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ABSTRACT 
 

Variations in Produced Water Chemistry and Relation to Regional Geology and 
Production in the Marcellus Shale, Northcentral West Virginia  

 
Jonathan M. Brady 

 
 
An investigation of 74 Marcellus Shale wells across northcentral West Virginia indicates 
changes in produced water chemistry and quantity can be related to geologic conditions based on 
well logs and core data. These changes are determined by reviewing multiple produced water 
analyses for individual wells for periods up to ten years. Results show variations among the areas 
in this study. From west to east across central Harrison County to central Taylor County, then 
north into Monongalia County, gamma-ray logs show increasing intensity, especially in the 
middle and lower Marcellus. XRD mineralogy from core data shows increasing clay content 
from west to east with associated decreases in quartz. Produced water analyses show increases in 
barium concentrations from west to east, typically associated with increasing shale/clay minerals. 
Additionally, produced water samples show decreasing calcium and strontium concentrations 
moving west to east, suggesting that increased carbonate content, possibly as carbonate cement, 
is present in the western-most study areas. The geological differences across the area results in 
variations in produced water behaviors. Total dissolved solids (TDS) concentrations typically 
reach their maximum value during the second year of production. After this time, areas in 
Harrison County showed both increasing and decreasing TDS concentrations, while areas in 
Taylor and Monongalia showed almost exclusively decreasing concentrations over time. With 
TDS concentrations dropping below the maximum values, relative ratios of formation water vs. 
fracturing fluid can be determined in a given well as it ages. Normalized, cumulative gas 
production for these wells showed that the geologic differences observed in the produced water 
are reflected in different production rates across the study area.  
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INTRODUCTION 

Since its modern discovery as an unconventional shale resource in 2004, the Marcellus Shale has 

proven to be a world-class shale-gas reservoir (Zagorski et al., 2017). Dry gas production from 

the Marcellus has climbed from less than 0.5 billion cubic feet per day (bcfd) in January 2010 to 

over 24 bcfd in December 2020 plus a significant volume of natural gas liquids (NGL) (EIA, 

2021). This represents just over 34% of total US dry shale gas production (EIA, 2021). The 

unprecedented growth in Marcellus natural gas production, coupled with the discovery and 

rapidly increasing production in other shale plays, has outpaced demand growth in the United 

States. As a result, multiple pipelines to Mexico and Canada have been developed, and liquid 

natural gas (LNG) facilities have been built on the Gulf Coast and Eastern Seaboard to compress 

and export gas worldwide. These LNG facilities led to the United States becoming a net exporter 

of natural gas in 2017 (EIA, 2019). This rapid rise in natural gas production has created an 

associated rise in flowback and produced water that requires treatment and disposal. Flowback 

water is generally considered to be the fluid returned immediately after hydraulic fracturing until 

the final production equipment is installed. Produced water is fluid produced after a well is 

placed into regular production.  

 

Studies have examined both flowback and produced waters to illustrate how water chemistry 

changes among wells in different regions and over their production history. In the Marcellus, 

most studies have focused on the early changes and trends of flowback and produced water 

chemistry from 0–3 years after the start of flowback. These studies have focused primarily on 

wells in Pennsylvania and northern West Virginia (e.g., Blauch et al., 2009, Haluszczak et al., 

2013, Rowan et al., 2015, Phan et al., 2020). Results from this early period are subsequently 
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extrapolated over the lifetime of the well. This study will extend this timeframe by looking at 

produced water chemistry for up to 10 years after initial flowback across Harrison, Taylor, and 

Monongalia counties in northcentral West Virginia (WV). The primary focus is on both spatial 

and temporal variations of major ion chemistry such as Ba, Ca, Na, Sr, and Cl as well as total 

dissolved solids (TDS) in the produced water of five Marcellus producing areas across 

northcentral WV. This study will concentrate on changes in produced water characteristics over 

time as the wells in these areas have been sampled multiple times up to ten years after they went 

into production.  The study will also demonstrate how produced water chemistry changes across 

the area and its relationship to changes in geology. Monitoring produced water chemistry during 

the entire lifespan of a producing well may contribute to a better understanding of regional 

geology and production trends in the Appalachian basin. 

 

Study Area 

This study focuses on an area in northcentral West Virginia that runs from central Harrison 

County northeast through Taylor County, then north into Monongalia County (Figure 1). The 

study area has a combined 74 wells in five different areas of Marcellus production (Figure 2). 

Two of these areas are adjacent to each other in central Harrison County. Harrison Area 1 

contains 20 wells drilled between 2010 and 2017. Three additional wells were drilled in 2019 but 

were not included in this study. Harrison Area 2 lies immediately south of Harrison Area 1 and 

contains 18 wells drilled from 2012 to 2017. These areas were separated for ease of data display, 

but also because there is approximately 4.5 miles (7.2 km) between the southernmost wells in 

both areas, which provides a more localized area to compare data. Both core and open-hole  
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Figure 1 – Location of study area within the Marcellus Shale Play (Modified from Zagorski et 
al., 2012) 
 

geophysical well logs were taken from one well in Harrison Area 1, but only well logs were 

available for Harrison Area 2. The third area is located near the central part of Taylor County and 

will be referred to as the Central Taylor Area. This area is ~11 miles (17.7 km) east-northeast of 

Harrison Area 1 and contains 18 wells that were drilled between 2010 and early 2018. Both core 

and well logs are available for one well in this area. The fourth area is ~10 miles (16.1 km) 

northeast of the Central Taylor Area, located in northeastern Taylor County, and will be referred 

to as the Northeast Taylor Area. It contains 14 wells that were drilled between 2013 to the end of 

2017. Eleven of these 14 wells were drilled from southeast to northwest with a bottom-hole 

location in easternmost Marion County. There is no core data available for this area, however, 
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open-hole logs were obtained for a pilot-hole well and can be used for well log comparisons. The 

fifth area lies in central Monongalia County and is ~9 miles (14.5 km) north of the Northeast 

Taylor Area. The Monongalia Area contains four wells, two of which were drilled as part of the 

Marcellus Shale Energy and Environmental Laboratory (MSEEL) study. The four wells in this 

area were drilled from 2011 to 2015. As part of the MSEEL study, both core and open-hole logs 

were obtained in this area. While the MSEEL study has provided a tremendous opportunity to 

study the Monongalia County area, Harrison and Taylor counties have been relatively under-

studied in comparison.  

 
Figure 2 – Location of five sub-areas that contain wells in this study and the distance between 
each area. Red circles indicate surface locations. Blue diamonds indicate bottomhole locations. 
All wells have horizontal paths trending northwest - southeast. 
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Methods 

Core Data 

Full-wellbore cores were taken on multiple wells among the five areas in this study. One full-

wellbore core is located in each of Harrison Area 1, the Central Taylor Area, and the Monongalia 

Area. Of the many tests run on samples from these cores, X-ray diffraction (XRD) and pyrolysis 

results are used in this study. XRD determines the mineralogy of a sample and pyrolysis 

determines the total organic content (TOC). For the Harrison Area 1 and Central Taylor cores, 

Core Laboratories (Core Lab) performed the XRD analysis and contracted out the pyrolysis 

analysis to Weatherford Laboratories. For the Monongalia core, XRD work was performed and 

detailed by Hupp (2017) and Hupp and Donovan (2018). Pyrolysis and additional XRD analysis 

were performed by Paronish (2018).  These analyses are used to compare mineralogy and TOC 

among the five areas, then combined with wells logs and produced water analyses to analyze 

geologic changes across the entire study area. 

 

Well Logs 

Five gamma ray and density well logs are available for analysis, one for each area in this study. 

Schlumberger performed the logging for the wells in Harrison Area 1, Central Taylor, Northeast 

Taylor, and Monongalia. Weatherford logged the well in Harrison Area 2. For this study, 

normalized gamma-ray logs are the primary curve used for picking formation tops and 

comparing geology among the five areas. Density logs are used to calculate estimated TOC 

weight percent using the Schmoker equation applied to pyrolysis data (Schmoker, 1979, 1981, 

1993). Elemental Analysis (ELAN) logs quantify minerals such as clay, quartz, and carbonate 

every 0.5 feet (0.15 meters) through the Marcellus and are compared to the core-derived XRD 
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data to determine how the mineralogy varies across the study area. ELAN logs were run in the 

same wells that were cored and are available for one well each in Harrison Area 1, Central 

Taylor, and Monongalia areas. Any differences in geology evident from the well log comparison 

are tied back to mineralogy and TOC data derived from the core and compared to the produced 

water analyses. 

 

Source Water Locations and Analysis 

The source water for hydraulic fracturing operations for the wells in this study was taken from 

multiple sources. Samples were taken from each source and analyzed for major ions. Wells in 

Harrison areas 1 and 2 used water primarily from the West Fork River, near Clarksburg, WV. 

The Central Taylor Area used water sourced from both the West Fork River and the Tygart River 

near Grafton, WV. Wells in the Northeast Taylor Area were fractured with water primarily from 

the Tygart River. In addition to these primary water sources, produced water from the operator’s 

(Arsenal Resources) existing wells was combined with water from these other sources. 

Discussion with the operator’s completion manager indicated that produced water only 

accounted for 3%-5% of water used during hydraulic fracturing (Arsenal Resources, personal 

communication). Water samples were also obtained and analyzed after this mixing occurred. 

Source water samples from the West Fork River, Tygart River, and produced water mixture were 

analyzed by the Chemplex Solvey Company for TDS, the cations Na, Ca, Mg, Ba, Sr, K, Fe and 

the anions Cl, SO4, HCO3, CO3. Additional water analysis was performed for Ca, Mg, Ba, Cl, 

SO4, and HCO3 once the necessary chemical additives for hydraulic fracturing were combined 

into the fresh source water. Source water analyses were not available prior to those taken by 
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Arsenal Resources in January 2019, but it is assumed that water chemistry for the West Fork 

River and Tygart River did not change significantly from 2010 to 2019. 

 

The wells in the Monongalia Area were drilled by a different operator, Northeast Natural 

Resources (NNE), and used the Monongahela River as the primary water source for hydraulic 

fracturing operations. Water samples of the river were taken for chemical analyses prior to the 

onset of hydraulic fracturing operations. These samples were analyzed by Pace Analytical for the 

same major and minor ion suites analyzed in the Harrison and Taylor areas. 

 

Produced Water Collection and Analysis 

202 produced water samples from 74 wells across the five sub-areas were analyzed for this 

study. The samples were collected at different times over the lifespan of each well ranging from 

a few months to 10 years after hydraulic fracturing. Produced water samples were taken at either 

the gas/water separator, or if sufficient water was not available in that separator, from the sand 

separator. Laboratory analyses for samples taken prior to 2020 were obtained courtesy of Arsenal 

Resources and the MSEEL study. Samples obtained from the MSEEL study for the Monongalia 

Area wells were analyzed by Pace Analytical for major and minor ions including those used in 

this study: Ba, Ca, Mg, Fe, K, Na, Sr, and Cl. TDS were calculated using all ions measured in the 

sample. Sample results for wells in Harrison and Taylor counties were obtained from Arsenal 

Resources including analyses for samples taken as early as 2013. Arsenal Resources used 

multiple laboratories for sample analysis over this time period including Weatherford 

Laboratories, Terra Oilfield Services, Baker Hughes, and Nalco Champion (now ChampionX). 

These analyses included all the ions examined in this study (Ba, Ca, Mg, Fe, K, Na, Sr, Cl and 
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TDS) although some samples were not tested for K, a minor ion in these samples. The 

methodology used by these laboratories to determine TDS in unknown. The most recent round of 

sampling for 69 of the 74 wells in the study was performed in 2020 and ran by the National 

Research Center for Coal and Energy (NRCCE) Laboratory at West Virginia University and 

were tested for all of the ions being considered for this study. The NRCCE lab used the 

gravimetric method to determine TDS in all the samples they tested. 

 

GEOLOGIC SETTING 

Regional Overview  

The Appalachian basin underwent multiple orogenic events during the Paleozoic Era: the 

Taconic, Acadian, and Alleghenian orogenies. It was during the Middle Devonian Acadian 

orogeny that the Marcellus Shale was deposited in a subsiding, foreland basin (Ettensohn, 1985). 

Ettensohn (1985) suggested that the Acadian orogeny can be broken into four separate 

tectophases, each characterized by a pattern of four stages that can be discerned in the 

sedimentary record (Figure 3). The first stage marks the inception of tectonism with the 

formation of a foreland basin caused by rapid subsidence combined with transgressive seas that 

result in the deposition of basinal black shale (i.e. the Marcellus). The second stage involves a 

collision of promontory areas combined with sea-level regression and an influx of clastic 

sediment above the black shale. This stage may also contain multiple, minor transgressive-

regressive sequences that can cause minor carbonate or black shale units in an overall gray shale 

and siltstone unit such as the Mahantango Shale (Ettensohn, 1985). The third stage includes 

continuous collision with regional uplift that results in regional unconformities that may have 

reached into the subsided basin depending on location such as the unconformity at the top of the 
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Hamilton Group in New York. The fourth stage is marked by a period of tectonic quiescence and 

by the deposition of carbonates over the clastic sequence in a slowly transgressing sea; examples 

of these carbonates include the Onondaga and Tully limestone units. It is during stage 1 of the 

second Acadian tectophase that the Marcellus Shale was deposited. 

 
Figure 3 – Diagram showing relationships between facies type and position in tectophases. The 
explanation illustrates which Middle and Upper Devonian formations fall within each proposed 
tectophase. The Marcellus Shale is located at the beginning of tectophase 2. Tectophase 1 is not 
shown in this figure (Modified from Ettensohn, 1985). 
 

After deposition and subsequent burial, the Marcellus Shale was buried even deeper during the 

Alleghenian orogeny. The Alleghenian orogeny began in the Carboniferous and ended in the late 

Permian resulting in the deepening of the Appalachian foreland basin (Wilkins et al., 2014). 

Fluid inclusion studies performed using hydrocarbon and aqueous inclusions found in calcite, 

barite, quartz, and dolomite-bearing veins have been used to calculate a maximum burial depth 

of around 25,000 ft (7.6km) for the Marcellus during this orogenic event near the Allegheny 

Structural Front in Pennsylvania.  

 

Other fluid inclusion work by Evans (1995) and Rowan (2006) on a deep well core in Marion 
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County, WV, calculated maximum burial depth of around 17,500 ft (5.3 km). Evans (1995)  

refers to this area as the Alleghenian Plateau Province (Figure 4). The temperatures associated  

with the maximum burial depth at both the Allegheny Structural Front (200°C+) (Wilkins, 2014) 

and Allegheny Plateau Province (160°C) (Evans, 1995) places the Marcellus Shale’s thermal 

maturity strictly in the dry gas window in the study area. Since the end of the Alleghenian 

orogeny in the late Permian, steady exhumation of the Marcellus has been occurring throughout 

the basin; current depths are ~6,500 ft (2 km) in the Allegheny Plateau Province (Evans, 1995) 

and ~8,000 ft (2.4 km) near the Allegheny Structural Front (Wilkins, 2014).  

 
Figure 4 – Cross-Section showing maximum burial depth from Northwest Ohio (D) to Northern 
West Virginia (D'). 11-Finch is a deep well in Marion County, WV, near the study area. The 
approximate Onondaga Top in the study area is represented by the red line. (Modified from 
Rowan, 2006). 
 

Study Area Overview 

Focusing on the three-county study area, the Marcellus generally increases in depth from west to 

east with the deepest area located in southern Taylor County where the top of the Onondaga 

Limestone approaches -6,800 feet subsea (Figure 5). The section shallows to the east of the 
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southern Taylor area over the Laurel Ridge anticline, which aligns with the Allegheny Structural 

Front. Across the study area, the section contains low-angle, undulating folds as evident from the 

Onondaga structure map (Figure 5). These data suggest that the well areas may be ranked with 

respect to depth as follows, from shallowest to deepest: Harrison Area 1, Northeast Taylor, 

Harrison Area 2, Monongalia, and Central Taylor. The Northeast Taylor Area is an interesting  

 
Figure 5– Structure contours of the top of the Onondaga Limestone across the study area. The 
structure shows low-angle folds across the area and the flank of the Allegheny Structural Front 
(Laurel Ridge) in the east. The plunging nose of the Chestnut Ridge Anticline is also seen in the 
northeast. (data source: West Virginia Geological and Economic Survey).  
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case as it lies east of the Monongalia and Central Taylor areas but is shallower than both, 

breaking the general west to east deepening trend. This shallowing is the result of the 

southwestern nose of the Chestnut Ridge Anticline, which dies out in the southern Marion 

County, northern Taylor County area (Figure 5). The Monongalia Area is west of the anticline 

and sees little effect. The Central Taylor area is east of the anticline and slightly south of the 

anticline’s plunging nose, again resulting in little effect. Other than the effects of the plunging 

nose of the Chestnut Ridge Anticline, the study area is structurally quiet. 

 

Stratigraphy 

The middle Devonian Marcellus Shale is part of the Hamilton Group that stretches from the base 

of the middle Devonian Tully Limestone to the top of the lower Devonian Onondaga Limestone 

(Zagorski, 2017). The Hamilton Group is broken down into the Mahantango Shale and the 

Marcellus Shale. The Marcellus is then divided into two main organic-rich shale members. The 

lower member is the Union Springs, which lies above the Onondaga Limestone. In northern 

West Virginia, this is marked by a transition zone going from limestone to highly organic shale. 

To the west, an unconformity marks this transition (Ettensohn, 1985 & Zagorski, 2017). The 

Cherry Valley Limestone lies on top of the Union Springs and separates it from the Oatka Creek 

Member, which is the second organic-rich shale member (Figure 6A) (Lash and Engelder, 2011 

and Zagorski, 2017). In some areas, the Oatka Creek is broken down into “Upper Marcellus A” 

and “Upper Marcellus B” with the “Lower Marcellus” being equivalent to the Union Springs 

Member (Boswell and Pool, 2018). Above the Oatka Creek Member is the Mahantango Shale, an 

organic-lean, gray shale bounded on top by the Tully Limestone (Ettensohn, 1985). 
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This study focuses primarily on the Marcellus Shale section of the Hamilton Group. Across the 

study area, the Marcellus shale is most similar to the Oatka Creek Member that contains two 

distinct high gamma-ray peaks (Figure 6B). The nomenclature for the rest of the study refers to 

the top Oatka Creek peak as the upper Marcellus and the bottom Oatka Creek peak as the middle 

Marcellus, while the Union Springs is referred to as the lower Marcellus. All of the wells in this 

study have horizontal wellbores that targeted the middle or lower Marcellus. 

