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Abstract 

Manipulating Manipulating the Pthe Perineurerineuronal Net in onal Net in the Deep Certhe 
Deep Cerebellar Nucleusebellar Nucleus  

Deidre E. O'Dell 

Perineuronal nets (PNN) are a type of specialized extracellular matrix in the central nervous 

system. The PNN forms during postnatal development but the ontogeny of the PNN has yet to 

be elucidated.  Studying the PNN in the rat brain may allow us to further understand the PNN’s 

role in development, learning, and memory.  The PNN is fully developed in the deep 

cerebellar nuclei (DCN) of rats by post-natal day 18.  By using enzymatic digestion of the 

PNN with chondroitinase ABC (ChABC), we studied how digestion of the 

PNN affects cerebellar-dependent eyeblink conditioning (EBC) and performed 

electrophysiological recordings from DCN neurons.  In vivo degradation of the PNN resulted in 

differences in EBC amplitude and area.  Female animals in the vehicle group 

demonstrated higher levels of conditioning as well as higher post-probe conditioned 

responses compared to males in that group, differences not present in the ChABC group.  

In vitro, DCN neurons with disrupted PNNs following exposure to ChABC had altered 

membrane properties, fewer rebound spikes, and decreased intrinsic excitability. 

Doxycycline, an antibiotic, can inhibit endogenous enzymes that digest the PNN.  Rats 

given doxycycline had higher PNN staining in the DCN compared to vehicle.  Animals 

receiving doxycycline prior to behavior have a smaller eyeblink area in comparison to the 

vehicle group. However, these rats also had more unconditioned responses, suggesting in 

addition to preventing the PNN from being remodeled, doxycycline may cause non-

associative effects. This study further elucidates the role of the PNN in cerebellar 

learning.   
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Chapter 1. Introduction to the Perineuronal Net
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1.1. What is the Perineuronal Net? 

The perineuronal net (PNN) was originally described by the notable neuroscientists 

Golgi and Ramon y Cajal in the 1890s (Celio et al., 1998) but has recently reemerged as 

an exciting target of study in many areas of neuroscience.  Studying the PNN is important 

because there is strong evidence that it exerts control over plasticity, learning, and 

memory in both healthy and disease states. Many studies have attempted to fully 

understand how the PNN influences these properties. From fear conditioning to 

Alzheimer’s disease, researchers continue to find roles for the PNN in the central nervous 

system. The resurgence in interest provides critical new insights into the function of the 

PNN more than 100 years after its 

discovery.  The results suggest novel 

approaches to treating neuronal 

disorders and will drive additional 

research to define the mechanistic 

basis for regulating learning and 

memory by the PNN. 

The PNN is a specialized type of 

extracellular matrix that is deposited 

onto groups of fast- spiking 

interneurons and large excitatory deep 

cerebellar neurons in the central 

Figure 1.1. PNN Schematic. 
This schematic shows the various elements that comprise the 
PNN.  HAS has been implicated as the anchor of the PNN and 
secretes HA at the cell surface.  Link proteins join CSPG to 
HA.  Tn-R can bind up to three CSPG to further reinforce the 
structure.   
CSPG: Chondroitin Sulfate Proteoglycans, HAS: Hyaluronan 
synthase, HA: Hyaluronic acid, Tn-R: Tenascin-R 
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nervous system of many higher organisms (Celio et al., 1998). Figure 1.1 shows a 

schematic of the PNN on the cell body of a neuron. Hyaluronic acid (HA), link proteins of 

the hyaluronic acid and proteoglycan link binding protein family (HAPLN), including 

HAPLN1, chondroitin sulfate proteoglycans (CSPG), and tenascin-R (Tn-R), assemble 

into a dense, lattice like sheet to form the PNN as seen in Figure 1.1. CSPG are highly 

anionic; they are comprised of lectican, also called hyalectan, protein cores covalently 

bound to varied numbers of chondroitin sulfate glycosaminoglycan (CS-GAG) chains via 

serine residues (Wang and Fawcett, 2012).  There are five different lecticans in the 

PNN, aggrecan, neurocan, versican, phosphacan and brevican, which all have some 

conserved structure.  The stereotypical lectican structure is an N-terminal G1 domain 

comprised of an immunoglobulin repeat and two link modules, a central GAG 

attachment region, a C-terminal G3 domain comprised of two epidermal growth factor 

(EGF)-like repeats, a C-type lectin domain, and a complementary regulatory protein 

(CRP)-like module are present in all of the lecticans (Iozzo, 1998).  The GAG 

chains consist of repeating disaccharide units of glucuronic acid (GlcA) and N-

acetygalactosamine (GalNac).  Despite the presence of these components of the PNN 

in utero, the PNN does not fully assemble into this configuration until the end of the third 

week of post-natal development in rodents, demonstrating that the PNN is 

developmentally regulated – older animals can have higher numbers of PNN+ neurons 

compared to younger animals.  The maturation of the PNN on populations of these fast-

spiking neurons, neurons with action potentials that fire with very high 

frequency without really slowing down and they can recover rapidly  (Izhikevich, 

2003), is closely timed with the closure of critical periods of development, 

3



times of enhanced plasticity in post-natal development, and may regulate closing these 

epochs of high neural flexibility (Alberini and Travaglia, 2017; Hou et al., 2017).  

Exit from the critical period of development coincides with the complete, 

assembled PNN (Hensch, 2005; Nabel and Morishita, 2013). The critical period is 

present in the senses like vision and audition and  processes like learning and memory.  

Each of these functions have their own critical period. For example, a child may exit the 

critical period for vision around age 4 but remain within the critical period for 

hippocampal-dependent learning until around 8 years old.  Indeed, in rodent models, 

the PNN may be present in the brain circuitry responsible for one modality (e.g., 

audition or vision) days before it is detectable within another brain region in the same 

animal.  Interestingly, before animals have a fully-formed PNN, it appears that they do 

not learn or recall training like adult animals (Brown and Freeman, 2014; Schreurs et 

al., 2013).  In addition, animals without a PNN have been observed to express 

behavioral phenomena such as impaired context learning and facilitated extinction of 

the aversive stimulus. Context learning involves animals forming associations 

between their training and the environment in which their training took place (for 

example, a rodent associating the chamber they received foot shock in with the foot 

shock itself) (Bouton, 2004; Lopez et al., 2012; Scott et al., 2015).  Young animals do 

not learn fear conditioning like rodents that are beyond the critical period; older animals 

can acquire training and retain the aversive training even after undergoing extinction 

training (Alberini and Travaglia, 2017).  Older animals lacking 

4
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a PNN are more likely to undergo extinction at a more rapid rate, i.e. facilitated extinction, 

than those with an intact PNN.  These differences in behavioral responses correlate with 

PNN structures as rodents within the critical period have a juvenile, diffuse PNN and older 

animals that have exited the 

critical period have a mature, 

dense PNN.  This relationship is 

shown in Figure 1.2. 

Due to its relationship 

with the critical period, the PNN 

has been implicated as a 

possible storage mechanism for 

memories, including long-term 

memories (Tsien, 2013), the 

aversive memories related to 

post-traumatic stress disorder 

(Gogolla et al., 2009; Thompson 

et al., 2017), and the hedonic 

memories associated with opioid 

use (Lasek et al., 2017; Slaker et 

al., 2016).  Animals early in 

postnatal development have 

minimal to no PNN and have 

similar behavior to those that 

Figure 1.2. PNN, plasticity, development, and manipulation. 
The top panel shows plasticity as a rodent develops normally. 
The animal exits the critical period around the same time the 
PNN matures in rodents.  The bottom panel shows that animals 
with transgenic manipulations do not exit the critical period on the 
red line.  When ChABC is used to degrade the PNN, it elevates 
plasticity back to levels seen in the critical period in the adult 
animal.  Figure modified from https://doi.org/10.1093/jb/mvu067 
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have had enzymatic manipulations of the PNN, suggesting disruption of or the absence 

of the PNN profoundly affects learning and memory.  Enzymatic degradation of the PNN 

or manipulation of PNN components in transgenic models can functionally revert adult 

animals to a heightened level of plasticity seen during the critical period, i.e. to a state 

associated with younger animals sometimes referred to as infantile or iPlasticity  (Gogolla 

et al., 2009; Miyata and Kitagawa, 2016; Xue et al., 2014).  Enzymatic degradation relies 

upon a bacterial enzyme, chondroitinase ABC (ChABC), which is capable of temporarily 

disrupting the PNN; a bacterial enzyme that catalyzes chondroitin sulfate degradation by 

removing the 1,4-b-hexosaminyl linkages in CSPG (Brückner et al., 1998; Deepa et al., 

2006; Koppe et al., 1997; Massey et al., 2006).   

1.2. PNN and Learning and Memory 

1.2.1 The PNN is altered in diseases affecting Learning and Memory  

The PNN has been implicated in storing affective, or strongly emotional memories; 

evidence suggests that dysfunction of the PNN could be involved in diseases related to 

a breakdown of learning and memory (Carbo-Gas et al., 2017; Gogolla et al., 2009; Lasek 

et al., 2017; Slaker et al., 2015, 2018; Thompson et al., 2017; Tsien, 2013; Xue et al., 

2014).  For example, the PNN has been associated with storing long-term memories and 

defective PNN function could play a role in diseases like Alzheimer’s disease (AD).  AD 

is the most common form of dementia and is thought to arise from an increase in the 

amyloidogenic pathway processing amyloid precursor protein and from pathologies of the 

microtubule associated protein tau (de Calignon et al., 2012; Selkoe and Hardy, 2016).  

There is a correlation between the tau pathology associated with AD and abnormal 

6



formation of HA, the backbone of the PNN, in a murine model (Li et al., 2017).  In this 

transgenic mouse model of tauopathy, expressing a human mutant gene resulted in 

significant decreases in the expression of hyaluronic acid synthase 1 (HAS1). In this 

model, several properties of HA production, including length of HA chains and rate of HA 

production, were altered as a result of decreased HAS1 activity.  In the hippocampus, 

one of the first and most severely affected sites of neurodegeneration in AD (de Calignon 

et al., 2012; Nakamura et al., 2012; Passamonti et al., 2017; Pennanen et al., 2004; 

Shankar et al., 2008), three isoenzymes, HAS1, HAS2, and HAS3, synthesize HA of 

different sizes and at varying rates. In addition, postmortem human samples from normal, 

mild AD, and severe AD brains exhibit a different prevalence of each isoenzyme. The 

mild AD brain had the greatest number of HAS1-positive plaques and the severe AD brain 

also had significantly increased numbers of HAS1-positive plaques compared to normal 

brain samples (Li et al., 2017).  Although the mouse model showed a decrease in HAS1 

while the human tissue had an increase, changes in the relative abundance of these 

isozymes could lead to an aberrant PNN that is built upon an atypical HA backbone.  

Other studies have found that proteoglycans, including CSPG, are found in amyloid beta 

plaques (DeWitt et al., 1993), may be involved in its uptake into neurons (Wesén et al., 

2018), and may have altered structure as a result of AD (Zhang et al., 2016).  These 

results indicate that an abnormal PNN could be a marker for AD (Végh et al., 2014) and 

that the PNN could be an alternative therapeutic focus for AD drugs (Suttkus et al., 2016; 

Yang et al., 2017).  Another study found that a transgenic mouse model of AD led to 

reduction of parvalbumin-positive (PV+) interneurons and PV+ neurons surrounded by a 

PNN in hippocampal subfields (Cattaud et al., 2018).  These changes were observed 
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even in animals as young as 3 months of age, suggesting PNN breakdown in the 

hippocampus precedes memory loss.  Exposing mice to an enriched environment for 10 

weeks led to a rescue of the PV+/PNN+ neurons and may be related to the other studies 

that found early exposure to an enriched environment improved memory performance in 

the same mouse model of AD (Verret et al., 2013).  Enriched environment is a method 

used to manipulate a rodent’s environment, usually by providing toys or other 

accessories, in order to provide social, physical, and sensory stimulation. Environmental 

enrichment is known to promote neurogenesis in brain regions associated with learning 

and memory. 

In addition to AD, the PNN may also have a role in cognitive difficulties related to 

depression. A social-defeat model was used to induce a chronic depressive-like state in 

rats, which resulted in increased production of several components of the PNN in the 

hippocampus.  Social-defeat is a paradigm using social conflict between members of the 

same species to induce stress and is used to model depression.  A dominant male is 

placed into a resident animal’s cage and will attack the resident rodent, forcing it to submit.  

After a period of time, the intruder may be physically separated from the resident but 

remain visible to the resident to cause further stress; this experiment may also be called 

a resident-intruder test.  The changes induced by social-defeat were associated with 

decreased inhibitory communication in the hippocampal population of PV+ interneurons 

as well as significantly poorer performance on object place recognition, a memory task 

dependent upon the hippocampus.  PV+ interneurons are often PNN+ (Baker et al., 2017; 

Favuzzi et al., 2017; McDonald et al., 2017; Morris and Henderson, 2000; Mueller et al., 

2016; Wen et al., 2017). Administering imipramine, an anti-depressant, systemically 
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rescued the abnormal increases in the PNN (Riga et al., 2017).  Stereotaxic infusion of 

ChABC was used as a direct approach to acutely alter the PNN.  ChABC infusion in this 

depressive model rescued hippocampal inhibitory transmission and improved memory 

performance (Riga et al., 2017).   By targeting the PNN, it could be possible to alleviate 

some of the cognitive issues faced by those with depression. 

Learning and memory processes associated with pleasurable experiences and 

reward are hijacked in the presence of addictive substances like opioids and other 

narcotics.  These substances induce extremely hedonic feelings and the memories 

associated with those feelings of elation are so intense they may drastically alter the 

user’s behavior.  The PNN in the cerebellar cortex, particularly around the Golgi cells, a 

type of inhibitory cell that release inhibitory neurotransmitters like gamma-aminobutyric 

acid (GABA) and glycine onto granule cells and unipolar brush cells (Bazzigaluppi et al., 

2013; Jörntell, 2016; Sillitoe et al., 2012), may maintain drug-related memories connected 

to cocaine use.  A Pavlovian conditioning paradigm, cocaine-induced place preference 

conditioning, is a behavioral test where one environment is associated with drug 

treatment and a different environment with the absence of the drug.  Rodents are allowed 

to choose which environment they prefer, which provides insight into physiological 

responses in the brain in response to drug exposure and conditioning, and how 

therapeutics may prevent or reduce drug-seeking behaviors (Huston et al., 2013; Koob, 

2008; Koob and Le Moal, 2001).  Changes to the PNN were observed in rats exposed to 

cocaine-induced place preference conditioning (Blacktop et al., 2017; Carbo-Gas et al., 

2017).  Interestingly, the effects upon the PNN differed in different regions of the brain. 

Increased expression of PNN proteins was observed in the cerebellar cortex but reduced 
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PNN protein expression was observed in one of the deep cerebellar nuclei (DCN), the 

medial cerebellar nucleus.  Neurons expressing c-fos, which can be a marker of neural 

activity (Hoffman et al., 1993)  and cocaine use (Graybiel et al., 1990), were also 

increased in the cerebellar cortex, following cocaine-induced preference, particularly in 

lobule 8 and 9 (Carbo-Gas et al., 2017).  The increase in c-fos expression further supports 

the idea that alterations to the PNN are correlated to activity. The PNN may be a target 

to prevent drug relapse following cessation as PNN breakdown lowers drug seeking 

behaviors in animal models of relapse (Blacktop et al., 2017; Xue et al., 2014).  Targeting 

the PNN for controlled degradation may prevent relapse of those struggling with addictive 

disorders. 

 These results show that alterations to the PNN occur in disease and conditions 

resulting in memory disorders.  Although many of these results are correlative, they 

suggest that the PNN is an important structure that can influence learning, memory, and 

behavior in diseases related to learning and memory.  The experimental evidence 

outlined below demonstrates that alterations in the PNN can alter learning and memory, 

providing proof-of-principle that the PNN is potentially a therapeutic target for the 

treatment of these and other diseases. 

Although the current work may seem constrained to the bench, there may be 

possible clinical correlations for PNN manipulations. Doxycycline, a commonly prescribed 

member of the tetracycline class of antibiotics, is capable of crossing the blood-brain 

barrier.  In addition to be being an antibiotic, doxycycline is also capable of inhibiting the 

activity of some matrix metalloproteinases (MMP). MMPs are capable of manipulating the 

PNN by enzymatically cleaving the components within the PNN.  By inhibiting MMP 
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remodeling of the PNN, it is possible to prevent the alterations associated with memory 

formation.  Indeed, doxycycline has been found to diminish recall of aversive fear 

conditioning in humans.  Human subjects who were given doxycycline during acquisition 

had decreased threat memory compared to placebo controls.  Doxycycline subjects also 

experienced greater surprise when re-exposed to the conditioned stimulus, 

demonstrating they had forgotten the stimulus and were re-learning it (Yang et al., 2017).  

These results suggest that doxycycline and other MMP inhibitors can be used to 

manipulate the PNN and prevent retention of fear memories (Bach et al., 2019, 2017; 

Burhans et al., 2013). Other work has found that certain antidepressants (Deschaux et 

al., 2013; Guirado et al., 2014; Umemori et al., 2018, 2015) or anticonvulsants (Gervain 

et al., 2013) can diminish mature PNN to reopen the critical period. Since these drugs are 

already approved for human use, they may prove useful as therapeutics for other 

disorders affecting learning and memory such as post-traumatic stress disorder, 

addiction, AD and depression.   

1.2.2 PNN Manipulations and Learning and Memory 

The PNN’s function in memory storage was established using experimental 

methods such as enzymatic degradation, to alter the components forming the PNN.  

Infusion of ChABC allows comparison of responses in the presence (control) and 

disruption (ChABC treated) of an intact PNN. This strategy was applied to investigate the 

role of the PNN in storing memories generated during fear conditioning (FC) to exposure 

to uncued foot-shock: Figure 1.2 shows how ChABC reinstates the plasticity observed in 

the critical period in adulthood. FC is an associative experimental paradigm where an 

innocuous stimulus (a tone or light), the conditioned stimulus (CS), is paired with an 

11



aversive stimulus (foot shock, eyelid shock), the unconditioned stimulus (US). Subjects 

innately have a response, the unconditioned response (UR) to the US.  After repeated 

pairings of the tone or light and shock are presented, the subject will begin expressing an 

anticipatory or conditioned response (CR) to the CS.  This is evidence that the subject 

has learned that the CS and US are paired together (Molchan et al., 1994; Woodruff-Pak, 

1997).  Mice were given bilateral stereotaxic infusions of ChABC to the basolateral 

amygdala, an important brain region for processing fear (LeDoux, 2003, 2014, 2000; 

LeDoux et al., 1988; Medina et al., 2002; Phillips and LeDoux, 1992), prior to the foot-

shock conditioning.  Animals receiving ChABC acquired the aversive training and 

exhibited no differences from controls during the training session.  However, when the 

ChABC-infused and control animals underwent extinction training, a protocol designed to 

train the animal that the previously aversive association is no longer valid, the ChABC-

infused mice had facilitated extinction (stopped responding to the shock at a faster rate) 

compared to the other animals (Gogolla et al., 2009).  Extinction is a behavioral protocol 

and phenomenon (Bouton, 2004; Ganella et al., 2018; Herry et al., 2010; Maren and 

Holmes, 2016; Monfils et al., 2009; VanElzakker et al., 2014).  Extinction as a protocol 

can involve presenting the CS alone to an animal conditioned with CS-US pairings.  After 

repeated CS-only presentations, the level of CRs will return to near baseline (Rogers et 

al., 2001; Steinmetz et al., 1989).  The phenomenon is context-dependent and involves 

the animal learning new information (CS does not precede US) that inhibits the old 

information (CS precedes US).   In addition, these animals in the Gogolla study did not 

display common extinction phenomenon like spontaneous recovery, where the 

extinguished conditioning returns after time has passed (Rescorla, 2004), but were still 
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susceptible to context-dependent emergence of the response when tested in the context 

used during FC  (Gogolla et al., 2009).  This seminal work in the PNN literature by Gogolla 

showed that ChABC enzymatic activity alters the PNN of adult mice to appear more like 

the PNN of young mice within their critical period and that this restoration of the critical 

period of plasticity has profound effects on fear behaviors. It is noteworthy that the infusion 

of ChABC only had significant effects on extinction if it was infused prior to foot-shock 

conditioning; mice receiving infusions following training did not show extinction of the fear 

response, indicating that degrading the PNN prevents fear memories from being stored 

or is crucial for the mechanisms underlying extinction learning (Gogolla et al., 2009). 

