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Abstract 

Dynamic Optimization Algorithms for Baseload Power Plant 
Cycling under Variable Renewable Energy 

Rebecca Kim 

The growing deployment of variable renewable energy (VRE) sources, such as wind and 

solar, is mainly due to the decline in the cost of renewable technologies and the increase 

of societal and cultural pressures. Solar and wind power generation are also known to 

have zero marginal costs and fuel emissions during dispatch. Thereby, the VRE from 

these sources should be prioritized when available. However, the rapid deployment of 

VRE has heightened concerns regarding the challenges in the integration between fossil-

fueled and renewable energy systems. The high variability introduced by the VRE as well 

as the limited alignment between demand and wind/solar power generation led to the 

increased need of dispatchable energy sources such as baseload natural gas- and coal-

fired power plants to cycle their power outputs more often to reliably supply the net load. 

The increasing power plant cycling can introduce unexpected inefficiencies into the 

system that potentially incur higher costs, emissions, and wear-and-tear, as the power 

plants are no longer operating at their optimal design points.  

In this dissertation, dynamic optimization algorithms are developed and implemented for 

baseload power plant cycling under VRE penetration. Specifically, two different dynamic 

optimization strategies are developed for the minute and hourly time scales of grid 

operation. The minute-level strategy is based on a mixed-integer linear programming 

(MILP) formulation for dynamic dispatch of energy systems, such as natural gas- and 

coal-fired power plants and sodium sulfur batteries, under VRE while considering power 

plant equipment health-related constraints. The hourly-level strategy is based on a 

Nonlinear Multi-objective dynamic real-time Predictive Optimization (NMPO) 

implemented in a supercritical pulverized coal-fired (SCPC) power plant with a 

postcombustion carbon capture system (CCS), considering economic and environmental 

objectives. Different strategies are employed and explored to improve computational 
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tractability, such as mathematical reformulations, automatic differentiation (AD), and 

parallelization of a metaheuristic particle swarm optimization (PSO) component. 

The MILP-based dynamic dispatch framework is used to simulate case studies 

considering different loads and renewable penetration levels for a suite of energy systems. 

The results show that grid flexibility is mostly provided by the natural gas power plant, 

while the batteries are used sparingly. Additionally, considering the post-optimization 

equivalent carbon analysis, the environmental performance is intrinsically connected to 

grid flexibility and the level of VRE penetration. The stress results reinforce the necessity 

of further considering and including equipment health-related constraints during dispatch. 

The results of the NMPO successfully implemented for a large-scale SCPC-CCS show 

that the optimal compromise is automatically chosen from the Pareto front according to a 

set of weights for the objectives with minimal interaction between the framework and the 

decision maker. They also indicate that to setup the optimization thresholds and 

constraints, knowledge of the power system operations is essential. Finally, the market 

and carbon policies have an impact on the optimal compromise between the economic 

and environmental objectives. 
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𝜎𝜃,𝑏𝑜𝑑𝑦
𝑇  – tangential stress due to temperature (thermal stress) 

Φn  – objective function(s) 

𝜒 – vector of regressors 

𝜓 – wavelet function 

Ω, Ω1, Ω2, 𝛾 – constriction factors 
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1. Introduction 

Changes in global climate, societal and cultural pressures, in conjunction with the 

decrease of renewable technologies cost, stimulated an increase of variable renewable 

energy (VRE) participation in the power generation grid (REN21, 2018). VRE is defined 

here as any type of renewable energy that cannot be dispatched as needed, i.e., the 

energy is only available when the fuel source is naturally available, and usually presents 

intermittency in power output (EIA, 2019a). The most common VRE sources are solar 

and wind, which are becoming more cost competitive with solar technology costs falling 

85% and wind costs falling 36% between 2008 and 2016 (Houser et al., 2017). Besides 

being non-dispatchable technologies when not coupled with energy storage, solar and 

wind are also known to have limited alignment with electricity demand (USAID-NREL 

Partnership, 2019). In other words, the period that the VRE is available does not 

necessarily coincides when the electricity demand peaks. Therefore, to maintain the 

reliability of energy supply, dispatchable technologies need to be used to supply the net 

load. 

Due to the introduction of such disruptive VRE technologies, even fossil-fired power 

plants originally designed to operate in constant power output, i.e., baseload thermal 

power plants, need to cycle their load to maintain the power balance (Bentek, 2010). The 

cycling of baseload power plant is not ideal, as power plants must be ramped up/down to 

accommodate the variability. Baseload capacity is mostly provided by coal-fired and 

nuclear power plants, with the more modern natural gas power plants often performing 

as load-following power plants. Between nuclear and coal technologies, the baseload 

coal-fired power plants are chosen to cycle their load due to safety reasons. For instance, 

Figure 1.1 shows the load profiles from the gas- and coal-fired Cherokee Power Station, 

in which the coal power generation needs to significantly and rapidly ramp up and down 

to accommodate the wind event (circled portions), while the gas power generation 

provides the peak load. 

Some of the main concerns associated with an increase of unexpected power plant 

cycling are: 1) the required power plant minimum operating loads; 2) environmental 

performance during cycling due to loss of governance of the pollution control units; and 
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3) prohibitive ramping rates and lower efficiency, which may increase unplanned 

operations and maintenance costs (Bentek, 2010; Grol et al., 2015; Wang et al., 2020). 

 

Figure 1.1. Power load cycling profile for the Cherokee power plant during a wind event 

on July 2nd, 2008 (adapted from Bentek, 2010) 

Considering the challenging task of operating and controlling cycling power plants, the 

optimal operation of these power plants has recently been a topic of research in the 

Process Systems Engineering field (Dowell and Shah, 2014; Bankole et al., 2018; He 

and Lima, 2020). The optimization approach should be implemented at different time 

scales from the power system operations. In the unit commitment level, operation 

planners schedule enough units to meet the forecasted demand and manage the 

reserves, usually between six hours to a few days ahead. Throughout the day, operators 

and traders usually give hourly schedules to units and will make trades based on 

economics. As real-time approaches, operators adjust generator schedules to dispatch 

the quickly changing demand. Units with sufficient ramping capabilities are often used to 

meet demand on a five-minute to one-hour time basis (Ela and Kemper, 2009). 

Therefore, considering that the power plant never reaches steady state due to cycling, 

the dynamics of these energy systems become relevant to determine the optimal 

operation policies. Additionally, more than one stakeholder should be considered as the 

economic, environmental, and power plant health performances are affected during 

cycling. The North American Electric Reliability Corporation (NERC) has reported that the 
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three main identified roots of disturbances in the grid are management/organization (40%), 

design/engineering (30%), and equipment/material (11%) (NERC, 2020). These three 

main drivers can at some level be addressed using process systems engineering 

strategies. 

A general optimization and control framework is presented in Figure 1.2. In this framework, 

the optimizer can play a role at each time scale (daily, hourly, and minute) considering 

the forcing function information such as forecasted demand, renewable penetration, and 

power economics, as well as power plant current state and health. 

 

Figure 1.2. Schematic of the interconnected optimization framework considering power 

plants, intermittent renewables, power economics, and demand 

In this context, dynamic optimization that determines optimal power plant output 

trajectories considering the system dynamics and constraints while minimizing overall 

objectives is desirable. The performed dynamic optimization can be both linear and 

nonlinear, as long as the solution can be obtained in real time. The shorter is the time 

scale, the faster the problem needs to be solved. 
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The objective in this research is to design and implement dynamic optimization algorithms 

for baseload power plant cycling under variable renewable energy penetration. Based on 

the power generation time scale, dynamic optimization frameworks are developed for the 

hourly and minute-basis time scales. The following specific aims are addressed in this 

research: 

1) Develop a Dynamic Real-Time Optimization (DRTO) approach for systems 

subject to variable conditions such as VRE penetration, electricity market prices, 

and electricity demand. This approach involves the development of dynamic 

reduced-order models and calculation of optimal output trajectories for online 

implementation on selected baseload energy systems, such as a carbon 

capture system (CCS) and supercritical pulverized coal-fired (SCPC) power 

plants. It also includes the development of a parallelized particle swarm 

optimization (ParPSO) method in MATLAB environment to initialize the 

algorithm while learning from the feasible space. A theoretical contribution on 

the intersection of DRTO with MPC and terminology is also proposed. 

2) Augment the DRTO with a Multi-Objective Optimization (MOO) method for 

systems subjected to the same variable conditions as the DRTO but also taking 

into account different objectives, e.g., economic and environmental, to find the 

optima. This approach involves the development of strategies to determine 

Pareto-optimal trajectories that can be implemented with minimal interaction 

with the decision maker for online application purposes to selected baseload 

energy systems, such as a carbon capture system (CCS) and supercritical 

pulverized coal-fired (SCPC) power plants. 

3) Design a mixed-integer and disjunctive programming dynamic optimization 

approach for dispatch of a suite of energy systems under VRE, such as storage 

units, natural gas-fired and coal-fired power plants. This approach incorporates 

power plant health-related constraints during dispatch. 

4) Establish an optimization strategy for power plants during cycling. Optimal 

operation guidance is provided to the power plant clients based on the 

developed optimization approaches. 
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1.1. Research Outputs 

The specific contributions of this dissertation are: i) development of nonlinear DRTO with 

economic and environmental objectives for a cycling SCPC plant; ii) develop a Nonlinear 

Multi-objective dynamic-real time Predictive Optimization (NMPO) framework that 

determines Pareto-optimal trajectories with minimal interaction with decision maker for 

large-scale baseload energy systems during cycling; iii) inclusion of power plant health 

constraint during energy system dispatch under VRE; and iv) theoretical discussion on 

the intersection of DRTO with MPC in the process systems engineering (PSE) field. 

The contributions of this dissertation have resulted in the following products: 

Journal Publications 

1. Rebecca Kim and Fernando V. Lima. Nonlinear Multi-objective and dynamic real-time 

Predictive Optimization (NMPO) for Optimal Operation of Baseload Power Plants 

under Variable Renewable Energy. In preparation for publication. 

2. Rebecca Kim, Yifan Wang, Sai Pushpitha Vudata, Debangsu Bhattacharyya, 

Fernando V. Lima, and Richard Turton, 2020. Dynamic Optimal Dispatch of Energy 

Systems with Intermittent Renewables and Damage Model. Mathematics 8(868). 

doi:10.3390/math8060868. 

3. Rebecca Kim and Fernando V. Lima, 2020. A Tchebycheff-based multi-objective 

combined with a PSO-SQP dynamic real-time optimization framework for cycling 

energy systems. Chemical Engineering Research and Design 156:180-194, doi: 

10.1016/j.cherd.2020.01.020. 

Conference Proceedings 

1. Sisi Guo, Rebecca Kim, Fernando V. Lima, Pei Liu, Zheng Li., 2017. Dynamic data 

reconciliation and optimization methods in coal-fired power plants. In Proceedings of 

the 2017 International Conference on Coal Science & Technology and 2017 Australia-

China Symposium on Energy, September 2017. 

 

https://doi.org/10.1016/j.cherd.2020.01.020
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Conference Presentations 

1. Rebecca Kim, Sai Pushpitha Vudata, Yifan Wang, Debangsu Bhattacharyya, 

Fernando V. Lima and Richard Turton. Optimal Dispatch of Energy Systems 

Considering Penetration of Renewables and Power Plant Health. Oral Presentation at 

AIChE Annual Meeting, Virtual, November 2020. 

2. Rebecca Kim and Fernando V. Lima. Large-scale Dynamic and Multi-Objective 

Optimization for Power Plant Cycling. Oral Presentation at AIChE Annual Meeting, 

Virtual, November 2020. 

3. Rebecca Kim, Sai Pushpitha Vudata, Yifan Wang, Debangsu Bhattacharyya, 

Fernando V. Lima and Richard Turton. Scheduling of Baseload Power Plants and 

Batteries with Integration of Renewables. Poster Presentation at AIChE Annual 

Meeting, Orlando, FL, USA, November 2019. 

4. Rebecca Kim and Fernando V. Lima. Multi-objective and Dynamic Real-time 

Optimization of Supercritical Coal-fired Power Plant Cycling. Oral Presentation at 

AIChE Annual Meeting, Orlando, FL, USA, November 2019. 

5. Ronald Alexander, Rebecca Kim, and Fernando V. Lima. Simulation, Economic 

Optimization, and Control of an Autorefrigerated Alkylation Process. Poster 

Presentation at AIChE Annual Meeting, Pittsburgh, PA, USA, November 2018. 

6. Rebecca Kim and Fernando V. Lima. Multi-objective and Dynamic Real-time 

Optimization for Postcombustion Carbon Capture Processes for Cycling Application. 

Oral Presentation at AIChE Annual Meeting, Pittsburgh, PA, USA, November 2018. 

7. Rebecca Kim and Fernando V. Lima. Nonlinear System Identification and Dynamic 

Real Time Optimization of Postcombustion CO2 Capture Processes for Cycling 

Applications. Poster Presentation at AIChE Annual Meeting, Minneapolis, MN, USA, 

November 2017. 

1.2. Dissertation Organization 

The outline for the remaining chapters of this dissertation includes a general literature 

review, which is presented in Chapter 2. The theoretical intersection of DRTO with MPC 

in PSE field is also presented in Chapter 2. All the optimization approaches, which 

includes the DRTO, the modified Tchebycheff MOO, the 𝜖-constraint MOO, the ParPSO, 
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and the mixed-integer linear programming (MILP)-based dynamic dispatch, are 

summarized in Chapter 3. In Chapter 4, two NMPO formulations are implemented in the 

SCPC with aqueous monoethanolamine (MEA)-based CCS. In Chapter 5, the MILP-

based dynamic dispatch algorithm is implemented for a suite of energy systems under 

various VRE scenarios. This suite of energy systems includes the natural-gas combined 

cycle (NGCC) power plant, the SCPC, sodium sulfur batteries, and wind and solar input 

as renewable sources. Finally, the overall conclusions of the dissertation are outlined in 

Chapter 6 and recommendations for future work are addressed in Chapter 7. 
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2. Literature Review 

This chapter presents a brief overview of the literature reviewed prior and during this 

research, following the main topics: 1) hierarchy of grid operation timeframes; 2) particle 

swarm optimization and parallelized particle swarm optimization in PSE; 3) multi-objective 

optimization in PSE; and 4) dynamic real-time optimization in the PSE field. 

2.1. Hierarchy of Grid Operation and Timeframes 

The time scale of the decision-making process in grid operation ranges from milliseconds 

to decades, a 1012s order range (US DOE, 2017, Pattison et al., 2016). Figure 2.1 shows 

the main components of the hierarchical multiscale events that occur in grid operations. 

Overall, the timeframe can be divided in three sections:  

i) long-term planning: ranges from decade to months. The main focus is on expanding the 

grid capacity and transmission lines, planning of power plant construction and 

decommissioning, and set the necessary conditions to achieve long-term goals such as 

the carbon and grid resilience goals to withstand challenging conditions. 

ii) mid-term planning: ranges from weeks to minutes. The focus here is on managing the 

installed energy portfolio, scheduling and dispatching existing energy systems, and 

responding to disruptive penetration of variable renewable energy as well as demand 

variability to maintain constant power supply. At this level, advanced model-based 

controllers, real-time and dynamic real-time optimization, and unit commitment problems 

can be solved to enhance grid performance. 

iii) regulatory response: ranges from minutes to seconds. Then, the focus of this time 

scale is on implementing the setpoints/trajectories planned in the higher order time scale 

using basic controllers. Protective relay operations also perform in this time scale. At this 

level, the priority is to safely operate the energy systems, implement the previously 

calculated planned trajectories, and respond to unexpected events at the millisecond to 

second range, if needed. 
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Figure 2.1. Illustration of the hierarchical multiscale grid operations (adapted from US 

DOE, 2017) 

Traditional system operations function within this framework. However, with the recent 

changes in energy supply, they should adapt to enable a more dynamic and integrated 

grid by growing interconnections, communications, and data flows, while addressing 

cybersecurity vulnerabilities, reliability, and resilience. 

2.2. Particle Swarm Optimization and Parallelized Particle Swarm Optimization in 

PSE 

The mathematical definition of optimization is, given a system or process, to find the best 

solution of the process in a systematic manner while considering the system constraints. 

The quality of the solution is assessed by a set of objectives. 

A meta-heuristic optimization also known as gradient-free optimization is an algorithm 

that relies on a heuristic set of rules to generate those solutions. Meta-heuristic 

programming does not require convexity or derivatives information. The rules are often 
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inspired on nature and physical phenomena, such as ant-colony optimization, simulated 

annealing, genetic and evolutionary algorithms, and particle swarm optimization. 

Particularly, the particle swarm optimization is inspired on the social behavior and 

communication within a bird flocking. The PSO is known to be simple to implement as the 

update mechanism is essentially guided by two rules and does not involve evolution 

operators such as crossover and mutation. However, as with any population-based 

optimization, the PSO relies in a large number of iterations to find the optima which then 

leads to higher computational times. Due to this limitation, the PSO is largely used to 

solve offline, steady-state, or low-dimensional size problems, when computational time is 

not a constraint (Elaiw et al., 2013; Sharafi and ElMekkawy, 2014; Sengupta et al., 2018; 

Pang et al., 2019). 

On the other hand, the simplicity of the PSO facilitates its combination with other 

optimization techniques. Furthermore, the solution of a problem solved only using a 

gradient-based optimization algorithm can be sensitive to the initial guess if the problem 

has multiple local optimal (Elaiw et al., 2013). A multi-start approach could be adopted to 

address this challenge, which is when the gradient-based algorithm is initiated with 

different initial guesses and the best solution is retrieved from the pool of solutions. The 

authors of the cited reference instead propose the hybridization of the PSO with the 

sequential quadratic programming (SQP) to solve a dynamic economic and 

environmental dispatch problem with ramping constraints. 

In addition to combining the PSO with gradient-based techniques, the PSO algorithm can 

be easily parallelized in different ways with various topologies to improve the 

computational time and solve a problem that is time sensitive (Venter and 

Sobieszczanski-Sobieski, 2005; Sengupta et al., 2018; Pang et al., 2019).  

2.3. Multi-objective Optimization in PSE 

As in many PSE problems, the optimization of cycling energy systems under VRE has 

more than one stakeholder that should be considered during the decision-making process, 

such as economic, environmental, safety, and power plant health. In this type of problems, 

a multi-objective optimization formulation should be employed to return optimal 
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compromises between objectives (Diwekar, 2008). However, often only an economic 

objective is considered during the optimization performed by grid operators. 

For instance, during the winter of 2021, the Texas Interconnection managed by the 

Electric Reliability Council of Texas (ERCOT) faced one of the most challenging weather 

conditions to date. The conditions were caused by the polar vortex spilling into lower 

latitudes partly due to the global climate change (Weber and Bleed, 2021). The extreme 

cold weather affected several power plant equipment and pipelines that were not properly 

conditioned (ERCOT, 2021a) and ERCOT announced that about 30 GW of generation 

were forced off the system (ERCOT, 2021b). Therefore, rolling blackouts were 

implemented to curb demand, lowering the strain on power grids, and left more than an 

estimated 3 million customers without power (Weber and Bleed, 2021). Previous weather 

events show that failure to supply energy during extreme weather events have already 

been suffered by ERCOT in the past, such as the outages in 2011 and 1989 (FERC, 

2011). Particularly, the Texas electricity market is known to be unregulated, i.e., 

customers can pick their electricity providers in a purely market-driven system. However, 

the analysis of the most recent outage event indicate that the lack of equipment 

conditioning, which caused the operational inadequacies, can be mostly attributed to 

cutdown of operational and maintenance costs and lack of preparedness incentives. In 

other words, the sole minimization of costs led to operating zones that significantly 

reduced the grid reliability during challenging conditions. 

