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ABSTRACT 

 

Understanding the Variable Drivers of Toxicity for the Broad Class of Carbon Nanotubes and 

Nanofibers from U.S. Facilities 

 

Kelly E. Fraser 

 

Pulmonary exposure to carbon nanotubes or nanofibers (CNT/F) is known to induce inflammation, 

toxicity, or tumorigenesis, and is a concern in the occupational setting. U. S. facility employees are at risk 

of inhalation exposure of multi-walled carbon nanotubes and carbon nanofibers during primary and 

secondary manufacturing. To date, only one MWCNT, Mitsui-7 has been classified as possibly 

carcinogenic to humans (Group 2B), while all other materials were subsequently categorized as 

unclassifiable (Group 3). This class of material has recently been listed as a high priority to the 

International Agency for Research on Cancer due to this significant knowledge gap. Furthermore, 

expressed desire to better understand the toxicity profiles of these materials has emerged from the National 

Institute for Occupational Safety and Health. While human research to date is limited, the use of in in vivo 

and in vitro model systems can be implemented for the assessment of toxicity outcomes following 

respiratory exposure to CNT/F. The goal of this study was to generate an accurate an effective safety 

profile of MWCNT and CNFs from U. S. facilities, and to adapt a multi-disciplinary approach using 

machine learning to identify pertinent physicochemical characteristics that act as drivers of these toxicity 

outcomes.  

This study established toxicity profiles from male C57BL6/J mice aged 8-10 weeks exposed to 

either 4 or 40 µg of one of nine different CNT/F via oropharyngeal aspiration as well as human epithelial 

BEAS-2B cells (0-24 µg/ml), differentiated THP-1 cells (0-120 µg/ml), and human fibroblasts (0-2 µg/ml) 

for four primary outcomes of genotoxicity, inflammation, pathology, and translocation. The nine materials 

used in this study had a wide range of characteristics including diameter (6-397 nm), length (0.1-50 µm), 

surface area (18-238 m2/g), aspect ratio (2-1396), residual metal catalyst (0.3-6.2 %), density (0.007-0.220 

g/cm3), etc., to consider.  

Toxicity profiles were generated regarding these four primary toxicity outcomes, and both 

supervised and unsupervised machine learning was used to identify the key drivers of these adverse health 

effects. While some physicochemical characteristics were determined to be key drivers of specific toxicity 

outcomes, different characteristics were essential when considering other toxicity endpoints. No single 

characteristic could be used as a toxicity predictor, therefore, multifactorial processes, or combination of 

characteristics, were necessary for an accurate and effective prediction model for responses. The study 

identified physicochemical drivers of CNT/F toxicity using an integrated approach, combining 

experimental evidence with computational modeling, with potential for broad application. This study 

provides necessary information for the consideration of the potential human health effects that can result 

from CNT/F exposure. The safety profiles and identified drivers of toxicity may be useful for future 

predictive risk assessment studies and translational studies as well as contributing to safety-by-design for 

future material designs.  
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1.1. Introduction 

The unique physicochemical properties of carbon nanotubes and nanofibers (CNT/F) make them 

a diverse class of immensely useful engineered nanomaterials with a multitude of applications. These 

applications are consistently growing resulting in the development of new materials, each with specialized 

properties suited for their intended use. Many properties of CNT/F are consistent and conserved between 

classes. For example, CNT/Fs have high tensile strength that is comparable to stainless steel yet have only 

a third of the density [1]. These properties, combined with being thermally and electrically conductive, 

make them ideal for use in composites, electronics, energy storage, and medical applications such as 

lenses, batteries, biosensors, and drug delivery systems. Of note, MWCNT and CNF are primarily used in 

composites. The addition of MWCNT and CNF to polymers, resins, and construction materials can 

generate composites that are stronger and more resilient without adding excess weight, allowing for 

applications in automotive, aerospace, and construction designs.  

Beyond these universal properties, CNT/F can also be altered to have unique physicochemical 

properties to serve specialized functions. For example, CNT/F s can be coated or functionalized to alter 

surface chemistry resulting in differing dispersions, reactivity, durability, or application and uses [2-4]. 

However, these unique properties that make CNT/F s into such valuable materials may also be the same 

properties that drive their toxicities and adverse health outcomes following human exposure, primarily 

dermal and pulmonary exposures.  

In the 1970s, Mearl F. Stanton led his research team and inspired subsequent studies to generate 

the fiber hypothesis. In his own words, “Precise parameters need not be defined to appreciate that 

carcinogenicity can depend on the structure rather than the physicochemical composition of a particle,” 

[5]. This hypothesis stated that a fiber’s toxicity is dependent on its physical characteristics of size, shape, 

dimension, and biopersistence. While these studies primarily focused on asbestos and glass fibers, this 
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hypothesis can be expanded to all fibrous nanomaterials including CNTs, CNFs, nanowires, nanoribbons, 

and similarly high aspect ratio nanoparticles (HARNs).  

 

1.2. Key Physicochemical Characteristics 

Several key physicochemical characteristics must be well understood to address questions 

regarding CNT/F toxicities including length, diameter, agglomeration state, dustiness, metal content, and 

functionalization. These factors are all considered to be potential drivers of toxicities and will be explored 

further in the following sections. 

 

1.2.1. Length 

 Historically, length has been a key characteristic in nanoparticle toxicities. Dating back through 

asbestos literature as well as nanowires, metallic nanofibers, and other HARNs, length has often been 

associated as being a key driving factor in nanofiber toxicity. These same assumptions have been applied 

to CNT toxicities. Numerous studies have linked CNT/F length to an increase in adverse health outcomes. 

Dating back to early 2010s, Donaldson and his collaborators published a series of publications 

investigating the link between particle length and toxicities in the lung and pleura of rodents. When 

directly exposed to peritoneal mesothelium, longer fibers, compared to shorter, tangled fibers, were more 

likely to induce greater inflammation and fibrosis in the pleural viscera, similar to previous asbestos 

findings [6, 7]. Like Stanton, this research suggested that increased particle length can result in more 

severe outcomes, likely due to diminished clearance capabilities. CNTs and CNFs can often be too large 

for macrophage uptake resulting in incomplete or “frustrated” phagocytosis. This frustrated phagocytosis 

acts as a driver for chronic inflammation and subsequent progressive pathologies and are often of note in 

determining the carcinogenicity of the material [8]. Donaldson et al. investigated pathological changes in 

the pleural viscera while groups such as Mercer et al. investigated changes in the lung tissue, also in rodent 
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models [6, 9, 10]. Both concluded that diminished particle uptake can be linked to the development of 

fibrosis as well as lead to the formation of granulomas. Overall, particle length is an important 

characteristic responsible for the progression of adverse outcomes in the lung and can be linked to 

carcinogenicity, inflammation, and histopathology changes.  

 

1.2.2. Diameter 

 While length is often considered to be a greater consideration regarding CNT/F aspect ratio, 

diameter is still a critical factor. Thinner materials, and therefore greater aspect ratio, must be specially 

considered under the fiber hypothesis. In comparison to length, the role of diameter as a driver of toxicity 

outcomes in previously published literature has been less understood. In a series of publications from the 

National Research Centre for the Working Environment (NRCWE) (Denmark), carbon nanotubes of 

greater diameter were less likely to induce inflammation, genotoxicity, and histopathology changes 

including fibrosis and the granulomatous response [11, 12]. Similarly, when comparing single-walled 

carbon nanotubes (SWCNT) to MWCNTs, Mercer et al, found that SWCNTs were more fibrotic than 

MWCNTs, though this difference was linked to potential changes in macrophage uptake and particle 

accumulation in the alveolar interstitium [9, 10]. Macrophages had a greater capability to clear MWCNTs, 

therefore reducing interstitial accumulation and associated fibrosis. Furthermore, in a paper published in 

2012 by Fenoglio et al. investigated two CNTs of different diameters, 9.4 and 70 nm, and found that 

thinner particles induced greater lactase dehydrogenase release, a classic marker of cell damage, increased 

reactive oxygen species (ROS) production, linked to oxidative stress, and greater inflammatory cell 

infiltration to the lung [13]. However, the in vivo study findings were reported 24 hours post-exposure by 

aspiration to a high dose of 2 mg, which may have induced artificial bolus responses. In contrast to these 

findings, Nagai et al. (2011) completed a study in which rats were exposed via intraperitoneal (i.p.) 
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injection. Thinner, less rigid particles were more likely to induce a greater frequency and malignancy of 

mesothelioma, as well as a lower survival rate than thicker CNTs [14].  

 These studies indicate that the diameter may play a role in determining toxicity outcomes, but a 

lack of cohesive study design as well as the range of size differences included in the study can lead to 

conflicting or unclear conclusions. A comparative study inclusive of a wide representation of particle sizes 

as well as ensuring translational relevance is necessary to fully understand the role of diameter and its 

influence on toxicity outcomes.  

 

1.2.3. Agglomeration 

 Agglomeration of a particle can be a critical determinant in the type of response induced within 

exposed tissue. CNT/Fs can form agglomerates depending on their rigidity, size, production process, and 

surface chemistry. For assay purposes, both in vivo and in vitro, the preparation of the particle for dosing 

can also impact particle agglomeration as a secondary, artificial effect [15].  

To simplify agglomeration, two general types of agglomerates can be formed, though these 

agglomerates can vary widely in shape and size. First, are spherical agglomerates. These agglomerates are 

often referred to as “cotton ball-like,” “bird’s nest,” or “cooked spaghetti” in shape and their extent of 

entanglement [13]. As these particles are tightly tangled together into small clusters of particle, they are 

more difficult to disperse and can be as large as several microns in diameter. The second type of 

agglomerates are referred to as “bundles,” “rope-like,” or “rod-like” and can also contain tangles 

containing as few as just a couple of tubes together, or several together, often in parallel with one another. 

These agglomerates have a distinctly measurable length and diameter, compared to spherical agglomerates 

that generally only have a diameter. These can range anywhere from less than a dimeter in length, to tens 

of microns in length.  
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 Agglomeration is of special concern when considering pulmonary deposition. Su and Cheng 

completed a study using a human nasal replica and both SWCNTs and CNFs (stacked cups CNT) [16]. In 

this study, the aerodynamic diameter of the particle was quantified, and the respiratory deposition of the 

particle was assessed. All particles in this study were able to reach beyond the nasal passages and deposit 

in at least the bronchioles of the lung, though it was indicated to be more likely that deposition of the 

particles could reach the alveolar regions of the lung. Other studies have indicated that CNTs can be 

deposited in the alveolar space and can be found within the alveolar interstitium [9]. Some studies have 

attempted computer modeling of agglomerate sizes as a means of predicting regions of pulmonary 

deposition related to agglomerate size and shape [17, 18]. Other experimental studies have also shown 

evidence that agglomerate size can alter the region of deposition within the lung as well as how those 

aggregates can accumulate and “stack” with one another to form aggregates of deposited particle. In an 

earlier study in 2017, particle deposition related to agglomerate size had been investigated and evidence 

suggested that particles of larger agglomerate size may be more likely to be deposited in the bronchi and 

bronchioles prior to the broncho-alveolar duct, limiting tissue injury to airways excluding the alveolar 

region [19]. For this reason, it is necessary to develop methodology to properly quantify particle 

agglomeration as a means to predict regional pulmonary deposition and the associated toxicity outcomes.  

 

1.2.4. Dustiness 

 Dustiness is a measurement that confers the likelihood of aerosolization of a particle, or the ability 

to become airborne, and the subsequent ability for that particle, when inhaled, to bypass the nasal passages 

and reach the deeper airways of the lung. Two values can be quantified per the methodology established 

by Evans et al. in 2013 [20]. First, the total dustiness is fraction of the particle that can be aerosolized and 

is often considered the inhalable fraction, while the respirable fraction is the portion of the total dustiness 
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capable of reaching the alveolar region of the lung. Factors such as density, particle size, dimensions, and 

agglomeration are all factors that contribute to particle dustiness.  

 Dustiness is an essential consideration when determining the likelihood of particle exposure. 

Particles with decreased dustiness, and therefore less propensity for aerosolization, have a reduced 

possibility of inhalation. Overall, this can reduce the likelihood of human exposures by reducing the 

quantity of inhaled and respired particle both by number of particles and the mass of total particle 

exposure. Furthermore, dustiness, when considered in pair with aerodynamic diameter, may be important 

in determining the biokinetics of particle respiration. 

 Previous studies have attempted to investigate the relationship between particle dustiness and 

toxicity outcomes. In the previous study by Bishop et al. (2017), two particles, both as produced and 

coated with a proprietary coating (four total particles), were characterized and extensively investigated for 

toxicity outcomes including genotoxicity, inflammation, and histopathology [19]. In one instance, the 

coating decreased the dustiness by an order of magnitude, while the second company’s coated particle had 

an increase in dustiness, also by an order of magnitude. While the coating of these particle may have 

altered some outcomes such as histopathology changes, these changes were more likely to be a result of 

changes in recognition by immune cells including macrophages. The region of deposition was not 

significantly different regardless of dustiness, and histopathology outcomes were suspected to be due to 

changes in clearance, independently of dustiness. Therefore, dustiness may not alter outcomes once 

exposure has occurred, but reduction of the overall likelihood of exposure can still be beneficial to 

reducing human adverse outcomes.  

 

1.2.5. Metal Content 

 Several methods of CNT/F production exist, including laser ablation, arc discharge, and chemical 

vapor deposition. While these methods remain useful, chemical vapor deposition methods for CNT/F 
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production are most applicable for large scale, or large quantities of particle production. This method for 

production allows for several adaptable parameters during production stages to alter the physicochemical 

properties of CNT/F end products, including nominal diameter, nominal length, and morphology. Altering 

the catalyst chemicals present, the size and shape of the catalyst, reaction times, and temperature can all 

contribute to variations in generated CNT/F end products [21]. Metals are the most commonly used 

catalyst in these reactions, and their use is referred to as metal loading [21]. The most commonly used 

metals include cobalt, iron, nickel, and molybdenum, though metals such as aluminum, cadmium, 

magnesium, manganese, and more can be employed [15, 22-24]. Due to the nature of CNT/F growth 

during production, these metals often remain in the final product in detectable quantities through methods 

including inductively coupled plasma atomic emission spectroscopy (ICP-AES) and thermogravimetric 

analysis (TGA) to analyze residual ash [22]. Removal of these metals from the final product often requires 

acid washing or other extensive measures, though this purification process comes with the less desired 

result of particle surface defects, so metals typically are not fully removed to balance preservation of 

particle structure with particle purity [24].  

 Residual metal content is of interest in several studies as these metals, particularly iron, are 

hypothesized to be drivers of toxicity through oxidative stress pathways. The Fenton reaction is often 

suggested as the generator of these free radicals and occurs when an iron particle is oxidized in the 

presence of hydrogen peroxide to produce superoxide or hydroxyl free radicals. Free radicals are then 

available to interact and interfere in numerous cell signaling cascades and have been associated with 

mitochondrial dysfunction, cancer and genotoxicity, disruption of macrophage activity and phagocytosis, 

and more [25-28]. 

One key study by Kagan et al. in 2006 investigated the potential for toxicity outcomes associated 

with residual iron catalyst in SWCNTs [26]. Two materials were tested. First was the as-produced 

SWCNT with an iron content of 26% by weight, and the second was the same material following acid 
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washing to purify the product with an iron content of only 0.23% by weight remaining. This study 

demonstrated that higher iron content did induce greater hydroxyl free radicals in an acellular model, 

though when applied within a RAW 264.7 macrophage in vitro model, no superoxide radicals could be 

induced by neither the purified nor the as-produced particle suggesting limited interaction of the metals 

with macrophages. In another study by Pacurari et al. (2012), MWCNTs were capable of inducing 

epithelial cell permeability, macrophage activation and migration, and actin filament remodeling though 

mechanisms dependent upon oxidative stress responses [28].  

In a recent study by Lee et al. (2020), MWCNTs with various metal content, including Mitsui-7, 

were assessed for their iron content, other metal impurities, and their ROS generating abilities [29]. This 

was followed with an assessment of inflammation in rat lungs at one day post-intratracheal exposure to 

MWCNTs. This study found that the soluble iron content alone, nor the ROS generating potential of the 

materials correlated with inflammation, the total transition metal content may serve as a predictor of 

MWCNT induced inflammation. However, this study also noted that particle size may be more important 

as a predictor than metal content, though together these characteristics may be useful in predicting toxicity 

outcomes.  

Other studies have also demonstrated limited evidence of CNTs inducing free radical production 

or oxidative stress in both in vitro and in vivo systems, and even suggest that CNTs can act as free radical 

scavengers [30-32]. Further research may be necessary to clarify the role of CNT/Fs in the generation of 

oxidative stress and the possible mechanisms involved. 

  

1.2.6. Functionalization 

 Functionalization is an alteration to the surface chemistry of CNT/Fs in order to alter their 

reactivity or dispersion to optimize performance for a particularly intended application. Often, this 

functionalization is designed to improve dispersion within a matrix to produce a final, cohesive composite 
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product. Furthermore, this change in surface chemistry can modify its interactions with other molecules 

to improve adherence and incorporation into its intended matrix or system of application. While these 

modifications are often made in consideration of their intended final product, this functionalization may 

also alter their interactions with biological systems following exposure.  

 Several key studies have attempted to investigate the role of CNT/F functionalization in relation 

to toxicity outcomes. In a series of studies by the NRCWE (Denmark), CNTs with various surface 

functionalization were tested including hydroxylation and carboxylation [11, 12]. However, the 

functionalization was found to not always be present as reported by the production facility, suggesting 

that certain modifications may have a limited time before deterioration of this surface modification. For 

this reason, minimal conclusions could be drawn linking surface functionalization to toxicity outcomes.  

Of note, one key question yet to be fully addressing within the literature is the stability of 

functionalization over time. This functionalization may degrade during a product’s “shelf life” which may 

result in interlaboratory variations depending on experimental time-dependent factors. Additionally, once 

within the body or biological system, the stability of functionalization cannot be accurately determined. 

Functionalization may be quickly altered or degraded within bodily fluids with various levels of acidity 

or protein compositions. Overall, conflicting evidence for the role of functionalization in determining 

toxicity outcomes creates the need for further research. 

Other studies have been more successful in linking functionalization to toxicity outcomes. In a 

study by Hussain et al. (2016), MWCNTs functionalized with hyaluronic acid were found to induce less 

pulmonary inflammation, less fibrosis, and less mucosal cell metaplasia than non-functionalized 

MWCNTs using both in vivo and in vitro models, suggesting that the interactions of CNTs within 

biological systems can be altered with various surface modifications [33]. One other key study by Landry 

et al. (2016) investigated whether surface functionalization can alter their degradation, and therefore 

biopersistence, of MWCNTs in an in vitro model. This study found that particle length may also be an 
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important contributing characteristic to biopersistence, though functionalization may be protective against 

macrophage degradation, therefore increasing the particle’s biodurability [34]. Also, in a study by Wang 

et al. 2014, as-produced MWCNTs and MWCNTs functionalized with -COOH groups were assessed for 

their fibrogenic potential. This study reported that functionalization resulted in less activation of TGFβ 

activation and less fibrosis in both a C57 mouse model and in vitro in a human epithelial cell line [35]. 

Other studies highlight that functionalization alone is insufficient and other factors must be considered 

such as purification [36].  

These findings suggest that functionalization with hyaluronic acid or carboxylation may play a 

role in predicting toxicity outcomes, and that functionalization with carboxylation may reduce toxicity 

outcomes and demonstrate that surface functionalization may both increase or decrease a particle’s 

biopersistence and therefore toxicity outcomes depending on the state of altered biological interactions. 

 

1.2.7. Summary 

These physicochemical characteristics have been highlighted due to their historically noted impact 

in influencing toxicity outcomes. Additional characteristics can also be considered including surface area, 

density, rigidity, polyaromatic hydrocarbon contamination, and surface charge. The subsequent studies 

included in later chapters include an in-depth characterization for all materials investigated in order to 

elucidate the potential link between physicochemical outcomes and their ability to provoke specific 

toxicity outcomes. 

 

1.3. Four Primary Toxicity Outcome Categories 

 Four categories of toxicity outcomes can be highlighted in consideration of CNT/F toxicities and 

include genotoxicity, inflammation, pathology, and systemic translocation. While these outcomes are 

often interlinked with one another, each one stands as an individual consideration regarding adverse health 
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effects. Since the early 2000s, researchers have investigated these outcomes in both in vivo and in vitro 

modeling systems with a wide variety of experimental approaches, and a selection of highlighted studies 

can be found in the following discussion below.  

 

1.3.1 Genotoxicity 

 The genotoxic potential and carcinogenic properties of CNT/Fs are still greatly unexplored. In 

2014, the International Agency for Research on Cancer (IARC) classified one material in particular, 

Mitsui-7, as possibly carcinogen to humans (Group 2B), while all other CNT/Fs were categorized as not 

classifiable (Group 3), indicating that there is not enough evidence to make a definitive conclusion 

regarding their carcinogenicity. In the 2020-2024 Report of the Advisory Group to Recommended 

Priorities for the IARC Monographs, MWCNT were listed as a high priority to be ready for evaluation 

within five years [37]. This report identified a key knowledge gap in understanding the toxicities of 

CNT/Fs and encouraged research teams to further investigate CNT/Fs for their genotoxic potential in order 

to more accurately assess and categorize these materials. 

 To date, the carcinogenicity of CNT/Fs has been minimally investigated, however, several key 

studies can be noted. Takagi et al. in 2008, and again later in 2012, exposed p53(+/-) mice to Mitsui-7 via 

intraperitoneal injection (i.p) and quantified tumor occurrence and mortality[38, 39]. These studies found 

that mice exposed to Mitsui-7 developed mesothelioma in a dose and time dependent manner. 

Furthermore, several studies using rat models, including F344, Wistar, and F334/ Brown Norway hybrid 

rats, found that i.p injections or intra-scrotal injections of MWCNTs, including Mitsui-7 and other 

MWCNTs of various sizes and physicochemical properties, could also induce mesothelioma [14, 40, 41]. 

While these studies demonstrated the capabilities of MWCNTs to be carcinogenic, one key limitation was 

the method of dosing. It was not until 2014 and later that several studies specifically linked inhalation 

exposure to lung cancers. These studies found that inhalation exposure to MWCNTs, often using the 
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aforementioned Mitsui-7, could result in increased tumor incidence and tumor burden compared to 

controls in both mice (B6C3F1) and rats (F344 and F344/Crj) [42-44]. Overall, these studies demonstrated 

the carcinogenic potential of MWCNTs, though most of these studies used the same infamous material. 

 While several of these studies linked exposure to tumor incidence, mechanisms of carcinogenicity 

are also under investigation. Several key mechanistic events have been highlighted as necessary for 

carcinogenicity and include disruption of the cell cycle, increased signaling for cell proliferation, oxidative 

stress, changes to the tumor microenvironment, and genotoxicity [7, 28, 45-47]. Genotoxicity is of 

particular interest in the following chapter. Genotoxicity is DNA damage resulting from direct and indirect 

mechanisms and includes mitosis disruption, chromosomal damage, and impaired DNA repair processes. 

Several studies have noted these mechanisms following CNT exposure. In 2014, Siegrist et al. reported 

that exposure to MWCNTs resulting in damage to the mitotic spindle as well as increase in aneuploidy, 

or abnormal chromosomal numbers, which are markers of disrupted mitosis [46]. Furthermore, this study 

reported cell cycle arrest, another marker for carcinogenicity. Another hallmark of genotoxicity, 

micronuclei formation (fragmentation of nuclear material), was reported by Muller et. al as early as 2008 

and reported by others including Bishop et al. in 2017 [19, 48].  

Together, these reports suggest that MWCNTs may be capable of inducing genotoxicity through 

various mechanisms, but additional studies are necessary to elucidate these critical pathways and to 

determine if all CNTs induce genotoxicity and carcinogenicity through the same mechanisms. Additional 

exploration of these potential pathways as well as studies comparing more CNT/Fs within the same study 

paradigm will be needed to fully understand the carcinogenic potential of CNT/Fs and properly classify 

the risks associated with particle exposure.  
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1.3.2. Inflammation 

 Inflammation is one of the most well understood outcomes of CNT/F exposure. Many studies have 

demonstrated that pulmonary exposure to CNT/Fs can result in cellular injury and activation of 

inflammatory cascades. Endpoints such as lactate dehydrogenase (LDH) release, inflammatory cell 

infiltration, cytokine, and chemokine release, and inflammasome activation, as well as functional 

outcomes such as changes in macrophage phagocytic abilities, and changes in cell proliferation and 

transformation can be assessed. Several hallmark studies of CNT/F inflammation have been completed to 

date and are discussed below. 

 The first of these studies was completed in 2005 by Muller et al. in which Sprague-Dawley rats 

were intratracheally dosed with MWCNTs and subsequently underwent bronchoalveolar lavage (BAL) at 

3- and 15-days post-exposure [49]. A dose dependent increase in LDH was observed. This classic marker 

of cellular injury can be found when cell membrane damage results in the release of this cytoplasmic 

enzyme into the extracellular space. Additionally, granulocyte accumulation as well as infiltration of 

eosinophils and neutrophils was observed. The infiltration of inflammatory cells including macrophages, 

eosinophils, neutrophils, and lymphocytes are also classic markers of inflammation. This study was one 

of the first to compare the pulmonary toxicities of MWCNT to that of asbestos and carbon black, as well 

as to consider the role of particle size in determining toxicity outcomes.  

 The second key study was completed in 2009 by Ma-Hock et al. and was a 90-day inhalation 

toxicity study using Wistar rats [50]. The particle used in this study was the Nanocyl 7000 MWCNT, and 

the authors reported increases in neutrophil infiltration and total protein content in bronchoalveolar lavage 

fluid (BALF). Furthermore, pathology assessments at 24 days following the last exposure reported 

inflammatory cell infiltration. This novel study was the first to implement inhalation dosing methodology 

to improve translation to human studies, and to investigate the effects of MWCNTs on various regions of 

the respiratory tract.  
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 Porter et al. (2010) is the third hallmark study of MWCNT inflammation [51]. C57 mice were 

exposed to Mitsui-7 via oropharyngeal aspiration. This was also the first study to complete a thorough 

dose (10, 20, 40, 80 µg) and time course (1, 7, 28, and 56 days post-exposure) study of MWCNT induced 

inflammation. This study reported that while inflammation seems to peak around 7 days post-exposure as 

measured in inflammatory cell infiltration, cell counts remained consistently elevated compared to 

controls at the latest time point. Similar trends were also reported for LDH and albumin in the BALF. 

Furthermore, dose-dependent effects were also observed at all time points in which greater doses of 

MWCNT resulted in greater inflammation. This study was one of the first to report the pulmonary 

toxicities of Mitsui-7, as well as to investigate inflammation in relation to dose and time.  

 Mercer et al. in 2013 published a 12-day inhalation study that investigated the long-term effects of 

MWCNT inhalation [10]. C57 mice were exposed to Mitsui-7 and inflammation, as well as a thorough 

investigation of fibrosis, was assessed at 1, 14, 84, 168, and 336 days post-inhalation, This study reported 

that inflammatory BALF cell infiltration and LDH was significantly elevated at 168 days post-exposure, 

with slight, but not statistically significant, elevation at 336 days post exposure. This was one of the first 

to highlight the chronic inflammatory activation of MWCNTs, but to also demonstrate that inflammation 

will subside over time when exposures cease.  

 In 2014, Sweeney et al. published a study investigating the effects of MWCNT on alveolar 

macrophages [52]. Primary human alveolar macrophages were exposed to 10 µg/ml long and short 

MWCNTs in vitro for 24 hours. Inflammatory cytokine release was investigated, and the authors report 

that IL-6 release was significantly increased following treatment with the longer of the two MWCNTs. 

Furthermore, functional changes in phagocytic capacity were assessed and found that both long and short 

MWCNTs could significantly reduce the phagocytic abilities of macrophages, which has implications for 

altered biopersistence of particle in the lung, as well as clearance and extrapulmonary translocation of 
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tubes. This study is also notable for its contributions of linking physicochemical characteristics to toxicity 

outcomes.  

 A couple notable papers have been published regarding the toxicities induced by carbon nanofiber 

exposure.  First is the study by Delorme et al. in 2012 in which Sprague Dawley rats were exposed to CNF 

by inhalation for up to 90 days [53].  Cell damage, inflammation, and histopathology were assessed. This 

study reported sub-chronic inflammation as well as notable histopathological changes including 

pulmonary fibrosis that persisted through later time points in a dose-dependent manner. 

 A second CNF hallmark study was published in 2018 by Hamilton et al. which investigated the 

role of CNFs in inflammation and the activation of the inflammasome [54]. Alveolar macrophages, both 

mouse and human, were exposed to up to 50 µg/ml CNF and evaluated for various markers of 

inflammasome activation including LDH, IL-1β, IL-18, and cell viability and proliferation. Additionally, 

C57BL/6 mice were exposed to 40 µg CNF via aspiration. Markers for inflammasome activation including 

LDH and cathepsin B were assessed in BALF. This study found that NLRP3 inflammasome activation 

was present in all models used. This study is important for its notable use of CNF and for the investigation 

of mechanisms behind the previously observed inflammatory responses, including the activation of the 

inflammasome.   

 In conclusion, these studies through the years have shown that CNT/F are capable of inducing 

potent activation of pulmonary inflammation. Cellular injury, activation of the inflammasome and other 

cellular signaling cascades, and changes in phagocytic abilities can have persistent impacts and can serve 

as drivers in relation to other toxicity outcomes including, histopathology alterations and translocation 

and particle biopersistence. The question still remains if all CNT/F have the same inflammatory potential 

as all other CNT/F, or if the cross-linked outcomes are all equally affected by changes in inflammation. 

Future studies are still necessary to answer overarching questions regarding the toxicities of the broad 

class of materials.] 
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1.3.3. Pathology 

 Numerous histopathology changes can be observed in the lung following exposure to nanoparticles 

that can be associated with changes in morphology of the tissue, inflammation, and changes in functional 

respiratory outcomes. Several of these outcomes are discussed in detail. 

 

1.3.3.1. Granulomatous Inflammation 

 Pulmonary exposure to MWCNT is known to induce granulomatous inflammation or granuloma 

formation with associated fibrosis. This granulomatous response is predicted to be the result of frustrated 

phagocytosis or inability to clear the particle from tissue. In order to prevent persistent tissue injury and 

activation of an inflammatory response, CNT/Fs and CNT/F agglomerates are enclosed in a granuloma. 

A granuloma is an encapsulating wall composed of immune cells, such as macrophages, neutrophils, and 

lymphocytes, which serve as a barrier between the particle and healthy lung tissue thereby preventing 

further cellular injury. Macrophages involved in these lesions are often giant, or multinucleated, or are 

observed to have granular cytoplasm [55]. Granulomas often contain collagen deposits for the long-term 

stability of the encapsulation and are generally considered to be permanent.  

 Minimal presence of granulomas can have little to no adverse health effects. However, with 

increasing severity, number, and size of granulomas, diminished respiration and elasticity of lung tissue 

can occur. While granulomatous lung disease if often associated with both infectious and non-infectious 

causes including tuberculosis and sarcoidosis, nanoparticle driven granulomatous response has been 

observed. Few studies have attempted to quantify functional changes in respiration following CNT/F 

exposure in rodents, though histopathological outcomes often consider granuloma formation. 

Furthermore, to date, no human studies have reported functional changes in respiration as an adverse 

health outcome nor have histopathological outcomes been assessed to observe changes including fibrosis 

as the latency for these changes has not yet been achieved. 
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 While granulomatous inflammation is often seen following CNT/F exposure, a particular note 

should be made considering the route of exposure. Well-dispersed CNT/Fs dosed via inhalation methods 

may not result in heavy particle or large agglomerate deposition in the lung and may not induce a 

granulomatous response compared to other methods of bolus-type dosing such as oropharyngeal aspiration 

[10]. The translational aspect of bolus-type dosing should be considered when extrapolating rodent 

findings to human health outcomes [15]. 