Another study found that components of the PNN change during conditioning.  Lectican 

mRNA levels increase and peak 4 hr following auditory FC and elevated expression 

continues for at least 24 hours post-training.  A commonly used stain to detect the PNN, 

Wisteria floribunda agglutinin (WFA) was used to visualize the PNN.  WFA is a plant 

lectin that binds to the N-acetylgalactosamine residues in CSPG and is one of the most 

widely used markers for the PNN.  WFA reactivity also increases in the auditory cortex 

at 4 hr post-FC, which again persisted for a day before returning to baseline.  Control 

animals did not show these changes in their auditory cortex.  ChABC was administered 

to these animals 72 hr before FC and their response to FC and extinction training 

assessed as the amount of freezing.  Freezing is a behavioral phenomenon observed in 

many species, including rodents and humans.  Animals experiencing a threat will 

become immobile and “freeze” in the presence of the threat.  Rodents will also freeze to 

the CS or context after FC.  If animals stop freezing as often or all together when 

exposed to the CS, it suggests they no longer fear the CS because they do not 

associate it with the aversive US and may 
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have learned new information that supersedes the old, the CS does not precede the US. 

ChABC infusion had no effect on acquisition or early fear extinction, i.e. the first few trials 

of an extinction period, however, at later times (24 and 48 hours after FC), ChABC-

treated mice f r oze  significantly less compared to vehicle control-treated mice, but 

these effects seem to be time-dependent.  When ChABC was administered shortly 

after FC, there was no effect on fear extinction when tested acutely.  However, 

significant decreases in extinction were seen 1- 2 days following enzymatic 

manipulation (Banerjee et al., 2017).  

While FC investigates the formation, storage, and removal of noxious stimuli, there 

are potent and dangerous memories associated with feeling good, like addictive 

substances.  Exposing rats to various opioids and infusing ChABC to amygdaloid nuclei, 

alleviates drug-priming behavior (Xue et al., 2014).  ChABC was directly infused into both 

the basolateral amygdala and the central nucleus of the amygdala after completing 

conditioned place preference training to morphine and cocaine.  Rodents receiving 

ChABC to these regions also were less likely to self-administer heroine during a drug 

priming or relapse test. Drug priming behavior can be observed in people when an 

abstinent but previous drug user relapses and now expresses greater desire to use again 

after this reintroduction.  To model this, animals are re-exposed to the drug following 

cessation to mimic the initial relapse. The animals subsequently exhibit elevated 

motivation to obtain the next dose (de Wit, 1996).   Since drug priming is an animal model 

of drug relapse, this result lends credibility to targeting the PNN to aid recovery from drug 

addiction.  Interestingly, the reduced priming effects were only seen in the presence of 

addictive drugs and not naturally hedonic stimuli like food rewards.  Only the ChABC-
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infused rats that also underwent extinction training had significant changes to AMPAR 

subunits; the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-

receptor is an ionotropic receptor for glutamate capable of altering neuron excitability by 

controlling the influx of calcium and sodium ions.  These results were not observed in 

animals that were only given ChABC or control animals that underwent extinction (Xue et 

al., 2014).   

 ChABC infusions also altered dendritic spines, which can change their shape and 

turnover as a result of learning, recalling information, and cognition (Frankfurt and Luine, 

2015; McCann and Ross, 2017).  Interestingly, degradation of the PNN alone was enough 

to cause changes to the dendritic spines in the amygdala.  Rodents receiving ChABC 

infusions to the amygdala exhibit significant reductions in large dendritic spine numbers 

and in some cases total spine number.  Additionally, a day after extinction training, 

rodents receiving ChABC had fewer dendritic spines than control animals.  The rodents 

undergoing extinction and enzymatic manipulation had fewer total numbers of spines per 

unit length in general and fewer large spines as well (Pignataro et al., 2017).  These 

results indicate that the PNN may stabilize dendritic spines on proximal dendrites and 

removal of the PNN via enzymatic degradation promotes spine remodeling or elimination.  

It is difficult to determine if ChABC infusion alone can cause these effects or if the 

combination of ChABC infusion with extinction training led to the drastic reduction of 

dendritic spines.  Perhaps the PNN maintains spine number and morphology in the 

mature brain and the dynamic nature of dendritic spines in early life reflects the absence 

of the dense PNN seen in adults.   In neurotypical post-mortem human brain tissue the 

number of dendritic spines peaks in early childhood (between 2-7 yr old) but modification 
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to spines continues well into early and middle adulthood (Petanjek et al., 2011).  This 

coincides with the formation of the PNN in the hippocampus of humans at around 8 yrs 

of age with little change into adulthood (Rogers et al., 2018).   In the basolateral amygdala 

of rats, the number of dendritic spines grows as the animals exit a critical period, between 

P20-P35.  There are no significant changes in spine number between timepoints outside 

of the critical period (Koss et al., 2014).  

 

1.3. Genetic manipulation of the PNN 

Genetic approaches also support a 

critical role for CSPG and the PNN in 

controlling neuronal morphology and in 

learning and memory. Transgenic 

manipulations of the PNN result in 

persistent plasticity and animals may 

remain in a critical period throughout their 

lifespan (Figure 1.2). The sulfation pattern 

of CSPG changes temporally and is 

controlled by the activity of two chondroitin 

sulfotransferases, chondroitin 6-

sulfotransferase 1 (C6ST1) and 

chondroitin 4-sulfotransferase 1 (C4ST1). 

C6ST1 is much more active early in 

postnatal development while C4ST1 is 

Figure 1.3. CSPG structure and formation.  
The figure shows the structure of the chondroitin sulfate-
glycosaminoglycan (CS-GAG) chain component of 
CSPG. An attachment region connects the CS-GAG chain 
to a lectican core (shown as grey line).  Alternating GlcA 
and GalNac residues are added to the chain.  The GalNac 
residue can be sulfated at the 6th or 4th oxygen by two 
enzymatic pathways that are active at different 
developmental stages.  The 6-O-sulfation pathway is 
active in very young animals while the 4-O-sulfation 
pathway becomes more prevalent as the animal ages into 
and throughout adulthood.  
Gal: Galactose, GlcA: Glucuronic acid, Xyl: Xylose, 
GalNac: N-acetylgalactosamine, Ser: Serine, C6ST1: 
Chondroitin 6-sulfotransferase 1, C4ST1: Chondroitin 4-
sulfotransferase 1 
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predominantly active in adulthood. The two different CSPG synthesis pathways generate 

a structurally different PNN and are shown in Figure 1.3.   Transgenic expression of 

C6ST1 beyond its normal window of expression, which is early in postnatal development, 

altered the structure of the PNN and altered biological function extending the critical 

period. Adult transgenic mice overexpressing C6ST1 lack dense PNN around neurons in 

the primary visual cortex. The PNN in adult C6ST1 transgenic mice appeared more 

diffuse and more closely resembled the PNN of preweanling mice still within the critical 

period and transgenic adults remain susceptible to monocular deprivation, a method of 

limiting experience-dependent plasticity in the visual cortex of young animals (Miyata et 

al., 2012; Miyata and Kitagawa, 2016). These experiments indicate that modifying the 

PNN by either ChABC enzymatic digestion or C6ST1 overexpression can induce another 

epoch of plasticity where activity robustly modulates cortical circuitry.  CSPG sulfation 

status may also be related to diseases like schizophrenia.  The hippocampi from post-

mortem schizophrenic brains were compared to age-matched control.  Western blots 

found a significantly higher intensity of CSPG in the 4-S position in the schizophrenic 

hippocampi that could not be accounted for by post-mortem interval, storage time, or age 

(Yukawa et al., 2018).  Manipulation of expression of other PNN components, the link 

proteins that connect CSPG to HA, also alters PNN structure and function. Knockout of 

Bral2/HAPLN4, which is found at high levels in the brainstem and cerebellum, 

robustly reduced the levels of brevican, a lectican in CSPG, at these sites.  Neurocan, 

another lectican, and Crtl1, another link protein, were undetectable in the deep 

cerebellar nuclei and some auditory structures of the KO mice; WFA and HA reactivity 

were also diminished in these select brain areas.  Electron microscopy imaging of 

brains from Bral2 
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KO mice demonstrated that these animals had fewer synapses in the deep cerebellar 

nuclei compared to control animals (Bekku et al., 2012). These results suggest that Bral2 

is required for brevican to become incorporated into the PNN and loss of this link protein 

prevents normal PNN formation in the cerebellum and brainstem regions.  However, it is 

unknown if brevican is still expressed but below the level of detection.  The abnormal 

PNN seen in Bral2 KO mice could in turn reduce synapses in the affected areas. 

1.4. Functional connections and activity are required for normal PNN development 

Functional connectivity between neurons is necessary for normal PNN formation 

(Lin et al., 2018), suggesting that the PNN of some neuron populations are involved in 

synaptic development and neurotransmitter release.  Connections between Purkinje cells 

and neurons in the DCN are required for formation and maintenance of a normal PNN.  

In a mouse model of Purkinje cell degeneration, cells in the DCN lacking the connection 

to the Purkinje cell axon had an imbalance of the excitatory and inhibitory synaptic 

terminals compared to wild-type mice (Blosa et al., 2015).  Animals with degenerated 

Purkinje axons had fewer GABAergic synapses on DCN neurons and these alterations 

correlated with reduced brevican and HAPLN4/ Bral2 intensity.  Speculatively, without 

GABAergic input, a cell may construct an irregular PNN lacking one or more components.  

As described above (Bekku et al., 2012), reduced Bral2 expression may alter the 

incorporation of brevican into the PNN since link proteins attach lecticans to the HA 

backbone.   In addition, deletion of HAPLN4/Bral2 has been found to be responsible for 

maintaining the inhibitory synapse made between the Purkinje cells and the large 

excitatory DCN neurons (Edamatsu et al., 2018).   
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Gelatinases including matrix metalloproteinase-9 (MMP-9) can play a role in the 

normal synaptic and behavioral plasticity in neural circuit remodeling (Bach et al., 2017) .  

MMPs are known to proteolytically cleave collagen (Van den Steen et al., 2002), but also 

degrade aggrecan and the link proteins  (Fosang et al., 1992; Nguyen et al., 1993), and 

thus could impact the structure of the PNN. Stimuli that induce late-long term potentiation 

(L-LTP), a form of synaptic plasticity, also activate MMP-9; this can be observed following 

chemical induction and strong tetanic stimulation capable of inducing LTP (Bach et al., 

2017).  The active MMP-9 is localized to synapses and its activation can be blocked with 

NMDAR antagonists, indicating that activity is needed to activate MMP-9.  In addition, the 

use of broad-spectrum MMP inhibitors can also block the induction of both LTP and long-

term depression.  MMP-9 can even change synaptic structures without LTP-inducing 

stimuli.  Local application of proteolytically active MMP-9 to dendrites can lead to 

structural changes.  This includes morphological changes indicative of increased synaptic 

strength at synapses, for example more receptors inserted at the spine, and enlarged 

dendritic spines that peak shortly following application.  However, prolonged exposure to 

MMP-9 generates the opposite effects.  Cultures of hippocampal neurons exposed to 

MMP-9 for 90 minutes have elongated, slender dendritic spines with diminished spine 

heads (Huntley, 2012).  The effects of MMP-9 on molecular and morphological changes 

associated with memory may be related to its ability to manipulate the PNN at the synapse 

since this enzyme can degrade the extracellular matrix and PNN.   

Patients with neurodevelopmental diseases like Fragile X Syndrome and Autism 

Spectrum Disorder typically have both learning delays and sensory deficits in 

several modalities. A transgenic mouse model of Fragile X Syndrome, KO of Fmr1, 

exhibited 

19



 

elevated MMP-9 activity in the auditory cortex during the critical period of auditory 

development. This was associated with abnormal GABAergic inhibitory cell development 

and a diminished PNN was observed around these cells.  In vitro slice recordings showed 

that these inhibitory cells had altered spiking behavior and were more likely to have 

spontaneous firing and firing in response to sound presentation.   Returning MMP-9 levels 

back to normal levels rescued all of these effects (Wen et al., 2017). Although the authors 

did not investigate the role of MMP-9 in learning and memory, it potentially plays a role in 

the cognitive delays associated with Fragile X.  In addition to autism like disorders, MMP-

9 as well an MMP regulator, tissue inhibitor of metalloproteinases-1 (TIMP-1) may play a 

role in several dementia-related diseases.  When compared to healthy, age-matched 

controls, MMP-9 protein levels were significantly lower in those who had frontotemporal 

dementia (Tuna et al., 2018).  Frontotemporal dementia is a heterogeneous 

neurodegenerative disease that affects the frontal and temporal lobes.  Symptoms are 

variable and can cause issues in motor skills, language, executive functioning, and 

behavior (Olney et al., 2017). Protein levels of TIMP-1 were also lower in the brains from 

patients with frontotemporal dementia as well as AD brains compared to the control 

group. These findings suggest that MMP-9 and TIMP-1 play a role in the degeneration 

associated with these two dementias.  

MMP-9 may also be influenced by external stimuli.   The effect of an enriched 

environment on MMP-9 was examined in mice and significantly increased MMP-9 levels 

were seen in the cerebellar cortex, but there were no observable differences to the PNN 

in wild-type animals compared to animals reared in standard environment.  MMP-9 knock 

out mice reared in the enriched environment had elevated PNN staining in the deep 
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cerebellar nuclei compared to wild-type mice.  Elevations in excitatory synaptic markers 

were also seen in the MMP-9 knock out (Stamenkovic et al., 2017). Thus, elevated MMP-

9 in response to an enriched environment appears responsible for constraining changes 

in the PNN and neuronal connections.  However, the effect of changes to MMP-9 upon 

the PNN in the cerebellum and upon learning and memory of cerebellar-dependent tasks 

remain unexplored.  Since there were changes to the synaptic receptors, these 

relationships are an important line of future investigation.  

 

1.5. General Mechanisms of PNN Control 

The evidence from the ChABC and transgenic manipulations to the PNN 

demonstrates that density (dense mature or diffuse immature) and composition of the 

PNN regulates neural plasticity. The PNN has been postulated to control neural plasticity 

via multiple mechanisms (Sorg et al., 2016).  The simplest mechanism is by acting as a 

physical barrier and preventing extending neurites and axons from making contact onto 

a PNN-positive cell.  Thus, an intact, mature PNN would prevent healthy and injured 

neurons in the CNS from making new connections.  Enzymatic breakdown of the PNN 

would allow these neurons to make new contacts, even repairing connections following 

damage to the neural tissue (Miyata and Kitagawa, 2016; Xue et al., 2014).  The PNN 

can also act as a scaffold for chemo-repulsive molecules.  Semaphorin 3A, a molecule 

that repels axons, can associate with the PNN of inhibitory interneurons in both the 

neocortex and the cerebellum (Carulli et al., 2013; de Winter et al., 2016).  Dense PNNs 

acting as inhibitory scaffolds could prevent extending neurites from contacting PNN+ cells 

by chemorepulsion.  By degrading the PNN and removing the binding sites for 
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Semaphorin 3A, it may be possible for new connections and additional contacts to form.  

These mechanisms are not mutually exclusive and could be context dependent. It would 

be interesting to distinguish the barrier effects of the PNN from the effects of the 

chemorepulsive molecules that may be embedded within.  The PNN can also corral 

synaptic receptors, like AMPA receptors, at sites of high synaptic activity, perhaps 

preventing them from undergoing endocytosis.  Decreased rates of AMPAR endocytosis 

are associated with learning and memory, indicating that stabilized pools of AMPAR at 

synapses are a key step of learning and memory (Anggono and Huganir, 2012; Derkach 

et al., 2007). Others have also established that the PNN may be important in maintaining 

the membrane capacitance of ensheathed neurons (Tewari et al., 2018).  The cell 

membranes of neurons and other excitable cells are capable of acting as parallel-plate 

capacitors and storing charge.  This permits neurons to fire as membrane voltage and 

resistance changes in time and space.  This seems to be especially true for PNN+ 

interneurons compared to excitatory pyramidal cells.   Thus, disrupting the PNN could 

alter the spiking activity of PNN+ neurons rendering them more likely to fire.  

 

1.6. Concluding Remarks 

Questions still remain about the PNN.  Some areas of the CNS with PNN+ neurons 

have been well researched while other areas are quite understudied.  In addition, the 

majority of PNN work has been done with rodents; study of the PNN in other animal 

species would provide more information about the maturation and distribution of the PNN. 

Additionally, although human tissue is difficult to obtain, studying how the PNN is changed 

in the human brain throughout development in both healthy brains and diseases affecting 
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learning and memory should also be undertaken.  These results would validate studies 

done with animal models or minimize the relevance of studies without translational merit.  

Performing causal studies in vitro or in vivo could provide support to the correlative work 

that comprises the majority of PNN studies.  The majority of PNN studies focus on early 

postnatal development but investigations of aged animals are also worthwhile.  Studies 

of older animals could be used to understand how the PNN is related to normal aging as 

well as diseases affecting elderly populations.  An inducible transgenic manipulation 

would also be useful.  Current transgenic manipulations of the PNN are primarily focused 

on how these manipulations alter the PNN during post-natal development.  Using drugs, 

like tamoxifen, or virally inducible transgenic in adult animals would allow the PNN to 

develop normally and then precisely remove one of the PNN compounds in adulthood. 

Multiple mechanisms have been proposed for the PNN, but no definitive consensus has 

emerged at this time.  In order to determine the mechanism combining molecular 

techniques and behavior could provide greater insight into how the PNN modulates 

learning and memory. 