Moreover, considering the global climate changes that directly affect the grid operation in 

conjunction with the other consequences pointed by the 2018 Intergovernmental Panel 

on Climate Change (IPCC) report (IPCC, 2018), there is a need to significantly reduce 

the amount of anthropogenic greenhouse gases, such as the carbon dioxide, in the 

atmosphere. In this context, the environmental performance of energy system is a critical 

component as well, and thus should be considered as a separate objective. 

A previous study has already acknowledged that multiple stakeholders should be 

considered during the dynamic optimization of energy system (Trifkovic et al., 2014). The 

multiple objectives were accounted by using a weighted sum of objectives into a single 

objective. The weights were chosen based on economic criteria. However, this MOO 
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methodology does not guarantee that the optimal solution is a Pareto-optimal point. 

Another two common ways used to account the multiple objectives are either to adopt the 

economic objective as the main problem objective and constrain the environmental 

objective by an arbitrarily set value (Dowell and Shah, 2014), or to assess environmental 

performance by sensitivity analysis (Bankole et al., 2018). Neither of those pathways 

consider a methodology that aims to choose a Pareto-optimal compromise. 

2.4. Dynamic Real-time Optimization in PSE 

In the PSE field, the optimization is often performed to improve the steady-state behavior, 

considering that the system dynamics can be neglected. Under this hypothesis, the 

system can be described by a set of algebraic equations without time dependency. This 

assumption greatly simplifies the problem formulation, requiring less computational time 

when compared to the same problem size that accounts for time dependency. Also, the 

computational time is usually not a constraint as the optimal solution is not associated to 

time-dependent circumstances and valid for the steady-state operation. 

However, the increasing need of improving process economics, efficiency, and product 

quality in a globalized market environment motivated the establishment of the real-time 

optimization (RTO) field which integrates economics and control performance. Often, the 

RTO is a linear or nonlinear steady-state optimization that calculates optimal setpoints, 

solved usually in time scale of hours to days. The RTO provides the optimal setpoints to 

a lower-level advanced controller, which in turn usually contains the system dynamic 

models (Tosukhowong et al., 2004; Camara et al., 2016; Jamaludin and Swartz, 2017; Li 

and Swartz, 2018).  

One study pointed out that the main challenge of static RTO implementation is the level 

of uncertainty spread along the system, which often affect the determination of steady-

state detection (Camara et al., 2016). Moreover, some systems such as the cycling of 

energy power plants will never operate in steady state due to the dynamic nature of their 

forcing functions and constraints. Therefore, to overcome the RTO steady-state 

assumption shortcomings, dynamics were introduced into the RTO layer, thus emerging 

the dynamic RTO field (Trifkovic et al., 2014; Pontes et al., 2015; Camara et al., 2016). 
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When the DRTO is performed, an optimal trajectory is obtained as the optimization 

solution rather than an optimal setpoint. 

A previous study performed a DRTO and control of a hybrid small-scale energy system 

which included solar energy, wind energy, battery, electrolyzers, hydrogen storage tanks, 

and fuel cells. The dynamic model was derived from mass and energy conservation 

equations and a day-ahead approach was developed. It was concluded that the DRTO 

layer added a proactive feature to the overall control architecture with high level of 

flexibility to integrate operational, economic and safety objectives (Trifkovic et al., 2014).  

These recent studies (Trifkovic et al., 2014; Pontes et al., 2015; Li and Swartz, 2018) 

indicate that a DRTO layer has the potential to benefit the operation of large-scale 

industrial systems. However, the larger is the system, the more challenging becomes to 

obtain the optimal trajectories in real-time. 

2.4.1. Intersection of DRTO: Brief Review and Terminology Proposition 

In this subsection, a brief review is presented regarding the intersection of DRTO with 

different fields. Specifically, how the DRTO field was created and evolved with time, and 

the intersection of DRTO with the model predictive control (MPC) field. Moreover, a formal 

statement regarding the current interpretation of the DRTO nomenclature, i.e., the DRTO 

terminology is proposed. 

As mentioned above, the RTO field was created to integrate economics and control layer. 

The classic RTO has a distinct two-level structure usually paired with a control level such 

as MPC, shown in Figure 2.2a. A recent modification of the structure is the RTO paired 

with distributed MPC architecture, as shown in Figure 2.2b. At the upper-level, plantwide 

RTO optimizes plant economics at low execution frequency (time scale of hours). Then, 

the RTO provides the set points or operation targets to the lower-level controllers. 

Typically, advanced multivariate control strategies are used to control and track set points 

at a higher execution frequency (time scale of minutes) (Jamaludin and Swartz, 2017). 

Although this strategy is applicable to some systems, other systems are not benefitted of 

such structure as they may never reach steady state due to presence of recycle loops, 

slow dynamics, or ramping needs. In those cases, the optimal RTO operating conditions 

may be suboptimal or even infeasible (Trifkovic et al., 2014).  
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To overcome the RTO shortcomings due to the steady-state model, dynamics were 

introduced into the RTO layer to be performed at higher-level frequency, thus emerging 

the dynamic real-time optimization field (Pontes et al., 2015). Alternatively, economics 

were introduced into the MPC level, which lead to the field of economic MPC (EMPC) 

(Biegler, 2009; Angeli et al., 2012, Jamaludin and Swartz, 2017; Oyama and Durand, 

2020), with some studies even completely eliminating or incorporating the RTO layer in 

the EMPC/MPC formulations (Biegler, 2009; Tran et al., 2014). Some of these modified 

strategies are shown in Figures 2.2c to 2.2e. A recent variation of the DRTO-MPC scheme 

is to mathematically incorporate the MPC necessary and sufficient Karush-Kuhn-Tucker 

optimality conditions into the DRTO optimization problem. The reformulation establishes 

a single-level mathematical program with complementarity constraints in a closed-loop 

manner (Jamaludin and Swartz, 2017; Li and Swartz, 2018), as shown in Figure 2.2f. 

Both MPC and DRTO strategies are constrained by their computational time to calculate 

the trajectories when implemented online. 

With the computational and theoretical advances in the process optimization and control, 

the DRTO term, initially devised to indicate the use of dynamic models in the RTO level, 

has evolved. This term is sometimes used interchangeably to designate dynamic 

optimization and control strategies such as the MPC (and its variations) (Thierry and 

Biegler, 2019). Considering the broad optimization Formulation 2 presented in subsection 

3.1.4, there is also no clear mathematical distinction between DRTO and MPC, as both 

are trying to minimize an objective subjected to dynamic models and constraints to obtain 

optimal trajectories, with the MPC also subjected to stability, observability, and 

controllability conditions. Currently, the main distinction between the DRTO and MPC is 

the time scale that they act upon, however with the same mathematical description. 

Therefore, this dissertation proposes the following statement to update and provide a 

structure to the broad DRTO term:  

Proposition 1: MPC ∈ DRTO, but DRTO ∉ MPC. 

Under this proposition, the field of MPC intersects and it is contained in the DRTO field, 

but the field of DRTO intersects but it is not contained in MPC field as it also includes 
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other areas of research, such as DRTO for dispatch and scheduling of energy systems 

(Trifkovic et al., 2014; Wang et al., 2020). 

 

Figure 2.2. a) RTO paired with MPC, b) RTO paired with distributed MPC, c) DRTO 

paired with MPC, d) DRTO paired with distributed MPC, e) EMPC optionally pairing with 

RTO, f) DRTO with MPC subproblems paired with distributed MPC 

2.5. Literature Review Summary 

On the basis of the performed literature review, one of the main challenges of the cycling 

energy systems is to perform the optimization considering the systems dynamics and 

multi-objective nature of the problem in a timely manner. While some acknowledged the 

problem inherent multiplicity of objectives, very few studies incorporate a Pareto-based 

MOO technique to select the optimal compromise. In the context of coal-fired power 



17 
 

plants with carbon capture system, selection of optimization time scale with respect to 

system dynamics is often not discussed. In the context of grid-wide operation, there is a 

knowledge gap regarding incorporating power plant health-related constraints during the 

dynamic dispatch of energy systems. The implementations of the developed NMPO and 

dynamic dispatch algorithms aim to fill these gaps and enable optimal operation of cycling 

baseload energy systems and optimal dispatch of energy system considering power plant 

health.  
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3. Optimization Approaches 

In this chapter, the general mathematical background and basic concepts for the 

proposed optimization frameworks are introduced. Specifically, the Nonlinear Multi-

objective and dynamic real-time Predictive Optimization (NMPO) approach and 

pseudocodes are provided. The formulation of the MILP-based optimal dispatch is also 

presented. 

3.1. Nonlinear Multi-objective and Dynamic Real-time Predictive Optimization (NMPO) 

Approach 

The NMPO is composed of two main structures, the multi-objective optimization and the 

dynamic real-time optimization. Those structures are solved using two algorithms: the 

ParPSO and the Interior Point Optimization (IPOPT) (Wächter and Biegler, 2006). The 

following subsections are divided as follows: 1) ParPSO formulation; 2) IPOPT overview 

3) MOO formulation; 4) DRTO formulation; and 5) Overall NMPO Algorithm. 

3.1.1. Parallelized Particle Swarm Optimization Formulation 

In this dissertation, the particle swarm optimization (PSO) is used to find a feasible IPOPT 

initial guess through learning and exploration of the decision variable space. The PSO is 

a meta-heuristic method inspired by the movements and communication within a group 

or swarm, such as insects or birds. Each particle that composes the swarm follows 

specific lower-level goals without knowledge of the higher-level goal. However, the lower-

level goals express a meaningful collective behavior towards the higher-level goal. Each 

particle in the swarm is a potential solution and it is influenced by experiences of the 

neighboring particles as well as its own experience. Moreover, the global topology is 

adopted, i.e., each particle communicates with the entire swarm. 

The PSO formulation considers how the particles move within a swarm and communicate 

to locate an optimum in the feasible space. Over time, through the combination of 

exploration and exploitation of past positions in the search space, the particles cluster or 

converge together around an optimum. Through exploration, the particles search new 

regions of the feasible space whereas through exploitation the particles attempt to 

improve or learn from the known promising regions. After the positions and velocities of 
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each particle are initialized, the position of each particle in the next time step is updated 

recursively, as it is shown in Equations (3.1) and (3.2) (Sengupta et al., 2018): 

𝑣𝑗(𝑡 + 1) =  𝐼𝑇 ∗ 𝑣𝑗(𝑡) + 𝑐1  ∗ 𝑟1 ∗ (𝑃𝐵𝑗 −  𝑝𝑗(𝑡))  +  𝑐2  ∗ 𝑟2 ∗ (𝑆𝐵 −  𝑝𝑗(𝑡)) (3.1) 

𝑝𝑗(𝑡 + 1)  =  𝑝𝑗(𝑡)  +  𝑣𝑗(𝑡 + 1) (3.2) 

in which pj is the position of the j-th particle, vj is the velocity of the j-th particle, PBj is the 

personal best position of the j-th particle, SB is the swarm best position, IT is the inertia 

term, c1 and c2 are the cognitive and social acceleration coefficients, and r1 and r2 are 

random numbers between [0,1]. The terms IT, c1, and c2 are determined using the 

constriction factor method. This method was developed from eigenvalue analysis of 

computational swarm dynamics and it is defined through Equations (3.3) to (3.6) 

(Sengupta et al., 2018): 

𝐼𝑇 =
2𝛾

|2 − Ω − √Ω(Ω − 4)|
,     𝛾 𝜖 [0,1] 

(3.3) 

Ω =  Ω1 + Ω2,    Ω ≥ 4 (3.4) 

𝑐1 = IT ∗ Ω1 (3.5) 

𝑐2 = IT ∗ Ω2 (3.6) 

in which Ω, Ω1, Ω2, 𝛾  are the constriction factors. Under this method, the swarm 

convergence is guaranteed with particles decelerating as iteration count increases. The 

constriction factor 𝛾 controls the local or global convergence. When γ is set close to 1, 

particles traverse the search space with a predominant emphasis on exploration. When 

γ is close to 0 the convergence is fast, but the solution quality may vary vastly. Then after 

a certain number of iterations, the swarm best is obtained. The particle velocities are also 

constrained at maximum equal to 35% of the difference of the decision variable’s 

minimum and maximum. From an optimization perspective, the particle represents a 

potential solution or a trial point. The particle position is fully defined by a set of values 

within the decision domain ℝ𝑚, i.e., the position is a m-dimensional vector. The particle 

velocity determined by Equation (3.1) is also a m-dimensional vector that represents a 

change in the position value guided by the swarm dynamics, i.e., the update mechanism 

for the trial point. For instance, for a system with 2 inputs that can vary within the range 

of [0, 1], a particle position (p1) is fully defined as p1(t) = [ 0.2, 0.3]. In this case, p1 is the 
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potential solution. The swarm and personal bests are also m-dimensional vectors updated 

according to the objective function. A schematic of the PSO update mechanism for one 

particle in a 2-dimensional space is shown in Figure 3.1. 

 

Figure 3.1. Schematic of the PSO update mechanism in 2-dimensional space 

However, as the number of decision variable increases, the computational time also 

increases and may lead to prohibitive computational time. Then to partially manage the 

computational time of a large-scale optimization problem and considering the overall 

decentralized nature of the PSO, the PSO method is parallelized. Parallel processing is 

a tool that can be used to efficiently solve non-gradient-based optimization problems and 

it may even improve the quality of the solutions as well as speed up the execution times 

(Venter and Sobieszczanski-Sobieski, 2005; Sola, 2010). 

The parallelization in this dissertation is performed in MATLAB environment. MATLAB 

offers two way of parallelization: i) a single desktop system with local workers or multicore 

desktop workers; and ii) a computer cluster (Carrasco and Lima, 2018). The 

parallelization is performed in a single desktop system with 8 local cores (Inter® Xeon® 

CPU E5-1620v3, 3.5 GHz processor). The number of parallel workers should not be 

confused with the number of PSO particles. The number of particles and workers can be 

the same, but it is not a necessary condition. 
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Currently, there are mainly two ways to perform the parallelization of the PSO: 

synchronously or asynchronously. In the synchronous parallelization, at each iteration 

every particle position and velocity are computed first and then the swarm best is updated. 

In the asynchronous parallelization approach, the PSO swarm best may be updated as 

information of new particles become available by the workers (Venter and 

Sobieszczanski-Sobieski, 2005).  

The master and worker parallelization configuration is chosen as the parfor and cluster 

communication in MATLAB 2019 environment do not yet allow direct communication 

between workers. In the master and worker parallelization, one process is the master as 

it controls the execution of the other processes. 

A test run was performed using the SCPC-CCS as the system with the asynchronous and 

synchronous parallelization configuration of the PSO. Considering the same number of 

particles and iterations, the asynchronous ParPSO often obtained a slightly better 

objective value, i.e., a lower objective value for a minimization formulation, than the 

synchronous parallelization. Regarding the computational time, the synchronous ParPSO 

however often finished computing the pre-determined iterations faster than the 

asynchronous ParPSO, mainly due to the coarse grain nature of the PSO formulation in 

MATLAB environment. In this environment, there is an imposed communication overhead 

between the master and the workers. Thus, considering that the optimality of the initial 

guess is not required and the real-time constraint of the optimization problem, the 

synchronous ParPSO was chosen to be implemented in the overall framework. Figure 

3.2 shows the pseudocode with the main differences between the synchronous and 

asynchronous parallelizations of the PSO in MATLAB. Although the chosen platform and 

structure is not necessarily the most efficient way of parallelization (Venter and 

Sobieszczanski-Sobieski, 2005; Sola, 2010), it provides a lower bound in terms of how 

much this component could be sped-up in a single desktop parallelization. In this 

dissertation, an average of 4-fold speed up is observed for the single desktop 

parallelization when compared to standard PSO formulation with the same number of 

particles and maximum iterations. 
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Figure 3.2. Pseudocode of synchronous and asynchronous ParPSO approaches 

3.1.2. Interior Point Optimizer (IPOPT) Overview 

IPOPT is an open-source package designed to solve large-scale nonlinear optimization 

and it can solve general nonlinear programming problems structured as in Formulation 1: 

Formulation (1) 

min
𝑥𝜖𝑋

Φ(𝑥) 

s.t.  

𝑐𝐿𝐵  ≤ 𝑐(𝑥) ≤ 𝑐𝑈𝐵 

𝑥𝐿𝐵 ≤ 𝑥 ≤ 𝑥𝑈𝐵 

in which, Φ is the objective function, 𝑐 the general nonlinear constraints, 𝑥 are the m-

dimensional decision variables, superscript LB stands for lower bound, and superscript 

UB stands for upper bound. 
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IPOPT is a primal-dual interior-point algorithm with a filter line-search method that aims 

to find a local solution of large-scale nonlinear optimization problems. IPOPT has built in 

features such as inertia correction, second-order correction, and feasibility restoration 

phase that is activated if the trial step is not acceptable or matrix singularity is detected, 

which provides a robust optimization algorithm for large-scale nonlinear problems 

(Wächter and Biegler, 2006). IPOPT was developed for the AMPL modeling environment, 

but it has already been interfaced with Julia, GAMS, Python, C++, C, Java, Fortran, 

MATLAB, and many others through third parties and in-house packages (Vigerske and 

Wächter, 2021). 

3.1.3. Multi-objective Optimization Formulation 

The multi-objective or many objectives optimization problems is the simultaneous 

minimization (or maximization) of two or more conflicting objectives (Diwekar, 2008; 

Abouhawwash et al., 2020). A general mathematical definition is shown in Equation (3.7): 

min
𝑥𝜖𝑋

Φi(𝑥) , 𝑖 = 1, … , 𝑛 (3.7) 

in which Φi is the objective function to be minimized and subscript 𝑛 denotes the number 

of objective functions. The MOO can be defined as Φ: 𝑋 → 𝑍, in which the decision vector 

𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑚 , and the n-dimensional objective vector z = Φ(𝑥) ∈ Z 𝑖𝑛 ℝ𝑛. 

In the MOO problems, the goal is no longer to find an optimal point, rather becomes the 

search of optimal tradeoffs. Specifically, Pareto-optimal compromise is defined using non-

dominance concepts (Diwekar, 2008). The dominance and non-dominance concepts are 

established in Definitions 1 to 4. Pareto set and front are further described in Definitions 

5 and 6. 

Definition 1: Solution x1 dominates x2 ⇒  Φi(𝑥1) ≤ Φi ∀𝑖 = 1, … , 𝑛 and  

∃𝑖 ∈ {1, … , 𝑘}: Φi(𝑥1) < Φi(𝑥2). 

Definition 2: If Φi(𝑥1) < Φi(𝑥2), then x1 strictly dominates x2. 

Definition 3: Solution x3 is non-dominated Pareto optimal solution ⇒ ∄ x4: Φi(𝑥4) 

dominates Φi(𝑥3) ∀𝑖 = 1, … , 𝑛. 
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Definition 4: If ∄x4: Φi(𝑥4) strictly dominates Φi(𝑥3) ∀𝑖 = 1, … , 𝑛, then x3 is weak Pareto 

optimal solution. 

Definition 5: The Pareto set is the set of non-dominated Pareto optimal solutions. 