 

1.3.3.2. Small airway disease and pathology 

Particle induced small airway disease has been previously characterized following exposure to 

mineral dusts, air pollution, and other fine particulates such as silicates and metal oxides. As these particles 

are frequently deposited in the bronchi and bronchioles, pathological changes are frequently observed 

including hypertrophy and hyperplasia, bronchiolitis obliterans-like changes, and fibrosis. Hypertrophy 

and hyperplasia of the bronchial epithelium is a thickening of the epithelial layer of cells as both the 

number of cells and cell layers present increase and the size of the epithelial cells themselves increases 

[55]. This thickening occurs as a response to cellular damage and can occur with and without the activation 

of inflammatory cascades and may also be linked to oxidative stress. Furthermore, bronchiolitis obliterans 

like changes have been previously observed and are known to occur when a combination of pathology 

changes in the bronchi and bronchioles results in a constriction of the small airways leading to potential 

respiratory difficulties.  

 In a previous study investigating MWCNT exposure in rodents, MWCNTs that heavily deposited 

in the small airways resulted in the occurrence of bronchiolitis obliterans-like changes, suggesting that the 

particles themselves may serve as a direct driver of these pathologies [19]. Future research into these exact 

mechanisms are still necessary. While the latency for human studies of pathology changes has not been 
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reached, the additional use of rodent models can be an acceptable system for investigating these potential 

outcomes. 

 

1.3.3.3. Pathology of the alveoli and gas exchange regions 

 Similar to the pathology changes in the small airways, changes in the alveoli region of the lung 

have also been observed following exposure to particulates, and several studies have investigated the 

potential effects of CNT/Fs. Additionally, similar to observations in the bronchi, hyperplasia has been 

observed in the alveoli. This hyperplasia is recognized as an increase in alveolar epithelial type II cells 

and increased cell number, or hypercellularity [55]. Furthermore, alveolar histiocytosis, or an 

accumulation of macrophages often presenting with foamy cytoplasm within the alveolar region, may also 

occur following CNT/F exposure and is a hallmark of inflammation [19, 55]. These lesions are classic 

indications of persistent cellular damage and inflammation. 

 

1.3.3.4. Pulmonary Fibrosis 

Studies have shown that exposure to MWCNT can result in fibrosis. Stimulation of resident 

fibroblasts will result in increased collagen production and will be readily observed as excessive or 

abnormal deposition of collagen with special stains such as Masson’s trichrome stain or picrosirius red 

can result in stiffening and decreased elasticity of lung tissue and the increased thickness can increase the 

distance across where gas exchange occurs resulting in difficulty expanding and contracting the lungs and 

diminished gas exchange, respectively[9, 55]. Additionally, highly affected regions may also result in 

atelectasis, or focal alveolar collapse. 

 Two distinct regions for pulmonary fibrosis are of interest for CNT/F exposure. First, bronchi and 

bronchiolar fibrosis can occur the bronchi and bronchiolar epithelium. This thickening can occur when 

particle deposits in these regions and stimulates fibroblast activity. Due to the branching structure of the 
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terminal bronchioles and the broncho-alveolar duct, combined with their narrowing diameters, particle is 

likely to deposit within this region leading to fibrosis. Bronchiolitis obliterans-like obstructions are also 

commonly seen in conjunction with this fibrosis leading to the obstruction and impaired respiration in 

downstream airways and alveoli. Duke et al. published a study in 2017 noting that MWCNTs that 

deposited in the bronchiolar region induced a potent fibrotic response in the small airways of mice exposed 

to rod-like MWCNTs at 21 days post-exposure that resulted in airway constriction [56]. Similar findings 

were reported in 2017 by Bishop et al. in which mice exposed to large tangles of MWCNTs that deposited 

in the small airways resulted in bronchiolitis obliterans-like pathologic alterations [19]. 

 Furthermore, the respirable fraction of CNT/Fs can reach the alveolar ducts. As previously 

mentioned, these particles can readily diffuse into the alveolar interstitium resulting in fibroblast 

stimulation and subsequent collagen deposition. This thickening of the alveolar interstitium can increase 

the thickness of tissue, resulting in a greater distance across where gas exchange must occur. Severe 

alveolar fibrosis can lead to poor respiration. Several studies have noted the occurrence of alveolar 

fibrosis. In 2010 Porter et al. completed a dose and time response study to measure pulmonary injury 

following exposure to MWCNT and determined that the fibrotic response was measurable as early as 7 

days post-exposure that persists through chronic time points [51].  

 Overall, pulmonary fibrosis is of particular concern following CNT/F exposure. Additionally, 

fibrosis was of importance in the determination of the NIOSH recommended exposure limit (REL). This 

REL was based upon the likelihood of developing fibrosis (early stage lung disease) as an adverse health 

effect at a likelihood of 0.5-16% [57]. This outcome, in combination with genotoxicity outcomes, are of 

key consideration in any future re-evaluations of the REL as well as establishing safe workplace handling 

procedures.  
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1.3.3.5. Pleural penetrations 

 Pleural penetrations are a hallmark of tissue injury often associated with asbestos exposures and 

have been linked to mesothelioma outcomes. Previous studies have shown that particle dosing directly to 

the pleural space can result in mesothelioma due to injury to the mesothelial cells present [14, 38, 39, 41]. 

Therefore, particle penetrations into the pleural space are a linked as a potential driver of particle induced 

lung cancers and inflammation.  

 Several studies have also noted pleural penetrations following exposure to MWCNTs, particularly 

following inhalation of the well-known Mitsui-7 MWCNT. Porter et al. in 2010 were the first to report 

pleural penetrations as early as 12 days post exposure in mice [51]. In 2010, an additional study by Mercer 

et al. used a pharyngeal aspiration model in mice to quantify the pleural penetrative capabilities of Mitsui-

7 [58]. This study found that penetrations occurred quickly and were seen at one day post exposure, though 

these penetrations may have been subsequently cleared via macrophage mediated clearance. However, 

increasing deposition of tubes in the pleural and subpleural tissue increased and accumulated as early as 

28 days post-exposure.  

 

1.3.4. Translocation 

 Extrapulmonary translocation to other organs including lymph nodes, liver, spleen, and kidneys 

have been noted in various studies [59-61]. As previously indicated in the lung, the location of particle 

deposition is important as many adverse health effects are related to the direct presence and interaction 

between particle and tissue. While systemic outcomes may or may not be related to the physical presence 

of tissue, the accumulation of particle in extrapulmonary tissue is an important consideration for systemic 

toxicity outcomes [62, 63]. Due to possible mechanisms driven by the “systemic spill-over” effect in 

which inflammation signals from the lung reach systemic circulation, extra-pulmonary inflammatory 

cascades may be activated even in distant tissues, without the presence of accumulated particle [62]. 
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This translocation can occur through two keys mechanisms. First, independent, passive particle 

translocation can occur without intervention of the immune or lymphatics system. Due to the hydrophobic 

nature of CNT/Fs as well as their pointed ends, these particles can pierce and diffuse through cell 

membranes allowing particles to passively enter into systemic blood circulation. Once within systemic 

circulation, these tubes can eventually migrate to other organs, particularly the liver due to its high 

perfusion, where particles can deposit and accumulate over time. Minimal translocation has been 

previously reported to extrapulmonary tissues, those these percentages are often minimal ranging from 

tenths to hundredths of a percentage of the original lung burden [64]. 

 Second, macrophage mediated translocation occurs when macrophages and monocytes are capable 

of phagocytosing particles and subsequently migrating to other regions of the body, primarily through the 

lymphatic system. Within the lung, two notable regions for lymphatics flow can be identified. Lymphatic 

flow can be easily found intermingling at the bronchoalveolar duct region and terminal bronchioles. This 

area is also identified as a location of large blood vessels and vascularization. Second, the pleural space, 

or the region between the outer wall of the lung and the inner wall of the thoracic cavity is also a region 

of high lymphatic flow. Macrophage mediated translocation to the pleura was first reported by Ryman-

Rasmussen et al. in 2009 following inhalation of CNTs in mice [65]. Each of these regions will continue 

flow to the local lymph nodes. Once in the lymph nodes, these particles can often be ensnared and migrate 

from encapsulation in the macrophages to within resident cells of the lymph nodes. Like other organs, 

these particles are likely to accumulate over time with recurrent exposures.  

 Several studies of note demonstrate this particle migration and extrapulmonary accumulation 

following inhalation or pulmonary exposure to CNT/Fs. In 2010, Reddy et al. dosed male Wistar rats with 

CNTs via intratracheal instillation [66]. This study reported extrapulmonary translocation to the kidney 

and liver with associated toxicities. In 2013, Mercer et al. published two studies investigating the fate of 

inhaled MWCNTs in a mouse model [10, 64]. The first study found that a significant portion of MWCNTs 
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could be phagocytosed by macrophages in attempted particle clearance. The second study specifically 

investigated extrapulmonary translocation of MWCNTs. Translocation to the lymph nodes was common 

and accounted for over 7% of the initial lung burden of particles at one-year post-exposure. To a lesser 

extent, particle was also found in the liver, kidneys, heart, brain, chest wall, and diaphragm. This study 

also notes that particle accumulates in tissue over time. In an inhalation study using mice by Ingle et al, 

also in 2013, Raman spectroscopy was used to follow particle translocation and found that particle can 

translocate via the bloodstream where it can deposit in extrapulmonary tissues [67]. These three studies 

together demonstrate that particle can translocate to extrapulmonary tissues via macrophage-mediated 

transport and independent flow via the bloodstream where the particle can deposit and accumulate in 

numerous other tissues. Further research is still necessary to elucidate the role of these particles directly 

on systemic outcomes and to differentiate these direct effects from potential indirect effects of particle 

exposure.  

 

1.3.5. Summary 

 Overall, these four outcomes highlight the range and extent of health outcomes that can be altered 

by pulmonary exposure to CNT/Fs. These outcomes can be readily assessed using in vitro and in vivo 

model systems, though human data of these four outcomes is lacking. The latency for human research has 

not yet been achieved for the assessment of most outcomes such as genotoxicity and fibrosis, and, to date, 

few human studies have been completed. 

 

1.4. Risk, Exposure, and Current Human Studies 

1.4.1. Current Occupational risks, guidelines, and exposure prevention methods 

Risk is the likelihood of detrimental effects to occur in a given scenario or event, and the present 

study is critical to understanding the risk of harmful effects following exposure to nanomaterials, 
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particularly CNT/F. Risk is a combination of two factors, the likelihood of exposure and the severity of 

the potential adverse outcome. Minimizing the risk associated with CNT/F exposure is primarily 

dependent upon reducing exposure to particles. During production of CNT/F, facility employees can be 

exposed to dry powder materials that can be aerosolized and respired. Once in the lung, these materials 

may induce the toxic outcomes previously discussed. These effects can cause irreversible pulmonary and 

systemic effects that can lead to diseases such as cancer or pulmonary fibrosis.  

In 2013, NIOSH published the Current Intelligence Bulletin 65: Occupational Exposure to Carbon 

Nanotubes and Carbon Nanofibers in which they established a recommended exposure limit of 1 µg/m3 

elemental carbon as a time weighted average for an 8-hour workday [57]. While there is no policy 

enforcement of this recommendation, this limit is strongly urged to be upheld by primary and secondary 

manufacturing facilities in the United States. In a recent assessment of U.S. facilities, 93% of respirable 

measures across 12 facilities were below the REL of facilities maintained exposures at or below the 

NIOSH REL [68]. These standards are derived from risk assessment studies that link studies of human 

exposures with non-human studies including rodent studies in order to predict the threshold at which 

human adverse outcomes are likely to occur.  

In order to minimize risk, several steps can be taken to protect workers. The first step is elimination 

and substitution to nullify the possibility of exposure. However, emerging nanomaterials, including 

CNT/F, are often on the cutting edge of technology and substitutions or eliminations are not feasible. The 

second step is the use of engineering controls to reduce exposure. These engineering controls include the 

use of personal protective equipment such as respirators, protective eyewear, and gloves to minimize 

respiration as well as alternative exposure routes such as dermal exposure. Engineering controls such as 

air filtration can also be used to minimize exposures. Lastly, secondary prevention measures can be taken 

to assess outcomes and consequences of exposures. Investigations including epidemiological studies and 

medical surveillance can be used to detect human health consequences early. These methods together can 
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be used to minimize worker exposures as well as monitor those who are exposed for adverse health 

outcomes allowing for early intervention if necessary. These steps are critical for the safety and protection 

of CNT/F facility workers. 

 

1.4.2. Collaborative exposure assessments  

Exposure assessments are studies completed to quantify human exposures in the workplace as well 

as identify critical means or methods by which workers are most likely to be exposed. These studies can 

determine if workers are exposed to levels below recommended exposure limits and determine the 

respirable and inhalable fractions of CNT/F. Additionally, these studies can be used to determine which 

steps in the manufacturing process are most likely to lead to exposure. 

Several human exposure assessments have been completed. In one key study and follow up study, 

14 U. S. facilities were assessed including companies that produce CNT/F, use CNT/F in secondary 

production such as the production of composites that contain CNT/F, or a hybrid company that produces 

both CNT/F and the secondary product [68, 69]. In these studies, samples of the personal breathing zones 

(PBZ) for facility employees were collected to measure employee exposure to CNT/F. It was determined 

that these facility employees were exposure to levels below the NIOSH REL for the respirable fraction, 

but not the inhalable fraction, and PBZ samples primarily contained particle agglomerates greater than 

2µm in diameter. This study raised concerns about the toxic effects of these particles as agglomerates as 

well as the importance of distinguishing the respirable and inhalable fractions. Of note, these studies have 

been paired with the final series of human health effects studies discussed below, and with the studies to 

follow in subsequent chapters.  

 

1.4.3. Human health effect studies 
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 Only twelve key studies have been published to date that attempted to directly detect or quantify 

health effects following exposure to MWCNT/F in humans and have been generally completed by five 

main groups. The first of these were completed by Liou et. al in 2012, and a second follow up study, also 

by Liou et al. (2014) was subsequently published[70, 71]. This study investigated human health effects 

from employees of Taiwanese facilities that produce various nanomaterials, and of note, only 23% of the 

total exposed employees in this study were exposed to CNT/F. Blood, urine, and exhaled breather 

condensates were collected from a total of 227 particle exposed employees and 137 control employees 

from fourteen difference facilities. This study noted significant decreases in superoxide dismutase (SOD)  

and glutathione peroxidase (GPx), in addition to increases in vascular cell adhesion molecule 1 (VCAM-

1) from baseline at a six-month follow-up. In the second publication reporting a four year follow up study, 

similar findings were reported in addition to an increase in cardiovascular biomarkers fibrinogen, IL-6, 

and intracellular adhesion molecule 1 (ICAM-1). No other significant findings were reported, including 

spirometry and functional outputs.  

The second of these groups was published in 2015 by Lee et al. who competed a health surveillance 

study to quantify changes in blood and exhaled breath condensates of manufacturing employees [72]. This 

study was able to identify three biomarkers present in exhaled breath condensates: malondialdehyde, 4-

hydroxy-2-hexenal, and n-hexanal levels. However, no functional changes in the respiratory abilities of 

the employees were detected, and this study was limited by the number of participants (N=9 exposed 

employees, and N=4 non-exposed). 

 The third series of publications were completed in 2016 by Fatkhutdinova et al. and Shvedova et 

al. [73, 74]. The first study published quantified inflammatory markers in the blood and sputum of 

MWCNT manufacturing facility employees and found an increase in markers including IL-1B, IL-4, and 

TGF-β in both blood and sputum and additional increases in IL-5, IL-6, Il-8, and KL-6 in sputum. The 

second publication assessed changes in non-coding RNA (ncRNA) and messenger RNA (mRNA) in the 
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blood of exposed facility employees and found significant changes in pathways related to cell signaling, 

proliferation, apoptosis, as well as cardiovascular regulation. These findings suggested possible 

inflammatory, carcinogenic, and systemic adverse effects may occur. However, these studies were also 

limited by small sample numbers (N=8-10 exposed, N=7-12 non-exposed employees). 

 The fourth series of publications were published between 2016 and 2018 by Vlaanderen et al., 

Ghosh et al., and Kuijpers et.al. [75-77]. These studies also relied on a relatively smaller sample number 

(N=22-24 exposed workers and N=39-42 non-exposed employees). These studies also attempted to 

complete follow-up assessments of the same workers to identify changes over time, though this group was 

much smaller, and included ten-thirteen exposed and four-six non-exposed employees. In these studies, 

immunological, respiratory, and circulating blood factors were analyzed for potential biomarkers and 

changes in lung function as a consequence of respiratory exposure to MWCNTs. In the first, Vlaanderen 

et al., inflammatory markers in the blood, lung function tests, and fractional exhaled nitric oxide (FENO) 

were assessed [77]. Only a few markers assessed had any significant changes and included c-c motif ligand 

20 (CCL20), soluble interleukin-1 receptor type II (sIL-1RII), and basic fibroblast growth factor were 

increased, though control levels were quite variable. These markers also exhibited further changes in the 

follow up study, though again, this was limited by small sample numbers. No functional respiratory 

(spirometry) changes were observed, though FENO levels were significantly decreased in exposed 

workers. Lastly, some other hematological changes were observed including decreased neutrophil counts 

and increased monocyte counts in the exposed workers. Increased immature platelet counts and 

reticulocyte fractions were also observed in exposed workers, though no other significant changes in the 

blood samples were found.  

The second publication by Ghosh et al. attempted to detect epigenetic changes in works exposed 

to MWCNTs by investigating global DNA methylation and hydroxymethylation [75]. While numerous 

genes were assessed for these changes, only a few sites had significant changes in methylation compared 
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to non-exposed controls. These significant changes included DNA methyltransferase 1 (DNMT1), ataxia 

telangiectasia mutated (ATM), SKI proto-oncogene (SKI), and histone deacetylase 4 (HDAC4) promoter, 

which are genes that serve a role in the regulation of cell replication and proliferation, with potential links 

to carcinogenicity.  

Last in this series is a publication by Kuijpers et al., that intended to investigate cardiovascular 

biomarkers associated with MWCNT exposure [76]. Of the twelve markers assessed, one marker, ICAM-

1, had significant changes in exposed workers in both the initial assessment and the follow-up assessment, 

similar to previously reported publications. Overall, these three publications attempted to investigate 

various outcomes of MWCNT exposure to consider inflammation, cardiovascular effects, and even links 

to cancer. While the sample number also remains quite small, particularly in the follow-up phase of the 

study, some interesting findings have emerged for consideration of human health effects.  

The fifth human health effects study series was completed by close collaborators and are paired 

with the previously discussed exposure assessments and the studies found in the following chapters. In 

this series, over 100 exposed employees from 12 work sites were assessed, the largest sample number in 

any of the human health effects studies, and four publications have been made. The first study, Beard et 

al. 2018, exposed and non-exposed workers provided samples for biomarker analysis for a total of 37 

blood and 36 sputum markers related to oxidative stress, fibrosis, inflammation, and cardiovascular 

responses [78]. Several sputum biomarkers were of note including matrixmetalloproteinase-2 (MMP-2), 

interleukin 18 (IL-18), GPx, SOD, and myeloperoxidase, and in blood, MMP-2, MMP-9, 

metalloproteinase inhibitor 1, GPx, SOD, fibrinogen, endothelin-1, ICAM-1, and VCAM-1, were noted.  

The second study is the previously discussed exposure assessment from Dahm et al. (2018) in 

which it was reported that 18% of workers had CNTs within sputum samples, and 70% presented with 

dermal exposures [68]. The third study by Schubauer-Berigan et al. (2018) investigated functional 

respiratory and cardiovascular changes, allergic responses, and blood analytes [79]. Allergy responses 
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were found to positively correlate with increasing years of employment in the facility as well as inhalable 

elemental carbon fractions. Additionally, systolic blood pressure and resting heart rate, as well as blood 

hematocrit, were noted to correlate to fine particulate matter, elemental carbon, and the number of CNT/F 

structures, respectively. However, most other factors analyzed, including spirometry measurements, had 

no significant outcomes, and the authors suggest the need for additional studies. 

The most recent publication, also by Schubauer-Berigan et al. (2020), is the fourth publication in 

this series [80]. In this study, ex vivo methodology, a TruCulture assay was used to detect biomarkers from 

blood samples in response to stimuli. Regression modeling and pathway analysis was also used to 

determine the relationships between other contributing factors and the identify key signaling pathways 

that may have been affected or predictive of downstream health effects. Significant changes were observed 

for haptoglobin, IL-1b, IL-1ra, IL-3, IL-10, IL-12p40, IL-15, IL-18, IL-23, MMP-9, stem cell factor 

(SCF), tissue inhibitor of metalloproteinases 1 (TIMP1), vascular endothelial growth factor (VEGF), and 

von Willebrand factor. Furthermore, pathway analysis identified several cellular and molecular processes 

that may be influenced including cell-to-cell signaling and interaction, cellular growth and proliferation, 

cellular development, cellular movement, inflammatory response, immune cell trafficking and 

hematological system development and function. Overall, this study was able to highlight potential 

changes in human health effects that may not be readily detectable by simple biomarker analysis, 

suggesting undiscovered or currently unknown potential adverse human health outcomes.  

 

1.4.4. Summary 

Human studies have been limited by small sample sizes and minimal follow-up studies to assess 

changes over time, though some factors such as biomarkers of oxidative stress and inflammation have 

been identified. As previously mentioned, the latency for human exposures to present with adverse human 

health effects has not yet been reached, and many studies have attempted to identify predictive biomarkers 
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and early changes in cellular and molecular pathways that may indicate potential outcomes. However, 

these limitations have resulted in a wide variety of outcomes between studies which may be influenced by 

other lifestyle factors that vary between cultures and geographic locations. Future research and continued 

monitoring are necessary to fully understand human health outcomes from CNT/F exposure. With 

improvements in safe handling practices and minimizing human exposure risk, the likelihood of 

significant and widespread effects can be minimized, though it remains critical to understand these 

possible effects through advancing in vitro, in vivo, and human studies.  

 

1.5. Conclusions and Justification of the Current Study 

While the toxicities associated with pulmonary exposure to MWCNTs and CNFs have been 

extensively studied, many questions are still prevalent. Are all CNT/Fs equally toxic, or should they all 

have the same risk classifications? In a recent call to revise the NIOSH CIB, attention has been drawn to 

the still prevalent knowledge gaps in the current understanding of the risks and adverse outcomes that may 

result from MWCNT/CNF exposure. Furthermore, the recent classification of CNTs as a high priority 

highlights the need for additional studies.  

Current studies are often limited by their narrow focus on only a few materials such as the infamous 

Mitsui-7 MWCNT. Studies that do investigate other materials with the intention to compare them directly 

typically are limited to only a couple of particles. Even studies that attempt to compare a large variety of 

MWCNTs side-by-side still often fail to include a diverse enough representation of the whole class of 

MWCNT/CNFs such as size limitations. For example, the series of studies published by the NRCWE do 

include Mitsui-7 particle, though this particle is the largest included in the study, and at only ~50-70 nm 

in diameter, a significant population of particle sizes were not considered. For this reason, future studies 

that are more representative of the large ranges of sizes and other characteristics are still needed.  
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In addition to expanding the range of materials investigated, a multi-disciplinary approach may be 

necessary to elevate these studies to answer more complex questions regarding the relationships between 

physicochemical properties and the toxicity outcomes they may induce. This approach requires novel 

contributions from the fields of artificial intelligence and machine learning to elucidate relationships and 

meld the fields of engineering and biomedical sciences.  

The expansive study in the following chapters attempts this more elegant and multi-disciplinary 

approach to further understand CNT/F toxicity outcomes and their potential drivers. This study 

hypothesizes that while all MWCNT/CNF are toxic, not all materials may induce the same toxicity 

outcomes, and these outcomes may be dependent upon the physicochemical characteristics of the material 

including, but not limited to, size dimensions, impurities and contaminants, density, dustiness and 

respirability, and agglomeration. Nine materials, seven MWCNTs and two CNF, were included in this 

study and encompass a large range of materials with diameters ranging from 9-150nm in diameter as 

reported by their respective production facility. This study also included Mistui-7 as a benchmark material. 

Eight of these materials are produced in U.S. facilities, the same facilities included in exposure 

assessments and human health effects studies previously discussed as completed by collaborators, 

therefore maximizing the potential for translational studies and conclusions. 

In the first part of this study, these nine materials are extensively characterized and are assessed 

for their genotoxic potential in human bronchial epithelial cells (BEAS-2B). The second part of the study 

includes an in-depth investigation of the inflammation induced by these particles in vivo (C57 mouse 

model) at both acute and chronic time points ranging from 1-84 days post exposure. Additionally, 

mechanisms of inflammation are assessed in vitro (THP-1 macrophage) at a variety of doses at an acute 

time point. The third part of this study is a thorough assessment of the histopathological changes that can 

be induced in vivo at 84 days post-exposure as well as investigating the extrapulmonary translocation of 

these particle to tissues such as the trachea-bronchial lymph node and liver. In vitro assessments using 
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human fibroblasts also attempt to investigate the implementation of the fibroblast model for the 

assessment of fibrosis and its possible mechanisms.  

Within all three of these parts of the study, there is an additional assessment completed using 

machine learning to discover the relationships between the physicochemical characteristics and the 

toxicity outcomes. These correlations add additional layers to the conclusions to be drawn regarding the 

classification of particles, the relationship between in vivo and in vitro models, and the links between 

characteristics and outcomes. This multi-disciplinary approach expands upon the current understanding 

of CNT/F toxicities and aims to eliminate the current unknowns within the field to improve knowledge of 

occupational risks, health outcomes, and contribute to safety-by-design.  
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2.1. Abstract: 

 

Background: Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous 

comparative studies of the broad material class, especially those with a larger diameter, with 

computational analyses linking toxicity to their fundamental material characteristics was lacking. It was 

unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF 

#1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported 

diameters ranging from 6-150 nm. All materials were extensively characterized to include distributions of 

physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were 

exposed to the nine CNT/F (0-24 µg/ml) to determine cell viability, inflammation, cellular oxidative stress, 

micronuclei formation, and DNA double-strand breakage. Computational modeling was used to 

understand various permutations of physicochemical characteristics and toxicity outcomes.  

 

Results: Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions 

of physical dimensions provided a more consistent grouping of CNT/F compared to using particle 

dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced 

a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity 

and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand 

breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F 

dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger 

nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with 

greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a 

sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics 

was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including 

surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes.  

 

Conclusion: Distributions of physical dimensions provided more consistent grouping of CNT/F with 

respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in 

human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of 

tubes with greater nominal lengths and diameters.   
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2.2. Introduction 

The evaluation of the potential toxicity of carbon nanotubes and nanofibers (CNT/F) began in the 

early 2000’s [30, 49, 81, 82]. The general outcomes of toxicity studies to date indicated that pulmonary 

exposure to CNT/F was capable of inducing inflammation, fibrosis, cancer, immunosuppression, and 

adverse cardiovascular and neurological outcomes in vivo [15, 42, 51, 53, 63, 83-88]. Studies of key 

importance also confirmed that certain CNT/F were able to translocate from the lung to lung-associated 

lymph nodes as well as systemic tissues [9, 10, 15, 64, 65]. These results raised justifiable concerns 

regarding potential human health effects, especially in the occupational workforce, and prompted the need 

to design and conduct epidemiological studies. While the latency needed for clinical symptoms has not 

ended based upon other fiber toxicity models, as the average worker handling CNT/F has had just short 

of a decade of cumulative exposure, evidence suggests exposure-related effects primarily consisting of 

measures of inflammation, oxidative stress, and immunosuppression [70-73, 77-79, 89, 90]. The outcomes 

were generally mild with no consistent pattern of effect among studies. Evidence of CNT/F in the sputum 

was observed and a considerable number of workers, approximately 70 %, were subjected to dermal 

exposure [68, 79]. The National Institute for Occupational Safety and Health (NIOSH) established a 

recommended exposure limit (REL) of 1 µg/m3 as an 8-hour time-weighted average of respirable 

elemental carbon, a surrogate for CNT/F, following background correction for ambient elemental carbon 

[57]. Dahm et al. (2018) found that U.S. companies can, in fact, maintain the 1 µg/m3 REL, as 93 % of 

respirable measures were below the REL from 214 collected samples at 12 different facilities [68], 

although historically, and globally, this has not always been the case [91]. More recently, potential adverse 

effects of the inhalable fraction, including airway fibrosis and bronchiolitis obliterans [19, 56], have been 

recognized. The inhalable fraction was often significantly greater than the respirable fraction by 4 times 

and 29% of the inhalable samples in U.S. facilities were greater than 1 µg/m3 [68]. Recently, the 

International Agency for Research on Cancer (IARC) classified one multi-walled carbon nanotube 
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(MWCNT), the Mitsui-7 or MWCNT-7, as possibly carcinogenic to humans (Group 2B) [44]. There was 

insufficient evidence to classify all other CNT/F. The 2020-2024 Report of the Advisory Group to 

Recommended Priorities for the IARC Monographs indicates MWCNT as a high priority to be ready for 

evaluation within five years [37]. In summary, 1) in vivo studies indicated a significant hazard potential 

of CNT/F, 2) evidence exists of human exposure and health effect, 3) exposure can be controlled at 

recommended levels, 4) reevaluation for carcinogenicity is imminent, and 5) recommendations to fill 

toxicity knowledge gaps by examination of a broader class of CNT/F was warranted.  

Our group recently conducted a cross-sectional study to evaluate exposure and potential associated 

health effects in workers handling CNT/F [68, 78, 79, 89]. From these studies, which evaluated 12 

different facilities, and the years of ongoing exposure assessment of more than 20 facilities [69, 92], it 

was clear that a wide variety of CNT/F were being produced or utilized by primary and secondary 

manufacturers. The production of CNT/F continues to increase, and new high-volume applications are 

being evaluated, especially in the construction sector. The global CNT market is expected to grow from 

approximately USD 4.5 billion to USD 10 billion by 2023 and USD 15 billion by 2026 with a compound 

annual growth rate of 16 %. The primary question arising from a commercialization, industrial hygiene, 

and research perspective was whether all as-produced CNT/F materials confer similar toxicity. In 

controlled studies, differing physicochemical characteristics of CNT, such as length, diameter, 

functionalization, or surface coating in turn altered the in vivo pulmonary toxicity profile [6, 12, 14, 19, 

33, 93-100]. To date, very few studies simultaneously compared a broad class of as-manufactured CNT 

and linked the relationship between physicochemical characteristics and toxicity endpoints.   

In this current series of studies, with guidance from extensive facility exposure assessment [68, 

69, 92], we selected six MWCNT and two carbon nanofibers (CNF), collectively termed CNT/F, either 

manufactured or handled by U.S. companies, to evaluate four primary parameters of toxicity using in vitro 

and in vivo studies. Specific CNT/F types were selected to be broadly representative of those to which 
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U.S. workers may be commonly exposed. The parameters included genotoxicity, inflammation, 

pathology, and extrapulmonary translocation. CNT/F selection was initially based on provided company 

diameter. Nominal tube diameter was the simplest way to delineate samples for testing and previous 

studies indicate a changing toxicity profile with increasing diameter (or rigidity) [9, 12, 93, 101]. The 

selected materials ranged from 6-150 nm in diameter according to company specifications. Determining 

the materials to test according to diameter, other key physicochemical characteristics also were expected 

to vary, such as length (5-200 µm), thus providing a proper representation of the CNT/F material class. A 

seventh MWCNT, Mitsui-7/MWCNT-7, was added as a benchmark material given the IARC 

carcinogenicity classification and the large amount of historical toxicity data available for the four 

parameters of interest. Of the materials selected, four MWCNT had reported company diameters smaller 

than the benchmark material, and two MWCNT and two CNF had diameters larger than the benchmark 

material. In the few comparative studies that examined multiple different materials, the larger diameter 

materials were not evaluated [12, 93, 94].  