Although it appears clear that the PNN exerts control over neural plasticity, the 

definitive molecular mechanism remains elusive.  The evidence suggests that there may 

be multiple mechanisms through which the PNN influences neural plasticity throughout 

the development of an organism.  The processes of learning and memory rely heavily 

upon changes at the synapse and plasticity throughout development.  In addition to 

changes to the synapses, the PNN can alter neuronal membrane excitability as well 

(Bekku et al., 2012; Chu et al., 2018; Edamatsu et al., 2018; Hirono et al., 2018; Lensjø 

et al., 2016; Slaker et al., 2018; Tewari et al., 2018), another crucial factor underlying 
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learning and memory (Booth et al., 2016; Narayanan and Johnston, 2007; Thompson et 

al., 1996; Wang et al., 2018; Wang and Schreurs, 2014, 2010).   During the critical period, 

it may be possible to reorganize preexisting cortical circuitry by manipulating the PNN. 

Manipulation of the CSPG or other components can restructure the PNN, thus altering 

the time period in which the critical period is open, or “reopening” the critical period and 

restoring neuronal plasticity.  While studies using transgenic models have provided crucial 

insights into the significance of specific components on the structure and function of the 

PNN, these models have yet to be exploited to address the effects upon learning or 

memory.  The limitation of the transgenic models thus far, is the perturbation of the PNN 

throughout life.  ChABC remains the standard approach for perturbing the PNN after it 

has been fully established, but the limitation of the approach is the indiscriminate 

disassembly of the PNN.  Additional conditional transgenic models targeting individual 

link proteins, HAS isoenzymes, enzymes involved in CSPG formation, and the various 

lecticans at different stages of development will provide crucial insights into the role of 

each in the assembly of the PNN.  Perturbation of specific PNN components in mature 

animals will define which components are important for the maintenance of the PNN and 

regulation of neural plasticity and may be additional targets for the development of 

therapeutics.   Further development of models targeting specific cell populations, e.g. PV+ 

neurons or Purkinje cells, will provide refined insight into the role of individual components 

of the PNN on these specific cells and their influence upon learning and memory. As the 

body of work on PNN grows, it will be soon possible to understand how this specialized 

ECM regulates processes related to learning and memory. 
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2.1. The Perineuronal Net is abundant in the cerebellum 

The perineuronal net (PNN) is found in many areas of the central nervous system 

but the abundance of neurons covered with it varies throughout the brain and spinal cord.  

Figure 2.1  (preliminary data) shows that in the adult rat brain, there are more PNN+ cells 

in the deep cerebellar nuclei (DCN) compared to the amygdala, and this is also the case 

in the monkey brain (Mueller et al., 2016).  One of many questions, is how the PNN 

changes throughout development in the rat anterior interpositus nucleus (AIN), one of the 

DCN.  Others have 

outlined the components 

of the PNN in the rat DCN 

(Carulli et al., 2006, 2007) 

or early timepoints in 

development (Hirono et 

al., 2018) but there is no 

complete study of the 

development of the PNN 

in the AIN from the 

preweanling animal until 1 

year of age.  The idea that 

the PNN is responsible for 

closure of the critical period would be corroborated if the AIN has PNN+ neurons when 

Figure 2.1. PNN+ cells in the adult rat 
There were less PNN+ cells in the amygdala (A.) than the AIN (B).   

 Error bars SEM.
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rats are able to learn eyeblink conditioning (EBC).    There has been some investigation into 

modifying the PNN in the DCN or cerebellar cortex (Corvetti and Rossi, 2005; Carulli 

et al., 2013; de Winter et al., 2016; Carbo-Gas et al., 2017; Stamenkovic et al., 

2017). Yet there has been relatively little inquiry into how this affects cerebellar learning and only 

recently has the function of the PNN in the DCN begun to be investigated (Hirono et al., 

2018; Carulli et al., 2020).  The low level of PNN studies in the DCN compared to other 

PNN+ regions is rather surprising since the cerebellum has been implicated in multiple 

diseases that also are related to the PNN (post-traumatic stress 

disorder (PTSD), Alzheimer’s disease (AD), Autism for example).  

2.2  The Cerebellum is an archetypal system fit for many studies related to the 

PNN 

2.2.1 Cerebellar learning is a useful way to study memory  

In addition, the DCN, including the AIN, are a site of converging inputs from 

excitatory and inhibitory cells and provides the only output of the cerebellum; for review 

of the cerebellum and EBC see Thompson and Steinmetz, 2009, for a historical review 

of the cerebellum see Glickstein et al., 2009.   Figure 2.2 depicts a schematic of the 

well-studied neural circuitry underlying delay EBC, a paradigm where conditioned 

stimulus (CS) – unconditioned stimulus (US) pairings coterminate.  The cerebellum has 

two main inputs arising from the brainstem.  The climbing fibers from the inferior olive 

convey information about the US while information about the CS is conveyed along mossy 

fibers from the pontine nucleus. Stimulation of the mossy and climbing fibers must be 

separated in time for the animal to learn (Steinmetz et al., 1989); more specifically, the 

mossy fibers must be stimulated at least 100 milliseconds prior to the climbing fibers.  

Both fibers can synapse directly onto neurons of the AIN and also synapse onto cells 
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within the cerebellar cortex. The conditioned response (CR) pathway originates in the AIN 

and exits the cerebellum via the superior cerebellar peduncle to synapse at the red 

nucleus contralateral to the AIN.  The red nucleus sends fibers to the motor nucleus (facial 

nucleus) ipsilateral to the AIN; this is why a lesion of the AIN only affects the CR on the 

ipsilateral side. The AIN is in 

a perfect position 

anatomically to integrate 

both the input and output 

pathways crucial to EBC 

and therefore has been 

implicated as the critical site 

of learning and memory for 

EBC. In support, lesions to 

the AIN completely prevent 

acquisition, expression and 

savings of the CR whereas 

lesions to downstream 

targets of the AIN involved in the output of EBC such as the red nucleus only eliminate 

the expression of the CR (Thompson and Steinmetz, 2009). 

2.2.2 The cerebellum is connected to other brain regions that are also PNN+ 

The cerebellum has also been found to have indirect connections to regions like 

the amygdala and hippocampus and is involved in emotional processing as well as 

Figure 2.2. shows the Eyeblink conditioning circuit. 
The Interpositus nuclei is situated perfectly to receive excitatory and inhibitory inputs 
associated with eyeblink conditioning. 
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learning and memory (Medina et al., 2002; Farley et al., 2016, 2018). In adult male rats, 

bilateral muscimol infusion inactivated the central nucleus of the amygdala and 

consequently impaired EBC acquisition and retention with a visual CS and EBC 

acquisition with an auditory CS.  These changes were thought to be mediated by 

connections from the amygdala à thalamus à pontine nuclei à cerebellum (Farley et 

al., 2016, 2018).    These factors render the DCN an interesting area for studying the 

processes underlying learning and memory and how the PNN may influence cerebellar 

dependent learning.  

There is little information regarding the development of the PNN in the DCN or the 

cerebellar cortex in young or old animals (Brückner et al., 2000; Carulli et al., 2006).  It is 

currently unknown if there are differences in the number of PNN+ cells or if there are 

regional differences in the developing DCN or cerebellar cortex as the animal develops 

beyond the first few weeks to months after birth. Investigating regions outside of the 

amygdala and hippocampus is also necessary to understand the PNN’s role in aversive 

memories. Current work shows that manipulating the PNN outside of the amygdala still 

results in impaired recall of remote fear memories.  By degrading the PNN in the 

secondary visual cortex, theta oscillations between the secondary visual cortex and the 

amygdala are disrupted and freezing behavior decreases compared to controls 

(Thompson et al., 2017).  These results suggest that an intact PNN in the visual system 

is necessary for remote fear memories of visual cues.  We would expect that enzymatic 

degradation of the PNN in the auditory cortex may remove fear memory of an auditory 

CS. The PNN+ in the cerebellum may also have a supporting role in stabilizing fear 
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memories since it can modulate emotional related structures including the hippocampus 

and amygdala (Burhans and Schreurs, 2008; Blatt et al., 2013).  

2.2.3 Development in the cerebellum alters behavior and may be related to the PNN 

The cerebellum is a good model for studying brain development in general due the 

dynamic and cortical layer specific migration of certain populations of cerebellar cells 

(Rakic, 1971, 1990; Galas et al., 2017).  Gelatinases like MMP-9 are key in directing 

cerebellar cell morphology.  Ribonucleic acid (RNA) analysis shows that MMP-9 levels 

are elevated in the first 3 postnatal days (P3) in the rat and then sharply declines until a 

second, small burst appears around P20 (Ayoub et al., 2005).  This secondary 

elevation in MMP-9 RNA is closely timed with the migration of granule cells in the 

cerebellar cortex, and our own preliminary work with rats shows that around P20 there 

are significantly more PNN+ cells in the AIN than at earlier postnatal ages such as P12.  

We also have previous work showing that rat pups do not acquire EBC strongly until 

P20 (Schreurs et al., 2013), close to the age when the PNN first appears significantly 

increased in the AIN. Whether these changes in MMP-9 are related to the PNN formation 

in the cerebellar cortex or DCN has not been explored.  Blocking MMP-9 in cerebellar 

explant cultures has been shown to attenuate the ability of granule cell precursors to 

migrate. In vivo MMP-9 knock-out mice also have granule cell precursors that fail to reach 

their final destination in the inner granule layer of the cerebellar cortex (Vaillant et al., 

2003). However, no one has investigated changes in MMP-9 protein levels or activity 

following perturbation of the PNN in adult animals.  The cerebellum’s role in neural 

development, specifically the critical period, is being further investigated in relation to 
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neurodevelopmental disorders like Autism Spectrum Disorders see Wang et al., 

2014.  

The circuitry involved in EBC must be fairly developed for an animal to actually 

learn and retain EBC, with the primary rate-limiting factor being development of sensory 

input pathways to the pontine nucleus.  It has been shown that EBC using an auditory 

CS in rats can occur as early as P17-18 but is much more rapid at P24 (Stanton et al., 

1992).  As stated earlier, our own 

experience with rat preweanlings 

has shown that reliable levels of 

conditioning do not emerge until 

the pup is P18. It is difficult to train 

rats younger than P17-18 with an 

auditory CS due to an immature 

auditory sensory pathway 

(Freeman and Rabinak, 2005), but 

training is possible if the CS is a 

somatosensory stimulus like shock 

(Schreurs et al., 2013) or vibration 

(Goldsberry et al., 2014), because 

unlike auditory pathways, the 

somatosensory pathways matures 

prenatally. Training rats as young 

Figure 2.3. WFA and postsynaptic marker labeling in the rat. 
The figure in panel A shows a PNN+ neuron in the AIN of an 
adult rat.  There is robust labeling of both excitatory (PSD-
95) and inhibitory (gephyrin) post-synaptic markers.  WFA
labels a dense PNN as well. The figure in panel B shows a
PNN+ in the AIN of a rat at P16.  There is little to no labeling
of any post-synaptic markers.  WFA labeling is present but
the PNN appears to be more diffuse than in the adult.
Blue: DAPI, Green:PSD95, Orange: Gephyrin, Red: WFA;
63x obj. on Zeiss 710

A

B
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as P12 is possible if the pontine nuclei are directly stimulated as the CS. 

There is also evidence for age-related differences in extinction of EBC. Juvenile 

animals had a faster rate of extinction compared to moderately older (P24) and true adult 

rats (P60-90) (Brown and Freeman, 2016).  The true adults also were the most resistant to 

extinction compared to the moderately older group.  Despite the differences in extinction, 

all groups successfully learned the EBC. Together, these results suggest that there are 

age-related differences in an animal’s ability to learn EBC and could be dependent on the 

presence of the PNN in the DCN and other brainstem structures related to EBC.  

We noticed potential differences in the post-synaptic machinery of neurons with a 

PNN in the cerebellar nuclei. Figure 2.3 panel A shows the morphology of the PNN 

labeled with WFA, excitatory synapses labeled with PSD-95, and inhibitory synapses with 

gephyrin in the AIN of a naïve adult rat. Figure 2.3 panel B shows the same labeling but in 

the AIN of a naïve preweanling at P16. In the adult, there is substantially more labeling of 

both excitatory and inhibitory post-synaptic markers compared to the P16 rat. WFA 

reactivity in the AIN is present at P16 but the PNN appears more diffuse compared to the 

dense structure seen in the adult.  We found differences in the ontogeny of the PNN in the 

DCN (see Ch. 3 (O’Dell et al., 2020)).  These differences in the PNN of the DCN 

neurons of an adult and pre-weanling are likely related to the differences observed in 

cerebellar-dependent learning at these ages.   

2.3.  Manipulating the PNN in the Cerebellum will alter behavior 

The two research groups who studied the effect of PNN manipulation on EBC 

used headfixed, adult male mice and their unconditioned stimulus 

was air puff for their 
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behavioral study.  However, they differed on their approach to digesting the PNN in the 

DCN to study its effect on cerebellar dependent learning.  Hirono et al. used 

chondroitinase ABC (ChABC) infusion directly to the DCN while Carulli et al., used a 

lentivirus expressing chondroitinase.  They also waited different lengths of time to allow 

for PNN disruption.  Hirono et al., chose to infuse ChABC into the AIN 4 days prior to EBC 

while the Carulli group allowed for 21 days before beginning acquisition.  These variations 

in approach led to differences in the amount of digestion of the PNN and subtle 

differences in behavior.  The mice in the Carulli study had far less PNN in comparison to 

the Hirono mice.  Both groups found differences in the acquisition of EBC but only the 

Carulli study observed differences between virally-injected and control mice during 

extinction.   

  In addition to behavior, both groups chose to investigate potential changes to the 

electrophysiology of these cells.   The Hirono group found that cerebellar slices exposed 

to ChABC showed enhanced gamma-aminobutyric acid (GABA) release from the 

presynaptic Purkinje cell onto the glutamatergic DCN neurons.  The mice also had 

increased rebound firing in the DCN, which is associated with higher likelihood of inducing 

changes responsible for cerebellar learning (Pugh and Raman, 2006; Zheng and Raman, 

2010, 2011; Person and Raman, 2012). Carulli et al., observed neurons in the DCN with 

lower spontaneous firing following viral expression of chondroitinase.   

We also observed learning-related changes to the PNN in the DCN of rats exposed 

to EBC and those that were naïve to any behavioral training.  The laboratory has previous 

experience performing EBC experiments in several species, including rats, rabbits, and 

humans (Molchan et al., 1994; Sparks and Schreurs, 2003; Schreurs et al., 2013) as well 
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as electrophysiological experiments in the rat and rabbit cerebellum (Wang and Schreurs, 

2006, 2014; Wang et al., 2018).  Preliminary experiments have shown that an adult rat 

was capable of expressing high levels of %CRs following 5 days of paired EBC that 

diminished following three days of tone-only extinction.  Figure 2.4 shows Mean % CR 

(A.) and CR Amplitude (B) and the PNN+ cells of an animals given EBC and a completely 

naïve animal (C).  There appears to be less PNN in the AIN of rats exposed to EBC 

compared to naïve. These preliminary observations suggests training and extinction of 

tone-shock 

pairings alone 

could be capable 

of remodeling the 

PNN in the AIN.  

Carulli et al., 

noticed that 

during 

acquisition, there 

were lower levels 

of the PNN in the 

mouse AIN but 

by the end of the experiment, these levels were closer to the level of naïve and 

pseudoconditioned controls (Carulli et al., 2020).   The daily sessions of tone-shock or 

tone alone presentations and exposure to these stimuli in the chamber appear to induce 

proteolytic remodeling of the PNN at synapses to stabilize new memories formed as a 

Figure 2.4. EBC acquisition and extinction may alter the PNN+ cells of the DCN. 
The graph in A. shows mean %CRs during EBC and extinction.  The rat is at 100% CR by 
the end of 5 days of tone-shock pairings.  The graph in B shows the mean amplitude of EMG 
eyelid activity during EBC and EBC extinction.  For example, on the 1st day of extinction, the 
CR amplitude is still high. In C., The graph shows the WFA+ cells in the AIN of a rat exposed 
to EBC and EBC extinction compared to naïve rats.  
Error bars SEM   
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result of EBC.  Further study of the PNN in the cerebellum may better define this 

relationship.  
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Abstract 

The perineuronal net (PNN) is a specialized type of extracellular matrix found in the central 

nervous system.  The PNN forms on fast spiking neurons during postnatal development but the 

ontogeny of PNN development has yet to be elucidated.  By studying the development and 

prevalence of the PNN in the juvenile and adult rat brain, we may be able to understand the PNN’s 

role in development and learning and memory.  We show that the PNN is fully developed in 

the deep cerebellar nuclei (DCN) of rats by P18.  By using enzymatic digestion of the PNN 

with chondroitinase ABC (ChABC), we are able to study how digestion of the PNN affects 

cerebellar-dependent eyeblink conditioning in vivo and perform electrophysiological recordings 

from DCN neurons in vitro.  In vivo degradation of the PNN resulted in significant differences 

in eyeblink conditioning amplitude and area.  Female animals in the vehicle group demonstrated 

higher levels of conditioning as well as significantly higher post-probe conditioned responses 

compared to males in that group, differences not present in the ChABC group.  In vitro, we 

found that DCN neurons with a disrupted PNN following exposure to ChABC had altered 

membrane properties, fewer rebound spikes, and decreased intrinsic excitability. Together, this 

study further elucidates the role of the PNN in cerebellar learning in the DCN and is the 

first to demonstrate PNN degradation may erase sex differences in delay conditioning. 

Six keywords:  PNN, DCN, electrophysiology, eyeblink conditioning, ChABC 
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3.1. Introduction 

Nervous system function is centered on neurons, but these neurons are modulated by 

many external factors including other cells like glia and even the extracellular matrix (ECM) 

(Araque et al., 1999; Brückner et al., 1993; Cope & Gould, 2019; Ferrer-Ferrer & Dityatev, 2018; 

Perea et al., 2009; Rakic, 1971).  Although there are multiple types of ECM, a specialized ECM 

structure called the perineuronal net (PNN) plays a key role in myriad functions in the central 

nervous system (CNS) ranging from memory storage to inhibiting neuronal regeneration following 

injury (Carulli et al., 2010; Celio et al., 1998; Chu et al., 2018; De Luca & Papa, 2016; Iwata et al., 

1993; Kecskes et al., 2015; Krishnaswamy et al., 2019; Minta et al., 2019; Pizzorusso et al., 2002; 

Rowlands et al., 2018; Stryker et al., 2017; Suttkus et al., 2016).  The PNN can restrict neuronal 

plasticity by acting as a physical barrier to sprouting neurons, acting as a scaffold for inhibitory 

molecules, as well as acting as a corral for receptors, like AMPA receptors, at the synapse (for 

review see Sorg et al., 2016.  The PNN is implicated in the exit from a critical period, a period of 

enhanced experience-dependent plasticity found in sensory processes like audition and vision 

as well as cognitive processes such as learning and memory (Alberini & Travaglia, 2017; Hensch, 

2005; Hou et al., 2017; Nabel & Morishita, 2013; Umemori et al., 2015).   