Definition 6: The Pareto front is the set of corresponding objective values of the Pareto 

set. 

In summary, x1 is considered Pareto optimal if there exists no feasible decision vector set 

which would decrease some objective without causing a simultaneous increase in at least 

one other objective, in a minimization formulation. Pareto optimality is defined with 

respect to the entire decision variable space, unless otherwise specified. Thus, the 

Pareto optimal set is essentially a subset of a solution set and the evaluated objective 

vectors are the Pareto front, in which each vector is nondominated with respect to all 

objective vectors in the Pareto front (Coello et al., 2007). 

Considering that the MOO is used in conjunction with a DRTO and the solutions need to 

be obtained within a time window, two methods are chosen to solve the MOO component, 

namely the modified Tchebycheff weighted metric method and the 𝜖-constraint method. 

Both methods allow to select a Pareto optimal solution, without generating the entire 

Pareto front, with minimal input from the decision maker. 

The following subsections discuss two different ways to obtain weak Pareto optimal 

solutions with minimal interaction with the decision maker. 

3.1.3.1. Modified Tchebycheff Weighted Metric Method 

The weighted metric method decomposes the MOO problem into a set of scalar 

optimization problems. The general formulation of the weighted metric method is shown 

in Equation (3.8):  

min
𝑥

(∑ 𝑤𝑖|Φ𝑖(𝑥) − 𝑢𝑖
∗)|𝑝

𝑛

𝑖
)

1/𝑝

 (3.8) 

in which, w is a n-dimensional weight vector with ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 𝑤𝑖 ≥ 0, 𝑢∗ is an ideal 

vector, and p is a parameter between [1, ∞]. The ideal or utopian vector is further defined 

in Definition 7. 
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Definition 7: The ideal or utopian point 𝑢∗ ∈ ℝ𝑛  is defined as  

{𝑢∗ ∈ ℝ𝑛: u𝑖
∗ = min

𝑥
Φ𝑖(𝑥) , 𝑖 = 1, … , 𝑛}. 

Figure 3.3 pictures the search mechanism for different values of p for the weighted metric 

method. As pictured, for convex Pareto front, the compromises can be found with any p 

value. For non-convex Pareto front, a common instance for nonlinear problems, part of 

the Pareto front compromises may not be available in the search space for low p values. 

As the p value increases, more compromises that are part of the non-convex Pareto front 

become available. Conversely, the higher is the p value, the more non-smooth is the 

optimization formulation. At 𝑝 = ∞ , also known as the Tchebycheff weighted metric 

method, the minimization formulation in Equation (3.8) reduces to Equation (3.9).  

min
𝑥

𝑇𝑐ℎ(Φ(𝑥)|𝑤, 𝑢∗) = max
𝑥

(𝑤𝑖|Φ𝑖(𝑥) − 𝑢𝑖
∗|) (3.9) 

In the Tchebycheff weighted metric method, the optimal MOO compromise is determined 

by a specific weight vector and the distance of the chosen Pareto point to the ideal vector. 

From a determined initial point and specified weight vector, the optimizer iteratively 

minimizes the maximum distance until it reaches the compromise in the Pareto front and 

the objective cannot be further improved. 

By inspection of Equation (3.9) and Figure 3.3 for 𝑝 = ∞, one can infer that every Pareto 

point can be a solution of the Tchebycheff formulation by varying the weight vector. As a 

direct result, any Pareto optimal solution can be systematically found if the Tchebycheff 

metric is used, even for a non-convex Pareto-front. Therefore, any best compromise could 

be obtained in an online fashion, minimizing the interaction with the decision maker. 
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Figure 3.3. Weighted metric method search mechanism for different p values (adapted 

from Narzisi, 2008) 
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The solutions obtained by the conventional Tchebycheff decomposition method with 

uniform weights are not always uniformly distributed in the Pareto front. Therefore, the 

modified Tchebycheff (MTch) decomposition method was proposed (Ma et al., 2018) to 

address this issue. The modified decomposition is constructed as seen in Equation (3.10): 

min
𝑥

𝑀𝑇𝑐ℎ(Φ(𝑥)|𝑤, 𝑢∗) = max
1≤𝑖≤𝑛

{
Φ𝑖(𝑥) − 𝑢𝑖

∗

𝑤𝑖
} (3.10) 

Due to the property of Equation (3.10) of generating uniformly distributed solutions in the 

Pareto front when weights are uniformly changed, already reported in the open literature 

(Ma et al., 2018), the modified Tchebycheff method is adopted in this work when the 

weights are other than 0. 

As presented in Equation (3.9), a wi close to 1 has an intrinsic bias towards to the i-th 

objective. For the modified Tchebycheff as presented in Equation (3.10), a wi close to 0 

has an intrinsic bias towards to the i-th objective. Thus, aiming to have a cohesive method 

that spans throughout the weight vector values in a continuous manner, including when 

the weight is equal to zero, a slight modification is proposed to Equation (3.9) to be used 

alongside Equation (3.10), as shown in Equation (3.11): 

min
𝑥

𝑇𝑐ℎ(Φ(𝑥)|𝑤, 𝑢∗) = max
1≤𝑖≤𝑛

{(1 − 𝑤𝑖)|Φ𝑖(𝑥) − 𝑢𝑖
∗|} (3.11) 

such that a wi close to 0 has an intrinsic bias towards to be closer to the i-th objective, as 

in the modified Tchebycheff method shown in Equation (3.10). The overall modified 

Tchebycheff-based method employed in this work is summarized below:  

min
𝑥

𝑀𝑇𝑐ℎ(Φ(𝑥)|𝑤, 𝑢∗) = max
1≤𝑖≤𝑛

{
Φ𝑖(𝑥)−𝑢𝑖

∗

𝑤𝑖
}   for 0 < 𝑤𝑖 < 1 (3.10) 

min
𝑥

𝑇𝑐ℎ(Φ(𝑥)|𝑤, 𝑢∗) = max
1≤𝑖≤𝑛

{(1 − 𝑤𝑖)|Φ𝑖(𝑥) − 𝑢𝑖
∗|} for 𝑤𝑖 = 0; 𝑤𝑖 = 1 (3.11) 

For both Tch/MTch formulations, it is recommended for the objectives to be normalized, 

which requires the objectives to be bounded and characterized. 

Furthermore, as the MTch formulation is a minimization of a maximization, the 

optimization problem is not differentiable and non-smooth everywhere, only piecewise as 

the individual MTch distances are differentiable themselves. Therefore, the minmax 
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optimization problem can be reformulated as a differentiable problem by introducing an 

extra variable 𝛼 and n nonlinear constraints, as shown in Equations (3.12) and (3.13): 

min
𝑥∈𝑋,𝛼∈ℝ−

−𝛼 (3.12) 

𝑠. 𝑡.                                                            

𝑀𝑇𝑐ℎ𝑖 + 𝛼 ≤ 0, 𝑖 = 1, … , 𝑛 

(3.13) 

in which, MTchi for 𝑖 =  1, … , 𝑛 is the modified Tchebycheff indicator for i-th objective 

value, and 𝛼 is the extra variable. In this formulation, the optimization is mathematically 

the same, the objective is linear, and the problem has differentiable objective function and 

constraints. It was chosen to maintain the 𝛼 as a negative number as during the DRTO 

formulation all inequality constraints will be converted to equality constraints by 

introducing strictly positive slack variables to improve computational performance. 

Further explanation on the reformulation is provided in subsection 3.1.4. 

3.1.3.2. 𝜖-constrained Method 

The 𝜖- constrained method is another way to solve a MOO problem by turning it into a set 

of single-objective optimization problems. In this method, one of the objectives is chosen 

(for instance Φ1) while the other objectives (Φi, 𝑖 = 2, … , 𝑛) are turned into inequality 

constraints bounded by parametric values (𝜖𝑖, 𝑖 = 1, … , 𝑛 − 1). In general terms, each 

individual optimization is solved, and xi solutions are determined. Then, corresponding 

values using the xi solution are calculated for the other objective, i.e.,  

Φ𝑖(𝑥𝑘), 𝑖 = 1, … , 𝑛; 𝑖 ≠ 𝑘. The overall formulation is shown in Equations (3.14) to (3.16) 

(Diwekar, 2008): 

min
𝑥

Φi(𝑥) (3.14) 

𝑠. 𝑡.                                                       

𝜖𝑖,𝑚𝑖𝑛
𝐿𝐵 ≤ Φi ≤ 𝜖𝑖,𝑚𝑖𝑛

𝑈𝐵 , 𝑖 = 1, … , 𝑛; 𝑖 ≠ 𝑘   for minimization 

𝜖𝑖,𝑚𝑎𝑥
𝐿𝐵 ≤ Φi ≤ 𝜖𝑖,𝑚𝑎𝑥

𝑈𝐵 , 𝑖 = 1, … , 𝑛; 𝑖 ≠ 𝑘   for maximization 

 

(3.15) 

(3.16) 

in which 𝜖𝑖 is the parametric value of the i-th objective that it is not the k-th objective, 

subscript min is for minimization, and subscript max is for maximization. Theoretically, the 

objectives inequalities are bounded. The lower bound is their minimum value obtained by 

the individual single objective optimizations (𝑖 = 1, … , 𝑛). The upper bound is the minimum 
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corresponding value from the solution of the k-th single objective optimization  

(Φ𝑖(𝑥𝑘) , 𝑖 = 1, … , 𝑛; 𝑖 ≠ 𝑘 ) multiplied by a weight variable that represents the decision 

maker willingness to compromise. The bounds for the minimization and maximization 

formulations are shown in Equations (3.17) and (3.18). 

𝜖𝑖,𝑚𝑎𝑥
𝑈𝐵 = 𝜖𝑖,𝑚𝑖𝑛 

𝐿𝐵 = Φ𝑖(𝑥𝑖), 𝑖 = 1, … , 𝑛; 𝑖 ≠ 𝑘 (3.17) 

𝜖𝑖,𝑚𝑎𝑥 
𝐿𝐵 = 𝜖𝑖,𝑚𝑖𝑛

𝑈𝐵 = 𝑤i
𝜖−constΦ𝑖(𝑥𝑘), 𝑖 = 1, … , 𝑛; 𝑖 ≠ 𝑘 (3.18) 

in which, 𝑤i
𝜖−const the weight vector for the e-constraint method and 𝑤i

𝜖−const  ∈ [0,1]. 

Although bounded, the only necessary constraints in the algorithm are the Equations 

(3.19) and (3.20) as these are the constraints that may be active during the optimization. 

Figure 3.4 pictures the search mechanism for the ϵ-constrained method. 

Φ𝑖 ≤ 𝜖𝑖,𝑚𝑖𝑛
𝑈𝐵 , 𝑖 = 1, … 𝑛; 𝑖 ≠ 𝑘   for minimization 

Φ𝑖 ≥ 𝜖𝑖,𝑚𝑎𝑥
𝐿𝐵  , 𝑖 = 1, … 𝑛; 𝑖 ≠ 𝑘  for maximization 

(3.19) 

(3.20) 

 

Figure 3.4. ϵ-constrained method search mechanism (adapted from Narzisi, 2008) 
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3.1.4. Dynamic Real-time Optimization Formulation 

The general mathematical DRTO is defined in Formulation 2:  

Formulation (2) 

min
𝑥𝜖𝑋

Φ(𝑥, 𝑡) 

s.t.  

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑡) 

ℎ(𝑥, 𝑡) = 0 

𝑔(𝑥, 𝑡) < 0 

in which, f is the dynamic model that describes the system, h are the equality constraints, 

g are the inequality constraints, x are the decision variables, and t is the time.  

As mentioned previously, the main concern while implementing a DRTO strategy in a 

large-scale system is the real-time constraint to obtain a solution. Furthermore, if the 

DRTO is extended with a MOO framework, both MOO problems would require 

optimization of every objective to be performed. For instance, for two objectives (i=2), the 

MTch MOO method solves 5 (2i+1) DRTO problems: to find the minimum (i), the 

maximum (i), and the compromise (1). Whereas the 𝜖-constraint method performs at least 

3 (i+1) DRTO problems: to find the minimum (i) and the compromise (1).  

The optimal trajectories are determined using dynamic programming considering the 

maximum principle and Bellman’s principle of optimality. The principle of optimality states 

that the minimum or maximum value of a function is dependent on the initial state and the 

initial time (Diwekar, 2008).Therefore, the size of the optimization problem is associated 

to the optimization horizon. As the time horizon increases, so does the scale of the 

problem. 

Strategies to improve computational performance 

For gradient-based optimization, the slowest part of the algorithm tends to be the 

calculation of the first- and second-order derivatives. Besides the analytical way, 

derivatives can be obtained essentially in three ways: symbolic, numerical, or automatic. 

Symbolic differentiation is based on manipulating mathematical expressions to obtain the 

derivatives. If the problem is relatively simple or linear, symbolic differentiation can be 
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used to obtain accurate derivatives. However, for a nonlinear problem or even a more 

complex framework, symbolic differentiation will hinder the computational time. Numerical 

differentiation determines approximation of derivatives using finite differences. However, 

this method can also be slow and there is a tradeoff between accuracy and employed 

step size. Automatic differentiation (AD) is based on the principle that every computer 

program is fundamentally a sequence of elementary arithmetic operations. The chain rule 

from calculus is then applied repeatedly to obtain any derivative order in automatic, 

efficient, and accurate manner. Therefore, the objective and constraint first-order 

derivatives are obtained using AD techniques in this work. Without loss of generality, 

Formulation 2 is modified to Formulation 4 by adding slack variables s, as shown in 

Formulation 3. Then the xs vector becomes the new decision variable vector and includes 

the x decision variable vector and the slack variables. 

Formulation (3) 

min
𝑥𝜖𝑋

Φ(𝑥, 𝑡) 

s.t.  

ℎ(𝑥, 𝑡) = 0 

𝑔(𝑥, 𝑡) + 𝑠 = 0 

𝑠 ≥ 0 

Formulation (4) 

min
𝑥𝑠𝜖𝑋

Φ(𝑥𝑠, 𝑡) 

s.t.  

ℎ𝑠(𝑥𝑠, 𝑡) = 0 

𝑥𝑠 = [𝑥, 𝑠] 

From Formulation 4, Automatic Differentiation for MATLAB (ADiMAT) (Bischof et al., 2002) 

package is used to obtain the objectives (Φ) and constraint (ℎ𝑠) first-order derivatives 

(∇Φ, ∇ℎ𝑠). Then those derivatives are provided to the optimization algorithm used to solve 

the DRTO problems, the Interior Point Optimizer (IPOPT). In this dissertation, considering 

the same tolerances, speed up within the range of 80 to 120 times faster is observed 

when compared to the default IPOPT finite differences. Regarding the second-order 

derivatives, IPOPT uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to 

update the Hessian. IPOPT was connected to MATLAB using the open-source OPTI 

toolbox (Currie and Wilson, 2012). Note that by adding the slack variables, the size of the 

problem is increased. 

IPOPT performance can also be hindered if the scale of the decision variables, dependent 

variables, and objective values vary vastly. Improvement of computational time is 
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observed after the normalization of decision and dependent variables as well as the 

objective functions. Finally, as shown in Figure 1.2, linear and nonlinear reduced-order 

models of high-fidelity Aspen Plus Dynamics first-principles models can also be 

generated for online implementation purposes. 

3.1.5. Overall NMPO Algorithm 

The proposed approach to optimize large-scale process under cycling and different 

objectives is the Nonlinear Multi-objective and dynamic real-time Predictive Optimization 

(NMPO), solved with ParPSO and IPOPT algorithms. The ParPSO finds a feasible initial 

guess with respect to the trajectory for the IPOPT. The ParPSO also explores and learns 

from the available feasible space. Then, the feasible guess is used to seek optimality with 

respect to the whole trajectory in the DRTO solved using IPOPT and ADiMAT. At last, the 

individual optimal trajectories are used in the MOO component to find the optimal 

compromise, also solved using IPOPT.  

The proposed execution of the overall NMPO algorithm is shown in Figure 3.5. This 

architecture provides prediction capabilities and time for the algorithm to act upon the 

forcing function information as they become available. Forcing function is considered here 

as any function/variable that can influence the optimization solution that is not a decision 

variable for the optimizer, such as electricity price and demand for the current application. 

Specifically, the algorithm has 2 horizons: the optimization and the implementation time 

horizons. At first, the optimizer generates a trajectory with respect to the optimization time 

horizon, but only the trajectory up to the implementation horizon is applied to the system. 

After the implementation, the forcing function predictions information can be updated, and 

the trajectories are recalculated. The overall framework is then implemented in a rolling 

horizon manner. Therefore, the calculation time horizon of the trajectories must be shorter 

than the implementation horizon. 

Therefore, the NMPO approach aims to address a gap that has not yet been tackled by 

existing methods. The approach incorporates a MOO method that searches Pareto-

optimal compromises by design using either the Modified Tchebycheff or the 𝜖-constraint 

methods. The NMPO also incorporates strategies to improve computational 

performances such as AD and parallelization. Additionally, the NMPO updates the 
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forecast of the forcing functions as time evolves. The NMPO is one of the first efforts that 

incorporates all these elements (MOO, DRTO, and computational tractability) to address 

the cycling of baseload power plants under VRE penetration. 

 

Figure 3.5. Schematic of proposed optimization framework implementation 

Figure 3.6 outlines the proposed NMPO algorithm for baseload systems under cycling 

conditions that consists of the seven steps described below: 

Initialization: The dynamic system model and forcing functions, the optimization and 

implementation time horizons, the ParPSO parameters, and the weight vector determined 

by the decision maker are sent to the optimizer to initialize the overall algorithm. 

(i) The time is set to t = t0, which refers to the initial time of the NMPO dynamic 

programming. 

(ii) The MATLAB parallel environment is initialized with 8 workers (1 worker/core) in a 

synchronous architecture. The ParPSO particles are created, randomly and uniformly 

distributed in the feasible space. Random velocities are also attributed for each particle. 

The swarm best position thus far is determined from their randomly assigned initialization. 

(iii) After initialization, the position and velocities are updated recursively for a maximum 

number (maxiter) of iterations. At the end of the iterations, the feasible solution for the 

optimization horizon is sent to IPOPT as initial guess. The ParPSO step is terminated 

after a predetermined number of iterations is reached. 

(iv) The DRTO problem derivatives are obtained using ADiMAT. Then the optimal 

trajectories up to time t2, maximum, and minimum are calculated for each objective using 
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IPOPT connected to MATLAB through the OPTI toolbox. The DRTO/IPOPT step is 

terminated after the set dual infeasibility and complementarity tolerances are satisfied. 

(v) The MOO problem derivatives are obtained using ADiMAT. Then, either the  

𝜖-constraint or the Tchebycheff-based MOO method is used to formulate the optimization 

problem. The optimal compromise is chosen considering the weight vector. The 

MOO/IPOPT step is terminated after the set dual infeasibility and complementarity 

tolerances are satisfied. 

(vi) After the trajectories for the optimization horizon are determined, such trajectories are 

partially implemented considering the implementation horizon t1 and the time horizon is 

updated as t=t+t1.  

(vii) Assessment if NMPO has reached t = T:  

1. If yes, exit the optimizer framework. 

2. If no, then repeat steps (ii)-(vii) until the criterion t = T is satisfied. 
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Figure 3.6. Pseudocode for the implementation of the NMPO framework 

3.2. MILP-based Approach for Dynamic Dispatch of Energy Systems Considering 

Power Plant Health  

The mixed-integer linear programming (MILP) is employed when some of the decision 

variables are constrained to be an integer value at the optimal solution. The integer can 

be any value from the ℤ set. Often, to model Boolean constraints, the integer is binary 
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{0,1}, which represents TRUE or FALSE alternatives. Then the constraints are formulated 

employing the disjunction operators (and, or) for logical propositions (Morales-España et 

al., 2015). 