For this section of the evaluation of CNT/F toxicities, all materials were extensively characterized, 

and genotoxicity, one of the four primary parameters of toxicity, was evaluated in vitro. Analyses included 

physical dimension, residual metal catalysts, dustiness, density, charge, acellular reactivity, surface area, 

endotoxin and PAH impurities, thermogravimetric analysis, and hydrodynamic diameter in suspension. 

Prevalence and forms of bundled agglomerates were also characterized as exposure assessment indicated 

that agglomerates, not singlets or individual fibers, represent the majority of particles in personal breathing 

zone samples in workplaces [92]. Human bronchial epithelial cells were treated with CNT/F to determine 

cell viability, inflammation, oxidative stress, micronuclei formation, and DNA double-strand breakage. 

Computational modeling was applied to physicochemical characteristics alone, and in conjunction with 

toxicity outcomes. The modeling created clustering by material, as well as response, to evaluate the 

relationship between physicochemical characteristic(s) and various toxicity endpoints.  
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2.3. Results and Discussion: 

2.3.1. Physicochemical Characterization 

 Seven MWCNT and two CNF (CNT/F), were arranged according to their diameter as reported by 

the production facility and are referred to as MW #1-7 and CNF #1-2 (Figures 1 and 2). The arrangement 

was designed as the information was readily available from the company and selecting a wide diameter 

range was necessary to ensure representation of this large class of materials. Furthermore, one material, 

MW #5, also known as Mitsui-7/MWCNT-7, has been commonly studied and was used as a benchmark 

material for comparison. All CNT/F were extensively characterized as detailed in Tables 1-3 and Figures 

1-5. 

The typical representation of bundled agglomerates containing tubes/fibers with smaller diameters 

materials and transitioning to more elongated bundles with tubes/fibers of increasing diameter was readily 

observed (Figure 1). Also observed was the range in dimensions that could be present in each sample. For 

example, MW #2 was a unique material containing two main populations, one with singlets or 

agglomerates of discrete tubes and the other having highly entangled, cross-linked MWCNT with an 

average diameter of 7 µm and length of 48 µm as measured by electron microscopy. In contrast, MW #7 

had a highly mixed population of diameters that ranged from very thin to very thick with diameters ranging 

from 9-425 nm (Table 1). All CNT/F were extensively characterized and detailed in Tables 1-3 and 

Figures 1-5. Of the studies that have simultaneously examined a broad class of CNT/F, a greater proportion 

of those materials were of diameters at or below MWCNT-7 (mean = 67 nm) [12, 93, 94]. We aimed to 

extend those studies by encompassing MWCNT with larger diameter tubes and, additionally, by including 

CNF. 
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2.3.1.1. Nominal tube physical dimensions 

The classic fiber paradigm links fiber dimensions and biopersistence with toxicity outcomes. 

Fibers have been defined by an aspect ratio, or the ratio of particle length to diameter (or width), greater 

than 3:1 with a length greater than 5 µm and a diameter less than 3 µm [15, 102]. Historically, length, 

more so than diameter, has been the key consideration in understanding the toxicities induced by high 

aspect ratio materials. In comparative studies, longer fiber lengths were often associated with greater 

toxicities of naturally occurring or synthetic fibers [41, 103-112]. Often, materials greater than 5 µm in 

length were associated with the development of mesothelioma, greater pulmonary biopersistence and 

particle retention, and greater inflammatory and fibrotic responses. While longer fibers generally confer 

greater toxicity, short fibers, those less than 5 µm in length, are not without toxicity [113]. 

The comparison of high aspect ratio CNT/F to asbestos was a natural progression [7, 15, 114, 115]. 

Several comparative studies assessing the effects of length and development of mesothelioma indicated 

that CNT/F may have similar capabilities to induce adverse effects. General consensus among the 

literature indicates that longer CNT/F particles were more likely to activate downstream inflammatory 

cascades, induce fibrogenesis, interrupt macrophage clearance, and were generally more bioactive than 

short or tightly bundled CNT/F [6, 7, 12, 23, 52, 54, 93, 96, 116-120]. Specific studies on CNT/F diameter, 

with consistent length, have not been as extensively investigated as a determinant from toxicity outcomes 

of CNT/F exposure. These studies, sometimes as a comparison of MWCNT to SWCNT, found that 

increasing diameter can be associated with less toxicity than thinner fibers in terms of inflammation, 

histopathology changes, alveolar fibrosis, disrupting membrane integrity, and genotoxicity, while other 

studies link greater diameter to enhanced macrophage interactions, as well as greater apoptosis and 

inflammation [9-14, 87, 100, 121]. 

 

 



 

40 
 

2.3.1.2. Nominal tube diameter 

As previously noted, company-provided diameter was the initial segregator for deciding which 

CNT/F to evaluate for toxicity to ensure broad representation of particle sizes. Preliminary evaluations by 

electron microscopy of the samples also suggested that length was likely to vary with diameter, thereby 

creating a good representation of the CNT/F class of materials produced and used in U.S. facilities.  

To confirm the nominal tube diameters (6-150 nm) reported by the company (Table 1), the CNT/F 

materials were dispersed in isopropanol and analyzed using scanning transmission electron microscopy 

(STEM). Two hundred individual tubes for each material were measured and the following parameters 

were determined: geometric mean, arithmetic mean, range, and median of diameters (Table 1). The 

samples were further characterized by binning into specific diameter ranges (Figure 3). From STEM, MW 

#1-4 had geometric means ranging from 12-20 nm (arithmetic means of 13-26 nm) (Table 1). These values 

were similar to the range of company reported diameters of 6-30 nm. There was a range of 6-275 nm in 

diameters but very few tubes of MW #1-4 had nominal tube diameters above 50 nm. The geometric mean 

diameter of the benchmark material, MW #5, was found to be 63±1 nm (arithmetic mean of 67±2 nm) 

with a range of 21-168 nm, slightly larger than previous reports of a mean of 49 nm [51] but in agreement 

with other studies [38, 40, 43, 94]. MW #6-7 were larger in diameter than MW #1-4 but, on average, 

smaller than MW #5 (Table 1). Interestingly, while the mean suggests materials smaller in diameter than 

MW #5, the range and distribution of particles was greatest in the larger size bins (> 150 nm) for MW #6-

7 compared to all other MWCNT (Figure 3). CNF #1 and 2 had diameter geometric means that were 

similar to each other at 102±1 nm (arithmetic mean 110±3 nm) and 103±1 nm (arithmetic mean 110±3 

nm), respectively (Table 1).  

It was clear that the central tendency to only include the mean of the distribution of particle 

dimensions, especially when evaluating MW #6 and #7, did not have enough resolution to fully 

characterize and distinguish one material from another, a critical factor to understand and model toxicity 
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outcomes based on material properties. The heterogeneity in diameter size distributions of the CNT/F was 

assessed from the histograms in Figure 3. The 50% accumulation or cut-off point was determined by curve 

fitting using the sigmoidal function and is represented by the dashed line with the nominal size value 

represented by the upper x-axis. The point of 50% accumulation was rapidly achieved for MW #1-4 within 

the first two bins indicating most particles were less than 25 nm in diameter. Beginning with MW #5, a 

right shift can be seen, reflecting an increase in diameter. While MW #5 had a significantly larger 

population of tubes around 64 nm in diameter, the distribution had a smaller range of particle widths; 

virtually all particles were contained in three bins, compared to MW #6 and 7. While not large in absolute 

number, subpopulations of larger diameter tubes were found in MW #6 and 7 that were not observed for 

other MWCNT. CNF #1 and 2 had a similar profile and distribution. Compared to the MWCNT, the shift 

in 50% accumulation towards larger size bins was more distinguished for the CNF and provided a clear 

distinction from MW #1-4.  

 

2.3.1.3. Nominal tube length 

Lengths were not reported by all companies, and those reported had a range of 0.1-200 µm (Table 

1). As with diameter, the nominal tube length was determined on tubes/fibers in parallel with diameter to 

create paired STEM measurements. Two hundred individual tubes or fibers for each material were 

measured. The summary of length measurements was presented as arithmetic mean, geometric mean, 

range, median, and binning by specific diameter ranges (Table 1, Figure 4). MW #1-4 had geometric mean 

lengths ranging from 0.67 – 1.41 µm (arithmetic means of 0.80-1.84 µm) (Table 1). MW #1 was the 

shortest by average length followed by MW #3, with virtually all length values being segregated in the 

initial bin (0-2 µm) (Figure 4). MW #5 measured much longer than MW #1-4 at 4.39±2.07 µm (arithmetic 

mean of 5.62±0.29 µm) with a range of 1.2-25.8 µm. The measured length is consistent with previous 

reports of MW#5/MWCNT-7 [51]. On average, MW #6-7 were shorter than MW #5 but longer than MW 
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#1-4 (Table 1). The distribution of longer nominal tubes for MW #5-7 was greater than MW #1-4. CNF 

#1 measured 3.64±2.36 µm (arithmetic mean of 5.23±0.36 µm) in length and CNF #2 was 2.16±2.31 µm 

(arithmetic mean of 3.20±0.28 µm). The length differences between CNF #1 and 2 was notable as CNF 

#2 was 40% shorter on average with virtually identical diameters. The arithmetic means of MW #5, #7 

and CNF #1 crossed the threshold set by Schinwald et al. (2012) (5µm) for causing acute pleural 

inflammation [110].  

Nominal tube lengths were binned and depicted in histograms found in Figure 4 with the cut-off 

points at 50% accumulation indicated in each case. For MW #1-4, almost all (96 %) nominal tube lengths 

were concentrated in the first two size bins. The cumulative distribution of particles and the 50 % length 

accumulation cut-off were shifted to the right for MW #5-7 and CNF #1-2. Overall, bulk samples 

containing tubes of greater nominal length were more common in MW #5-7, and CNF #1-2, with notably 

greater length particle populations in MW #5, 7, and CNF #1.  

 

2.3.1.4. Aspect ratio 

Aspect ratio was a critical measurement considered in the original fiber paradigm. In the 1970s 

and 1980s, Stanton published his early work linking high aspect ratio materials, particularly glass fibers 

and asbestos with increased toxicities including lung cancer incidences and mortality [111, 112]. A re-

analysis of the research completed in 1980 by Bertrand and Pezerat used multiple regression analysis to 

conclude that the carcinogenicity of fibers was a continuous spectrum that must include both length and 

diameter, as a greater aspect ratio can be indicative of greater carcinogenicity [103]. While aspect ratio is 

an inherent description of length to diameter, the values for each material, including the distribution, were 

considered for toxicity outcomes.  

Individual tube aspect ratio was quantified from STEM measurements as the diameter and length 

measurements were paired. These measurements were as follows (Geometric Mean ± Geometric standard 
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deviation, GM±GSD): 53±2, 96±2, 50±2, 76±2, 69±2, 73±2, 78±2, 36±2 and 21±2 for MW #1-7 and CNF 

#1-2, respectively. MW #4-7 had a slightly higher aspect ratio compared to MW #1 and #3. CNF #1 had 

a lower aspect ratio compared to all MW due to the notably larger diameter, which was even less for CNF 

#2 given a similar diameter, but shorter length compared to CNF #1. As with length and diameter, aspect 

ratios were binned and histograms with corresponding accumulation curves were generated and can be 

found in Figure 5. All materials had a wide distribution of aspect ratios. There was a trend for the peak 

aspect ratio to be from 50-100 for all materials except CNF #2. The CNF had a greater leftward distribution 

with CNF #2 having a significant population of fibers with an aspect ratio of approximately 20. Due to 

the differences in length, CNF #1 and 2 had notably different distributions of aspect ratios.  

 

2.3.1.5. Two-dimensional sizing of agglomerates 

Previous studies have considered the role of CNT agglomeration as a determinant of toxicity 

outcome, particularly within the context of genotoxicity, macrophage recognition, the activation of 

downstream inflammatory cascades, and pulmonary fibrosis [15, 56, 64, 122-124]. Rod-like and less 

tangled particles, including singlets, were more likely to influence inflammation histopathology outcomes 

by inducing more pulmonary fibrosis, and impact extrapulmonary translocation [10, 56, 122]. 

Furthermore, agglomeration patterns and size are relevant factors in human occupational exposures and 

respirability [68, 69]. 

Using SEM images, size measurements of particle agglomerates were completed following 

dispersion in our physiologic dosing medium, commonly referred to as dispersion medium (DM). We 

have previously described how the sample preparation mimics collected personal breathing zone samples 

of workers [19]. Representative SEM images can be found in Figure 2. Based on the dimensions, particles 

in this study were categorized into two distinct groups, spherical or bundled agglomerates. Spherical 

agglomerates were defined as tangles of tubes/fibers that had an aspect ratio of less than 3:1; this 
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convention was adapted from earlier workplace exposure assessment studies [68]. The second category of 

agglomerates was referred to as “bundles.” These bundled agglomerates were tangles of particle with an 

aspect ratio greater than 3:1. These bundles varied in the number of tubes/fibers, with some having only a 

couple. In sizing these structures, the major and minor axes of the bundles were reported as length and 

diameter, respectively. 

 MW #1 and #3 were similar with spherical agglomerates composing the bulk (87% and 83%, 

respectively). A second subpopulation of bundled agglomerates was present, but not dominant. Spherical 

agglomerates of MW #1 averaged 0.96±2.01 µm (arithmetic mean of 1.28±0.16 µm) in diameter and MW 

#3 has spherical agglomerates averaging 0.66±1.84 µm (arithmetic mean of 0.81±0.10 µm) in diameter. 

Bundled agglomerates of MW #1 and #3, which represented less than 20 % of the total sample exceeding 

a 3:1 dimension, had lengths under 2 µm and diameters under 0.4 µm on average.  

MW #2 was a unique material that formed quite large agglomerates that were not spherical, but 

rather interconnected ‘rivers’ of highly entangled cross-linked MWCNT (Figure 2). These agglomerates 

were “bundled” agglomerates with a high aspect ratio and two subpopulations were distinguished (Table 

2). The large bundled agglomerates averaged 49.55±3.58 µm in length and had an average diameter just 

under 10 µm. The second subpopulation was found as more loosely bundled, smaller structures, likely 

agglomerates of singlet tubes as compared to the entangled cross-linked MWCNT. This subpopulation 

had arithmetic averages of 3.80±0.38 µm in length and 30 nm in diameter. The two populations also 

highlight that the singlet nominal tube diameter and length of MW #2 was not entirely representative of 

the material as it did not account for the large bundled agglomerates.  

Beginning with MW #4, there was a rather dramatic transition from spherical agglomerates to 

bundled agglomerates (Table 2). In fact, less than 0-4 % of any of MW #4-7 or CNF #1-2 were categorized 

as spherical agglomerates using our criteria. As the materials increase in diameter, the materials become 

almost exclusively small bundles and singlets that assume a more classic fiber-like appearance (Figure 2). 
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The bundled agglomerates, more representative of a fiber-like appearance, were representative of the 

physical dimensions. Specifically, the length of the bundled agglomerates for MW #4 and CNF #2 were 

on average 50-75 % shorter compared to MW # 5-7 and CNF #1.  

 

2.3.1.6. Hydrodynamic diameter and zeta potential 

The hydrodynamic diameter, which qualitatively reflects the agglomerated state of the CNT in 

aqueous solution, was evaluated using dynamic light scattering (DLS). The hydrodynamic diameter 

ranged between 478 – 771 nm (Table 2). MW #4 was found to have the smallest hydrodynamic diameter, 

followed by MW #5. Similar values were found for MW #1, 3, 7, and CNF #1 and 2, and MW #2 and 

MW #6 had the largest hydrodynamic diameters.  

Zeta potential, the electrokinetic potential at the interface of the particle surface and aqueous 

solution, was evaluated by measuring the electrophoretic mobility of the particles in solution by phase 

analysis light scattering. Zeta potential of a nanomaterial is indicative of its stability in a solution. Minimal 

differences in zeta potential were observed between these materials (Table 2). 

 

2.3.1.7. Surface area 

 Surface area has been a central measurement for ultrafine particle characterization [125]. Studies 

have focused on how surface area was a primary determinant of toxicity, especially with metal oxides 

[126-129]. While surface area is inversely related to nominal tube diameter and decreases with 

agglomeration, the quantification of the surface area of CNT/F can pose some limitations due to their 

physical structure [22, 130, 131]. For example, the interior space of variable concentric layers paired with 

porosity, grooves, and other surface topography can lead to variation in measurements of surface area. A 

few studies have linked increased surface area of CNT/F to more pronounced toxicity outcomes, including 

genotoxicity and inflammation [12, 122, 132]. In this study, all CNT/F were analyzed using the same 
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methodology, allowing for adequate comparisons between materials (Table 3). The surface areas follow 

the expected relationship that smaller diameter corresponded to greater surface area on a mass-to-mass 

basis. MW #1-3 had the greatest surface area. MW #4 was intermediate indicating a transition point in 

physical dimensions. MW #5-7 and CNF #1 and 2 have the smallest surface area, almost an order of 

magnitude less than MW #1-3. 

 

2.3.1.8. Dustiness 

 Particle dustiness is a quantification of the tendency of a dry powder to aerosolize, an important 

aspect for understanding the potential for human occupational exposure. Two independent measurements, 

total and respirable dustiness, were simultaneously determined as previously described [20] and well 

suited to characterizing these CNT/F materials. Total dustiness was the percent of the total dust (sample 

using a closed face cassette) that can be aerosolized from the test sample, while the respirable fraction 

(sampled with a cyclone) was the percent of the aerosolized dust that can penetrate to the deep airways, 

or the alveolar region. Total dustiness may be approximated to the inhalable dustiness fraction, particularly 

with these CNT/F materials [133] MW #1, #2, #5, and CNF #1 had total dustiness that ranged from 3-14 

% and a respirable dustiness that ranged from 0.8-2.4 %. CNF #2 was not measured but was expected to 

be very close to the values of CNF #1 and MW #5 published previously [20]. The total dustiness of MW 

#3, #4, #6, and #7 ranged from 0.2-0.5 %, approximately an order of magnitude less that the other 

materials. The respirable dustiness ranged from 0.08-0.20 %. The results indicate greater dustiness for 

some CNT/F compared to others but not a consistent pattern with relationship to physical dimensions or 

surface area. 
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2.3.1.9. Density 

 As CNT/F mostly occur as agglomerates, the aerodynamic behavior is determined by the effective 

density of the agglomerates [15]. Most CNT/F exposures are performed on a mass basis and the NIOSH 

REL is based on mass concentration of elemental carbon. Given that density is directly proportional to 

mass, theoretically, the lower the effective density, the more CNT/F particle would be needed for 

equivalent dosing by mass. Recent computational modeling of engineered nanomaterials included density 

in the analyses [80, 134, 135] with some indication it was a primary driver of toxicity [134]. Measurements 

of bulk and tapped skeletal density were performed for all CNT/F (Table 3). MW #1, #3, and #4 were 

comparatively denser than MW #2 and MW #5 by an order of magnitude. The remaining materials, MW 

#6, MW #7, CNF #1, and CNF #2 were intermediate from the above-mentioned materials. As concluded 

with dustiness, there was no apparent consistent pattern that linked skeletal density to other physical 

dimensions, surface area, or dustiness. 

 

2.3.1.10. Chemical and metal impurities 

 Chemical and metal impurities from the catalysts and production process were usually present at 

some level in CNT/F end products. Some common metal impurities found in the CNT/F include iron, 

nickel, chromium, cobalt, copper, zinc, molybdenum, and aluminum. Some of these metals such as iron 

[26], nickel [136], molybdenum [137], chromium and cobalt [101] were found to influence the 

toxicological profile of CNT. Thirty-one metals and chemical impurities were screened using inductively 

coupled plasma atomic emission spectroscopy (ICP-AES). Most of the thirty-one metals evaluated were 

below their respective analytical limits of detection (LODs). The metals that were present in one or more 

CNT/F include iron (0.27-6.2%) and aluminum (0-2.2%) (Table 3). Trace amounts of cobalt, 

molybdenum, zinc, nickel, manganese, lead and cadmium were in range of (0-0.17%), (0-0.05%), (0-

0.1%), (0-0.004%), (0-0.006%), (0-0.002%) and (0-0.0005%) respectively. Most of the CNT/F currently 
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used in U.S. facilities had minimum trace amounts of metal residues. Iron was a consistent catalyst ranging 

from 0.27 % to 6.17 % (Table 3). MW #6 and #7 had the highest levels of residual iron catalyst. Another 

metal of note was aluminum which was present in MW #3 at 2.1 % with residual amounts of 0.31 % or 

less in other CNT/F (Table 3). All other metals were at levels of 0.17 % or less. 

 

2.3.1.11. Thermal stability, degradation, and purity 

 Thermal stability, degradation, and purity of CNT/F was assessed using thermogravimetric 

analysis (TGA). This technique analyzes change in the weight of a specimen in relation to increasing 

temperature. The oxidation onset temperature, the temperature at which the oxidation of CNT/F starts, is 

considered a measure of thermal stability and degradation varied across the CNT/F. The onset temperature 

for the CNT/F ranged from 550-735 ºC (Table 3). The residual ash, or the content left after complete 

oxidation, was evaluated to determine the purity of the CNT/F. The percentage of residual ash for MW 

#1-7 and CNF 1-2 was 1.74±0.01% (means ± SD), 3.98±0.26%, 8.21±0.26%, 4.75±0.07%, 1.11±0.28%, 

7.88±0.15%, 8.95±0.29%, 1.79±0.12%, and 2.21±0.16% respectively (Table 3). These values are 

primarily indicative of metal content and were generally consistent with relative levels of residual metal 

catalysts determined using ICP-AES. MW #3, #6, and #7 had the greatest residual ash and results are 

consistent with the higher amount of metal catalyst measured. 

 

2.3.1.12. Polycyclic Aromatic Hydrocarbons and Endotoxin 

Airborne background contaminants and byproducts like polycyclic aromatic hydrocarbons (PAHs) 

and endotoxin, a component of the bacterial cell wall, can be a major influence on the toxicity profile of 

various engineered nanomaterial and environmental particulates [138-140]. Previous exposure and 

emission monitoring at a CNF production facilities indicated the presence of PAHs with an average 

concentration up to 336 μg/m3 [141]. To rule out the influence of PAHs and endotoxin, gas 
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chromatography–mass spectrometry with selected ion monitoring (GC–MS SIM) and limulus amebocyte 

lysate assay were performed, respectively. The levels of PAHs and endotoxin in the CNT/F were below 

their LODs. The lack of endotoxin was supported by no significant induction of tumor necrosis factor-α 

production (described below) from epithelial cells at the highest CNT/F dose tested. 

 

2.3.1.13. Acellular Reactivity 

Multiple physicochemical characteristics of the CNT/F including residual metal catalysts, surface 

defects, functionalization, and redox active organic matter, such as quinones, will alter the reactivity of 

the nanomaterial in biological matrices. This can lead to an imbalance in redox homeostasis that can 

trigger oxidative stress and toxicity. The ferric reducing ability of serum (FRAS) assay was used as an 

acellular screen to determine the antioxidant capacity, or the ability of CNT/F to react in biological 

matrices and deplete antioxidants. This assay serves as a screen for oxidative stress and potential toxicity 

[142]. Compared to untreated serum, reaction with CNT/F reduced the antioxidative capacity of serum by 

65-100 % (Table 3). CNF #1 and 2 had 100 % remaining antioxidative capacity, indicating that these 

materials were the lowest in their ability to independently react and induce oxidative stress. MW #1 and 

MW #7, two very distinct CNT materials in terms of physical dimensions, consumed the most serum 

antioxidants as indicated by the lowest remaining % antioxidative capacity. The remaining CNT ranged 

from 75-91 %.   

 

2.3.1.14. Grouping CNT/F by Principal Component Analysis of Physicochemical Characteristics 

As a first step, feature selection using the Boruta algorithm was performed on three sets of 

physicochemical property data for the nine different CNT/F materials: 1) detailed characterization of 

length (L), diameter/width (labeled as W for figure clarity for easier distinction from L), and aspect ratio 

(AR) from the binned data from Figures 3-5 (Figure 6B; L-W-AR binning); 2) standard physicochemical 
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data using means only from Tables 1-3 (Figure 6C; Means only); and 3) the combination of L-W-AR and 

means only data (Figure 6A; All characterization). Figure 6 displays the principal components analysis 

(PCA) results for different CNT/F samples with confirmed variables of importance from the three separate 

analyses (Supplemental Figure S1 A-C). It should be noted that the PCA plots did not change without 

feature selection (Supplemental Figure S2). The first three principal components describe ~ 71 %, 68 % 

and 82 % of the total variability among materials for the ‘all characterization’, ‘L-W-AR binning’, and 

‘means only’ parameters, respectively. Most importantly, the PCA analysis of L-W-AR and all 

characterization variables suggested a segregation of MW #1-4 materials from MW #5-7 and CNF #1-2 

(Figure 6A-B). Overall, a combination of larger lengths and widths separated one group of materials (MW 

#5-7, CNF #1-2) from the second group of materials (MW #1-4) (Figure 6A-B; Supplemental Figure S1 

A-C). The categorization of MW #5-7 and CNF #1-2 together in the same group indicates common 

physicochemical characteristics of these materials. However, this was not the case with PCA using 

traditional variable data which were based on mean values only (Figure 6C). Often, the literature reports 

only mean values without including the detailed size distributions for physical dimensions. Previous 

studies proposed that providing distributions of dimensional characteristics would better segregate 

different CNT/F for grouping and toxicity [101]. The difference in the material segregation between means 

only compared to L-W-AR binning and all characterization suggests that varying the input parameters 

will influence conclusions drawn in terms of which physicochemical characteristics may drive specific 

toxicity outcomes. The variance in the PCA plots provided two initial suggestions: 1) binning of the 

physical dimensions may be critical for accurate representation of the materials and potential toxicity and 

2) binning of the physical dimensions without significant additional physicochemical characterization may 

alone be enough to group CNT/F. The latter point agrees with the lack of a consistent pattern when 

comparing surface area, density, residual metal catalyst, dustiness, etc. for the various CNT/F.  
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Another important finding was that the use of L-W-AR binning alone parameters further separated 

CNF #1 from CNF #2 and grouped CNF #1 together with MW #5-7 (Figure 6B). Furthermore, a close-

clustering of CNF #1 with MW #6 and their overall grouping with MW #5 and #7 along with correlated 

L-W-AR binning variables in the PC1 dimension, supports the notion that a greater range of sizes can be 

found in CNF #1 compared to CNF #2. The PC1 dimension correlates MW #6 and CNF #1 materials with 

L15, L10, Lmore, W0.1, W0.2 and W0.3 variables. Similarly, a correlation of MW #5 and MW #7 with 

the variables L6, L8, L10, L25, L30, W0.15 and Wmore was also observed. Overall, these results suggest 

that larger lengths and diameters separate MW #5-7 and CNF #1 from the rest of the materials investigated. 

Importantly, the separation does not indicate a large fraction of the CNT/F sample has those larger 

dimensions (Figure 3-4) but rather the sample contains some proportion of tubes with those specific 

nominal physical dimensions. 

 

2.3.2. In vitro Toxicity Assessment 

2.3.2.1. Cell Viability 

Human bronchiolar epithelial cells (BEAS-2B; selection detailed in Methods) were challenged 

with the nine CNT/F at 0.024, 0.24, 2.4, and 24 µg/ml for 24 h and cell viability was assessed by measuring 

the reduction of cell proliferation reagent WST-1 (Figure 7A). Dose selection and relevance is detailed in 

the Methods. The lowest two doses (0.024 and 0.24 µg/ml) caused no significant change in cell viability. 

The highest dose (24 µg/ml) significantly reduced viability with all the materials tested except with MW 

#2. CNF #2 induced ~45% reduction in cell viability. The 2.4 µg/ml dose induced a small but significant 

reduction in cell viability for MW #1-3 and CNF #1. These toxicity results are consistent with previous 

results [46, 47, 143]. The IC80 for MW #1-7 and CNF #1-2 ranged from 11-43 µg/ml. Subsequent studies 

of genotoxicity were done at 0.024 and 2.4 µg/ml in accordance with OECD TG487 [144] and ICH S2(R1) 

[145] guidance for 80 % or greater cell viability. 
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2.3.2.2. Oxidative stress 

Reactive oxygen species (ROS) consisting of hydrogen peroxide, singlet oxygen, superoxide 

anion, hydroxyl radical, and hypochlorous acid are constantly regulated by the cells, which is essential to 

maintain homeostasis. Epidemiology studies of workers exposed to CNT/F during their manufacturing or 

use in downstream applications found alterations in oxidative stress markers and antioxidant enzymes [70, 

71, 78, 137]. Animal and in vitro studies using various cell types, including epithelial cells, confirmed 

induction of oxidative stress with various CNT/F exposures. The response was amplified by metal 

impurities and was found to be dependent on the physicochemical characteristics that influence the 

reactivity, cellular internalization, and biopersistence [116, 146, 147]. In order to assess the oxidative 

stress potential of the nine CNT/F, BEAS-2B cells were exposed for 24 h at concentrations of 0-24 µg/ml 

and then labeled with CellROX, a non-fluorescent cell-permeant dye that fluoresces upon oxidation by 

ROS. Fluorescence per cell was evaluated by flow cytometry. Only the highest dose (24 µg/ml) induced 

a significant oxidative stress response for MW #4-7, and CNF #1-2 (Figure 7B). There was a trend for an 

effect in MW #6-7 and CNF #1-2 at 2.4 µg/ml. The CNT/F with smaller physical dimensions (MW #1-3) 

did not induce ROS even at the highest concentration tested.  

 

2.3.2.3. Cytokines, chemokines, and growth factors 

A selection of 27 cytokines, chemokines, and growth factors were assessed from cell supernatant 

following exposure to 2.4 and 24 µg/ml of each of the nine CNT/F for 24 h (Figure 7C). Many of the 

measured proteins were altered for most of the CNT/F tested. MW #2 exposure altered the least number 

of proteins. The reduced response was likely due to the large bundled aggregate fraction (Table 2) not 

having the same cellular effect as the other CNT/F. MW #6 and #7 caused the most significant changes, 

especially at the lower dose evaluated, indicating these materials may be more adept at altering cellular 

signaling than other materials in this study. All materials except MW #2 induced a significant increase in 
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primary modulators of innate inflammation, IL-6, IL-8, IL-1β, etc., at the high dose and several at the low 

dose (e.g., MW #6-7). Some molecules assessed, including IL-10, an anti-inflammatory cytokine, were 

significantly reduced. FGF was increased while other growth factors measured, VEGF and PDGF-ββ, 

were generally decreased. At the higher dose, suppression of certain cytokines was more evident with 

MW #5-7 and CNF #1-2.  

 

2.3.2.4. Genotoxicity 

 The potential for CNT/F to cause carcinogenicity is an area of active research [148, 149]. In vivo 

and significant in vitro evidence suggested adverse health consequences following inhalation to CNT/F. 

One material, MWCNT-7/Mistui-7, has been shown to be a complete carcinogen in rodent models, which 

led IARC to designate this material as possibly carcinogenic to humans (Group 2B) [44]. All other 

materials were considered as Group 3 as there was insufficient evidence to classify otherwise [115]. The 

2020-2024 Report of the Advisory Group to Recommended Priorities for the IARC Monographs indicates 

MWCNT as a high priority and ready for evaluation within five years [37]. While human health effects 

studies have begun globally, the latency for carcinogenicity has not been reached [70-73, 77-79, 89, 90]. 