 

PREVIOUS STUDIES 

Numerous studies have been performed looking at flowback and produced water characteristics 

and trends in the Marcellus Shale. Many of these examined samples from northeastern and 

southwestern Pennsylvania, with a few extending south into northern West Virginia, particularly 

the MSEEL study area. Few studies incorporate data from Harrison and Taylor counties. 

Temporally, most studies focus on the first few months to years of a well’s flowback/production 

history, with a couple extending as much as five years.  

 

One of the first studies that looked at post-fracturing flowback and produced water documented 

increasing salt concentrations in the flowback water of multiple Marcellus Shale wells (Blauch et 

al., 2009). The study looked at samples collected over an 18-month period in southwestern and 

northeastern Pennsylvania and one well in northern West Virginia. Increasing levels of Na, Ca, 

Ba, Sr, and Cl ions among other ionic constituents could not be immediately explained. 

Ultimately, Blauch et al. (2009) developed four hypotheses for the origin of the salinity: 1.) 

primary dissolution of autochthonous salt, 2.) primary dissolution of allochthonous salt, 3.) 

encroachment of basinal brine, 4.) mobilization of hypersaline connate fluid. This early study 
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was the model for subsequent studies looking at variations in flowback and produced water 

chemistry over time and space.   

 

Following Blauch et al., (2009), multiple studies were performed primarily looking at Na, Ca, Cl, 

and Br trends in samples from Pennsylvania over the first few months to two years of 

production. These studies concluded that the high concentrations of salts observed in flowback 

and produced waters were the result of highly saline brine evaporated from paleo-seawater 

mixed with the formation fluid and injected fluid, not from halite dissolution (Dressel and Rose, 

2010, Barbot et al., 2013, Haluszczak et al., 2013, Engle and Rowan, 2014, Balashov, et al., 

2015, Rowan et al., 2015). Strontium also increased in concentration with time after hydraulic 

fracturing. Strontium isotope studies from Marcellus water samples over the first few years of 

production also indicated a paleo-seawater source for strontium, but with additional ion 

exchange with formation minerals (Chapman et al., 2012, Capo et al., 2014). Other studies 

focused on fluid-rock interactions determined that carbonate minerals were likely the primary 

source of strontium, with lesser contribution from paleo-seawater (Phan et al., 2018, Pilewski et 

al., 2019, Phan et al., 2020). A more recent study of Marcellus Shale produced water compared 

to produced waters from other hydrocarbon reservoirs examined controls on the aqueous 

geochemistry such as calcite dissolution and dolomitization (Sharma et al., 2021). 

 

Multiple studies addressed the quantity of returned fluid versus the amount pumped, and how 

much of the returned fluid is hydraulic fracturing makeup fluid versus connate formation fluid. 

Work from the MSEEL study in northern West Virginia provided daily water recovery from four 

wells that indicated relatively low fluid recovery relative to injection (Ziemkiewicz, 2017). This 
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confirmed previous results indicating the likelihood that a large percentage of injected fluid had 

been imbibed or leaked off into the formation (Byrnes, 2011, Roychaudhuri, 2013, Engelder, 

2012, Kanfar and Clarkson, 2016, Osselin et al., 2018). Studies focused on TDS suggested that 

the maximum salinity values in produced water represent undiluted formation water, allowing 

estimation of the amount of hydraulic fracturing fluid diluting formation water in earlier 

produced waters (Kondash et al., 2017, Osselin et al., 2018). These studies were applied within 

the study area to quantify returned fluid over time. 

 

The aforementioned studies provided valuable insight in characterizing produced water across 

the study area. Many of the studies focused on northeastern and southwestern Pennsylvania as 

well as northern West Virginia. This study expands these observations into the less well-studied 

areas of Harrison and Taylor counties. It also provides new data points showing Marcellus shale 

produced-water trends over longer time periods than previously examined 

 

RESULTS 

The data available for this study were reviewed by first analyzing the well logs across the five 

areas to determine how the geology changes based on gamma ray and density logs. Next, TOC 

calculations from the density logs were compared to core-derived TOC values based on pyrolysis 

to determine the utility of log-calculated values. XRD mineralogy from cores were compared to 

elemental analysis (ELAN) logs from the cored wells to validate the ELAN mineralogy across 

the entire Marcellus section of each well. Once the geological parameters were determined, 

returned fluid analysis was performed to observe the trends in each area and source water and 
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produced water analyses results are presented to determine how the water chemistry changes 

across the study area. 

 

Well Log Analysis 

Well logs for five wells, one in each of the five areas, were analyzed to determine how the 

geology changes across the study area (Figure 7). Correlations were performed primarily using 

the gamma-ray logs, and using the higher-resolution, pad-based density logs to pick formation 

tops more precisely. Three tops were picked in the Marcellus Shale, (upper, middle, and lower), 

as well as the top of the Onondaga Limestone (Figure 8). Across the study area, the Onondaga 

was characterized as a transition zone downward from shale, to limey shale, to limestone, and 

eventually into the Huntersville Chert. This contrasts with the abrupt change from black shale to 

limestone observed throughout other parts of the basin, such as southwestern Pennsylvania and 

the northern panhandle of West Virginia (Lash and Engelder, 2011). Within this study area, 

Marcellus thicknesses ranged from 86 feet (26.2 meters) thick in Harrison Area 1 to 117 feet 

(35.7 meters) thick in the Northeast Taylor Area. Thicknesses in the other areas were 87 feet 

(26.5 meters) in Harrison Area 2, 96 feet (29.3 meters) in the Central Taylor Area, and 99 feet 

(30.2 meters) in the Monongalia Area. This indicated thickening from west to east across the 

study area. The Northeast Taylor log showed a significantly thicker section than Central Taylor 

and Monongalia given their west to east proximity.  

 

Repeated sections were evident in the Northeast Taylor log in the Mahantango Formation 

(Hamilton Group), which overlies the Marcellus. These repeated sections suggest thrust faulting 

associated with the Chestnut Ridge Anticline. While repeated sections were difficult to 

distinguish with certainty within the Marcellus in this log, there were likely dips that skewed the 
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apparent thickness, making the section appear thicker. So, while the Marcellus was thicker in 

Northeast Taylor than in Central Taylor and Monongalia, it was likely not on the scale indicated 

by the log. The effects of the Chestnut Ridge Anticline were also observed when looking at the 

subsea depth of the study area. The general west to east deepening to the top of the Onondaga 

held true for the study area until the Northeast Taylor Area. This area was shallower than Central 

Taylor and Monongalia due to the uplift associated with Chestnut Ridge. Drilling depth to the 

 
Figure 7 – Location of core and well logs used in this study. Green triangles indicate location of 
well with core and well logs. Upside-down orange triangles indicate wells with well logs only. 
(data source: West Virginia Geological and Economic Survey).
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Marcellus, depth subsea, and thickness ranges, as well as data related to gamma-ray intensity, 

density, and TOC are shown in Table 1. 

 
Table 1 – Depth, thickness, gamma ray, density, and TOC ranges for the upper, middle, and 
lower Marcellus taken from the well logs in each of the five areas in this study. 
 

In addition to overall thickness increasing from west to east, a few other trends were determined 

from the well log correlation. Upper Marcellus thickness was relatively consistent throughout the 

study area, with signs of slight thinning from west to east with Northeast Taylor being an 

exception. Conversely, both the middle Marcellus and lower Marcellus displayed thickening 

from west to east. This was most evident in the lower Marcellus, which is 22 feet (6.7 meters) 

thick in Harrison Area 1 and thickened to 39 feet (11.9 meters) in Northeast Taylor. Thickening 

Harrison Area 1 Harrison Area 2 Central Taylor Monongalia Northeast Taylor

Depth (feet) 7,145 - 7,180 7,151 - 7,179 7,682 - 7,715 7,454 - 7,481 7,963 - 8,001
Depth Subsea (feet) (-5,770) - (-5,805) (-5,977) - (-6,005) (-6,351) - (-6,384) (-6,396) - (-6,423) (-5,965) - (-6,003)
Thickness (feet) 35 28 33 27 38
Gamma Range (API) 81 - 396 97 - 413 120 - 356 103 - 356 81 - 349

Density Range (g/cm3) 2.44 - 2.74 2.49 - 2.64 2.55 - 2.68 2.49 - 2.72 2.54 - 2.75
Core TOC Range (%) 0.58 - 4.71 N/A 2.84 - 4.34 3.19 - 5.16 N/A
Calc TOC Range (%) 0.00 - 5.98 1.29 - 4.81 0.33 - 3.34 0.00 - 4.82 0.00 - 3.52

Depth (feet) 7,180 - 7,209 7,179 - 7,211 7,715 - 7,745 7,481 - 7,517 8,001 - 8,041
Depth Subsea (feet) (-5,805) - (-5,834) (-6,005) - (-6,037) (-6,384) - (-6,414) (-6,423) - (-6,459) (-6,003) - (-6,043)
Thickness (feet) 29 32 30 36 40
Gamma Range (API) 35 - 482 148 - 395 139 - 591 83 - 513 119 - 544

Density Range (g/cm3) 2.37 - 2.70 2.32 - 2.53 2.41 - 2.61 2.43 - 2.70 2.44 - 2.69
Core TOC Range (%) 1.70 - 6.85 N/A 5.26 - 5.84 2.60 - 7.21 N/A
Calc TOC Range (%) 0.00 - 7.66 3.68 - 9.09 1.99 - 6.61 0.07 - 6.27 0.14 - 5.96

Depth (feet) 7,209 - 7,231 7,211 - 7,238 7,745 - 7,778 7,517 - 7,553 8,041 - 8,080
Depth Subsea (feet) (-5,834) - (-5,856) (-6,037) - (-6,064) (-6,414) - (-6,447) (-6,459) - (-6,495) (-6,043) - (-6,082)
Thickness (feet) 22 27 33 36 39
Gamma Range (API) 141 - 534 99 - 461 182 - 718 118 - 740 120 - 770

Density Range (g/cm3) 2.33 - 2.58 2.37 - 2.56 2.46 - 2.74 2.43 - 2.83 2.44 - 2.62
Core TOC Range (%) 5.91 - 8.03 N/A 2.42 - 5.12 1.8 - 10.91 N/A
Calc TOC Range (%) 2.65 - 8.77 3.10 - 7.91 0.59 - 5.51 0.69 - 6.24 1.65 - 5.87

TOTAL MARCELLUS 
THICKNESS (Feet)

86 87 96 99 117

LOWER MARCELLUS

MIDDLE MARCELLUS

UPPER MARCELLUS



21 
 

in the middle Marcellus was not as extreme, with 29 feet (8.8 meters) in Harrison Area 1 and 40 

feet (12.2 meters) in Northeast Taylor. The general west to east thickening trends further 

complimented and expanded previous works that predicted thickening trends across the study 

area (Ettensohn, 1985, Lash and Engelder, 2011, and Zagorski, 2017). 

 

Other than thickness trends, the intensity of the gamma-ray logging response displayed trends 

across the study area. Except for Harrison Area 2, the upper Marcellus had the lowest gamma-

ray intensity in each area (349 API – 413 API), followed by the middle Marcellus (395 API – 

591 API). Each area showed the “hottest” gamma-ray response in the lower Marcellus (461 – 

770 API). This pattern indicated decreasing gamma-ray intensity moving up through the 

formation. In addition to stratigraphic differences in gamma-ray logging values, spatial 

variations are also observed. Harrison Area 1 had a maximum upper Marcellus gamma-ray 

logging value of 396 API, while Harrison Area 2 had a maximum upper Marcellus value of 413, 

Central Taylor was 356 API, Northeast Taylor was 349 API, and Monongalia was 356 API. 

These values indicated that gamma-ray intensity decreases slightly from west to east, but with a 

range of only 64 API. The middle Marcellus showed the opposite with gamma-ray logging 

values increasing from west to east. Harrison Area 2 had the lowest-maximum middle Marcellus 

gamma-ray value of 395 API, followed by Harrison Area 1 (482 API), Monongalia (544 API), 

Northeast Taylor (544 API) and Central Taylor with the highest-maximum middle Marcellus 

value of 591 API. The gamma-ray spread in the middle Marcellus was 196 API, much higher 

than the spread observed in the upper Marcellus. Gamma-ray logging values in the lower 

Marcellus followed a west to east intensifying trend similar to that of the middle Marcellus with 

the lowest-maximum value in Harrison Area 2 (461 API) followed by Harrison Area 1 (534 
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API), Central Taylor (718 API), Monongalia (740 API), and the highest-maximum value in 

Northeast Taylor (770 API). The highest gamma-ray spread occurred in the lower Marcellus with 

309 API units separating the lowest-maximum in Harrison Area 2 and the highest-maximum in 

Northeast Taylor. Gamma-ray values are summarized in Table 1 and west to east trends can be 

viewed in well log cross-section (Figure 8).  

 

Gamma-ray logs are useful tools for correlating formation tops and determining thicknesses. 

Density logs are useful for correlating formations in combination with gamma-ray logs by 

determining changes in density associated with lithology changes. However, density logs are 

primarily used for estimating rock properties such as porosity, particularly in sandstones, and 

TOC in organic-rich shale due to the presence of less dense kerogen (Schmoker, 1979). Across 

the study area, the minimum density ranges for the Marcellus increased upwards from the lower 

Marcellus (2.33 g/cm3 to 2.46 g/cm3) to the middle Marcellus (2.32 g/cm3 to 2.44 g/cm3) to the 

upper Marcellus (2.44 g/cm3 to 2.55 g/cm3). This indicated a general trend of decreasing kerogen 

content upwards in the Marcellus Shale as kerogen is lighter, resulting in a lower density. 

Similar to gamma-ray values, density varied not only upwards through the Marcellus Shale, but 

across the study area as well. In the upper Marcellus, Harrison Area 1 had the lowest density at 

2.44 g/cm3, followed by Harrison Area 2 and Monongalia, both at 2.49 g/cm3. Northeast Taylor 

had a minimum upper Marcellus density of 2.54 g/cm3 and Central Taylor had the highest-

minimum upper Marcellus density at 2.55 g/cm3. These densities indicated a general trend of 

increasing density from west to east in the upper Marcellus. The middle Marcellus displayed a 

similar trend with the lowest-minimum density in Harrison Area 2 (2.32 g/cm3), followed by 

Harrison Area 1 (2.33 g/cm3), then Central Taylor (2.41 g/cm3), Northeast Taylor (2.43 g/cm3), 
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and Monongalia (2.44 g/cm3). While the upper Marcellus and middle Marcellus shared similar 

trends of increasing density from west to east, the range of densities showed less variation in the 

middle Marcellus. Across the study area, the lower Marcellus displayed increasing densities from 

west to east with values similar to the middle Marcellus. Harrison Area 1 had the lowest-

minimum density at 2.33 g/cm3 followed by Harrison Area 2 (2.37 g/cm3), Northeast Taylor 

(2.43 g/cm3), Monongalia (2.44 g/cm3) and Central Taylor (2.46 g/cm3). In the case of both 

gamma ray and density values, there were distinct trends not only within the Marcellus itself, but 

also across the study area. Harrison Area 1 and Harrison Area 2 had lower gamma-ray values 

than the Central Taylor, Northeast Taylor, and Monongalia areas. Minimum densities were also 

lower in the Harrison areas than in the other three areas. When considering only the Central 

Taylor, Northeast Taylor, and Monongalia areas, similar values for gamma ray and density were 

observed with no distinct trends among the three areas. 

 

Studies performed on Appalachian Devonian shale have looked at the relationship between 

gamma-ray intensity and density as well as the relationship between density and TOC 

(Schmoker, 1979, 1981, and 1993). Analysis of the five well logs across the study area indicated 

a relationship that as gamma-ray intensity increased, formation density decreased, which is 

consistent with Schmoker’s (1981) work looking at organic-rich, black shales in the western 

Appalachian basin (Figure 9). This positive relationship between gamma-ray intensity and 

density was demonstrated across the study area (Figure 9). The highest gamma-ray intensities 

were observed in Central Taylor, Northeast Taylor and Monongalia along with noticeably lower 

gamma-ray intensities in the two Harrison areas where only a few points exceeded 500 API. 
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Regarding density, minimum readings for both Harrison areas were below 2.40 g/cm3, whereas 

the other three areas did not drop below that level (Figure 9).  

 
Figure 9– Relationship between gamma-ray intensity and density in the Marcellus Shale for the 
five well logs across the study area. Trendlines indicate that in each area, as gamma-ray 
intensity increases, density decreases but at different exponential rates.  

 

Estimating TOC using Pyrolysis and Density Logs 

Pyrolysis TOC data were obtained from cores taken in Harrison Area 1, Central Taylor, and 

Monongalia areas. Weatherford Labs performed the pyrolysis on the Harrison Area 1 and Central 

Taylor cores. Paronish (2018) performed the pyrolysis on the Monongalia core as part of the 

MSEEL project. TOC values estimated via pyrolysis were compared to log-calculated TOC 

values using the Schmoker equation to verify if they agree. This is important because 

determination of TOC by pyrolysis is not sampled continuously. Use of density logs, on the other 
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hand, allows a continuous TOC record. Therefore, comparing core to log-calculated TOC values 

allows calibration of the log-calculated data.  

