the average coordination percentage from the 

mutual-reinforcement phase only exceeded that obtained during the initial independent-

reinforcement phase. Coordination percentages across the mutual-reinforcement phase and 

second iteration of the independent-reinforcement phase differed by less than 1% (9.7% and 

9.5%, respectively). During the third exposure to this sequence, however, the coordination 

percentage from the mutual-reinforcement phase (9.6%) was, as with other dyads, greater than 

those from both the preceding and following independent-reinforcement phases (8.1% and 7.8%, 

respectively). 

Comparison to Previous Findings. In Experiment 1, only at the two- and three-key 

conditions were a greater percentage of responses coordinated when such coordination was 

required for reinforcement compared to when there was no such contingency. Conversely, during 

Experiment 2, larger coordination percentages occurred during mutual-reinforcement phases than 

independent-reinforcement phases consistently across all three different key conditions. 

Implications of and a potential explanation for differences in the one-key condition across 

experiments will be addressed in the General Discussion. 

Differences in coordinated responding across phases cannot be attributed to changes in 

the schedule of or delay to reinforcement, as in past experiments (e.g., de Carvalho et al., 2018, 

2019; Tan & Hackenberg, 2016), as both of these variables were controlled. Additionally, Figure 

9 shows changes in reinforcement rates across phases for all six pigeons at all three different key 
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Figure 9 

Reinforcement rates for each pigeon in Experiment 2 as a function of the presence or absence of 

the mutual-reinforcement contingency. 

 

Note. Bars represent mean reinforcement rates from the final four sessions of a phase, and error 

bars represent ±1 standard error of the mean for those same sessions. Data from the one-, two-, 

and three-key conditions are shown in the top, middle, and bottom panels of the figure, 

respectively. Solid vertical lines separate data from different dyads and dashed vertical lines 

separate data from different pigeons within the same dyad.   



  44 
 

conditions. Reinforcement rates during mutual-reinforcement phases consistently were equal to 

or lower than those from corresponding independent-reinforcement phases. Increases in 

coordination percentages during mutual-reinforcement phases therefore cannot be attributed to 

increases in reinforcement rates, which supports the conclusion that mutual-reinforcement 

contingencies lead to greater levels of coordinated responding. 

The present results, therefore, both support and extend those of Tan and Hackenberg 

(2016), de Carvalho et al. (2018, 2019), and Experiment 1 by demonstrating that the imposition 

of a mutual-reinforcement contingency generates more coordinated responding even when the 

schedule of reinforcement does not change along with the change in contingencies and variable, 

unsignaled delays to reinforcement are eliminated from the independent-reinforcement phase. 

Furthermore, the use of a VI schedule in contrast to the ratio schedules used in previous 

experiments illustrates that mutual-reinforcement contingencies can reinforce coordination 

according to an interval schedule, and thus extends the scope of schedules under which 

coordination has been documented to occur.  

Coordination Magnitude. Coordination percentages from the independent-

reinforcement phase of the present one-key condition (16.6% on average across all dyads) were 

substantially greater than those reported previously by both Tan and Hackenberg (2016) and de 

Carvalho et al. (2018, 2019; 2.9-10.6% across the three experiments). This disparity may be 

attributed to differences in how independent-reinforcement phases were conducted across the 

four experiments. In prior experiments, as noted in the introduction, either the functional control 

of one dyad member’s responding by a VT schedule (de Carvalho et al., 2018; Tan & 

Hackenberg, 2016) or variable, unsignaled delays to reinforcement (de Carvalho et al., 2019) 

may have contributed to the sharp declines in coordination percentages. 
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Conversely, in the present experiment, these limitations were addressed by enacting 

separate VI schedules for each dyad member during independent-reinforcement phases. Because 

reinforcement during both phases depended on responding from both dyad members and 

occurred immediately on completion of the programmed schedule requirements, responding by 

both dyad members was maintained during both mutual- and independent-reinforcement phases. 

This is shown in Figure 10, in which response rates are plotted as a function of the presence or 

absence of the mutual-reinforcement contingency under all key conditions for all six pigeons. 