 To date, most studies concerning the potential carcinogenicity of CNT/F have used in vitro 

approaches to evaluate genotoxicity. The approach allows for a rapid screening after which detailed 

mechanistic and in vivo studies can be conducted to expand initial evidence of genotoxicity. The 

micronucleus assay was used to determine if CNT/F treatment results in disruption of the mitotic spindle 

or chromosome breakage. This approach also allows for the simultaneous evaluation of a large group of 

materials. Parallel cultures of human epithelial BEAS-2B cells were exposed to 0.024 and 2.4 µg/ml of 

the 9 CNT/F, with MW#5 (Mitsui-7/MWCNT-7) serving as a documented positive control, for 24 h and 

the number of cells with micronuclei were quantified (Figure 8A-B). The screening approach, including 

cell type and exposure concentration, has been used previously by our group [42, 47, 143]. Viability in 
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the high dose was ≥ 80%, and the low dose had ≥ 97% viability. In DM-exposed cells, few micronuclei 

were detected, and background incidence was similar to previous studies [42, 47]. All CNT/F materials at 

both the low and high dose induced significant increases in micronuclei number except for the low dose 

of MW #2 (Figure 8B). The treatments were not significantly different from one another.  

 In complement, the phosphorylation of H2AX, a cellular response to repair double-strand DNA 

breaks, was evaluated. Flow cytometry was used to quantify phosphorylated H2AX, or γ-H2AX. All high 

dose-treated cells induced γ-H2AX except for MW #2 (Figure 8C). Increased levels of γ-H2AX were also 

measured for MW #7, CNF #1 and CNF #2 for the low dose treatment. For CNF, the low and high doses 

had similar effects. While measurements of γ-H2AX was considered a low priority indicator of 

genotoxicity as it does not directly indicate irreversible mutations [149], the response was similar to the 

micronuclei outcome. 

 

2.3.2.5. Hierarchical clustering and PCA of the cellular outcomes 

A hierarchical clustering analysis (HCA) was performed to distinguish or discriminate the BEAS-

2B cellular outcomes induced by CNT/F materials with varying physicochemical characteristics. HCA, 

unlike model-dependent analyses such as supervised machine learning methods, is a model-free statistical 

approach that makes no a priori assumptions about the class identification of data. The resulting 

dendrogram from the HCA analysis of physicochemical properties of ‘all characteristics’ combined with 

outcomes of the four primary in vitro assays, cell viability, cellular oxidative stress, micronuclei 

formation, and γ-H2AX, is depicted in Figure 9A. Overall, the dendrogram initially divided CNT/F 

exposure responses into two clusters or groups, one predominantly containing MW #1-4 together with the 

control group, and the other containing MW #5-7 and CNF #1-2 (Figure 9A). HCA was also done for 

outcomes in comparison to the ‘L-W-AR binning’ and ‘means only’ characterization profiles. The L-W-

AR binning profile produced the same two clusters (Figure 9B) as developed using all characterization 
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parameters (Figure 9A). The means only HCA shifted MW #4 into the cluster with MW #5-7 and CNF 

#1-2, suggesting similarities resembling more MW #6-7 than MW #1-3 (Figure 9C), indicating the input 

selection of characteristics can vary the grouping in relation to toxicity outcomes. PCA results from ‘all 

characterization’ combined with the four primary in vitro assay outcomes (Supplemental Figure 3A) 

grouped similarly to ‘L-W-AR binning’ (Supplemental Figure 3B), producing a separation between the 

two clusters. The ‘means only’ with in vitro outcomes (Supplemental Figure 3C), like the HCA 

dendrogram (Figure 9C), was less clear in distinguishing groups of CNT/F.  

HCA analysis was done for ‘all characteristics’ and the four primary in vitro outcomes along with 

inflammatory protein production (Supplemental Figure 4). The grouping was unaltered compared to 

Figure 9A except for a clearer separation in the two sub-clusters. This was evident as MW #6-7 had a 

significant grouping of induced inflammatory proteins compared to MW #5 and CNF #1-2. What became 

evident from Figure 9A-B and Supplemental Figure 4 was that binning of the aspect ratio data did not 

segregate to any particular outcome and may be unnecessary for the HCA. To illustrate, Supplemental 

Figure 5, HCA without aspect ratio binning, created the same two clusters of MW #1-4 and MW #5-7 / 

CNF #1-2 for ‘all characterization’ (Supplemental Figure 5A) and ‘L-W-AR binning’ (Supplemental 

Figure 5B) when considering the four primary in vitro epithelial toxicity outcomes. Within each sub-

cluster, co-clustering between materials was also evident as all variations in HCA pulled out the two CNF 

from the CNT and MW #6 and #7 clustered together even without secreted protein changes as in 

Supplemental Figure 4. There were a few subtle differences in pairings between MW #1-4 and control for 

the L-W-AR binning HCA compared to all characterization. As an additional step, HCA analysis was 

done, without aspect ratio, to include the altered protein changes with the four primary toxicity outcomes 

and the three variations in characterization parameters. Interestingly, all three scenarios (Supplemental 

Figure 6A-C) now had the same two clusters, meaning the ‘means only’ HCA placed MW #4 with MW 

#1-3 instead of MW #5-7 and CNF #1-2. Previously for ‘mean only’ HCA (Figure 9C), MW #4 was 
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combined with MW #6-7. It was clear from Supplemental Figure 6C that the large group of induced 

inflammatory proteins for MW #6-7, not seen with MW #4, altered the clustering. This series of analyses 

suggests that when using ‘means only’ for physicochemical characterization, additional toxicity data may 

be necessary to accurately categorize all materials in terms of epithelial cell toxicity. It also indicated that 

altered inflammatory protein concentrations, at least the panel used in this study, were not necessary to 

group CNT/F in terms of epithelial toxicity if binning of physical dimensions was available.  

We next considered just the four primary outcomes of in vitro toxicity and protein production with 

no physicochemical characteristics. The HCA analysis also grouped MW #1-4 separately from MW #5-7 

and CNF #1-2 (Supplemental Figure 7). The toxicity only grouping consistently matched HCA analyses 

using ‘all characterization’ or more simply the ‘L-W-AR binning’ as compared to the ‘means only’ 

characterization from Figure 9. The separation of oxidative stress, micronuclei formation, and γ-H2AX 

from protein production when considering outcomes only (Supplemental Figure 7) further supports the 

consistency of grouping when physical dimension binning was determined and analyzed without 

inflammatory protein production (Supplemental Figure 4 and 6). The separation also suggests that 

epithelial cell viability and inflammatory cytokine production, as assessed by the panel used, were not 

primary drivers of genotoxicity.  

The various analyses allowed for interpretation of which physicochemical properties drive which 

epithelial cell toxicity outcomes. Three of the four in vitro outcomes evaluated, oxidative stress, 

micronuclei formation, and γ-H2AX, grouped with certain physicochemical properties that were identified 

in Figure 9 and Supplemental Figures 4-6 as distinguishing between the two CNT/F clusters. Bins of larger 

lengths and diameters (W), including L15, L20, L25, L30, W0.1, W0.2, and Wmore, clustered with the 

outcomes. Also clustering with the toxicity outcomes were bundled agglomerate singlet percentage, 

length, and diameter from the two-dimensional sizing (Table 2). Inherently, that would be expected as the 

increasing physical dimensions of length and diameter transition the CNT/F from a spherical agglomerate 
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(e.g., MW #1 and #3) to a more elongated bundled agglomerate. Depending on the parameters for HCA, 

the fourth primary outcome, cell viability, sometimes grouped with the other three toxicity variables of 

importance (Figure 9B; Supplemental Figure 4), but other times did not (Figure 9A; Supplemental Figure 

5 and 7), suggesting that cell viability may not always be a useful assay for determining differential 

toxicity among materials. Overall, MW #1-4 materials clustered separately from MW #5-7 / CNF #1-2. 

While all materials induced significant micronuclei formation (Figure 8B), when combined with γ-H2AX 

(Figure 8C) and cellular oxidative stress (Figure 7B), there was a propensity for greater severity in the 

cluster of materials that contained a greater proportion of tubes/fibers with larger physical dimensions, 

MW #5-7 / CNF #1-2 (Figure 9). This was further supported by the fact that control samples always 

clustered with MW #1-4. 

    Of note was the close clustering of cellular oxidative stress with γ-H2AX levels and micronuclei 

formulation. This was especially evident with physicochemical variables of larger lengths and widths and 

bundled agglomerate characteristics. The finding was consistent of genotoxicity through indirect oxidative 

stress–related mechanisms upon exposure to high aspect ratio nanomaterials [150, 151]. Increased 

oxidative stress, as a result of lysosomal damage by inefficient phagocytosis of high aspect ratio 

nanomaterials, can cause double-stranded DNA damage and chromosomal aberrations leading to 

micronuclei formation. γ-H2AX, an early indicator of DNA-double strand breakage and a process that 

precedes the formation of micronuclei, segregated mostly with larger nominal tube/fiber diameter and 

length of CNT/F. Oxidative stress responses clustered together with bundled agglomerate length support 

the notion that oxidative stress due to inefficient cellular handling of aggregated particles and/or lysosomal 

damage by particles of larger dimensions could be a contributing mechanism of genotoxicity, especially 

for MW #5-7 and CNF #1-2.  

    Caution should be taken not to overstate the associations of the larger CNT/F as SWCNT have been 

shown to be potent inducers of chromosomal damage [42, 45, 149]. Also, MW #1 and #3 in this study 
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induced significant effects complementing a recent pulmonary exposure study of a MWCNT 7.5 nm in 

diameter induced cancer [152]. Kuempel et al. concluded in a review of CNT genotoxicity studies that 

there was not a straightforward relationship between length and genotoxicity, although most of the 

evaluated studies had CNT length of only a few microns or less [148]. Jackson et al. (2015) and Poulsen 

et al. (2016) described increased diameter as a physicochemical characteristic linking genotoxicity for the 

15 and 10 MWCNT tested in those respective studies [12, 94]. Those studies represented materials similar 

to MW # 1-5. The greater range of CNT/F physical dimensions in this study provided a clearer separation 

of materials. Overall, all materials, from MW #1 to CNF #2, had the potential to induce in vitro 

genotoxicity. When combining cellular oxidative stress and γ-H2AX with micronuclei formation and a 

broad sampling of the class of CNT/F there was a general shift for greater length and diameter materials 

to cluster together with some increased severity. 

    Many of the other physicochemical characteristics did not associate with epithelial cell toxicity 

outcomes. This does not indicate a lack of importance but more the scope of the endpoints considered. 

Subsequent studies will evaluate the association of the various physicochemical characteristics with 

macrophage activation, fibrosis development, and translocation. It was noted that while cellular oxidative 

stress consistently clustered with micronuclei formation and γ-H2AX, there was no clustering with 

acellular reactivity measured by FRAS or residual metal catalyst. This indicates the residual metal catalyst 

levels ranging from 0.3-6% were not the primary drivers of cellular oxidative stress compared with larger 

physical dimensions. The clustering was confirmed by residual metal catalyst grouping with residual ash 

measured by TGA as expected (Figure 9; Supplemental Figure 4). In conjunction with anti-oxidative 

capacity (acellular oxidative stress), aspect ratio, hydrodynamic diameter, and the smaller length bins (L2 

and L4) were unable to segregate materials and clustered away from all toxicity outcomes. Additionally, 

density, specific surface area, zeta potential, the smaller width bins, and spherical agglomerate 

measurements were also not predictive. Dustiness, while a critical factor for worker exposure assessment, 
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was not predictive of epithelial cell toxicity. Cluster analysis of all the induced cytokines together with 

physicochemical characteristics and toxicity outcomes measured (Supplemental Figure 4) placed the 

proteins into four groups, two of which were exclusive for proteins. Most proteins did not cluster with the 

physicochemical characteristics and none with the four primary biological outcomes. While significant 

changes in inflammatory drivers, growth factors, and cell survival and proliferation signaling molecules 

occur following CNT/F treatment in the epithelial cells, the change in these proteins did not correlate to 

biological outcomes like oxidative stress and genotoxicity.  

 

2.3.2.6. Summary 

Advances in computational analysis are being applied to the almost two decades of engineered 

nanomaterial research for grouping and understanding the physicochemical drivers of toxicity [80, 134, 

135, 153, 154], including studies of carbon nanotubes [12, 101, 121, 155, 156]. The analyses of the data 

from this study illustrate that detailed physical dimension characteristics provide a more consistent 

grouping of CNT/F as compared to using only data means. In fact, analysis of binning of nominal tube 

physical dimensions alone produced a similar grouping as to all characterization parameters. 

Theoretically, working backwards, a predictive algorithm could be generated that allows classification of 

CNT/F into distinct toxicity groups based on 200 paired length and diameter measurements. While all 

materials induced micronuclei formation in human bronchial epithelial cells, when combined with 

additional parameters associated with genotoxicity, there was an increase in the severity if the sample 

contained some proportion of materials with larger diameters and longer nominal lengths. The population 

of nominal tubes with longer length and larger diameters within a sample was not always the majority 

(e.g., MW #7), meaning a significant percentage of the tubes with those characteristics was not needed for 

increased severity of toxicity. The analyses indicate that a more detailed physicochemical characterization 

of physical dimensions provides better understanding of the differential toxicity within a class of materials, 
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implying that evaluating particle characteristic means alone may not be sufficient to accurately segregate 

CNT/F for certain aspects of toxicity. Subsequent studies analyzing outcomes of inflammation, 

histopathology, and translocation following CNT/F exposure will further develop clustering by 

physicochemical characteristics and specific endpoint toxicity. In this study evaluating epithelial cell 

toxicity, all materials induced some level of genotoxicity. However, of the CNT/F evaluated, materials 

that contained a proportion of tubes with greater lengths and diameters were associated with increased 

severity. 

 

2.4. Conclusions 

• Binning of physical dimensions (length and diameter/width) offered greater resolution in terms 

of grouping CNT/F based on physicochemical characteristics compared to using means only. 

This was further evident when analyzing the physicochemical characteristics and epithelial cell 

toxicity outcomes. 

• Binning of physical dimensions alone offered the same resolution for grouping CNT/F as using 

all physicochemical characteristics suggesting the potential of reduced characterization needed 

for grouping CNT/F fibers.  

• All CNT/F, with the lone exception of the highly aggregated low dose of MW #2, induced 

genotoxicity. There was no difference between materials for micronuclei formation. 

• When micronuclei formation was combined with cellular oxidative stress and γ-H2AX levels, 

CNT/F with increasing length and diameter grouped with slightly more toxicity. 

• Computational analysis illustrated that increasing length and diameter contribute to greater 

epithelial cell toxicity. Binning of physical dimensions alone was sufficient to group CNT/F 

in terms of epithelial cell toxicity. The nature of the bundled agglomerate formation, a 

reflection of the physical dimensions, also grouped with toxicity outcomes.   
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• The increasing length and diameter CNT/F do not need to be the majority constituent of the 

produced material. A small percentage of nominal tubes/fibers with increased length and 

diameter was sufficient to alter the toxicity profile.  

• There was no consistent pattern of density, specific surface area, dustiness, residual metal 

catalyst, and surface charge associating with physical dimensions or genotoxicity outcomes. 

 

2.5. Materials and Methods 

2.5.1. Materials 

All CNT/F used in this study, with the exception of MW #5 (MWCNT-7/Mitsui-7/), were as-

produced materials obtained from six different U. S. primary or secondary manufacturing facilities. 

Occupational exposure assessments of these facilities were completed to provide insight into human 

exposure risks and offer direct insight into the vast array of materials utilized [68]. MW #5 (MWCNT-

7/Mitsui-7/) was included in this study as a benchmark material as its toxicity profile is well-studied and 

characterized (Figure 1). 

 

2.5.2. Characterization 

Length and Diameter: Tube and fiber length and diameter were measured using high resolution scanning 

transmission electron microscopy as previously described [19]. Briefly, samples of CNT/F were sonicated 

in isopropanol for 5 minutes. A STEM grid was dipped into the dispersed suspension and used for imaging 

and analysis. Measuring tools included in the electron microscope’s software were used to determine 

paired length and diameter. Length was determined by connected points at the two extremes without 

following the curvature of the nanotube or nanofiber. High resolution images were collected with a Hitachi 

HD-2300 STEM.  
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Two-Dimensional Agglomerate Sizing: Samples of CNT/F were prepared in physiologic dispersion 

medium and the dispersed samples were prepared for field emission scanning electron microscopy (FE-

SEM; Hitachi S-4800, Tokyo, Japan). Measurements were collected using measuring tools of the 

microscope’s provided software (FE-PC SEM Ver. 2.8, Hitachi High Technologies America). The largest 

crosswise diameter of 75 agglomerates were measured for each material. Materials were subsequently 

categorized into distinct groups of agglomeration defined as either spherical agglomerates or bundles of 

fibers with one dimension greater than three times the other dimension, referred to as bundled 

agglomerates. Bundled agglomerates had both a diameter and length measurement. 

Aspect Ratio: Aspect ratio was calculated as the ratio of CNT/F length to diameter.  

Hydrodynamic Diameter: The hydrodynamic agglomerated size of the various CNT/F dispersed in DM 

was evaluated using DLS. DLS was performed on a Malvern Zetasizer Nano ZS90 (Worcestershire, UK) 

equipped with a 633 nm laser at a 90o scattering angle. The DLS measurements were performed by 

dispersing the CNT/F material in dispersion media. After two minutes of equilibration inside the 

equipment, five measurements, each consisting of at least five runs were recorded. 

Surface Area: Using Brunauer Emmet Teller (BET) methodology, the surface area of each CNT/F was 

measured as described previously [22]. Briefly, samples were degassed in ultrahigh purity (UHP) nitrogen 

for 30 minutes at 90 °C, and then for 90 minutes at 200 °C. The surface areas were determined by a 5-

point BET measurement with UHP nitrogen as the adsorbate and liquid nitrogen as the cryogen. 

Zeta Potential: Zeta potentials were measured using a Nano ZS90 instrument (Malvern Instruments, UK). 

Viscosity of the control medium was previously determined at room temperature using a VS-10 

viscometer (Malvern Instruments) and used as the value for calculation of zeta potential. The pH of all 

samples was measured using a calibrated electrode. 
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Dustiness: Dustiness is a unitless measurement (mass/mass) measured using the Venturi dustiness device 

as was previously described [20]. This measurement represents a percentage of total (~inhalable) and 

respirable airborne mass normalized to the quantity of test powder prior to dispersion. 

Density: Skeletal density of each CNT/F was determined based on ISO 23145. For tapped density, a 10 

ml graduated cylinder was tared on a calibrated analytical balance and the material was added. To measure 

tapped density, the container was gently tapped, and the level of the powder was recorded to the nearest 

0.1 ml. The cylinder with powder was reweighed. Density was calculated as the mass of powder divided 

by volume. The measurement was replicated three times for each sample and the results are expressed as 

means ± standard deviation.  

Metal Analysis: ICP-AES was used to measure metal content. Digestion was completed using a 

microwave digestion system (MARS, CEM). Five mg of each sample and 10 ml of concentrated nitric 

acid were added to the digestion vessel and were subsequently digested using the following program: 

maximum power 400, 100% power, ramp 20 °C/min, 600 psi, temperature 230 °C, hold time 60 min. 

Samples were then heated on a hot block to reduce the volume to 1 ml. The samples were then brought to 

a volume of 10 ml using deionized water. Sample digests were analyzed according to NMAM 7300. Metal 

analysis included aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, 

copper, iron, lanthanum, lead, lithium, magnesium, manganese, molybdenum, nickel, phosphorus, 

potassium, selenium, silver, strontium, tellurium, thallium, tin, titanium, vanadium, yttrium, zinc, and 

zirconium. 

Endotoxin: Endotoxin contamination was measured using the Limulus amebocyte lysate test according to 

the manufacturer’s protocol. The limit of detection was 0.1 EU/ml. 

PAH: PAH levels were quantified by gas chromatography–mass spectrometry with selected ion 

monitoring (GC–MS SIM) using method previously described [141]. Briefly, dry samples of CNT/F were 

extracted in 10 ml methylene chloride with shaking for two minutes. The samples were extracted three 



 

64 
 

times and the extracts were combined. The Limit of Quantification (LOQ) and Limit of Detection (LOD) 

and other details were provided previously [141]. 

TGA: Thermogravimetric analysis (TGA) was performed to determine the residual ash contents and 

thermal stability of the materials. Samples were analyzed as previously described using a Q50000IR TGA 

(TA Instruments Inc., New Castle, DE) [22]. 

Acellular Oxidative Potential: The acellular oxidative potential of CNT/F was determined using ferric 

reducing ability of serum (FRAS). Serum is a complex mixture consisting of various forms of antioxidants 

that can quench chemically distinct oxidants. The oxidative potential of the CNT/F was determined by 

reacting human blood serum (HBS; Sigma-Aldrich, St. Louis, MO; Cat # P2918) with CNT/F and 

evaluating the decrease in antioxidants in HBS. The reduction in antioxidant capacity of the serum was 

quantified by ferric to ferrous ion reduction and formation of a colored ferrous-tripyridyltriazine complex. 

The decrease in antioxidative capacity in HBS was compared with Trolox, a vitamin E analog. This 

modified total antioxidant capacity approach has been used to evaluate the oxidative potential of various 

engineered nanomaterials [157-159]. 

Human blood serum was rapidly thawed and exposed to CNT/F at a concentration of 5 mg/ml in 

low protein retention tubes. To properly disperse the nanomaterials, the samples were sonicated for 5 

minutes. The dispersed samples were then incubated in the dark at 37 °C for three hours on an orbital 

shaker set at 450 RPM. The CNT/F were removed from serum by centrifuging the mixture at 14,000 g for 

three hours. 50 µl of the serum supernatant was reacted with 1 ml of the FRAS solution to quantify the 

level of antioxidant depletion. The FRAS solution is a volume mixture of 10:1:1 consisting of 0.2021 g of 

sodium acetic trihydrate and 1.060 ml of glacial acetic acid (Alfa Aesar, Haverhill, MA; Cat # 36289) in 

100 ml of deionized water, 0.0946 g of TPTZ (2,4,6-tri(2-pyridyl)-s-triazine)(Sigma-Aldrich, Cat # 

T1253) and 1.2 ml of 1M HCl in 30 ml of deionized water and 0.1635 g of FeCl3·6H2O (Sigma-Aldrich, 

Cat # 44944) in 30 ml of deionized water respectively. For quantitative comparison of the level of 
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antioxidant depletion, Trolox (Sigma-Aldrich, Cat # 238813) standards were prepared at concentrations 

of 25-800 µM and reacted with the FRAS solution. The change in color was quantified by reading the 

absorption at 586 nm. 

 

2.5.3. In vitro Study Design and Methods 

 The goal of this study was to investigate the toxic effects of CNT/F on pulmonary epithelial cells. 

Immortalized human bronchial epithelial cells (BEAS-2B), cells were exposed to several concentrations 

of each of the nine materials. Changes in cell viability, oxidative stress, and protein production were 

determined. Additionally, the genotoxicity of these materials was assessed using γH2AX detection and 

micronuclei formation. The BEAS-2B cell line was selected as a non-tumorigenic cell line originally 

derived from human bronchial epithelial cells immortalized by viral transfection[160]. Since their original 

description, monocultures of these cells have been widely used and accepted by researchers to study 

genotoxicity and potential lung carcinogenesis of test agents. The BEAS-2B cells have several advantages 

that have made them suitable cell population for genotoxicity analysis. The cells have a stable karyotype 

and a low background frequency of micronuclei at early passage[161-163] [45] [19] [46, 47]. These 

cellular characteristics of the BEAS-2B are in accordance with the OECD guidelines as follows: “Because 

the background frequency of micronuclei will influence the sensitivity of the assay, it is recommended 

that cell types with a stable and defined background frequency of micronucleus formation and a stable 

karyotype be used.” Previous investigations have demonstrated that the BEAS-2B cells double every 18 

to 20 hours when seeded at 70% density[46, 47] [45] [162]. 

Correspondence to Human exposure: The experiments were performed on µg/ml basis. As the surface 

area and volume required changes with the cell culture consumable used for the assays, in order to be open 

and enable future comparative and meta-analysis of the data generated, we have reported the 

concentrations in µg/cm2 basis alongside the µg/ml. Cellular toxicity and oxidative stress were performed 
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at a range of approximately 0-15 µg/cm2 (0-24 µg/ml). Micronuclei formation and γ-H2AX were 

evaluated at 0.009 and 0.9 µg/cm2, very much at the lower end of the toxicity range. 

Based on Erdely et.al 2013[164], an inhalable elemental carbon mass concentration arithmetic mean of 

10.6 µg/m3 (geometric mean 4.21 µg/m3) was found among workers exposed to MWCNT. The 

concentration equates to a deposited dose of approximately 4.07 µg /d in a human. The in vitro exposure 

of 0.009 µg/cm2, based on an human alveolar surface area of 102 m2 (1.02 x 106 cm2) [165] corresponds 

to 9180 µg deposited in the human. With estimated 4.07 ug/d deposited, this would be equivalent to 

exposure of approximately 2250 days. Assuming 5 days/week of work the 2250 days corresponds to ~ 9 

years of exposure. The in vitro exposure of 0.9 µg/cm2 corresponds to 918,000 µg deposited in the human. 

With estimated 4.07 ug/d deposited, this would be equivalent to exposure of 225000 days. Assuming 5 

days/week of work the 225000 days corresponds to ~ 900 years of exposure. 

CNT/F Dispersion in Cell Culture Media: Aqueous stock suspensions of CNT/F were generated by 

weighing the dry powder and suspending in well-characterized dispersion medium [DM; 0.6 mg/ml mouse 

serum albumin + 0.01 mg/ml 1,2-dipalmitoyl-sn-glycero-3-phosphotidyl (DPPC) in phosphate-buffered 

saline (PBS) without calcium and magnesium] [166] at 2 mg/ml concentration. The stock suspension was 

sonicated for 5 minutes at 70% amplitude using a cup horn sonicator (Sonics VibraCell VCX-750 with 

Cup-type Sonicator; Newton, CT) immersed in continuous flowing cold water. The samples were vortexed 

intermittently after every minute for 10 seconds. The stock solution at 2 mg/ml was dispersed in cell 

culture media by diluting to highest test concentration i.e. 24 µg/ml. The CNT/F containing cell culture 

media was then subjected to probe tip sonication (Branson Sonifer 450, continuous output) for a total of 

2 minutes, with 10 second vertexing after every 30 seconds. CNT/F containing cell culture media at 0.024, 

0.24 or 2.4 µg/ml were obtained by serial dilution. 
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2.5.3.1. Cell culture and cytotoxicity 

Human bronchial epithelial cells (BEAS-2B) were obtained from American type culture collection 

(ATCC, Manassas, VA) and cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with 

10 % heat inactivated fetal bovine serum (R&D Systems Inc, Minneapolis, MN) and 1% penicillin 

Streptomycin (Invitrogen, Carlsbad, CA). Cells were cultured to 70% confluency in an incubator 

maintained at 37 oC and 5% CO2. Trypsin-EDTA (0.25%) was used to detach the cells from the culture 

flasks for sub-culturing. The cells between passage 4-10 were used and these cells had a doubling time of 

18-20 hours. For evaluating the cytotoxicity, parallel cultures of cells were seeded at 46,900 cells/cm2 

overnight in a 96-well plate and dosed at a concentration of 0.024, .24 or 2.4 or 24 µg/ml to the CNT/F 

with MW #5 (Mitsui-7/MWCNT-7) serving as a positive control. In terms of surface area this corresponds 

to 0.015, 0.15, 1.5 and 15 µg/cm2. Parallel cells cultures were exposed to CNT/F for 24 h and challenged 

with fresh media containing 10 % volume/volume WST-1 cell proliferation reagent (Sigma-Aldrich, Cat 

#5015944001). After 2 h of incubation the WST-1 consumption was recorded by measuring the 

absorbance at 450 nm subtracted with absorbance at 660 nm to account for turbidity/background. 

Cytotoxicity was evaluated by repeating the experiment on three separate days with each dose tested in 

quadruplicates each day.  

 

2.5.3.2. Oxidative stress 

Intracellular ROS formation after 24 h post exposure of the CNT/F was assessed using CellROX® 

Green (Invitrogen). Cells were seeded at 46,900 cells/cm2 overnight in a 24-well plate and dosed at a 

concentration of 0.024, 0.24, 2.4, or 24 µg/ml of one of the nine materials tested. In terms of surface area 

this corresponds to 0.012, 0.12, 1.2 and 12 µg/cm2. After 24 h of exposure to CNT/F, cells were detached 

using Trypsin-EDTA, and washed and incubated with 50 µM CellROX for 20 minutes. Cells were washed 

and fixed by incubating them with 10% formaldehyde in PBS. The change in CellROX fluorescence was 
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captured using a BD LSR II flow cytometer (BD Biosciences, San Diego, CA). The cells were strained 

through a Flowmi™ Cell Strainer (Bel-Art Products, Inc. Wayne, NJ) to achieve uniform single cell 

suspensions and remove any aggregates. The mean fluorescence was determined using FlowJo (FlowJo 

LLC, Ashland, OR). The experiment was performed on four separate days with each dose tested in 

triplicates each day. At least 10,000 cells were analyzed per sample in each group 

 

2.5.3.3. Protein quantification 

Alteration in the proteins released due to CNT/F exposure was quantified by measuring twenty- 

seven proteins in the supernatants after 24 h exposure to 0, 2.4 and 24 µg/ml of the CNT/F. In terms of 

surface area, this corresponds to 0, 0.75 and 7.48 µg/cm2. The proteins were measured using a BIO-RAD 

Bio plex Pro Human Cytokine Grp 1 Panel 27 plex (Bio-Rad Laboratories Inc, CA, Cat # 

M500KCAFOY). The 27 proteins measured include cytokine FGF basic, eotaxin, G-CSF, GM-CSF, IFN-

γ, IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17A, IP-10, 

MCP-1 (MCAF), MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α and VEGF. These proteins are key 

cytokines, chemokines and growth factors that play an important role in inflammation. The assay 

sensitivities for these markers ranged from 0.1 to 33.3 pg/ml. 

 

2.5.3.4. Double stranded DNA break 

Phosphorylation of H2A histone family member X (H2AX) occurs during repair of DNA breakage 

and is considered a sensitive marker for double stranded DNA breakage. Flow cytometric evaluation of 

H2AX phosphorylation was performed as described earlier [167]. Cells were plated on a 12-well plate 

overnight and challenged with 1.5 ml of CNT/F dispersed in cell culture medium for 24 h. The cells were 

dosed with 0, 0.024 and 2.4 µg/ml of CNT/F. In terms of surface area, this corresponds to 0, 0.009 and 

0.9 µg/cm2. After 24 h post exposure to CNT/F, the cells were lifted by trypsinization and fixed using 
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10% formaldehyde in PBS. Cells were permeabilized with 0.2 % (v/v) Triton X-100 (Sigma-Aldrich) in 

PBS for 30 minutes followed by blocking of nonspecific binding by incubating them with 1 % (w/v) of 

bovine serum albumin (Sigma-Aldrich) for 1 hr. The cells were then incubated overnight with 1:50 

dilution of Phospho-Histone H2A.X (Ser139) Rabbit mAb (Alexa fluor 488 conjugated) (Cell Signaling, 

Beverly, MA). The cells were strained through a Flowmi™ Cell Strainer (Bel-Art Products, Inc. Wayne, 

NJ) to achieve uniform single cell suspensions and remove any aggregates. Fluorescence from single cell 

suspensions was captured using a BD LSR II flow cytometer (BD Biosciences, San Diego, CA). The mean 

fluorescence was determined using FlowJo (FlowJo LLC, Ashland, OR). The experiment was performed 

in triplicates and at least 10,000 cells were analyzed per sample in each group. 

 

2.5.3.5. Micronucleus assay 

BEAS-2B cells (>97% viability by trypan blue) were plated at 70% confluency on a two-well glass 

chamber slides (Thermo Scientific Nunc Lab-Tek, Waltham, MA; Cat# 154461) overnight and challenged 

with 1.5 ml of the 9 CNT/F dispersed in cell culture medium for 24 h. As outlined in previous 

investigations, fresh media was added with the test agent to the cultured cells to stimulate cell proliferation. 

The cells were monitored for cell rounding for 24 h following the addition of media to assure that mitosis 

had occurred. Cell rounding is an accepted measure of cell proliferation because most attached cells in 

culture round up when the cells enter mitosis [168]. The cells were harvested for analysis 24 h after the 

addition of fresh media and test agent to avoid growing the cells to confluence. The potency of the test 

CNT/F was compared to MW #5 (Mistui-7/MWCNT-7). 