The PNN is typically associated with the soma and proximal dendrites of neurons 

(Brückner et al., 2006; Dityatev et al., 2007; Fawcett et al., 2019; Giamanco et al., 2010; Matthews 

et al., 2002) and comprises multiple components including hyaluronic acid (HA), chondroitin 

sulfate proteoglycans (CSPG), hyaluronan and proteoglycan link proteins including brain 

associated link protein 2 (Bral2) (Bekku et al., 2012; Carulli et al., 2006; Cicanic et al., 2017; 

Edamatsu et al., 2018) or cartilage link protein 1 (Crtl1) (Carulli et al., 2007; Galtrey et al., 2008) 

and tenascin-R.  Wisteria Floribunda agglutinin (WFA) or lectin is a commonly used marker for 

PNN because it exclusively binds to residues found in CSPG (Brückner et al., 1996; Hilbig et al., 

2001; O’Connor et al., 2019).   Together the components assemble into the PNN to ensheathe 

primarily fast-spiking neurons in many brain regions and across many species.  Although 
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interneurons, particularly inhibitory parvalbumin-positive interneurons, are more commonly found 

with a PNN  (Baker et al., 2017; Bradshaw et al., 2018; Cabungcal et al., 2013; Guirado et al., 

2014; McDonald et al., 2017; Morris & Henderson, 2000; Ohira et al., 2013; Slaker et al., 2018), 

there is also a subset of excitatory neurons in the CNS with a PNN (Carstens et al., 2016; Carulli 

et al., 2007; Morikawa et al., 2017; Seeger et al., 1994).  Specifically, the deep cerebellar nuclei 

(DCN) are enriched with an abundance of large excitatory cells with a PNN (Bekku et al., 2012; 

Carbo-Gas et al., 2017; Carulli et al., 2006, 2013; de Winter et al., 2016; Edamatsu et al., 2018; 

Hirono et al., 2018; Mueller et al., 2016; Stamenkovic et al., 2017).   

The DCN comprise the sole output of the cerebellum (Glickstein et al., 2009; Thompson 

& Steinmetz, 2009).  The DCN, including the anterior interpositus nucleus (AIN), receive 

converging inputs from inhibitory Purkinje cells in the cerebellar cortex and excitatory projections 

from the mossy fibers originating in the pontine nucleus and the climbing fibers from the inferior 

olive (Steinmetz et al., 1989). As a result, the DCN are in a perfect position anatomically to 

integrate both the input and output pathways essential to eyeblink conditioning (EBC) and have 

been implicated as the crucial site of learning and memory for EBC, particularly the AIN.  Although 

this is a contested view, lesions to the AIN do prevent acquisition, expression, and savings of the 

eyeblink conditioned response (CR) whereas lesions to downstream targets of the AIN involved 

in the output of EBC, such as the red nucleus, only eliminate the expression of the CR (Brown & 

Woodruff-Pak, 2011; Freeman et al., 1995; Nolan et al., 2002; Thompson & Steinmetz, 2009).  

Despite the abundance of the PNN in the DCN, their role in learning and memory following 

enzymatic disruption has not been as well studied in comparison to disruption of PNN-associated 

neurons in other brain regions including the hippocampus, amygdala, and regions of the cortex 

(Chu et al., 2018; Hettiaratchi et al., 2019; McDonald et al., 2017; Sun et al., 2018; Xue et al., 

2014).   

Although there have been investigations into modifying the PNN in the DCN or cerebellar 

cortex, there has been little inquiry into how this affects cerebellar learning (Carbo-Gas et al., 

52



2017; Carulli et al., 2013; Corvetti & Rossi, 2005; de Winter et al., 2016; Stamenkovic et al., 2017) 

or how the PNN in the DCN changes throughout development.  In fact, there have been only two 

studies investigating PNN disruption in the DCN and the effects on EBC, and both studied mice 

with air puff as the unconditioned stimulus.  The first study (Hirono et al., 2018) examined EBC 

and the synaptic electrophysiology of the large excitatory neurons in the DCN following exposure 

to chondroitinase ABC (ChABC), a bacterial enzyme that digests the CSPG in the PNN as 

evidenced by decreased WFA labelling (Bradbury et al., 2002; Brückner et al., 1998; Gogolla et 

al., 2009; Massey et al., 2006). The second study investigated the effects of injecting a virus 

expressing chondroitinase into the AIN (Carulli et al., 2020).  In the Hirono et al. study, naïve male 

mice between P21-P23 were given ChABC infusion into the DCN and euthanized 4-6 days later 

to examine the electrophysiology of DCN neurons following PNN digestion in acute cerebellar 

slices while Carulli et al., performed in vivo recordings in adult male mice injected with a virus 

expressing chondroitinase.  In both studies, mice that had a reduction of PNN had an 

enhancement of learning expressed as percent conditioned responses (%CRs) during acquisition 

of EBC, findings that are unlike the effects of ChABC digestion in the amygdala, which aided the 

removal of aversive memories following extinction without altering acquisition (Gogolla et al., 

2009).  The study by Carulli et al., saw similar group differences during extinction, animals with a 

digested PNN had lower %CRs compared to the vehicle controls, as well as group differences 

during acquisition.  Animals in the control group in both the Hirono and Carulli studies had 

relatively low acquisition %CRs (around 60%) even after extensive training compared to other 

EBC studies using mice (Heiney et al., 2014; Koekkoek et al., 2002).  There was no report of 

additional eyeblink parameters, such as peak latency or response amplitude, which can give a 

more nuanced assessment of learning effects and are perturbed in patients with diagnoses like 

post-traumatic stress disorder (Ayers et al., 2003).  Carulli et al., found DCN neurons had a lower 

spontaneous firing rate after exposure to viral expression of chondroitinase (Carulli et al., 2020).  

Hirono et al., observed PNN disruption by infusion of ChABC in mouse cerebellar slices which 
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showed increased amplitude of evoked inhibitory postsynaptic currents (IPSCs) as well as mini-

inhibitory postsynaptic potential frequency; they also observed loss of the PNN facilitated 

spontaneous ISPCs (Hirono et al., 2018).  

Additional studies of the role of the PNN in EBC are needed to compare differences 

between species.  The other studies only used male mice and, as a result, were unable to assess 

potential sex differences.  Further, cells in the DCN are excitatory neurons with a PNN, which is 

rather uncommon compared to the vast majority of cells with a PNN.  The most common studies 

of the PNN investigate the relationship between the PNN and inhibitory interneurons.  Only a 

fraction of PNN research includes excitatory cells, suggesting there is a need to look outside the 

interneuron population.  Since EBC is not acquired well prior to P17 (Stanton et al., 1992), it is 

also in our interest to study how the PNN changes from the preweanling to adult in the rat DCN.  

The goal of this research was to study the role of the PNN in the DCN of male and female rats by 

temporarily degrading the PNN with ChABC in vivo to study how ChABC infusion alters EBC in 

adult animals as well as in vitro application to investigate changes in the electrophysiology of the 

large excitatory neurons of the DCN.  Our perturbations of the PNN revealed significant group 

differences in CR amplitude and area in addition to decreased membrane excitability in large DCN 

neurons. 
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3.2. Methods:  
 
3.2.1. Animals 

Forty-three Long Evans rats (Rattus norvegicus) (male and female) between post-natal day 12 

(P12) and 6 months of age were supplied by Charles River (Wilmington, MA).  Twenty-six rats 

underwent surgery, twelve were used for ontogeny analysis, and five were slated for 

electrophysiological studies.  Rats were housed with littermates of the same sex after weaning 

and were given ad libitum access to food and water and maintained on a 12 h light/dark cycle, all 

in accordance with the National Institute of Health guidelines.  Adult rats undergoing cannulae 

implantation and/ or electromyogram (EMG) surgery were housed individually post-surgery. This 

was to prevent damage to the EMG and/or cannulae via social grooming.  All animals were 

socially housed until they were at least P80.  All procedures were approved by the West Virginia 

University (WVU) Animal Care and Use Committee and the WVU Biosafety Committee.   

 

3.2.2. Surgeries 

Twenty-six 3-month old rats (13 F, 13 M) underwent cannula implantation in the AIN.  Eight 

underwent bilateral cannulae implantation while eighteen had cannula implanted only in the left 

AIN and were also fitted with the EMG hardware for eyeblink conditioning.  Sterile surgical 

technique was used to implant cannulae into the rat’s brain at coordinates determined from the 

literature with reference to a stereotaxic rat brain atlas (Paxinos & Watson, 2004). Each rat was 

sedated with isoflurane (5% induction, 2% maintenance) with supplemental oxygen (0.5 -1 L/min). 

The incision site (scalp) was shaved and washed three times with alternating swipes of Povidone-

iodine scrub and 70% alcohol followed by application of Povidone-iodine solution after which the 

rat was positioned in a rodent adult stereotaxic (Kopf Model 900LS) device.  Bupivacaine (max 

dose 2mg/kg), a local anesthetic, was infiltrated into the scalp, which was incised with a surgical 

scalpel blade, to create an approximately 20-mm incision, just rostral to the eyes and just caudal 

to the ears.  The scalp was reflected and cleaned, exposing just enough of the skull to 
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accommodate a plastic connector for the EMG implant and up to two guide cannulae.  Holes were 

drilled into the skull for skull screws and guide cannula implantation.  Gelfoam (Capital Wholesale 

Drug Company, 245780) was used to stop any bleeding while drilling as the cannula drill site was 

over a major vessel.  Each guide cannula (C317G/SPC GUIDE 23GA 38172, Plastics One, 

Roanoke, VA) was attached to the stereotaxic apparatus and slowly lowered at the following 

stereotaxic coordinates from Bregma AP: -11.5, ML: (±)3.8, DV: -5.2 from skull surface and then 

was secured to the skull screws with acrylic dental cement.  Following surgery and excepting 

during infusion, dummy cannulae (C317DC/SPC DUMMY(SM) .010/25MM) were placed into the 

guide cannulae to protect the opening. 

The rats assigned to EBC were next fitted with differential EMG electrodes that were implanted in 

the left eyelid muscle by inserting a sterile 25-gauge needle (affixed to a 1-mm empty sterile 

syringe) through the eyelid until the needle tip was visible on the other side as a result of the open 

scalp incision.  The needle was then threaded with the fine wire EMG electrodes and pulled 

through the eyelid, leaving the recording electrode in the middle of the eyelid and the reference 

wire in the rostral corner of the eyelid.  Where in contact around the eyelid, wires were stripped 

of insulation and excess wire was trimmed in an effort to prevent displacement via grooming.  A 

bipolar stimulating electrode for delivering the electrical stimulation unconditioned stimulus was 

implanted subdermally, immediately caudal to the eye.  The EMG recording electrode and 

stimulating electrode wire leads terminated on gold pins in a plastic connector, which was secured 

to the top of the skull, cannula, and the skull screws with acrylic dental cement.  The surgical site 

was closed with nylon suture on both sides of the plastic connector and/ or cannulae.  A non-

steroidal anti-inflammatory analgesic (ketoprofen 1mg/mL) was administered at the end of surgery 

and 3 mL of lactated Ringer’s solution was given subcutaneously to restore any fluids lost during 

surgery. 

 

3.2.3 Eyeblink Conditioning 
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Rats were allowed to recover from cannula and/ or EMG surgery for four days and then underwent 

one session per day for five days of paired tone conditioned stimulus (CS) and periorbital electrical 

stimulation unconditioned stimulus (US) training followed by one session per day for three days 

of CS-alone extinction.  The rat head plug was connected to a cable connected to a freely-rotating 

commutator which allowed the rat to move freely around a Coulburn Instruments modular testing 

cage within a sound-attenuating training chamber.  The back wall of the chamber had a panel 

containing a speaker mounted at a 45° angle above the testing cage.  The cable separated and 

terminated as the input to an AC/DC differential EMG amplifier (A-M Systems, Sequim, WA) and 

the output of a stimulus isolator (World Precision Instruments (WPI), Sarasota, FL) for shock 

delivery.  The training chamber was lit with an LED and contained a low-light camera to allow 

videographic monitoring of the animal at all times.  Shock was delivered by a rechargeable, 

constant-current stimulator (WPI, Model A365) that had been calibrated with a multimeter (WPI).   

LabVIEW software (National Instruments, Austin, TX) controlled the delivery of stimuli and the 

recording of eyelid EMG activity. Each adult rat was adapted to the enclosure without stimulus 

presentations for 10 min before every session.  Paired delay conditioning sessions consisted of 

100 trials each with 90 paired presentations of a tone CS and a periorbital electrical stimulation 

US as well as 10 tone-alone test trials or probes presented after every ninth paired trial to assess 

integrated EMG activity without a shock artifact.  The tone CS consisted of a 380-ms, 88-db, 2.8-

kHz pure tone.  The electrical stimulation US consisted of a 100-ms, 3.0-4.0-mA, 60-Hz, ±50-volt, 

square-wave constant-current pulse to the periorbital region using the pre-calibrated stimulator.  

A blanking circuit in operation during the US prevented the shock from swamping the EMG signal.  

During the tone-shock paired trials, the CS co-terminated with the US.  During acquisition, all trials 

were separated by an inter-trial interval averaging 30 s.  To assess memory of and to extinguish 

responding to the tone CS, we performed CS-alone extinction beginning one day after the last 

paired training session.  The tone CS was presented by itself for 100 trials daily on each of three 

consecutive days.  Every 10th trial during extinction was considered a probe trial.   
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3.2.4. Behavior Data Analysis 

Data analyses have been described previously (Schreurs et al., 2013; Smith-Bell & Schreurs, 

2017; Wang et al., 2018). In brief, EMG signal was filtered (300 – 3,000-Hz), amplified, and stored 

(raw EMG), in addition to being rectified and integrated (20-ms time constant). Baseline activity 

was averaged during the first 200-ms from trial onset. If EMG activity 100-ms before CS onset 

was four standard deviations (SDs) or more above baseline, the trial was omitted from analysis 

to ensure that movement or spontaneous blinking artifacts did not artificially inflate response 

levels (~1% of total trials).  During paired trials, we characterized unconditioned responses (URs) 

to the US as integrated EMG activity occurring 35-ms after the end of the US that exceeded the 

average baseline value by eight SDs. CRs were assessed as EMG activity that exceeded 8 SDs 

above the baseline during the period 80-ms after tone onset until just before US onset. This 

window ensured that US signal and movement or startle artifacts did not artificially inflate levels 

of responding. During probe trials, CRs were assessed as EMG activity beginning 80-ms after CS 

onset, to eliminate the potential for including alpha responses, that was eight SDs above the 

average baseline value during a 200-ms pre-CS period. In addition to conditioned response 

frequency indicated as %CRs, the amplitude of each response was calculated as the average 

EMG signal during the baseline period, subtracted from the maximum EMG signal during the 

response period.  Area under the curve of the CR was obtained by summing the average heights 

of 2.5-ms bins of data that occurred during the CR period.  Peak latency of the CR was calculated 

as the time when the maximum CR period height occurred (Schreurs et al., 2013; Wang et al., 

2018).  If an animal did not reach 70 %CRs during probe trials on at least one day of acquisition, 

they were excluded from behavioral analyses.  This is the laboratory’s standard for determining 

adequate levels of EBC in rats for a determination of conditioning-specific changes in 

unconditioned responding.  Traces were made using OriginPro 2019b (OriginLab ver.9.6.5169 

(Academic)).   
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3.2.5. Slice preparation and patch-clamp recordings: 

Procedures identical to those previously published (Wang et al., 2018; Wang & Schreurs, 2010, 

2014; Wang & Zheng, 2015) were used for slice preparation, electrophysiological recordings, and 

data analysis. Briefly, P24-28 rats (n=5 rats) were anesthetized with carbon dioxide and then 

decapitated.  Animals were selected at this age because successful recordings of DCN becomes 

increasingly difficult after P32 (Wang et al., 2018). After rapid brain removal, coronal cerebellar 

slices from the cerebellum were cut at 34℃ on a vibrating slicer (LEICA VT1200S) with sucrose 

artificial cerebrospinal fluid (ACSF) containing (in mM) Sucrose 200, KCl 2.5, MgCl2 1.2, CaCl2 

0.5, NaH2PO4 1.25, NaHCO3 26 and Dextrose 20, incubated for 1 hour at 34 °C in 95% O2- and 

5% CO2-saturated ACSF containing (in mM) NaCl 125, KCl 3.0, MgSO4 1.2, CaCl2 2.0, NaH2PO4 

1.2, NaHCO3 26 and Dextrose 10.  After post-slicing recovery, slices were maintained at room 

temperature until electrophysiological recording. Vertical vibration of the blade was manually 

adjusted with a Vibrocheck device (Leica) before slice preparation and set to 0 µM. 

A slice was placed in a modified recording chamber containing ACSF. DCN neurons were 

identified morphologically through a 40X water immersion objective using DIC-IR optics (Olympus 

BX50WI, Dulles, VA). Whole-cell patch-clamp recordings were performed using an Axon 

MultiClamp 700B on cells with diameters of 15-20 µM in the interpositus and the medial portion 

of the lateral nucleus. These neurons are regarded as large glutamatergic projection neurons 

(Aizenman et al., 2003; Huang & Uusisaari, 2013). Generally, recordings were performed in 2-3 

cells from DCN slices per rat after the slices were exposed to ChABC or Vehicle in the medium. 

Patch pipettes made from borosilicate glass (catalog #: BF150-86-10; 1.5 mm OD, 0.86 mm ID; 

Sutter Instrument Company, Novato, CA) were pulled with a P97 Brown-Flaming micropipette 

puller (Sutter Instrument Company, Novato, CA). The final resistances of pipettes filled with the 

internal solution [containing (in mM) potassium gluconate (C6H11O7K) 140, MgCl2·6H2O 4.6, 
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HEPES 10, EGTA 10, Na2ATP 4.0, pH 7.3 (KOH)] were between 5 and 8 MΩ. Data were low-

pass filtered at 2 kHz and acquired at 20 kHz. Membrane properties were measured when the 

neuron had stabilized for 5 min after the whole-cell configuration was achieved. Quantitative 

analysis included resting membrane potential measured directly upon breakthrough in whole-cell 

configuration, input resistance based on membrane potential changes to depolarizing current 

injections immediately after whole cell configuration, action potential (AP) threshold, current 

required for eliciting the first AP, half-width of elicited AP (APD50) including rising and falling 

phases, amplitude of elicited AP, the number of elicited APs, latency to the first AP elicited by a 

250-ms duration depolarizing current injection, peak amplitude of the after-hyperpolarization 

(AHP), interval between first and second evoked action potentials (S1S2 interval), current 

required for hyperpolarization-induced rebound spikes, and the properties of rebound spikes. 

Recordings were only accepted if the resistance of initial seal formations were greater than 1 GΩ 

and rejected if their output was unstable or series resistance changed by more than 20%. To 

obtain an accurate measurement of neuronal excitability independent of membrane potential 

changes, continuous direct current was applied through the recording electrode to hold the cell at 

a −70 mV baseline. All recordings were made at room temperature. All electrophysiological data 

were recorded online using Clampex 10.0 software (Molecular Devices, LLC.). Standard off-line 

analyses were conducted using Clampfit 10.0 (Molecular Devices, LLC.). 