 

Schmoker (1979, 1993) looked at density logs of organic-rich, black shales and developed an 

equation to calculate estimated TOC using the density log and regional, non-organic shale 

densities. TOC was estimated from density logs using the equation: 

 TOC(%) = 55.822[(ρB/ρ) - 1],       (1) 

where TOC % is the weight percent of organic carbon, ρB is the most-dense interval of non-

organic, gray shale, and ρ is the density of the organic-rich black shale obtained from the log 

(Schmoker, 1993). Values for ρB are typically between 2.67 g/cm3 and 2.72 g/cm3 for 

Appalachian basin Devonian shale units (Schmoker, 1993). For the five wells in the study area, a 

ρB value of 2.70 g/cm3 was determined from shale intervals in both the Hamilton Group and 

Harrell Shale above the Burkett and Tully formations. Comparing gamma-ray intensities to the 

log-calculated TOC values for the study area, as gamma-ray values increase, log-calculated TOC 

generally increases (Figure 10). This indicates that as the density in the black shale decreases, the 

log-calculated TOC % increases, consistent with the results of Schmoker (1979, 1981 and 1993). 

Figure 10 indicates that the highest TOC values should be in the Harrison areas with values 

reaching as high as 9.0%, while the other three areas should have maximum TOC values 

between 6% - 7%.  

 

The core from Harrison Area 1 was sampled at nine depths within the 86-foot thick (26.2 meter) 

Marcellus section. Three samples were taken from each of the upper, middle, and lower 

Marcellus. Pyrolysis TOC ranged over the entire Marcellus from 0.58 - 8.03% (Table 1). The 
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Figure 10 – Relationship between gamma-ray intensity and log-calculated TOC in the Marcellus 
Shale for the five well logs across the study area. Trendlines indicate that in each area, as 
gamma-ray intensity increases, log-calculated TOC increases but at different exponential rates. 
Individual plots for each area are in Appendix A. 
 

TOC range was 0.58 – 4.71%, 1.70 – 3.98%, and 5.91 – 8.03% within the upper, middle, and 

lower Marcellus, respectively. Since log values were averaged over 0.5 feet (0.15 meters) 

intervals while the core values were measured using a 0.1 foot (0.03 meters) or less core slab, 

exact agreement was unlikely due to sampling bias. A plot of pyrolysis TOC versus log-

calculated TOC indicates a general agreement between the two methods for Harrison Area 1 

(Figure 11).  

 

The core from Central Taylor was sampled at eight depths within the 96-foot thick (29.3 meter) 

Marcellus section. Two samples were taken from both the upper and middle Marcellus and four 
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Figure 11 – Comparison of core-obtained TOC and log-calculated TOC in the Marcellus Shale 
for the three cores located in the study area. The unit-slope line indicates that there is a general 
agreement between the two methods of obtaining TOC values with log-calculated TOC slightly 
underestimated in the Central Taylor and Monongalia areas.  
 

samples from the lower Marcellus. Pyrolysis TOC ranged over the entire Marcellus from 2.42 - 

5.84%. The TOC % was 2.84 – 4.06%, 4.34 – 5.84% and 2.42 – 5.26% within the upper, middle, 

and lower Marcellus, respectively. There are few low TOC values for Central Taylor, likely due 

to sampling bias toward sections with higher gamma ray/lower density values that tend to have 

higher TOC. These points plot slightly below the unit-slope line indicating that the log-calculated 

values slightly underestimate TOC based on pyrolysis (Figure 11), likely due to sampling bias.  

 

The core for the Monongalia Area was part of the MSEEL project and subject to more extensive 

study than the Harrison and Central Taylor cores. Thirty-five pyrolysis samples were run within 
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the 99-foot (30.2 meter) thick Marcellus section. Of the samples tested, 10 were within the upper 

Marcellus, 13 in the middle Marcellus and 12 in the lower Marcellus, so each section was well 

represented. Pyrolysis TOC ranged over the entire Marcellus from 1.80 – 10.91%. The TOC % 

range was 3.19 – 5.16%, 2.60 – 7.21%, and 1.80 – 10.91% within the upper, middle, and lower 

Marcellus respectively. When comparing the log-calculated TOC to the core-derived TOC, there 

was a slight underestimation using the log-calculated method (Figure 11). With many more 

samples being tested in this core, it was likely that localized high-TOC zones would be seen in 

the core, while the density log used for the log calculation was averaged over a larger interval, 

which can suppress localized high TOC, low density sections. Core-to-log depth shifting may 

also be a factor. Underestimation may also have occurred due to the relatively higher log-

obtained density values used in the Schmoker equation.  

 

Although there is no core data available for Harrison Area 2 and Northeast Taylor, they were 

compared to the cores used in this study to determine if similar trends exist. Having shown that 

the log-calculated TOC for Harrison Area 1 was a good representation of core-derived TOC, it 

can be compared to log-calculated TOC values for Harrison Area 2. The log-calculated TOC 

values for Harrison Area 2 compared well to the log-calculated TOC values from the Harrison 

Area 1 (Figure 12). For the Northeast Taylor area, log-calculated TOC was compared to those 

values for Central Taylor and Monongalia areas. There is a close correlation for all data points 

among all three areas. When trendlines were compared, Central Taylor is most similar to 

Northeast Taylor (Figure 13). One factor to consider, however, is that log-calculated TOC was 

slightly underestimated when compared to pyrolysis TOC for the Central Taylor and Monongalia 

areas (Figure 11). While the log-calculated TOC for Northeast Taylor provided a reasonable  
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Figure 12 – Relationship between Harrison Area 1 log-calculated TOC and Harrison Area 2 
log-calculated TOC in the Marcellus Shale. Trendlines indicate similar behaviors with values 
close enough to assume Harrison Area 1 and Harrison Area 2 share similar TOC 
characteristics. 
 

estimation, it likely underestimated the actual TOC values for the same reasons considered 

above.  

 

Core and log-calculated TOC vs. gamma ray plots for each area are found in Appendix A. 

Pyrolysis TOC values were relatively similar across the study area with differences caused by 

sampling bias, scale, and sample density. Log-calculated TOC values varied between the areas, 

due to increasing density from west to east that resulted in underestimating log-calculated TOC 

in Central Taylor, Northeast Taylor, and Monongalia. Higher log-calculated TOC values were 

found in Harrison areas 1 and 2, despite lower gamma-ray values than the other three areas. This 
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contradicts Schmoker’s (1981) conclusion that higher TOC values correlate to higher gamma-ray 

values. 

 
Figure 13 – Relationship between Central Taylor, Monongalia, and Northeast Taylor log-
calculated TOC values in the Marcellus Shale. Trendlines indicate similar behaviors with values 
close enough to assume Central Taylor and Northeast Taylor areas share similar TOC 
characteristics. 
 

XRD Comparison 

Varying XRD mineral concentrations correspond to variations in concentrations of ions such as 

Ba, Ca, and Sr in produced water (Dresel and Rose, 2010). Mineralogy has a significant impact 

on the effectiveness of hydraulic fracturing and resulting hydrocarbon production due to the 

brittleness of various minerals. XRD data was available for the cores in Harrison Area 1, Central 

Taylor, and Monongalia. Harrison Area 1 and Central Taylor areas were limited to only nine and 

eight sampling points within the Marcellus Shale, respectively. Core Lab performed the XRD 
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analysis on these two cores. Extensive XRD analysis was performed on the Monongalia core 

(Hupp, 2017 and Hupp and Donovan, 2018) and were compared to ELAN logs to determine the 

accuracy of the logs for expansion across the entire Marcellus interval of each well. Mineralogy 

data was also compared to produced-water samples to determine if produced water can be 

predicted by relative concentrations of minerals present. As was the case with TOC, core-derived 

XRD results are taken from 0.1 foot (0.03 meters) or less core slabs, while ELAN logs were 

averaged across 6-inch (15.2-cm) intervals. 

 

XRD analysis and ELAN logs correlated relatively well with quartz content in the upper, middle, 

and lower Marcellus sections in Harrison Area 1 with differences in the upper values up to 6.4% 

(Table 2). ELAN logs overestimated clay content in each section compared to XRD mineralogy 

with differences ranging from 16.2% to 20.5%. Comparing ELAN results to XRD results for 

carbonate ranges showed an underestimation in the upper Marcellus, overestimation in the lower 

Marcellus, and similar values in the middle Marcellus. Pyrite and barite were both 

underestimated on the ELAN log compared to XRD. These differences may have resulted due to 

sampling density bias. Only nine core samples were run for XRD while the ELAN log average 

resolution was 0.5ft. (15.2cm). Small sample density in the core leads to a higher chance of 

missing high weight % zones picked up by the ELAN log. 

 

To better visualize the mineralogy data, core-derived values and log-derived values for quartz, 

clay, and carbonates were plotted on a ternary diagram (Figure 14A). The diagram shows that 

seven of the sample points for Harrison Area 1 contained predominately quartz and clay minerals 

with relatively low carbonate. Two samples showed significant carbonate content. The log- 
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Table 2 – Core-derived XRD and ELAN log mineralogy  for the upper, middle, and lower 
Marcellus taken from wells in Harrison Area 1, Central Taylor, and Monongalia. Core and 
ELAN logs are not available for Harrison Area 2 and Northeast Taylor. 
 

derived and XRD values were in generally good agreement with the log-derived quartz and clay 

content accounting for 40% to 60 % in most samples. Carbonates typically accounted for less 

than 30%, with many points near 0%. Few data points fell below 30% percent quartz or exceeded 

60% clay, indicating that quartz and clay were in relatively similar proportions. Data points with 

elevated carbonate represent the limey sections that are interbedded with the upper, middle, and 

lower Marcellus units. 

 

XRD data in the Central Taylor Area also suggest predominately quartz and clay prevalence with 

minor amounts of carbonates (Figure 14B). One data point in this interval represents nearly pure 

carbonate rock with <10% quartz and no clay. Compared to the ELAN mineralogy, there was 

some agreement although either the XRD data slightly overestimated quartz content or the log- 

Core XRD 
(wt.%)

ELAN Log 
(wt.%)

Core XRD 
(wt.%)

ELAN Log 
(wt.%)

Core XRD 
(wt.%)

ELAN Log 
(wt.%)

Depth (feet)
Quartz + Feldspars 6.4 - 53.5 20.2 - 53.6 37.9 - 48.9 24.5 - 51.7 17.0 - 37.0 17.5 - 78.8
Clay 7.8 - 46.2 23.4 - 66.7 36.7 - 43.3 34.1 - 65.7 40.0 - 78.0 12.0 - 68.1
Calcite + Dolomite 0.4 - 84.1 0.0 - 54.6 6.1 - 8.5 0.0 - 31.6 0.0 - 24.0 0.0 - 23.8
Pyrite 1.7 - 12.8 0.0 - 10.5 6.0 - 16.1 0.4 - 12.7 3.0 - 14.0 0.0 - 10.7
Barite 0 - 1.3 0.0 -0.6 N/A 0.0 - 2.6 0.0 - 3.0 0.0 - 1.4

Depth (feet)
Quartz + Feldspars 16.8 - 49.5 13.1 - 55.9 50.5 - 61.6 15.7 - 54.6 15.0 - 40.0 24.9 - 63.9
Clay 7.4 - 34.9 8.7 - 51.1 25.1 - 26.4 21.9 - 58.5 39.0 - 60.0 7.5 - 58.8
Calcite + Dolomite 6.4 - 72.5 0.0 - 74.2 3.6 - 14.4 0.0 - 56.1 0.0 -33.0 0.0 - 63.6
Pyrite 2.4 - 15.6 0.0 - 11.6 8.5 - 9.9 3.6 - 12.4 6.0 - 19.0 2.1 - 13.6
Barite 0.0 - 0.7 0.0 - 0.2 N/A 0.0 - 0.4 0.0 - 4.0 0.0 - 0.6

Depth (feet)
Quartz + Feldspars 36.2 - 60.4 25.7 - 64.2 5.5 - 63.6 9.8 - 50.3 9.0 - 39.0 27.9 - 58.1
Clay 6.7 - 22.5 11.8 - 42.1 0 - 19.9 14.0 - 62.4 0.0 - 59.0 5.5 - 53.6
Calcite + Dolomite 8.7 - 41.0 0.0 - 61.5 5.4 - 94.1 0.3 - 73.1 3.0 - 79.0 0.1 - 54.6
Pyrite 8.2 - 15.3 0.9 - 7.9 0.4 - 11.9 1.0 - 13.9 3.0 - 21.0 0.7 - 14.5
Barite 0.0 - 0.6 0.0 - 0.1 N/A 0.0 - 1.1 0.0 - 16.0 0.0 - 2.5

LOWER MARCELLUS
7,209 - 7,231 7,745 - 7,778 7,517 - 7,553

7,180 - 7,209 7,715 - 7,745 7,481 - 7,517

Harrison Area 1 Central Taylor Monongalia

UPPER MARCELLUS

MIDDLE MARCELLUS

7,145 - 7,180 7,682 - 7,715 7,454 - 7,481
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Figure 14– Ternary diagrams showing relationship among quartz, clay, and carbonate minerals 
from core-derived XRD and log-derived ELAN analysis. A). Harrison Area 1 shows a good 
correlation between core and log data. B.) Central Taylor shows an acceptable correlation with 
a possible underestimation of quartz in the log data. C.) Monongalia Area shows poor 
correlation at high quartz values, but good correlation at lower quartz values indicating a 
possible overestimation of quartz in the log data. 
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derived ELAN data slightly underestimated quartz content. In Central Taylor, quartz and clay 

minerals were the predominate minerals with carbonates typically making up less than 30%. In 

samples with little to no carbonate, quartz values ranged from around 30% up to about 55% with 

no values over 60%, indicating a larger proportion of clay minerals. This contrasted with 

Harrison Area 1, where quartz content was higher (Figure 14A). 

 

 In the Monongalia Area, XRD was run on 55 sample points from the core and provided a more 

robust data set to compare to the log-derived data. A comparison of core-derived XRD data and 

log-derived data indicated that log-derived data may overestimate quartz and underestimate clays 

(Figure 14C). The core-derived data correlate well with a portion of the log-derived data 

indicating there is some usefulness to the log data, but potential overestimation of quartz is 

likely. The lower quartz and higher clay content were similar to results for the Central Taylor 

Area, whereas Harrison Area 1 indicated a relatively higher quartz content. 

 

Fluid Recovery Behavior 

Studies looking at the fate of injected fluid after hydraulic fracturing have concluded that 100% 

fluid recovery in unlikely due to imbibition and natural leak-off of fluid into the formation 

(Byrnes, 2011, Engelder, 2012, Roychaudhuri, 2013). Estimates of returned fluid ranged from 

less than 50% (Engelder, 2012), to 30% ±10% (Byrnes, 2011), and 24% within the first 80 days 

(Roychaudhuri, 2013). These estimates do not consider production trends that typically result in 

forcing more fluid to the surface such as extended shut-in periods that induce higher well 

pressures or offset hydraulic fracturing that can influence behavior in neighboring wells. 

Regardless of factors influencing fluid recovery behavior, the wells in this study fell within these 
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estimates. The maximum fluid returned from any well was 39.3%. A further look at fluid 

recovery among the wells in this study showed that fluid recovery varies from area to area but 

tended to be consistent within a given area. Daily water production obtained from Arsenal 

Resources and the MSEEL project began on the first day fluid was returned after hydraulic 

fracturing until September 3rd, 2020. Some wells in Harrison and Taylor counties had minor data 

gaps. The data gaps were well after initial flowback during periods of lower fluid production so 

the gaps represented a small fraction of the overall fluid returned and relative to the total amount 

of fluid returned, did not significantly impact the percentage of fluid returned. 

 

Before considering the percent of fluid returned, it is important to note a couple of important 

developments in shale well drilling. Technical experience, technology, and the need for better 

economics resulted in the drilling of extended-reach, horizontal wells that have increasingly 

longer lateral lengths (Figure 15). The earliest wells in this study drilled in 2010-2011 had lateral 

lengths typically less than 5,000 feet (1,524 meters) compared to more recent wells drilled from 

2015-2018 and had lateral lengths extending over 9,000 feet (2,743 meters). Longer laterals led 

to an associated rise in the amount of fluid needed during hydraulic fracturing. This rise in fluid 

was not only caused by increased lateral length, but also by an overall increase in the average 

size of hydraulic fracturing jobs. Increased job size was observed as an increase in the amount of 

fluid pumped per 1,000 feet (305 meters) of lateral length (Figure 16). From 2010 to 2014, the 

average amount of fracturing fluid pumped was ~25,000 – 30,000 barrels per 1,000ft. (305 

meters) (Figure 16). This average rate steadily increased over time across all five areas of the 

study to an average of ~65,000 barrels per 1,000 feet (305 meters) in 2018.  
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Figure 15 – As experience and technology have progressed, horizontal-well lateral lengths have 
gotten progressively longer across the study area. Early wells have lengths typically less than 
5,000 feet (1,524 meters), while more recent wells have lateral length exceeding 9,000 feet 
(2,743 meters). Increasing lateral lengths can be seen in all five areas. 
 

Such increases in pumped volume could affect volumes of fluid return. The percent fluid 

recovered for the five areas in this study indicated that recovered percentage in each area tended 

to fall within a certain range, plus the possibility of outliers based on outside factors. To 

determine if returned fluid percentages varied among the five areas, the mean values and total 

spreads were compared (Figure 17). Four of the five areas had at least 14 wells hydraulically 

fractured with increasing lateral lengths and fluid pumped, so the data captured these variations 

in well design. The only area suffering from lack of data is the Monongalia Area where only four 

wells were analyzed. However, the wells were drilled in sets of two, four years apart, so they still  
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Figure 16 – As development progressed, the average hydraulic fracturing job increased in size. 
The amount of fluid pumped per 1,000 feet of lateral length has increased from ~25,000 bbls per 
1,000 feet in 2010 to ~65,000 bbls per 1,000 feet in 2018. 
 

captured changes in well design. The overall mean trend showed that wells in the Harrison 

County areas generally returned a higher percentage of fluid than wells in the Taylor and 

Monongalia areas. Additionally, Central Taylor returned a higher percentage than Northeast 

Taylor and Northeast Taylor returned a higher percentage than Monongalia. This trend indicates 

that as development moves east, a lower percentage of fluid is returned. When comparing the 

two Harrison County areas, the data for Area 2 completely fit within the range of Area 1. This 

indicates that fluid return behavior between these two areas was similar.  