Parallel cell cultures were treated with 0, 0.024 and 2.4 µg/ml of the CNT/F, which included MW 

#5 (Mistui-7/MWCNT-7) as a reference material known to be genotoxic. In terms of surface area, this 

corresponds to 0, 0.009 and 0.9 µg/cm2. After 24 h post exposure to CNT/F, the slides were washed with 

PBS and fixed with an ice-cold mixture of 3:1 methanol and acetic acid for 30 min and then stained with 
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DAPI (Vector, Burlingame, CA) for nuclear content. The cells were imaged using a laser scanning 

confocal microscope (LSM 780, CZ Microscopy, Thornwood, NY) using a 60x objective. The complete 

depth of the cell was captured by taking Z-Sections and the 3D images were converted to 2D using 

maximum intensity projection. Photographs of a minimum of 100 cells per slide were taken and the 

number of micronuclei present was recorded, and the experiment was repeated in triplicate for a minimum 

of 300 cells per treatment group. Two independent observers that were blinded to the treatment groups 

recorded the number of micronuclei. 

 

2.5.4. Statistical analysis 

In vitro assays of cytotoxicity and oxidative stress were analyzed using one-way (particle type) 

and two-way (particle type by dose) analyses of variance. Post hoc comparisons were evaluated with 

Fishers LSD test. Some variables were transformed using the natural log prior to analysis to meet the 

model assumptions of homogeneous variance. Significance was achieved at a p<0.05. All analyses were 

carried out using SAS/STAT version 9.4 for Windows, and JMP statistical software version 12 (SAS, 

Cary NC).  

 

2.5.5. Feature selection and principal component analysis 

To permit selection of the minimal number of features among all characterization and L-W-AR properties 

that could potentially discriminate between each material investigated, feature selection was performed 

with a random forest-based approach [169] using the “Boruta” algorithm [170] in the R statistical 

environment [171]. The Boruta algorithm adds randomness to the variables in the dataset by creating 

shuffled copies of all variables (“shadow features”). “Boruta” iteratively assesses if each variable has a 

higher Z-score than the maximum Z-score of its shadow features. At each iteration, variables with Z-

scores lower than shadow features are deemed unimportant and removed subsequently by the algorithm 
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to capture all the important, interesting features one might have in the dataset with respect to a dependent 

variable, in this case each material itself. Then, using traditional, L-W-AR, and combined variables 

retained after applying the “Boruta” algorithm, principal component analysis (PCA) was performed to 

identify significant patterns that explained the majority of the variations in the physicochemical properties 

among the different CNT/F materials investigated. PCA was performed using the prcomp command of 

the R statistical software (R Core Team, 2016) 
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CHAPTER 2 TABLES 

 

Table 2.1. Physical dimensions of CNT/F dispersed in isopropanol.   
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Table 2.2. Hydrodynamic diameter, zeta potential, and two-dimensional sizing of CNT/F agglomerates 

dispersed in physiologic dosing media. 
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Table 2.3. Results of additional particle characterization of CNT/F. 
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CHAPTER 2 FIGURES 

 

 

Figure 2.1: Schematic of material diameter and TEM images of CNT/F. Materials selection was based 

upon company reported diameter ranging from 6-150 nm in diameter to ensure a full range of materials 

were included in this study and the material arrangement is depicted in the upper left corner. These 

materials were identified as MW #1-7 and CNF #1-2. A well-studied benchmark material, MWCNT-

7/Mitsui-7, was included in this study as MW #5. Materials were dispersed in isopropanol and placed onto 

a TEM grid to measure physical dimensions. Representative images of each material were selected with 

scale bars representing 1 µm, 300 nm, and 50 nm from left to right.  
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Figure 2.2: Representative scanning electron microscopy images of CNT/F in DM to measure two-

dimensional agglomerate sizes. LA = large agglomerates and SA = small agglomerates.  
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Figure 2.3. Distributions of CNT/F diameter. Particles were binned according to size along the lower x-

axis with frequency on the left y-axis. Additionally, percentage of accumulation is graphed on the right y-

axis with the absolute diameter along the upper x-axis. The overlay line was 3 parameter sigmoidal curve 

of best fit with the point of 50% accumulation indicated with dotted lines. Sizes are for particles in 

isopropanol suspension.  
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Figure 2.4. Distributions of CNT/F length. Particles were binned according to size along the lower x-axis 

with frequency on the left y-axis. Additionally, percentage of accumulation is graphed on the right y-axis 

with absolute length along the upper x-axis. The overlay line is 3 parameter sigmoidal curve of best fit 

with the point of 50% accumulation indicated with dotted lines. Sizing was for particles in isopropanol 

suspension. 
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Figure 2.5. Distributions of CNT/F aspect ratio. Particles were binned according to size along the lower 

x-axis with frequency on the left y-axis. Additionally, percentage of accumulation is graphed on the right 

y-axis with absolute aspect ratio along the upper x-axis. The overlay line is 3 parameter sigmoidal curve 

of best fit with the point of 50% accumulation indicated with dotted lines. Sizing was for particles in 

isopropanol suspension. 
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Figure 2.6. Principal component analysis (PCA) of different CNT/F materials comparing ‘all 

characterization’ parameters (A), length – diameter – aspect ratio physical dimension (B; L-W-AR 

binning) and means only (C) physicochemical characteristics. The first two principal components (PC), 

PC1 and PC2, define the x- and y-axes of the scatter plots, respectively. The distance between two 

materials reflects the proximity in physicochemical properties between them. PC1, PC2 and PC3 together 

accounted for ~71%, 68% and 82% of the contribution to the variance in the case of all characterization, 

L-W-AR binning and means only, respectively. The scatter plot of the PCA along with vectors depicting 

the loadings of variables is shown. 
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Figure 2.7. Toxicity assessment of BEAS-2B cells exposed to CNT/F. (A) WST-1 cell proliferation assay 

was used to assess the viability of BEAS-2B cells following exposure to increasing concentrations (0.024-

24 µg/ml) of CNT/F. The dose at which the particle significantly reduced cell viability is indicated with 

an asterisk (p<0.05). (B) Oxidative stress was measured using the CellROX assay. * p<0.05 fold change 

vs. control cells represented as a reference line. (C) Protein secretions from cells exposed to 2.4 or 24 

µg/ml of various CNT/F for 24 h represented as heat maps of fold change from controls with no exposure. 

Significant changes from control cells were indicated with an asterisk (* p<0.05). Log fold change was 

represented by color with green indicating a decrease in protein concentration and red indicating an 

increase on a scale of -0.2 to 1. (*p<0.05). 
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Figure 2.8. Genotoxicity assessments. (A) Cells with micronuclei were quantified and presented as 

percentage of total cells at treatments of 0.024 and 2.4 µg/ml. (B) Inference into double stranded DNA 

breaks were quantified via detection of γH2AX. Percentage change from DM is presented on the y-axis. 

*p<0.05 represents significant change from control. 
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Figure 2.9. Clustering of physicochemical characteristics with the epithelial cell toxicity outcomes of cell 

viability, cellular oxidative stress, γH2AX and micronuclei formation. Toxicity outcomes compared to 

(A) all characteristics, (B) L-W-AR binning, and (C) means only were presented. 
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CHAPTER 2 SUPPLEMENTARY TABLES AND FIGURES 

 

Supplementary Table 2.1 Supernatant protein concentrations following CNT/F exposure in BEAS-2B 

cells 
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Supplementary Table 2.1 Continued  
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Supplementary Figure 2.1 Variable importance plots for all characterization (A), L-W-AR binning (B), 

and means only (C) 
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Supplementary Figure 2.2 Principle component analysis plots without feature selection plots for all 

characterization (A), L-W-AR binning (B), and means only (C) 
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Supplementary Figure 2.3 Principle component analysis results from all characterization (A), L-W-AR 

binning (B), and means only (C) combined with the four primary in vitro outcomes 
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Supplementary Figure 2.4 Hierarchical cluster analysis for all characterization and the four primary in 

vitro outcomes along with inflammatory protein production 
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Supplementary Figure 2.5 Hierarchical cluster analysis without aspect ratio inning for all 

characterization (A) and L-W-AR binning (B) when considering the four primary in vitro epithelial 

toxicity outcomes 
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Supplementary Figure 2.6 Hierarchical cluster analysis without aspect ratio inning for all 

characterization (A), L-W-AR binning (B), and means only (C) when considering the four primary in vitro 

epithelial toxicity outcomes and protein changes 
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Supplementary Figure 2.7 Hierarchical cluster analysis (A) and principle component analysis (B) 

without aspect ratio binning for the four primary in vitro epithelial toxicity and protein production only 
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3.1. Abstract 

Background: Pulmonary exposure to carbon nanotubes or nanofibers (CNT/F), known to induce 

inflammation, toxicity, or tumorigenesis, is a concern during production and dry powder handling. CNT/F 

represent a large class of materials and it is unclear if all confer similar toxicity. Our aim was to 

simultaneously assess pulmonary inflammation induced by CNT/F with variable physicochemical 

properties obtained from U.S. facilities. Cytotoxicity and inflammation were assessed in mice 1, 7, 28, 

and 84 d following oropharyngeal aspiration to 4 or 40 µg of one of nine CNT/F (MW #1–7 and CNF #1–

2). In complement, inflammasome activation and mechanisms of inflammation were assess in vitro in 

human THP-1 macrophages, and computational modeling was used to investigate the relationships 

between physicochemical characteristics and toxicity outcomes.  

 

Results: Lactate dehydrogenase (LDH) activity, a marker of cytotoxicity, was dose-dependently increased 

in bronchoalveolar lavage fluid (BALF) resolving toward baseline by 84 d in all groups. In materials with 

a diameter greater than or equal to 50 nm, LDH was persistently increased. Polymorphonuclear cell 

infiltration (%PMN), a marker of inflammation, was increased in all materials at 1 d post-exposure to 40 

μg (<50 nm: 31.1%, ≥50 nm: 37.1%). With exposure to materials less than 50 nm, PMN influx mostly 

resolved by 7 d while materials greater than or equal to 50 nm induced persistent inflammation (7 d: <50 

nm: 10.5%, ≥50 nm: 48.9%). For complement, inflammatory gene expression in lung tissue (e.g., Il-1b, 

Il-6, Ccl22, Cxcl2) and protein levels in BALF (e.g. Il-1b, Il-6, Il-5, Ccl22, Cxcl1), were elevated to a 

greater extent in materials with a nominal tube diameter greater than or equal to 50 nm  These findings 

correlate with in vivo findings. 

 

Conclusion: All CNT/F induced pulmonary inflammation, though more severe and more persistent 

inflammation was associated with materials containing subpopulations of tubes with greater nominal tube 

diameters and lengths.  
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3.2. Introduction 

Over a decade of research has been competed investigating the potential adverse health effects 

following respiratory exposure to carbon nanotubes and carbon nanofibers (CNT/F).  These studies have 

consistently demonstrated that CNT/F could induce pulmonary inflammation, fibrosis, and more recently 

genotoxicity and cancer [9, 11, 49, 51, 162, 172, 173]. Adverse systemic effects of the immune, nervous, 

and cardiovascular systems following a pulmonary have been reported[63, 85, 87, 88, 121]. Additionally, 

CNT/F can exit the lung either as small bundles or singlets and deposit in systemic organs [60, 64]. While 

a multitude of outcomes have been investigated, minimal correlations between physicochemical 

characteristics and toxicity outcomes have been elucidated while simultaneously evaluating a broad 

spectrum of CNT/F. Even fewer studies connect human occupational exposure with laboratory-based 

experimental approaches. Human exposure-informed design of in vivo and in vitro experimental 

approaches allows for better extrapolation of potential human health concerns.  

Knowledge of human health outcomes of CNT/F exposure are currently limited as the latency for 

adverse chronic outcomes has not been reached due to the relatively young field of CNT/F large-scale 

manufacturing. In fact, biomarkers of exposure and effect, especially for inflammation, were minimal and 

inconsistent [73, 76-79]. More sensitive measures have been necessary to evaluate human exposure [89]. 

For this reason, studies using in vivo and in vitro modeling systems have become necessary to understand 

and predict exposure risks. Historically, many of these studies have frequently investigated a single 

material. The exposure science of CNT/F suggested varying physicochemical characteristics of the broad 

class of CNT/F [68, 69, 133]. 

The International Agency for Research on Cancer (IARC) has only classified Mitsui-7/MWCNT-

7 as possibly carcinogenic to humans (Group 2B) while also classifying all other CNT/F as having 

insufficient evidence of carcinogenicity (Group 3) [115]. This lack of evidence regarding the 

carcinogenicity of CNT/F has sparked the need for more in-depth studies as well as study designs that 
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include a sampling of materials with a broader representation of physicochemical characteristics.  

Furthermore, IARC has issued their 2020-2024 Report of the Advisory Group to Recommend Priorities 

for the IARC Monographs which suggests that MWCNT are a high priority and should be ready for 

evaluation within five years [37]. 

In 2000, and again revisited in 2011, Hanahan and Weinberg established their theory of the 

hallmarks of cancer, which are the biological processes that are altered during tumor formation [60, 174, 

175]. One these hallmarks, inflammation, has been investigated for its role in carcinogenesis. Mitsui-7 is 

known to induce chronic inflammation, though it is unclear if all CNT/F induce the same inflammatory 

mechanisms or are equally persistent and potent inflammatory drivers.  

Inflammation alone is not the only hallmark of carcinogenicity, and cancer is not the only toxicity 

outcomes of CNT/F of concern. Understanding the four key toxicity outcomes including genotoxicity, 

inflammation, histopathology, and extra-pulmonary translocation, and their relationships with one 

another, is necessary to fully realize the risks associated with respiratory exposure to CNT/F.  

The aim of this study was to generate and accurate and effective safety profile of numerous CNT/F 

of varying physicochemical characteristics in conditions that best represent occupational exposure. Using 

an extensive in vivo toxicity assessment of nine different materials, seven MWCNTs and two CNF, we 

investigated the inflammation and cytotoxicity induced by these materials at both acute and sub-chronic 

post-exposure time points as well as two doses, 4 and 40 µg. Furthermore, in vitro assessments were 

completed to further investigate the mechanisms by which these materials induce inflammation and 

cellular injury. Computational modeling was also incorporated to fully assess the relationships between 

particle physicochemical characteristics and in vitro and in vivo toxicity assessments. 
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3.3. Results and Discussion 

 The nine materials used in this study were selected to represent a broad spectrum of 

physicochemical characteristics. Seven MWCNT and two CNF (CNT/F), which included the benchmark 

material, Mitsui-7/MWCNT-7 (MW #5), were arranged according to their diameter as reported by the 

production facility and are referred to as MW #1–7 and CNF #1-2. The details of this characterization was 

previously published and can be found in the supplementary data (Supplementary Tables 1-3, 

Supplementary Figures 1-2) [176]. In the previous study in this series, principle component analysis and 

hierarchical clustering were used to determine the key role of particle size dimensions as a means of 

grouping [176].  It was determined that the means of length, diameter, and aspect ratio alone were 

insufficient for grouping CNT/F, and a fuller, more detailed understanding of the sub-populations of 

particle dimensions was necessary. Furthermore, this study investigated the link between these 

physicochemical characteristics and genotoxicity and found that CNT/F with notable sub-populations of 

greater nominal tube diameter and length induced more severe genotoxicity than materials with more 

homogenous populations of smaller diameters and lengths. For the current study, in vivo assessments were 

evaluated to compare differences in lung injury, lung inflammation, and translocation and which 

physicochemical characteristics contributed to those outcomes. Further, complementary assessments in 

vitro addressed comparability to the in vivo setting with the potential elucidation of mechanisms driving 

those toxicities. 

 In vivo dosing in the current study has been optimized to correlate to human workplace exposures 

previously assessed [68, 69, 92]. Previously we have documented the importance of integrated exposure 

and toxicity assessments for representative laboratory-based toxicity study design [19]. The ability to 

accurately represent material characteristics from a worker exposure aids in providing the proper context 

to address potential human health effects. As previously demonstrated for different CNT materials 

dispersion methods were designed to replicate the agglomeration size and particle dispersion that is 
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commonly observed in the personal breathing zone samples taken from facility workers [19]. 

Supplemental Figure 3 illustrates representative images of personal breathing zone samples paired with 

images of the same material dispersed in physiologic dosing media used for toxicity evaluations. 

Additionally, the doses in the current study were selected to represent human exposures. The lower dose 

was selected due to its correlation to human occupational exposure. This 4 µg dose correlates to the 

cumulative deposited dose of approximately 7.6 years spent working in in a facility at average workplace 

exposures [164]. The 7.6 years also represents a good approximation of the current state of the workforces 

in terms of average years working in a CNT/F facility. Previous studies have shown that a higher dose of 

40 µg was necessary to induce pathological changes, significant pulmonary injury and inflammation, and 

systemic effects for the reference material, MW #5/MWCNT-7/Mitsui-7. 

 

3.3.1 In vivo toxicity assessments 

 For evaluation of toxicities in vivo, male C57BL/6J mice were exposed to 4 or 40 µg of CNT/F or 

DM via oropharyngeal aspiration. Mice were euthanized at one of four time points: 1, 7, 28, and 84 days 

post-exposure. These exposures were completed in a block design with a total of 12 sets of mice divided 

into two groups.  A schematic demonstrating the dosing timeline can be found in Supplemental Figure 4. 

Bronchoalveolar lavage was performed on the first group of mice to quantify inflammation using markers 

such as polymorphonuclear (PMN) cell infiltration, lactate dehydrogenase release, and changes in 

inflammatory protein levels. In the second group of mice, tissue from the right lung was collected and 

frozen to evaluate changes in inflammatory gene expression. The entirety of dosing and tissue collection 

occurred within a 12-month window. Consistency of dosing and data collection across this expansive time 

window was achieved as later demonstrated within the statistical analysis. 
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3.3.2. Macrophage handling of CNT/F 

At 7 d post-exposure, macrophages collected from bronchoalveolar lavage fluid (BALF) were 

isolated and imaged using scanning electron microscopy (SEM).  Representative images are shown in 

Figure 1. Depending on particle size and agglomeration, macrophage uptake was variable.  Macrophages 

from mice exposed to materials of smaller physical size and agglomerates, such as MW #1 and #3, were 

imaged as intact cells that are presumed to be able to easily engulf smaller particles and agglomerates 

(Figure 1A, C). While not visible in SEM images, light microscopy images of macrophages from BALF 

were seen to contain black agglomerates of particle (Supplementary Figure 5). MW #2 was most 

commonly present in large agglomerates that are too large for phagocytosis (Supplemental Table 2; Figure 

1B). Macrophages can be found adhering to the large agglomerates demonstrating some cellular 

interactions. MW #4 is a transition material that has some agglomerates small enough to be phagocytosed, 

as seen encapsulated in a presumably dying cell as well as in light microscopy images (Figure 1D, 

Supplementary Figure 5D). Beginning with MW #5, CNT/F have length populations that becomes 

difficult for macrophages to phagocytose, as seen in MW #5 (Figure 1E-I). Some materials have 

subpopulations that are impossible to phagocytose resulting in the potential for diminished clearance, 

persistent cellular injury, and increased inflammatory activation. This encumbered particle uptake is 

further supported by images of BALF macrophages taken using standard light microscopy 

(Supplementary Figure 5E-I). 

Mercer et al. in 2011 commented on the macrophage uptake of MWCNTs compared to single-

walled carbon nanotubes (SWCNTs) [9]. As SWCNTs only have one wall, these tubes are drastically 

smaller in diameter compared to many MWCNTs.  The findings in the 2011 study suggest that there is a 

lower limit regarding macrophage uptake. It can be hypothesized that SWCNTs are too small to engage 

macrophage recognition and response in comparison to MWCNTS resulting in only 10% macrophage 

uptake of SWCNTs, vastly reduced compared to 70% of MWCNT uptake. Of further note, in 2013 Mercer 
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et al. also commented that MWCNTs dosed via bolus aspiration compared to inhalation had greater 

macrophage uptake [10]. As bolus dosing results in more heavily agglomerated particles, these findings 

suggest that agglomerate size will also influence macrophage response. Our findings support that 

macrophage uptake occurs when particles are large enough to engage macrophage recognition but are not 

too large that uptake cannot occur due to the size constraints of the cell. 

 

3.3.2. Pulmonary Response 

3.3.2.1. One day post-exposure 

Lactate dehydrogenase (LDH) is a cytosolic enzyme that can be measured in BALF to quantify 

cytotoxicity.  CNT/F were suspected to induce cytotoxicity at this time point by piercing and damaging 

cell membranes. At 1 d post exposure, LDH was increased dose dependently (Supplementary Figure 6A). 

This was expected following bolus dose administration. MW #5-7 and CNF #1-2 low dose exposures also 

induced a significant increase in LDH suggesting more cytotoxicity at lower deposited doses as the 

physical dimensions increase in size.  

As an additional measurement of inflammation, inflammatory cell infiltration was quantified.  

Inhalation of CNF/F can result in injury to the epithelium and inflammasome activation of responding 

alveolar macrophages, leading to cytokine and chemokine production and the subsequent infiltration of 

inflammatory cells (Supplementary Figure 6B; Supplemental Table 4). Polymorphonuclear cells (PMN), 

specifically neutrophils, were increased in all treatment groups at 1 d post-exposure. Eosinophils, another 

type of PMN, were significantly increased in all groups except low doses of MW #1-3. 

The relative fold change of mRNA expression for several genes were measured and represented 

as a heat map compared to DM (Supplementary Figure 7; Supplementary Table 5). The specific panel of 

genes measured included: Il-1b, Il-6, Ccl2, Ccl22, Cxcl2, Spp1, Mt1, Mt2, and Hmox1. Il-6 and Il-1b are 

acute inflammatory markers, with Il-1b associated with activation of the inflammasome. Activation of 
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these genes at early time points indicate cellular injury and increased inflammation acutely post-exposure. 

Ccl2 is a monocyte chemoattractant to signal for the infiltration of inflammatory cells to the site of injury. 

Ccl22 is a macrophage derived pro-inflammatory cytokine implicated in the promotion of persistent 

inflammation and a biomarker linking inflammation and pathology of CNT/F exposure [155, 156]. Cxcl2 

is a potent neutrophil chemoattractant. Increases in these genes indicate that pulmonary inflammation was 

persistent through later time points. Spp1, or osteopontin, is a macrophage chemoattractant that is 

implicated in histopathological changes specifically granuloma formation. Mt1, Mt2, and Hmox1 are stress 

response genes that increase in response to many things including metal exposure, such as CNT/F 

catalysts, and oxidative stress. 

 At 1 d post exposure to high doses of CNT/F, all treatment groups had significantly increased Il-6 

and Ccl2 expression following high dose exposure. This was expected given the bolus exposure. Il-1β was 

significantly increased following exposure to high doses of MW #4-7 and CNF #1. Ccl22 was significantly 

increased following high dose exposure to all materials except MW #2. Cxcl2 was increased following 

exposure to MW #4, #5, and #7 as well as CNF #1 and #2. At 1 d post-exposure to low doses of CNT/F, 

Il-6, Ccl2, and Cxcl2 were significantly increased in all groups. Mt1 was increased with exposure to MW 

#5 and 7, and Mt2 was increased with exposure to all but MW #1, 3, and CNF #2. Hmox1 had was 

significantly increased following exposure to CNF #1. 

 

3.3.2.2. Seven days post-exposure 

 At 7 d post exposure, a significant increase in LDH was seen in all materials following high dose 

exposure with greater severity in MW #5-7, and CNF #1 (Figure 2A).  MW #5-7 and CNF #1-2 also 

induced a significant increase in LDH in the low dose. Inflammatory cell infiltration was significantly 

increased as seen in Figure 2B. Macrophages were not significantly increased, although neutrophils were 

increased in all exposures and doses. Interestingly, eosinophils also were significantly increased in all 
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CNT/F except MW #2 high dose exposures and low dose exposures of MWCNT #5-7, and CNF #1-2. 

Eosinophils made up over 30% of BALF harvested cells following MW #5 high dose exposure, and over 

53% of MW #6 high dose exposure. This response is also often a greater response than seen at 1 d post-

exposure, particularly induced by particles of larger length and diameter. For Mitsui-7 (MW #5) similar 

patterns of inflammation have been previously reported [51]. Previous studies have also linked MWCNT 

exposure to an increase in eosinophil infiltration which may be linked to IgE mediated airway allergy 

responses [56, 83, 177]. 

Changes in proteins that regulate inflammation were assessed. Rodent MAP 4.0 analysis 

(Ampersand Biosciences, Saranac Lake NY) of 42 proteins was completed from BALF. At 7 d post-

exposure, several proteins associated with inflammation, wound response, and remodeling of the 

extracellular matrix were elevated including (Figure 2C). This elevation was seen in almost all high dose 

treatment groups, but the greatest increase was seen in materials of greater nominal tube diameter and 

length, primarily MW #5-7, and CNF #1. These materials also induced significant increases in proteins 

following low dose exposures (Figure 2C). MW #2 induced fewer changes in protein concentrations than 

other materials as a general trend, this may specifically due to the highly entangled nature of the material 

contributing to reduced alveolar deposition than other CNT/F [19]. Of special note, increases in eotaxin 

verifies the increase in eosinophil infiltration observed in cell counts and differentials.  

 At 7 d post-exposure, gene expression was measured following exposure to high doses of 

MWCNT/CNF (Supplementary Figure 6). Il-6 was significantly increased after exposure to all materials 

except MW #4. Il-1b expression was significantly increased following exposure to MW # 2, 5-7, and CNF 

#1 and 2. These results further support BALF protein quantifications. Additionally, Ccl2, Spp1, and Cxcl2 

were increased in all groups, while Ccl22 was increased after exposure to MW #3-7, and CNF #1-2. These 

findings further support the previously quantified increase in neutrophil infiltration. Furthermore, Mt1 was 

increased following exposure to MW #4-7, CNF #1 and 2. Mt2 was increased in MW #5, 7, and CNF #1-
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2, while Hmox1 was increased in MW #5, 7, and CNF #1 and 2 exposure indicating some oxidative stress 

may be occurring following exposure to materials of greater diameter.   

 

3.3.2.3. Twenty-eight days post-exposure 

Persistent inflammation was observed at 28 d post-exposure to several materials. MW #5-7 and 

CNF #1-2 had increased LDH following high dose exposures (Figure 3A). Total cell counts were not 

significantly increased, though inflammatory cell infiltration of specific cell types remained elevated in 

some treatment groups (Figure 3B). Macrophage infiltration was significantly increased in MW #1 and 

#7 high dose exposed mice. Neutrophil infiltration was increased following exposure to all materials at 

both doses. Eosinophil infiltration resolved in most groups except high dose exposure to MW #5-7 and 

CNF #1-2. At 28 d post-exposure, several inflammatory proteins were still increased in groups exposed 

to high doses of particles with minimal changes in proteins following exposure to MW #2 and #4 (Figure 

3C).  MDC, TNFα, Il-12-p40, and CCl6 were also increased following low dose exposure to MW #7, and 

MIP-1γ was increased following low dose exposure to MW #5-7. 

Gene expression was also assessed following high dose exposures at 28 d post-exposure 

(Supplementary Figure 6). Il-6, Ccl22, and Cxcl2 expression was persistently increased in all groups 

except MW #2. Spp1was increased in all groups. Ccl2 was increased following exposure to all except MW 

#2 and 5, and Il-1β had fully resolved to baseline for all except MW #1 and 6. Mt1 was persistently 

increased in materials of larger diameter (MW #4,-7, CNF #1-2), while Mt2 was still increased in MW #5 

and 6. Hmox1 was also increased in all except M#1, 3, and 4. 

 

3.3.2.4. Eighty-four days post-exposure 

By 84 d post-exposure, LDH in all low dose exposures and several high dose exposures had 

resolved. However, high doses of MW #5-7, and CNF #1 still had increased LDH (Figure 4A). While total 
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cell counts and macrophage counts were not significantly increased, high doses of MW #1, 5-7, and CNF 

#1-2 still had increased neutrophil infiltration (Figure 4B). All other treatment groups had completely 

resolved inflammatory cell infiltration. Proteins from BALF were also assessed at 84 d post-exposure, and 

some significant changes from DM persisted through later time points. IL-6, MMP-9, MDC, MIP-1β, 

MIP-1γ, TNFα, KC/GRO, Il-12-p40, CCl6, IP-10, MCP-1, IL-28, VCAM1, Eotaxin, GM-CSF, IL-17a, 

and CRP remained elevated, particularly in exposures to MW #1, 5-7, and CNF #1 (Figure 4C). 

Most gene expression changes had resolved with a few exceptions of persistent activation 

(Supplementary Figure 6). In high dose exposures, Il-6 and Ccl2, despite being markers of acute 

inflammation, were still increased following MW#1, 3, and 5 exposures. Il-1b was resolved in all groups. 

Ccl22 was still increased in most groups except MW #2-4, and Cxcl2 was increased in most groups 

excluding MW # 2 and 4. The persistent activation of these markers support the continued infiltration of 

inflammatory cells from BALF assessments. Spp1 was increased in most groups except MW # 2-3. 

Markers of oxidative stress including Mt1, Mt2, and Hmox1 had resolved to baseline by 84 d post-exposure 

except for Mt2 following CNF #2 exposure which had a significant increase in expression. 

In low dose exposures, Il-6, and Il-1b had returned to baseline in all groups. MW #6 still induced 

a significant increase in Spp1, while all except CNF #2 induced significant increases in Cxcl2, Ccl2 and 

Ccl22 was still significantly increased CNF #1 and MW #7, respectively. 

 

3.3.2.5. Inflammation summary 

The general inflammatory response pattern was not unexpected due to findings previously 

published regarding CNT/F inflammation. The toxicity outcomes having representation in all CNT/F at 1 

d post exposure was expected following a bolus administration. What was noted in this study was the 

persistence and increased magnitude of lung injury and inflammation for materials with larger physical 

dimensions at 7 d post-exposure. The results were consistent with Porter et al. in 2010, which evaluated 
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MW #5, in that 7 d post-exposure resulted in greater lung injury and inflammation compared to day 1 for 

a 40 µg dose. Resolution of inflammation at 28 d and 84 d post-exposure measured in this study was 

consistent with previous evaluation of various CNT [51, 82, 124]. 

As a general trend, materials of greater nominal tube diameter had more severe and more persistent 

cytotoxicity and inflammatory cell infiltration than materials of smaller diameter, though almost all 

materials induced cellular injury that persisted through 28 d post-exposure. These larger materials also 

were more likely to induce the infiltration of eosinophils in addition to neutrophils and macrophages. 

Changes in inflammation regulating proteins from BALF and their corresponding changes in relative 

mRNA expression also follows a similar correlation to nominal tube diameter.  

While particle size is frequently noted to be related to the observed inflammatory response, other 

studies have noted the potential role of other physicochemical characteristics as drivers of toxicity 

outcomes. In addition to noting the role of particle dimensions, a series of studies from the National 

Research Centre for the Working Environment (Denmark) noted that BET surface area as well as diameter 

and length significantly correlated with inflammatory cell infiltration as well as genotoxicity 

measurements. Additionally, particle agglomeration and rigidity has also been considered as an influential 

factor for CNT toxicity. Previous studies comparing the toxicity of CNT of various rigidity and 

agglomeration patterns [56]. This study found that rigid MWCNT were more inflammatory and cytotoxic 

than less rigid materials. These findings correlate with the conclusions of this study in which materials 

with more classic fiber characteristics were more toxic than smaller agglomerated materials.   