 

3.2.6. ChABC Degradation of PNN 

3.2.6.1. ChABC in vivo  

A 0.5 µL solution containing either ChABC (0.01U/µg/side/0.5 µl) or vehicle (0.1 M PBS) was 

infused into the left AIN.  We chose to perform a unilateral infusion because a number of studies 

have demonstrated that the ipsilateral DCN is largely responsible for the CR when testing the 

ipsilateral eye (Bracha et al., 1997; Campolattaro & Freeman, 2009; Freeman et al., 1995; Gerwig 

et al., 2006; Miller et al., 2003).  Infusate was injected using a microinfusion pump at a rate 0.5 
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µL/ minute and the infusion cannula (C317I/SPC, INTERNAL 30GA, Plastics One, Roanoke, VA) 

was kept in place for another 2 minutes to allow diffusion into the cerebellar tissue.  Afterwards, 

the infusion cannula was removed and replaced with a dummy cannula for the remainder of the 

experiment.  Immediately following removal, sterile water was run through the infusion cannulae 

to ensure none had clogged.  Rats were returned to their home cage for 4 days following ChABC 

infusion to allow for PNN digestion.  The dosage and timing of ChABC infusion and timing of PNN 

digestion was derived from the literature (Gogolla et al., 2009; Hirono et al., 2018; Xue et al., 

2014).  Littermates were randomly assigned to the ChABC or vehicle group during surgery and 

attempts were made to ensure equal numbers of males and females were included in each group. 

3.2.6.2. ChABC in vitro incubation 

A stock solution of 10U/mL of ChABC was made according to manufacturer specifications.  During 

slice incubation, of ACSF for a final ChABC concentration of 0.25U/mL or 250 µL of the 0.01% 

BSA vehicle solution was added into ACSF as a vehicle.  Tissue slices were cut at 350 µm and 

incubated in either ChABC or vehicle medium.  A pilot experiment was done by incubating brain 

slices with either ChABC or vehicle medium for 4, 5, 6, and 8 hours, respectively, in order to 

determine the optimal ChABC incubation duration for PNN disruption. Our data indicated an 

incubation time of 8 hours was best-suited for ChABC digestion and this time was used for 

electrophysiological recordings as well as processing of in vitro tissue. 

3.2.7. Tissue Processing 

In vitro electrophysiology tissue slices were transferred to 4% paraformaldehyde for 5 days then 

transferred to 30% sucrose for cryoprotection until they sank.  Following cryoprotection, tissue 

was re-sectioned on a freezing microtome (HM 450 sliding microtome, Microm of Thermo Fisher 

Scientific) at 40 µm. Tissue was either mounted onto 3% gelatin slides or placed into 

cryoprotection in -20oC. 
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Rats used for the ontogeny analysis, in vivo ChABC degradation, and/ or eyeblink conditioning 

were given a subcutaneous injection of ketamine hydrochloride (80 mg/kg) mixed with xylazine 

(8.0 mg/kg).  Animals were perfused transcardially with 0.9% saline (pH 7.4 at room temperature) 

followed by 4% paraformaldehyde.  Brains were collected and placed in fixative until ready for 

processing. Brains were transferred to 30% sucrose for cryoprotection until they sank, then 40-

μm sections were cut on a freezing microtome. Tissue was either mounted onto 3% gelatin slides 

or placed into cryoprotection at -20oC.  

3.2.8. PNN immunofluorescence 

Mounted sections from both the in vitro and in vivo experiments were washed in 0.1M phosphate 

buffered saline (PBS) - 1% Tween then blocked for 2 h with 5% normal donkey serum or normal 

goat serum and 3% BSA before being incubated with primary antibodies overnight at 4oC. 

Following washing in 0.1MPBS, sections were incubated in secondary antibody and 1% blocking 

solution for 4 h.  After completing the secondary antibody reaction, sections were washed again 

in 0.1M PBS.  Following the final wash, sections were cover-slipped with DAPI Fluoromount-G 

mounting media and #1.5 coverslips (Fisher Scientific).  Manufacturers’ information for primary 

antibodies, secondary antibodies, and sera can be found in Table 1.  

Table 3.1. Materials used in Tissue Processing 

Item (manufacturer) 

Chondroitinase ABC (Sigma, cat#: C3667) 

Biotin conjugated wisteria floribunda lectin (EY Laboratories Inc., cat#: BA-3101-1) (1:1000) 

PSD-95 (Thermofisher Scientific, cat#: MA1-046) (1:2000) 

Gephyrin B-4 (Santa Cruz Biotech, cat#: sc-55469) (1:400) 

Anti-MAP2, clone AP20 (EMD Millipore, cat#: MAB3418) (1:200) 

Donkey Anti-goat A488 (Thermofisher Scientific Inc., Invitrogen, cat#: A-11055) (1:500) 
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3.2.9. Image Acquisition 

Neuronal and PNN immunofluorescent reactivity in the rat cerebellum was visualized using a 

confocal laser-scanning microscope (Zeiss LSM 710; Carl Zeiss International).  Images 

were acquired using 405, 488, 546, and 633 nm lasers, sequential multichannel line scan, and 

with filters set manually to detect the spectral peak of each fluorophore.  Cells were imaged at 

20X (NA 0.4) and 63X oil-immersion (NA 1.4) objectives.  Raw images were exported to Zen Lite 

2009 and Adobe Photoshop CC 2017 to make minor adjustments to the brightness and contrast. 

Raw images were also exported to FIJI (ImageJ, NIH) to determine the percentage of WFA 

positive (WFA+) neurons (neurons with a PNN) at multiple time points of development (P12, P16, 

P18, P30, 3 months, and 6 months) and following either in vitro exposure or in vivo infusion of 

ChABC or vehicle solution.  For PNN analysis, an average of 6 sections per animal were imaged; 

images were analyzed between the following coordinates (Bregma: 11.52mm, Interaural: -2.52 

mm and Bregma: 10.68 mm, Interaural: -1.68mm).  Each section was imaged bilaterally with the 

imager blind to the side.  In FIJI, the channels were separated in order to compare the number of 

microtubule-associated protein 2-positive (MAP2+) cells to the WFA+ cells to obtain a normalized 

count for each image.  MAP2 is a protein found in both developing and adult neurons and can be 

Goat Anti-mouse A546 (Thermofisher Scientific Inc., Invitrogen, cat#:  A-21045) (1:500) 

Goat Anti-mouse A488 (Thermofisher Scientific Inc., Invitrogen, cat#: A-11029) (1:500) 

Streptavidin, Alexa Fluor 647 conjugate (Thermofisher Scientific Inc., Invitrogen, cat#: S-

21374) (1:500) 

Normal donkey serum (Millpore Sigma, cat#: S30-100KC) 

Normal goat serum (Thermofisher Scientific Inc., Gibco, cat#: PCN5000) 

Bovine serum albumin (Millipore Sigma, cat#: A3294) 

DAPI Fluoromount G (SouthernBiotech, cat#: 0100-20) 
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used as a biomarker for neurons (Dehmelt & Halpain, 2004; Kindler & Garner, 1994; Matus et al., 

1990; Tucker et al., 1988).  Once channels were separated, a background subtraction was 

performed to further distinguish WFA+ or MAP2+ cells.  Images were thresholded to produce 

binary images and then particle analysis was used to generate a count of WFA+ or MAP2+ cells. 

Counts were made every ten slices and the average number of WFA+ cells divided by the average 

number of MAP2+ cells and then multiplied by 100 to generate a percentage of PNN+ neurons.   

 

3.2.10. Statistical Analysis 

Data are presented as mean and ±SEM.  One-way ANOVA, two-way ANOVA, and paired and 

unpaired t-tests were calculated in IBM SPSS Statistics (Ver.26.00.0; IBM Corp.) with p < 0.05 as 

the criterion for significance.   
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3.3. Results 

3.3.1. Ontogenetic Differences in the AIN 

We examined WFA reactivity of MAP2+ 

cells in the AIN at six time points (P12, P16, P18, 

P30, 3 months, and 6 months) (Fig 1) and 

differences were found as a result of age, [F (5, 

37) = 47.75, p < .000].  Figure 3.1 shows that at

P12 and P16 little WFA reactivity was seen but 

by P18 and P32, there was a dense PNN 

surrounding the cell body as indicated by high 

WFA reactivity.  P12 and P16 rats had a lower 

percentage of PNN+ neurons compared to rats at 

P18, P30, 3 months, and 6 months.  Figure 3.1 

also shows higher-resolution images of WFA 

reactivity at P12, P30, and 3 months.   There 

were no significant changes in the percentage of PNN+ neurons in the AIN from P18 to 6 months. 

3.3.2. PNN Digestion 

In Vivo alters 
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Figure 3.1. Ontogeny of the PNN in the AIN
A-C. shows the WFA reactivity (red), DAPI (blue), and
MAP2 reactivity (green) in the rat AIN at P12 (A), P18
(B), and P30 (C) at 20x.  D. shows the WFA reactivity
at the studied ontogenetic timepoints.  There is an
increase in the WFA reactivity between P12 and P18
but no significant changes found after this point. E-G
show WFA reactivity alone at P12 (E), P30 (F), 3
months (G) at 63x. ** = p < .01 at P12, ## = p <.01 at
P16 

Figure 3.2. In Vivo Digestion of the PNN following EBC 
A-D. Rats infused with vehicle show high WFA (red, panel A) reactivity with some PNN 
noted with white arrowheads as well as MAP2 reactive neurons (green, panel B) with 
some neurons noted with the open arrowheads and DAPI (blue, panel C) with all four 
channels merged in D. Three WFA+ neurons are marked with the winged arrowhead in 
D. E-H. Rats infused with ChABC have less WFA (red, panel E) labeling in comparison 
and in the merged image, there is only one WFA+ cell.  I. A two-tailed unpaired t-test 
found ChABC infusion prior to EBC successfully decreased WFA reactivity in the adult 
rat AIN. *** = p < 0.001
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performing bilateral cannulae implants into the 

AIN of adult rats with one side being infused 

with ChABC and the other with vehicle.  The 

PNN in the AIN on the side that received the 

enzymatic infusion was found to be digested 4 

days post-infusion (42.38 ± 5.24%) compared 

to the side receiving vehicle (68.78 ± 5.14%), p 

< .000.  Although other brain areas have significant PNN digestion that occurs more quickly 

following ChABC infusion 

(Gogolla et al., 2009; Xue et al., 

2014), the DCN requires an 

extended time to achieve PNN 

digestion at similar 

concentrations (Hirono et al., 

2018).  We found that this 

level/amount of degradation to 

the PNN was present for 

approximately one month 

following infusion of ChABC (data 

not shown).  The reassembly of 

the PNN after a month 

demonstrated that ChABC 

infusion into the DCN was a 

temporary digestion of the PNN 

(Brückner et al., 1998). 

Figure 3.3. Behavioral Timeline 
A simple schematic showing the timeline of the behavioral 
experiments.  Animals had 1 session of tone-shock 
acquisition for 5 days.  24 hours later they had 1 session 
of extinction for 3 days. 2 weeks post-surgery the animals 
were given transcardial perfusion for tissue processing. 
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Figure 3.4. Percent Conditioned Responses between ChABC and 
Vehicle Rats during Acquisition. 
A. There were no significant differences in %CRs between the two
groups but there were significant sessions differences, showing both
groups are capable of learning EBC. B. There were differences
between sessions during extinction.  ## = p < .05 for session
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Rats were removed 

from the study if their EMG 

signal-to-noise ratio was so 

small it was impossible to 

distinguish their responses 

from baseline activity.  

Eighteen adult male and 

female rats (at least P90) were 

included in the behavioral data 

analysis after five sessions of 

paired EBC (n = 9 ChABC 

(6F,3M), n = 9 vehicle (5F,4M) 

on final acquisition session) 

and up to three sessions of 

tone-only extinction (n = 7 

ChABC (4F,3M), n = 8 vehicle 

(4F,4M) on final extinction 

session) following infusion of 

ChABC or PBS vehicle into the AIN.  These numbers decreased as the experiment progressed 

because grooming disrupted the EMG signal over the course of the experiment by displacing the 

EMG wires in the eyelid.  Even if an animal had poor EMG signal and their behavioral results 

could not be analyzed for that particular day, they were still placed in the chamber and exposed 

to the stimuli and brain tissue was stained and imaged to confirm ChABC digestion.  Figure 3.2 

shows ChABC was capable of successfully digesting the PNN; we found that adult rats receiving 

infusion of ChABC prior to EBC had fewer MAP2+ neurons associated with the PNN (55.1 ± 3.2%) 

compared to vehicle who had EBC (86.4 ± 2.5%), p < .000.  

Figure 3.5. Amplitude of the Conditioned Response between ChABC
and Vehicle Rats. 
A. On S5, the vehicle group had a noticeably higher amplitude on
the final acquisition session. There were also significant session 
differences on S4 and S5 showing the amplitude size significantly 
increased over the acquisition period.  B. the amplitude of a vehicle 
and ChABC infused rat changed from S3 (bottom traces) to S5 (top 
trace).  ## = p < .05 for session, ** = p < .01 
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3.3.2.2. EBC Acquisition 

Figure 3.3 shows a timeline for 

the behavioral experiments.  Figure 

3.4 shows there was an increase in 

%CRs for both groups across 

sessions, [F (4,77) = 5.82, p < .000], 

with Session 1 (S1) having lower 

%CRs than S3 (p = .001), S4 (p = 

.016), and S5 (p = .001) but there 

were no overall differences in %CRs 

between groups.  

There were several changes 

to the parameters of CRs during 

paired EBC, which are important tools 

for measuring an animal’s ability to 

learn EBC.  As expected from previous research (Burhans et al., 2013; Schreurs et al., 2013), 

Figure 3.5 shows session differences in CR amplitude were observed [F (4,73) = 4.68, p = .002], 

with S1 having lower amplitudes than S4 (p = .008) and S5 (p = .004).  There was also a session 

by group interaction for CR amplitude [F (9, 73) = 3.43, p = .001]. Rats that received ChABC had 

lower CR amplitudes during the final session (S5) compared to vehicle animals (Fig 5). 

Representative traces of individual probe trials are shown for a ChABC-infused subject (red) and 

a Vehicle-infused subject (blue) in the in Fig 5B.   

As expected with robust classical conditioning of the EBC, there were session differences 

in the CR area, seen in Figure 3.6, [F (4,73) = 5.28, p = .001] which were smaller on S1 compared 

to S4 (p = .008) and S5 (p = .003).  More importantly, the ChABC group had reduced CR area 

Figure 3.6. Area of the Conditioned Response between ChABC 
and Vehicle Rats. 
A. On both S1 and S5, the vehicle group had a noticeably higher
area under the curve. B. The area of a vehicle and ChABC infused 
rat changed from S3 (bottom traces) to S5 (top trace). ## = p < .05 
for session, ** = p < .01 
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compared to the vehicle group, [F (1, 

73) = 7.72, p = .007].  ChABC infused 

rats had smaller CR area compared to 

vehicle animals on both the first (2.74 

± 0.35 AU in vehicle, 0.000 ± 0.26 AU 

in ChABC, p = 0.02) and final session 

of acquisition (4.75 ± 0.62 AU in 

vehicle, 3.01 ± 0.37 AU in ChABC, p 

= 0.03) (Fig 6).  Representative 

individual traces on probe trials 

(ChABC in red, vehicle in blue) for two 

sessions of acquisition, corroborate 

these averaged data (Fig 6B).  The 

changes observed in amplitude and 

area suggest that digestion of the 

PNN diminished the size of the 

conditioned response.  

Following ChABC or vehicle infusion, there were session differences associated with peak 

eyeblink latency, [F (4, 74) = 8.17, p < .000] with the eyeblink peak response occurring earlier on 

S3 (p = 0.03), S4 (p < .000), and S5 (p < .000) compared to S1 (Smith-Bell et al., 2012).  The 

eyeblink response grew faster by the end of acquisition.  There were no significant group 

differences in the peak latency of the CR (F < 1).     

No significant differences were found in any of the UR measures between the animals 

infused with ChABC versus vehicle suggesting that there were no effects of ChABC on the motor 

output pathway (F’s < 1).  

Figure 3.7. %CR Sex Differences between ChABC and 
Vehicle Rats during Acquisition. 
A. shows female rats in the vehicle group have higher 
%CRs compared to their male counterparts on the first tone-
shock trials that follow a probe trial. B. shows that this 
difference is not present in the rats infused with ChABC. ** 
- p< .01 
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3.3.2.3. EBC Extinction 

 Figure 3.4 shows the %CRs 

during the three extinction sessions.  

Analysis yielded only session 

differences, [F (2, 43) = 3.36, p = .044], 

with the final extinction session (E3) 

having lower %CRs than the first 

extinction session (E1) (Fig 4B).  There 

were no significant differences in any 

of the other conditioned response 

parameters investigated during 

extinction (F’s < 1). 

3.3.2.4. Sex Differences 

There were some effects of sex 

on %CRs during EBC seen in Figure 

3.7.  The vehicle group exhibited sex 

differences with female rats having marginally higher %CRs than males during some acquisition 

sessions, [F (1, 54) = 3.91, p = .053] (Fig. 7A). These sex differences were not evident in the 

ChABC group (F < 1).  In the vehicle group, sex differences were found in %CRs on post-probe 

trials, the paired trials that immediately followed the tone-alone probes that were presented every 

ten trials during acquisition, [F (1,32) = 9.66, p = .004], with female rats having higher %CRs on 

the next reinforced trial that followed the probe trial compared to their male counterparts.  Again, 

the ChABC group did not exhibit these sex differences (Fig 7B).   

Figure 3.8. Area Sex Differences between ChABC and 
Vehicle Rats during Acquisition. 
A. shows female rats in the vehicle group have higher area
compared to their male counterparts on probe trials on S1 
and S5. B. shows that female rats infused with ChABC also 
have a higher area than their male counterparts on S3. * - 
p< .05 
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Lastly, 

Figure 3.8 shows 

an effect of sex 

on CR area.  This 

was observed for 

both the vehicle 

group, [F (1, 48) = 

27.63, p < .001] 

and the ChABC 

group, [F (1,44) =

7.72, p = .008]

during 

acquisition. The female rats in both groups had a larger CR area than the males. 

3.3.3 In Vitro PNN Digestion Alters the Electrophysiological Properties of Neurons in the AIN 

0.25 U/mL of ChABC successfully digested the PNN in DCN slices.  Figure 3.9 shows AIN 

tissue that was exposed to ChABC in the medium had lower WFA reactivity compared to tissue 

placed in the vehicle medium.  An unpaired t-test confirmed that the AIN tissue exposed to ChABC 

had a lower percentage of WFA+ neurons (41.98 ± 4.75) compared to the vehicle group (98.71 ± 

0.38), p < .000. Table 2 depicts which membrane properties of neurons in the rat AIN were altered 

by exposure to ChABC.   

Table 3.2: ChABC treatment altered membrane properties of rat DCN neurons 

Figure 3.9. In Vitro Digestion of the PNN
A-D. Slices exposed with vehicle show high WFA (red, panel A) reactivity as well as MAP2
reactive neurons (green, panel B) and DAPI (blue, panel C) and all channels merged in D.  Three 
WFA+ neurons are marked with the winged arrowhead in D. E-H. Slices exposed with ChABC 
have less WFA (red, panel E) labeling in comparison and in the merged image, there is only one 
WFA+ cell.  I. A two-tailed paired t-test found ChABC exposure in the electrophysiological bath 
successfully decreased WFA reactivity in the juvenile rat AIN. *** = p < 0.001 
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Vehicle: Medium treatment; ChABC: ChABC treatment. 
Cell number (n) for Vehicle and ChABC was 16, and 22, respectively. Cells from 5 rats 
Note that there were group differences in threshold, current required for evoked AP, 
latency for evoked AP, AHP amplitude, and S1S2 interval. *, ** indicate p<0.05, 0.01, 
respectively. 
AP: Action potential; AP duration was measured at the width of 50% AP duration (APD50); 
AHP: Afterhyperpolarization; Input Res: Input resistance. 