 

The 16 wells in Harrison Area 1 returned ~13% to ~39% of the injected fluid, one the largest 

spreads of return percentage of any area in this study (Appendix B, Figure B-1). The amount of 
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Figure 17 – Range of fluid returned percentages in the five areas in this study. Harrison Areas 1 
& 2 tend to return a higher percentage of fluid followed by Central Taylor, Northeast Taylor, 
and Monongalia. As of September 2020, no well has returned >40% of the initial fluid load. 
 

time these wells have been returning fluid ranges from ~1,000 days (~2.7 years) to 3,600+ days 

(~10 years). The 7.3-year age difference between the oldest and youngest wells was the largest 

for the areas in this study.  Differences in well age only accounted for a minor amount of 

difference in returned fluid. Higher volumes of fluid recovery typically occurred within the first 

2 to 3 years, with lesser amounts returning over the life of the well. A more important variable 

affecting fluid return percentage was the aggressiveness of initial flowback. The oldest wells 

with the highest percentage of fluid returned tended to have much steeper slopes during initial 

return, indicating fluid returned much faster. Younger wells had a more gradual slope indicating 

more constrained initial flowback. At least six wells in this group showed a distinct rise in fluid 
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production after 1,000 days (2.7 years) of fluid recovery. This was likely caused by three main 

scenarios. The first involved an adjustment to the flow dynamics where the gas flow rate was 

decreased resulting in an increase in well pressure enabling the well to carry more fluid to the 

surface after pressure is released. These new flow conditions caused a spike in fluid production 

followed by a leveling-off period. The second scenario involved the complete shut-in of the well 

for a period of time that resulted in a large increase in wellhead pressure. This scenario resulted 

in a sharp increase in fluid production that is not as high as initial fluid production, but appeared 

to have a steady, long lasting effect. The third scenario involved continued well development in 

the area. Hydraulic fracturing of offset wells changed the pressure dynamic of the reservoir and 

more fluid was pushed into neighboring wellbores. This fluid was not fracturing fluid from the 

well undergoing hydraulic fracturing, instead it was original hydraulic fracturing and formation 

fluid being pushed back into the original wells. One of these scenarios occurred in each of the 

wells displaying renewed increases of produced water in Harrison Area 1 (Arsenal Resources, 

personal communication).  

 

Harrison Area 2 contains 18 wells and is located just south of Harrison Area 1. The wells in this 

area showed total returned fluid ranging from ~14% to just over 35% (Appendix B, Figure B-2). 

These wells have an age range of ~1,100 days (3.0 years) to ~2,600 days (7.1 years). In general, 

the wells in this area had similar early flowback patterns and remain clustered within a range of 

~10% with only three exceptions. These exceptions followed the same initial trends as the others 

but deviated due to changes in one of the production dynamics previously mentioned. The one 

well lagging behind the others in this area was not significantly different (<10%) as there were 
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some wells in Harrison County Area 1 that had similar recovered percentages (<15%), so it was 

not out of the ordinary for the Harrison County areas. 

 

The Central Taylor Area contains 18 wells and is located ~11 miles east of the Harrison County 

areas. The wells in this area had total fluid returns ranging from ~12% to ~40% and represented 

the largest spread in fluid return percentage among the study areas (Appendix B, Figure B-3). 

These wells had an age range of ~900 days (2.5 years) to ~3,600 days (10.0 years). The wells in 

this area clustered in a narrow range between 12% and 22%, except for two wells that were much 

higher, and shared similar curve shapes. Within the cluster, three wells showed a change in fluid 

return behavior that were caused by the same scenarios discussed in Harrison areas 1 and 2. The 

two wells that returned more fluid than the others started on a similar trajectory as the other wells 

but did not fall off at the same rate. These wells were particularly high producing, allowing for a 

more aggressive flowback program (Arsenal Resources, personal communication). In both wells, 

the produced-water curves have flattened, but are still returning fluid at slightly higher rates than 

the other wells in the area.  

 

The Northeast Taylor Area contains 14 wells and is located ~10 miles northeast of the Central 

Taylor Area. The wells in this area returned total fluid ranging from ~11% to ~22% (Appendix 

B, Figure B-4). These wells had an age range of ~1000 days (2.7 years) to ~2,300 days (6.3 

years) and fell into a similar range with no true outliers. A few wells returned a higher 

percentage than the others, but nothing on the scale of Central Taylor and Harrison County 

where a few wells in each area returned significantly more fluid than the rest. Like the other 

areas, there were a couple of wells whose behavior changed during production. This change in 
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behavior coincided with the hydraulic fracturing of neighboring wells, which similar to wells 

seen in Harrison Area 1, suggested offset development influenced fluid return behavior. 

 

The Monongalia Area contains 4 wells and is located ~9 miles north of the Northeast Taylor 

Area. The wells in this area returned total fluid ranging from ~5.5% to ~14% (Appendix B, 

Figure B-5). These wells had an age range of ~1,700 days (4.7 years) to ~3,200 days (8.8 years). 

The fluid return curves for the wells in this area were all similar with one well slightly higher 

than the rest. Percent fluid return in the Monongalia Area was significantly lower than the other 

areas in this study, which may be caused by the amount of time these wells have been shut in. 

Due to a limited gas market, seasonal curtailments for these wells were necessary. As of 

September 2020, one well had been shut-in a total of 735 days, and another shut-in 747 days. 

Shut-in times for the two newest wells were much lower at 94 days and 219 days. Interestingly, 

there was not a significant increase in returned fluid after the shut-in periods as observed in the 

other areas. This was likely caused by the highly restrictive flow rates the wells were subject to 

when turned back into production and limited fluid returned to the surface.  

 

Water Sample Analysis - Source water 

Analysis results of the source water used as makeup for hydraulic fracturing operations revealed 

low levels of TDS and major ions (Table 3). The TDS value for the West Fork River in Harrison 

County was 354 mg/L, for the Tygart River in Taylor County the value was 369 mg/L, and for 

the Monongahela River in Monongalia County, the TDS value was 300 mg/L. When looking at 

the combination of fracture stimulation chemicals and fresh water from the West Fork and 

Tygart rivers, the TDS increased slightly but was still <2,000 mg/L (TDS is 1,466 mg/L per sum 

of dissolved constituents or TDSsdc). There was significantly higher TDS (7,928 mg/L) in the 
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mixed-source makeup sample using a mixture of freshwater and produced water obtained from 

existing Marcellus wells in Harrison and Taylor counties. This was ~20x the TDS of freshwater, 

but still well below TDS values of produced water. Produced water made up 3 - 5% of the total 

volume of water used for hydraulic fracturing in Harrison and Taylor counties (Arsenal 

Resources, personal communication).  

 
Table 3- Concentration of TDS and major ions in source waters used for hydraulical fracturing 
across the study area. 
 

Ions tested for in the source water include Ba, Ca, Fe, Mg, K, Na, Sr, Cl, HCO3, and SO4. 

Concentrations of each of these ions remained low in the fresh waters sourced from the West 

Fork, Tygart, and Monongahela rivers (Table 3). The West Fork River had the highest 

concentration of Ca and Na. The Tygart River had the highest concentration of Mg and Cl. The 

Monongahela River had the highest concentration of Ba, Fe, K, Sr, and SO4. HCO3 was highest 

in both the West Fork and Tygart rivers, a value was not reported for the Monongahela River 

sample. There was a significant difference in Cl values among the West Fork, Tygart, and 

Monongahela samples, with West Fork and Tygart values 2.5x and 3.5x times higher than 

Monongahela values respectively. This difference in Cl levels may have resulted from the timing 

of the samples. The West Fork and Tygart samples were obtained in January, which in northern 

West Virginia, can be a particularly snowy period requiring varying amounts of road salt whose 

Source Source Area Sample Date pH
TDS1

(mg/L)
Ba

(mg/L)
Ca

(mg/L)
Fe

(mg/L)
Mg

(mg/L)
K

(mg/L)
Na

(mg/L)
Sr

(mg/L)
Cl

(mg/L)
HCO3 

(mg/L)
SO4 

(mg/L)
Charge 
Balance

West Fork River Harrison Co. 1/15/2019 7.85 354 0 56 0.1 9 0 49 0 125 51 63 -0.03%
Tygart River Taylor Co. 1/15/2019 7.78 369 0 52 0.2 27 0 36 0 175 51 28 0.27%

Monongahela River Monongalia Co. 11/11/2015 N/A 300 2 0.12 26 0.8 10 4 34 0.38 51 N/A 132.1 -4.31%
West Fork, Tygart & 

Produced Water
Harrison & 

Taylor
1/15/2019 5.36 7928 230 3 757 0.2 139 0 1926 0 3 4799 77 0 -0.10%

Frac Fluid & 
Fresh Water

Harrison &
Taylor

1/15/2019 N/A <2000 46 193 N/A 49 N/A N/A N/A 1100 56 22 -38.66%

ANIONS

3 = Barium and Strontium value was combined in 

CATIONS

2 = value from Phan et al., 2020

1 = TDS value calculated
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runoff can affect local chloride levels. The Monongahela River sample were taken in November, 

typically prior to road salt application. 

 

Major ion concentrations see a minimal rise when combined with the chemicals used in the 

hydraulic fracturing fluid. However, a large difference was observed in the ion concentrations of 

the mixture of fresh water from the West Fork and Tygart rivers combined with produced water 

from nearby Marcellus wells. There was a significant increase in Ba/Sr (reported together), Ca, 

Mg, Na, Cl, and HCO3. SO4 was lower in the mixed sample possibly due to dilution or the 

sample contained a concentration below the detection limit. Fe and K were relatively unchanged. 

The charge balance for these water samples was good, except the sample containing frac fluid 

and freshwater. Multiple cations were not tested in this sample, which could explain the large 

negative variance. Overall, the ion concentrations observed in source water samples were minor 

when compared to the concentrations in the produced water samples. 

 

Water Sample Analysis - Produced water 

For this study, produced water was defined as water produced by a well after it was hooked up to 

its final production equipment and all flowback equipment removed. Produced-water chemistry 

is an important piece of information to determine the interaction between the Marcellus 

formation and hydraulic fracturing fluid as wells age. Many studies (Blauch et al., 2009, 

Haluszczak et al., 2013, Engle and Rowan, 2014, Rowan et al., 2015, among others) have 

observed produced water behavior within the first few years of a wells production history. For 

this study, the 202 produced-water sample analyses spanned from samples taken within the first 

few months to samples taken after ten years of production. Samples were tested for TDS, Ba, Ca, 
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Mg, Mn, Fe, K, Na, Sr, Cl, HCO3 and SO4. The concentrations of Mn, HCO3, and SO4
 were 

typically low to non-detectable and were not considered individually. 

 

Charge Balance 

Charge balancing was performed on the produced water sample results to verify their validity. 

Charge balance was calculated using the equation: 

Charge Balance (%)=
Σ ∗

Σ ∗| |
 ,                                                                                  (2) 

where mi is the molal concentration of ion i and zi is the charge of ion i (Dresel and Rose, 2010). 

In general, charge balance was good, 115 of 202 samples (56.9%) had a charge balance of ±5%. 

Expanding further, 171 of 202 samples (84.7%) had a charge balance of ±10%, and 189 of 202 

samples (93.6%) had a charge balance of ±20% (Figure 18).  

 

Ions of sodium, calcium, and chloride were the largest cation and anion contributors to the 

charge balance, so any errors involving those ions would have a sizable impact on the results. 

Barium, strontium, and magnesium had the next largest effect on charge balance. Potassium was 

a minor component and not tested in multiple samples. The lack of potassium values did not 

have a large effect on the overall charge balance due to its generally low concentration as seen in 

other samples. Additionally, in most samples, sulfate was below the minimum detection limit, 

and assumed to be zero. This was a valid assumption as the minimum detection limit was low 

enough that any quantity below that value would have a negligible effect on the overall charge 

balance. 
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Across the study area, charge balances tended to skew negative indicating there are more minor 

cations not represented in the analyses than minor anions (Figure 18). The Harrison areas were 

most negative followed by Central Taylor and Northeast Taylor. The lone exception was the 

Monongalia Area which was positively skewed. The complete distribution of charge balances is 

shown in Figure 18 with a red box indicating the ±10% charge balance range. Excluding outliers, 

each area, except for Harrison Area 1, nearly fit within this ±10% range indicating acceptable 

charge balances.  

 
Figure 18 – Charge balance for each of the five area across the study area. Harrison Area 1 
shows the largest range of balancing error followed by Northeast Taylor, Central Taylor, 
Harrison Area 2, and Monongalia. The red box indicates +/-10% charge balance range. Most 
samples fall within or just outside the +/-10% charge balance range.  
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TDS and Ionic Concentrations 

Produced water samples were tested for TDS and ions of Ba, Ca, Mg, Mn, Fe, K, Na, Sr, Cl, 

HCO3 and SO4. A comparison of TDS against the sum of ions showed a good correlation 

indicating that these ions are make up nearly the entire TDS volume in the samples and no major 

constituents were excluded (Figure 19). A few samples plotted well above the line indicating 

more ions present than TDS, but most samples fell on the unit-slope line or very close. Harrison 

areas 1 and 2 values intermixed in the middle to upper ranges of the plot suggesting similar 

behavior. The Central Taylor, Northeast Taylor, and Monongalia areas intermixed in the middle 

to lower ranges of the plot, indicating those three areas share similar behaviors. 

 
Figure 19 – Plot of the sum of ion concentrations against TDS concentrations for the produced 
water samples from the five areas across the study area. Harrison areas 1 and 2 plot in the 
middle to upper ranges. Central Taylor, Northeast Taylor, and Monongalia areas plot in the 
middle to lower ranges. 
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TDS concentrations for each sample was grouped by area and displayed in a box and whisker 

plot (Figure 20). The plot shows that TDS values tended to be highest in Harrison County where 

Harrison Area 2 had a mean TDS value of 186,063 mg/L and Harrison Area 1 had a mean TDS 

value of 168,959 mg/L. Northeast Taylor had the third highest mean TDS value (122,403 mg/L) 

followed by Monongalia (110,034 mg/L) and Central Taylor (103,739 mg/L). The values 

for Northeast Taylor were slightly higher than those for Monongalia and Central Taylor, but 

much lower than the two Harrison Areas. There was a distinct difference among the areas with 

the Harrison areas mean TDS values >165,000 mg/L and the other three areas mean TDS values 

<123,000 mg/L.  

 
Figure 20 – Box and whisker plot of TDS concentrations across the five areas of the study. 
Harrison areas 1 and 2 show similar values that are distinctively higher than the Central Taylor, 
Northeast Taylor, and Monongalia areas, which show similar values. 
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Individually, chloride had the highest concentrations in each of the studies areas and was by far 

the highest anion with HCO3 second highest. In nearly every sample, SO4 was below the 

minimum detection limit and considered to be zero. Cation concentrations were the highest for 

Na followed by Ca, Ba, Sr, Mg, K, Fe, and Mn. Box and whisker concentrations plots for each 

ion except, Mn, HCO3 and SO4, are in Appendix C. Mean ionic concentrations for Ca, K, Mg, 

Na, Sr, and Cl were highest in Harrison areas 1 and 2 with mean values that are relatively close, 

indicating similar rock characteristics and interactions with hydraulic fracturing fluid. Mean Ba 

concentrations are highest in Northeast Taylor but only slightly higher than Monongalia and 

Central Taylor. All three those area had mean Ba values noticeably higher than both Harrison 

areas. Additionally, Central Taylor, Northeast Taylor, and Monongalia had relatively similar 

mean values for Ca, K, Mg, Na, Sr, and Cl, with Northeast Taylor typically having the highest. 

This indicated similar rock characteristics and rock-fluid interactions among those three areas. 

Only mean iron concentrations were similar among all five areas. Monongalia had the highest 

mean concentration that was ~100 mg/L higher than Northeast Taylor, the lowest mean 

concentration. Overall, ionic concentrations indicated that produced water from Harrison Area 1 

and Harrison Area 2 were ionically similar and produced water from Central Taylor, Northeast 

Taylor and Monongalia were ionically similar (Figure 21). All produced water sample analysis 

results are in Appendix D. 

 

Ion Concentrations as Percentage of TDS 

Ionic concentration results of the 202 produced water samples indicated distinct differences in 

produced water among the five areas. Harrison areas 1 and 2 typically had higher TDS 

concentrations and showed similar trends in ionic concentrations, whereas Central Taylor,  
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Figure 21 – Ternary plot of mean equivalent ratios of cations from produced water samples. A.) 
Mean ratios of Na, K, Ca, and Mg indicate that produced waters in Harrison areas 1 and 2 are 
ionically similar, but vary from Central Taylor, Northeast Taylor, and Monongalia, which are 
ionically similar. Note that the Ca and Mg scales are truncated at 50% B.) Mean ratios of Ba, 
Ca, and Sr also indicate similarities between Harrison areas 1 and 2, but differ from Central 
Taylor, Northeast Taylor, and Monongalia, which are ionically similar. However, Northeast 
Taylor does show slightly more Ba and less Ca than Central Taylor and Monongalia. Note that 
the Ba and Sr scales are truncated at 50%.  
 

Northeast Taylor, and Monongalia areas showed similar ionic concentrations, but at lower 

concentrations than the Harrison areas, apart from Ba. With the highest TDS values in the 

Harrison areas, it is not unexpected that those areas had the highest concentrations of the other 

ionic constituents (except Ba). To correct for this difference, proportional ionic concentrations 

were determined and compared for Ba, Sr, Ca, Na, and Cl. Other minor ions such as K, Fe, Mn, 

HCO3 and SO4 were combined into one category named “Other”. 