These data suggest that in these previous experiments the magnitude of the effect of the mutual-

reinforcement contingency may have been overestimated. As response-independent 

reinforcement (Zeiler, 1968; Rescorla & Skucy, 1969) and long delays to reinforcement 

(Arbuckle & Lattal, 1988; Lattal, 2010; Richards, 1981; Sizemore & Lattal, 1978) decrease the 

rate of responding, coordination is less likely. This stands in contrast to simply setting up a 

context in which responses were reinforced, but simultaneously coordinated responses were not 

required for reinforcement, as in the present experiment. Thus, the present procedures serve as a 

clarification of the potential impact of the selective reinforcement of coordinated responses on 

behavior. 

Effects of Keylight Consistency Across Trials. The active pair of keys for each trial of 

a session was determined as described for Experiment 1, and thus the order of active pairs was 

not held constant across sessions. To determine if, as in Experiment 1, this influenced 

coordination percentages, Figure 11 shows coordination percentages plotted as a function of the 

percentage of trial-to-trial transitions during which the transilluminated key(s) did not change. 

During both conditions, coordination percentages decreased slightly with increases in the 

frequency of consecutive-key trials for all three dyads. Simple linear regressions did not reveal 
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Figure 10 

Response rates for each pigeon in Experiment 2 as a function of the presence or absence of the 

mutual-reinforcement contingency. 

 

Note. Bars represent mean response rates from the final four sessions of a phase, and error bars 

represent ±1 standard error of the mean for those same sessions. Data from the one-, two-, and 

three-key conditions are shown in the top, middle, and bottom panels of the figure, respectively. 

Solid vertical lines separate data from different dyads and dashed vertical lines separate data 

from different pigeons within the same dyad.  
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Figure 11 

Coordination percentages for each dyad in Experiment 2 as a function of the percentage of trial-

to-trial transitions that the active pair remained constant.  

 

Note. The top and bottom four panels show data from the one- and two-key conditions, 

respectively. Within each condition, the first three panels show data from individual dyads, and 

the bottom-right panel shows data from all three dyads. Dashed lines show linear regressions 

calculated to fit the data.   
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significant relations between the two variables at either the one- (p = 0.38 for Dyad 19222-

19957, p = 0.81 for Dyad 18057-11829, and p = 0.81 for Dyad 18390-21055) or two-key 

conditions (p = 0.39 for Dyad 19222-19957, p = 0.67 for Dyad 18057-11829, and p = 0.33 for 

Dyad 18390-21055). The absence of a significant relation between the two variables at both 

conditions was replicated when the data from all three dyads were compiled together (p = 0.46 

during the one-key condition and p = 0.77 during the two-key condition). The implications of 

this analysis will be explored in the General Discussion section. 

Effects of the Number of Keys  

Changes in Coordination Percentages. Mean coordination percentages for each dyad 

from the final four sessions of each phase – the same data depicted in Figure 8 – are shown in 

Figure 12 as a function of the number of keys across which responses could be distributed. For 

all three dyads during independent-reinforcement phase sessions (top panel), progressively lower 

coordination percentages were obtained with the addition of pairs of keys in addition to the 

active pair. Across dyads, between 16.1% and 17.2% of responses were coordinated with a single 

key, between 8.3% and 11.8% with two keys, and between 5.1% and 9.5% with all three keys 

(these ranges for the two- and three-key conditions include data from both the initial exposure 

and replications). This same pattern occurred across key conditions during the mutual-

reinforcement phase. Across dyads, between 20.2% and 24.0% of responses were coordinated 

with a single key, between 10.2% and 14.1% with two keys, and between 9.0% and 9.9% when 

all three keys were transilluminated (note that the ranges for the two- and three-key conditions 

include data from both the initial exposure and replications).  

Comparison to Previous Findings. As with Experiment 1, The data in Figure 12 show a 

negative, roughly logarithmic change in coordination percentages as the number of pairs of keys 
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Figure 12 

Coordination percentages for each pigeon in Experiment 2 as a function of the number of 

transilluminated keys. 