In this dissertation, the focus of the MILP formulation is to perform a 6-minute ahead 

dispatch for 30 days that responds to demand and variable renewable deviation while 

considering the dynamic models of the energy systems and power plant health-related 

constraints. The integer variables are introduced to include a logical constraint regarding 

system operation during optimization. Considering the goal of this algorithm, Formulation 

2 can be adapted to incorporate integer variables as shown in Formulation 5: 

Formulation (5) 

min
𝑥𝜖𝑋

Φ(𝑥, 𝜈, 𝑡) 

s.t.  

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝜈, 𝑡) 

ℎ(𝑥, 𝜈) = 0 

𝑔(𝑥, 𝜈) ≤ 0 

𝑥 ∈ 𝑋, 𝜈 ∈ ℤ 

in which 𝜈 are the integer variables, i.e., 𝜈 ∈ ℤ. This same framework can be extended to 

perform a unit commitment problem in which each energy system is represented by a set 

of binary variables, as already performed in literature (Morales-España et al., 2015).  

Furthermore, the models are developed in MATLAB and the optimization algorithm is 

solved using branch and bound in the intlinprog subroutine. The models used in the 

dynamic dispatch are linear reduced-order models of the high-fidelity Aspen Plus 

Dynamic first-principles models. A perfect demand forecast of at least 6 min ahead of 

time is assumed.  

The overall framework could be adapted to incorporate the most updated forcing function 

data accordingly. The energy systems are assumed to be always committed at this level 

by an independent scheduler; thus, shutdown/startup procedures are not considered 

during the dispatch. The specific power health related constraints are based on NGCC 

mechanical and thermal stresses and they are further defined in Chapter 5.  
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4. Implementation of NMPO Approach 

In this chapter, the details of the NMPO implementation are provided. Specifically, a brief 

description of the SCPC-CCS system and the method used to reduce the order of the 

high-fidelity SCPC-CCS first-principles model are performed. Then the nonlinear 

optimization results are presented. 

4.1. Supercritical Pulverized Coal-fired Power Plant with MEA-based Carbon Capture 

(SCPC-CCS) Dynamic Modeling 

The application used in the NMPO framework is the SCPC with monoethanolamine 

(MEA)-based carbon capture system (SCPC-CCS), for which a simplified diagram is 

shown in Figure 4.1. The SCPC-CCS is designed to operate in baseload conditions, i.e., 

for a constant power output. The dynamic model was built in Aspen Plus Dynamics 

(Zhang et al., 2016; He and Lima, 2020) and it was based on the Cases 12A/12B of the 

2015 NETL report (NETL, 2015). The SCPC net capacity is 550MWe and uses a single 

24.1 MPa/593oC/593oC superheat/reheat cycle. The SCPC-CCS can be subdivided in 

three main sections: (i) feed processing; (ii) emission control units; and (iii) combined 

cycle power generation. 

In the feed processing, the air is preheated and conditioned before it is fed with coal into 

the boiler. Then the generated heat in the boiler produces the steam for power generation. 

The boiler flue gas stream is sent to the pollution control section.  

In the emission control, the particulate of the flue gas is removed by the bag house. The 

flue gas is driven by induced draft fan to the desulfurization unit, where sulfur and NOx 

are removed from the flue gas. Afterwards, the flue gas is forwarded to the carbon capture 

system (CCS), where the flue gas is initially conditioned through a set of pumps and direct 

contact cooler (DCC) to suitable pressure and temperature to enter in the absorber. After 

the conditioning, the flue gas is sent to the absorber where the CO2 is absorbed into the 

MEA solvent (lean solvent) and the cleaner flue gas is vented to the atmosphere with 

lower CO2 content. The MEA solvent rich in CO2 then goes to the stripper where the 

solvent is regenerated and lean MEA solvent is recycled back to the absorber. The 
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resulting high-purity CO2 can be stored or conditioned for other purposes, by pressurizing 

it using a multistage compressor. 

The energy penalty for CO2 removal is significant due to the multistage compressors and 

the required thermal energy to regenerate the solvent in the stripper reboiler. Specifically, 

the thermal energy for solvent recovery is obtained by extracting low-pressure steam from 

the power plant.  

Finally, in the combined cycle power generation, the superheated steam coming from the 

boiler passes through high-,intermediate-, and low-pressure turbines. After the 

intermediate-pressure stage, part of the low-pressure steam is extracted and provided to 

the CCS to regenerate the solvent in the stripper reboiler. Before returning to the boiler, 

the boiler feedwater is heated by a series of integrated heat recovery subsystem (NETL, 

2015; Zhang et al., 2016; He and Lima, 2020). 

For dynamic optimization purposes, the high-fidelity first-principles model is simplified for 

computational tractability. There are some toolboxes available that facilitate the 

generation of reduced-order models. For instance, Dynamic Reduced Models (D-RM™) 

Builder is a toolbox that generates dynamic reduced-order models based on the 

structures of decoupled A-B net and the nonlinear autoregressive moving average 

models. The D-RM™ can be directly connected to Aspen Custom Modeler or generate 

the reduced models from user-provided data (Ma et al., 2016; CCSI, 2018). The MATLAB 

System Identification™ is another toolbox that generates linear and nonlinear dynamic 

reduced models from user-provided data, with connectivity to Simulink. In this toolbox, 

there is an array of linear model structures, such as linear autoregressive with exogenous 

inputs (ARX), autoregressive moving average with exogenous inputs, state-space 

models, transfer functions, and many others. Regarding the nonlinear models, the 

structures are nonlinear ARX, Hammerstein-Wiener, and grey-box models.  
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Figure 4.1. Supercritical coal-fired power plant with the MEA-based carbon capture
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In this dissertation, as the SCPC-MEA power plant input/output relationship is a mix of 

linear and nonlinear behaviors and the optimization is in MATLAB environment, the 

MATLAB System Identification™ Toolbox is chosen to generate the reduced-order 

models seamlessly. In particular, the linear and nonlinear AutoRegressive with 

eXogenous inputs (ARX/NARX) models, with wavelet networks are selected to represent 

the nonlinearities with standard and custom regressors. 

The general input-output relationship given by a NARX structure is described by the 

nonlinear Equation (4.1) below: 

𝑦(𝑡) = 𝑓𝑐 (𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑥(𝑡), 𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑛𝑥)) + 𝜀(𝑡)  (4.1) 

in which fc is a nonlinear mapping, y are the dependent variables, 𝜀 is an independent 

identically distributed random variable, and nx and ny are the maximum input and output 

lags, respectively (Wei et al., 2003). It is assumed that the nonlinear mapping fc can be 

characterized as a finite set of hierarchical correlated functions expanded in terms of the 

lagged output and input variables. Equations (4.2) to (4.5) show the general structure of 

the wavelet network: 

𝜒 = [𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑥(𝑡), 𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑛𝑢)] (4.2) 

𝑓𝑐(𝜒) = (𝜒 − 𝑟)𝑃𝐿 + 𝑎𝑠1 × 𝜃(𝑏𝑠1(𝜒 − 𝑟)𝑄 − 𝑐𝑠1) + ⋯

+ 𝑎𝑠𝑛𝑠
× 𝜃(𝑏𝑠𝑛𝑠

(𝜒 − 𝑟)𝑄 − 𝑐𝑠𝑛𝑠
) +  𝑎𝑤1 × 𝜓(𝑏𝑤(𝜒 − 𝑟)𝑄 − 𝑐𝑤1)

+ ⋯ + 𝑎𝑤𝑛𝑤
× 𝜓(𝑏𝑤𝑛𝑤

(𝜒 − 𝑟)𝑄 − 𝑐𝑛𝑤
)) +  𝑑 

(4.3) 

𝜃(𝜒) = exp(−0.5𝜒𝑇𝜒) (4.4) 

𝜓(𝜒) = (dim(𝜒) − 𝜒𝑇𝜒) × exp (−0.5 𝜒𝑇𝜒) (4.5) 

in which, 𝜒 is a l-dimensional vector of regressors, Q and P are l-by-q and l-by-p nonlinear 

and linear projection matrices determined by the principal component analysis of 

estimation data, the 1-by-l vector r is the mean of 𝜒  computed from the estimation data. 

Also, ns and nw are the number of scaling and wavelet units, L is a p-by-1 linear coefficient, 

as is ns-by-1 scaling coefficient vector, aw is a nw-by-1 wavelet coefficient vector, bs is 

a ns-by-1 scaling dilation vector, bw is a nw-by-1 wavalet dilation vector, cs is a ns-by-q 

scaling translation matrix, cw is a nw-by-q wavelet translation matrix, and d is the output 

offset scalar. The 𝜃 and 𝜓 are the scaling and wavelet functions, respectively (Mathworks, 

2021). 
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Regarding the input-output ARX relationship, the general structure is described by 

Equation (4.6) below: 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯ 𝑎𝑛𝑎
𝑦(𝑡 − 𝑛𝑎)

= 𝑏1𝑥(𝑡 − 𝑛𝑘) + ⋯ + 𝑏𝑛𝑏
𝑥(𝑡 − 𝑛𝑏 − 𝑛𝑘 + 1) + 𝑤𝑛(𝑡) 

(4.6) 

in which 𝑛𝑎 is the number of poles, 𝑛𝑏 is the number of zeros, 𝑛𝑘 is the deadtime of the 

system, also known as the delay, 𝑎1, … , 𝑎𝑛𝑎 and 𝑏1, … , 𝑛𝑏 are the regression coefficients, 

and 𝑤𝑛(𝑡) is the white noise at time t. 

The input or decision variables and the output or dependent variables for the SCPC-CCS 

power plant are shown in Table 4.1. The CCS equivalent work is assumed as the total 

power required for the CCS to operate and it is the sum of to the power supplied to the 

blowers and compressors as well as the equivalent work associated with the thermal 

energy supplied to the reboiler of the stripper. Therefore, the dimensions of input x output 

variables are currently 7 x 10. 

Table 4.1. Decision and dependent variables for the SCPC-CCS system 

Decision/input variables (x) (unit) Dependent/output variables (y) (unit) 

Coal feedrate (x1) (kg/s) Power output (y1) (kW) 

Air flowrate (x2) (kmol/s) Main steam temperature (y2) (K) 

CND pump power (x3) (kW) Flue gas flowrate (y3) (kmol/s) 

Main steam pressure (x4) (kPa) CO2 in flue gas flowrate (y4) (kmol/s) 

BFW pump power (x5) (kW) ηLP1 (y5) (%) 

Low-pressure steam flowrate (x6) (kmol/s) ηLP2 (y6) (%) 

Lean solvent flowrate (x7) (kmol/s) Main steam flowrate (y7) (kmol/s) 

 

CO2 capture rate (y8) (%) 

Lean solvent CO2 loading (y9) 
(molCO2/ 

mol MEA) 

CCS overall work (y10) (kW) 

BFW: Boiler feedwater; CND: Condenser; ηLP1,LP2: efficiencies of low-pressure turbine (1,2). 

Standard and custom regressors are used to predict the dependent variables value, as 

shown in Table 4.2. The data used for system identification is generated from the high-
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fidelity first-principles model. The designed sequence to excite the decision variables is 

based on pseudo-random binary signals (PRBS). 

The goodness of fit (GOF) standard used to determine the correspondence between the 

1-hour ahead prediction with the data from the high-fidelity model in Aspen® Dynamics 

is defined in Equations (4.7) and (4.8). The standard is defined based on the normalized 

root mean squared error (NRMSE) (Ljung, 2021). 

𝑁𝑀𝑅𝑆𝐸 =
‖𝑦𝑑𝑎𝑡𝑎 − �̂�𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛‖

‖𝑦𝑑𝑎𝑡𝑎 − �̅�𝑑𝑎𝑡𝑎‖
 (4.7) 

𝐺𝑂𝐹 = (1 − 𝑁𝑀𝑅𝑆𝐸) × 100% (4.8) 

In which, 𝑦𝑑𝑎𝑡𝑎 is the dependent/output data from the high-fidelity model, �̂�𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is the 

dependent/output prediction by the reduced-order model, and �̅�𝑑𝑎𝑡𝑎 is the average of the 

dependent/output data from the high-fidelity model. The NMRSE is recommended to be 

used when comparing different models. The GOF can vary between −∞ to 100%. A GOF 

value equal to 0 indicates that the ROM model is as good at fitting as a constant line equal 

to the data mean. A GOF value equal to 100% indicates a perfect fit (Ljung, 2021). The 

ROM is chosen based in the GOF values, focusing mainly on the predictions of power 

output (𝐺𝑂𝐹(𝑦1) = 91.13%) and the CO2 capture rate (𝐺𝑂𝐹(𝑦8) = 91.61%). 

Particularly, due to the deadtime of approximately 30 minutes in the response of the CCS 

to varying inputs, the PRBS test is designed to introduce step tests for the low-pressure 

steam, CO2 in flue gas, and lean solvent flowrates, i.e., the decision variables of the CCS, 

every 1 hour and the responses of the CCS dependent variables (y8 to y10) are recorded. 

As a mathematical way of representing this behavior in the ROM, cosine and sine 

functions are used as regressors for the CCS dependent variables (y8 to y10).As the 

dynamics of the feed processing and generation are faster, the PRBS has introduced 

steps in the coal feedrate, air flowrate, condenser pump power, main steam pressure, 

and boiler feedwater pump power input variables every 15 minutes. Particularly, the flue 

flowrate (y3) is measured after the desulfurization process.   
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Table 4.2. Regressors of the linear and nonlinear ARX models for SCPC-CCS and 

correspondence between data and 1-hour ahead predictions 

Dependent 
variable 

Custom regressors Standard regressors GOF (%) 

y1 

x1(t-1)×x5(t-1); x1(t) ×x5(t); 

x1(t) ×x1(t-1); x5(t)2; 

x5(t-1)2 

y1(t-1,t-2,t-3); x1(t,t-1,t-2); 

x3(t,t-1,t-2); x4(t,t-1,t- 2);  

x5(t,t-1,t-2) ); x6(t,t-1,t-2) 

91.13% 

y2 x1(t,t-1); y2(t-1)2 
y2(t-1,t-2, t-3); x4(t);  

x5(t,t-1) 
86.98% 

y3 
x1(t)2; x2(t)2;  

x1(t)× x1(t-1) 

y3(t-1,t-2,t-3); x1(t,t-1,t-2,t-3);  

x2(t,t-1,-2,t-3); x4(t,t-1,t-2) 
70.45% 

y4 y4(t-1); x1(t) - 92.43% 

y5 
x5(t)2; x5(t-1)2;  

x5(t)× x5(t-1) 
y5(t-1,t-2,t-3); x5(t,t-1,t-2) 75.79% 

y6 
x5(t)2; x5(t-1)2; 

x5(t)× x5(t-1) 
y6(t-1,t-2,t-3); x5(t,t-1,t-2) 74.13% 

y7 
y7(t-1,t-2); x1(t, t-1, t-2);  

x4 (t, t-1, t-2); x5(t, t-1, t-2) 
- 88.07% 

y8 
x6(t,t-1); x6(t-2)2; 

sin(x7(t-3))2 

y8(t-1,t-2,t-3);  

y9(t-1, t-2, t-3);  

y10(t-1, t-2, t-3);  

y4(t,t-1,t-2); x6(t, t-1,t-2) 

91.61% 

y9 
cos(y9(t-3)); sin(y9(t-3))2; 

sin(x6(t))2 

y8(t-1); y9(t-1,t-2);  

y10(t-1);y4(t,t-1,t-2);  

x6(t,t-1,t-2);x7(t,t-1,t-2) 

92.68% 

y10 y4(t)2; cos(y9(t-3)) 

y8(t-1); y8(t-2); y9(t-1);  

y9(t-2), y10(t-1); y10(t-2); y10(t-

3); y4(t), y4(t-1);  

y4(t-2); x6(t); x6(t-1), x6(t-2); 

x7(t); x7(t-1); x7(t-2) 

90.38% 

Overall, the SCPC-CCS is represented by 1 ARX model and 2 NARX models. The 

pairwise correspondence between the 1-hour ahead prediction with the data from the 

high-fidelity model in Aspen® Dynamics is in the range 74% to 95%. The lower 
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correspondence is mainly for the variables in the SCPC part of the NARX model, which 

shows a highly nonlinear behavior and cross-interactions between the decision and 

dependent variables. The predictions of the reduced models are structurally similar to the 

behavior observed in the data from the high-fidelity model during PRBS step tests, as 

shown in Figures 4.2. to 4.4. Therefore, such models are considered suitable for the plant-

wide optimization framework. After the system identification was performed, the input and 

output variables data are normalized for better computational tractability of the gradient-

based optimization. 

 

Figure 4.2. Comparison between 1-hour ahead model prediction with data from high-

fidelity Aspen model – CCS nonlinear ARX 
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Figure 4.3. Comparison between 1-hour ahead model prediction with data from high-

fidelity Aspen model – SCPC linear ARX 
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Figure 4.4. Comparison between 1-hour ahead model prediction with data from high-

fidelity Aspen model – SCPC nonlinear ARX 

4.2. Nonlinear Optimization of the SCPC-CCS 

4.2.1. Problem Statement 

The objectives of the NMPO framework are economic (ECON) and environmental (ENV). 

The economic objective aims to minimize overall power plant operating cost while the 

environmental objective aims to maximize the amount of carbon being captured. 
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Equations (4.9) and (4.10) show the definition of the objectives. The optimization problem 

has additional system constraints per time step (4), shown in Equations (4.11) to (4.14). 

Including the slack variables of the 3 inequality constraints in Equations (4.12) to (4.14), 

the optimization problem has 10 decision variables per time step. For instance, for an 

optimization horizon of 𝑡2  and time step of Δt, there are 10𝑡2 Δt−1  decision variables, 

4𝑡2 Δt−1  constraints, and the first order-derivatives have the dimensions 

[∇𝑓]10𝑡2 Δt−1×1 and [∇ℎ𝑠]10𝑡2 Δt−1×4𝑡2 Δt−1 . for each optimization performed. These first-

order derivatives need to be obtained and all optimizations solved within the 

implementation time horizon. The search space for the optimal solution is considered the 

same as the normalized input ranges for the system identification, unless otherwise 

specified. 