 

When comparing the proportionality of ion distribution to concentrations, some new 

observations were evident. Overall, chlorides accounted for most of the anions in all areas and 

accounted for slightly more of the total TDS in Harrison Area 1 (63.5%) and Harrison Area 2 
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(63.1%) than in Central Taylor (59.2%), Northeast Taylor (59.5%), and Monongalia (58.4%) 

(Figure 22). Sodium was the second-highest percentage in all five areas. Sodium concentrations 

(Appendix C, Figure C-6) showed higher levels in Harrison areas 1 and 2 than the other three 

areas, but when considered as a percent of total TDS, sodium made up a larger percentage in 

Monongalia (26.1%), Northeast Taylor (25.5%), and Central Taylor (23.1%) than in Harrison 

Area 1 (20.9%) and Harrison Area 2 (21.3%). Calcium was the third-highest ion and made up a 

larger percentage in Harrison Area 1 (11.2%) and Harrison Area 2 (11.0%), than in Central 

Taylor (8.2%), Northeast Taylor (7.5%) and Monongalia (8.4%). Similar to its concentration, 

barium made up a larger percentage in Northeast Taylor (4.6%), Central Taylor (3.9%), and 

Monongalia (3.9%) than in Harrison Area 1 (1.2%) and Harrison Area 2 (1.5%). When 

considering magnesium and strontium, both concentrations were slightly higher in Harrison areas 

1 and 2, but when considered as a percentage of total TDS, both make up roughly the same 

percentage across all areas. Magnesium proportion ranged from 0.7% to 1.2% and strontium 

ranges from 1.8% to 1.9%. One particular result of note was the slightly elevated “Other” 

category proportion in Central Taylor (2.8%) versus the other four areas (0.1% to 0.5%). Several 

samples in Central Taylor had elevated iron concentrations relative to the rest of the samples. 

This was primarily observed in a few of the oldest, low-fluid producing wells in Central Taylor 

and likely the result of operational procedures as opposed to geochemical reactions, although 

precipitation of dissolved iron from pyrite cannot be completely ruled out. When considering ion 

concentrations as a percentage of TDS, it was again evident that Harrison areas 1 and 2 shared 

similar traits that differ from Central Taylor, Northeast Taylor, and Monongalia, which shared 

similar traits. 
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Figure 22– Mean proportional concentrations of ionic constituents of all produced water 
samples across the five areas in this study. Similar distributions exist between Harrison areas 1 
and 2, but differ from Central Taylor, Northeast Taylor, and Monongalia, which share similar 
proportions. 
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Ion Behavior Over Time 

One important feature of this study was the time period over which samples were obtained. As 

previously mention, with few exceptions (e.g. Ziemkiewicz, 2017) most studies focused on the 

first few months or years of a well’s lifespan. Some wells in this study had produced water 

samples taken within the first two years of production giving a picture of produced water 

characteristics in the early life cycle of the well, and subsequently sampled later in the life cycle 

(5 – 10 years) giving a window into produced water variations during the mid-life cycle of the 

well. In this section, proportional concentrations over time and total concentrations over time 

were considered to determine if the long term changes in produced water are similar to the 

extrapolated prediction made from early studies, or if extended sampling indicated dynamic 

behavior over the lifespan of Marcellus wells. 

 

Of the 74 wells in this study, twelve wells were sampled at least five times over their existing 

lifespan, with another seven wells tested four time over their lifespan (Table 4). Examining the 

wells with the highest number of samples provided the best insight into variations over time. 

Looking at one of the oldest wells from the Central Taylor Area showed that ionic proportions 

were relatively consistent over time (Figure 23). The biggest change in proportion occurred 

 
Table 4– Number of produced water samples taken per well across the five areas in this study. 
Age range and total number of samples taken in area is also shown. 

Harrison 
Area 1

Harrison 
Area 2

Central
Taylor Area

Northeastern
Taylor Area

Monongalia
 Area

Number of Wells 20 18 18 14 4
Oldest Well (Years) 10.1 7.9 10.2 6.9 8.9
Youngest Well (Years) 2.8 3.2 2.5 2.9 4.8
Total # Produced Water Samples 48 30 54 46 24
# Wells with 5+ samples 0 3 5 3 2
# Wells with 4 samples 4 0 2 0 0
# Wells with 3 samples 8 0 4 10 0
# Wells with 2 samples 0 0 2 1 0
# Wells with 1 sample 8 15 5 0 0
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between the first and second sample taken at 390 days and 452 days after flowback began. After 

the sample taken at 452 days, the relative proportions stabilized and remained in a relatively tight 

range. Across all five areas, most wells with multiple samples exhibited similar behavior. In 

some instances, a single sample strayed from this trend, but typically fell back to the expected 

range in the subsequent sample. Evidence from these produced water samples suggested that 

typically, during Year 2 of production, ionic proportions stabilize and remain in a small range 

moving forward. Ziemkiewicz (2017) noted this behavior while observing produced water 

associated with the wells in the MSEEL study in the Monongalia Area. Those wells were ~5 

years old at that time. The data presented in this section confirmed those observations and 

extended them into the other areas of this study, and extended them over time, up to 10 years for 

some wells. 

 

The previously discussed data illustrated that ionic proportions of produced water stayed within a 

small range after the first 1 to 2 years of production. However, ion concentrations exhibited 

variations during a well’s life cycle as well as varying behaviors across the five areas in this 

study. Initially all five areas followed the expected behavior that TDS concentrations, along with 

the various ions, increased during the first couple years following hydraulic fracturing. This was 

indicated by the low TDS and ion concentrations found in the source water compared to the high 

concentrations seen in produced water samples over time. Typically, between year one and year 

two, the wells began displaying varying behaviors regarding TDS concentrations. 

 

Harrison Area 1 showed the most varied TDS behaviors over time. Four wells with four or more 

samples, and one well with three samples were plotted over time (Figure 24). Two wells showed 
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Figure 23 – Proportion of ionic concentrations from one of the oldest wells in the Central Taylor 
Area. Pie chart show that during the second year of production, ionic proportions stabilize and 
remain within a small range over the life of the well. For this well, ionic proportions observed on 
Day 452 are similar to proportions seen on Days 936, 1,361, and 3,162. 
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a continuous decline in TDS concentrations over time. One well showed a general decline with 

the third sample, taken near Day 1,100, higher than the previous two samples, followed by 

another decrease. One well showed a general increase over time, with the third sample near Day 

1,100 lower than the rest. One well had four samples that alternated higher and lower with a 

general increase in TDS concentrations. The remaining wells with multiple samples displayed a 

variety of these behaviors with some generally increasing TDS concentrations over time and 

others decreasing over time. In the previous section, it was discussed that ionic proportions 

stayed relatively similar over time. While this remains true, some wells in Harrison Area 1 

showed increases in iron, strontium, and barium concentrations over time. These increases were 

modest when considered at the ion level, however, when considered at the total TDS level, the 

increases were not large enough to significantly alter the relative proportions of the ions. 

 
Figure 24 – TDS concentrations for five wells in Harrison Area 1 with four samples and one 
well with three samples. TDS concentrations indicate multiple behaviors over time including 
both general increases and decreases. 
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In Harrison Area 2, three wells with five samples each were plotted to observe TDS variations 

over time. (Figure 25). Unlike Harrison Area 1, the wells in Harrison Area 2 showed relatively 

similar behaviors. All samples showed a general decrease in TDS concentration over time that 

became more pronounced if only samples taken after 365 days were considered. One well had a 

fifth sample much higher than its fourth sample, but still lower than the maximum TDS 

concentration seen in the second sample. Overall, the slope of the trendlines indicated a slower 

rate of decline in Harrison Area 2 than in any of the other four areas  

 

TDS concentrations over time are much different in the Central Taylor Area than in both 

Harrison areas. Five wells with five samples indicated steadily decreasing TDS concentrations 

over time (Figure 26). The rates of decrease were faster than those seen in Harrison Area 2, and 

most samples showed TDS concentrations less than the previous sample indicating little 

oscillation over time.  Four of the maximum concentrations are seen within the first two years. 

The only well that did not fit this description had a long period between its second and third 

samples, so the maximum concentration likely occurred during time and was not observed due to 

the extended period between samples.  

 

The Northeast Taylor Area contained three wells with five samples each taken since initial 

flowback began. These samples showed similar traits to those observed in Central Taylor. There 

was a general decrease in TDS concentrations over time at a rate higher than those found in 

Harrison Area 2 (Figure 27). Two of the three wells showed maximum TDS values within the 

first 300 days of production with the third well having its maximum within 700 days again an 

indication that maximum TDS concentrations occur within the first two years of production. 
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Figure 25 – TDS concentrations for three wells in Harrison Area 2 with five samples each. 
Concentrations indicate a general decrease in TDS concertation over time, particularly 
considering samples taken after the 365 days. One well shows a significant increase between 
sample four and five but maintains a slight decreasing trend. 
 

 
Figure 26 – TDS concentrations for five wells in Central Taylor with five samples each. 
Concentrations indicate a general decrease in TDS concertation over time, particularly samples 
taken after the 500 days. 
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Multiple samples in this area had higher TDS concentrations subsequent to a previous sample, 

however, the most recent sample collected for each well indicated the lowest TDS concentrations 

to date, indicating that while concentrations fluctuated between samples, they still declined over 

time and remained well below maximum TDS concentrations. 

 

The Monongalia area contains four wells, two of which have produced water samples used in 

this study. Each well had 12 samples, however all but one of these sample was taken prior to day 

500 of production. As a result, the trendlines reflect this early lifespan data and do not represent 

data trends after the first two years. One sample taken for each well after Day 1,700 showed 

behavior that mirrors Central Taylor and Northeast Taylor (Figure 28). Both wells showed 

maximum TDS concentrations between year one and year two after which TDS concentrations 

began to decline. A decrease in TDS concentrations over time was also reported for two wells 

associated with the MSEEL project not included in this study (Ziemkiewicz, 2017).  

 

When considering individual ion concentrations overall, the major ions (Ca, Na, and Cl) tended 

to follow the overall trend of TDS concentrations, but occasionally fluctuated away from this 

behavior. There were some cases of minor ion concentrations such as barium, strontium, and iron 

increasing while overall TDS decreased. This did not have a large effect on the overall ionic 

proportions, as the major ions significantly overshadowed the minor ions. The only time this was 

significant was a few samples in the Central Taylor Area where TDS concentrations were 

extremely low (<6,500 mg/L) and iron made up a significantly higher proportion of ions, which 

could be caused by iron processes not mentioned in this study. 
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Figure 27 – TDS concentrations for three wells in Northeast Taylor with five samples each. 
Concentrations indicate a general decrease in TDS concertation over time. Some minor 
increases may be seen from one sample to the next, but the increase is lower than maximum TDS 
concentrations. 
 

 
Figure 28 – TDS concentrations for two wells in Monongalia with 12 samples each. Samples 
show maximum TDS concentrations in the first 1 to 2 years.  Samples taken after ~500 days 
indicate a general decrease in TDS concertation over time.  
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DISCUSSION 

The results of the tests performed across the five areas in this study indicated that geologic 

differences exist across the study area. These differences were observed in both traditional rock 

analysis methods like XRD, pyrolysis, and well logs, as well geochemical methods using 

produced water samples.  Additionally, analyzing produced water samples provided some insight 

into fluid-rock interactions that may have occurred, which could explain differences in 

production among the areas. 

 

Well Log and Core Data 

The first indication of geological differences among the five area was observed simply by 

looking at the normalized gamma-ray logs. Harrison areas 1 and 2 had a slightly hotter gamma-

ray value in the upper Marcellus than Central Taylor, Northeast Taylor, and Monongalia (Figure 

8). This trend reversed when looking at the middle and lower Marcellus. Central Taylor, 

Northeast Taylor and Monongalia had noticeably higher gamma-ray intensities across those 

sections than the Harrison areas with the biggest gamma-ray difference in the lower Marcellus. 

Variations were also observed in the density curves where the Harrison areas had lower densities 

than the other three areas. To determine if the difference in gamma ray and densities were caused 

by differences in organic content, studies performed by Schmoker (1979, 1981, 1993) 

associating gamma-ray intensity to TOC content in Appalachian black shales were considered.  

 

Schmoker concluded that black shales tended to have higher gamma-ray intensities because of 

the association between uranium and organic matter content (Schmoker 1981, 1993). To 

determine if the gamma ray and density differences across the study area varied due to changing 
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organic content, gamma-ray values and log-calculated TOC values were determined from well 

logs and compared to TOC values derived from cores using pyrolysis. Figure 11 indicated that 

log-calculated TOC values provided a relatively good estimation of TOC with slight 

underestimation in Central Taylor, Northeast Taylor, and Monongalia. As expected, both log-

calculated and core-derived TOC increased as gamma-ray values increase (Charts in Appendix 

A). Comparisons among the five areas showed that the highest log-calculated TOC values were 

in the Harrison areas with slightly lower values in the other three areas. This was contrary to 

Schmoker’s conclusion of higher gamma-ray values indicated higher TOC, although Schmoker 

acknowledged local variations exist. While the difference could be caused by limited sampling 

from the Harrison Area 1 and Central Taylor cores, mineralogy and produced water samples may 

provide insight into the difference between areas. 

 

When comparing mineralogy among the areas in this study, it was determined that ELAN logs 

were adequate for estimating relative quartz, clay, and carbonate content for Harrison Area 1 and 

Central Taylor. This was important given the low XRD sampling density from the cores. In 

Monongalia, higher density XRD sampling was performed and showed that the ELAN log for 

that area overestimated the amount of quartz, so XRD values were used for comparison to 

Harrison Area 1 and Central Taylor (Figure 16). When averaging quartz, clay, and carbonate 

weight % with no kerogen across the entire Marcellus interval, Harrison Area 1 had 42.2%, 

40.3%, and 12.3% respectively. Central Taylor had 36.3% quartz, 44.6% clay, and 12.1% 

carbonate. Monongalia had 31.2% quartz, 48.7% clay, and 8.3% carbonate. The remaining 

weight % was composed of mainly pyrite and ~1% or less of barite. These mineralogy results 

showed similarities between Central Taylor and Monongalia in that clay minerals comprised the 
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highest proportion of the formation. In both cases, there was significantly more clay minerals 

than quartz minerals. The opposite was observed in Harrison Area 1 where quartz minerals 

comprised a slightly higher proportion of the formation than clay minerals. Carbonate minerals 

accounted for similar proportions in all areas with < 1% difference between Harrison Area 1 and 

Central Taylor with those two areas having ~4% more than Monongalia. The slightly lower 

proportion in Monongalia could be the results of sampling gaps that missed higher carbonate 

sections of the core. Regardless, carbonate among the three areas was relatively close. 

Mineralogy ultimately tied back to gamma-ray intensity in that quartz and carbonate minerals 

have lower gamma-ray intensities than clay minerals. Since Harrison Area 1 shows a higher 

percentage of quartz minerals and slightly more carbonate than Central Taylor and Monongalia, 

it may have caused the slightly lower gamma-ray intensities in the Harrison areas even though 

pyrolysis and log-calculated TOC values were similar among all areas. 

 

Differences in quartz, carbonate, and clay mineralogy likely accounted for gamma-ray intensity 

variations across the study area and produced water analysis results provided additional evidence 

that mineralogical differences exist. Harrison areas 1 and 2 showed higher calcium and strontium 

concentrations than Central Taylor, Northeast Taylor, and Monongalia. Alternatively, barium 

was higher in Central Taylor, Northeast Taylor, and Monongalia than in the Harrison areas. It 

should also be noted that core-derived XRD values for barite were slightly higher in Central 

Taylor and Monongalia than in Harrison Area 1. Studies suggested that elevated calcium and 

strontium values were caused by carbonate alteration associated with limestone and other 

carbonates, while elevated barium values were caused by silicate/clay alteration typically 

associated with shales (Dresel and Rose, 2010, Chapman et al., 2012, and Phan et al., 2020). 
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Low concentrations of both strontium and barium were typically found in sandstones. If higher 

calcium and strontium concentrations were associated with higher limestone content, then 

produced-water samples indicated a more carbonate-rich Marcellus section in the Harrison areas 

than in the other three areas. Since XRD showed relatively similar carbonate proportions across 

the study area, the excess carbonate may reside in carbonate cement or a higher-density of 

calcite-filled, microfracture networks. Higher carbonate content in the rock would result in a 

relatively lower gamma-ray intensity when compared to Central Taylor, Northeast Taylor, and 

Monongalia, which had elevated barium values typical of shale and result in higher gamma-ray 

intensities.  

 

Carbonate Dissolution 

Multiple studies have found varying amounts of carbonate dissolution within the Marcellus Shale 

(Chapman et al., 2012, Phan et al., 2020, Sharma et al., 2021). The primary sources of carbonate 

from dissolution during fracture stimulation could be carbonate cements, calcite-filled fractures, 

and limestone itself. Dissolution of in-situ carbonates was likely initiated by acid run during each 

stage of hydraulic fracturing. Indicators of carbonate dissolution in produced water were found 

by comparing Sr/Na ratios and Ca/Na ratios to Cl concentrations. A recent study looked at Sr/Na 

and Ca/Na ratios for two wells in the MSEEL project and determined pathways that indicated 

either fracturing fluid mixing with formation water, pure formation water, or carbonate cement 

dissolution (Phan et al., 2020). Superimposing the Sr/Na and Ca/Na ratios vs. Cl values for the 

five areas in this study showed samples falling in all three pathways (Figure 29).  Two 

Monongalia wells that used the same produced water samples in both studies have data points 

that sit directly on top of one another. Central Taylor, Northeast Taylor, and Monongalia samples 
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showed extensive mixing with formation water, with some sample having a high enough Sr/Na 

and Ca/Na ratios combined with chloride concentrations to be considered formation water. Some 

Central Taylor samples showed signs of carbonate cement dissolution when observing Sr/Na 

ratios. Samples from Harrison areas 1 and 2 indicated some mixing with formation water, but 

most of the samples have Sr/Na and Ca/Na ratios higher than the path expected for pure 

formation water indicating that some degree of carbonate dissolution occurred. When 

considering TDS over time, Harrison areas 1 and 2 displayed different behaviors than the other 

three areas which may indicate dissolution is occurring well after hydraulic fracturing ceased or 

the influence of rock-fluid interactions that occurred during hydraulic fracturing are still being 

observed years later. This may also explain the higher TDS concentrations observed in the 

Harrison areas. 

 
Figure 29 – A.) Sr/Na vs Cl for all samples across the five areas in the study. B.) Ca/Na vs. Cl 
for all samples across the five areas in this study. Samples are compared to those plotted by 
Phan et al., (2020) showing three pathways for produced water samples. Results indicate 
Central Taylor, Northeast Taylor, and Monongalia samples are mixed formation water and 
fracturing fluid trending toward formation water. Harrison areas 1 and 2 samples indicate pure 
formation water mixing with carbonate dissolution (modified from Phan et al., 2020). 
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Other than carbonate dissolution, elevated Ca/Na ratios could be the result of calcium-rich brines 

sourced from the Silurian (Hanor et al., 2006, Dresel and Rose 2010.). However, a study 

performed looking at this scenario in similar geologic settings in the Illinois and Michigan basins 

did not show trends that indicate progressively evaporated CaCl2-rich Silurian seawater as the 

source (Hanor et al., 2006). The study determined that the Mg/Ca ratios were significantly less 

than evaporated Silurian seawater and therefore Silurian-aged brines could not be the source. 