Figure 3.10 shows neurons exposed to ChABC required a larger current (0.04 ± 0.01 nA) 

to fire an action potential (AP) compared to cells in the vehicle group (0.02 ±0.01 nA), p = 0.009, 

(Fig 10A) and had a longer latency to evoke an AP (45.99 ± 9.51 ms) compared to cells from 

vehicle animals (20.27 ± 4.19 ms), p = 0.03 (Fig 10B).  AIN excitatory neurons also showed a 

prolonged inter-spike interval (S1S2) when exposed to ChABC (31.2 ± 5.0 ms) compared to the 

neurons in the vehicle media (17.83 ± 3.14 ms), p = 0.04 (Fig 10C).  Figure 3.11 shows ChABC-

exposed neurons had a larger afterhyperpolarization (AHP) amplitude (-12.46 ± 1.12 mV) 

compared to vehicle cells (-8.88 ± 1.36 mV), p = 0.04 (Fig 11A).  The voltage to reach AP threshold 

was lower following ChABC exposure (-42.70 ± 0.94 mV) compared to the vehicle group neurons 

(-47.90 ± 1.84 mV), p = .008 (Fig 11B).  Interestingly, there were no differences in the membrane 

potential (-46.93 ± 0.82 mV and -46.4 0± 0.69 mV) or input resistance (132.95 ± 15.6 MΩ and 

124.03 ± 1.07 MΩ) of neurons exposed to ChABC compared to vehicle.  These results suggest 

that digestion of PNN with ChABC in acute AIN slices decreased the intrinsic excitability of large 

excitatory neurons without affecting other membrane properties.  

 
Table 3.3: ChABC treatment affected the properties of rebound spikes from rat DCN 
neurons 

 Vm 
(mV) 

Input Res 
(MΩ) 

AP 
threshold 

(mV) 

Current 
required 

for evoked 
AP (nA) 

Latency 
(ms) 

Amplitude 
(mV) 

APD50 

(ms) 

APD50 
rising 
(ms) 

APD50 
falling 
(ms) 

AHP 
(mV) 

S1S2 
interval 

(ms) 

Vehicle -46.93±1 132.95±16 -47.90±2 0.02 20.27±4 69.92±3 1.04 0.40 0.64 -8.88±1 17.83±3 

ChABC -46.40±1 124.03±1 -42.71±1** 0.04** 45.99±10* 70.62±2 0.97 0.38 0.59 -12.46±1* 31.2±5* 
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Vehicle: Medium treatment; ChABC: ChABC treatment. 
Cell number (n) for Vehicle and ChABC was 15, and 20, respectively. Cells from 5 
rats 
Note that there was difference in Current required for evoked rebound spikes 
(p=0.0339).* indicates p<0.05 
RD: Rebound spike; RD duration was measured at the width of 50% RD duration; 
AHP: Afterhyperpolarization; 

The electrophysiological properties of rebound spikes (RD) are summarized in Table 3.3 

and seen in Figure 3.12.  Neurons in the DCN slices exposed to ChABC required a larger current 

for evoked rebound spikes (-0.59 ± 0.11 nA) compared to those exposed to the vehicle media (-

0.29 ± 0.01 nA), p = 0.03 (Fig 12A).  In addition, there were fewer evoked RD in DCN neurons 

exposed to ChABC (4.63 ± 0.9) versus those exposed to the vehicle solution (10.3 ± 0.74), p = 

0.0003 (Fig 12B).   Increased rebound firing in the DCN is associated with higher likelihood of 

inducing changes responsible for cerebellar learning (Person & Raman, 2012; Pugh & Raman, 

2006; Zheng & Raman, 2010, 2011).  Taken together, it is likely that ChABC exposure removed 

the surrounding PNN resulting in modified the intrinsic membrane properties of the large 

excitatory neurons within the DCN.  

Current 
required for 

evoked RD (nA) 
RD threshold 

(mV) 
RD Amplitude 

(mV) 
RD duration

(ms) 
RD rising 

duration (ms) 
RD falling 

duration (ms) 
AHP 
(mV) 

S1S2 interval 
(ms) 

Vehicle -0.29 -50.89±2 66.49±2 0.94 0.38 0.56 -12.22±1 33.48±10 
ChABC -0.59* -49.03±2 69.39±3 1.02 0.39 0.60 -10.73±1 44.28±11 
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3.4. Discussion 

The principal 

findings of the present 

experiment were: (1) 

ChABC was able to 

digest PNNs in the rat 

DCN that emerge 

almost fully formed at 

P18; (2) In vivo 

ChABC digestion of 

the PNNs in the DCN 

had deleterious 

effects on eyeblink 

conditioning 

particularly on the size 

of the conditioned 

response without 

affecting the 

unconditioned response; (3) Exposure to ChABC in vitro profoundly affected membrane 

properties of large, excitatory neurons in the DCN significantly reducing membrane excitability 

which has been shown to play a role in eyeblink conditioning. 

Our investigation of PNN development in the DCN adds to the current literature that 

describes the presence of the PNN in this region for adults and at only a few early timepoints.     

Rats and other animals younger than P18 have difficulty acquiring and retaining EBC and this 

may be the result of an underdeveloped PNN.  Even at P17-P18, rats do not learn EBC with an 

auditory CS as quickly or as well as they do at P24 (Stanton et al., 1992).  This difficulty in training 

Figure 3.10. ChABC altered the electrophysiological properties of AIN cells. 
A. shows a higher current is required to evoke an action potential in neurons from 
ChABC exposed slices. B. shows a significantly longer latency for evoked action 
potential in neurons from ChABC exposed slices. C. shows a longer S1S2 
interval for evoked action potentials in neurons from ChABC exposed slices.  D. 
The typical recordings of action potentials from neurons either in ChABC 
exposed slices or control medium exposed slices, which were elicited in 
response to a depolarizing current of 0.1nA. The dashed line indicates the mean. 
* = p < .05, ** = p < .01 
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rats younger than P17-

18 with an auditory CS 

may also be due in part

to an immature auditory 

sensory pathway 

(Freeman & Rabinak, 

2005), since training is 

possible if the CS is a 

somatosensory stimulus

like shock (Schreurs et 

al., 2013) or vibration

(Goldsberry et al., 2014),

because unlike auditory 

pathways, the 

somatosensory 

pathways mature 

prenatally. Training rats as young as P12 is possible if the pontine nuclei are directly stimulated 

as the CS (Freeman & Rabinak, 2005).  The PNN could also be implicated in age-related 

differences in extinction of EBC. In a study comparing P17 and P24 rats, direct stimulation of the 

middle cerebellar peduncle as a CS paired with a 25-ms, 3.0-mA (range 2.5–3.5 mA) periorbital 

stimulation US was used to overcome the immature auditory system so that both ages had strong 

CRs at the end of acquisition. Even with strong CRs, results showed that P17 animals had a faster 

rate of extinction compared to P24 animals. P24 animals also had a faster rate of reacquisition 

following extinction, suggesting that the original memory was better stabilized in P24 rats (Brown 

& Freeman, 2014).  Although P24 rats are still within their critical period, it is possible that they 

have more PNN+ cells than preweanlings aged P17, suggesting they are more likely to stabilize 

Figure 3.11. ChABC exposure altered the electrophysiological properties of AIN
cells. 
A. shows a larger AHP amplitude for evoked action potential in neurons from
ChABC exposed slices. B. shows a lower threshold for evoked action potential 
in neurons from ChABC exposed slices. C. The traces show ChABC exposed 
neurons had a larger AHP amplitude compared to control. The dashed line 
indicated the mean. * = p < .05, 
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the associations learned 

from EBC.  Even rats at 

P24, a “periweanling” 

age, still diverge in their

conditioned behavior 

compared to adults at 

P60-P90 (Brown & 

Freeman, 2016).  The 

authors of that 2016 study 

found that there were 

unremarkable differences 

between the 

periweanlings and adult 

rats in acquisition and 

extinction following 1, 7, 

or 28 days after 

conditioning took place.  

However, when they re-exposed periweanlings to the CS-US pairings 29 days following 

conditioning, they required more training to achieve the high levels of CRs observed during their 

initial training, suggesting that some memory instability persists in periweanling rats.  Together, 

the behavioral results found by Brown and Freeman as well as our ontogenetic analysis of the 

PNN and behavior demonstrate that there are age-related differences in an animal’s ability to 

learn EBC.  These developmental differences may be dependent on the presence of the PNN in 

the DCN as well as other brainstem structures related to EBC.  Further examination of the 

changes to the PNN following EBC at various ontogenetic stages would prove a logical next step. 

Figure 3.12. ChABC exposure changed the properties of
hyperpolarization induced rebound spikes in AIN cells. 
A. shows a higher current is required to evoke a rebound spike in
neurons from ChABC exposed slices. B. shows a lower number of 
evoked rebound spikes in neurons from ChABC exposed slices.  
Dashed lines indicate the mean. C. The typical recording of rebound 
spikes from neurons either in ChABC exposed slices or control 
medium exposed slices, which were elicited in response to a 
hyperpolarizing current of -0.6 nA.  * = p < .05 
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ChABC infusion 4 days prior to five sessions of EBC and three sessions of EBC extinction 

was sufficient to significantly reduce the PNN as well as loose ECM.  Exposure to EBC and other 

stimuli may also remodel the PNN as a result of endogenous enzymatic activity related to learning 

or changes in the cage environment as observed by others (Carulli et al., 2020; Stamenkovic et 

al., 2017).  Both vehicle and ChABC groups reached our predefined conditioning criterion (70% 

CR) by S3.  We may have missed subtle conditioning differences when comparing between 

training sessions due to the intensity of our stimuli and the consequent rapid level of learning.   

To assess more subtle conditioning differences, we investigated within the acquisition and 

extinction sessions by assessing %CRs in 10-trial blocks (Smith-Bell & Schreurs, 2017).  Although 

all rats acquired equal levels of %CRs during the first four sessions, group differences emerged 

during the last session (S5), with ChABC-treated subjects having lower %CRs than vehicle-

treated controls. The nature of this difference was explored by examining the final 10-trial block 

during one session versus the next session’s first 10-trial block (Smith-Bell & Schreurs, 2017).  

We found a group difference on the final 10-trial block of S4 and the first 10-trial block of the final 

session of acquisition (S5). Rats in the vehicle group may have had higher %CRs compared to 

those that had been infused with ChABC.  This evidence suggests ChABC infused rats were 

unable to successfully consolidate their memories as well as vehicle rats.  This more in-depth 

analysis within each extinction session revealed that on E1 there was a group by 10-trial block 

interaction.  ChABC-infused rats had lower %CRs, while there were differences between the 10-

trial blocks, withT1-10 having higher %CRs than the remaining 10-trial blocks.  We also found 

differences within 10-trial blocks when comparing ChABC and vehicle controls on the second 

extinction session (E2).  Although we followed previously published timelines with ChABC infused 

degradation in the DCN, additional time may have been needed to achieve the maximum PNN 

digestion.  However, to ensure viable signal quality from the EMG, we had to begin training as 

rapidly as possible while allowing ChABC enough time to enzymatically alter the PNN.   
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Nevertheless, we did find conditioning parameters that were significantly different between 

the two groups.  Animals with a digested PNN had conditioned eyeblink responses with smaller 

amplitudes and with smaller areas compared to vehicle rats.  Indeed, the amplitude of conditioned 

eyeblink responses increased in size in vehicle animals from the second session to the final 

session while ChABC animal amplitude plateaued by the second session.  We observed fairly 

consistent differences in the CR area which can be interpreted as a measure of CR strength.  This 

difference could be an effect of ChABC on the CR output pathway. The smaller amplitude and 

area of the conditioned eyeblink response in rats with degraded PNN in the AIN may be a result 

of the decreased intrinsic membrane excitability and altered inhibitory connections onto the DCN.  

The study by Carulli et al., found reorganization of the inhibitory and excitatory connections of 

DCN neurons following PNN digestion (Carulli et al., 2020).  One reason we did not observe 

differences in conditioning levels could not only be due to the extent of PNN digestion but also 

the fact that the DCN neurons remained functional, unlike with the extensive damage observed 

following cerebellar lesions.  Interestingly, other studies have observed impairments of CR 

amplitude without drastic changes to the CR acquisition following DCN lesions (Perciavalle et al., 

2013; Welsh, 1992) while some have used CR amplitude as the measure of cerebellar learning 

(Kreider & Mauk, 2010).   Since we did not find any differences between the two groups in 

responding to the US, it is highly unlikely that the observed differences resulted from alterations 

in the motor performance of ChABC animals.  Instead, ChABC-infused rats may not have had 

well-stabilized associations of the tone-shock pairings with a reduced PNN leading to responses 

that were decreased in both amplitude and area.  Other studies that investigated PNN digestion 

in the mouse cerebellum and its effect on EBC chose to train mice using air puff as the US (Carulli 

et al., 2020; Hirono et al., 2018).  The lower salience of an air puff US and the lower rate of 

learning in those studies may have allowed for differences in %CRs between ChABC and vehicle-

infused groups to emerge between sessions on acquisition.  The authors did not investigate 

parameters of the eyeblink response other than percent CR.   
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Lastly, we observed significant sex differences during EBC.  The females in both the 

Vehicle and ChABC groups had larger CR areas than their male counterparts during acquisition 

of EBC.  Females in the vehicle group had marginally higher percent CRs during conditioning and 

significantly higher post-probe percent CRs compared to males in the group suggesting they may 

have formed stronger associations compared to the males.  This has been observed in delay and 

trace conditioning with female animals having higher %CRs (Dalla et al., 2009; Dalla & Shors, 

2009; Leuner et al., 2004; Waddell et al., 2010).  In comparison, females and males in the ChABC 

group performed at similar levels.  These results confirm that sex is an important biological 

variable in learning and memory (Bangasser & Shors, 2007; Chow et al., 2013; Shors & 

Miesegaes, 2002) and may indicate the PNN’s role (if any) in disorders or diseases that seem to 

impact one sex more than the other.  These data suggest that researchers studying the PNN 

should consider including animals from both sexes. 

The observed changes in vitro, may help explain the observed behavioral changes seen 

following ChABC infusion to the AIN.  We observed that degradation of the PNN in vitro leads to 

changes in membrane properties of the large excitatory neurons in the DCN.  Slices exposed to 

ChABC had a significantly diminished level of PNN in comparison to slices exposed to the vehicle.  

The reduction of the PNN decreased the intrinsic membrane excitability of these neurons based 

on an observed prolonged latency for evoked AP, an extended S1S2 interval, evoked AP needing 

a larger current, as well as a relatively larger AHP amplitude without altering membrane voltage, 

input resistance, or amplitude.  The ChABC-induced digestion of the PNN altered the membrane 

properties of DCN neurons modifying the way these cells behaved.  In agreement with these 

results, there are other reports of decreased excitability following PNN removal (Balmer, 2016; 

Chu et al., 2018).  However, others have found increased excitability after ChABC exposure 

(Dityatev et al., 2007; Hayani et al., 2018).  We have observed that eyeblink conditioning is 

correlated to increased excitability of DCN neurons (Wang et al., 2018; Schreurs, 2019) and 

others found similar results in the hippocampus (McEchron et al., 2003; Moyer et al., 1996, 2000; 
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Oh & Disterhoft, 2015).  We would then expect to observe a decrease in the conditioning of 

animals exposed to ChABC, since the digestion of the PNN resulted in decreased excitability.   

These differences may have to do with the location, type of neuron that is being studied, 

composition of CSPG in PNN, and level of PNN degradation. Although we did not find any 

significant differences in the PNN in the DCN post P18, our electrophysiology recordings were 

made when these animals were still in their periweanling stage, suggesting that there may be 

differences in the effects of PNN degradation on DCN neurons between animals at this age and 

adults of 3 months or older.  These recordings were made in periweanlings because it is difficult 

to successfully patch and record neurons in the DCN post P32 (Wang et al., 2018).  In the future, 

we are interested in discerning if the changes we observed following in vitro digestion are also 

found when breaking down the PNN via ChABC infusion in vivo and performing 

electrophysiological experiments four days post infusion. 

 

3.5. Conclusion 

In summary, we found that PNN levels were less prevalent at P12-P16 but increased until 

P18 and remained stable from this point onward.  We observed that digesting the PNN in the rat 

DCN altered several parameters of EBC and decreased the intrinsic excitability of the PNN+ 

neurons. These results add to the growing body of work studying the PNN and its function in the 

CNS.  
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4.1. Introduction 

The perineuronal net (PNN) is a specialized type of extracellular matrix surrounding fast 

spiking neurons in the central nervous system (Seeger et al., 1994; Celio et al., 1998; Carulli et 

al., 2006; Slaker et al., 2016; Sorg et al., 2016; Shen, 2018; Testa et al., 2018; Reichelt et al., 

2019).  The PNN has been implicated in playing many roles including but not limited to exit from 

the critical period of development as well as learning and memory.  One way to easily manipulate 

the perineuronal net is to utilize the enzyme chondroitinase or chondroitinase ABC (ChABC).  

These enzymes have been infused directly into many brain regions, placed into electrophysiology 

baths, and virally expressed in order to alter the PNN (Massey et al., 2006; Gogolla et al., 2009; 

Xue et al., 2014; Chu et al., 2018; Hirono et al., 2018; Hettiaratchi et al., 2019; Anderson et al., 

2020; Carulli et al., 2020; Lesnikova et al., 2021).  Others have used transgenic techniques to 

prevent components of the PNN from being made or overexpressed enzymes more active in 

young animals into adulthood, keeping the critical period open (Weber et al., 1999; Bekku et al., 

2012; Morawski et al., 2014; Miyata and Kitagawa, 2015, 2016; Hou et al., 2017; Yoshioka et al., 

2017; Edamatsu et al., 2018; Wagner et al., 2020).    While these tools are excellent ways to study 

the PNN, they may not be translationally feasible.   

To overcome this hurdle, researchers have repurposed drugs in an attempt to achieve 

similar results to the pre-clinical research but in a more translational manner.  Specifically, 

researchers have been investigating drugs already approved for use in humans including 

fluoxetine and doxycycline (Ohira et al., 2013, 2019; Guirado et al., 2014; Pollock et al., 2014; 

Umemori et al., 2015; Steinzeig et al., 2019; Puścian et al., 2021).  Doxycycline is a tetracycline 

class antibiotic capable of crossing the blood brain barrier (Meli et al., 2006; Balducci et al., 2018; 

Schmidt et al., 2018; Balducci and Forloni, 2019).  In addition to its function as an antibiotic, it can 

also act as an inhibitor of matrix metalloproteinases such as matrix metalloproteinase 9 
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(Guimaraes et al., 2011; Bortolanza et al., 2018; Bach et al., 2019).  MMP9 can cleave aggrecan 

and can act as a gelatinase.  It is also highly associated with neuronal changes related to learning 

and memory function.  There is some interesting work suggesting that doxycycline can potentially 

alter memory storage or consolidation (Bach et al., 2017, 2019).  The theory underlying how 

doxycycline would work is that by inhibiting the activity of MMP9, it could potentially prevent some 

remodeling of the PNN.  Evidence suggests that the PNN undergoes digestion during acquisition 

phases of learning but returns to relatively normal levels during consolidation (Carulli et al., 2020).   