 

Note. Bars represent mean coordination percentage from the final four sessions of a condition, 

and error bars represent ±1 standard error of the mean for those same sessions. Data from the 

independent- and mutual-reinforcement phases are shown in the top and bottom panels of the 

figure, respectively.  
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increases (replications are grouped with the initial condition). For this experiment, however, the 

effect was replicated throughout both independent- and mutual-reinforcement phases. During 

independent-reinforcement phases mean coordination percentages for all three dyads were 

16.6%, 10.6%, and 6.6% when 1, 2, or 3 pairs of keys, respectively, were present. Thus, there 

was a 6.0 percentage-point decrease with the addition of a second key, but only a further 4.0 

percentage-point decrease when a third pair of keys was in effect. During the mutual-

reinforcement phase mean coordination percentages for all three dyads were 22.3%, 12.6%, and 

9.5% at the one-, two-, and three-key conditions, respectively. Thus, there was a 9.7 percentage-

point decrease with the addition of a second key, but only a 3.1 percentage-point decrease when 

adding a third key during the independent-reinforcement phase. 

The analysis of the two- and three-key conditions in the present experiment thus extends 

the results reported in Experiment 1 by demonstrating the two principle effects reported during 

the two- and three-key conditions with a different schedule of reinforcement besides FR 1. Less 

coordinated responding occurred with the inclusion of other pairs of keys besides the active pair, 

and the majority of the decreases in coordinated responding with additional keys occurred when 

just one operandum was included. Additional investigations under other schedules of 

reinforcement and with additional numbers of response options are warranted to confirm the 

generality of these effects.  

Interaction Between the Mutual-Reinforcement Contingency and the Number of Keys 

 Figure 13 shows differences in coordination percentages between corresponding mutual- 

and independent-reinforcement phases across each of the three different key conditions for all 

three dyads. For all three dyads the largest difference in coordination percentages between 

mutual- and independent-reinforcement phase sessions occurred during the one-key condition, 
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Figure 13 

Difference in percentage of coordinated responses across consecutive mutual- and independent-

reinforcement phases at each key condition for all three dyads in Experiment 2. 

 

Note. Bars represent differences in mean coordination percentage between each mutual-

reinforcement phase and either the immediately preceding (first bar) or following (second bar) 

independent-reinforcement phase. 
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similar to one of the two dyads from Experiment 1. Averaging across dyads, coordination 

percentages were approximately 5.8 percentage points larger in the mutual- than in the 

independent-reinforcement phase. Although this same general pattern was obtained with the 

other two keys, the difference between mutual-reinforcement phase and independent-

reinforcement phase sessions was larger during the three-key condition than during the two-key 

condition. Averaging across dyads, overall coordination percentages in the mutual-reinforcement 

phase were approximately 1.9 percentage points larger than those in the independent-

reinforcement phase during the two-key condition, and 2.9 percentage points greater in the three-

key condition. 

 The presence of a second pair of keys diminished the difference in coordination 

percentages between mutual- and independent-reinforcement phases. Adding a third pair of keys 

did not further systematically diminish this distinction, as – compared to the differences between 

the one- and two-key conditions – little differences were observed between the two- and three-

key conditions. 

General Discussion 

Across two experiments, alternations between mutual- and independent-reinforcement 

phases generally revealed greater coordination percentages when coordinated responding was 

required for reinforcement than when it was not. The one condition during which this did not 

occur was the one-key condition of Experiment 1, when an FR 1 schedule was used. Barring this 

exception, coordination percentages were greater during mutual- than independent-reinforcement 

phases regardless of the schedule of reinforcement or the number of operanda across which 

responses could be distributed. The number of response options, however, did influence 
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coordination, as coordination percentages – regardless of experimental phase – decreased as 

more keys were transilluminated. 

To determine if mutual-reinforcement contingencies truly induce coordinated responding, 

rather than responding that merely appears to be coordinated due to the independent control by 

two identical schedules of reinforcement across subjects, past experimenters compared behavior 

under mutual-reinforcement phases in which coordinated responding was reinforced selectively 

and independent-reinforcement phases in which it was not (i.e., de Carvalho et al., 2018, 2019; 

Tan & Hackenberg, 2016). Although results from these earlier experiments suggested that 

mutual-reinforcement contingencies increase the frequency of coordinated responding, changes 

in multiple variables across phases of the experiments, differences in the schedule functionally in 

place between pairs of coordinating subjects, and the absence of requirements for spatial 

coordination all have precluded an unequivocal conclusion of such. 