 

3.3.2.6. HCA – PCA for inflammation 

 To understand the relationship and grouping of CNT/F by inflammation the outcomes of 

cytotoxicity and cellular inflammation at all days and time points were evaluated (Supplemental Figure 

8). Clearly the most significant responders were MW #6, #7, and CNF #1 at 7 d post-exposure with an 
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exposure to 40 µg. Interestingly, the same materials were evident with only 4 µg exposure. Given the 

more realistic nature of the 4 µg deposited dose in terms of human relevance, that exposure was utilized 

for modeling. Given the clear evidence of persistent inflammation at 7d that time point was chosen as a 

representative discriminator to distinguish effects of the various CNT/F. Avoidance of a non-specific 

bolus response to a deposited dose 1 d post-exposure and determining lung injury and inflammation 

prior to resolution also made 7 d post-exposure the desired time point. 

 When modeling lung injury and cellular influx alone, MW #6, #7, and CNF #1 were clearly the 

materials generating the greatest toxicity at relevant exposure levels (Figure 5). The other materials were 

not without effect (Figure 2), but not as marked in the response at 7 d post-exposure following a 4 µg 

deposited dose. Previously, when analyzing physicochemical characteristics alone and in conjunction 

with genotoxicity, it was observed that binning of physical dimensions, either alone or in addition to 

traditional characteristics means, provided greater resolution for grouping materials and determining 

which characteristic predicted an outcome (Fraser 2020). An additional measure of two-dimensional 

sizing, an exposure assessment driven additional characterization (Dahm 2018, Fraser 2020) was a good 

predictor of toxicity outcomes but not typically included as part of general characterization.  When 

including all characterization parameters, mean, physical dimension binning, and two-dimensional 

sizing, MW #6, MW #7, and CNF #1 were in the greater toxicity group along with MW #5 and CNF #2 

(Figure 6). The physicochemical characteristics driving the greater severity in lung injury and cell influx 

were greater physical diameters and length along with the lengths of bundled agglomerates. Analysis by 

binned physical dimensions alone highlighted MW #7 and CNF #1 as particularly driving an adverse 

response with greater length and width parameters associated with toxicity outcomes (Supplemental 

Figure 9A). Using means only for physicochemical characteristics did not group any of the traditional 

measures with outcomes (Supplemental Figure 9B). The only close grouped characteristic was bundled 

agglomerate mean length, part of our added two-dimensional sizing.  
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 Proteins were evaluated separately given the large number analyzed. Analysis of protein changes 

alone also had MW #6, MW #7, and CNF #1 as generally more toxic as would be predicted by the other 

injury and inflammation markers (Supplemental Figure 10A). MW #5 was also included in the group 

exhibiting an increased toxicity response. Similar separations were made when adding the 

physicochemical characteristics, especially when binning of physical dimensions were considered 

(Supplemental Figure 10B).  

 

3.3.3. In vitro screening 

 The last two decades of research into CNT/F toxicity reveled mechanisms and signaling pathways 

modulated by CNT/F exposure. Some of the key events modulated in macrophages include cell viability, 

membrane damage, nuclear factor-κB (NF-κB)-based inflammation, NLRP3-based inflammasome 

activation, pyroptosis, and alteration in innate immune function. Using differentiated THP-1 macrophages, 

a traditional cell type used to mimic pulmonary macrophage function, parallel in vitro assessments were 

performed to screen the nine CNT/F for their potency with respect to various biomarkers and endpoints 

and explore mechanisms of inflammatory modulation. 

 

3.3.3.1 Cell viability and membrane damage 

 Change in cell viability due to exposure of the nine CNT/F was assessed by challenging the 

differentiated THP-1 macrophages with the nine CNT/F for 24 h at  0, 1.87 µg/ml, 3.75 µg/ml, 7.5 µg/ml, 

15 µg/ml, 30 µg/ml, 60 µg/ml, and 120 µg/ml (Figure 8A). These concentrations in terms of surface area 

corresponds to 0, 0.58 µg/cm2, 1.17 µg/cm2, 2.34 µg/cm2, 4.68 µg/cm2, 9.37 µg/cm2, 18.75 µg/cm2, and 

37.5 µg/cm2 respectively. Change in cell viability due to CNT/F exposure was evaluated by measuring 

bioreduction of tetrazolium salt WST-1 by CNT/F exposed cells and comparing it with healthy control 

cells with no exposure. MW #6 and MW #7 were the most potent among the screened CNT/F. Compared 
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to control cells a concentration of 3.75 µg/ml of either of these CNT/F was sufficient to significantly 

reduce the viability of the cells. MW #1, #2, and #4 exposure caused decrease in viability at only the 

highest dose tested of 120 µg/ml. CNF #1-2 and MW #3 caused decrease in viability from a concentration 

of 30 µg/ml. MW #5 started effecting the viability after 15 µg/ml. With exception to MW #3, the general 

trend showed that CNT/F with increasing physical dimensions caused increased toxicity.  

  Membrane damage was assessed by exposing cells to the nine CNT/F at the eight concentrations 

between 0-120 µg/ml (0-37.5 µg/cm2) for 24 h and measuring the released lactate dehydrogenase (LDH) 

from cells with a damaged membrane (Figure 8B). For most CNT/F a dose-dependent increase in 

membrane damage was measured. Similar to cell viability, CNT/F with larger physical dimensions caused 

increased membrane damage. MW #5 was the most potent CNT/F in the screened group and caused a 

significant increase in toxicity at the lowest test concentration of 1.87 µg/ml (0.58 µg/cm2). Compared to 

the WST-1 consumption assay, membrane damage was much more sensitive in resolving CNT/F induced 

toxicity. The lowest concentrations at which the nine CNT/F caused membrane damage ranged from 1.87 

- 30 µg/ml (0.58 - 9.37 µg/cm2). MW #2 did not cause any membrane damage even at the highest 

concentration tested.  

 

3.3.3.2. Nuclear factor-κB (NFκB) activation 

 NFκB activation after exposure to the nine CNT/F was monitored by using NFκB secreted 

embryonic alkaline phosphatase (SEAP) Reporter THP-1 cells. Cells were exposed to the CNT/F at the 8 

concentrations between 0-120 µg/ml (0-37.5 µg/cm2) for 12 h and the SEAP was quantified to determine 

NFκB activation (Figure 8C). Within the dose tested, exposure to all the nine CNT/F caused a dose-

dependent increase in activation of NFκB signal transduction pathway. The lowest concentration at which 

there was a significant change in NFκB activation ranged between 3.75 – 60 µg/ml (1.17 - 18.75 µg/cm2) 

for the nine CNT/F. At the highest dose evaluated there was ~ 5-fold change in NFκB activation by MW 
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#4 and #6. Among the screened CNT/F, MW #4 and CNF #1 were the most potent and caused significant 

change at 3.75 µg/ml (1.17 µg/cm2) while MW#5 was the least potent and caused significant change at 60 

µg/ml (18.75 µg/cm2).  

 

3.3.3.3. NLRP3 inflammasome activation and pyroptosis 

 Previous structure activity relationship studies showed that high aspect ratio materials like asbestos 

and CNT induced NLRP3 inflammasome activation and pyroptosis. We measured IL-1β (Figure 9A) and 

IL-18 (Figure 9B) released by differentiated and primed THP-1 cells as a proxy biomarker measure for 

NLRP3 inflammasome activation. Using an activity-based probe for caspase-1, we screened for active 

caspase-1 as a marker for pyroptosis (Figure 9C). Compared to control cells, exposure to the nine CNT/F 

caused ~1-3-fold change in IL-1β release and ~2-fold change in IL-18 release. MW#5-7 and CNF #1 

caused significant increase in both IL-1β and IL-18 secretion and MW #2, 3, 4 and CNF#2 significantly 

altered IL1β production but not IL-18.  Active caspase-1 released due to NLRP3 inflammasome activation 

is known to cleave the inactive cytoplasmic precursor pro-IL1β and pro-IL18 converting it into a bioactive 

and mature IL-1β and IL-18.  Caspase 1 is a cysteine-rich protease that is known to cleave key cellular 

substrates leading to pyroptosis or programed cell death. Caspase 1 was measured as an additional marker 

for NLRP3 inflammasome activation and as a marker for pyroptosis. Active Caspase-1 induced due to 

CNT/F exposure was assessed by flow cytometry using the fluorescent inhibitor probe FAM-YVAD-

FMK. All the nine CNT/F screened caused induction of active caspase-1 and compared to control cells 

with MW #5-7 being potent inducers.  

 

3.3.3.4. Alteration in phagocytic capacity 

Immune dysfunction due to particle exposure has been hypothesized as a probable cause for 

increase in respiratory infections after particulate exposure [178]. NLRP3 inflammasome activation 
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orchestrates multiple innate and adaptive immune responses in infection and auto-inflammatory disorders. 

To screen if CNT/F have a potential to alter innate immune function, THP-1 cells were exposed to 15 

µg/ml (4.68 µg/cm2) of various CNT/F for 24 h. Change in phagocytic capacity due to CNT/F exposure 

was quantified by challenging the exposed cells to green fluorescent protein Escherichia coli (GFP E.coli) 

for 2 h at a multiplicity of infection (MOI) of 25. Exposure to all the CNT/F test subjects except MW #2 

and #3 reduced the phagocytic capacity of the macrophages. The rank order in potency of the CNT/F for 

reducing macrophage phagocytic capacity was greater for MW #5-7 and CNF #1-2 compared to MW #1-

4. Within the CNT/F test group, the reduction in phagocytic capacity ranged between no change to 64% 

of the normal phagocytic capacity.  

 

3.3.3.5. HCA – PCA for in vitro 

 Computational modeling of all in vitro outcomes grouped CNT/F into two main groups, MW #1-

4 and MW #5-7 with CNF #1-2 (Figure 10A). Control cells grouped with MW #1-4 indicating 

attenuated toxicity in comparison to other CNT/F. The grouping remained the same no matter the 

approach of analyzing with physicochemical characteristics although the binning of physical dimensions 

offered greater resolution in terms defining effect. The evaluation using all characteristics indicated 

consistency of inflammasome induction as IL-1β, IL-18, and caspase-1 all grouped together (Figure 

10B). Cellular cytotoxicity, measured by LDH release, also grouped with inflammasome indicators. 

Larger lengths and diameters, along with agglomerate characteristics induced greater inflammasome 

induction and cellular cytotoxicity. Cell viability, NFκB, and phagocytic capacity grouped with smaller 

widths, specific surface area, and material density. The cellular responses of THP-1 cells (Figure 10B) 

grouped CNT/F the same as the in vivo responses of inflammation (Figure 6). These results infer the 

submerged cell culture using THP-1 cells were sufficient to group CNT/F in terms of inflammation and 

injury. 
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3.3.4. Summary 

 It is quite clear there is a broad variance within the class of CNT/F and within a given sample. 

Materials that were by majority small in length and diameter induced the least amount of inflammation 

and were quicker to resolve over time. Materials that were larger in diameter and length, even if only a 

small proportion of nominal tubes fit that criteria, induced greater and more sustained lung injury and 

inflammatory response. This is likely a direct reflection on the innate immune response handling of 

materials as the smaller materials were within the dimensions for routine macrophage accumulation. 

More inflammatory CNT/F were often larger than resident alveolar macrophages and quite commonly 

seen protruding cellular membranes.  

 Submerged monocultures of THP-1 cells are routinely used for in vitro particle toxicity studies 

and accurately reflected in vivo outcomes of CNT/F inflammation and injury. These results, obtained 

from a simultaneous evaluation of the broad class of CNT/F both in vivo and in vitro, will allow for a 

rapid predictive outcome of inflammation for CNT/F.  

 

3.5. Conclusions 

• All CNT/F have the potential to induce inflammation. Resolution of inflammation occurred with 

all CNT/F. Materials with populations of CNT/F having larger physical diameters and lengths, 

contributing to variances in how the materials agglomerate, comparatively had a more persistent 

and greater magnitude of inflammation. 

• The population of larger diameter and length materials only needed to be a small proportion of 

the CNT/F material to induced greater toxicity.  

• Differentiated submerged cultures of THP-1 cells equally grouped CNT/F as in vivo studies in 

terms of inflammation parameters assessed.  
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• Computational modeling using the binned physical dimensions and two-dimensional sizing 

offered far superior resolution for grouping and determining which physicochemical 

characteristics were factors for greater inflammation. 

 

3.6. Materials and Methods 

3.6.1. Materials 

Multi-walled carbon nanotubes and nanofibers used in this study were as-produced materials 

provided by six different U. S. facilities. These materials correspond to human exposure assessments 

previously reported [69, 92].  One material, MW #5 is used as reference material in this study as it has 

been extensively characterized and its toxic effects are well understood. 

 

3.6.2. In vivo study design 

For the in vivo portion of the study, male C57BL/6J mice ages eight to ten weeks were exposed by 

oropharyngeal aspiration to either vehicle (physiologic dosing medium; DM), one of seven multi-walled 

carbon nanotubes (MW #1, MW #2, MW #3, MW #4, MW #5, MW #6, or MW #7), or one of two carbon 

nanofibers (CNF #1 or CNF #2). Two doses were employed: Low (4 µg) or High (40 µg). The low dose 

was selected to best represent current relevant human exposure levels, while the high dose was selected 

as to induce histopathological changes as previous studies have reported [9, 164]. Mice were euthanized 

at 1, 7, 28, and 84 d post-exposure to assess pulmonary inflammation and cytotoxicity.  

 

3.6.3. Animals 

Male C57BL/6J pathogen-free mice weighing 20-25g were obtained from Jackson Laboratories 

(Bar Harbor, ME). All mice were housed in the Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC)-accredited NIOSH animal facility and afforded food and tap water 
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ad libitum in ventilated cages on autoclaved hardwood chip bedding and an environment of controlled 

humidity, temperature, and 12:12 light/dark cycles. Animals were allowed to acclimate for at least seven 

days prior to use in any experiments. Animal care and use procedures were conducted in accordance with 

the “PHS Policy on Humane Care and Use of Laboratory Animals” and the “Guide for the Care and Use 

of Laboratory Animals” (2011). The procedures utilized in this study were approved by the National 

Institute for Occupational Safety and Health Institutional Animal Care and Use Committee.  

 

3.6.4. Facility representative material preparation and in vivo dosing 

Personal Breathing Zone (PBZ): Images from personal breathing zone samples were generously 

provided by Mathew Dahm for the comparison of in vivo dosing to relevant human occupational 

exposures. PBZ samples were collected as previously reported [69, 92]. These samples were collected 

from employees working in primary CNT/F manufacturing facilities and were imaged using 

transmission electron microscopy also as previously reported. PBZ images demonstrate particle 

appearance, agglomeration, and morphology in human occupation exposures. Images from PBZs taken 

during particle production are paired with respective in vivo dosing images as available. 

Material Preparation: For in vivo exposure, dosing media was prepared fresh prior to dosing and 

contained mouse serum albumin (0.6 mg/ml) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC; 

0.01 mg/ml) prepared in United States Pharmacopeia (USP) grade-phosphate buffered saline (PBS) 

without calcium and magnesium. Samples were sonicated for 5 min at the highest setting using an external 

sonicator (Hielscher Ultrasound Technology) and then for 5 min using a Branson Sonifier 450 probe 

sonicator set to the lowest setting (10% duty cycle; output control of 1). These settings and times were 

determined to best replicate collected PBZ samples as a representation of human exposures. 

Oropharyngeal Aspiration: Mice were dosed according to the well-established protocols previously 

described [179]. In brief, mice were anesthetized using isoflurane. Mice were suspended by their upper 
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incisors against a board and the tongue held to prevent swallowing.  Either dosing media or particle 

dispersed in dosing media was pipetted into the throat and aspirated. Particle in dosing media was prepared 

that each 4 or 40 µg dose equaled 50 µl of suspension. 

 

3.6.5. Bronchoalveolar lavage and tissue collection 

Mice (n= 6-9 per group, dose, and time point) were humanely sacrificed at 1, 7, 28, and 84 d post-

exposure. Mice received an intraperitoneal injection of >100 mg of sodium pentobarbital (Fatal-Plus 

Solution, Vortech Pharmaceutical, Inc., Dearborn, MI, USA) per kg of body weight, and were 

subsequently exsanguinated. The first set of mice was used to collect Bronchoalveolar lavage fluid 

(BALF) as previously described [87]. In brief, following exsanguination, the trachea was exposed and 

cannulated.  USP-grade PBS was flushed into the lungs then recovered and divided into cellular and 

acellular using centrifugation. The cellular fraction was used to determine the total cell count using a 

hemocytometer in addition to cell differentials. The acellular fraction was used for cytotoxicity 

measurements and protein analysis. The second set of mice (n=4-6 per group, dose, and time point) was 

used for tissue collection to determine gene expression changes. Following an intraperitoneal injection of 

sodium pentobarbital, the left lung lobe was removed and frozen at -80 °C for gene expression analysis as 

previously described [164].  

 

3.6.6. BALF macrophages and imaging 

The cellular fraction collected from BALF was collected and imaged using electron microscopy 

using methods previously described [180]. In brief, the cellular fraction from BALF was collected and 

stored in Karnovsky’s fixative solution (2% paraformaldehyde/2.5% glutaraldehyde in sodium cacodylate 

buffer) and agarose. Cells were postfixed using 1% Osmium tetroxide and stained with 1% Tannic acid 

and 0.5% uranyl acetate followed by dehydration in 100% ethanol and lastly infiltrated with propylene 
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oxide and LX-112 epon. Sections were cut and embedded on copped grids for imaging with JEOL JEM 

1400 transmission electron microscope (JEOL USA) with an AMT XR-81 M-B digital camera. 

 

3.6.7. In vivo toxicity assessments 

Cytotoxicity: Lactate dehydrogenase (LDH) is a cytosolic enzyme that can be measured as an indicator of 

cellular damage. LDH activity in the acellular fluid was quantified using a Cobas Mira chemistry analyzer 

(Roche Diagnostic Systems; Montclair, IN). This quantification is obtained through the detection of the 

oxidation of lactate coupled to the reduction of nicotinamide adenine dinucleotide at a spectrophotometric 

setting of 340 nm. 

Cell Counts and Differentials: Total cell counts in BALF were quantified using a hemocytometer. Cells 

from BALF were mounted on slides using a Cytospin 4 (Thermo Fischer) and were fixed and stained 

using a Hema 3 kit (Fisher Scientific; Kalamazoo, MI) to differentiate cell types. 300 cells were counted, 

and the percentage of macrophages, neutrophils, and eosinophils was determined.  The percentage was 

then multiplied by the total number of cells to quantify the total number of each cell type. Cells were also 

imaged using standard light microscopy at 40x magnification. 

Protein Analysis: Rodent MAP 4.0 Mouse Sample Testing from Ampersand Biosciences (Saranac Lake, 

NY) was used to quantify 42 proteins present in BALF at 7, 28, and 84 d post exposure. The data is 

presented in a heat map representing the fold change from control (DM). 

Gene Expression: mRNA was isolated from the left lung and converted to cDNA using previously 

described methods [164]. To assess inflammation, changes in relative fold change for six genes were 

calculated using the 2–∆∆Ct method.  The six genes measured include Il-1b, Il-6, Ccl2, Ccl22, Cxcl2, and 

Spp1. 
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3.6.8. In vitro toxicity study design and toxicity assessments 

 Submerged cultures of differentiated macrophage from human peripheral blood monocyte cell line 

(THP-1) were used to screen the nine CNT/Fs for their toxicity potential In vitro. A mechanism-based 

screening approach was used, and the nine CNT/Fs were screened for toxicity (LDH, WST-1), Nuclear 

factor-κB (NF-κB) activation (inflammation), Inflammasome activation (IL-1β and IL-18) and Pyroptosis 

(Caspase-1). Finally, functional innate immune changes due to exposure of the nine CNT/Fs was evaluated 

by challenging the CNT/F exposed cells with green fluorescent protein Escherichia coli (GFP E. coli) and 

quantifying the relative uptake by flow cytometer.  

 

3.6.9. Macrophage culture, differentiation and priming 

 Human peripheral blood monocyte cell line, THP-1 cells, were cultured, differentiated, and primed 

using procedures described previously [180, 181].  The human monocyte cells (THP-1) were obtained 

from the American Type Culture Collection (ATCC # TIB 202) and were cultured in HEPES buffered 

RPMI-1640 media supplemented with 10% fetal bovine serum (FBS), 100 µg/mL penicillin–

streptomycin, and 50 µM of β mercaptoethanol. The THP-1 monocytes were differentiated to 

macrophages by treating the cells with fresh culture media supplemented with 150 nM 1α, 25-Dihydroxy-

Vitamin D3 (Vit D3; MilliporeSigma, MA; # 679101) for 48 h. Cells were subsequently treated for 12 h 

with media supplemented with 10 nM Phorbol, 12-myristate, 13-acetate (PMA, MilliporeSigma, MA; # 

P8139). For the inflammasome activation, the differentiated THP-1 cells were primed by co-exposing 

particulate matter with 10 ng/ml Lipopolysaccharide (LPS; MilliporeSigma, MA; # L-4516) to induce the 

transcription of pro-IL-1β. Cells were cultured in a humidified incubator maintained at 370 C and 5 % 

CO2.  
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3.6.10. CNT/F Aqueous Stock Preparation and Dispersion in Cell Culture Media 

 CNT/F aqueous stock was prepared by dispersing the CNT/F dry powder at 2 mg/ml concentration 

in dispersion medium [DM; 0.6 mg/ml mouse serum albumin + 0.01 mg/ml 1,2-dipalmitoyl-sn-glycero-3-

phosphotidyl (DPPC) in phosphate-buffered saline (PBS) without calcium and magnesium] [166]. CNT/F 

dispersion in the aqueous stock was achieved by sonicating for 5 min at 70% amplitude using a cup horn 

sonicator (Sonics VibraCell with Cup-type Sonicator; Newton, CT) immersed in continuous flowing cold 

water. The samples were vortexed intermittently after every minute for 10 s. The aqueous stock was 

dispersed in cell culture media by diluting to highest test concentration and performing probe tip 

sonication (Branson Sonifer 450, continuous output) for a total of 2 min, with 10 s vertexing after every 

30 s. Other test concentrations were obtained by serial dilution.  

 

3.6.11. Cell viability and membrane damage 

 Cell viability with CNT/F exposure was determined using WST-1 cell proliferation reagent 

(MilliporeSigma, MA; #5015944001). Membrane integrity of the cells after CNT/F exposure was assessed 

using CytoTox-One homogenous membrane integrity assay (Promega, WI; # G7892). Cells were plated 

on a 96 well plate at 60,000 cells per cm2 (19,200 cells per well; 1.92 x105 cells per ml) in 100 µl of cell 

culture media. The differentiated cells were challenged for 24 h with fresh media containing the nine 

CNT/F’s at eight serial doses of 0, 1.87 µg/ml, 3.75 µg/ml, 7.5 µg/ml, 15 µg/ml, 30 µg/ml, 60 µg/ml, and 

120 µg/ml. These concentrations in terms of surface area corresponds to 0, 0.58 µg/cm2, 1.17 µg/cm2, 

2.34 µg/cm2, 4.68 µg/cm2, 9.37 µg/cm2, 18.75 µg/cm2, and 37.5 µg/cm2 respectively.  At 22 h post 

exposure, half of the wells for each dose tested (4 of 8 wells) were lysed with 1% Triton X-100 

(MilliporeSigma, MA; #T8787).  At 24 h, 70µl of the supernatant was transferred to a 96 well plate and 

spun on a centrifuge at 1000 RPM for 5 minutes to settle the particulate/debris. 50 µl of debris free 

supernatant was transferred to a fresh plate with equal amount of CytoTox-One reagent and the 
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fluorescence was read at 560 nm excitation / 590 nm emission after 30 minutes. For determining the 

cellular viability, cells were challenged with fresh media containing 10% volume/volume WST-1 cell 

proliferation reagent. After 2 h of incubation, the WST-1 consumption was recorded by measuring the 

absorbance at 450 nm subtracted with absorbance at 660 nm to account for turbidity/background. 

Experiments were performed three times with each dose tested in quadruplicates each turn (n = 3 x 4 for 

each dose). 

 

3.6.12. NFκB activation 

 NFκB activation after CNT/F exposure was monitored by using NF-kB SEAP Reporter THP-1 

cells (THP1-Blue™ NF-κB Cells; Invivogen, CA). NF-κB cells are derived from human THP1 monocytes 

by stable transfection of an NF-κB-inducible SEAP reporter (secreted embryonic alkaline phosphatase). 

These cells allow monitoring of NF-kB activation by measuring SEAP expression. To maintain selection 

pressure, THP-1 growth media was treated with 10 µg/ml blasticidin (Invivogen, CA; # ant-bl) every other 

passage.  Cells were plated on a 96 well plate at 60,000 cells per cm2 (19,200 cells per well; 1.92 x105 

cells per ml) in 100 µl of cell culture media. After differentiation, cells were challenged with fresh media 

for 12 hours containing the nine CNT/F’s at eight serial doses of 0, 1.87 µg/ml, 3.75 µg/ml, 7.5 µg/ml, 15 

µg/ml, 30 µg/ml, 60 µg/ml, and 120 µg/ml. These concentrations in terms of surface area corresponds to 

0, 0.58 µg/cm2, 1.17 µg/cm2, 2.34 µg/cm2, 4.68 µg/cm2, 9.37 µg/cm2, 18.75 µg/cm2, and 37.5 µg/cm2 

respectively.  After 12 h of exposure the supernatant was extracted and centrifuged at 1000 RPM for 5 

minutes. 20 µl of the debris free cell supernatant was transferred to a 96 well plate containing 180 µl of 

warm QUANTI-Blue™ solution (Invivogen, CA #rep-qbs). The plate was incubated at 37 °C for 3 h and 

the change in color intensity to purple/blue due to secreted embryonic alkaline phosphatase (SEAP) was 

quantified by measuring absorbance at 635 nm.  
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3.6.13. Caspase-1, IL-1β and IL-18 

 Active caspase-1 was quantified using a fluorochrome inhibitor of caspase-1 (FAM-YVAD-FMK) 

(Immunochemistry Technologies, MN; Catalog #98).  The differentiated THP-1 cells were challenged 

with 30 µg/ml (9.37 µg/cm2) of the nine CNT/F for 12 h. The cells were washed with PBS and extracted 

using Accutase (Thermofisher, CA; #4555-56). The detached cells were collected on ice and then 

centrifuged at 300 g for 5 min.  FAM-YVAD-FMK enters the cells freely and covalently binds to activated 

caspase-1. The FLICA reagent was diluted as per manufacturers recommendation and incubated with cells 

on ice for 15 min and washed with PBS. The FLICA labeled cells were fixed using the fixative provided 

by the manufacturer and the fluorescence was determined using a BD LSR II flow cytometer (BD 

Biosciences, CA). All experiments were performed using triplicate samples and at least 10,000 cells were 

acquired per treatment. The mean fluorescence was determined using FlowJo (FlowJo LLC, Oregon). 

 IL-1β and IL-18 production in differentiated and primed THP-1 culture supernatants exposed to 

18.75 µg/cm2 (60 µg/ml ) of the nine CNT/Fs for 24 h was determined using Human IL-1 beta/IL-1F2 

Quantikine ELISA (Cat#DLB50, R&D Systems, Minneapolis, MN) and Human IL-18 ELISA (Cat#7620,  

MBL International Corporation, Woburn, MA) following the manufacturers recommendation. 

 

3.6.14. Phagocytosis functional assay 

 Alteration in phagocytic capacity of macrophages exposed to the nine CNT/F was evaluated by 

challenging the CNT/F exposed macrophages with Escherichia coli GFP (ATCC # 25922GFP). The 

differentiated macrophages were exposed to the nine CNT/F at 4.68 µg/cm2 (15 µg/ml) for 24 h. At 24 h, 

the cells were washed and challenged with fresh media containing E. coli GFP at multiplicity of infection 

(MOI) of 1:25. In order for the bacteria to reach the cells at the bottom of the well, the plate containing 

the cells and bacteria was centrifuged at 1000 RPM for 10 min before placing them in an incubator at 

37°C. After 2 h of challenge, the cells were washed with PBS, harvested by trypsinization, and scraping, 
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centrifuged at 1000 RPM for 5 min, and re-suspended in PBS. The cell-associated bacteria were quantified 

using a BD LSR II flow cytometer (BD Biosciences, CA). All experiments were performed using triplicate 

samples and at least 10,000 cells were acquired per treatment. The mean fluorescence was determined 

using FlowJo (FlowJo LLC, Oregon). 

 

3.6.15. Feature selection and principal component analysis 

To permit selection of the minimal number of features among all characterization and L-W 

properties that could be used to segregate each material investigated, feature selection was performed with 

a random forest-based approach [169] using the “Boruta” algorithm [170] in the R statistical environment 

[171]. The Boruta algorithm adds randomness to the variables in the dataset by creating shuffled copies 

of all variables (“shadow features”). “Boruta” iteratively assesses if each variable has a higher Z-score 

than the maximum Z-score of its shadow features. At each iteration, variables with Z-scores lower than 

shadow features are deemed unimportant and removed subsequently by the algorithm to capture all the 

important, interesting features one might have in the dataset with respect to a dependent variable, in this 

case each material itself. Then, using traditional, L-W, and combined variables retained after applying the 

“Boruta” algorithm, principal component analysis (PCA) was performed to identify significant patterns 

that explained the majority of the variations in the physicochemical properties among the different CNT/F 

materials investigated. PCA was performed using the prcomp command of the R statistical software (R 

Core Team, 2016). 

 

3.6.16. Statistics 

 Data are presented as mean with standard error or standard deviation as indicated in the figure 

legends. Figures were prepared using SigmaPlot software (Systat Software, INC). Statistical analysis was 

performed using SAS/STAT software, Version 9.4 of the SAS system for Windows (SAS Institute, Cary, 
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NC). Analysis used include one-way analysis of variance. Differences were considered significant at p < 

0.05. Post hoc comparisons were evaluated with Fishers LSD test. Some variables were transformed using 

the natural log prior to analysis to meet the model assumptions of homogeneous variance. 
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CHATER 3 FIGURES 

 
 

Figure 3.1. Representative electron microscopy images of macrophages isolated from bronchoalveolar 

lavage fluid at 7 days post-exposure. Smaller, spherically agglomerated particles are not highly visible 

due to their complete phagocytosis (MW #1 and 3). Particles of large, bundled agglomerate size and 

singlets of larger nominal tube lengths and diameters are less readily phagocytosed due to the limitations 

of macrophage size and phagocytic capacity. These particles (MW #2, 4-7, and CNF #1-2) may induce 

frustrated phagocytosis and diminished lung clearance. 
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Figure 3.2. Inflammation outcomes at 7 days post exposure including lactate dehydrogenase (A), 

inflammatory cell infiltration (B), and bronchoalveolar lavage fluid proteins (C). While all materials 

induced significant inflammation in the high dose, and occasionally in the low dose, materials of larger 

nominal tube size (MW #5-7, CNF #1-2) were generally more likely to induce more severe or greater 

inflammatory responses compared to materials of smaller nominal tube size (MW #1-4) (*p>0.05). 
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Figure 3.3. Inflammation outcomes at 28 days post exposure including lactate dehydrogenase (A), 

inflammatory cell infiltration (B), and bronchoalveolar lavage fluid proteins (C). Materials of larger 

nominal tube size (MW #5-7, CNF #1-2) generally induced significant inflammatory responses compared 

to materials of smaller nominal tube size (MW #1-4) that were sustained through 28 days post-exposure 

(*p>0.05). 
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Figure 3.4. Inflammation outcomes at 84 days post exposure including lactate dehydrogenase (A), 

inflammatory cell infiltration (B), and bronchoalveolar lavage fluid proteins (C). While inflammation was 

trending toward resolution to baseline, MW #5-7 and CN #1 induced significant, persistent inflammation 

at this chronic time point. All other Materials achieved resolution (*p>0.05). 
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Figure 3.5. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) grouping of 

inflammation outcomes alone including lactate dehydrogenase and inflammatory cell infiltration for the 4 

µg dose at 7 days post-exposure.  
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Figure 3.6. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) grouping of 

inflammation outcomes for the 4 µg dose at 7 days post-exposure and physicochemical characterization 

using ‘all characterization’ parameters 
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Figure 3.7. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) grouping of 

inflammation outcomes for the 4 µg dose at 7 days post-exposure and physicochemical characterization 

using length-width (L-W) parameters. 
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Figure 3.8. Toxicity assessment of inflammation in THP-1 macrophage cells exposed to CNT/F. (A) 

WST-1 cell proliferation assay was used to assess the viability of THP-1 cells following exposure to 

increasing concentrations (01.875-120 µg/ml) of CNT/F. The dose at which the particle significantly 

reduced cell viability is indicated with an asterisk (p<0.05). (B) Lactate dehydrogenase is indicative of 

membrane damage and was quantified in the cell supernatant following 24 hours of particle exposure. 