Indeed, many studies concluded that Marcellus brines resulted from evaporated seawater 

typically associated with other Devonian-age brines in the Appalachian Basin (e.g. Dresel and 

Rose, 2010, Haluszczak et al, 2013, and Rowan et al., 2015). Comparing the Na+K, Ca, and Mg 

concentrations from this study to those in Rowen et al., (2015) show very similar pathways exist, 

particularly between southwest PA, Central Taylor, Monongalia, and Northeast Taylor (Figure 

30). Harrison Area 1 and Harrison Area 2 samples plotted nearly in the middle of the 

 
Figure 30 – Ternary plot comparing equivalent ratios of major cations in Marcellus Shale water 
samples. Samples from this study are superimposed on plot from Rowan et al.,2015 to show 
similar pathways from evaporated seawater to produced water compositions for samples taken 
from northcentral and southwest PA. (modified from Rowan et al., 2015). 
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northcentral PA and southwest PA samples, with slight trending toward southwest PA. These 

pathways indicated that some of the excess calcium in the Harrison areas likely originated from 

evaporated seawater, however, the plotted Sr/Na and Ca/Na ratios indicated some carbonate 

dissolution occurred. 

 

TDS Evolution over Time 

As previously mentioned, most studies looking at Marcellus Shale produced water chemistry 

focused on the first few years of production. These studies consistently showed rapidly 

increasing TDS and ionic concentrations over the first months of fluid return followed by a 

leveling off period. These maximum TDS concentrations were thought to represent formation 

water and be characteristic of produced water moving forward (Rowan et al., 2015, Kondash et 

al., 2017, Osselin et al., 2018). In this study, results of produced water samples spanning up to 

ten years from initial fluid production indicated this is not always the case and in fact, most wells 

in this study exhibited declining TDS concentrations after the second year of production.  

 

In general, TDS concentrations tended to reach maximum levels between year 1 and year 2 of 

production with some wells reaching maximum concentrations later (Figures 26 – 30). This was 

followed by varying rates of decreasing TDS levels.  Harrison Area 1 was the only area in this 

study with multiple wells showing significantly increasing TDS concentration over their lifespan. 

Harrison Area 2 displayed relatively flat, to slightly decreasing TDS concentrations. Central 

Taylor, Northeast Taylor, and Monongalia showed significant declines in TDS concentrations 

over time. A few wells in Northeast Taylor had slight TDS increases between samples, but a lack 

of sampling during year 2 likely missed the TDS maximum so a true decline cannot be 

determined without continued testing. Differences in behavior could be caused by continued 
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carbonate dissolution in the Harrison areas that keeps the TDS concentrations elevated compared 

to the other areas. The different behavior could have also resulted from a higher volume of 

formation fluid released during fracturing or a better fracture network that resulted in more rock-

fluid interactions. The last two could also explain the higher fluid return percentages in the 

Harrison areas. 

 

To determine the potential TDS contribution from formation water, a mass balance approach was 

developed using the equation: 

 Percentage of Final TDS =
( )  (  )

( )  (  )
,    (3) 

where TDS(x) is the TDS of water at day x after hydraulic fracturing, TDS (final) is the 

maximum TDS reported, and TDS (day 1) is the TDS of the water on Day 1 of flowback, 

representing 0% brine contribution (Kondash et al., 2017). This approach is useful to 

characterize the composition of produced water over time and describe well behavior. In some 

instances, TDS concentrations fluctuated higher and lower over time indicating dynamic 

fracturing fluid to formation water ratios. Using this ratio over time may show slugs of fracturing 

fluid coming back to the surface that were trapped by pressure blocks or indicate the opening of 

a previously non-producing perforation or fracture network. Alternatively, a decrease in TDS 

concertation over time may represent exhaustion of available formation water or a reduction in 

carbonate dissolution and other rock-fluid interactions. 

 

Influence on Natural Gas Production 

One important reason for understanding geological behaviors is to maximize natural resource 

extraction in the most cost-effective manner. Results presented in this study show distinct 
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differences in produced water chemistry, fluid return behavior, well log signatures, TOC, and 

mineralogy across the study area. Harrison Area 1 and Harrison Area 2 shared many of the same 

geological traits, while Central Taylor, Northeast Taylor, and Monongalia areas shared similar 

traits that differed from the Harrison areas. To observe the effect these variations had on 

production, daily natural gas production was obtained for all 74 wells in this study. To normalize 

production for varying lateral lengths, daily cumulative production was divided by total lateral 

length to produce a value given in thousand cubic feet per lateral foot (mcf/ft). 

 

Normalized cumulative production for the first 2,000 days (~5.5 years) of each well showed 

ranges that again varied by area. Wells in Harrison Area 1 generally fell between 600 – 900 

mcf/ft with a few wells above and below that range (Figure 31A). Wells younger than 2,000 days 

followed trends that should exceed 600 mcf/ft by the time they reach that age. Wells in Harrison 

Area 2 also generally fell between 600 – 900 mcf/ft (Figure 31B). Two wells fell just below 600 

mcf/ft with one additional well around 500 mcf/ft. Several wells were on pace to exceed 900 

mcf/ft when they reach 2,000 days of production. Similar to observed geologic trends, Harrison 

areas 1 and 2 shared very similar production trends. Also similar to geologic trends, production 

rates differed moving east to the other three areas. Central Taylor had a general production range 

of 400 – 700 mcf/ft with only two wells exceeding that rate (Figure 31C). Multiple, younger 

wells were on pace to exceed this range, with no wells testing the lower boundary. Only three 

wells in Northeast Taylor exceeded 2,000 days in production, but they indicated a range of 400 – 

700 mcf/ft (Figure 31D). Of the wells yet to reach 2,000 days, a couple may exceed the upper 

range and one may stay below the lower range. The Monongalia area had the fewest wells 

among the five areas and showed a production range of 400 – 800 mcf/ft (Figure 31E). Two 
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wells have yet to reach 2,000 days, but they were also the higher producing wells and projected 

the upper range of 800 mcf/ft. In many of the geologic aspects discussed, Central Taylor, 

Northeast Taylor, and Monongalia shared similar traits with minor variations; this was again the 

case when considering production ranges over the first 2,000 days.  

 

Differences in gas production among the five areas can be related to geologic trends. Harrison 

areas 1 and 2 show slightly higher cumulative production rates than the other three areas. 

Potential reasons this was occurring can be linked back to TOC, mineralogy, or carbonate 

dissolution. Log-calculated TOC values indicated higher content in the Harrison areas and higher 

TOC is a good indication of higher gas content. However, underestimated log-calculated TOC 

values in Central Taylor, Northeast Taylor, and Monongalia and low sample density in Harrison 

Area 1 made it difficult to determine the relative differences. Mineralogy reveals that Harrison 

areas 1 and 2 had a higher quartz content, whereas Central Taylor, Northeast Taylor, and 

Monongalia had a higher clay content. This is important because more brittle minerals such as 

quartz tend to produce a better fracture network during hydraulic fracturing whereas clay 

minerals absorb more energy before fracturing leaving less energy to propagate fractures. 

Additionally, minerals such as quartz have less ability to adsorb gas than clay minerals, so the 

ratio of free gas to adsorbed gas is higher when more quartz minerals are present (Wang and 

Carr, 2012). Higher clay content in Central Taylor, Northeast Taylor, and Monongalia was also 

indicated from produced water samples. Barium concentrations were higher in those three areas 

and higher barium concentrations indicate more clay-rich shale (Dresel and Rose, 2010). Higher 

calcium and strontium concentrations in produced water from Harrison areas 1 and 2 indicated a 

higher carbonate content, possibly as carbonate cement, which would also lead to increased  
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Figure 31 – Cumulative gas production for the first 2,000 days (~5.5 years) in each area 
normalized to mcf/ft. A.) Harrison Area 1 has a typical range of 600 – 900 mcf/ft with a few 
wells above and below this level. B.) Harrison Area 2 has a typical range of 600 – 900 mcf/ft. 
with only one well significantly below this level. C.) Central Taylor has a typical range of 400 – 
700 mcf/ft with two wells above this level. D.) Northeast Taylor has a typical range of 400 – 700 
mcf/ft with no wells exceeding this range and a few below. E.) Monongalia has a typical range of 
400 – 800 mcf/ft will all wells currently in this range.  
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brittleness allowing for more effective fracturing. The higher calcium and strontium 

concentrations indicated more carbonate dissolution may be occurring in the Harrison areas. This 

would enhance porosity and permeability, opening additional and bigger pathways for the gas to 

flow to the wellbore. This would also explain the generally higher percentages of produced fluid 

returned across the Harrison areas. 

 

While geologic factors are paramount in determining the ultimate amount of gas that can be 

extracted from the reservoir, it should be noted that extenuating factors outside of geologic 

differences play a role in cumulative production. Completion practices with differences in stage 

spacing, proppant concentrations, completion fluid composition and other factors have changed 

over time. Gas market restrictions that require wells to be shut-in for extended periods or flowed 

at rates lower than maximum can suppress cumulative production. Operational shut-ins related to 

compressor shut-downs, pipeline and well maintenance, or hydraulic fracturing of offset wells 

also influence cumulative production. Each of these scenarios has played out to some extent in 

each of the five areas in this study. However, it is unlikely that these production restrictions are 

significantly altering the general production ranges seen in each area.  

 

CONCLUSIONS 

An investigation of produced water samples and cumulative gas production pointed to changing 

geologic conditions across the study area that was supported by well logs and core data (TOC 

and XRD mineralogy). Results indicated that several of these geologic changes can be surmised 

from produced water chemistry. Additionally, the 10-year time period covered by the water 
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samples in this study illustrated compositional trends outside of the immediate influence of 

hydraulic fracturing. The findings of this study include: 

 

 Geologic conditions change across the study area. Harrison Area 1 and Harrison Area 2 

share similar geologic characteristics. Central Taylor, Northeast Taylor, and Monongalia 

areas share similar geologic characteristics that are different than those found in the 

Harrison areas. 

 

 Major and minor ions from produced water samples provide insight to relative geologic 

changes across the area. Increasing barium concentrations indicate higher clay content as 

observed in Central Taylor, Northeast Taylor, and Monongalia. Increasing calcium and 

strontium concentrations indicate higher carbonate content and the potential for 

carbonate dissolution as observed in Harrison Area 1 and Harrison Area 2. 

 

 TDS concentrations in produced waters typically reach peak values within the first two 

years of production. This is followed by varying rates of decreasing concentration, which 

appear to be linked to geologic characteristics such as volume of formation water 

available, carbonate dissolution, and clay content. 

 

 As TDS concentrations begin to decline, ionic proportions stay relatively consistent 

indicating fluid-rock interactions remain consistent. Samples showing major changes 

typically return to the expected range in subsequent samples.  
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 TDS fluctuations during decline are normal and represent varying ratios of formation 

water mixing with hydraulic fracturing fluid. Fluctuations may be caused by downhole 

behaviors such as release of pressure blocked fracturing fluid, or the opening of a 

previously closed perforation or fracture network. 

 

 The set of geologic characteristics in Harrison Area 1 and Harrison Area 2 show higher 

cumulative gas production per well over the initial 2,000 days (5.5 years) and higher 

total fluid return percentages than the wells in Central Taylor, Northeast Taylor, and 

Monongalia areas.  

 

The conclusions in this study demonstrate the utility of continued produced-water testing during 

the entire lifespan of a well. Varying concentrations in water samples indicate dynamic 

conditions over the life of a well and differs from expected trends extrapolated in studies 

focusing on the first few months to years of a well’s lifespan. Continued testing provides insight 

into a well’s production and may reveal subtle geologic differences that are typically only found 

using more expensive tests such as rock pyrolysis and XRD analysis from core or well cuttings. 

This study confirms that the Marcellus Shale is a complex, heterogenous reservoir that requires 

continuous study even after more than a decade of development and emergence as a world-class 

reservoir. 
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APPENDIX A 
Gamma Ray vs Density Plots  

 
Figure A-1 – Relationship between gamma-ray intensity and density in the Marcellus Shale for 
Harrison Area 1. Trendlines indicate that there is a general agreement among the data showing 
that as gamma-ray increases, density generally decreases. 

 

 
Figure A-2 – Relationship between gamma-ray intensity and density in the Marcellus Shale for 
Harrison Area 2. Trendlines indicate that there is a general agreement among the data showing 
that as gamma-ray increases, density generally decreases. 
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Figure A-3 – Relationship between gamma-ray intensity and density in the Marcellus Shale for 
the Central Taylor Area. Trendlines indicate that there is a general agreement among the data 
showing that as gamma-ray increases, density generally decreases. 

 

 
Figure A-4 – Relationship between gamma-ray intensity and density in the Marcellus Shale for 
the Northeast Taylor Area. Trendlines indicate that there is a general agreement among the data 
showing that as gamma-ray increases, density generally decreases. 
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Figure A-5 – Relationship between gamma-ray intensity and density in the Marcellus Shale for 
the Monongalia Area. Trendlines indicate that there is a general agreement among the data 
showing that as gamma-ray increases, density generally decreases. 

Gamma Ray vs. Pyrolysis and Log-calculated TOC Plots 
 

 
Figure A-6 – Relationship between core-obtained TOC, log-calculated TOC and gamma-ray 
values in the Marcellus Shale for the core located in Harrison Area 1. Trendlines indicate that 
there is a general agreement among the data showing that as gamma-ray increases, TOC values 
generally increase. 
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Figure A-7 – Relationship between core-obtained TOC, log-calculated TOC and gamma-ray 
values in the Marcellus Shale for Harrison Area 1 and Harrison Area 2. Trendlines indicate that 
both areas share similar characteristics. There is a general agreement among the data showing 
that as gamma-ray increases, TOC values generally increase. 
 

 
Figure A-8 – Relationship between core-obtained TOC, log-calculated TOC and gamma-ray 
values in the Marcellus Shale for the core located in the Central Taylor Area. Trendlines 
indicate that there is a general agreement among the data showing that as gamma-ray increases, 
TOC values generally increase. 
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Figure A-9 – Relationship between core-obtained TOC, log-calculated TOC and gamma-ray 
values in the Marcellus Shale for the core located in the Monongalia Area. Trendlines indicate 
that there is a general agreement among the data showing that as gamma-ray increases, TOC 
values generally increase. 

 
Figure A-10 – Relationship between core-obtained TOC for the Central Taylor and Monongalia 
areas, log-calculated TOC for the Northeast Taylor Area and gamma-ray values in the 
Marcellus Shale. Trendlines indicate that log-calculated TOC values for Northeast Taylor 
compare reasonably well with the core-obtained values from the Central Taylor Area. There is a 
general agreement among the data showing that as gamma-ray increases, TOC values generally 
increase. 
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APPENDIX B  
Daily Cumulative Percentage Fluid Recovery by Area 

 

 
Figure B-1 – Fluid retuned for Harrison Area 1 normalized to the beginning of production. The 
20 wells in this area have returned between ~13% to ~39% of the initial fluid load. Fluid return 
behaviors are variable across this area due to outside factors. Differences in returned fluid 
behavior are indicated by changes in line slope. 

 
Figure B-2 – Fluid retuned for Harrison Area 2 normalized to the beginning of production. The 
18 wells in this area have returned between ~14% to ~35% of the initial fluid load. Most wells in 
this area have a similar fluid return behavior. Differences in returned fluid behavior are 
indicated by changes in line slope. 



84 
 

 
Figure B-3 – Fluid retuned for the Central Taylor Area normalized to the beginning of 
production. The 18 wells in this area have returned between ~14% to ~40% of the initial fluid 
load, representing the largest spread among the five area. Most wells in this area have a similar 
fluid return behavior with only two wells significantly different from the others. Differences in 
returned fluid behavior are indicated by changes in line slope. 

 
Figure B-4 – Fluid retuned for the Northeast Taylor Area normalized to the beginning of 
production. The 14 wells in this area have returned between ~11% to ~22% of the initial fluid 
load. Most wells in this area have a similar fluid return behavior with only a few wells retuning 
slightly more fluid than the other. Differences in returned fluid behavior are indicated by 
changes in line slope. 
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Figure B-5 – Fluid retuned for the Monongalia Area normalized to the beginning of production. 
The 4 wells in this area have returned between ~5.5% to ~14% of the initial fluid load. Only one 
well in this area is slightly higher than the other although not by a significant percentage (~5%). 
Differences in returned fluid behavior are indicated by changes in line slope. 
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APPENDIX C 
Ion Concentration Plots 

 

 
Figure C-1– Box and whisker plot of barium concentrations across the five areas of the study. 
Harrison Areas 1 and 2 show similar values that are distinctively lower than the Central Taylor, 
Northeast Taylor, and Monongalia areas, which show similar values. 

 
Figure C-2 – Box and whisker plot of calcium concentrations across the five areas of the study. 
Harrison Areas 1 and 2 show similar values that are distinctively higher than the Central Taylor, 
Northeast Taylor, and Monongalia areas, which show similar values. 
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Figure C-3 – Box and whisker plot of iron concentrations across the five areas of the study. All 
five areas show similar ranges and mean values. 
  

 
Figure C-4 – Box and whisker plot of magnesium concentrations across the five areas of the 
study. Harrison Areas 1 and 2 show similar values that are distinctively higher than the Central 
Taylor, Northeast Taylor, and Monongalia areas, which show similar values. 
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Figure C-5 – Box and whisker plot of potassium concentrations across the five areas of the 
study. Harrison Areas 1 and 2 show similar values that are slightly higher than the Central 
Taylor, Northeast Taylor, and Monongalia areas, which show similar values. 
 