𝑚𝑖𝑛 𝐸𝐶𝑂𝑁 (𝜑) = 𝛥𝑡 ∑ (

𝐶𝑜𝑎𝑙 𝑝𝑟𝑖𝑐𝑒 − 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
+𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑆𝑡𝑜𝑟𝑎𝑔𝑒

−𝐸𝑂𝑅 − 𝐶𝑎𝑟𝑏𝑜𝑛 𝑐𝑟𝑒𝑑𝑖𝑡 + 𝐶𝑎𝑟𝑏𝑜𝑛 𝑡𝑎𝑥
)

𝑡
 

(4.9) 

𝑚𝑎𝑥 𝐸𝑁𝑉 (𝜑) = 𝛥𝑡 ∑ (𝐶𝑂2 𝑖𝑛 𝑓𝑙𝑢𝑒 𝑔𝑎𝑠 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒
𝑡

× 𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 ) 

(4.10) 

𝑃𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐷𝑒𝑚𝑎𝑛𝑑 (4.11) 

ηLP1 ≥ ηmin  (4.12) 

ηLP2 ≥ ηmin  (4.13) 

𝑀𝑎𝑖𝑛 𝑠𝑡𝑒𝑎𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 𝑇𝑚𝑎𝑥 (4.14) 

in which Δ𝑡 is the discretization time step of 0.1h. Regarding the economic objective, the 

Coal price is the price of the coal (US$/h), Electricity represent the wholesale of the 

electricity (US$/h), Transportation is the cost related to CO2 transportation, such as 

onshore/off-shore and length of pipelines, and Storage is the cost related to CO2 storage, 

such as onshore/off-shore and reuse of wells. Moreover, for carbon policies, EOR is the 

credit due to CO2 utilization for enhanced oil recovery, Carbon credit is the value for the 

carbon captured in a cap&trade scenario, and Carbon tax is the tax embedded in the 

carbon released into the atmosphere. Regarding the environmental objective, Carbon 

Captured is the amount of CO2 captured. 



48 
 

As this formulation includes costs from different years, all cost values are scaled 

considering the 2019 Chemical Engineering Plant Cost Index (CEPCI) (CEP, 2021) and 

normalized to the same basis chosen as year 2000, as shown in Equation (4.15). 

𝐶𝑜𝑠𝑡2019 = 𝐶𝑜𝑠𝑡𝑟𝑒𝑓 ×
𝐶𝐸𝑃𝐶𝐼2019

𝐶𝐸𝑃𝐶𝐼𝑟𝑒𝑓
 

(4.15) 

Specifically, the terms in the objective function are further defined in Equations (4.16) to 

(4.22): 

𝐶𝑜𝑎𝑙 𝑝𝑟𝑖𝑐𝑒 = 𝑥1 × 𝑝𝑟𝑖𝑐𝑒𝑐𝑜𝑎𝑙 (4.16) 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 𝑦1 ∗ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑟𝑖𝑐𝑒𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 (4.17) 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑦
4

× 𝑦8 × ℎ2 (4.18) 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑦
4

× 𝑦8 × ℎ3 (4.19) 

𝐸𝑂𝑅 = ℎ5 × 𝑦
4

× 𝑦8 (4.20) 

𝐶𝑎𝑟𝑏𝑜𝑛 𝐶𝑟𝑒𝑑𝑖𝑡 = 𝐶𝐶𝑚𝑎𝑟𝑘𝑒𝑡 × 𝑦
4

× 𝑦8 (4.21) 

𝐶𝑎𝑟𝑏𝑜𝑛 𝑡𝑎𝑥 = ℎ4,𝑇𝐴𝑋 × 𝑦4
2(1 − 𝑦8) (4.22) 

in which h2 is the recommended cost for onshore CO2 transportation pipelines (US$/ton 

CO2/250km); h3 is the recommended cost for onshore CO2 storage (US$/ton CO2); 

CCmarket is the hypothetical change in the market price value of the CO2 credit according 

to the amount of carbon captured (US$/ton CO2); h4,TAX is the tax value imposed to the 

amount of carbon released (US$/ton CO2) based on existing similar policies (CTC, 2021); 

and h5 is the recommended value for enhanced oil recovery according to the amount of 

carbon captured (US$/ton CO2). Recommended values for the costs/credits associated 

with Transportation, Storage and EOR are obtained from the literature (Rubin et al., 2015).  

The forcing function profiles of the carbon credit, electricity price (PJM, 2019), and 

electricity demand (PJM, 2019) used in this work are shown in Figure 4.5. The price of 

coal from Illinois Basin considered is in average 35.30 $/ton (EIA, 2021). If the CO2 is sold 

as EOR, there is no cost regarding carbon storage. Also, the threshold values in 

Equations (4.12) to (4.14) are 𝑇𝑚𝑎𝑥 = 915 𝐾 and ηmin = 70%. 
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Figure 4.5. Power demand cycling profile (left axis), electricity price and carbon credit 

(right axis) for 12-hour horizon 

The ParPSO parameters are shown in Table 4.3. Considering these values, a reasonable 

feasible guess is always found at the end of the maximum number of iterations. 

Table 4.3. ParPSO parameters for the NMPO framework 

Parameters Economic Objective Environmental Objective 

Φ1 2.1 2.3 

Φ2 2.2 2.3 

𝛾 0.97 0.96 

Particle in swarm 18 12 

Maximum iterations 10 8 

Parallel workers 8 8 
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Regarding the constraints in the PSO formulation, the equality constraint defined in 

Equation (4.11) is not enforced as the initial guess for the IPOPT only requires feasibility 

with respect to the inequality constraints. The inequality constraint violation was enforced 

by using a static penalty function, which heavily hinders the objective function if the 

constraints are violated and steer the particles away from unfavorable regions. 

Also, considering that the electricity price predictions tend to be less accurate farther they 

are from the current time, an opportunity variable (wop) was implemented as the cost of 

opportunity. A similar strategy has already been adopted in literature (Bankole et al., 2018) 

to somehow account for uncertainty in long time horizons without increasing the 

computational time. The cost of opportunity is considered as the cost of forfeiting a “right-

now” gain to achieve an overall higher gain due to potential future conditions; however, 

as the time horizon moves, the costs may also change considerably, and the future 

scenario may never occur. Therefore, the role of this new variable is to introduce a bias 

in the algorithm such that it will slightly favor the earlier (or more accurate) electricity 

prices when compared to later electricity prices within an optimization horizon, as shown 

in Equation (4.23): 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑟𝑖𝑐𝑒𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 𝑤𝑜𝑝 ∗ 𝑝𝑟𝑖𝑐𝑒𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 (4.23) 

in which, wop is a weight vector in which each element has maximum value of 1 and price 

is the vector with the electricity prices ($/kWh). In this case, the 𝑤𝑜𝑝 = [1.00 0.95 0.90], as 

the maximum simulated optimization horizon is 3h. 

The implementation horizon is 1h based on the time scale that the forcing functions 

usually change. In the current application, the forcing functions are likely to change in an 

hourly manner, as shown in Figure 4.5. With the implementation horizon being 1h, the 

NMPO can operate with the most updated forecasted values for the forcing functions. 

Therefore, the real-time constraint to obtain the optimal trajectories is 1h. 

To determine the optimization horizon, three horizons of 1h, 2h, and 3h are tested using 

the modified Tchebycheff weighted metric method for T=4h simulated horizon, 

considering equal weights to each objective (w1=w2=0.5). As a remark, the simulation with 

optimization horizon of 1h still calculates the optimal trajectory for that time interval but 

without any prediction capability, as the optimization and the implementation horizons are 
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the same. Considering the minimization formulation, results in Figure 4.6 show the benefit 

of having an optimization horizon longer than the implementation horizon. In particular, a 

prediction capability allowed the algorithm to set up optimal conditions ahead of time to 

reach lower costs while maintaining the environmental performance. 

  

Figure 4.6. Objective values for 

implementations with different 

optimization horizons 

Figure 4.7. Computational times for 

implementations with different optimization 

horizons (dots) and the considered real-

time constraint (line) 

Figure 4.7 presents the average computational times to calculate the four piecewise 

implementation horizon and respective optimization horizons of 1h, 2h, and 3h. The result 

shows that the longer is the optimization horizon, the longer is the computational time. At 

times (e.g., for an optimization horizon of 3h), the real-time constraint implementation is 

violated without significant gain in the objectives’ values.  

This exploratory assessment demonstrated that the most suitable optimization and 

implementation horizons while applying this framework depends on the problem forcing 

functions time scale and the energy systems models. Considering the current application 

and results, the chosen optimization horizon is of 2h.  

For an optimization horizon of 2h and time step of 0.1h, there are 200 decision variables, 

80 constraints, and the first order-derivatives have the dimensions [∇𝑓]200×1 and 

[∇ℎ𝑠]200×80. for each optimization performed. These first-order derivatives need to be 

obtained and all optimizations solved within the implementation time horizon of 1h. The 

NMPO method performs up to 5 per optimization implementation horizon of 1h.  
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After the parameters are set, four case studies are performed using the different multi-

objective methods, modified Tchebycheff and the 𝜖-constraint method. 

4.2.2. Optimization Results 

Prior to the full implementation, a study is performed for the Tchebycheff MOO component 

when selecting the optimal compromise considering different weight vectors as a proof of 

concept to assess the distribution of compromises. This study is performed in the carbon 

capture subsystem and it is considered that the flue gas flowrate is proportional to the 

power demand, shown in Figure 4.5. The optimal compromises chosen by the MOO 

component are plotted against a previously mapped objective space. Afterwards, four 

case studies are presented regarding the full SCPC-CCS system. The scenarios 

analyzed correspond to the optimal trajectories up to T=12h with optimization horizon of 

t2 = 2h, and implementation horizon of t1 = 1h, considering different carbon capture 

policies and different MOO methods, namely the modified Tchebycheff and the  

𝜖-constraint method. 

Regarding the preliminary study, the entire feasible space is first mapped using 

exhaustive search to delineate the Pareto Front (shown in blue in Figure 4.8). Then, 

weight values are uniformly changed and attributed in the modified Tchebycheff-based 

MOO formulation to assess the effect of this selection on the optimal distribution of 

compromises. The optimal compromises for the different weights (shown as red dots in 

Figure 4.8) are plotted and superimposed to the previously mapped feasible space. All 

values are scaled considering their respective positions to the offline mapping, which is 

also scaled using w1= w2=0.5. 

From the analysis of Figure 4.8, the optimal compromises are relatively well distributed 

along the Pareto front with no signs of clustering for different weight vectors, although an 

increase of sensitivity can be detected closer to the extremity of w1 = 1. Under this method, 

there is no need to compute the entire Pareto front while still selecting a Pareto-optimal 

compromise. However, caution should be used if the weight vector is disproportional, 

such as w1 = 0.1 and w2 = 0.9. 
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Figure 4.8. Feasible space and distribution of optimal compromise and the optimal 

compromise according to the weight vector along the Pareto front 

Regarding the case studies, two carbon policy scenarios are simulated in both MOO 

methods. The CEPCI adjusted values of the parameters adopted are shown in Table 4.4. 

Case 1 represents a scenario with absence of market for the captured CO2 as EOR and 

absence of carbon tax policy. Case 2 represents a scenario with greater incentives for 

capturing carbon with available market for CO2 as EOR and high taxation on carbon, 

which is within the range of current policies such as the FUTURE Act Policy 45Q 

(FUTURE Act, 2017). The weights adopted for the modified Tchebycheff and the  

𝜖-constraint formulation are 𝑤1 = 𝑤2 = 𝑤2
𝜖−const = 0.5. Specifically, the ECON objective 
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is chosen as the MOO objective and the ENV objective is reformulated as a constraint for 

the 𝜖-constraint method. 

Table 4.4. Optimization parameters for carbon policy scenarios – Cases 1 and 2 

Parameters Unit Case 1 Case 2 

ℎ2 (2019 US$/ton CO2) 5.2472 1.8205 

ℎ3 (2019 US$/ton CO2) 13.9212 7.4960 

ℎ4,𝑇𝐴𝑋 (2019 US$/ton CO2) 0 32.1259 

ℎ5 (2019 US$/ton CO2) 0 42.8345 

Figure 4.9 shows that the power output constraint is satisfied at all times for Cases 1 and 

2 during the optimizations considering the economic objective, environmental objective, 

and the multi-objective problem formulated using the modified Tchebycheff and the  

𝜖-constraint methods. 

 

Figure 4.9. Satisfied SCPC power output constraint 
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Figures 4.10 to 4.17 show the objective values for the optimization and implementation 

horizons of the economic, environmental, and the modified Tchebycheff-based NMPO for 

Cases 1 and 2. In Figures 4.10 and 4.11 for Case 1 and Figures 4.14 and 4.15 for Case 

2, the economic optimization always obtains the lowest objective value while the 

environmental optimization operates under higher costs, mostly due to the operation of 

CCS. The MTch MOO objective values remain balanced between both objectives. 

Corresponding behavior is observed in Figures 4.12 and 4.13 for Case 1 and Figures 

4.16 and 4.17 for Case 2, in which the environmental optimization always obtains the 

highest value for carbon captured and the economic optimization not necessarily attempt 

to maximize the carbon captured, with MTch MOO again remaining in between both 

objectives. Furthermore, the results presented in Figures 4.10 to 4.17 show that the 

objective values between the optimization and implementation horizon are proportional 

to each other. The generated trajectories by the MTch MOO do not present a “bang-bang” 

behavior and remain balanced between the economic and environmental objectives. The 

“bang-bang” effect is considered in this dissertation as the effect of the trajectories going 

from one extreme to the other in a cyclic manner and in a short amount of time.  

  

Figure 4.10. Economic objective value for 

optimization horizon of the economic, 

environmental, and MTch multi-objective 

optimizations – Case 1 

Figure 4.11. Economic objective value for 

implemented horizon of the economic, 

environmental, and MTch multi-objective 

optimizations – Case 1 
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Figure 4.12. Environmental objective 

value for optimization horizon of the 

economic, environmental, and MTch 

multi-objective optimizations – Case 1 

Figure 4.13. Environmental objective 

value for implemented horizon of the 

economic, environmental, and MTch 

multi-objective optimizations – Case 1 

  

Figure 4.14. Economic objective value for 

optimization horizon of the economic, 

environmental, and MTch multi-objective 

optimizations – Case 2 

Figure 4.15. Economic objective value for 

implemented horizon of the economic, 

environmental, and MTch multi-objective 

optimizations – Case 2 
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Figure 4.16. Environmental objective 

value for optimization horizon of the 

economic, environmental, and MTch 

multi-objective optimizations – Case 2 

Figure 4.17. Environmental objective 

value for implemented horizon of the 

economic, environmental, and MTch 

multi-objective optimizations – Case 2 

Considering the objective values of Cases 1 and 2, the economic carbon incentives do 

not significantly affect the standalone environmental optimization as the ENV objective 

do not account for any economic parameter in the objective. Such incentives, however, 

affect the economic objective standalone optimization and, consequently, the MOO 

optimization result. For the 12-hour horizon of Case 2, there was an increase of 

approximately 65 ton of CO2 captured for the economic optimization and 63 ton of CO2 

captured for the MOO compromise when compared to Case 1. 

In general, the economic optimization operates the power plant at lower auxiliary power 

and reduces the amount of low-pressure steam extracted from the turbines for solvent 

recovery. It also operates at lower main steam pressure and higher main steam 

temperature when compared to the environmental optimization, as depicted in Figures 

4.18 to 4.21. The results obtained using the NMPO framework are similar to a sliding 

pressure strategy, which relies on the principle that a rotating turbine requires less 

pressure as load is reduced and vice-versa. A fast-response load reserve can be 

accessed by opening a throttle valve or an admission valve.  
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However, most baseload power plants being cycled under VRE are existing power plants 

that are not designed to be operated in varying temperature and pressure. For instance, 

recommended modifications to change from constant to sliding operating mode include, 

but are not limited to, furnace resizing, equipment reinforcements, construction material, 

inclusion of new throttle and admission valves. Therefore, considering that the baseload 

SCPC-CCS is designed to operate at constant pressure and temperature, an input 

constraint on the main steam pressure is considered in this study, by limiting the value of 

the main steam pressure to be higher than 25.4 MPa and lower than 26.4 MPa. This 

analysis shows that, although the compromise between objectives is automatically 

selected by the NMPO framework, chemical engineering concepts and specific power 

plant operations knowledge are key to properly employ the developed framework. 

Moreover, the main steam temperature is always above 840K, which could be a limiting 

value depending on the age and construction material of the pipelines. Thus, the varying 

operating temperature and pressure motivate the implementation in the future of an 

equipment stress-based constraint, similar to the constraints included in the dynamic 

dispatch approach detailed in Chapter 5. 

  

Figure 4.18. Main steam operating 

pressure for economic, environmental 

and MTch multi-objective optimizations – 

Case 1 

Figure 4.19. Main steam operating 

temperature for economic, environmental 

and MTch multi-objective optimizations – 

Case 1 
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Figure 4.20. Main steam operating 

pressure for economic, environmental 

and MTch multi-objective optimizations – 

Case 2 

Figure 4.21. Main steam operating 

temperature for economic, environmental 

and MTch multi-objective optimizations – 

Case 2 

The most relevant MTch MOO input and output trajectories for Cases 1 and 2 are shown 

in Figures 4.22 to 4.30. The outputs are the main steam flowrate, carbon captured, lean 

solvent CO2 loading, and the low-pressure steam extracted for solvent recovery. 

 

Figure 4.22. Coal feedrate for Cases 1 and 2 obtained with MTch multi-objective 

optimization 
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Figure 4.23. CND pump power for Cases 1 and 2 obtained with MTch multi-objective 

optimization 

 

Figure 4.24. BFW pump power for Cases 1 and 2 obtained with MTch multi-objective 

optimization 
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Figure 4.25. Low-pressure steam flowrate for Cases 1 and 2 obtained with MTch 

multi-objective optimization 

 

Figure 4.26. Lean solvent flowrate for Cases 1 and 2 obtained with MTch multi-

objective optimization 
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Figure 4.27. Main steam flowrate for Cases 1 and 2 obtained with MTch multi-

objective optimization  

 

Figure 4.28. CCS equivalent work for Cases 1 and 2 obtained with MTch multi-

objective optimization 
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Figure 4.29. Carbon captured for Cases 1 and 2 obtained with MTch multi-objective 

optimization 

 

Figure 4.30. Lean solvent CO2 loading for Cases 1 and 2 obtained with MTch multi-

objective optimization 
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The MOO output trajectories confirm that carbon economic incentives influenced in the 

compromise selection. There is an overall increase of low-pressure steam extracted from 

the turbines, higher CCS equivalent work, and higher amount of carbon captured in Case 

2 when compared to Case 1. The lean solvent CO2 loading and the main steam flowrate 

trajectories remain relatively similar for both cases. Additionally, the efficiencies of the 

low-pressure turbines are always higher than 85%. The trajectories obtained by this 

methodology is derived from an open-loop simulation. Therefore, for real world application, 

it is recommended pairing the NMPO with a multivariable controller to close the loop by 

sending the plant state back to the NMPO, such as in the open literature studies 

(Jamaludin and Swartz, 2017; Li and Swartz, 2018).  

Regarding the 𝜖-constraint-based NPMO, a challenge is faced as a “bang-bang” effect is 

detected during its implementation. Considering that the NMPO has two horizons, it is not 

desired for the generated trajectory to satisfy the objectives separately. Figure 4.31 

illustrates the “bang-bang” impact in the NMPO framework. Example 1 depicts a constant 

trajectory and Example 2 depicts a trajectory that starts close to zero which later rapidly 

increases to a high value. Both trajectories generated for the optimization horizon (t2) 

have similar integral values. However, in the NMPO framework only the trajectory up to 

the implementation horizon (t1) is applied to the system. 

Therefore, a trajectory equivalent to Example 1 is preferred over the trajectory in Example 

2 for the NMPO framework, as it remains balanced at all times. A behavior equivalent to 

Example 1 is detected in the modified Tchebycheff-based NMPO formulation. However, 

a behavior equivalent to Example 2 is detected in carbon captured trajectories generated 

by the 𝜖-constraint-based NMPO. Due to this behavior, often the implementation objective 

values and trajectories were approximately equal to the economic objective for the  

𝜖-constraint-based NMPO. 