*p<0.05 fold change vs. control cells represented as a reference line. (C) Changes in phagocytic capacity 

of macrophages was assessed following 24 h treatment. Significant changes from control cells were 

indicated with an asterisk (* p<0.05). 
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Figure 3.9. Inflammasome activation and toxicity assessment of THP-1 macrophage cells exposed to 

CNT/F. Caspase 1 activity (A), Il-1β (B), NFκB (C), and IL-18 (D) were quantified and presented as fold 

change from control. Significant changes from control cells were indicated with an asterisk (* p<0.05). 
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Figure 3.10. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) grouping THP-

1 inflammation outcomes alone (A) and THP-1 inflammation outcomes with length- width (L-W) 

physicochemical characteristics (B). Similar groupings as in the in vivo findings were generated. 
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CHAPTER 3 SUPPLEMENTARY TABLES AND FIGURES 

Supplementary Table 3.1. Physical dimensions of CNT/F dispersed in isopropanol.   
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Supplementary Table 3.2. Hydrodynamic diameter, zeta potential, and two-dimensional sizing of 

CNT/F agglomerates dispersed in physiologic dosing media. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

135 
 

Supplementary Table 3.3. Results of additional particle characterization of CNT/F. 
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Supplemental Table 3.4. Inflammatory cell counts of total cells and cell differentials listed as   

 means and standard errors of raw values 
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Supplemental Table 3.5. Changes in mRNA expression of inflammatory cytokines and 

 chemoattractants listed as means and standard errors 

 

DM MW #1 MW #2 MW #3 MW #4 MW #5 MW #6 MW #7 CNF #1 CNF #2

Interleukin 6 Il-6 1.00±0.24 3.57±0.91 6.32±1.24 3.79±0.85 10.53±2.40 9.33±1.38 9.52±2.34 13.13±1.04 7.87±1.81 3.85±0.63

Interleukin 1 beta Il-1B 1.00±0.23 1.20±0.14 1.27±0.26 1.15±0.18 1.96±0.45 1.72±0.16 1.75±0.48 1.71±0.13 1.97±0.29 1.70±0.56

C-C motif chemokine ligand 2 Ccl2 1.00±0.30 4.02±0.48 1.78±0.29 2.35±0.51 7.48±2.25 6.74±1.36 4.73±1.16 7.96±1.04 6.63±1.21 3.87±0.91

C-C motif chemokine ligand 22 Ccl22 1.00±0.08 1.75±0.12 1.04±0.03 1.32±0.11 1.78±0.23 1.86±0.20 1.61±0.17 1.87±0.13 1.85±0.17 1.61±0.19

Chemokine (C-X-C motif) ligand 2 Cxcl2 1.00±0.55 1.12±0.21 1.84±1.06 1.23±0.50 2.37±0.76 1.97±0.39 1.49±0.63 1.93±0.19 2.71±0.69 1.64±0.47

Secreted Phosophoprotein 1 Spp1 1.00±0.22 1.13±0.13 1.50±0.12 1.25±0.06 2.17±0.37 4.34±0.68 2.55±0.57 5.67±0.52 2.66±0.47 1.36±0.25

Metallothionein 1 Mt1 1.00±0.22 0.90±0.08 0.99±0.06 0.82±0.11 1.40±0.13 1.96±0.40 1.80±0.63 2.31±0.26 1.22±0.18 0.96±0.25

Metallothionein 2 Mt2 1.00±0.43 1.31±0.18 1.68±0.20 1.15±0.29 3.57±0.61 5.13±1.20 4.28±1.88 6.99±0.90 2.96±0.55 1.63±0.55

Heme oxygenase 1 Hmox1 1.00±0.14 1.11±0.05 1.07±0.07 1.06±0.13 1.08±0.06 0.99±0.05 1.05±0.02 1.04±0.03 1.13±0.06 1.15±0.12

DM MW #1 MW #2 MW #3 MW #4 MW #5 MW #6 MW #7 CNF #1 CNF #2

Interleukin 6 Il-6 1.00±0.10 2.09±0.29 3.43±0.19 1.97±0.25 3.47±0.93 2.44±0.24 8.69±1.46 5.99±0.73 2.67±0.37 1.97±0.15

Interleukin 1 beta Il-1B 1.00±0.25 1.15±0.25 0.93±0.07 0.71±0.09 1.09±0.11 1.17±0.18 1.68±0.16 1.28±0.18 1.53±0.38 0.81±0.12

C-C motif chemokine ligand 2 Ccl2 1.00±0.09 2.42±0.45 2.48±0.27 1.91±0.11 3.84±0.89 3.89±0.49 7.98±0.87 6.85±1.20 3.43±0.32 2.34±0.28

C-C motif chemokine ligand 22 Ccl22 1.00±0.12 1.68±0.21 1.07±0.24 1.17±0.10 1.10±0.22 1.73±0.13 1.58±0.22 2.02±0.17 1.67±0.33 0.90±0.23

Chemokine (C-X-C motif) ligand 2 Cxcl2 1.00±0.20 2.27±0.36 1.89±0.27 1.92±0.19 2.71±0.38 3.15±0.35 4.69±0.50 3.92±0.37 2.03±0.26 1.79±0.24

Secreted Phosophoprotein 1 Spp1 1.00±0.12 0.96±0.20 0.85±0.07 0.85±0.09 0.80±0.19 0.86±0.08 1.18±0.11 0.97±0.12 0.92±0.09 0.99±0.15

DM MW #1 MW #2 MW #3 MW #4 MW #5 MW #6 MW #7 CNF #1 CNF #2

Interleukin 6 Il-6 1.00±0.20 3.28±0.59 2.17±0.70 2.20±0.66 2.62±0.65 6.41±1.34 3.73±0.79 6.59±1.67 3.74±0.58 3.13±0.95

Interleukin 1 beta Il-1B 1.00±0.11 1.32±0.24 1.66±0.30 1.31±0.26 1.71±0.16 2.82±0.24 3.14±0.75 5.58±1.26 2.47±0.15 2.59±0.52

C-C motif chemokine ligand 2 Ccl2 1.00±0.16 8.95±2.20 2.21±0.38 3.92±1.17 7.64±2.82 15.57±4.20 4.35±1.04 14.81±3.95 5.53±0.86 5.46±1.80

C-C motif chemokine ligand 22 Ccl22 1.00±0.11 1.21±0.11 1.14±0.13 1.54±0.16 1.97±0.26 3.06±0.37 2.69±0.33 4.72±0.48 3.03±0.35 3.24±0.55

Chemokine (C-X-C motif) ligand 2 Cxcl2 1.00±0.13 5.21±0.96 3.50±0.55 2.66±0.44 3.31±0.78 9.84±1.34 8.66±2.13 14.41±3.06 8.13±0.60 5.58±1.15

Secreted Phosophoprotein 1 Spp1 1.00±0.14 6.98±1.30 2.55±0.31 5.39±0.88 7.00±3.28 16.70±2.84 3.38±0.99 6.80±1.57 5.08±1.35 2.65±0.73

Metallothionein 1 Mt1 1.00±0.08 1.14±0.12 1.35±0.11 1.10±0.10 1.41±0.13 2.07±0.20 1.96±0.20 3.92±0.48 2.21±0.19 1.95±0.35

Metallothionein 2 Mt2 1.00±0.13 0.94±0.11 1.24±0.12 1.09±0.11 1.74±0.26 2.68±0.48 2.73±0.52 6.92±1.53 2.85±0.31 2.36±0.52

Heme oxygenase 1 Hmox1 1.00±0.06 1.14±0.11 0.93±0.04 1.02±0.03 1.15±0.07 1.47±0.08 1.21±0.07 1.97±0.18 1.37±0.09 1.39±0.19

DM MW #1 MW #2 MW #3 MW #4 MW #5 MW #6 MW #7 CNF #1 CNF #2

Interleukin 6 Il-6 1.00±0.17 4.89±1.36 1.27±0.31 3.61±0.87 2.79±0.46 3.61±1.31 2.92±0.27 3.24±0.39 2.74±0.31 2.85±0.32

Interleukin 1 beta Il-1B 1.00±0.08 1.76±0.23 1.08±0.25 1.03±0.04 1.32±0.05 1.45±0.27 1.66±0.17 1.38±0.10 1.33±0.18 1.38±0.37

C-C motif chemokine ligand 2 Ccl2 1.00±0.12 6.72±2.17 1.06±0.12 3.08±0.86 2.06±0.50 2.10±0.75 2.08±0.28 2.18±0.12 2.30±0.20 1.84±0.22

C-C motif chemokine ligand 22 Ccl22 1.00±0.05 1.88±0.26 1.21±0.13 1.56±0.24 1.96±0.24 1.85±0.32 2.14±0.18 2.09±0.19 2.26±0.17 2.15±0.14

Chemokine (C-X-C motif) ligand 2 Cxcl2 1.00±0.16 7.92±2.51 1.28±0.24 3.14±0.84 3.15±0.65 3.83±0.73 6.06±1.25 4.56±0.58 4.34±0.17 4.31±0.41

Secreted Phosophoprotein 1 Spp1 1.00±0.14 4.36±0.97 2.55±0.53 8.34±4.80 7.58±2.24 14.22±6.10 8.72±1.50 12.942.59 9.81±1.48 9.60±1.25

Metallothionein 1 Mt1 1.00±0.08 1.17±0.21 1.33±0.15 1.37±0.19 1.39±0.12 1.75±0.08 1.91±0.12 1.88±0.15 1.46±0.16 1.85±0.18

Metallothionein 2 Mt2 1.00±0.19 3.29±1.94 1.48±0.40 1.65±0.45 1.63±0.16 2.65±0.41 2.16±0.32 2.18±0.23 1.59±0.35 2.27±0.35

Heme oxygenase 1 Hmox1 1.00±0.07 1.31±0.13 1.12±0.08 1.28±0.17 1.32±0.10 1.62±0.13 1.46±0.11 1.80±0.16 1.44±0.09 1.60±0.15

DM MW #1 MW #2 MW #3 MW #4 MW #5 MW #6 MW #7 CNF #1 CNF #2

Interleukin 6 Il-6 1.00±.21 4.94±2.93 1.11±0.12 2.97±1.37 1.29±0.18 2.19±0.35 1.71±0.07 1.75±0.21 1.86±0.25 1.61±0.20

Interleukin 1 beta Il-1B 1.00±0.20 1.30±0.47 0.61±0.07 0.75±0.09 0.62±0.07 0.73±0.05 0.58±0.07 0.68±0.11 0.71±0.14 0.62±0.12

C-C motif chemokine ligand 2 Ccl2 1.00±0.21 9.03±5.43 1.05±0.14 4.24±1.65 1.22±0.12 3.34±0.54 1.98±0.34 2.11±0.49 1.71±0.20 1.84±0.25

C-C motif chemokine ligand 22 Ccl22 1.00±0.15 1.77±0.18 1.35±0.17 1.46±0.40 1.61±0.30 2.35±0.20 1.96±0.12 1.91±0.22 1.73±0.12 1.74±0.16

Chemokine (C-X-C motif) ligand 2 Cxcl2 1.00±0.21 3.14±0.76 1.22±0.12 4.64±2.12 1.83±0.22 4.26±0.44 4.31±0.70 4.89±1.41 3.05±0.35 2.89±0.34

Secreted Phosophoprotein 1 Spp1 1.00±0.11 3.56±.39 1.77±0.20 2.37±0.67 2.34±0.42 12.77±2.19 5.86±1.35 6.79±1.97 4.43±0.64 4.12±0.79

Metallothionein 1 Mt1 1.00±0.11 0.90±0.12 1.03±0.10 0.70±0.20 1.12±0.07 1.210.05 1.42±0.21 1.36±0.14 1.16±0.09 1.18±0.05

Metallothionein 2 Mt2 1.00±0.11 3.90±2.40 1.25±1.07 1.07±0.62 3.42±2.26 1.36±0.05 1.94±0.37 2.11±0.55 1.49±0.09 13.25±7.45

Heme oxygenase 1 Hmox1 1.00±0.08 1.21±0.16 0.76±0.08 0.90±0.10 0.88±0.04 1.20±0.03 1.17±0.08 1.04±0.11 0.93±0.07 1.05±0.09

DM MW #1 MW #2 MW #3 MW #4 MW #5 MW #6 MW #7 CNF #1 CNF #2

Interleukin 6 Il-6 1.00±0.141 1.17±0.14 1.29±0.14 1.11±0.10 1.02±0.08 1.12±0.27 1.05±0.10 1.37±0.25 0.96±0.06 0.80±0.11

Interleukin 1 beta Il-1B 1.00±0.12 0.79±0.06 1.23±0.21 1.16±0.28 1.29±0.39 1.15±0.16 0.78±0.09 0.86±0.21 0.82±0.12 0.67±0.06

C-C motif chemokine ligand 2 Ccl2 1.00±0.10 0.96±0.10 0.88±0.07 0.95±0.17 0.74±0.05 0.87±0.09 1.02±0.09 1.03±0.04 0.72±0.05 0.76±0.07

C-C motif chemokine ligand 22 Ccl22 1.00±0.17 0.94±0.14 1.01±0.10 0.93±0.16 0.90±0.06 1.16±0.13 1.25±0.08 1.37±0.07 0.91±0.05 0.93±0.08

Chemokine (C-X-C motif) ligand 2 Cxcl2 1.00±0.31 2.73±0.51 3.37±1.57 2.08±0.18 2.15±0.35 2.01±0.37 3.98±1.10 5.84±1.24 3.52±0.40 1.99±0.66

Secreted Phosophoprotein 1 Spp1 1.00±0.07 0.95±0.16 1.27±0.12 0.98±0.09 1.31±0.19 1.16±0.15 1.83±0.25 1.54±0.15 0.82±0.15 1.24±0.10

84 Day Low Dose

1 Day High Dose

1 Day Low Dose

7 Day High Dose

28 Day High Dose

84 Day High Dose
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Supplementary Figure 3.1. Distributions of CNT/F diameter. Particles were binned according to size 

along the lower x-axis with frequency on the left y-axis. Additionally, percentage of accumulation is 

graphed on the right y-axis with the absolute diameter along the upper x-axis. The overlay line was 3 

parameter sigmoidal curve of best fit with the point of 50% accumulation indicated with dotted lines. Sizes 

are for particles in isopropanol suspension.  

 

 

 

 



 

139 
 

 

 

Supplementary Figure 3.2. Distributions of CNT/F length. Particles were binned according to size along 

the lower x-axis with frequency on the left y-axis. Additionally, percentage of accumulation is graphed 

on the right y-axis with absolute length along the upper x-axis. The overlay line is 3 parameter sigmoidal 

curve of best fit with the point of 50% accumulation indicated with dotted lines. Sizing was for particles 

in isopropanol suspension. 
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Supplementary Figure 3.3. Representative micrographs of CNT/F collected from personal breathing 

zone samples (PBZ) compared to particle dispersion in dosing media (DM) used for in vivo and in vitro 

dosing in the current study. Particle in DM retained similar profiles of particle size and agglomeration 

compared to PBZs to ensure proper representation of human occupational exposures. 

 

 

 

 

 

 

 

 



 

141 
 

 

 

 

 

Supplementary Figure 3.4. Schematic of the mouse dosing and euthanasia schedule illustrating the 

timing of each rodent group across a year of time and distinguishing the bronchoalveolar lavage groups 

from the histopathology and tissue collection groups. 
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Supplementary Figure 3.5. Representative micrographs of BALF macrophages at 1 d post-exposure. 
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Supplementary Figure 3.6. Lactate dehydrogenase and inflammatory cell infiltration at 1- day post-

exposure to CNT/F 
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Supplementary Figure 3.7. Changes in mRNA expression of inflammatory cytokines and markers of 

oxidative stress from lung tissue at all four time points expressed as a heat map 
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Supplementary Figure 3.8. Hierarchical clustering analysis comparing inflammatory outcomes from 

bronchoalveolar lavage fluid at all four times points. 
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Supplementary Figure 3.8. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) comparing inflammatory outcomes from bronchoalveolar lavage fluid with length-width L-W) and 

‘means only’ of physicochemical characterization 
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Supplementary Figure 3.9. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) comparing proteins from bronchoalveolar lavage fluid alone and with length-width (L-W) 

physicochemical characterization parameters. 
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4.1 Abstract: 

Background: Carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their 

potential toxicities, however comparative studies of the broad material class, especially those with a larger 

diameter, are lacking. Additionally, computational modeling correlating physicochemical characteristics 

and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar 

toxicity, including histopathology changes, pulmonary fibrosis, and extra-pulmonary translocation. Male 

C57BL/6 mice were exposed to 40 µg of one of nine CNT/F (MW #1-7 and CNF #1-2) commonly found 

in exposure assessment studies of U.S. facilities with diameters ranging from 6-150 nm. Human fibroblasts 

(0-20 µg/ml) were used to assess the predictive value of in vitro to in vivo modeling systems.   

 

Results: All materials induced histopathology changes, though specific outcomes were variable in severity 

and distribution. In general, MW #5-7 and CNF #1 induced greater histopathology changes compared to 

MW #1and #3 while MW #4 and CNF #2 were intermediate in effect.  Differences in individual alveolar 

or bronchiolar outcomes and severity correlated to physicochemical characteristics of nominal tube 

physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to 

be insufficient to fully replicate in vivo fibrosis outcomes suggesting the need for more advanced cell 

culture in vitro models. Transport of the CNT/F to the tracheobronchial lymph nodes was present for any 

material with significant alveolar deposition. Singlet accumulation in the lung at day 1 provided predictive 

power for liver accumulation 84 d post-exposure. Pleural penetrations were observed more consistently 

in CNT/F with larger lengths and diameters. 

 

Conclusion: Physicochemical characteristics, notably nominal tube dimension and agglomerate size, were 

predictive of histopathology and were essential for grouping of materials. Particles of greater nominal tube 

length were generally associated with increased severity of histopathology outcomes. Larger particle 

lengths and agglomerates were associated with more severer bronchi-bronchiolar outcomes. Spherical 

agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation 

while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury. Extra-

pulmonary translocation was also associated with particle size, suggesting that particles of moderate 

length and diameter with minimal agglomeration were more likely to translocate to the liver while particles 

of all sizes were observed in the tracheobronchial lymph nodes. Notably, singlet lung burden at 1 d post-

exposure correlated with liver burden at 84 d post-exposure. 
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4.2. Introduction: 

 Recommended exposure limits (REL) established by NIOSH take into consideration two key 

factors when determining the quantitative risk: the severity and likelihood of adverse effects upon 

exposure to a hazardous material during a 45 year working lifetime. For carbon nanotubes and 

nanofibers, the REL has historically been established primarily upon the fibrogenic and inflammatory 

capabilities of these materials and relied upon short term and subacute animal studies that investigated 

pulmonary inflammation, granulomatous response, thickening of the alveolar septum, and extra-

pulmonary translocation [57]. From these studies, human exposure equivalents can be predicted, thus 

allowing for the generation of the recommended exposure limit.  

 Due to lack of carcinogenicity studies and the difficulties in predicting long term effects from 

acute inflammation studies, histopathological changes following CNT exposure have been critical to 

establishing occupation exposure limits. These changes, such as fibrosis, are critical as they represent 

fundamental and potentially irreversible changes in the lung [9, 10, 51, 56, 116]. However, to date, it is 

in unclear if all CNT/F confer the same histopathology changes in the lung. Furthermore, systemic 

effects and systemic translocation have been minimally investigated due to difficulties in monitoring 

particle behavior and translocation post-exposure [59, 60, 66].  

Due to the broad differences in physicochemical characteristics of CNT/F including 

agglomeration, length, diameter, and respirability, extrapolations and predictive modeling have been 

severely limited. This study aims to generate an accurate and effective safety profile for a series of 

MWCNT/F of various physicochemical characteristics. Specifically, in this portion of the study, Part III, 

an in-depth evaluation of histopathology and systemic translocation was completed to assess differences 

in a particle’s ability to induce long term structural changes in the lung as well as the potential for 

adverse systemic effects.  
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4.3. Results and Discussion: 

 The nine materials used in this study were selected to represent the broad class of CNT/F. In brief, 

seven MWCNT and two CNF were ordered according to their diameter as reported by the production 

facility and are referred to as MW #1-7 and CNF #1-2 (Figure 1). MWCNT-7/Mitsui-7, labeled as MW 

#5 in this study, was used as a benchmark material for comparison. Analyses and interpretation of detailed 

physicochemical characteristics and genotoxicity [182] were presented separately. In this section of the 

evaluation of CNT/F toxicities, in vivo assessments for pathological changes and translocation were 

compared and correlated to physicochemical characteristics. Male C57BL/6J mice were exposed to 40 µg 

of CNT/F or DM via oropharyngeal aspiration and euthanized at 1 and 84 d post-exposure. Historically, 

a 40 µg dose of CNT/F was sufficient to induce pathological changes within an 84 d post-exposure time 

point and necessary to induce significant alveolar fibrosis [9, 10, 19, 51]. Liver, tracheobronchial lymph 

nodes, and right lungs were fixed with formalin with the lungs being gravity filled to preserve inflation to 

evaluate particle distribution, alveolar fibrosis, and other histopathology changes. 

 Additional assessments in vitro were used for comparison and to further investigate the 

mechanisms by which the pathological changes occurred. For comparison, human fibroblast cells were 

cultured and exposed to 0-20 µg/ml of each of the nine CNT/F for 24 hours and subsequently assessed for 

cell viability and proliferation as well as collagen-1, α-smooth muscle actin, and TGF-β production. 

 

4.3.1. Particle characterization 

 The CNT/F used in this study were extensively characterized in a previous publication and can be 

found in the supplementary data (Supplementary Tables 1-3, Supplementary Figures 1-2) [182]. 

Representative micrographs from transmission electron microscopy (TEM) images of each particle are 

shown in Figure 1. It was quite evident that as CNT/F increase in nominal tube diameter and length, a 

general decrease in bundled agglomeration was observed with a transition point around MW #4. MW #1 

and #3 were predominately spherical agglomerates with a geometric mean under 1 µm (Supplemental 



 

153 
 

Table 2). MW #2 was a unique high entangled MWCNT as previously described [19, 182] that forms two 

separate populations of extensive ‘rivers’ of aggregates, and agglomerates of aggregates, in the micron 

size range (Figure 1; Supplemental Table 2). MW #4-7 and CNF #1-2 were almost exclusively bundled 

agglomerates exceeding a 3:1 aspect ratio (≥ 96 %) or as singlets. 

 

4.3.2. Histopathology 

For comparative potency between materials, 40 µg CNT/F is a known administered dose to induce 

pathology including alveolar fibrosis. Previously we have indicated this dose to likely exceed a lifetime 

exposure at average exposure levels in U.S. facilities [68, 164]. The goal of this study was less concerned 

with deposited dose with relation to human equivalency as compared to relative potency. Combined with 

the known fact that MW #5 (Mitsui-7/MWCNT-7) does not induce a significant alveolar fibrosis up to 20 

µg, the dose of 40 µg was selected to be able to evaluate differences of effect between the nine CNT/F [9, 

10]. A representative micrograph of healthy control tissue can be found in Figure 2A. 

At 84 d post-exposure, CNT/F often caused granulomatous inflammation, defined as an organized 

infiltrate of epithelioid macrophages which may form giant cells and are often admixed with lymphocytes, 

plasma cells, and fibrosis. Diagnoses within this category included granulomatous bronchopneumonia, 

but also included histiocytic bronchopneumonia, granulomatous bronchointerstitial pneumonia, 

lymphogranulomatous interstitial pneumonia, and granulomatous alveolitis. An example image can be 

found in Figure 2B. The distribution and severity of the granulomatous response was significant among 

all treatment groups (Table 1). 

Morphologic responses to CNT/F sometimes included proliferative changes within airways that 

sometimes obstructed the lumen bronchioles and alveolar ducts. These were classified as proliferative 

bronchiolitis obliterans (Figure 2C) when bronchioles were affected. If the alveolar ducts were involved, 

these were classified as bronchiolitis obliterans-like lesions of the alveolar duct. These potentially 
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obstructive lesions often formed in association with granulomatous inflammation and projected into the 

lumen of bronchioles and alveolar ducts. MW #1, 5 and CNF #2 did not induce proliferative bronchiolitis 

obliterans or bronchiolitis obliterans-like morphologic alterations and the incidence was only 1/5 for MW 

#3 (Table 1). MW #4 had incidence in half the analyzed lungs, but significance was not reached in terms 

of severity and distribution. MW #2, 6, 7, and CNF #1 induced significant bronchiolitis obliterans-like 

changes (Table 1). We have previously shown proliferative bronchiolitis obliterans lesions to occur 

following MW #2 exposure consistent with the large aggregates [19]. 

In the alveolar region of the lungs, mice exposed to CNT/F often had accumulations of alveolar 

macrophages, a finding also known as alveolar histiocytosis (Figure 2D). In some cases, alveoli with 

alveolar macrophage accumulation also showed evidence of a tissue response (histiocytic alveolitis) 

and/or neutrophils accompanied the macrophages (histiocytic and neutrophilic alveolitis). Because the 

responses represented a spectrum of predominantly histiocytic responses, these diagnoses were grouped 

together in the summary table. All CNT/F induced alveolar histiocytosis except for MW #2 (Table 1), the 

CNT with larger aggregates and agglomerates that has less alveolar deposition compared to other CNT/F 

[19]. 

Exposed mice also developed hypertrophy of the bronchiolar epithelium as well as alveolar 

epithelial hypertrophy and hyperplasia (Table 1; Figure 2E-F). Particle deposition and persistence were 

necessary for bronchiolar hypertrophy and alveolar hypertrophy and hyperplasia. MW #1 and #3 did not 

induce bronchiolar epithelial hypertrophy while MW #2 did not induce alveolar epithelial hypertrophy 

and hyperplasia. MW #4-7 and CNF #1-2 had significant effects for both.  

Additional morphologic changes regarding lymphatics are of note. The lymphatics of the lung 

control interstitial fluid balance, transport cells of the immune system, and participate in particle clearance 

in the lung [183-185]. In this study, particle accumulation, particularly in materials of longer length, could 

be found at the bronchoalveolar junction, the location of some of the smallest lymphatic vessels (Figure 
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2G). This accumulation has the potential to obstruct lymphatic flow and may be a mechanism for 

decreased clearance in fibrotic and inflamed airways. Similarly, needle-like particles can damage 

macrophages attempting to reach the areas of smaller lymphatic flow surrounding the terminal bronchioles 

resulting in further particle accumulation. Even when unobstructed by previous particle deposition, 

clearance of long, somewhat rigid particles may be difficult in the narrow and curving lymphatic 

pathways. Ectasia, or dilation, of lymphatic was observed as was also previously reported following 

MWCNT exposure [51]. It remains to be determined whether pleural accumulation of CNT/F and the 

airway fibrosis were attributable to altered lymphatic clearance, if airway fibrosis attributed to altered 

particle clearance, or both. However, in some cases clusters of CNT/F could be seen extending from 

dilated lymphatic through the airway wall to the surface of airways suggest lymphatic obstruction and 

potential release of CNT/F back into airways (Figure 2G). Furthermore, lymphatics are not restricted to 

the pulmonary lobule, but also present in interlobular septa and the pleura [185]. Macrophages containing 

particles often traffic to the lymphatics to clear particles from the lung. Additionally, macrophage-

mediated transport of CNT/F to pleural lymphatics can potentially release CNT/F near the pleural lining 

if the particles are cytotoxic. At least more than one incidence of pleural penetration or accumulation at 

the pleural surface was seen following MW #5-6 and CNF #1-2 exposures, though more refined techniques 

such as enhanced darkfield microscopy may be necessary to definitively conclude that some, but not all 

particles were capable of pleural penetrations (Figure 2H). MW #5 has been previously reported to 

penetrate the pleura, though it is unclear if all particles, particularly spherical agglomerates (e.g., MW #1 

and #3) may penetrate the visceral pleura [51]. 

 

4.3.3. Histopathologic assessment of pulmonary fibrosis 

 Severity and distribution for two types of pulmonary fibrosis, bronchial / bronchiolar and alveolar, 

was determined (Table 1, Figure 2I-J). Bronchial and bronchiolar fibrosis occurred frequently in 
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conjunction with bronchiolitis obliterans and/or granulomatous inflammation. Incidence of 100% was 

observed for MW #5-7 and CNF #1. MW #2 also had 100 % incidence given the nature of the highly 

entangled particle that deposits significantly in the conducting airways [19]. MW #1, #3, and CNF #2, 

although not without effect, had less severity and distribution. Histopathologic assessment of alveolar 

interstitial fibrosis indicated greater severity and distribution with MW #4-7 and CNF #1 as compared to 

other materials, especially MW #3 and CNF #2 (Table 1).    

 

4.3.4. Morphometric analysis of pulmonary fibrosis 

To further investigate pulmonary fibrosis, bronchiolar and alveolar fibrosis was quantitatively 

evaluated by morphometry. To measure fibrosis in the terminal bronchioles, photomicrographs were taken 

of trichrome-stained lung sections. Using ImageJ, the area of bronchiolar fibrosis, the total area of the 

region, and the length of the basement membrane were measured. This enabled calculation of the area of 

fibrosis per micron of basement membrane (Figure 3) and as percent area of fibrosis per area of the total 

field of view (Supplemental Figure 3). Two distinct regions were systematically sampled in each lung 

section: 1) areas of minimal to no severity, or least affected bronchioles, and 2) areas of most severe 

fibrosis, or most affected bronchioles. In the least affected areas, no significant differences were seen from 

control (Figure 3A). For the most affected regions, a significant increase in bronchiolar fibrosis was 

measured in MW #2, 4-7 and CNF #1 exposed lung tissue, but not for MW #1, 3, or CNF #2 (Figure 3B). 

Fibrosis was consistent with areas of prominent particle deposition, particularly areas with particle 

agglomerates. Similar findings were reported by Duke et al. in 2018 in which they quantified the area to 

perimeter ratio of airway fibrosis and found that “rod-like” MWCNT that are similar in morphology to 

MW #5-7 and CNF #1-2 of the present study were more likely to induce greater airway fibrosis than 

“tangled” MWCNT similar to MW # 1 and #3 in the present study [124]. These differences in airway 

fibrosis were attributed to variability in clearance mechanisms and the translocation of “rod-like” particles 
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across the epithelium where pathways driving fibroblast activity can be initiated. Interestingly, CNF #2, 

while having a diameter more like MW #5-7 and CNF #1, did not induce significant bronchiolar fibrosis 

as measured by morphometry. This may be due to the smaller nominal tube lengths (Supplemental Table 

1; Supplemental Figure 2). These findings support the conclusion that the physical presence of particle 

deposition in airways, with physical dimensions of greater diameter and length, act as a potent driver of 

airway fibrosis.  

Alveolar fibrosis is a well-documented outcome following CNT exposure [9, 10, 51]. 