In the present experiments, all three limitations were addressed. By holding the schedule 

of reinforcement constant across phases and between dyad members, the results of prior 

assessments of coordinated responding (e.g., de Carvalho et al., 2018, 2019; Tan & Hackenberg, 

2016) were supported by demonstrating that increased coordinated responding during mutual-

reinforcement phases was a consequence of the mutual-reinforcement contingency, and not due 

to byproduct mutualism or other changes in conditions across phases. Furthermore, the inclusion 

of conditions with more than a single response option built upon Skinner’s (1962) observations 

by demonstrating that greater coordination percentages occurred during mutual- than 

independent-reinforcement phases even in contexts in which responses could be distributed 

across multiple operanda. 
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Prior assessments of coordinated responding, with only the exception of Skinner (1962), 

have reinforced coordination across a single pair of response options (de Carvalho et al., 2018, 

2019, 2020; Łopuch & Popik, 2011; Tan & Hackenberg, 2016). Although Skinner reinforced 

coordinated responding across three pairs of response options, comparisons to conditions with 

fewer pairs of operanda were not included. Thus, the present experiments are the first to explore 

the effects of the number of response options on coordinated responding. As described 

previously for both experiments, coordination percentages were greatest during the one-key 

condition, regardless of whether coordinated responding selectively was reinforced. Increasing 

the number of response options produced decreases in coordinated responding, and the largest 

decreases occurred with the addition of just one more key. Furthermore, differences in 

coordination percentages between mutual- and independent-reinforcement phases generally were 

less pronounced when more response options were included. The present results, therefore, not 

only provide empirical support for Skinner’s assertion that a mutual reinforcement contingency 

can maintain coordinated responding across three pairs of responses options, but also reveal that 

the number of response options affects the amount of coordination. This demonstrates the 

importance of the environmental context with regard to how a mutual-reinforcement contingency 

influences coordinated responding. 

Coordination Magnitude 

Previously, de Carvalho and colleagues reported coordination percentages between 8.8 

(de Carvalho et al., 2019) and 15.7 (Tan & Hackenberg, 2016) percentage points greater during 

mutual- than independent-reinforcement phases. Table 2 shows average differences in 

coordination percentages across mutual- and independent-reinforcement phases in all three 

conditions of both present experiments for each dyad that showed an effect of the 
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Table 2

Experiment Dyad 1 Key 2 Keys 3 Keys

824/2215 2.0 3.6 5.0

8964/19841 7.4 5.6 2.2
*

Average 4.7 4.6 3.6

19222/19957 5.7 1.8 3.7

18057/11829 5.5 1.6 3.4

18390/21055 6.2 2.5 1.6

Average 5.8 1.9 2.9

Note . Only conditions in which mean coordination percentages during 

mutual-reinforcement phases were greater than that of independent-

reinforcement phases, irrespective of variability, are shown. Consequently, 

the first exposure of the indicated condition was excluded. If the 

difference in coordination percentages for this transition is included in the 

calculation, the average difference between the phases is 1.1 percentage 

points.

2

1

Average differences in coordination percentages between mutual- 

and independent-reinforcement phases during each condition of 

Experiments 1 and 2
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mutual-reinforcement contingency. As described above, differences between mutual- and 

independent-reinforcement phases were most pronounced during the one-key condition for four 

of the five dyads across both experiments. However, even during this condition, the effects of the 

mutual-reinforcement contingency on coordinated responding were not as pronounced as those 

reported in prior experiments. 

There are, at least, two explanations for the smaller differences in coordination 

percentages across phases compared to that of prior experiments. First, the previous experimental 

evaluations of coordinated responding involved a single response option. In the present 

experiments, including just one additional response option generally reduced differences in 

coordinated responding across phases relative to that observed with one operandum. Thus, it 

appears that conclusions from prior assessments of coordinated responding are not fully 

generalizable to settings involving a greater number of response options. The influence of the 

number of response options, however, does not fully account for the discrepancy with past 

results because even differences in coordination percentages across phases at the one-key 

condition were smaller than those reported previously, calling for further explanation.  