To partially address this challenge, a constraint in the carbon captured trajectory is 

included. This constraint states that at no time the MOO trajectory can be equal to the 

trajectories generated by either the economic or the environmental optimization.  
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Figure 4.31. Illustrative example of the “bang-bang” effect in the NMPO framework 

For the purposes of this analysis, a shorter time horizon of T=6h is performed for the  

𝜖 -constraint-based MOO. Figures 4.32 to 4.39 show the objective values for the 

optimization and implementation horizons of the economic, environmental, and the  

𝜖-constraint-based MOO optimizations obtained using the NMPO for Cases 1 and 2. 

  



66 
 

  

Figure 4.32. Economic objective value for 

optimization horizon of the economic, 

environmental, and 𝜖-constraint multi-

objective optimizations – Case 1 

Figure 4.33. Economic objective value for 

implemented horizon of the economic, 

environmental, and 𝜖-constraint multi-

objective optimizations – Case 1 

  

Figure 4.34. Environmental objective 

value for optimization horizon of the 

economic, environmental, and 𝜖-

constraint multi-objective optimizations – 

Case 1 

Figure 4.35. Environmental objective 

value for implemented horizon of the 

economic, environmental, and 𝜖-

constraint multi-objective optimizations – 

Case 1 
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Figure 4.36. Economic objective value for 

optimization horizon of the economic, 

environmental, and 𝜖-constraint multi-

objective optimizations – Case 2 

Figure 4.37. Economic objective value for 

implemented horizon of the economic, 

environmental, and 𝜖-constraint multi-

objective optimizations – Case 2 

  

Figure 4.38. Environmental objective 

value for optimization horizon of the 

economic, environmental, and 𝜖-

constraint multi-objective optimizations – 

Case 2 

Figure 4.39. Environmental objective 

value for implemented horizon of the 

economic, environmental, and 𝜖-

constraint multi-objective optimizations – 

Case 2 

The results show that the 𝜖 -constraint-based MOO performs as expected for the 

optimization horizon (Figures 4.32, 4.34, 4.36, and 4.38), as the MOO remains in between 

the economic and environmental objectives. Regarding the implementation horizon 

(Figures 4.33, 4.35, 4.37, and 4.39), the trajectory constraint can partially manage the 

challenge illustrated in Figure 4.31 for both performed cases. However, the objective 
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values between the implemented and the optimization horizons are still not proportional, 

showing a bias towards the economic objective values and hindering the environmental 

performance.  

This behavior indicates that, although the 𝜖-constraint-based MOO is a good candidate 

for a MOO-DRTO framework as it is capable of selecting a Pareto-based optimal 

compromise, the combination with the NMPO rolling horizon feature deems the 

performance as unsatisfactory. However, considering the performance for the 

optimization horizon, the 𝜖-constraint-based MOO should be explored in applications that 

are not updated as frequently in a rolling horizon manner, such as multi-objective 

scheduling and unit commitment problems.  
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5. Implementation of the MILP-based Dynamic Dispatch 

considering Power Plant Health 

In this chapter, the details of the MILP-based dynamic dispatch implementation 

considering power plant health are provided. Particularly, brief descriptions of the energy 

systems derived linear reduced-order models are given. Then the optimization results are 

presented. 

5.1. Energy Systems Dynamic Modeling 

The energy systems are linearized models from the high-fidelity models of the stand-

alone supercritical coal-fired power plant (SCPC) (Zhang et al., 2016), charge and 

discharge models of the sodium sulfur (NaS) batteries (Schaefer et al., 2020), and the 

natural-gas combined cycle power plant (NGCC) (Wang et al., 2020), as represented in 

Figures 5.1 to 5.3. The wind and solar power generation, represented in Figure 5.4, are 

considered as boundary conditions, i.e., forcing functions based on historical data (PJM, 

2019). Thus, the dispatchable energy set (ES) is defined as 𝐸𝑆 = {𝑁𝑎𝑆, 𝑁𝐺𝐶𝐶, 𝑆𝐶𝑃𝐶}. 

  

Figure 5.1. Schematic of the SCPC power plant 

(adapted from Kim et al., 2020) 

Figure 5.2. Schematic of a 

single NaS cell (adapted 

from Kim et al., 2020) 
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Figure 5.3. Schematic of the NGCC power plant 

(adapted from Kim et al., 2020)  

Figure 5.4. Representation of the 

wind and solar (adapted from Kim 

et al., 2020) 

The data used to obtain the parameters for the linear models of the NaS batteries for 

charge and discharge cycles are shown in Figures 5.5 and 5.6. 

 

Figure 5.5. Plot of capacity (Wh) vs. state of discharge of a single NaS cell 

 



71 
 

 

Figure 5.6. Plot of state of discharge vs. time for a single NaS cell 

The NaS battery linear charging model parameters expressed in Equations (5.1) and (5.2) 

are calculated by linear regression of the charging data obtained by exciting the high-

fidelity model in Aspen Custom Modeler (Schaefer et al., 2020). 

𝑆𝑂𝐷 = 0.055𝑡 + 0.46910 (5.1) 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  −162.13 𝑆𝑂𝐷 + 144.6 (5.2) 

SOD is the state of discharge (fractional), t is the time in hour, and Capacity is the battery 

capacity in Wh.  

The NaS battery linear discharging model parameters expressed in Equations (5.3) and 

(5.4) are calculated by considering the charging data and adding a deviation term (𝜀1) to 

shift the model predictions for alignment with the discharging data. The discharging data 

was also obtained from the high-fidelity model in Aspen Custom Modeler (Schaefer et al., 

2020). A limitation in the linear representation of the discharging model is observed 

regarding the mismatch between the prediction and the data at lower levels of SOD. This 

issue arises due to the inherent phase change characteristics of NaS batteries during 

charging/discharging that alter their dynamic behavior (McKubre et al., 1989). 
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𝑆𝑂𝐷 = −0.0771𝑡 + 0.9027 (5.3) 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  177.98 𝑆𝑂𝐷 − 70.486 (5.4) 

The calculated R2 considering all of the linear regressions performed for the NaS batteries 

were higher than 95%. 

Regarding the NGCC, the reduced-order model (ROM) is obtained by linearization of a 

nonlinear high-fidelity model in Aspen Dynamics (Wang et al., 2020). The ROM is a state-

space model as shown in Equations (5.5) and (5.6): 

𝑥𝑁𝐺𝐶𝐶(𝑡 + 1) = 𝐴𝑁𝐺𝐶𝐶𝑥𝑁𝐺𝐶𝐶(𝑡) + 𝐵𝑁𝐺𝐶𝐶𝑢𝑁𝐺𝐶𝐶(𝑡) (5.5) 

𝑦𝑁𝐺𝐶𝐶(𝑡) = 𝐶𝑁𝐺𝐶𝐶𝑥𝑁𝐺𝐶𝐶(𝑡) + 𝐷𝑁𝐺𝐶𝐶𝑢𝑁𝐺𝐶𝐶(𝑡) (5.6) 

in which, 𝑦𝑁𝐺𝐶𝐶 is the output vector, 𝑢𝑁𝐺𝐶𝐶 is the input vector, 𝑥𝑁𝐺𝐶𝐶 is the state vector, 

and (𝐴𝑁𝐺𝐶𝐶 , 𝐵𝑁𝐺𝐶𝐶 , 𝐶𝑁𝐺𝐶𝐶 , 𝐷𝑁𝐺𝐶𝐶) are the NGCC system matrices. The NGCC input is the 

natural gas flowrate (kg/h) and the outputs are the gross power output (MWe), gas turbine 

power output (MWe), the main steam temperature (°C), the reheat steam temperature 

(°C), the drum body mechanical stress (MPa), and the thermal drum body stress (MPa). 

In summary, the mechanical and thermal stresses calculated in the high-fidelity model 

are a function of the material of construction, geometry of the equipment, operating 

pressure and temperature. During the optimization, considering the linear programming 

constraint, only the most stressed direction was considered in this work, i.e., the 

tangential direction. 

The reduced-order linear model for the SCPC, obtained by linear regression using the 

generated data from the high-fidelity model in Aspen Dynamics (Zhang et al., 2016), is 

an autoregressive with exogenous inputs (ARX) model, previously shown in Equation 

(4.6). The SCPC regressors are composed of the past and current coal feedrates (kg/s) 

and the output vector contains the past and current gross power outputs (kWe). The 

regressors for the SCPC ARX model are shown in Equations (5.7) and (5.8). 

𝑦(𝑡)  =  [𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑡, 𝑡 − 1, 𝑡 − 2, 𝑡 − 3)] (5.7) 

𝑥(𝑡)  =  [𝑐𝑜𝑎𝑙 𝑓𝑒𝑒𝑑𝑟𝑎𝑡𝑒 (𝑡, 𝑡 − 1)] (5.8) 
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Figures 5.7 to 5.13 show the correspondence between the model predictions and the 

generated datasets from the high-fidelity models. For the NGCC models, FOM is the full-

order model, ROM is the reduced-order model, and APD is the Aspen Plus Dynamic data. 

Linearization of the high-fidelity nonlinear models inherently introduces inaccuracies in 

the representation of the energy systems. In particular, the mechanical stress is 

underestimated at full load, and the thermal stress is underestimated at peaks. However, 

the overall dynamic behavior of the integrated energy system is still captured by the 

reduced-order model. 

  

Figure 5.7. Comparison between 6 

minute ahead model prediction with data 

from high-fidelity Aspen model – SCPC 

total power output 

Figure 5.8. Comparison between 

simulations and data from high-fidelity 

Aspen model – NGCC total power output 
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Figure 5.9. Comparison between 

simulations and data from high-fidelity 

Aspen model – NGCC gas turbine power 

output 

Figure 5.10. Comparison between 

simulations and data from high-fidelity 

Aspen model – NGCC main steam 

temperature 

  

Figure 5.11. Comparison between 

simulations and data from high-fidelity 

Aspen model – NGCC gas reheat steam 

temperature 

Figure 5.12. Comparison between 

simulations and data from high-fidelity 

Aspen model – NGCC drum mechanical 

stress 
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Figure 5.13. Comparison between simulations and data from high-fidelity Aspen 

model – NGCC drum thermal stress 

5.2. Dynamic Dispatch Optimization 

5.2.1. Problem Statement 

The objective of the dynamic dispatch optimization is to minimize the overall cost of 

dispatch defined in Equation (5.9): 

𝑚𝑖𝑛 𝛷 = 𝐶𝑜𝑠𝑡𝐸𝑆 − 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝐸𝑆 (5.9) 

in which ES represents the dispatchable energy set in the grid. The “CostES” and 

“RevenueES” variables are further defined in Equations (5.10) and (5.11). 

𝐶𝑜𝑠𝑡𝐸𝑆 = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝐸𝑆 + 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑓𝑢𝑒𝑙𝐸𝑆 +

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐸𝑆 + 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐸𝑆, 
(5.10) 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝐸𝑆 = 𝑊ℎ𝑜𝑙𝑒𝑠𝑎𝑙𝑒 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟𝐸𝑆, (5.11) 

The “PenaltyES” variable in Equation (5.10) represents a potential policy that fines the 

curtailment of renewables or the investment cost per cycle of the battery. The nominal 

power generation for the NGCC is 641 MWe, for the SCPC is 600 MWe, and for the NaS 

batteries is 99.4 MW/845 MWh of storage capacity considering a single sodium sulfur cell 

capacity equal to 102 Wh. The maximum discharge and charge rates of a single NaS cell 

are assumed to be 12.5 Wh and 8.9 Wh, respectively. Furthermore, the optimization 

problem statement also includes the constraints expressed in Equations (5.12) to (5.23). 
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The smart-grid power balance is expressed in Equation (5.12). 

∑ (𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖 − 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖)
𝑖∈𝐸𝑆

+ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠

= 𝐷𝑒𝑚𝑎𝑛𝑑 

(5.12) 

The “Electricity consumedi” variable refers to the case in which the energy system 

requires electricity from the grid that cannot be supplied from within the energy system 

(for instance, when the battery requires electricity to charge). The “Renewables” variable 

considers the wind and solar power generation as forcing function profiles built from PJM 

Regional Transmission Organization data (PJM, 2019). The data corresponds to 30 days 

of hourly aggregate demand loads and the electricity price in August 2019, which were 

linearly interpolated for the 6 min time step. The absolute values of the demand and the 

renewable power generation are adjusted to be proportional to the available energy 

sources’ nominal maximum and minimum power generations, while maintaining the load 

demand slopes. These actions are taken to guarantee feasibility to the current forcing 

functions that use 2019 information. However, further modifications to the forcing 

functions (the modified 2019 load and the 2050 renewables projection as shown in 

Figures 5.14 and 5.15) might render the problem infeasible due higher energy supply than 

demand. Thus, to partially manage this issue, renewables curtailment is allowed and 

flexibility requirements of the grid analyzed. The proportionality factors used for the 

scaling of renewable generation in 2050 are based on information in Table 5.1. 

Table 5.1. Electricity generation from selected fuels (EIA, 2019a) 

Fuel 2018 2050 

Natural gas 34% 39% 

Coal 28% 17% 

Renewables 18% 31% 

    Wind      6.66%      7.77% 

    Solar      2.34%      14.88% 

      Other 1      9.00%      8.35% 

Nuclear 19% 12% 

Total 99% 99% 

1 Other renewable sources, e.g., hydro and geothermal. 
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Figures 5.14 and 5.15 show the power demands and renewable penetration levels based 

considered for most of the case studies. 

 

Figure 5.14. 2019 total and modified electricity demand load 

 

Figure 5.15. 2019 and 2050 variable renewable energy penetrations 

(solar/wind) 

A logical constraint using disjunctive programming is also included, as it is considered 

that the NaS batteries cannot charge and discharge at the same time. This constraint is 

expressed in Equations (5.13) and (5.14). 

𝜈 ∈ ℤ | 𝜈𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒+𝜈𝑐ℎ𝑎𝑟𝑔𝑒 ≤ 1, 𝜈 ∈ {0,1} (5.13) 

𝜈𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒/𝑐ℎ𝑎𝑟𝑔𝑒 = {
0
1
  

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 𝑚𝑜𝑑𝑒𝑙 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑⁄

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 𝑚𝑜𝑑𝑒𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑⁄
 (5.14) 
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In summary, the decision variables for the dynamic dispatch are the SCPC coal feedrate, 

the NGCC natural gas flowrate, the two integer variables 𝜈𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒/𝑐ℎ𝑎𝑟𝑔𝑒, the level of 

renewables curtailment, and the depreciation of the battery. 

The NaS batteries range of operation considering the regression data fit is shown in 

Equation (5.15). 

40% ≤ 𝑆𝑂𝐷 ≤ 89% (5.15) 

Finally, the damage-related constraints of the drum, the superheater, and reheater are 

also included. In summary, two distinct wear and tear mechanisms can influence and 

change the material lifetime, namely creep and fatigue. Creep is caused by the prolonged 

exposure to high temperature, while fatigue is due to the repeated and fluctuating stress 

that results from both temperature and pressure transients under load-following 

conditions (Kim et al., 2010). 

In the optimization problem, the maximum stress that is allowed for the drum is considered 

as a constraint along with a constraint on the maximum temperature to avoid overheating 

of the NGCC superheater and reheater. Stress analysis of the NGCC drum was based 

on the European norm (European Committee for Standardization, 2002), design rules for 

steam boilers (Technical Rules for Steam Boilers, 1996), and available literature (Kim et 

al., 2010). The dimensions of the drum main body and branches are shown in Table 5.2.  

Table 5.2. High-pressure drum specification with MOC1 being SA-515 grade 70 

Parameter Symbol Value Unit 

Branch radius rinb 0.20 m 

Main body radius rinms 0.8382 m 

Branch thickness sb 0.04 m 

Main body thickness sms 0.1524 m 

Thermal transmittance for steam h 1000 Wm−2K−1 

1 MOC: Material of Construction. 

The tangential stress in the drum body is defined as a sum of the mechanical and thermal 

stresses, as shown in Equation (5.16) and it is used to represent the limiting stress as it 

is the highest stress component. 
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𝜎𝜃,𝑏𝑜𝑑𝑦 = 𝜎𝜃,𝑏𝑜𝑑𝑦
𝑃 + 𝜎𝜃,𝑏𝑜𝑑𝑦

𝑇  (5.16) 

In which, 𝜎𝜃,𝑏𝑜𝑑𝑦 is the overall tangential stress on the body of the drum, 𝜎𝜃,𝑏𝑜𝑑𝑦
𝑃  is the 

tangential stress due to pressure (mechanical stress) , and 𝜎𝜃,𝑏𝑜𝑑𝑦
𝑇  is the tangential stress 

due to temperature (thermal stress). 

To define the threshold for the stress constraint on the body of the drum, the maximum 

allowable stress (MAS) is defined in Equation (5.17). Specifically, the material SA-515 

grade 70 requires the tensile strength to be within the range of 485–620 MPa and the 

minimum yield strength of 260 MPa (Henan Steel Guang International Trade Co, 2020). 

𝑀𝐴𝑆 =
𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑚𝑖𝑛

4
 (5.17) 

The calculated MAS value is about 120 𝑀𝑃𝑎. The MAS value is used to determine the 

maximum tangential stress value during dispatch according to Equations (5.18) and 

(5.19): 

𝑃𝑐 =
2𝑀𝐴𝑆

1 +
2𝑟𝑖𝑛𝑚𝑠

𝑠𝑚𝑠𝐸
 (5.18) 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
(𝑃𝑐−𝑝0)(2𝑟𝑖𝑛𝑚𝑠+𝑠𝑚𝑠)

2𝑠𝑚𝑠
 . (5.19) 

in which p0 is the outside pressure (MPa) and E is the joint efficiency of the shell–branch 

connection, with E = 0.95. Then, the constraint on the overall stress that the drum body 

endures is given by Equation (5.20).  

𝜎𝜃,𝑏𝑜𝑑𝑦 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (5.20) 

Finally, to avoid overheating of the superheater and reheater, temperature constraints 

given by Equations (5.21) to (5.23) are considered: 

𝑇𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑟 ≤ 𝑇𝑚𝑎𝑥 (5.21) 

𝑇𝑟𝑒ℎ𝑒𝑎𝑡 ≤ 𝑇𝑚𝑎𝑥 (5.22) 

𝑇𝑚𝑎𝑥 = 635℃. (5.23) 

Additionally, two post-optimization analyses are carried out: the stress of the most 

stressed part of the drum and the equivalent CO2 emission. The post-optimization 

analysis of the most stressed part of the drum is performed by using Equations (5.24) to 
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(5.31) along with Equation (5.16) after the optimal dispatch is determined. Equations (5.24) 

and (5.25) are developed by multiplying the tangential thermal and mechanical body 

stresses using stress concentration factors. The concentration factors were developed 

considering the shell–branch connections (e.g., drum–downcomer junction). A diagram 

of the steam drum is shown in Figure 5.16. 

 

Figure 5.16. Diagram of a steam drum (including the drum–downcomer junction) 

𝜎𝜃,𝑚𝑜𝑠𝑡 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑
𝑃 = 𝜆𝑚𝜎𝜃,𝑏𝑜𝑑𝑦

𝑃   (5.24) 

𝜎𝜃,𝑚𝑜𝑠𝑡 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑
𝑇 = 𝜆𝑡𝜎𝜃,𝑏𝑜𝑑𝑦

𝑇  (5.25) 

In Equations (5.24) and (5.25), 𝜆𝑚 is the stress concentration factor due to pressure and 

is calculated using Equations (5.26) to (5.29), while 𝜆𝑡 is the stress concentration factor 

due to temperature and is calculated using Equations (5.30) to (5.31). 