 
Figure C-6 – Box and whisker plot of sodium concentrations across the five areas of the study. 
Harrison Areas 1 and 2 show similar values that are slightly higher than the Central Taylor, 
Northeast Taylor, and Monongalia areas, which show similar values. 
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Figure C-7 – Box and whisker plot of strontium concentrations across the five areas of the study. 
Harrison Areas 1 and 2 show similar values that are distinctively higher than the Central Taylor, 
Northeast Taylor, and Monongalia areas, which show similar values. 
 

 
Figure C-8 – Box and whisker plot of chloride concentrations across the five areas of the study. 
Harrison Areas 1 and 2 show similar values that are distinctively higher than the Central Taylor, 
Northeast Taylor, and Monongalia areas, which show similar mean value 
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APPENDIX D 
Produced Water Sample Results 

 

Area Well 
Sample 

Date pH TDS Ba Ca Fe Mg Mn K Na Sr Cl HCO3 SO4 LAB 

Central Taylor CT 01 1/25/2013 5.29 98,998 3,918 8,918 58 966 6 N/A 25,550 1,646 58,000 30 3.2 Weatherford 

Central Taylor CT 01 8/4/2014 6.00 78,381 3,169 6,786 209 774 6 65 17,908 1,187 47,901 342 0.0 Baker Hughes 

Central Taylor CT 01 9/22/2015 6.31 6,446 251 541 141 56 4 7 1,541 111 3,764 37 0.0 NALCO 

Central Taylor CT 01 8/27/2020 7.07 1,950 82 147 311 15 3 0 194 32 709 17 <3.15 NRCCE 

Central Taylor CT 02 1/24/2013 4.67 58,062 2,791 4,431 71 514 4 N/A 17,760 1,336 33,400 0 8.9 Weatherford 

Central Taylor CT 02 3/27/2013 6.40 88,913 3,640 7,040 315 4,197 2 0 17,328 441 55,706 244 0.1 XCHEM 

Central Taylor CT 02 7/24/2014 5.20 113,793 3,142 8,855 312 1,031 6 188 26,917 1,933 71,155 189 0.0 Baker Hughes 

Central Taylor CT 02 9/22/2015 5.56 96,377 4,759 7,257 293 809 7 168 23,040 2,099 58,052 61 0.0 NALCO 

Central Taylor CT 02 8/27/2020 6.21 36,300 1,099 2,501 470 233 85 66 7,566 646 23,021 956 <3.15 NRCCE 

Central Taylor CT 03 1/25/2013 4.72 93,627 4,048 6,607 95 750 8 N/A 19,890 1,532 54,400 12 25.6 Weatherford 

Central Taylor CT 03 3/27/2013 6.33 93,710 3,859 7,360 251 2,245 1 0 21,624 376 57,775 219 0.1 XCHEM 

Central Taylor CT 03 7/24/2014 5.70 75,675 3,163 5,968 254 714 5 95 17,722 1,320 46,147 248 0.0 Baker Hughes 

Central Taylor CT 03 8/27/2020 6.18 3,420 67 193 634 15 6 2 355 42 1,161 1,096 <3.15 NRCCE 

Central Taylor CT 04 1/23/2013 5.54 65,715 2,937 5,455 130 614 5 N/A 21,300 1,083 38,200 50 24.9 Weatherford 

Central Taylor CT 04 3/27/2013 6.38 114,375 4,889 11,360 294 3,318 1 0 22,765 414 71,114 219 0.1 XCHEM 

Central Taylor CT 04 7/24/2014 5.60 85,141 3,166 7,023 244 818 5 92 19,583 1,411 52,514 244 0.0 Baker Hughes 

Central Taylor CT 04 9/22/2015 5.89 50,576 2,293 3,815 117 429 4 75 12,470 1,021 58,052 61 0.0 NALCO 

Central Taylor CT 04 8/27/2020 5.53 43,340 1,760 3,069 2,012 270 17 79 12,815 789 26,991 3,620 <3.15 NRCCE 

Central Taylor CT 05 1/24/2013 4.85 151,090 6,180 11,380 209 1,461 11 N/A 36,660 2,189 88,400 0 28.5 Weatherford 

Central Taylor CT 05 3/27/2013 6.30 160,485 5,915 17,760 319 3,611 2 0 33,831 405 98,375 268 0.2 XCHEM 

Central Taylor CT 05 8/4/2014 5.70 142,578 3,137 12,350 210 1,390 7 148 31,959 2,582 90,629 98 0.0 Baker Hughes 

Central Taylor CT 05 9/22/2015 6.01 91,832 3,882 9,468 183 882 6 123 21,410 2,133 53,771 98 0.0 NALCO 

Central Taylor CT 05 8/27/2020 5.46 18,680 570 1,638 381 165 56 28 5,524 368 12,916 2,473 <3.15 NRCCE 

Central Taylor CT 06 1/24/2013 4.85 154,246 5,505 11,100 108 1,523 8 N/A 36,560 3,095 90,200 0 9.7 Weatherford 

Central Taylor CT 06 3/27/2013 6.39 173,697 8,101 19,040 265 878 1 0 40,459 456 104,301 195 0.1 XCHEM 

Central Taylor CT 06 7/24/2014 5.50 130,717 3,141 11,350 227 1,264 6 146 29,228 2,290 82,856 146 0.0 Baker Hughes 

Central Taylor CT 06 9/22/2015 6.09 147,415 6,652 7,200 116 1,423 8 231 36,560 3,484 91,936 61 0.0 NALCO 

Central Taylor CT 06 8/27/2020 4.86 132,340 5,438 9,718 488 990 9 290 37,198 3,173 85,565 916 <3.15 NRCCE 

Central Taylor CT 07 1/24/2013 5.14 155,211 3,669 11,870 154 1,556 13 N/A 37,200 3,665 91,600 16 56.9 Weatherford 

Central Taylor CT 07 3/27/2013 6.41 175,136 10,535 19,680 215 3,221 1 0 35,352 451 105,486 195 0.1 XCHEM 

Central Taylor CT 07 8/4/2014 5.90 132,927 3,140 11,455 182 1,265 7 137 29,583 2,442 84,315 342 0.0 Baker Hughes 
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Central Taylor CT 07 9/22/2015 6.14 141,245 6,437 8,029 129 1,373 7 230 32,950 3,428 88,807 61 0.0 NALCO 

Central Taylor CT 07 8/27/2020 5.27 103,900 4,777 8,105 212 813 6 200 28,788 2,605 62,278 446 <3.15 NRCCE 

Central Taylor CT 08 7/24/2014 5.20 143,911 3,144 11,622 214 1,324 8 177 34,461 2,245 90,424 195 0.0 Baker Hughes 

Central Taylor CT 08 9/22/2015 6.11 110,650 4,180 8,718 159 950 7 150 26,840 2,212 67,499 85 0.0 NALCO 

Central Taylor CT 08 8/27/2020 7.17 200 11 32 191 1 4 0 28 4 8 0 <3.15 NRCCE 

Central Taylor CT 09 7/24/2014 5.50 156,348 3,137 12,605 163 1,375 7 175 37,352 2,395 98,826 219 0.0 Baker Hughes 

Central Taylor CT 09 9/22/2015 5.90 138,575 6,299 11,090 133 1,339 9 192 32,170 3,216 84,271 49 0.0 NALCO 

Central Taylor CT 09 8/27/2020 6.40 48,000 2,174 3,798 185 383 4 78 10,630 1,173 27,865 337 <3.15 NRCCE 

Central Taylor CT 10 7/24/2014 5.90 137,905 3,146 10,967 201 1,269 7 177 33,018 2,206 86,573 244 0.0 Baker Hughes 

Central Taylor CT 10 9/22/2015 5.95 113,055 4,791 9,954 127 1,080 6 166 26,910 2,441 67,624 122 0.0 NALCO 

Central Taylor CT 10 8/27/2020 5.37 70,620 3,625 6,227 227 630 7 162 19,481 2,172 66,856 358 <3.15 NRCCE 

Central Taylor CT 11 7/24/2014 5.70 137,838 3,141 10,886 158 1,256 7 173 32,996 2,250 86,707 170 0.0 Baker Hughes 

Central Taylor CT 11 9/22/2015 5.93 128,095 5,084 10,190 122 1,101 7 177 31,280 2,685 77,553 73 0.0 NALCO 

Central Taylor CT 11 8/27/2020 6.30 10,752 395 735 140 76 3 17 2,170 250 5,528 86 <3.15 NRCCE 

Central Taylor CT 12 9/22/2015 6.07 83,226 3,566 7,836 211 789 6 121 19,690 1,938 49,129 37 0.0 NALCO 

Central Taylor CT 12 8/27/2020 5.57 122,590 6,009 9,875 394 1,005 10 283 33,804 3,074 54,367 628 <3.15 NRCCE 

Central Taylor CT 13 9/22/2015 6.09 93,913 4,397 10,410 251 839 8 123 22,320 2,337 53,291 85 0.0 NALCO 

Central Taylor CT 13 8/27/2020 5.86 135,940 4,947 10,797 441 1,169 15 282 28,594 2,725 83,012 360 <3.15 NRCCE 

Central Taylor CT 14 8/27/2020 6.24 167,080 6,907 13,649 230 1,402 10 359 38,779 3,764 99,860 522 <3.15 NRCCE 

Central Taylor CT 15 8/27/2020 6.07 155,930 6,635 13,065 160 1,353 7 331 36,253 3,632 84,562 418 <3.15 NRCCE 

Central Taylor CT 16 8/27/2020 5.96 133,110 5,888 10,225 289 1,082 10 255 29,875 3,287 77,413 410 <3.15 NRCCE 

Central Taylor CT 17 8/27/2020 6.22 129,280 6,355 10,535 213 1,139 7 259 35,467 3,650 76,433 508 <3.15 NRCCE 

Central Taylor CT 18 8/27/2020 6.34 168,600 6,834 14,246 134 1,479 7 359 39,730 3,725 99,860 426 <3.15 NRCCE 

Harrison Area 1 HA1 - 01 1/24/2013 5.50 187,572 2,862 28,610 210 3,120 18 N/A 52,810 2,112 115,000 0 91.0 Weatherford 

Harrison Area 1 HA1 - 01 7/25/2014 5.30 186,401 1,787 24,138 369 2,049 11 210 34,897 3,010 119,701 170 0.0 Baker Hughes 

Harrison Area 1 HA1 - 01 9/22/2015 5.82 214,940 2,038 17,430 302 2,516 16 346 45,870 5,068 141,623 73 3.3 NALCO 

Harrison Area 1 HA1 - 01 8/25/2020 5.44 133,370 1,544 12,247 1,072 1,317 12 266 25,384 2,727 111,843 735 <3.15 NRCCE 

Harrison Area 1 HA1 - 02 1/24/2013 3.25 93,772 1,010 10,020 137 1,255 9 N/A 26,200 1,995 56,600 0 71.8 Weatherford 

Harrison Area 1 HA1 - 02 7/25/2014 6.00 167,327 1,702 21,399 291 1,877 9 174 31,006 2,745 108,022 49 0.0 Baker Hughes 

Harrison Area 1 HA1 - 02 9/22/2015 5.79 75,952 624 22,010 235 685 7 85 12,140 1,525 38,629 98 0.0 NALCO 

Harrison Area 1 HA1 - 02 8/25/2020 4.22 172,090 1,874 21,842 427 1,742 15 317 47,096 452 164,363 667 <3.15 NRCCE 

Harrison Area 1 HA1 - 03 1/23/2013 4.41 121,091 1,303 13,030 173 1,514 7 N/A 31,700 2,440 73,200 0 8.2 Weatherford 

Harrison Area 1 HA1 - 03 7/25/2014 5.80 138,337 1,525 17,915 335 1,578 7 130 25,294 2,362 89,095 49 0.0 Baker Hughes 

Harrison Area 1 HA1 - 03 9/22/2015 6.34 42,298 337 16,270 190 323 4 38 6,037 735 18,276 122 3.6 NALCO 

Harrison Area 1 HA1 - 03 8/25/2020 5.51 157,930 1,394 14,509 701 1,770 16 292 31,344 3,171 158,524 622 <3.15 NRCCE 

Harrison Area 1 HA1 - 04 1/23/2013 4.52 159,086 1,716 17,590 138 1,884 9 N/A 41,880 3,105 96,200 0 25.7 Weatherford 

Harrison Area 1 HA1 - 04 7/25/2014 5.70 130,736 1,547 16,415 167 1,494 7 114 24,495 2,316 84,014 122 0.0 Baker Hughes 
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Harrison Area 1 HA1 - 04 8/25/2020 5.61 126,970 1,226 11,915 223 1,237 12 199 26,793 2,698 136,998 381 <3.15 NRCCE 

Harrison Area 1 HA1 - 05 1/23/2013 5.46 184,939 1,850 20,125 115 1,894 9 N/A 34,280 3,215 112,000 0 0.0 Weatherford 

Harrison Area 1 HA1 - 05 7/25/2014 5.80 165,482 1,886 20,247 372 1,887 9 137 31,472 2,805 106,510 98 0.0 Baker Hughes 

Harrison Area 1 HA1 - 05 9/22/2015 6.23 114,078 1,359 3,586 215 1,431 8 143 27,040 3,002 77,365 73 0.0 NALCO 

Harrison Area 1 HA1 - 05 8/25/2020 5.39 110,540 1,041 10,191 248 1,078 9 164 23,075 2,298 92,654 444 <3.15 NRCCE 

Harrison Area 1 HA1 - 06 7/25/2014 5.60 221,392 3,177 25,814 138 2,332 10 241 42,515 3,424 143,413 244 0.0 Baker Hughes 

Harrison Area 1 HA1 - 06 9/22/2015 5.91 199,220 3,931 21,580 139 2,230 13 269 43,740 4,400 123,090 98 0.0 NALCO 

Harrison Area 1 HA1 - 06 8/6/2020 5.62 218,890 4,287 24,887 166 2,042 14 412 46,136 4,832 138,248 424 <3.15 NRCCE 

Harrison Area 1 HA1 - 07 7/25/2014 5.10 217,279 3,178 25,338 151 2,288 10 229 42,198 3,321 140,388 96 0.0 Baker Hughes 

Harrison Area 1 HA1 - 07 9/22/2015 5.85 202,534 4,021 21,080 148 2,244 13 265 43,200 4,375 127,328 122 3.2 NALCO 

Harrison Area 1 HA1 - 07 8/6/2020 5.25 229,940 4,407 25,735 159 2,082 14 424 47,431 4,867 224,112 326 <3.15 NRCCE 

Harrison Area 1 HA1 - 08 7/25/2014 5.30 220,177 3,171 25,568 158 2,298 10 236 43,667 3,440 141,523 24 0.0 Baker Hughes 

Harrison Area 1 HA1 - 08 9/22/2015 5.57 199,432 4,234 22,660 141 2,178 13 264 40,950 4,206 124,929 122 0.0 NALCO 

Harrison Area 1 HA1 - 08 8/6/2020 5.54 212,850 4,404 23,717 159 1,882 12 393 45,260 4,702 201,423 386 <3.15 NRCCE 

Harrison Area 1 HA1 - 09 7/25/2014 5.60 209,423 3,179 23,950 158 2,205 18 238 41,699 3,195 134,600 98 0.0 Baker Hughes 

Harrison Area 1 HA1 - 09 9/22/2015 5.75 185,111 3,739 11,510 222 2,107 20 256 42,030 4,145 121,191 147 0.0 NALCO 

Harrison Area 1 HA1 - 09 8/6/2020 5.45 213,300 4,456 25,618 260 1,907 17 387 47,685 4,853 208,264 456 <3.15 NRCCE 

Harrison Area 1 HA1 - 10 7/25/2014 5.20 182,661 2,180 21,238 163 2,055 10 197 36,101 2,908 117,615 98 0.0 Baker Hughes 

Harrison Area 1 HA1 - 10 9/22/2015 6.12 158,360 1,749 27,640 145 1,607 10 179 32,860 3,216 91,036 98 0.0 NALCO 

Harrison Area 1 HA1 - 10 8/18/2020 5.32 137,160 1,842 17,082 167 1,355 9 249 31,355 3,674 95,156 348 <3.15 NRCCE 

Harrison Area 1 HA1 - 11 7/25/2014 5.60 197,421 2,264 23,792 148 2,233 11 166 38,099 3,180 127,379 73 50.0 Baker Hughes 

Harrison Area 1 HA1 - 11 9/22/2015 6.18 145,084 1,757 7,723 179 1,783 11 170 30,910 3,663 98,982 73 3.9 NALCO 

Harrison Area 1 HA1 - 11 8/18/2020 5.42 154,590 1,619 17,570 171 1,540 9 240 33,136 3,494 99,161 351 <3.15 NRCCE 

Harrison Area 1 HA1 - 12 7/25/2014 5.10 184,443 2,198 22,065 166 2,067 11 153 35,837 2,947 118,817 110 0.0 Baker Hughes 

Harrison Area 1 HA1 - 12 9/22/2015 6.26 146,203 1,723 14,850 169 1,431 11 143 30,860 3,435 93,388 98 0.0 NALCO 

Harrison Area 1 HA1 - 12 8/18/2020 5.42 205,700 2,770 26,930 389 2,054 14 341 46,502 5,504 124,102 492 <3.15 NRCCE 

Harrison Area 1 HA1 - 13 8/18/2020 5.48 146,870 1,980 16,824 167 1,477 9 231 31,682 3,384 95,332 399 <3.15 NRCCE 

Harrison Area 1 HA1 - 14 8/18/2020 5.43 165,640 2,262 18,395 188 1,583 10 255 34,394 3,918 98,784 461 <3.15 NRCCE 

Harrison Area 1 HA1 - 15 8/18/2020 5.24 130,460 1,536 15,600 235 1,379 8 194 27,877 3,484 84,681 452 <3.15 NRCCE 

Harrison Area 1 HA1 - 16 8/18/2020 5.13 137,540 1,545 16,532 192 1,449 9 210 29,935 3,628 86,445 423 <3.15 NRCCE 

Harrison Area 1 HA1 - 17 8/18/2020 5.75 194,860 1,941 23,370 192 2,050 10 351 40,961 4,678 113,081 423 <3.15 NRCCE 