By blocking the initial digestion of the PNN, can we disrupt the normal process of learning? 

One of the goals of this research is to determine if the daily administration of doxycycline 

has any influence on the acquisition, extinction, or retention of EBC in adult male and female rats.  

The animals were given a dose of 40 mg/kg doxycycline 2 hours prior to behavior, allowing time 

for the drug to cross the blood brain barrier.     
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4.2. Methods: 

4.2.1. Animals 

Seventeen Long Evans rats (Rattus norvegicus) (9 F, 8 M) at 3 - 6 months of age were supplied 

by Charles River (Wilmington, MA).  Eleven rats underwent surgery, intraperitoneal (IP) injections, 

and eyeblink conditioning.  Rats were housed with cagemates of the same sex after weaning and 

were given ad libitum access to food and water and maintained on a 12 h light/dark cycle, all in 

accordance with the National Institute of Health guidelines.  Adult rats undergoing 

electromyogram (EMG) surgery were housed individually post-surgery. This was to prevent 

damage to the EMG that results from social grooming.  All procedures were approved by the West 

Virginia University (WVU) Animal Care and Use Committee and the WVU Biosafety Committee.   

4.2.2. Surgeries 

Fifteen 3 - 6-month-old rats (7 F, 8 M) were fitted with the EMG hardware for eyeblink conditioning.  

Sterile surgical technique was used. Each rat was sedated with isoflurane (5% induction, 2% 

maintenance) with supplemental oxygen (0.5 -1 L/min). The incision site (scalp) was shaved and 

washed three times with alternating swipes of Povidone-iodine scrub and 70% alcohol followed 

by application of Povidone-iodine solution after which the rat was positioned in a rodent adult 

stereotaxic (Kopf Model 900LS) device.  Bupivacaine (max dose 2mg/kg), a local anesthetic, was 

infiltrated into the scalp, which was incised with a surgical scalpel blade, to create an 

approximately 20-mm incision, just rostral to the eyes and just caudal to the ears.  The scalp was 

reflected and cleaned, exposing just enough of the skull to accommodate a plastic connector for 

the EMG implant.  Holes were drilled into the skull for skull screws.  Gelfoam (Capital Wholesale 

Drug Company, 245780) was used to stop any bleeding.  The rats were next fitted with differential 

EMG electrodes that were implanted in the left eyelid muscle by inserting a sterile 25-gauge 

needle (affixed to a 1-mm empty sterile syringe) through the eyelid until the needle tip was visible 
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on the other side as a result of the open scalp incision.  The needle was then threaded with the 

fine wire EMG electrodes and pulled through the eyelid, leaving the recording electrode in the 

middle of the eyelid and the reference wire in the rostral corner of the eyelid.  Where in contact 

around the eyelid, wires were stripped of insulation and excess wire was trimmed in an effort to 

prevent displacement via grooming.  A bipolar stimulating electrode for delivering the electrical 

stimulation unconditioned stimulus was implanted subdermally, immediately caudal to the eye.  

The EMG recording electrode and stimulating electrode wire leads terminated on gold pins in a 

plastic connector, which was secured to the top of the skull and the skull screws with acrylic dental 

cement.  The surgical site was closed with nylon suture on both sides of the plastic connector.  A 

non-steroidal anti-inflammatory analgesic (ketoprofen 1mg/mL) was administered at the end of 

surgery and 3 mL of lactated Ringer’s solution was given subcutaneously to restore any fluids lost 

during surgery. 

 

4.2.3 Eyeblink Conditioning 

Rats were allowed to recover from EMG surgery for three days. On the fourth day  after surgery, 

they underwent an equipment test and were weighed.  The rats were also given a brief 10 min 

habituation period to accustom them to the head plug, cable, and modular test cage.  The 

following day, acquisition began, it consisted of one session per day for five days of paired tone 

conditioned stimulus (CS) and periorbital electrical stimulation unconditioned stimulus (US) 

training followed by one session per day for three days of CS-alone extinction.  The rat head plug 

was connected to a cable connected to a freely-rotating commutator which allowed the rat to 

move freely around a Coulburn Instruments modular testing cage within a sound-attenuating 

training chamber.  The back wall of the chamber had a panel containing a speaker mounted at a 

45° angle above the testing cage.  The cable separated and terminated as the input to an AC/DC 

differential EMG amplifier (A-M Systems, Sequim, WA) and the output of a stimulus isolator (World 

Precision Instruments (WPI), Sarasota, FL) for shock delivery.  The training chamber was lit with 
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an LED and contained a low-light camera to allow videographic monitoring of the animal at all 

times.  Shock was delivered by a rechargeable, constant-current stimulator (WPI, Model A365) 

that had been calibrated with a multimeter (WPI).   LabVIEW software (National Instruments, 

Austin, TX) controlled the delivery of stimuli and the recording of eyelid EMG activity. Each adult 

rat was adapted to the enclosure without stimulus presentations for 10 min before every session. 

Paired delay conditioning sessions consisted of 100 trials each with 90 paired presentations of a 

tone CS and a periorbital electrical stimulation US as well as 10 tone-alone test trials or probes 

presented after every ninth paired trial to assess integrated EMG activity without a shock artifact. 

The tone CS consisted of a 380-ms, 88-db, 2.8-kHz pure tone.  The electrical stimulation US 

consisted of a 100-ms, 3.0-4.0-mA, 60-Hz, ±50-volt, square-wave constant-current pulse to the 

periorbital region using the pre-calibrated stimulator.  A blanking circuit in operation during the US 

prevented the shock from swamping the EMG signal.  During the tone-shock paired trials, the CS 

co-terminated with the US.  During acquisition, all trials were separated by an inter-trial interval 

averaging 30 s.  To assess memory of and to extinguish responding to the tone CS, we performed 

CS-alone extinction beginning one day after the last paired training session.  The tone CS was 

presented by itself for 100 trials daily on each of three consecutive days.  Every 10th trial during 

extinction was considered a probe trial.  The rats were weighed immediately prior to the equipment 

test, sessions 2 and 4 of acquisition, and the first extinction session.  

4.2.4. Behavior Data Analysis 

Data analyses have been described previously (Schreurs et al., 2013; Smith-Bell and Schreurs, 

2017; Wang et al., 2018; O’Dell et al., 2020). In brief, EMG signal was filtered (300 – 3,000-Hz), 

amplified, and stored (raw EMG), in addition to being rectified and integrated (20-ms time 

constant). Baseline activity was averaged during the first 200-ms from trial onset. If EMG activity 

100-ms before CS onset was four standard deviations (SDs) or more above baseline, the trial 

was omitted from analysis to ensure that movement or spontaneous blinking artifacts did not 
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artificially inflate response levels (~1% of total trials).  During paired trials, we characterized 

unconditioned responses (URs) to the US as integrated EMG activity occurring 35-ms after the 

end of the US that exceeded the average baseline value by eight SDs. CRs were assessed as 

EMG activity that exceeded 8 SDs above the baseline during the period 80-ms after tone onset 

until just before US onset. This window ensured that US signal and movement or startle artifacts 

did not artificially inflate levels of responding. During probe trials, CRs were assessed as EMG 

activity beginning 80-ms after CS onset, to eliminate the potential for including alpha responses, 

that was eight SDs above the average baseline value during a 200-ms pre-CS period. In addition 

to conditioned response frequency indicated as %CRs, the amplitude of each response was 

calculated as the average EMG signal during the baseline period, subtracted from the maximum 

EMG signal during the response period.  Area under the curve of the CR was obtained by 

summing the average heights of 2.5-ms bins of data that occurred during the CR period.  Peak 

latency of the CR was calculated as the time when the maximum CR period height occurred 

(Schreurs et al., 2013; Wang et al., 2018).  If an animal did not reach 70 %CRs during probe trials 

on at least one day of acquisition, they were excluded from behavioral analyses.  This is the 

laboratory’s standard for determining adequate levels of EBC in rats for a determination of 

conditioning-specific changes in unconditioned responding.  

4.2.5. Doxycycline mediated manipulation of the PNN 

A 40 mg/kg doxycycline solution or vehicle (0.9% USP Saline) was given as an IP injection two 

hours prior to EBC.  Rats were given the injection in their housing room and were returned to their 

home cage until training.  The dosage and timing of doxycycline was derived from the literature 

(Guimaraes et al., 2011; El-Neweshy, 2013; Wang et al., 2014; Hecht et al., 2016). 

Cagemates were randomly assigned to the doxycycline or vehicle group following the 

equipment test and attempts were made to ensure equal numbers of males and females were 

included in each group. 
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4.2.6. Tissue Processing 

Rats used for the doxycycline or saline IP injections and eyeblink conditioning were given a 

subcutaneous injection of ketamine hydrochloride (80 mg/kg) mixed with xylazine (8.0 mg/kg). 

Animals were perfused transcardially with 0.9% saline (pH 7.4 at room temperature) followed by 

4% paraformaldehyde.  Brains were collected and placed in fixative until ready for processing. 

Brains were transferred to 30% sucrose for cryoprotection until they sank, then 40-μm sections 

were cut on a freezing microtome. Tissue was either mounted onto 3% gelatin slides or placed 

into cryoprotection at -20oC.  

4.2.7. PNN immunofluorescence 

Mounted sections of cerebellar tissue were washed in 0.1M phosphate buffered saline (PBS) - 

1% Tween then blocked for 2 h with 5% normal donkey serum or normal goat serum and 3% BSA 

before being incubated with primary antibodies overnight at 4oC.  Following washing in 0.1MPBS, 

sections were incubated in secondary antibody and 1% blocking solution for 4 h.  After completing 

the secondary antibody reaction, sections were washed again in 0.1M PBS.  Following the final 

wash, sections were cover-slipped with DAPI Fluoromount-G mounting media and #1.5 coverslips 

(Fisher Scientific).  Manufacturers’ information for primary antibodies, secondary antibodies, and 

sera can be found in Table 1.  

Table 4.1. Materials used in Tissue Processing 

Item (manufacturer) 

Doxycycline Hyclate (Millipore Sigma, cat#: 1226003-200MG) 

Biotin conjugated wisteria floribunda lectin (EY Laboratories Inc., cat#: BA-3101-1) (1:1000) 

Anti-MAP2, clone AP20 (EMD Millipore, cat#: MAB3418) (1:200) 

Donkey Anti-goat A488 (Thermofisher Scientific Inc., Invitrogen, cat#: A-11055) (1:500) 

Goat Anti-mouse A488 (Thermofisher Scientific Inc., Invitrogen, cat#: A-11029) (1:500) 
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4.2.8. Image Acquisition 

Neuronal and PNN immunofluorescent reactivity in the rat cerebellum was visualized using a 

confocal laser-scanning microscope (Zeiss LSM 710; Carl Zeiss International).  Images 

were acquired using 405, 488, 546, and 633 nm lasers, sequential multichannel line scan, and 

with filters set manually to detect the spectral peak of each fluorophore.  Cells were imaged at 

20X (NA 0.4) and 63X oil-immersion (NA 1.4) objectives.  Raw images were exported to Zen Lite 

2009 and Adobe Photoshop CC 2017 to make minor adjustments to the brightness and contrast. 

Raw images were also exported to FIJI (ImageJ, NIH) to determine the percentage of WFA 

positive (WFA+) neurons (neurons with a PNN.  For PNN analysis, an average of 6 sections per 

animal were imaged; images were analyzed between the following coordinates (Bregma: 

11.52mm, Interaural: -2.52 mm and Bregma: 10.68 mm, Interaural: -1.68mm).  Each section was 

imaged bilaterally with the imager blind to the side.  In FIJI, the channels were separated in order 

to compare the number of microtubule-associated protein 2-positive (MAP2+) cells to the WFA+ 

cells to obtain a normalized count for each image.  MAP2 is a protein found in both developing 

and adult neurons and can be used as a biomarker for neurons (Tucker et al., 1988; Matus et al., 

1990; Kindler and Garner, 1994; Dehmelt and Halpain, 2004).  Once channels were separated, a 

background subtraction was performed to further distinguish WFA+ or MAP2+ cells.  Images were 

thresholded to produce binary images and then particle analysis was used to generate a count of 

Streptavidin, Alexa Fluor 647 conjugate (Thermofisher Scientific Inc., Invitrogen, cat#: S-

21374) (1:500) 

Normal donkey serum (Millpore Sigma, cat#: S30-100KC)  

Normal goat serum (Thermofisher Scientific Inc., Gibco, cat#: PCN5000) 

Bovine serum albumin (Millipore Sigma, cat#: A3294) 

DAPI Fluoromount G (SouthernBiotech, cat#: 0100-20) 
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WFA+ or MAP2+ cells. Counts were made every ten slices and the average number of WFA+ 

cells divided by the average number of MAP2+ cells and then multiplied by 100 to generate a 

percentage of PNN+ neurons.   

4.2.9. Statistical Analysis 

Data are presented as mean and ±SEM.  Two-way ANOVA and unpaired t-tests were 

calculated in IBM SPSS Statistics (Ver.26.00.0; IBM Corp.) with p < 0.05 as the criterion for 

significance. 

101



4.3. Results 

4.3.1. Doxycycline may prevent modulation of the PNN in the AIN 

4.3.1.1 Acute Doxycycline 

Injections   

We examined WFA 

reactivity of MAP2+ cells in 

the AIN of two adult rats 

acutely 24 hours after 

doxycycline IP injection and 

animals given doxycycline had higher % of WFA reactivity, (88.31 ± 3.24%) compared to the 

animals receiving vehicle (75.78 ± 4.69%), p = .031. These data are found in Figure 4.1.  

4.3.1.2. Daily Doxycycline Injections prior to EBC 

Figure 4.2 shows that this is also the case following EBC and experiments.  We attempted 

to block PNN remodeling by performing IP injections 2 hours prior to EBC of either doxycycline 

or vehicle.  The PNN in the AIN in the animals that received the doxycycline injections was higher 

based on WFA reactivity (87.85 ± 2.34%) compared to the animals receiving vehicle (74.85 ± 

4.8%), p = .041.   

 

4.3.2. Doxycycline does not alter 

Eyeblink Conditioning 

4.3.2.1. EBC Acquisition 

Rats were removed from 

the study if their EMG signal-to-

noise ratio was so small it was 

impossible to distinguish their 
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Figure 4.1. Acute Doxycycline Injections. 
An acute injection of doxycycline may prevent remodeling of the PNN. 
* p <0.05, Error bars SEM. 
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Figure 4.2. Doxycycline or Vehicle Injections and WFA reactivity. 
An acute injection of doxycycline may prevent remodeling of the PNN following 
EBC. 
* p <0.05, Error bars SEM. 
 

102



responses from baseline activity, four rats were removed due to poor signal.  Eleven adult male 

and female rats (at least P90) were included in the behavioral data analysis after five sessions of 

paired EBC (n = 6 doxy (3F,3M), n = 4 vehicle (2F,2M) on final acquisition session), up to three 

sessions of tone-only extinction (n = 7 doxy (3F,4M), n = 4 vehicle (2F,2M) on final extinction 

session) and one day of retention (n = 7 doxy (3F,4M), n = 4 vehicle (2F,2M)).  One male animal 

in the doxy group lost signal during the final 

two sessions of acquisition but signal 

improved during the extinction sessions. This 

is one reason why even if an animal had poor 

EMG signal and their behavioral results 

could not be analyzed for that particular day, 

they were still placed in the chamber and 

exposed to the stimuli and brain tissue was 

stained and imaged for PNN analysis.   

Figure 4.3 shows there was an 

increase in %CRs in both paired and probe 

trials for both groups across sessions, [F 

(4,43) = 6.71, p < .000], with Session 1 (S1) 

having lower %CRs on paired trials than S2 

(p = .037), S3 (p = .006), S4 (p < .000), and 

S5 (p < .000). S5 had higher %CRs than S2 

(p = .008) and S3 (p = .045).  Similar session differences were also observed on probe trials as 

well, [F (4,43) = 4.36, p = .005], with Session 1 (S1) having lower %CRs on probes than S3 (p = 

.015), S4 (p = .003), and S5 (p = .001). S2 also had lower %CRs than S5 (p = .035).  However, 

there were no overall differences in %CRs between groups on either paired or probe trials.  
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Figure 4.3. Percent Conditioned Responses between 
Doxycycline and Vehicle Rats. 
A. There were no differences in %CRs between the two 
groups but there were sessions differences, showing 
both groups are capable of learning EBC. B. We noted 
differences between sessions during extinction.  ## = p 
< .05 for session 
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We noted changes to some parameters of CRs during paired EBC, which are important 

tools for measuring an animal’s ability to learn EBC.  There were session differences associated 

with peak eyeblink latency on probe trials only, [F (4, 

41) = 3.44, p = .016] with the eyeblink peak response 

occurring earlier on S4 (p = .004), and S5 (p = .031) 

compared to S1 (Smith-Bell et al., 2012) seen in 

Figure 4.4.  The eyeblink response grew faster by the 

end of acquisition.  There was a group by session 

interaction in the peak latency of the CR, [F (4, 41) = 

3.28, p = .020] likely driven by the session 

differences.     

We did not notice any session differences in the area or the amplitude of the eyeblink 

response (F’s < 1). However, the doxycycline rats group had reduced CR area compared to the 

vehicle group in both paired, [F (1, 43) = 5.36, p = .025] and probe trials [F (1, 43) = 6.05, p = 

.018] as seen in Figure 4.5.   

 

4.3.2.2. EBC Extinction 
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Figure 4.4. Peak Latency of Conditioned 
Responses between Doxycycline and Vehicle 
Rats during Acquisition. 
There were session differences in timing of the CR 
with responses speeding up.  ## = p < .05 for 
session 
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 Figure 4.3 shows the %CRs during the 

three extinction sessions.  Analysis yielded session 

differences of paired trials, [F (2, 27) = 5.43, p = 

.010], with the first extinction session (E1) having 

lower %CRs than the second (E2) (p = .015) and 

the final extinction session (E3) (p = .012) (Fig 4B).

There were also group differences in the extinction 

of the area of probe trials, [F (1, 15) = 5.79, p = 

.029], with vehicle animals having a larger area 

than the doxycycline animals, Figure 4.5.  This 

group difference was also present in the area of the 

retention probe trials, [F (1, 8) = 7.42, p = .026].   

We did not find any other significant differences in 

the remaining conditioned response parameters 

investigated during extinction (F’s < 1). 