𝜆𝑚 = 2.2 + 𝑒𝐴 ∗ 𝜁𝐵  (5.26) 

𝐴 =  −1.14 (
𝑠𝑏

𝑠𝑚𝑠
)

2

− 0.89 (
𝑠𝑏

𝑠𝑚𝑠
) + 1.43 (5.27) 
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𝐵 =  0.326 (
𝑠𝑏

𝑠𝑚𝑠
)

2

− 0.59 (
𝑠𝑏

𝑠𝑚𝑠
) + 1.08 (5.28) 

𝜁 =
𝑑𝑚𝑏

𝑑𝑚𝑠

√
𝑑𝑚𝑠

2𝑠𝑚𝑠

 (5.29) 

𝜆𝑡 = {[2 −
ℎ𝑡 + 2700

ℎ𝑡 + 1700
𝜉 +

ℎ𝑡

ℎ𝑡 + 1700
(exp−7𝜉 −1)]

2

+ 0.81𝜉2}

1/2

  (5.30) 

𝜉 =
𝑑𝑚𝑏

𝑑𝑚𝑠
  (5.31) 

𝑑𝑚𝑏 = 2𝑟𝑖𝑛𝑏 + 𝑠𝑏 (5.32) 

𝑑𝑚𝑠 =  2𝑟𝑖𝑛𝑚𝑠 + 𝑠𝑚𝑠 (5.33) 

In Equations (5.32) and (5.33), dmb and dms are the branch and main body mean diameters. 

Regarding the environmental equivalent CO2 analysis, complete combustion of the fossil-

fired power plants’ fuel (natural gas and coal) is assumed for the calculation of the CO2 

emissions. The coal considered in this work is the bituminous Illinois no. 6 with Table 5.3 

showing its composition (NETL, 2019). Table 5.4 shows the composition used for the 

natural gas (NETL, 2019). 

Table 5.3. Bituminous Illinois No.6 coal composition 

Component Weight (%) 

Moisture 11.12 

Carbon 63.75 

Hydrogen 4.50 

Nitrogen 1.25 

Chlorine 0.15 

Sulfur 2.51 

Ash 9.70 

Oxygen 7.02 
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Table 5.4. Natural gas composition 

Component Volumetric (%) 

Methane 93.1 

Ethane 3.2 

Propane 0.7 

n-Butane 0.4 

Carbon Dioxide 1.0 

Nitrogen 1.6 

Methanethiol(A) 0.00000575 

 

5.2.2. Optimization Results 

The optimization problem is solved for different renewable power generations and power 

grid components. In summary, five case studies are simulated. Initially, four case studies 

consider the dispatch of NGCC, SCPC, and NaS batteries to accommodate different 

levels of renewable penetrations into the grid, while supplying the demand. Figures 5.14 

and 5.15 show the power demands and renewable penetration levels considered in these 

four case studies. Then, for the fifth case study, a more challenging renewable 

penetration scenario is designed and an in-depth stress analysis is performed. 

A technology-invariant curtailment penalty of 110 US$/MWh based on reference (Schill 

et al., 2017) is considered in all case studies. The main purpose of this penalty is to 

maintain the curtailment at minimum levels and the wind/solar supply is only curtailed 

when the lack of curtailment renders the dispatch infeasible due to oversupply of energy. 

The battery lifecycle is assumed to be relatively much shorter than the lifetime of the 

power plants, as it depends on the degradation and the number of cycles. In this study, a 

penalty term is considered in the objective to take into account each cycle completed by 

the NaS batteries with a cost of 300 US$/kWh and a maximum number of 2500 cycles. A 

complete charge/discharge of the battery is considered as a cycle. The costs of fuel for 

the SCPC and NGCC are considered constant in the timespan of 30 days and equal to 

40.20 US$/ton for the Illinois Basin coal (EIA, 2019b) and 2.67 US$/ft3
 for the natural gas 

(EIA, 2019c). Also, for the purposes of this simulation, the batteries are initialized at 

𝑆𝑂𝐷 =  60% to allow the battery to either charge or discharge from the initial point. 



83 
 

Figures 5.17 to 5.21 show the results as stacked plots, i.e., the plot is shown as 

cumulative in the order of appearance of each technology (SCPC, NGCC, NGCC 2, NaS 

batteries, and renewables). For instance, if at some time instance a second line 

superimposes the first line, the energy system of the second line is not providing energy 

at that instance. The amount of energy being provided by a specific energy system is the 

subtraction between the previous and current energy system. This type of plot is chosen 

to rapidly examine if the power of the grid is balanced. If the line that represents the last 

energy source to be added matches the contour of the gray shaded area (demand), that 

means the power is balanced. 

 

Figure 5.17. Power dispatch optimization result for Case 1 
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Figure 5.18. Power dispatch optimization result for Case 2 
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Figure 5.19. Power dispatch optimization result for Case 3 

 

Figure 5.20. 2050 renewable levels accepted and curtailed for Case 3 
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Figure 5.21. Power dispatch optimization result for Case 4 

Case 1 considers the year 2019 for electricity price, demand, and solar/wind penetration 

into the grid. The power grid in this case is composed of SCPC, NGCC, and NaS batteries. 

The main reason for simulating Case 1 is to check the optimizer’s ability to dispatch the 

energy systems considering the power demand without curtailment of renewables. 

Results depicted in Figure 5.17 show that for Case 1, the load demand is supplied by the 

SCPC and NGCC with no curtailment of the renewable energy sources while considering 

potential damage for the NGCC power plant. The NaS batteries are not utilized at any 

point. The results obtained are in agreement with the usual strategy employed nowadays, 

as there is no large-scale deployment of NaS batteries. Essentially, the results indicated 

that at the 2019 renewables penetration levels, the already installed SCPC and NGCC 

are sufficient to supply the energy within the acceptable planned damage maximum 

without requiring curtailment or usage of NaS batteries. 

Case 2 considers a modification to the 2019 demand by increasing the minimum and 

maximum loads, i.e., the valleys and peaks, which would require faster ramping abilities 

from the grid. The electricity price and solar/wind penetrations into the grid are considered 
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to be the same as in Case 1. The rationale in Case 2 is to verify the grid’s capability to 

supply the demand under a more challenging demand peak/valley scenario. The results 

of this case are shown in Figure 5.18. In particular, the batteries power flow is plotted 

separately to facilitate the visualization. Figure 5.18 shows that the load demand is 

supplied mainly by the SCPC and NGCC, while the NaS batteries are used only twice (as 

highlighted in Figure 5.18 and plotted separately) to smooth the loads at times of 450h 

and 580h. Specifically, at approximately 580h, the sum of energy provided by the SCPC, 

NGCC, and renewables (green dashed line) surpasses the total load demand (shaded 

area). The reason is that there is an excess of electricity in the grid, which is used to 

recharge the batteries and the power remains balanced (orange line matches with shaded 

area). Due to the battery operating costs, they are used only as a last option to prevent 

infeasibility, such as disruption of energy supply. As a perfect demand forecast of 6 min 

is assumed by the dispatcher, it is considered that any sudden deviation that was to 

happen could be supplied by costlier spinning reserves. The results obtained in Case 2 

are in accordance with the literature, in which the batteries are often employed in the 

absence of transmission structure or isolated areas where energy sources are scarce 

(IRENA, 2015). 

In Case 3, the electricity price, grid components, and demand are held constant and equal 

to those in Case 1, while the solar/wind penetrations are switched from 2019 to 2050 

values. The 2050 wind/solar penetrations are shown in Figure 5.15. The 2050 intermittent 

renewable energy penetration is based on the 2019 penetration and Table 5.1 

proportionality factors. The goal of simulating Case 3 is to verify the potential of 2019 grid 

components to supply the demand considering higher penetration of wind/solar sources. 

The results for Case 3 depicted in Figure 5.19 show that the load demand is supplied by 

the SCPC and NGCC components. However, to avoid oversupply of energy during 

dispatch, a 45% maximum curtailment is allowed. Figure 5.20 shows the curves for the 

accepted and curtailed renewable levels in Case 3. Under these circumstances, the 

batteries are not enough to avoid curtailment. To lower levels of curtailment, the optimizer 

stopped mostly after utilizing the energy available in the battery. This result indicates that 

considering the 2050 renewables penetration projection, the current grid is not sufficiently 

flexible to prevent renewable curtailment. The reasons may be because the power plants 
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are not capable to ramp up/down fast enough, the minimum load of the power plant is too 

high, and the batteries do not have enough capacity available to manage the variability 

introduced by the renewables. 

Finally, Case 4 considers the same forcing functions as in Case 3; however, the grid is 

revised by retiring the SCPC and including another 641 MWe NGCC. The goal of this 

case study is to assess how the change in grid components may impact renewable 

curtailment and grid flexibility. The results depicted in Figure 5.21 show that the demand 

load is supplied by the two NGCC power plants: one operated mostly as a baseload power 

plant and the other operated as a load-following power plant. This modification allowed 

the dispatch to achieve 0% renewable curtailment levels for 2050. This result indicates 

that for the grid to absorb higher variable renewable integration, there is a need to 

substantially increase grid flexibility. In Case 4, the simulated scenario is to replace the 

SCPC by an NGCC, but other alternatives include retrofitting the SCPC, increasing NaS 

batteries capacity—albeit not being necessarily cost effective, or introducing an 

alternative energy storage system with higher capacity than the NaS batteries for a lower 

cost, such as pumped hydro, thermal energy storage, compressed air storage, and others. 

Overall, it is observed that the SCPC is mostly dispatched at a constant power output 

while the NGCC is dispatched as load-following power plant when both technologies are 

available. This behavior is expected as the SCPC used in this work was designed as 

baseload and it is a less flexible technology than the NGCC. The average calculation time 

to determine the optimal dispatch for Case 1 to 4 was approximately 1200s. 

Then, after the optimal dispatch was determined, CO2 equivalent and concentrated stress 

analyses are performed for each case study. The calculated CO2 equivalent is for the 30-

day timespan and is depicted in Figure 5.22. 
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Figure 5.22. CO2 equivalent emissions by case study 

In Figure 5.22, note that most of the CO2 emissions derive from the SCPC power plant, 

as the NGCC has a lower rate of CO2 emissions per generated unit of power. In particular, 

even though Case 3 has the 2050 renewable power generation, the amount of CO2 

emissions is similar to that in Cases 1 and 2, as renewables curtailment was allowed in 

Case 3. As a remark, Cases 1 and 2 both had 0% curtailment of the 2019 renewables. 

Therefore, the results of Case 3 indicate that 2050 renewables were curtailed almost to 

the same levels as of 2019. This result implies that increasing the renewable production 

should be done along with increasing grid flexibility with cleaner and more efficient energy 

systems; otherwise, the environmental performance may not improve as expected when 

compared to the 2019 level of renewable penetration. A possibility to lower the emissions 

would be to combine the SCPC with a carbon capture technology. The carbon capture 

unit would have an energy penalty for the SCPC as mentioned in Chapter 4, but it would 

substantially decrease the CO2 emissions from SCPC. 

Figure 5.23 shows both stress results on the body and at the most stressed part of the 

NGCC drum for all case studies. As Case 4 has two NGCCs in operation, stress analysis 

is performed to both power plants. 
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Figure 5.23. Drum body and concentrated tangential stresses during dispatch for Cases 

1 to 4 

In Figure 5.23, there are two shaded regions, namely “Body” (highlighted in pink in Figure 

5.23) and “Concentrated” (highlighted in orange in Figure 5.23). The “Body” section refers 

to the overall stress that the body of the drum is subjected to, and the maximum value of 

this stress is considered as a constraint in the optimal dispatch algorithm. Although close 

to the threshold value, the optimal dispatch was determined without the body stress 

constraint ever becoming active. The “Concentrated” section in Figure 5.23 refers to the 

post-optimization stress analysis in the most stressed part of the drum. The stress in this 

specific part remained higher than the body stress threshold as well as the yield strength 

(260 MPa for the current MOC), but lower than the tensile strength. Thus, local uniform 

plastic deformation is expected to occur during a number of initial cycles in the most 

stressed part of the NGCC drum. However, the stress does not exceed the elastic 

shakedown limit, which is defined as twice the yield strength (520 MPa), and fully elastic 

behavior is anticipated in subsequent cycles.  

Based on Case 4 results, Case 5 was elaborated under an even more challenging 

scenario regarding renewable penetration that demands up to 30%/min ramping rates 
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from the power plants and shorter time steps (36 sec). Therefore, a shorter overall time 

horizon load and renewable penetration curves are created and shown in Figures 5.24 

and 5.25. The grid components are the same as Case 4, i.e., the two NGCCs and the 

NaS batteries. 

  

Figure 5.24. Modified electricity demand 

load for Case 5 

Figure 5.25. Modified variable renewable 

energy penetrations (solar/wind) for Case 

5 

The goal of this new case study is to give an insight about the NGCC drum thickness 

influence on the optimization objective function as well as the stresses on the NGCC’s 

drums under high ramping rates scenario. Therefore, a sensitivity study is conducted 

initially considering a range of [0.1461 m, 0.1905 m] for both drums’ thicknesses (from 

NGCC and NGCC 2), while holding all other forcing functions constant. The results of the 

sensitivity study are shown in Figure 5.26. The results indicate that for cases in which the 

cycling leads to prohibitive stresses, the optimization objective showed some sensitivity 

to the drum thickness. It is expected for the objective to become more sensitive as the 

number of NGCC’s considered in the grid increases. It was also observed that the 

thicknesses are not the same for baseload and load-following power plants to achieve the 

strict minimum value in the sensitivity analysis. At drum thicknesses higher than 0.1905 

m, the dispatch was not completed, as prohibitive stresses reduced the feasible space to 

null at certain time instances. 
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Figure 5.26. Sensitivity analysis of optimization objective due to NGCC and NGCC 2 

drums’ thicknesses 

After the sensitivity analysis was completed, a point for the normalized objective equal to 

zero is chosen for the optimal dispatch simulation. The drum thickness for the NGCC is 

0.17145 m and for the NGCC 2, it is equal to 0.1461 m. The results of the optimal dispatch 

and corresponding stresses are shown in Figures 5.27 and 5.28. Figure 5.27 shows that 

under a highly variable renewables scenario that demands faster ramping rates, the NaS 

batteries are used more often, discharging at approximately t = 9.6 min and t = 24 min. 

These results indicate that under more aggressive ramp rates (> 30%/min), the use of 

batteries could have a larger participation in the grid. Curtailment is still avoided under 

this scenario, while NGCC acts as baseload power plant, ramping down when there is 

excess of renewable energy, and NGCC 2 acts as load following power plant, cycling its 

load more often than the other NGCC. Figure 5.28 shows that the drum body stress 

constraint was active at times for NGCC 2, while for the other NGCC, the stress value 

was close but below the threshold. In addition, as the threshold is dependent on drum 

thickness, the thresholds for NGCC and NGCC 2 are slightly different. 

 



93 
 

 

Figure 5.27. Power dispatch optimization result for Case 5 

 

Figure 5.28. Drum body and concentrated tangential stresses during dispatch for Case 

5 

Further analysis is performed considering the individual components of the body stress 

depicted in Figures 5.29 and 5.30. For the NGCC, the mechanical stress, which is tensile 
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in nature, was mostly at its design point, with the thermal stress frequently being 

compressive and relieving the overall body stress. This behavior agrees with the NGCC 

dispatch, which is employed often as baseload with minimal cycling. For the NGCC 2, the 

mechanical stress was often lower than its design point, which allowed a larger margin 

for thermal stress to vary between tensile and compressive stresses. This behavior 

agrees with the NGCC 2 dispatch, which is employed often as load-following and with 

more frequent cycling. This difference in mechanical and thermal stresses behavior 

between baseload and load-following NGCC power plants reinforces the need to include 

a equipment health-related constraint when cycling is substantial. 

  

Figure 5.29. Mechanical and thermal 

stresses for NGCC for Case 5 

Figure 5.30. Mechanical and thermal 

stresses for NGCC 2 for Case 5 
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6. Conclusions 

In this dissertation, dynamic optimization algorithms were developed for optimal 

operations and dispatch of cycling baseload energy systems under VRE penetration. 

Particularly, two different dynamic optimization strategies were established and 

implemented to fill the identified gaps: the nonlinear multi-objective dynamic real-time 

predictive optimization (NMPO) and the mixed-integer linear programming (MILP) 

formulation for dynamic dispatch of energy systems while considering the power plant 

health. 

The hourly-level strategy is a NMPO and it was successfully implemented in a 

supercritical pulverized coal-fired (SCPC) power plant with a postcombustion carbon 

capture system (CCS), considering economic and environmental objectives. Different 

strategies were employed and explored to improve computational tractability, such as 

mathematical reformulations, automatic differentiation (AD), and parallelization of a 

metaheuristic particle swarm optimization (PSO) component. The parallelization of the 

PSO in a single desktop improved the computational time in 4-folds when compared to 

the traditional PSO. The AD further improved the computational time within the range of 

80 to 120-folds when compared to a default finite-differences method. 

The minute-level strategy is based on a mixed-integer linear programming (MILP) 

formulation for the dynamic dispatch of energy systems while considering equipment 

health-related constraints. This MILP framework was successfully implemented in a suite 

of systems that includes natural gas-fired power plant, coal-fired power plant, and sodium 

sulfur batteries in addition to the VRE systems. Five case studies were simulated 

considering different loads and renewable penetration levels. In general, the results 

showed that grid flexibility was mostly provided by the natural gas power plant, while the 

batteries were used sparingly. Additionally, considering the post-optimization equivalent 

carbon analysis, the environmental performance was intrinsically connected to grid 

flexibility and the level of VRE penetration. The stress results reinforced the necessity of 

further considering and including equipment health-related constraints during dispatch, 

as power plant design and stress behavior were distinct if the power plant acted either as 

at constant power output or load-following operations. 
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The results of the NMPO successfully implemented for a large-scale SCPC-CCS showed 

the benefit of having an optimization horizon longer than the implementation horizon. In 

particular, a prediction capability allowed the algorithm to set up optimal conditions ahead 

of time to reach lower costs while maintaining the environmental performance. Results 

also showed that the optimal compromise from the Pareto front was chosen according to 

a set of weights for the objectives with minimal interaction between the framework and 

the decision maker. The results of the modified Tchebycheff-based multi-objective 

component demonstrated that the optimal trajectories were selected automatically based 

on the decision maker weight vector and remained in balance between both objectives at 

all times. The 𝜖-constraint method was also briefly explored in this dissertation and it was 

concluded that this method would be more suitable to strategies that do not have a rolling 

horizon feature, such as scheduling and unit commitment problems. Finally, the market 

and carbon policies had impact on the optimal compromise between the economic and 

environmental objectives. When considering carbon capture economic incentives, results 

showed an increase of approximately 63 ton of CO2 captured over 12h operation for the 

optimal compromise when compared to an unfavorable market condition. 

In conclusion, the developed dynamic optimization algorithms for baseload power plant 

cycling under VRE were successfully developed and implemented for the minute- and 

hourly-basis time scale of power system operation. The algorithms encompassed 

strategies to improve computational time, power plant health-related constraints, and 

power systems dynamic information for power plant optimal performance under cycling. 