Table 3 shows average coordination percentages during mutual- and independent-

reinforcement phases from both present experiments (only for dyads for which the mean of the 

former was greater than that of the latter), de Carvalho et al. (2018, 2019), and Tan and 

Hackenberg (2016) grouped by the schedule of reinforcement in effect during the mutual-

reinforcement phase. Generally, coordination percentages from mutual-reinforcement phases in 

the present experiments were comparable to those obtained under similar schedules of 

reinforcement in previous experiments. Coordination percentages during independent-

reinforcement phases, conversely, were larger than their counterparts from previous experiments.  
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Table 3

Schedule of 

Reinforcement Experiment

Schedule During Mutual-

Reinforcement Phase

Mutual 

Reinforcement

Independent 

Reinforcement Difference

Tan & Hackenberg (2016) FR 1 18.6 2.9 15.7

de Carvalho et al. (2018) FR 6 20.3 5.5 14.8

de Carvalho et al. (2019) FR 6 20.6 10.6 10.0

Katz (2021) FR 1 27.3
*

22.6
*

4.7
*

de Carvalho et al. (2019) VI 26.4 s 19.4 10.6 8.8

Katz (2021) VI 20 s 22.3 16.6 5.8

Note . For the present experiments, only dyads for which mean coordination percentages during mutual-reinforcement 

phases were greater than that of independent-reinforcement phases, irrespective of variability, are shown. Consequently, 

Dyad 4079-7472 was ommitted from the indicated averages. If coordination percentages for this dyad are included, the 

averages for the mutual- and independent-reinforcement phases are 25.7% and 24.3%, respectively, for a difference of 1.4 

percentage points. The VI schedule from de Carvalho et al. (2019) is the average of the different VI schedules for each 

dyad.

FR

VI

Average differences in coordination percentages between mutual- and independent-reinforcement phases with a 

single operandum across different experiments
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This suggests that the disparity in the effects of the mutual-reinforcement contingencies in the 

present and past experiments is driven largely by differences in coordination across independent-

reinforcement phases. 

The differences in coordination percentages across independent-reinforcement phases of 

different experiments may be attributed to disparities in how these phases were conducted. 

During the present experiments, reinforcers during this phase were delivered immediately 

following responses according to asynchronous schedules for each dyad member. Thus, 

responding was maintained for both dyad members and, consequently, coordinated responding, 

which requires responses from both dyad members, could occur. Conversely, as noted in the 

introduction, the conditions of at least some reinforcer deliveries during independent-

reinforcement phases in previous experiments likely led to lower response rates from one dyad 

member and, consequently, impeded coordination. Because independent-reinforcement phases in 

previous experiments were designed in a way that impeded coordinated responding, the impact 

of the mutual-reinforcement contingency likely was overestimated. Nonetheless, despite the 

smaller differences between phases in the present experiments, these differences were – with one 

exception – consistent, attesting to the reliability of the effects of the mutual-reinforcement 

contingency. 

FR 1 Considerations 

The one exception to the above trend was in the one-key condition of Experiment 1, 

during which no changes in coordination percentages occurred across phases. This stands in 

contrast to the results from past experiments concerning coordination under FR 1 schedules (e.g., 

Tan & Hackenberg, 2016) or with only a single response option (e.g., de Carvalho et al., 2018, 

2019; Tan & Hackenberg, 2016), in which greater coordination percentages occurred during 
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mutual- than independent-reinforcement phases. Furthermore, across both present experiments, 

the one-key condition of Experiment 1 was the only condition in which no substantial differences 

in coordination percentages across mutual- and independent-reinforcement phases occurred. 

Results from this condition therefore stand out as an exception to the general trends reported in 

the literature concerning coordinated responding.  

For all three dyads during the one-key condition in Experiment 1, the variability in 

coordination percentages during independent-reinforcement phases encompassed that of the 

mutual-reinforcement phase. By contrast, during all other conditions of both experiments, 

variability in coordination percentages was comparable across mutual- and independent-

reinforcement phases and was less than that of the independent-reinforcement phase during the 

one-key condition of Experiment 1. Thus, it appears that the absence of a change in coordination 

percentages across phases during the one-key condition of Experiment 1 may be attributed to the 

variability in coordination percentages during the independent-reinforcement phase. The 

variability, in turn, may have been a consequence of using two independent FR 1 schedules 

during the independent-reinforcement phase. 