4.3.2.3. Unconditioned Response 

The foregoing changes we found in CR area may have been contributed to by significant 

differences found in the UR. The %URs between the groups were different, [F (1, 43) = 15.58, p 

< .000], with rats given doxycycline having much more URs than the vehicle group found in Figure 

4.6.  In addition, there were also group differences on the UR area, [F (1, 43) = 8.44, p = .006], 

but the vehicle animals have a larger area of the UR seen in Figure 4.6.  Even though the 

doxycycline injected rats were responding more often to the UR, their responses were still smaller 

in area compared to the vehicle group. These results suggest that the behavioral differences 

between the two groups may be related to non-associative effects sensitizing the doxycycline 

animals to our US. 
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Figure 4.5. Area of Conditioned Responses 
between Doxycycline and Vehicle Rats. 
There were no session differences in CR area 
groups but there were group differences, showing 
vehicle rats had a higher CR area during A. 
acquisition and B. extinction.  * = p < .05 for group 

105



4.4. Discussion 

We did not observe as many group 

differences in EBC as we did in our previous 

related to the how ChABC acts comparatively to

doxycycline’s proposed method.  Doxycycline 

would prevent the modification of the PNN while ChABC drastically reduces the PNN in 
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In summary, we found that male and female rats given a dose of doxycycline  

had more WFA reactivity in the DCN.  These animals were capable of learning and extinguishing 

EBC.  However, any group effects may have been the result of non-associative effects of 

doxycycline.  

Although we did observe different levels of WFA reactivity between groups, the changes 

were not as marked as we previously observed.  We expected that doxycycline would prevent 

learning-related modulation of the PNN.  We do observe what appears to be a greater reduction 

of the PNN in vehicle animals, which may be related to learning.  Other researchers have noted 

that animals who have undergone learning-related training have less WFA reactivity compared to 

their naïve counterparts.  However, our 
A
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Figure 4.6. Unconditioned Responses
between Doxycycline and Vehicle Rats. 
A. UR differences were observed with

work with ChABC.  These changes are likely doxycycline rats having more UR than vehicle.
B. There were group differences in UR area
groups, showing vehicle rats had a higher UR 
area during acquisition.  * = p < .05 for group 

106

* Vehicle

following behavior.  This is a logical next step to 4

2determine the actual amount of MMP9 activity.  



comparison.  Even among ChABC studies, the level of digestion influences behavior with the 

most pronounced changes occurring with the greatest reduction of PNN.  However, even modest 

levels of digestion can have effects on animal behavior.  These changes also could be the result 

of the non-associative effects we observed in comparison to ChABC.  We found no evidence of 

UR differences when using ChABC nor have there been reports of such in the literature.  Another 

avenue of exploration would be to alter the method of introducing doxycycline.  Potentially using 

oral gavage or adding doxycycline to the water supply could produce different effects than IP.  

Additionally, we have encountered substances that have altered the CR and UR of EBC 

previously albeit in the rabbit (Wang et al., 2006) . To examine the effects of 4-aminopyridine (4-

AP) , we also included unpaired controls.  In order to determine if 4-AP was sensitizing the rabbits 

to the tone, the US, or both, the animals were given tones of increasing intensity as well as 

different intensities of the US.  These methods should reveal a more complete idea of how 

doxycycline is altering the UR. 

Another potential future experiment would be to investigate the electrophysiological 

changes, if any, that could be taking place.  We were unable to perform these experiments in the 

adult animal as it is incredibly difficult to successfully patch and record from adult DCN cells. 

Shifting the age of the experiment down to P23-24 would overcome this difficulty.  We have 

previous experience performing EBC and electrophysiological experiments in animals of this age 

(Wang et al., 2018; O’Dell et al., 2020) .   

4.5 Conclusions 

Although these results may be frustrating, they do allow us to gain valuable information 

regarding doxycycline as a potential method of manipulating the PNN.  In addition to 

considerations of dose, route of administration could also be playing a role.  Further investigation 

of the actual changes to MMP-9 should also be carried out to determine how much activity the 

current dosage is suppressing.  Increased or prolonged dosage of daily doxycycline could be 

difficult to perform 
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as it can cause fatal effects in rats, leading to cardiac failure but could be an option going 

forward.  Continuing this line of inquiry will hopefully solidify the unanswered questions.  
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5.1 Some Final Queries 

 One of the final questions 

involved rats who were classified as “low 

learners”, %CR < 70% during any day of 

acquisition. Since the infusion of ChABC 

or injection of doxycycline could be 

influencing the rats’ ability to obtain 

EBC, it may be worth our while to 

analyze every animal that had a viable 

EMG signal-to-noise ratio but but did not 

reach our learning criterion. We chose to 

run another analysis of the behavioral 

statistics after adding “low learners” 

back in.  For the doxycycline group, the 

only animals that were removed were 

due to poor signal so their ability to learn 

EBC could not be determined.  However, 

in the ChABC study, we found seven 

animals that could be included in the statistical analysis.  Two of these animals had decent signal 

but had URs under 20% as well as CRs under 70%, suggesting they were unable to detect the 

ES.  Five rats were ultimately chosen to be included (n = 3 ChABC, n = 2 vehicle).   The 

parameters of behavior are identical to those found in Chapter 3 other than including all rats as 

long as they had viable EMG signal and UR > 20%. 

6.1.1 Low Learners 
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Figure 5.1.  Percent Conditioned Responses
between low learning ChABC and Vehicle Rats. 
A. There were no significant differences in %CRs
between the two groups but there were significant 
sessions differences, showing both groups are 
capable of learning EBC. B. There were differences 
between sessions during extinction.  ## = p < .05 for 
session 
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[F (1, 90) = 6.91, p = .010] in CR 

amplitude remained.  As did the 

session differences in the CR area, [F 

(4, 90) = 7.72, p < .000], and the 

ChABC group still had a smaller CR 

area compared to the vehicle group, 

[F (1, 90) = 15.28, p < .000].  

However, the relationship on the first 

session of CR area has been 

eliminated in the new analysis.  The 

group differences appear to resemble 

amplitude and are driven by smaller 

responses on the final acquisition 

sessions.  There were some new 

group differences observed in CR 

timing after including the low 

learners.  The ChABC infused rats had a slower peak eyeblink latency, [F (1, 90) = 7.14, p = .009], 
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Although the majority of the relationships remained very similar, the increase in %CRs for 

both groups across sessions remained, [F (4, 105) = 2.81, p = .029], but by including the 

animals who learned poorly, the overall strength of conditioning was lower and was less 

powerful statistically. Unsurprisingly, these animals also had session decreases during 

extinction, [F (2, 58) = 7.12, p = .002].  We did not find any new group differences in %CR.   

The group differences on CR parameters found in the first analysis also persisted.  The 

session differences [F (4, 90) = 4.31, A

p = .003], and the group differences Low Learners ChABC vs. Vehicle Change Amplitude (Probe Trials)

B

Figure 5.2. Amplitude and Area of the Conditioned 
Response between low learning ChABC and Vehicle 
Rats. 
A. On S5, the vehicle group had a noticeably higher
amplitude on the final acquisition session. B. On S5, the 
vehicle group had a noticeably higher area under the 
curve.  
There were also significant session differences on S4 
and S5 showing the amplitude and area significantly 
increased over the acquisition period.   
## = p < .05, ### = p < .000 for session  
** = p < .01, *** = p < .000 for group 
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compared to control.  The session differences in CR latency, [F (4, 90) = 3.73, p = .007], remained 

consistent with the initial behavioral assessment, with the response speeding up over sessions. 

 As before, there were no significant UR differences in any parameters (F < 1).  Taken 

together, the new analysis suggests that the ChABC infused rats had a slower eyeblink response 

as well as the original observation of reduced eyeblink amplitude and area responses. These data 

reinforce the idea that although our ChABC infused animals are capable of learning EBC, their 

associations are not as well stabilized as those with an undigested PNN. 

5.1.2. Low Learners and ChABC digestion levels 

In addition, we also wanted to 

assess if there were any differences in 

behavior related to the amount of 

digestion of the PNN with the low learners 

included in the analysis.  First, the ChABC 

infused rats were split into WFA+ or WFA- 

depending on the amount of %WFA/ 

neurons they had.  Rats with less than 

55% %WFA+ neurons in the ChABC 

group, were considered WFA- (44.7 ± 

4.6%) and rats above that were 

considered WFA+ (65.3 ± 5.5%).  The 

vehicle animals had a higher significantly 

higher percentage of PNN+ neurons, 

(86.4 ± 2.5%), p < .000 for WFA-, and p = 

.012 for WFA+.  WFA- also had a lower 

percentage of PNN+ neurons than WFA+, p = .028. We found that ChABC infused rats in the 
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Figure 5.3. Eyeblink Latency of the Conditioned 
Response between low learning ChABC and Vehicle 
Rats. 
A. The eyeblink response of both groups increased over
time. B. There were group differences on S4, with 
ChABC infused rats having a slower response  
## = p < .05, ### = p < .000 for session  
*** = p < .000 for group 
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WFA- group had significantly lower amplitude (p = .020) and area (p = .025) compared to the 

WFA+ rats.  This suggests that the level of ChABC digestion may play the most critical role in 

altering behavior.  

5.2. Final Thoughts and Future Directions 

The ChABC experiments yielded a 

great deal of information related to the PNN in 

the DCN. The ontogenetic studies we 

completed were a valuable insight into why 

EBC may be so difficult to acquire and retain in 

young animals.  The most recent analyses 

suggest that without adjusting criterion learning 

to be more inclusive of low learning animals, 

some relationships may go undetected.  

However, in spite of eliminating the low learning 

group, we still see many group differences that 

indicate EBC is not well stabilized in 

comparison to the vehicle groups. 

This work fits into the larger body of 

literature by being the third study to examine 

the relationship between the PNN and EBC in 

rodents and the first to examine these subjects in adult rats (Carulli et al., 2020; Hirono et al., 

2018).  Our work suggests that even moderate digestion of the PNN can alter behavior.  Our in 

vivo digestion levels were less than the work done by Carulli et a., in 2020 but more robust than 

the digestion observed in the work done by Hirono et al., in 2018.  Perhaps extending our digestion 

window out to six full days may allow for more animals to reach the level of WFA- animals, who 

seemed to drive the behavioral differences.   In addition, a logical next series of experiments 
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Figure 5.4. Amplitude of the Conditioned Response 
between low learning ChABC and Vehicle Rats. 
A. On S2 and S3, the WFA+ group had a noticeably
higher amplitude. B. On S5, the vehicle group has a 
higher amplitude than either group. 
^ = p < .05 for WFA differences  
+ = p < .05 for group
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would be to examine how exposure to EBC alters the PNN in young animals. Other work has 

shown that exposing young animals to aversive conditions alters the PNN in other brain regions 

like the amygdala or hippocampus (Gildawie et al., 2021, 2020; Murthy et al., 2019; Santiago et 

al., 2018; Yu et al., 2020).  Although our lab and collaborators have studied EBC in rats ranging 

from P12 to P24, there has been no examination of the effects of exposure to the aversive training 

on the PNN in the DCN.  Further, performing ChABC infusion into the DCN of animals under P32 

would be another interesting study.  This would allow us to study the behavior as well as perform 

electrophysiology experiments in animals that in vivo ChABC digestion of the PNN.  Comparing 

the intrinsic membrane properties of these animals to the tissue exposed to ChABC in vitro could 

yield more complete stories on how the PNN functions in this brain region. 

We are the first group to compare sex differences in the behavior of rats given EBC and 

ChABC.  Since ChABC eliminated the differences in the vehicle group, we would expect that there 

could be differences in the PNN of male and female animals.  However, whenever these analyses 

were performed, we did not detect significant differences between male and female animals in 

either the ChABC or the vehicle group.  We suspect that instead of these differences being directly 

related to the PNN, they are related to the differences in male and female learning of aversive 

behavior (Dalla et al., 2009; Dalla and Shors, 2009; Maeng et al., 2010; Maeng and Shors, 2013; 

Schreurs et al., 2018). Since one of the roles of the PNN is to maintain synaptic stability, the 

learning differences in the sexes are preserved in the vehicle animals since their PNN remains 

intact.  The ChABC group, likely lost these differences as a result of the PNN no longer cementing 

these synaptic changes into place.  An interesting future experiment could look for specific 

synaptic changes between the males and females of each group.  

The doxycycline experiments have also yielded useful information regarding the future of 

drug repurposing to manipulate the PNN.  By doing an intensive comparison of the shock intensity 

and tone intensity, we would be able to determine what precisely is being sensitized by this 

antibiotic (Wang et al., 2006).  Unpaired controls would also be a beneficial group to add into the 
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study (Campolattaro and Freeman, 2009; Goldsberry et al., 2014; McEchron et al., 2003; 

Schreurs et al., 1998).  Another option to consider would be systemic administration of 

doxycycline via oral gavage or by providing it in drinking water.  If this route of manipulating the 

PNN seems to truly alter the UR, an alternative would be to use the antidepressant fluoxetine.  

This drug appears to have had more success in behavioral studies in mice, rats, and rabbits 

(Burhans et al., 2013; Deschaux et al., 2013; Karpova et al., 2011; Kiryanova et al., 2017; 

Lesnikova et al., 2021; Ohira et al., 2013; Pawluski et al., 2014; Steinzeig et al., 2019; Umemori 

et al., 2018, 2015).  In addition to confirming UR differences, investigation of changes in the PNN 

throughout the brain following systemic doxycycline should be done.  In our initial pilot studies of 

acute doxycycline injections, we noticed there was a marginal difference between the PNN in the 

amygdala of the rats given doxycycline compared to vehicle.  These differences in other brain 

regions may also be useful studies to help us gain information on how doxycycline is altering the 

PNN.   

Another crucial series of experiments that must be performed with the doxycycline studies 

would be to perform gelatin zymography experiments to analyze the actual activity of MMP9.  We 

do not know for certain if our drugs were actually successful at inhibiting MMP9 and how much 

inhibition, if any, was occurring during behavior.  This could allow us to determine the best dosage 

for MMP9 inhibition.  Perhaps our initial dosage of 40 mg/ kg is inappropriate by either being far 

too high or far too low.  Increasing the dosage should be taken with great care, since higher doses 

in rats can prove to be fatal.  Did we also begin doxycycline administration too closely to behavior?  

It may be necessary to start giving the rats doxycycline a week or so prior to behavior even begins.   

Additionally, there are other drugs that can are more potent MMP9 inhibitors we could compare 

to doxycycline.   

In addition to performing the zymography with animals in the doxycycline study, it would 

be intriguing to know if exposure to EBC itself could alter the activity of this enzyme.  We could 

perform EMG surgeries in all rats but only expose a subset of rats to EBC while the others act as 
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sit controls.  These animals are never presented with the CS or the US but simply sit in the 

chamber for the duration of the sessions.  Since we noted that there may be a significant reduction 

in the PNN of trained animals compared to completely naïve rats it would be useful to know that 

this is the result of increased MMP9 activity.  Additionally, does time after learning alter PNN 

digestion levels?  Carulli et al., noted that the level of digestion returned to pre-learning levels by 

the end of all behavior (Carulli et al., 2020).  What if compared the PNN to animals euthanized 

only an hour or so after the final acquisition session?  Would we see a greater reduction in the 

PNN and increased activity of MMP9 as a result? 

Although we make the assumption 

that all of our observations are the direct 

result of PNN manipulation, we cannot rule 

out other unknown factors that may be 

playing a role.  ChABC is only a temporary 

digestion of the PNN. However, the CSPG 

that is removed from the PNN remains 

present in the extracellular space months 

even after the nets have been reassembled 

(Brückner et al., 1998).  No one has examined 

how ChABC infusion could impact behavior 

long-term after the PNN has recovered either.  

Based on our own and others’ 

electrophysiological recordings, ChABC does 

not appear to harm neurons but its effects on 

glia or the vasculature are not well known (Cope and Gould, 2019; Stoyanov et al., 2021; Wegrzyn 

et al., 2021). Using markers for glial activation could be useful to further determine if ChABC 

causes any inflammatory effects    
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Figure 5.5. Area of the Conditioned Response between 
low learning ChABC and Vehicle Rats. 
A. On S4, the WFA+ group had a higher area. B. On S4 
and S5, the vehicle group has a higher amplitude than 
either group.  
^ = p < .05 for WFA differences  
+ = p < .05 for group 
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Another potential experiment would be to compare the results between the behavioral 

data of rats given ChABC infusion and those given an infusion of hyaluronidase (Bilong et al., 

2021; Greda and Nowicka, 2020; Iwata et al., 1993; Murase et al., 2017). This enzyme would 

target the hyaluronic acid backbone of the PNN.  The vast majority of PNN work uses ChABC but 

there is a subset using this alternative enzyme.  We would expect the results to be similar following 

hyaluronidase infusion, but no one has examined how this enzyme alters the PNN and EBC in 

rodents at this point.   

Although they are highly informative, transgenic studies have imperfections due to animals 

developing without parts of the PNN present.  Animals that grow up without a PNN component 

may have some method of compensating for that loss.  The inducible transgenic models I thought 

of in Chapter 1 may have confounding factors after continuing to delve into the literature.  

Doxycycline is one option to induce a transgenic mutation (Belteki et al., 2005; Chow et al., 2012; 

Matsushita et al., 2013; Saunders, 2011), but as we have demonstrated, there could be direct 

manipulation of the PNN.  Additionally others have noticed that doxycycline could be influencing 

cell or animal behavior independently of the desired transgenic effects (Cao et al., 2019; McIver 

et al., 2012).  Tamoxifen is another commonly used drug to induce transgenic mutations (Feil et 

al., 2009; Leone et al., 2003; Sassmann et al., 2010). However, this drug influences estrogen 

receptors (Shagufta and Ahmad, 2018), which could then modulate any PNN related sex 

differences (Drzewiecki et al., 2020; Gildawie et al., 2021, 2020; Guadagno et al., 2020).  

However, by careful study and combining several of these methods, the PNNs influence can 

hopefully be better understood. For example, some researchers have tried to determine the strain 

and region-specific differences in how tamoxifen is processed in the mouse brain (Valny et al., 

2016), which could be used to potentially allow the mice to return to normal estrogen function 

while the PNN is degraded before further testing is done.  By combining these techniques, it 

should be possible to determine the full function of the PNN.  
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This research contributes greatly to the field.  Firstly, it is one of the few research projects 

investigating the minority of PNN+ excitatory cells.  Although understanding the role of the PNN 

on inhibitory cells is crucial, we cannot ignore the smaller population of excitatory neurons or we 

will never truly understand the function of the net.  Secondly, our work here is some of the only 

work focusing on cerebellar dependent learning and the only published work examining the effect 

of the PNN in EBC in rats.  By continuing this work in other animals that have well characterized 

EBC, like rabbits for example, we will understand how the PNN functions in various brain regions 

and processes. Thirdly, this work strongly suggests that even moderate digestion of the PNN can 

alter behavior and learning and memory processes.  We observed decreased excitability of 

neurons in the DCN, which is negatively correlated to high levels of associative learning (Moyer 

et al., 2000, 1996; Oh and Disterhoft, 2015; Thompson et al., 1996).  This could be relevant when 

investigating diseases that seem to affect the PNN or PNN+ neurons.  Even minor changes to the 

PNN could be influencing the activity of neurons and behavior.  Fourthly, the sex differences we 

observed in our vehicle animals suggests that even though the PNN itself may be similar between 

male and female animals, it could play a role in the learning or synaptic differences that are sex 

dependent.  Lastly, this work could provide data that indicates using doxycycline in behavior or 

transgenic studies should be handled with great care due to unexpected influence on the PNN or 

on non-associative effects.  Taken together, this project provided more insight into how the PNN 

can play a role in learning and memory processes and how attempting to translate it into a 

therapeutic target can be achieved successfully in the future.   
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