The results also indicated a path forward to include non-economic concepts during 

operations optimization, which can lead to higher preparedness and resilience of the grid. 
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7. Future Recommendations 

7.1. Coding Environment 

In this dissertation, the NMPO and MILP-based dynamic dispatch algorithms and models 

are built in MATLAB, which constrained the choice of solvers and parallelization 

structures. To overcome these challenges, free third party software packages are used 

such as the ADiMAT and OPTI toolbox and the ParPSO and PSO were recreated and 

adapted for MATLAB environment. Another option that should be explored is to 

investigate Python programming language due to its multi-threading friendly, object-

oriented programming, and extensive open-source libraries. 

7.2. Optimization Formulation and Connection with MPC-based Controller 

Currently, most of the employed surrogate dynamic models are discretized linear and 

nonlinear ARX models and the NMPO was applied only to two objectives. In the future, a 

third or more objectives such as power plant safety could be included in the NMPO 

structure. The varying operating temperature and pressure motivate the implementation 

of an equipment stress-based constraint that considers the pipeline age and material of 

construction. The increase of computational time could be addressed by using other 

surrogate models such as Gaussian process models and D-RM® in conjunction with 

Python programming. Also, the current framework is limited by the discretized domain 

and fixed time step. A ROM in the continuous domain should be explored for the 

presented optimization frameworks. Finally, the trajectories generated in this dissertation 

are open-loop trajectories. Therefore, for real world applications, it is recommended 

pairing the NMPO with an MPC-based controller to close the loop. 

7.3. Unit Commitment Problem with Equipment Health-related Constraints and 

Nonlinear Programming 

In this dissertation, a MILP-based optimization framework is developed to dispatch energy 

systems under VRE while considering power plant health. The linear programming 

introduced inherent inaccuracies to the high-fidelity models, which a nonlinear 

programming framework should be able to address. Inclusion of fatigue-based damage 

models during unit commitment (UC) problem should also be explored as the complete 
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cycle damage could be accounted during scheduling. Furthermore, energy reserve 

management and grid resilience scenarios should be included while solving a UC problem. 

At last, a 𝜖-constrained UC-MOO formulation should be further investigated as this MOO 

method is ideal for a non-rolling horizon implementation and requires a lower number of 

optimization evaluations when compared to the employed Modified Tchebycheff MOO 

method. 

7.4. Dynamic Stochastic Optimization 

In this dissertation, all the optimizations are deterministic. However, the VRE, power 

demands, and electricity prices have intrinsic variability and often their predictions vary 

from the realized values. Thus, one way to address this challenge would be to include the 

stochasticity of these functions in the optimizer. This strategy would increase the 

computational time and it should be addressed by either employing similar approaches 

used in this work or the suggestions mentioned in items 7.1 and 7.2. 
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Câmara, M. M., Quelhas, A. D., Pinto, J. C., 2016. Performance Evaluation of Real 

Industrial RTO Systems. Processes, 4(4):44. doi: 10.3390/pr4040044. 

Carrasco, J.C., Lima, F.V., 2018. Bilevel and Parallel Programing-based Operability 

Approaches for Process Intensification and Modularity. AIChE Journal, 

64(8):3042-3054. doi:10.1002/aic.16113. 



100 
 

CEP, 2021. Chemical Engineering Magazine. Chemical Engineering Plant Cost Index. 

www.chemengonline.com/pci (accessed on 02.06.2021). 

CCSI, 2018. D-RM Builder – User Manual version 2.0.0. March 2018. 

https://github.com/CCSI-Toolset/drmbuilder/tree/master/docs (accessed on 

02.25.2021). 

Coello, C. A. C, Lamont, G. B., Van Veldhuisen, D. A., 2007. Evolutionary algorithms for 

solving multi-objective problems. 2nd edn. New York: Springer (Genetic and 

evolutionary computation series). 

CTC, 2021. Carbon Tax Center: Where Caron is Taxed. www.carbontax.org/where-

carbon-is-taxed/. (accessed on 02.06.2021). 

Currie, J., Wilson, D.I., 2012. OPTI: Lowering the Barrier Between Open Source 

Optimizers and the Industrial MATLAB User. Proceeding of Foundations of 

Computer-Aided Process Operations, FOCAPO/CPC, Georgia, USA. 

Diwekar U. M., 2008. Introduction to Applied Optimization. 2nd edn. New York: Springer 

(Springer Optimization and its Applications, v. 22). 

Dowell, N. M., Shah, N.,2014. Optimisation of Post-Combustion CO2 Capture for Flexible 

Operation. Energy Procedia, 63:1525–1535. 

EIA, 2019a. Annual Energy Outlook 2019: With Projections to 2050, 

https://www.eia.gov/outlooks/aeo/pdf/AEO2019.pdf (accessed on 02.02.2021). 

EIA, 2019b. Energy Information Administration. Coal – Recent Data. 

https://www.eia.gov/coal/. (accessed on 06.01.2020). 

EIA, 2019c. US Natural Gas Prices. 
https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm (accessed on 06.01.19) 

EIA, 2021. Energy Information Administration. Coal – Recent Data. 

https://www.eia.gov/coal/. (accessed on 02.13.2021). 

Ela, E., Kemper, J., 2009. Wind Plant Ramping Behavior. December 2009. NREL/TP-

550-46938. https://www.nrel.gov/docs/fy10osti/46938.pdf (accessed on 

02.15.2021). 



101 
 

Elaiw, A. M., Xia, X., Shehata, A. M., 2013. Hybrid DE-SQP and hybrid PSO-SQP 

methods for solving dynamic economic emission dispatch problem with valve-

points effects. Electric Power Systems Research, 103:192-200. 

ERCOT, 2021a. Grid operator requests energy conservation for system reliability. 

Published on February 14th, 2021. 

http://www.ercot.com/news/releases/show/225151 (accessed on 02.17.2021). 

ERCOT, 2021b. ERCOT calls for rotating outages as extreme winter weather forces 

generating units offline. Published on February 15th, 2021. 

http://www.ercot.com/news/releases/show/225210 (accessed on 02.17.2021). 

European Committee for Standardization, 2002. EN 13345 Part 3, Unfired Pressure 

Vessels, Clause 17; Simplified Assessment of Fatigue Life, and Clause 18; 

Detailed Assessment of Fatigue Life.  

https://www.unm.fr/medias/files/107_FICHIER_0.pdf (accessed on 05.23.2020) 

FERC, 2011. Outages and Curtailments During the Southwest Cold Weather Event of 

February 1-5, 2011. Causes and Recommendations. Prepared by the staff of the 

Federal Energy Regulatory Commission and the North American Electric 

Reliability Corporation. August 2011. https://www.ferc.gov/sites/default/files/2020-

04/08-16-11-report.pdf (accessed on 02.17.2021). 

FUTURE Act, 2017. S.1535 Bill – 115th  Congress (2017-2018). 

https://www.congress.gov/bill/115th-congress/senate-bill/1535/text. (accessed on 

03.09.2021). 

Grol, E., Tarka, T. J., Myles, P., Bartone, Jr., Leonard, M., Simpson J., Rossi, G., 2015.  

Impact of Load Following on the Economics of Existing Coal-Fired Power Plant 

Operations. June 3, 2015. DOE/NETL-2015/1718. Web. doi:10.2172/1513827. 

He, X., Lima, F.V., 2020. A Modified SQP-based Model Predictive Control Algorithm: 

Application to Supercritical Coal-fired Power Plant Cycling. Industrial and 

Engineering Chemistry Research, 59(35):15671-15681. 

doi:10.1021/acs.iecr.0c01843. 

https://www.unm.fr/medias/files/107_FICHIER_0.pdf


102 
 

Henan Steel Guang International Trade Co, LTD, 2020. 

http://www.steelplatecuttingpart.com/products/asme-sa515-boiler-or-pressure-

vessel-steel-plate.html (accessed on 04.01.2020). 

Houser, T., Bordoff, J., Marsters, P., 2017. Can Coal Make a Comeback. Columbia SIPA, 

Center on Global Energy Policy. 

Intergovernmental Panel on Climate Change – IPCC. (2018). Summary for Policymakers. 

In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global 

warming of 1.5°C above pre-industrial levels and related global greenhouse gas 

emission pathways, in the context of strengthening the global response to the 

threat of climate change, sustainable development, and efforts to eradicate poverty 

[V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. 

Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, 

Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield 

(eds.)]. 

IRENA, 2015. Battery Storage for Renewables: Market Status and Technology Outlook. 

January 2015. 

https://www.irena.org/documentdownloads/publications/irena_battery_storage_re

port_2015.pdf (accessed on 12.12.2019). 

Jamaludin, M. Z, Swartz C. L. E., 2017. Dynamic Real-Time Optimization with Closed-

Loop Prediction. AIChE Journal, 63(9):3896-3911. 

Kim, R., Wang, Y., Vudata, S. P., Bhattacharyya, D., Lima, F. V., and Turton, R., 2020. 

Dynamic Optimal Dispatch of Energy Systems with Intermittent Renewables and 

Damage Model. Mathematics 8(868). doi:10.3390/math8060868. 

Kim, T. S., Lee, D.K., Ro, S.T., 2010. Analysis of thermal stress evolution in the steam 

drum during start-up of a heat recovery steam generator. Applied Thermal 

Engineering, 20:977–992. 

Ljung L., 2021. System Identification Toolbox™. User’s Guide. Revised on March 2021. 

https://www.mathworks.com/help/pdf_doc/ident/ident_ug.pdf. (accessed on 

04.09.2021) 



103 
 

Li, H., Swartz, C. L. E., 2018. Approximation Techniques for Dynamic Real-time 

Optimization (DRTO) of Distributed MPC Systems. Computers and Chemical 

Engineering, 118:195-209. doi:10.1016/j.compchemeng.2018.08.002. 

Ma, J., Mahapatra, P., Zitney, S. E., Biegler, L. T., & Miller, D. C., 2016. D-RM builder: a 

software tool for generating fast and accurate nonlinear dynamic reduced models 

from high-fidelity models. Computers and Chemical Engineering, 94:60–74. 

https://doi.org/10.1016/j.compchemeng.2016.07.021.  

Ma, X., Zhang, Q., Tian, G., Yang, J., Zhu, Z., 2018. On Tchebycheff Decomposition 

Approaches for Multiobjective Evolutionary Optimization. IEEE Transactions on 

Evolutionary Computation, 22:226–244. 

Mathworks, 2021. Wavenet Documentation. 

https://www.mathworks.com/help/ident/ref/wavenet.html (accessed on 02.24.2021) 

McKubre, M. C. H., Tanzella, F. L., Smedley, S. I., 1989. The Electromotive Force of the 

Na/S Cell. Journal of Electrochemical Society, 136:303–305, 

doi:10.1149/1.2096625. 

Morales-España, G., Gentile, C., Ramos, A., 2015. Tight MIP formulations of the power-

based unit commitment problem. OR Spectrum, 37:929-950. doi: 10.1007/s00291-

015-0400-4. 

Narzisi, G., 2008. Classic Methods for Multi-objective Optimization. Courant Institute of 

Mathematical Sciences, New York University. 31 January 2008. 

NERC, 2020. North American Electric Reliability Corporation. 2020 State of Reliability. 

An Assessment of 2019 Bulk Power System Performance. July 2020. 

https://www.nerc.com/pa/RAPA/PA/Performance%20Analysis%20DL/NERC_SO

R_2020.pdf (accessed on 03.01.2021). 

NETL, 2015. Cost and Performance for Fossil Energy Plants. Volume 1a: Bituminous 

Coal (PC) and Natural Gas to Electricity. Revision 3. July 6, 2015. DOE/NETL-

2015/1723. 

NETL, 2019. Cost and Performance Baseline for Fossil Energy Plants Volume 1: 

Bituminous Coal and Natural Gas to Electricity, NETL-PUB-22638. 



104 
 

https://netl.doe.gov/projects/files/CostAndPerformanceBaselineForFossilEnergyP

lantsVol1BitumCoalAndNGtoElectBBRRev4-1_092419.pdf. (accessed on 

04.08.2020). 

Oyama, H., Durand, H., 2020. Interactions Between Control and Process Design under 

Economic Model Predictive Control. Journal of Process Control, 92:1-18. 

doi:10.1016/j.jprocont.2020.05.009. 

Pang, M., Shi, Y., Wang, W., Pang, S., 2019. Optimal sizing and control of hybrid energy 

storage systems for wind power using hybrid Parallel PSO-GA algorithm. Energy 

Exploration & Exploitation, 37(1):558-578). 

Pattison, R. C., Touretzky, C. R., Johansson, T., Harjunkoski, I., Baldea, M., 2016. 

Optimal Process Operations in Fast-Changing Electricity Markets: Framework for 

Scheduling with Low-Order Dynamic Models and an Air Separation Application. 

Industrial and Engineering Chemistry Research, 55:4562-4584 doi: 

10.1021/acs.iecr.5b03499. 

PJM, 2019. Markets & Operations. Available online: https://www.pjm.com/markets-and-

operations.aspx (accessed on 12.16.2019). 

Pontes, K. V., Embirucu, M., Wolf, I. J., Marquardt, W., 2015. Dynamic Real-time 

Optimization of Industrial Polymerization Processes with Fast Dynamics. Industrial 

and Engineering Chemistry Research, 54(47):11881-11893. 

doi:10.1021/acs.iecr.5b00909. 

REN21, 2018. Renewable Energy Policy Network for 21st Century. 

http://www.ren21.net/status-of-renewables/global-status-report/ (accessed on 

04.16.2018). 

Rubin, E. S., Davison, J. E., Herzog, H. J., 2015. The Cost of CO2 Capture and Storage. 

International Journal of Greenhouse Gas Control, 40:378–400. doi: 

10.1016/j.ijggc.2015.05.018. 

Schaefer, S.; Vudata, S. P.; Bhattacharyya, D.; Turton, R., 2020. Transient modeling and 

simulation of a nonisothermal sodium-sulfur cell. Journal Power Sources, 453. doi: 

10.1016/j.jpowsour.2020.227849. 

https://www.pjm.com/markets-and-operations.aspx
https://www.pjm.com/markets-and-operations.aspx
https://doi.org/10.1016/j.jpowsour.2020.227849


105 
 

Schill, W., Pahle, M., Gambardella, C., 2017. Start-up costs of thermal power plants in 

markets with increasing shares of variable renewable generation. Supplementary 

Information. Nature Energy, 2, doi:10.1038/nenergy.2017.50. 

Sengupta, S., Basak, S., Peter II, R.A., 2018. Particle Swarm Optimization: A survey of 

historical and recent developments with hybridization perspectives. Cornell 

University Library Arχiv, Neural and Evolutionary Computing. 

https://arxiv.org/abs/1804.05319. (accessed on 12.2018). 

Sharafi, M., ElMekkawy, T., 2014. A dynamic MOPSO algorithms for multiobjective 

optimal design of hybrid renewable energy systems. International Journal of 

Energy Research, 38:1949-1963. 

Sola M.C., 2010. Parallel Processing for Dynamic Multi-objective Optimization. 

Dissertation for the Degree of Doctor of Philosophy. Universidad de Granada. 

https://www.researchgate.net/profile/Julio_Ortega/publication/220951202_Paralle

l_Processing_for_Multi-

objective_Optimization_in_Dynamic_Environments/links/0fcfd50929ab23eb7900

0000.pdf (accessed on 02.02.2021). 

Technical Rules for Steam Boilers, 1996. TRD 301, Annex 1, Design. Calculation for 

Cyclic Loading Due to Pulsating Internal Pressure or Combined Changes of 

Internal Pressure and Temperature. https://kupdf.net/download/trd-301-annex-1-

design_58c5ef24dc0d609909339028_pdf (accessed on 05.23.2020) 

Thierry, D., Biegler, L.T., 2019. Dynamic Real-time Optimization for a CO2 Capture 

Process. AIChE Journal, 65(7). 

Tosukhowong, T., Lee, J.M., Lee, J.H., Lu, J., 2004. An Introduction to a Dynamic Plant-

wide Optimization Strategy for an Integrated Plant. Computers and Chemical 

Engineering, 29(1):199-208. doi:10.1016/j.compchemeng.2004.07.028. 

Tran, T., Ling, K., Maciejowski, J., 2014. Economic Model Predictive Control - A Review. 

Proceeding of 31st International Symposium on Automation and Robotics in 

Construction and Mining, ISARC. doi: 10.22260/ISARC2014/0006. 

https://kupdf.net/download/trd-301-annex-1-design_58c5ef24dc0d609909339028_pdf
https://kupdf.net/download/trd-301-annex-1-design_58c5ef24dc0d609909339028_pdf


106 
 

Trifkovic, M., Marvin, W. A., Daoutidis, P., Sheikhzadeh, M., 2014. Dynamic Real-time 

Optimization and Control of a Hybrid Energy System. AIChE Journal, 60(7):2546-

2556. doi:10.1002/aic.14458. 

US DOE, 2017. Quadrennial Energy Review. Transforming the Nation’s Electricity 

System: The Second Installment of the QER. January 2017. 

https://www.energy.gov/sites/prod/files/2017/02/f34/Quadrennial%20Energy%20

Review--Second%20Installment%20%28Full%20Report%29.pdf (accessed on 

02.02.2021). 

USAID-NREL Partnership, 2019. Greening the Grid. Demand response and storage. 

http://www.greeningthegrid.org/integration-in-depth/demand-response-and-

storage (accessed on 04.07.2019). 

Venter, G., Sobieszczanski-Sobieski, J., 2005. A Parallel Particle Swarm Optimization 

Algorithm Accelerated by Asynchronous Evaluations. Proceeding of 6th World 

Congresses of Structural and Multidisciplinary Optimization, May, Rio de Janeiro, 

Brazil, 2005. 

Vigerske, S., Wächter, A., 2021. Ipopt Documentation. https://coin-

or.github.io/Ipopt/index.html#Overview (accessed on 03.03.2021). 

Wächter, A., Biegler, L.T., 2006. On the Implementation of a Primal-dual Interior Point 

Filter Line Search Algorithm for Large-scale Nonlinear Programming. 

Mathematical Programming, 106(1):25–57. Preprint at http://www.optimization-

online.org/DB_HTML/2004/03/836.html. 

Wang, Y., Bhattacharyya, D., Turton, R., 2020.  Evaluation of Novel Configurations of 

Natural Gas Combined Cycle (NGCC) Power Plants for Load-Following Operation 

using Dynamic Modeling and Optimization. Energy & Fuels 34(1):1053-1070. doi: 

10.1021/acs.energyfuels.9b03036.  

Weber, P. J., Bleed, J., 2021. Power outages linger for millions as another icy storm looms. 

Published on February 17th, 2021. https://apnews.com/article/100-million-

americans-more-ice-snow-404012f8d8885259968b8d37b13899d6 (accessed on 

02.17.2021). 

http://www.greeningthegrid.org/integration-in-depth/demand-response-and-storage
http://www.greeningthegrid.org/integration-in-depth/demand-response-and-storage


107 
 

Wei, H. L., Billings, S. A., Balikhin, M. A., 2003. Wavelet Based Nonparametric NARX 

Models for Nonlinear Input-Output System Identification. Research Report No 831. 

Zhang, Q., Turton, R., Bhattacharyya, D., 2016. Development of Model and Model-

predictive Control of an MEA-based Postcombustion CO2 Capture Process. 

Industrial and Engineering Chemistry Research, 55(5):1292-1308. 

doi:10.1021/acs.iecr.5b02243. 

 


	Dynamic Optimization Algorithms for Baseload Power Plant Cycling under Variable Renewable Energy
	Recommended Citation

	tmp.1619206100.pdf.pZzgb