Consequences of Independent Schedules 

By using two independent schedules in the independent-reinforcement phase, reinforcers 

were delivered (1) according to the same schedule of reinforcement as in the mutual-

reinforcement phase, (2) dependent on a response from a dyad member, and (3) immediately 

following a response without a variable, unsignaled delay to reinforcement. Thus, several 

limitations of previous assessments of coordinated responding (i.e., de Carvalho et al., 2018, 

2019; Tan & Hackenberg, 2016) were addressed by more closely equating the conditions of 

reinforcement across the mutual- and independent-reinforcement phases. Despite these 
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similarities, however, dyad members could progress through independent-reinforcement sessions 

asynchronously and earn reinforcers at different points in time from each other, even though the 

numbers of reinforcers earned always was the same for both conditions. 

Furthermore, because the schedules were independent, it was possible for a given key to 

be transilluminated in one dyad member’s compartment and not the other. During all three 

different conditions, this could occur if one dyad member was responding while the other was 

consuming a reinforcer or already had finished the session. Additionally, during the one- and 

two-key conditions, this was a possibility if dyad members were on different trials with different 

arrangements of transilluminated keys. As described in the Data Analysis section, responses to a 

key that was not transilluminated concurrently in the other compartment were omitted from 

coordination percentage calculations because they could not possibly have been coordinated. 

Effects of Correcting for Potentially Coordinated Responses 

This correction procedure appears to have contributed to the variability observed in the 

one-key condition of Experiment 1. Table 4 compares the average total and corrected number of 

responses (i.e., all responses and only those made when that same key was transilluminated in 

the other compartment) made across dyads during independent-reinforcement phases of all three 

conditions in both experiments. During the one-key condition of Experiment 1 only 60 responses 

were made because sessions ended after both dyad members earned 30 reinforcers. This number, 

which already was smaller than the total number of responses during the other conditions of both 

experiments, was reduced further when only counting responses with the opportunity for 

coordination. In the one-key condition of Experiment 1 only 12.7 responses on average across all 

three dyads were used in the denominator of coordination percentage calculations. Given this 

small value, even minor changes in coordination from session to session would result in  
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Table 4

Total Corrected Total Corrected Total Corrected

824/2215 60.0 14.0 281.6 117.5 514.6 393.7

8964/19841 60.0 12.4 221.5 74.4 375.7 325.3

4079/7472 60.0 11.8 271.8 96.5 488.0 457.0

Average 60.0 12.7 258.3 96.1 459.4 392.0

19222/19957 982.8 756.8 1106.2 780.9 1232.0 1141.8

18057/11829 764.5 579.3 1057.4 788.1 1095.4 1054.2

18390/21055 1274.5 1047.5 1558.8 1242.4 2045.6 2070.9

Average 1007.3 794.5 1240.8 937.1 1457.6 1422.3

Average number of total and corrected responses during each condition of Experiments 1 and 2

2 Keys 3 Keys

2

1

Experiment Dyad

1 Key
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relatively large fluctuations in coordination percentages, leading to the greater variability that 

occurred in this condition of Experiment 1 exclusively. 

The correction procedure also affected the one-key condition to a greater extent than the 

other conditions because the single transilluminated key could change location from one trial to 

the next. Although the active key could change location across trials during all conditions, during 

the one-key condition the active key was the only operative key at any given time. Thus, 

virtually all responses made throughout a session were directed to the active key and, because an 

FR 1 schedule was in effect, produced reinforcers and ended the current trial. Sessions were 

designed so that the active pair was distributed equally across all three keys throughout each 

session, and thus the start of a new trial often coincided with the active pair changing location to 

a new key. Because of this rapid switching of the active pair from key to key, only a fraction of 

the total responses from a session occurred when the same keys were transilluminated in both 

compartments. During the two-key condition of Experiment 1, by contrast, a second key was 

transilluminated during each trial. On some trials, responses were made to this key before a 

response was made to the active key to produce a reinforcer. Therefore, in general there were 

more responses during trials in the two-key condition of Experiment 1, and consequently more 

responses that potentially could have been coordinated occurred. The addition of a third 

transilluminated key in the three-key condition further increased opportunities for coordination. 