Harrison Area 1 HA1 - 18 8/18/2020 5.46 200,550 1,969 22,350 195 1,956 10 296 40,675 4,528 112,225 416 <3.15 NRCCE 

Harrison Area 1 HA1 - 19 8/18/2020 5.36 218,230 1,199 23,167 239 2,118 7 1,677 51,973 4,940 134,049 654 <3.15 NRCCE 

Harrison Area 1 HA1 - 20 8/18/2020 5.40 191,800 1,954 22,451 166 1,997 10 294 39,750 4,508 113,266 402 <3.15 NRCCE 

Harrison Area 2 HA2 - 01 1/24/2013 5.25 167,520 2,567 15,860 49 1,999 9 N/A 39,640 1,605 101,600 40 6.2 Weatherford 

Harrison Area 2 HA2 - 01 3/28/2013 6.21 196,620 3,115 22,880 253 6,637 1 0 39,318 412 123,857 146 0.4 XCHEM 

Harrison Area 2 HA2 - 01 7/24/2014 6.50 195,390 3,145 22,200 221 2,064 9 191 39,837 3,110 124,503 48 0.0 Baker Hughes 
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Harrison Area 2 HA2 - 01 9/22/2015 6.21 163,769 2,758 17,900 252 1,764 12 203 36,030 3,643 101,349 61 0.0 NALCO 

Harrison Area 2 HA2 - 01 8/25/2020 4.79 166,530 3,342 19,850 189 1,598 12 302 46,849 4,307 154,060 345 <3.15 NRCCE 

Harrison Area 2 HA2 - 02 1/24/2013 5.20 168,470 2,640 9,367 77 2,066 9 N/A 39,450 1,907 101,400 30 9.2 Weatherford 

Harrison Area 2 HA2 - 02 3/28/2013 6.36 183,654 2,656 25,440 220 4,197 1 0 35,644 344 114,968 183 0.5 XCHEM 

Harrison Area 2 HA2 - 02 7/24/2014 5.80 192,518 3,135 21,612 287 2,056 11 186 38,895 3,031 123,173 73 0.0 Baker Hughes 

Harrison Area 2 HA2 - 02 9/22/2015 6.16 158,406 2,619 17,450 308 1,753 12 215 34,680 3,528 97,995 61 0.0 NALCO 

Harrison Area 2 HA2 - 02 9/22/2015 5.06 150,100 3,074 17,710 169 1,435 11 261 40,365 4,076 133,050 373 <3.15 NRCCE 

Harrison Area 2 HA2 - 03 1/24/2013 5.25 173,861 2,547 17,590 73 2,135 10 N/A 40,860 1,746 105,600 50 2.6 Weatherford 

Harrison Area 2 HA2 - 03 3/28/2013 6.37 201,265 2,760 25,920 226 3,806 1 0 42,456 302 125,635 158 0.6 XCHEM 

Harrison Area 2 HA2 - 03 7/24/2014 5.60 193,228 3,110 22,088 208 2,037 10 209 38,857 2,938 123,583 122 0.0 Baker Hughes 

Harrison Area 2 HA2 - 03 9/22/2015 6.14 148,750 2,573 17,820 402 1,668 12 194 29,730 3,493 93,002 49 0.0 NALCO 

Harrison Area 2 HA2 - 03 8/25/2020 5.00 194,270 3,402 21,404 242 1,853 12 385 50,584 4,247 114,112 351 <3.15 NRCCE 

Harrison Area 2 HA2 - 04 9/22/2015 6.11 183,581 2,421 21,060 156 2,051 11 232 39,640 3,849 114,327 61 5.1 NALCO 

Harrison Area 2 HA2 - 05 9/22/2015 6.15 179,169 2,333 20,850 158 1,925 10 234 37,880 3,843 112,116 49 5.4 NALCO 

Harrison Area 2 HA2 - 06 9/22/2015 6.16 175,815 2,519 12,360 155 2,042 11 245 40,000 3,896 114,767 61 3.7 NALCO 

Harrison Area 2 HA2 - 07 8/11/2020 5.30 186,310 3,080 22,042 181 1,889 12 360 41,747 4,643 202,324 343 <3.15 NRCCE 

Harrison Area 2 HA2 - 08 8/11/2020 5.81 187,120 3,006 20,985 169 1,806 11 345 40,381 4,463 110,955 363 <3.15 NRCCE 

Harrison Area 2 HA2 - 09 8/11/2020 8.22 182,190 2,852 20,913 158 1,783 11 345 38,860 4,457 110,931 368 <3.15 NRCCE 

Harrison Area 2 HA2 - 10 8/11/2020 5.66 197,540 2,770 21,283 167 1,963 12 441 40,812 4,054 120,901 379 <3.15 NRCCE 

Harrison Area 2 HA2 - 11 8/11/2020 5.67 200,370 3,226 22,282 167 1,970 11 381 43,654 4,619 119,889 368 <3.15 NRCCE 

Harrison Area 2 HA2 - 12 8/6/2020 5.31 210,360 2,924 22,509 216 2,118 14 416 40,415 4,212 139,088 464 <3.15 NRCCE 

Harrison Area 2 HA2 - 13 8/6/2020 5.10 192,110 3,480 25,523 319 1,969 15 398 46,244 4,741 130,618 513 <3.15 NRCCE 

Harrison Area 2 HA2 - 14 8/6/2020 5.54 200,870 2,747 22,417 259 1,986 14 391 41,450 4,274 134,957 544 <3.15 NRCCE 

Harrison Area 2 HA2 - 15 8/6/2020 5.55 204,700 3,005 23,954 237 2,021 13 394 43,715 4,373 129,126 489 <3.15 NRCCE 

Harrison Area 2 HA2 - 16 8/11/2020 5.00 213,340 3,103 24,531 191 2,122 14 488 44,838 4,708 132,842 455 <3.15 NRCCE 

Harrison Area 2 HA2 - 17 8/11/2020 5.60 202,270 3,045 24,327 260 2,059 15 463 45,752 4,455 125,872 511 <3.15 NRCCE 

Harrison Area 2 HA2 - 18 8/11/2020 5.54 211,800 3,145 24,632 190 2,128 13 488 45,608 4,677 130,255 416 <3.15 NRCCE 

Monongalia MIP 5H 1/14/2016 N/A 46,600 1,471 2,588 149 354 2 145 13,689 740 30,453 N/A <10 PACE 

Monongalia MIP 5H 2/3/2016 N/A 66,400 2,895 4,620 222 611 3 148 19,009 1,299 41,169 N/A <10 PACE 

Monongalia MIP 5H 2/17/2016 N/A 86,000 2,862 6,487 147 677 0 155 23,489 1,377 49,771 N/A <10 PACE 

Monongalia MIP 5H 3/2/2016 N/A 100,800 3,571 7,973 232 851 1 166 27,025 1,669 58,081 N/A <10 PACE 

Monongalia MIP 5H 4/6/2016 N/A 98,200 3,510 7,737 263 787 1 178 25,943 1,635 56,953 N/A <10 PACE 

Monongalia MIP 5H 5/6/2016 N/A 111,800 4,233 8,969 358 928 1 193 29,757 1,985 63,989 N/A <10 PACE 

Monongalia MIP 5H 6/8/2016 N/A 125,500 5,070 9,915 523 992 1 216 34,092 2,350 70,795 N/A <10 PACE 

Monongalia MIP 5H 7/13/2016 N/A 96,600 3,813 7,412 546 773 1 170 25,682 1,724 55,224 N/A <10 PACE 

Monongalia MIP 5H 9/14/2016 N/A 116,300 4,456 9,235 462 955 1 224 30,042 2,105 67,361 N/A <10 PACE 

Monongalia MIP 5H 11/11/2016 N/A 102,800 3,866 8,116 239 841 0 200 26,466 1,804 59,972 N/A <10 PACE 
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Monongalia MIP 5H 3/15/2017 N/A 248,200 10,375 22,736 541 2,059 1 610 63,039 4,912 140,866 N/A <10 PACE 

Monongalia MIP 5H 8/26/2020 5.47 82,200 4,528 7,043 273 707 5 106 22,800 1,893 48,332 259 <3.15 NRCCE 

Monongalia MIP 3H 1/14/2016 N/A 75,400 2,650 6,759 118 740 11 138 19,939 1,402 47,731 N/A <10 PACE 

Monongalia MIP 3H 2/3/2016 N/A 92,900 3,504 8,225 173 904 14 148 22,939 1,759 59,649 N/A <10 PACE 

Monongalia MIP 3H 2/17/2016 N/A 110,700 3,862 9,987 175 1,033 1 160 27,632 1,867 64,685 N/A <10 PACE 

Monongalia MIP 3H 4/6/2016 N/A 118,200 4,310 10,674 237 1,130 1 187 29,871 2,083 68,220 N/A <10 PACE 

Monongalia MIP 3H 5/6/2016 N/A 129,300 4,919 11,843 353 1,206 2 189 32,465 2,317 74,338 N/A <10 PACE 

Monongalia MIP 3H 6/8/2016 N/A 107,400 4,137 9,323 600 907 1 160 27,038 1,962 61,917 N/A <10 PACE 

Monongalia MIP 3H 7/13/2016 N/A 131,200 5,290 11,395 509 1,170 1 200 34,415 2,497 74,029 N/A <10 PACE 

Monongalia MIP 3H 9/14/2016 N/A 119,100 4,541 10,575 484 1,047 1 190 29,605 2,189 68,952 N/A <10 PACE 

Monongalia MIP 3H 1/18/2017 N/A 153,000 6,836 13,930 181 1,354 1 174 38,873 3,098 86,469 N/A <10 PACE 

Monongalia MIP 3H 3/15/2017 N/A 145,400 5,698 14,052 163 1,269 1 214 36,265 2,952 82,990 N/A <10 PACE 

Monongalia MIP 3H 4/12/2017 N/A 157,700 6,656 15,195 223 1,384 1 213 39,321 3,083 89,573 N/A <10 PACE 

Monongalia MIP 3H 8/26/2020 5.80 19,110 847 1,617 82 160 3 20 4,763 398 10,913 54 <3.15 NRCCE 

Northeast Taylor NET - 01 7/24/2014 8.30 157,524 3,123 12,236 214 1,354 8 158 38,051 2,488 99,546 268 0.0 Baker Hughes 

Northeast Taylor NET - 01 9/22/2015 6.21 65,296 2,155 3,250 82 361 2 128 17,300 898 41,146 98 3.9 NALCO 

Northeast Taylor NET - 01 8/2/2018 6.70 94,884 5,651 8,186 190 812 6 N/A 23,855 2,017 53,838 329 <0.25 NALCO 

Northeast Taylor NET - 01 10/18/2018 6.68 95,291 4,422 6,359 236 642 6 N/A 30,579 1,747 50,860 440 <0.25 NALCO 

Northeast Taylor NET - 01 8/6/2020 5.70 60,480 3,608 4,732 204 468 4 88 15,064 1,407 42,146 172 <3.15 NRCCE 

Northeast Taylor NET - 02 7/24/2014 5.80 151,760 3,126 11,689 203 1,287 7 155 36,289 2,326 96,333 268 0.0 Baker Hughes 

Northeast Taylor NET - 02 9/22/2015 6.18 82,368 4,205 5,680 117 597 5 101 17,310 1,496 52,873 85 0.0 NALCO 

Northeast Taylor NET - 02 8/2/2018 6.73 94,542 5,582 8,317 153 831 5 N/A 24,096 2,063 53,190 305 <0.25 NALCO 

Northeast Taylor NET - 02 10/18/2018 6.60 107,350 5,889 8,714 164 881 5 N/A 19,920 2,337 69,000 440 <0.25 NALCO 

Northeast Taylor NET - 02 8/6/2020 5.73 66,510 3,686 4,862 206 481 4 95 15,606 1,446 42,612 285 <3.15 NRCCE 

Northeast Taylor NET - 03 9/22/2015 5.94 149,473 7,173 19,530 186 1,073 7 158 30,210 2,585 88,624 85 0.0 NALCO 

Northeast Taylor NET - 03 8/2/2018 6.88 45,526 2,752 3,812 156 391 3 N/A 11,849 1,032 25,287 244 <0.25 NALCO 

Northeast Taylor NET - 03 10/18/2018 6.58 53,953 1,975 2,692 128 274 3 N/A 26,125 765 21,640 352 <0.25 NALCO 

Northeast Taylor NET - 03 8/6/2020 6.12 19,140 943 1,260 101 124 2 23 3,910 398 12,621 43 <3.15 NRCCE 

Northeast Taylor NET - 04 8/2/2018 6.71 113,425 4,705 9,768 145 1,008 4 N/A 30,222 1,866 65,524 183 <0.25 NALCO 

Northeast Taylor NET - 04 10/18/2018 6.62 125,007 4,491 9,313 152 977 4 N/A 32,369 1,955 75,262 484 <0.25 NALCO 

Northeast Taylor NET - 04 8/6/2020 1.61 112,060 5,084 8,749 181 906 5 173 29,927 2,143 71,815 256 <3.15 NRCCE 

Northeast Taylor NET - 05 8/2/2018 6.65 118,540 5,366 9,739 175 1,092 5 N/A 32,645 2,168 67,082 268 <0.25 NALCO 

Northeast Taylor NET - 05 10/18/2018 6.51 130,951 5,142 9,649 373 1,054 9 N/A 34,078 2,298 77,798 550 <0.25 NALCO 

Northeast Taylor NET - 05 8/6/2020 5.56 95,400 3,885 6,919 200 709 5 391 23,622 1,766 61,539 202 <3.15 NRCCE 

Northeast Taylor NET - 06 8/2/2018 6.70 97,809 5,032 8,716 202 896 6 N/A 26,338 1,889 54,413 317 <0.25 NALCO 

Northeast Taylor NET - 06 10/18/2018 6.48 139,279 6,287 10,023 317 1,112 7 N/A 33,246 2,642 84,861 784 <0.25 NALCO 

Northeast Taylor NET - 06 8/27/2020 6.75 78,510 4,444 5,996 175 599 4 N/A 23,815 1,664 47,113 386 <3.15 NRCCE 
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Northeast Taylor NET - 07 8/2/2018 6.67 126,010 6,374 10,010 152 1,112 5 N/A 32,254 2,336 73,512 256 <0.25 NALCO 

Northeast Taylor NET - 07 10/18/2018 6.60 137,566 6,177 10,045 361 1,088 10 N/A 35,908 2,501 80,992 484 <0.25 NALCO 

Northeast Taylor NET - 07 8/27/2020 6.49 95,550 5,394 7,181 151 716 4 146 27,388 2,015 56,341 369 <3.15 NRCCE 

Northeast Taylor NET - 08 8/2/2018 6.67 127,333 6,714 9,820 126 1,130 5 N/A 33,096 2,430 73,756 256 <0.25 NALCO 

Northeast Taylor NET - 08 10/18/2018 6.76 153,027 7,150 10,690 165 1,213 5 N/A 39,765 2,791 90,741 506 <0.25 NALCO 

Northeast Taylor NET - 08 8/27/2020 6.31 117,650 6,751 8,685 151 884 5 177 32,837 2,478 67,700 410 <3.15 NRCCE 

Northeast Taylor NET - 09 8/2/2018 6.69 116,999 4,779 9,159 85 991 3 N/A 31,448 1,902 68,411 220 <0.25 NALCO 

Northeast Taylor NET - 09 3/27/2018 6.71 114,599 5,407 9,953 115 1,158 4 N/A 38,636 2,307 86,811 207 <0.25 NALCO 

Northeast Taylor NET - 09 8/27/2020 6.29 117,230 5,557 8,689 114 923 4 172 34,003 2,191 69,723 354 <3.15 NRCCE 

Northeast Taylor NET - 10 10/18/2018 6.41 159,862 6,853 11,651 152 1,339 5 N/A 35,616 2,974 100,744 528 <0.25 NALCO 

Northeast Taylor NET - 10 8/6/2020 5.41 171,220 6,930 11,704 124 1,320 5 N/A 35,971 2,953 96,067 382 <3.15 NRCCE 

Northeast Taylor NET - 11 8/22/2018 5.60 149,254 6,444 10,632 132 1,228 4 N/A 37,165 2,665 90,741 244 <0.25 NALCO 

Northeast Taylor NET - 11 10/18/2018 6.47 150,881 6,356 10,530 141 1,215 4 N/A 36,672 2,757 92,721 484 <0.25 NALCO 

Northeast Taylor NET - 11 8/6/2020 5.16 148,400 8,464 11,298 662 1,208 13 N/A 42,328 3,440 134,373 1,039 <3.15 NRCCE 

Northeast Taylor NET - 12 8/22/2018 5.60 164,570 7,478 11,738 136 1,344 5 N/A 40,564 3,030 100,069 207 <0.25 NALCO 

Northeast Taylor NET - 12 10/18/2018 6.39 162,007 7,039 11,140 141 1,278 5 N/A 40,135 2,997 98,723 550 <0.25 NALCO 

Northeast Taylor NET - 12 8/6/2020 5.15 176,240 10,736 16,767 563 1,335 9 294 52,819 4,400 102,218 1,016 <3.15 NRCCE 

Northeast Taylor NET - 13 8/22/2018 5.40 168,433 7,705 12,017 164 1,320 5 N/A 41,874 3,031 102,097 220 <0.25 NALCO 

Northeast Taylor NET - 13 10/18/2018 6.35 165,334 7,580 11,425 161 1,313 5 N/A 39,856 3,047 101,419 528 <0.25 NALCO 

Northeast Taylor NET - 13 8/6/2020 4.97 182,370 9,795 15,043 740 1,392 12 306 49,354 4,040 109,884 1,223 <3.15 NRCCE 

Northeast Taylor NET - 14 8/22/2018 5.50 160,843 6,891 11,340 208 1,250 5 N/A 39,339 2,903 98,723 183 <0.25 NALCO 

Northeast Taylor NET - 14 10/18/2018 6.46 158,850 7,072 11,295 168 1,282 5 N/A 37,358 3,003 98,051 616 <0.25 NALCO 

Northeast Taylor NET - 14 8/6/2020 5.50 151,210 7,827 11,716 193 1,236 5 N/A 38,964 3,265 95,871 345 <3.15 NRCCE 
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