The VI schedule used in Experiment 2 similarly increased the number of responses that 

could be made on any given trial. Even during the one-key condition, the fact that, on average, 

20 s needed to pass before a response produced a reinforcer meant that more time was spent with 

the same key transilluminated across compartments, and thus more responses with the potential 
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for coordination were made. This effect was even more pronounced with the presence of 

additional keys during the two- and three-key conditions. 

Effects of Changing Keys on Coordinated Responses 

As noted in the Results section of Experiment 1, the order in which keys were 

transilluminated during the one- and two-key conditions varied from session to session. Thus, 

there were differences across sessions in the number of consecutive trials across which the keys 

that were transilluminated remained the same. In Experiment 1, the more frequently the active 

pair remained consistent across trials the higher the coordination percentage (Figure 5, top 

panels). Conversely, when a second key (Figure 5, bottom panels), VI schedule (Figure 11, top 

panels), or both (Figure 11, bottom panels) were used, no significant relation between the two 

variables was obtained. These differences suggest that the switching of transilluminated keys 

further contributed to the variability in coordination percentages during the one-key condition of 

Experiment 1. 

Taken together, the asynchronous FR 1 schedules during the independent-reinforcement 

phase limited the number of responses with the potential for coordination. Furthermore, session-

to-session changes in the number of trials across which the transilluminated keys changed 

induced variability in the number of coordinated responses across sessions. As a result of the 

diminished number of potentially coordinated responses, even small changes in the number of 

coordinated responses across sessions resulted in relatively large changes in coordination 

percentages. 

Future Directions 

In addition to demonstrating how mutual-reinforcement contingencies can promote 

coordinated responding across different schedules of reinforcement and numbers of response 
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options, the present results suggest several directions for further analysis of coordinated 

responding as an operant. 

Asynchronous Independent Schedules 

Addressing the limitations that the use of asynchronous, independent schedules of 

reinforcement imposed during the one-key condition of Experiment 1 is necessary to eliminate 

the variability during the independent-reinforcement phase and determine if greater coordination 

percentages occur during mutual-reinforcement phases under these conditions. This could be 

done by holding the location of the active pair constant across trials, as opposed to having it 

distributed equally across all three response options throughout a session. This would have two 

benefits. First, because the active key would no longer potentially change location with each 

response, the same pair of keys would remain transilluminated – outside of reinforcer deliveries 

– for the entire session. Thus, the number of potentially coordinated responses in a given session 

likely would increase, and any slight session-to-session variations in the number of coordinated 

responses would have a smaller impact on coordination percentages. Second, the number of 

consecutive trials across which the same active key was transilluminated would be constant 

across sessions. Therefore, an additional source of variability in the number of coordinated 

responses, and in turn coordination percentages, would be eliminated.  

Delays to Reinforcement 

 As described previously, one purpose of the asynchronous, independent schedules of 

reinforcement during independent-reinforcement phases was to eliminate variable, unsignaled 

delays to reinforcement (cf. de Carvalho et al., 2019). Such delays, however, persisted during the 

mutual-reinforcement phase because reinforcement was dependent on a pair of responses, one 

from each dyad member. Whichever dyad member initiated a coordinated response earned a 
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reinforcer after, at most, a 0.5-s delay (the duration of the mutual-reinforcement contingency), 

whereas the dyad member to complete the coordinated response earned a reinforcer immediately. 

Thus, although the elimination of variable, unsignaled delays to reinforcement from the 

independent-reinforcement phase addressed the limitations of de Carvalho et al. (2019) noted in 

the introduction, it also introduced a difference in conditions across phases that may have 

influenced the coordination percentages. 

 One way to address this confounding variable would be to record, throughout the mutual-

reinforcement phase, the delays to reinforcement incurred by each dyad member. An average 

delay to reinforcement then could be calculated for each and introduced to the independent-

reinforcement phases as a tandem variable-time (VT) schedule. This would, effectively, yoke 

delays to reinforcement across mutual- and independent-reinforcement phases, and control for 

such as a confounding variable that may influence coordination percentages. 

Further Assessments of Interval Schedules 

Comparatively little attention has been given to coordination under interval schedules 

(e.g., de Carvalho et al., 2019) compared to under ratio schedules (e.g., de Carvalho et al., 2018, 

2019, 2020; Skinner, 1962; Łopuch & Popik, 2011; Tan & Hackenberg, 2016). As such, 

variables influencing coordinated responding under interval schedules have not been explored 

sufficiently. One such variable that has been shown to influence coordination under ratio 

schedules is the schedule of reinforcement. As found by de Carvalho et al. (2018), coordination 

ratios are significantly greater under intermittent schedules compared to a schedule of continuous 

reinforcement, and under VR compared to FR schedules. Additionally, the response requirement 

of a given ratio schedule appears to influence coordination. For instance, de Carvalho et al. 

(2020) reinforced coordinated responding according to eight different FR schedules and found 



  66 
 

that as response requirements increased beyond FR 1 both coordinated response rates and 

coordinated ratios increased to a point, beyond which they decreased. No similar assessments 

regarding (1) differences in coordination percentages between FI and VI schedules, as was done 

for FR and VR schedules, or (2) changes in coordination percentages as a function of rate of 

reinforcement (interval duration) have been conducted, and thus serve as a promising avenue for 

future experimentation. 

Conclusions 

The present results confirm Skinner’s (1962) general conclusion that coordination can 

function as an operant, and extend this finding to other conditions not explored previously by 

Skinner or others (i.e., de Carvalho et al., 2018, 2019; Tan & Hackenberg, 2016). Coordination 

percentages systematically decreased as the number of response options increased, 

demonstrating that the environmental context plays a role in the extent to which coordination 

occurs. Furthermore, the fact that the effect of the mutual-reinforcement contingency generally 

decreased with increasing numbers of response options indicates that the effects of mutual-

reinforcement contingencies documented in prior experiments using only a single response 

cannot necessarily be generalized to other contexts.  

That the arranged contingencies selectively reinforced coordinated responding indicates 

that coordination can function as an operant. It therefore follows that, outside of laboratory 

settings, cooperation among humans could be promoted by enacting similar contingencies 

selectively reinforcing coordinated responding. Based on the present results, training coordinated 

responding may be most successful when only one response option with a history of 

reinforcement is available. Take, for example, a pair of students who together must complete 

three group projects: one each in Biology, Chemistry, and Physics. Coordinated progress on any 



  67 
 

one project during the corresponding class period may be facilitated by putting the materials for 

the others away, thus precluding work on those subjects. 

Nevertheless, the fact that more coordinated responding occurred with a single response 

option does not mean that only one coordinated response may be trained at a time. During the 

present experiments, for example, three distinct coordinated responses were trained 

simultaneously. The effectiveness of the mutual-reinforcement contingency, however, was 

greater when only the operanda for a single coordinated response were presented (the one-key 

condition) compared to when the operanda for multiple coordinated responses were available 

(the two- and three-key conditions). Extending from the example above, the science teachers 

would not need to coordinate among themselves so that only a single project was assigned at a 

time. Merely establishing a context in which only one project presently is being worked on – 

even when the others may be in the future – appears to be sufficient to facilitate coordinated 

responding.  

In the present experiments, manipulating the number of available response options 

amounted to turning on or off the other pairs of response keys other than the active pair. Outside 

of the laboratory, however, arranging the environment so that response options are limited may 

not be accomplished as readily. Continuing with the example above, the equivalent to turning off 

two of the response keys, thus leaving a single source of reinforcement remaining, would be to 

restrict access to all other sources of reinforcement in the classroom besides coordinated work on 

that class’s group project. Thus, it is necessary to identify other influences that promote 

coordinated responding that may be simple to enact in situations in which the number of 

response options cannot be modified. 
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According to Skinner (1953), the ultimate goal of behavior analysis is the prediction and 

control of behavior. To that end, “Any condition or event which can be shown to have an effect 

upon behavior must be taken into account” (Skinner, 1953, p. 23) as an influence on behavior. 

According to the present results, coordinated responding functions as an operant sensitive to 

contingencies of reinforcement. As such, it appears that coordinated responding, and by 

extension social behavior more generally, can be predicted and controlled within the same 

general framework as operant behavior examined with single organisms. The present 

experiments serve as a foundation for future research in a wider array of contexts to explore 

additional influences on coordination, and in turn establish a broader degree of prediction and 

control of social behavior. 
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