Morphometric point and intercept counting was used to measure the thickness of alveolar fibrillary 

collagen at 84 d post-exposure. Fibrillary collagen was significantly increased in mice exposed to MW 

#5-7 and CNF #1 (Figure 4A). Representative micrographs of vehicle exposed as well as MW # 3, 6, and 

CNF #1 can be found in Figure 4B-E respectively. This fibrosis was also related to the presence of particle 

in the interstitium. The increased alveolar fibrosis of MW #5 exposed lungs was consistent with previous 

investigations [9, 10]. Increases were found for MW #1, MW #4, and CNF #2 but significance was not 

achieved, suggesting a greater than 40 µg delivered dose would be necessary to induce significant alveolar 

fibrosis. Mercer et al., compared single-walled (SW)CNT and MWCNT rodent lung exposures and 

reported that macrophages were less likely to recognize and phagocytose SWCNT compared to MWCNT, 

leading to greater interstitial accumulation and fibrosis [9]. As the size of MW #1 in the current study 

approaches the size of SWCNT, it is suspected that the infrequent singlet or very small agglomerates may 

escape macrophage recognition permitting translocation to the alveolar interstitium and induction of 

interstitial fibrosis, therefore behaving in a similar fashion to SWCNT resulting in the mild but not 

significant increase in interstitial fibrosis. There was no effect for MW #2 or #3. This was expected for 

MW #2 given the sample is less likely to accumulate in the alveolar region [19]. Of note, several instances 

were observed, particularly in MW #3 exposed lung tissue, where small agglomerates of particles were 
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present in the interstitium, but fibrosis was not present, suggesting that particle singlets were more likely 

to induce fibrosis than tangled agglomerated particles (Figure 4C).  

 

4.3.5. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) of the 

histopathology outcomes 

 HCA and PCA were performed to group CNT/F by adverse histopathology. Initially all outcomes 

assessed were analyzed (Figure 5). Overall, severity of response was greater for MW #4-7 and CNF #1 as 

compared to MW #1-3 and CNF #2 which grouped more closely with the sham group. These results were 

intriguing as the lesser responding grouping included a large nominal diameter material in CNF #2 as well 

as MW #2 which primarily has bronchiolar effects. To segregate regional effects, the alveolar and 

bronchiolar responses were evaluated separately. The bronchiolar effects were like the overall response 

except for MW #2 which corresponded in response more closely with MW #6 and #7 (Figure 6A). MW 

#1, #3, and CNF #2 localized with the sham exposed mice indicating minimal to no bronchiolar effects. 

The analysis to address specifically the alveolar outcomes indicated that MW#5, #7, and CNF #1 had 

significant effects compared the remaining materials (Figure 6B). These three materials segregated out as 

they induced marked responses in all five alveolar assessments (Figure 5, Table 1). The other materials 

had variable significance in alveolar responses. MW #2 and #3 induced milder responses in general with 

the exception of granulomatous inflammation and MW #4 and #6 had generally stronger effects than MW 

#2 and #3 but less than MW #5, #7, and CNF #1 (Figure 6B, Table 1). In summary MW #5, #7 and CNF 

#1 overall induced the strongest with effects in both the bronchiolar and alveolar regions hence their close 

clustering in Figure 5. MW #4 and MW #6 were positive in effect for bronchiolar and alveolar effects but 

generally milder compared to MW #5, #7 and CNF #1. MW #1-3 and CNF #2 generally induced milder 

or specific regional effects as was the case with MW #2 in the bronchiolar region.    

 



 

159 
 

4.3.6. HCA and PCA of the histopathology outcomes with physicochemical characteristics 

  The next step was to include the physicochemical characteristics to provide inference into specific 

characteristics that contributes to developing pathology. The analysis was done in three ways: 1) detailed 

characterization of binned length (L) and diameter/width (labeled as W for figure clarity for easier 

distinction from L); 2) standard physicochemical data using means only from Supplemental Tables 1-3; 

and 3) the combination of binned length and diameter/width and means only data. The data were generated 

for all pathology outcomes as well as bronchiolar and alveolar separately. Previously we have shown that 

the binned length and diameter provided the resolution to accurately group CNT/F in comparison to using 

means only [182]. In fact, the grouping using binned length and diameter alone was comparable to 

extensive characterization of all physicochemical parameters. For the histopathological outcomes in this 

study, adding the physicochemical characteristics did not exactly group as outcomes alone. Variations of 

MW #1-4 were typically in the lower responding group with remaining materials in the more toxicity 

group (Figures 7-8; Supplemental Figures 4-9). The analysis of outcomes with physicochemical 

characteristics indicate that MW #1 and #3 consistently are of lower toxicity compared to MW #5-7 and 

CNF #1. MW #4 and CNF #2 represent a transition in toxicity from less to greater severity.    

For alveolar pathology responses, in general all analyses highlighted associations with length, the 

larger length bins, and the agglomeration state (per_bundle_agglomerate_singlet, 

bundle_agglomerate_mean_length, bundled_agglomerate_mean_diameter). These results indicate that 

materials which contain nominal tubes with larger lengths, which were more prevalent for MW #5, #7, 

and CNF #1 (Supplemental Figure 2) can induce more significant injury to the alveolar region. This was 

consistent with the material grouping for alveolar effects alone (Figure 6B) and with physical dimension 

binning (Figure 8B). The two-dimensional sizing was also a key factor in predicting alveolar pathology. 

MW #1 and #3 clearly form more spherical agglomerates (Supplemental Table 2). MW #4 was the 

transition point switching from majority spherical agglomerates to bundled/elongated agglomerates. The 
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switch from spherical agglomerates to more elongated agglomerates and singlets is driven by increasing 

physical size. Therefore, as increasing length corresponds more with general severity of alveolar 

pathology, association with the transition away from spherical agglomerates (e.g., MW #1 and MW #3) 

was consistent. The inclusion of binning of the physical dimensions was able to better separate 

granulomatous inflammation from the rest of the alveolar-associated pathology with an association of the 

L2, L4, and W0.05 bins (Figure 7 and 8B). As all materials induced granulomatous inflammation (Table 

1), correspondence with the smaller length bins, something that was consistent for all samples 

(Supplemental Figure 2), were the associated drivers. Using means only (Supplemental Figure 7 and 9), 

the association of granulomatous inflammation and alveolar interstitial fibrosis did not provide 

associations with any physical dimensions of length or width. 

For bronchiolar pathology responses, the primary physicochemical characteristics driving the 4 

measured outcomes were bundle_agglomerate_mean_length as well as longer lengths and wider diameters 

(e.g., L25, L30, and W0.15). This indicates a combination of increasing length and width, with a larger 

bundle_agglomerate_mean_length (e.g., MW #6 and #7) conferred greater bronchiolar toxicity. The 

analysis of bronchiolar effects alone grouped MW #1, MW #3, and CNF #2 with the sham group suggested 

a diminished response. This was intriguing given CNF #2 is a larger diameter material. Looking in more 

detail at the physicochemical characteristics, CNF #2, while having an increased diameter, did not have 

the corresponding increased length, especially in comparison to CNF #1 (Supplemental Figure 1 and 2; 

Supplemental Table 1). This was further illustrated for the bundle_agglomerate_mean_length for CNF #2 

that was closer to MW #1 than CNF #1 (Supplemental Table 2). Overall, increasing length and diameter, 

corresponding to bundled agglomerate that are larger than a 3:1 ratio conferred greater bronchiolar toxicity 

which can be stratified as MW #6 and MW #7 > MW #4, MW #5, and CNF #1 > MW #1, MW #3, and 

CNF #2. We confirmed the conducting airway effects of MW #2 as the larger of the two subpopulations 

of aggregates/agglomerates was too large to reach the alveolar space and had the largest 
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bundle_agglomerate_mean_length. The L2, L4, and W0.05 bins did not correspond to any bronchiolar 

effects (Figure 7 and 8A), which was consistent with those factors primarily driving alveolar 

granulomatous inflammation. 

 

4.3.7. In vitro fibrosis assessments 

 Human fibroblasts were used in this study to investigate the mechanisms driving fibrosis outcomes 

observed in vivo and to explore the efficiency of this in vitro system to model in vivo observations. The 

same nine CNT/F were used at concentrations of 0-20 µg/ml ranging from occupationally-relevant to 

overtly high doses in order to observe the full range of potential effects. These concentrations correlate to 

roughly 0-100 µg doses respectively in vivo for mice. Using a WST-1 assay, the percentage of cell viability 

and proliferation was quantified (Figure 9A). Within this dose range, minimal changes in cell viability 

were seen suggesting that doses up to 0.2 µg/ml did not induce cell death.  

Fibroblasts are the key generators of collagen-1, the main collagen isoform comprising pulmonary 

fibrosis. Western blot was used to quantify collagen-1 production following 0.06 µg/ml exposure. 

Collagen-1 outputs were variable, though CNF #1 did induce a significant increase (Figure 9B). 

Additionally, α-smooth muscle actin was not significantly increased following 0.06 µg/ml particle 

exposure in any treatment group (Figure 9C). Previous studies have demonstrated the key role of TGF-β 

as an upstream modulator of pulmonary fibrosis. TGF-β was also variable between particle exposures and 

doses in a manner that did not always correlate to dose (Figure 9D). However, as a general trend, materials 

MW #4-7 and CNF #1-2 induced greater TGF-β production. 

 

4.3.8. Hierarchical clustering and PCA of the fibroblast outcomes with physicochemical characteristics 

The initial analysis of the four fibroblast endpoints (Figure 10), cell viability with collagen, αSMA, 

and TGFβ protein levels, did not correspond to in vivo for all histopathological outcomes (Figure 5) or 
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separation of alveolar (Figure 6B) or bronchiolar outcomes (Figure 6A) especially with MW #7 closely 

associated with MW #2, #3, and control cells. The additional of the physicochemical characteristics 

(Supplemental Figure 10-11) with outcomes offered something closer to the in vivo outcomes in that MW 

#7 and CNF #1 grouped as did MW #1 and control cells. While this was the case, collagen and TGFβ 

production group separately. Collagen and SMA group with larger lengths and diameters while TGFβ 

grouped with smaller length and diameters (Supplemental Figure 10 and 11B). Previous in vitro studies 

have investigated the role of TGFβ in collagen production and found that SWCNT and MWCNT induced 

TGFβ1 production and subsequent collagen-1 production through the SMAD signaling cascade [186]. 

Furthermore, TGFβ and SMA are associated with the epithelial-mesenchymal transition (EMT) of 

pulmonary epithelial cells to a migratory cell phenotype associated with cancer and metastasis, and has 

been found to drive similar EMT outcomes in other nanoparticle exposures including cerium oxide [187-

189]. 

While the in vitro data did not fully represent findings in vivo, we can conclude that fibroblast 

monocultures alone may not accurately represent in vivo findings due to the complex interactions of 

several cell types and the structure of the extracellular matrix. Alternative, more advanced methods such 

as co-culture and air-liquid interface models may be more inclusive of the complexities absent in 

monoculture and may be employed in future experiments. Had a smaller in vitro study been conducted, 

such as MW #1 compared to MW#7 or CNF#1, the conclusion could have been made that larger physical 

diameter and length materials cause a greater response when considering outcomes alone. When 

examining a broader set of materials at one time, those conclusions were not as apparent. 

 

4.3.9. CNT/F Singlets one day post-exposure 

  To assess the particle distribution at 1 d post-exposure, dark-field microscopy was employed to 

visualize CNT/F present in the lung tissue. Dark field microscopy allows for the detection and imaging of 
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singlets that are not typically visible using standard light microscopy. Representative images are shown 

in Figure 11. Materials of smaller diameter that form spherical agglomerates are likely to be seen within 

macrophages (Figure 11A, 11C). However, as the materials increase in diameter becoming less 

agglomerated, singlets were more abundant (Figure 11D-I). Bundled agglomerates are still frequently seen 

within macrophages, but some singlets can be seen within the alveolar interstitium. MW #2 due to its size 

limited alveolar deposition was mostly found in the bronchioles and the terminal bronchioles (Figure 11B). 

Singlet lung burden was quantitated and expressed as 100% of MW #5, the reference material evaluated 

previously for translocation [64]. Materials of primarily small nominal tube diameter and length were less 

likely to be present in singlets. However, with an increase in the number of tubes with larger diameter, the 

number of singlets increased. MW #4 and 5 have the greatest number of singlets present in the lung, with 

MW #6, #7, and CNF #1 having a significant number of singlets present, but less that MW #4 or #5 (Figure 

12A). CNF #2 had a moderate burden of singlets, but less than MW #6, 7, and CNF #1. It was intriguing 

that further increasing diameter (e.g., CNF #1 and #2) and length (e.g., MW #7) did not continue to 

increase singlets within the lung with translocation to the liver suggesting a sweet spot in terms of physical 

dimensions for MW #4 and MW #5. 

 

4.3.10. Translocation 

 CNT/F mostly are biopersistent materials with minimal alveolar clearance, even up to one year 

post-exposure [9]. However, while this clearance is minimal, particle is known to translocate from the 

lung to other systemic tissues including kidney, liver, spleen, brain, and bone marrow [59, 60, 64, 66]. 

Understanding systemic translocation of CNT/F is important as the ability to induce systemic effects may 

potentially occur as a direct result of CNT/F interaction on other tissues. Particle which reach the alveolar 

space will often first be cleared in rodents to the tracheobronchial lymph nodes (TBLN) located in close 

proximity to the lungs [60]. Green counterstain (Figure 12) was used to visualize black particle 
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agglomerates, while dark-field microscopy (Figure 13) was used to assist in the visualization of singlets 

within the TBLN at 84 d post-exposure. All materials were able to translocate to the TBLN to various 

degrees of severity and were often contained within cells. MW #1 and #3 were present mostly as spherical 

agglomerates similar to alveolar deposition at d 1 post-exposure (Figure 11, 13, and 14). However, MW 

#4-7, and CNF #1-2 were found as both bundled agglomerates and singlets (Figure 13D-I; Figure 14D-I). 

MW #2, given the large agglomerates/aggregates and greater deposition in the conducting airways, did 

not translocate to the TBLN with the exception of rarely seen small agglomerates (Figure 13B; Figure 

14B).  

Of note, many of the singlets present in the TBLN were quite long in length, beyond the ability to 

be engulfed by a single macrophage. These longer CNT/F may appear in the TBLN as bundles. It is 

suspected that the particles may arrive as singlets, though their length results in particles being trapped at 

areas of narrow lymphatic flow, resulting in a dam of particles being generated leading to impaired 

clearance or potentially damaged lymphatics [64]. Alternatively, macrophages may play a role in particle 

translocation to the TBLN. CNT/F that are smaller and more tightly agglomerated may be more effectively 

phagocytosed by macrophages.  Therefore, macrophage mediated transport to the TBLN may be greater 

for materials of smaller agglomerate size (e.g., MW #1 and #3). 

 In conjunction with CNT/F exiting the lung and accumulating in the TBLN, translocation to the 

liver at d 84 post-exposure was quantified (Figure 12B). This quantification was presented in comparison 

to MW #5, the reference material. MW #1-#3 had minimal to no particle translocation to the liver. 

However, MW #4 had translocation to the liver at a slightly greater level than MW #5. A representative 

dark-field micrograph of MW #4 can be found in Figure 12C. Moderate translocation occurred for MW 

#6, #7, and CNF #1 (~25-50% of MW #5) with some translocation for CNF #2 (~10% of MW #5). CNT/F 

in the liver was only present as singlets.  
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Due to the apparent trend between particle singlet burden at 24 hours post-exposure and extra 

pulmonary translocation of particle to the liver at 84 d post-exposure, this correlation was assessed using 

linear regression (Figure 9D). A clear trend can be seen in which particles can be binned into three distinct 

groups. The first group containing MW #1-3 has no to minimal translocation to the liver and singlets in 

the lung at 1 d post-exposure. The median group has a moderate amount of singlet lung burden with a 

fractional percentage translocating to the liver. This group contains MW # 6-7, and CNF #1-2. The final 

group contains MW #4-5. These two materials had the most singlet burden in the lung as well as the 

highest percentage of liver translocation. Using this trend, it may become possible to predict extra 

pulmonary translocation to the liver at later time points based solely on particle singlet lung burden at 

acute time points. 

 

4.3.11. Hierarchical clustering and PCA of the translocation outcomes 

Clustering of lymph node accumulation, one d singlet lung burden, and 84 d accumulation in the 

liver provided a similar segregation of materials as Figure 14D (Figure 15A). MW #4 and #5 were paired 

and associations between MW #6, MW #7, CNF #1, and CNF #2 were also present. MW #2 was very 

similar to the controls and MW #1 and #3 were mostly driven by lymph node accumulation. In the three 

scenarios of physicochemical characteristics, all variables (Supplemental Figure 12), means only 

(Supplemental Figure 13), and binned physical dimensions only (Figure 15B), the characteristics 

illustrating the properties the CNT/F have in dispersion solution, spherical bundles (e.g., MW #1 and #3) 

vs elongated bundled agglomerates (MW #4-#7, CNF #1-#2) offer a prediction of whether the potential 

exists for singlets to be found within the lung with subsequent liver accumulation. What was not readily 

apparent from our analyses was the physicochemical characteristic separating MW #4 and MW #5 from 

the rest of the materials in terms of a greater propensity for liver accumulation. The upper range of length 

and width dimensions were not a predictive determinant, especially when considering MW #4 (Figure 
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15B). The binning of nominal tube physical dimensions (Figure 15B), as opposed to using means only 

(Supplemental Figure 13), created a separation of lymph node accumulation from 1 d pulmonary singlets 

and 84 d liver accumulation suggesting that lymph node accumulation alone was not a prerequisite for 

liver accumulation. The binning also indicated that the smaller length and width parameters (e.g., L2, L4, 

and W0.15), something that all materials exhibited to some extent, were predictive of lymph node 

accumulation. These parameters would be consistent with alveolar macrophage uptake and transport to 

the lymph nodes.    

MW #4 and #5 accumulating more in the liver compared to other materials suggests multiple 

contributing factors and/or physicochemical characteristics not determined in this study and may 

correspond to the rate at which singlets in the lung develop. For example, Mercer et al. 2013 using the 

same materials as MW #5 from this study, classified singlets, and groups of 2, 3, 4, or >5 CNT at 1, 14, 

and 168 d post-exposure [10]. While MWCNT in agglomerates containing many fibers decreased at 168 

d post-exposure, singlet burden did not significantly change. This was concluded to be due to clearance 

of singlets from the lung, while particle bundles were disassociated into singlets at a rate that gave the 

impression singlets were not cleared from the lung. While the rate of singlet burden and agglomerate 

disassociation over time was not determined in this study, it likely would offer insight into the prevalence 

of MW #4 and #5 to accumulate in the liver more readily. The liver accumulation could be the result of 

cell mediated transport, cell independent transport, or perhaps a combination of both. Previous studies 

have shown that CNT/F exposure disrupts lung epithelial barriers [190] as well as vascular integrity [88, 

191]. This disruption in combination with the lipophilic nature of CNT/F may increase particle passage 

through membranes and vascular walls resulting in particle entry into systemic blood flow. The 

combination of the propensity to generate singlets in the lung, the potential for cell dependent and 

independent transport, suggest a potential nonspecific particle accumulation in tissues such as the liver.  
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Interestingly, using the binned approach of physical dimensions, TBLN accumulation was 

separated from translocation to the liver suggesting a potential different or additional mechanism such as 

cell mediated transport (Figure 15B). Given MW #1 and #3 accumulated in the TBLN like other CNT/F 

but was rarely visualized in the liver, does not necessarily reject the notion of systemic accumulation in 

other tissues. MW #1 and #3 were observed within cells in the TBLN. If those cells were to enter the 

general circulation, perhaps immune filtering organs such as the spleen would preferentially have 

accumulation. While the spleen was not examined for this study, our previous work examined MW #3 at 

the same dose and 84 post-exposure time point [19]. The tissues from that study indicated significant 

accumulation in the spleen as compared to the liver (Supplemental Figure 14). These results suggest 

differential accumulation systemically depending on whether the material forms singlets in the lung or 

remains in bundled agglomerates that macrophages can scavenge. 

 

4.3.12. Summary 

 The overall goal of this study was to assess severity in pulmonary histopathology and 

extrapulmonary particle translocation at a sub-chronic time point from CNT/F exposure of various 

physicochemical characteristics. In depth histopathological analysis was completed to assess both the 

severity of tissue changes and injury as well as the regional distribution of those changes. Furthermore, 

translocation to the proximal lymph nodes and liver were assessed. The standard toxicological outputs 

indicated obvious differences between materials that was put into perspective using computational 

analyses.  

Previously with a combination of genotoxic responses (Fraser et 2020), CNT/F with larger 

physical dimensions, a combination of length and diameter, conferred greater toxicity. This was generally 

the case for histopathology outcomes, especially MW #5-7 and CNF #1. Regional specificity was noted 

for some as MW #2, a highly entangled material, only had bronchiolar effects while CNT #2 lacked 

marked bronchiolar effects. The importance of combined length and width was the separation between 
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CNT #2 and MW #5-7 and CNF #1, as CNT #2 had a reduced length and bundled agglomerate mean 

length. MW #1 and #3, while not observed as singlets in the lung, were not without effect. Those materials, 

primarily in the L2, L4, and W 0.05 bins exhibited granulomatous inflammation as the small spherical 

bundles can easily deposit in the deep airways. The lack of larger physical diameter nominal tubes and 

singlets in MW #1 and #3 was the likely reason for a lack of bronchiolar effects and significant alveolar 

fibrosis. 

Prior studies with MW #5 (Mitsui-7/MWCNT-7) indicated that singlet carbon nanotubes in the 

lungs were the form responsible for transport and general accumulation in extrapulmonary organs. In the 

present study, where a wide range of CNT/F species were examined, the one day singlet in the lung was 

compared to the 84 day liver singlet burden to determine if that relationship between initial lung singlet 

burden and extrapulmonary transport was present. We found the initial singlet lung burden to be quite 

variable with very few if any singlets for MW #1-3. MW #4-7 and CNF #1-2 were able to form singlets. 

Liver accumulation was most apparent for MW #4 and #5 followed by MW #6-7 and CNF #1. 

Evaluating the general similarity in initial lung singlet and liver accumulation indicated the initial 

dispersion in the lung was a relatively strong determinant for subsequent liver accumulation 84 days 

later. The significance of those findings suggests the potential for predicting singlet translocation out of 

the lung early and using computational modeling to group materials can predict which materials were 

more likely to translocate from the lung. 

 

4.4. Conclusions 

• The broad class of CNT/F resulted in variable pathology and severity of outcomes. The 

smaller diameter and length materials, which was present in most all CNT/F, consistently 

resulted in granulomatous inflammation and alveolar effects. The addition of populations 
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of CNT/F with both and increased nominal tube diameter and length induced bronchiolar 

pathology and increased the severity of alveolar pathology.  

• CNT/F containing nominal tubes of increased length and diameter caused ectasia of the 

lymphatics. Accumulation at the bronchoalveolar junction may contribute to alveolar 

fibrosis and pleural accumulation by obstructing clearance mechanisms. 

• Similar to our previous evaluations, binning of physical dimensions (length and 

diameter/width) offered greater resolution in determination of specific physicochemical 

characteristics contributing to various aspect of developing pathology [10]. The 

combination of how the CNT/F agglomerate, or two-dimensional sizing, and binning of 

nominal tube physical dimensions were the best segregators of predicting pathology. 

Traditional characterization of means only did not offer great resolution for effect 

determination. 

• In terms of toxicity outcome alone and our study design, fibroblasts did not group materials 

as the in vivo evaluations. Perhaps a different approach than a single cell submerged 

cultures would provide different outcomes. 

• The transition of materials from spherical (MW #1 and #3) to elongated bundled 

agglomerates (MW #4-7, CNF #1-2) corresponded to visualization of singlets in the lung.  

• Lymph node accumulation was consistent for all CNT/F except for the highly entangled 

MW #2. Conversely, liver accumulation was only singlets from MW #4-7 and CNF #1-2. 

In complement, computational modeling using binning of physical dimensions separated 

lymph node accumulation from day 1 lung singlets and day 84 liver accumulation. Despite 

the detailed characterization, there was no clear explanation as to why there was a greater 

propensity for MW #4 and #5 to translocate to the liver more proficiently than all other 
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materials. Irrespective, day 1 singlets visualized in the lung was a good predictor for 

accumulation in the liver 84 days later.  

• As previously indicated for genotoxicity outcomes, the increased length and diameter 

CNT/F contributing to greater severity in pathological outcomes do not need to be the 

major fraction of nominal tubes in the sample [10]. A small proportion of tubes with those 

characteristics were sufficient to alter the severity of the toxicity profile. 

 

4.5. Materials and Methods: 

4.5.1. Materials 

 Nine materials were assessed in this study including seven multi-walled carbon nanotubes and two 

carbon nanofibers and are the same materials used in this series of studies. These materials are produced 

or used in U. S. facilities with the exception of MWCNT #5, the well-known MWCNT Mitsui-7 which 

was used as a benchmark material in this study. These materials were extensively characterized as 

previously reported.  

 

4.5.2. In vivo study design 

 Male C57BL/6J mice ages eight to ten weeks were exposed by oropharyngeal aspiration to either 

vehicle (physiologic dosing medium; DM), one of seven multi-walled carbon nanotubes (MW #1, MW 

#2, MW #3, MW #4, MW #5, MW #6, or MW #7), or one of two carbon nanofibers (CNF #1 or CNF #2). 

Only the high dose of 40µg was used in this study. Previous studies have shown that a 40 µg dose of the 

benchmark material was necessary to induce pathological changes, making it necessary for this study. 

Mice were euthanized at either 1 or 84 d post-exposure and tissue was collected to assess changes in 

histopathology as well as systemic translocation. 
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4.5.3. Animals 

Male C57BL/6J pathogen-free mice weighing 20-25g were obtained from Jackson Laboratories 

(Bar Harbor, ME) and were housed in the Association for Assessment and Accreditation of Laboratory 

Animal Care (AAALAC)-accredited NIOSH animal facility. Mice were provided food and tap water ad 

libitum in ventilated cages, on autoclaved hardwood chip bedding and an environment of controlled 

humidity, temperature, and 12:12 light/dark cycles. Animals were allowed to acclimate for at least seven 

d prior to use in any experiments. Animal care and use procedures were conducted in accordance with the 

“PHS Policy on Humane Care and Use of Laboratory Animals” and the “Guide for the Care and Use of 

Laboratory Animals” (2011) and the procedures utilized in this study were approved by the National 

Institute for Occupational Safety and Health Institutional Animal Care and Use Committee.  

 

4.5.4. Facility representative material preparation and in vivo dosing 

Fresh dosing media (DM) was prepared prior to dosing. Dosing media contained mouse serum 

albumin (0.6 mg/ml) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC; 0.01 mg/ml) prepared in 

United States Pharmacopeia (USP) grade-phosphate buffered saline (PBS) without calcium and 

magnesium. To disperse the particles in DM, samples were sonicated for 5 min at the highest setting using 

an external sonicator (Hielscher Ultrasound Technology) and then for 5 min using a Branson Sonifier 450 

probe sonicator set to the lowest setting (10% duty cycle; output control of 1). Mice were dosed by 

oropharyngeal aspiration according to the well-established protocols previously described [179].  

 

4.5.5. Tissue collection 

 Mice were sacrificed at either 1 or 84 d post-exposure. Following an intraperitoneal injection of 

fatal plus, the abdomen was exposed, and mice were exsanguinated. The right lung was ligated and inflated 

with 10 % buffered formalin by gravity fixation. The liver and tracheobronchial lymph node were also 
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removed and formalin fixed. Fixed tissue was then embedded in paraffin wax, cut into 5 µm sections, and 

mounted on slides for staining. 

 

4.5.6. General Histopathology 

H&E and trichrome stained tissue section were assessed by a board-certified veterinary 

pathologist. At 84 d post-exposure to 40 µg CNT/F or vehicle (n=4-8 per group), The right lung was fixed 

in 10% neutral-buffered formalin and then stained with either Masson’s trichrome stain or hematoxylin 

and eosin (H&E). Two semi-quantitative scores were assigned for each morphologic alteration. The 

severity score is the numerical equivalent of the following intensities of tissue morphologic change: 0= 

none, 1= minimal, 2= mild, 3= moderate, 4= marked, and 5= severe. The second was a distribution score 

to quantify the extent (amount) of the tissue involvement. The distribution scoring is as follows: 0= none, 

1= focal, 2= locally extensive, 3= multifocal, 4= multifocal and coalescent, and 5= diffuse. These scores 

were combined to generate a total score ranging from 0-10 with 10 a severe and diffuse injury. These 

scores as well as incidences are listed in Table 2 and representative micrographs of the morphologic 

alterations are found in Figure 2. 

Lung tissue from 84 d post-exposure was sectioned and mounted on slides where it was stained 

with either Masson’s Trichrome stain or hematoxylin and eosin (H&E). H&E-stained slides were 

examined by a veterinary pathologist using bright field microscopy and polarizing light microscopy. 

Changes in morphology as well as areas of tissue injury and inflammation were assessed and scored for 

both severity (1 = minimal, 2 = mild, 3 = moderate, 4 = moderately severe, and 5 = severe) and distribution 

(1=focal, 2= locally extensive, 3= multifocal, 4= multifocal and coalescent, 5= diffuse). These scores were 

then added together to create a total score out of a possible 10, with 10 being the most severe and diffuse. 

Photomicrographs were captured using an Olympus BX53 microscope equipped with a DP73 camera 

(Olympus, Tokyo, Japan).  
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4.5.7. Morphometry and alveolar fibrosis 

Morphometric analysis was used to measure changes in alveolar fibrosis. Lung sections from 84 d 

post-exposure were stained with picrosirius red to detect collagen fibers as previously described [10]. 

Briefly, 5 µm sections of lung were immersed in 0.1% Picrosirius solution for 1-2 hours and were rinsed 

with 0.01 N HCL. Subsequent counterstaining with hematoxylin was completed followed by 

coverslipping. Quantitative morphometric analysis was used to determine the volume density of alveolar 

collagen and measure alveolar collagen thickness using basic point and intercept counting. Point and 

intercept counts were made using an 11-line overlay graticule (12.5 mm square with 100 divisions), at 

100x magnification, taken at eight locations equally spaced across each section. One section was used per 

animal with a total of 4-7 animals per treatment group. (Weibel ER. Stereological Methods: Practical 

Methods for Biological Morphometry. 1. New York, NY: Academic Press; 1980.) 

 

4.5.8. Bronchiolar fibrosis 

 To assess the severity of bronchiolar fibrosis at 84 d post-exposure, images of the broncho-alveolar 

duct in the most affected regions were taken using an Olympus BX63 microscope equipped with a DP73 

camera and CellSens Dimension software (Olympus Corporation, Tokyo, Japan). For each animal lung 

section, a total of six images were taken. Three images were taken of most affected junctions with minimal 

severity of bronchiolar fibrosis. Additionally, three images were taken of most affected junctions 

representing the most severe fibrosis. Only three images were taken of control animals. For each treatment, 

one section per mouse was taken for a total of n=4-7 per treatment group. Bronchiolar fibrosis was 

quantified using ImageJ (National Institutes of Health, Bethesda, MD) as previously described [192]. 

Briefly, using the color deconvolution pluggin, the image was separated into color channels, with green 

representing areas of fibrosis. The areas of bronchiolar fibrosis were selected, and the area and percent 

area was quantified. This percent area was then divided by the total area of the field of view to quantify 
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the total percent area of fibrosis. Additionally, the area was then normalized to the length of the basement 

membrane to express the fibrosis as a measurement of area per micron of basement membrane.  

 

4.5.9. Lung and liver particle burden 

The singlet lung burden and total liver particle burden was quantified using dark field microscopy 

to visualize particle present in lung and liver tissue as previously described [10]. Morphometric point and 

intercept counting was used as earlier described in the quantification of alveolar fibrosis, however only 

lung singlets and all liver particles were counted and quantified. Particle in the liver was only present as 

singlets. 

 

4.5.10. Translocation 

Tracheobronchial lymph nodes (TBLN) were sectioned and mounted onto plus slides as previously 

described and were stained with green counterstain to visualize the presence of black particle. 

Furthermore, additional sections of the lung, TBLN, and liver were mounted onto Schott slides. Using 

CytoViva, (CytoViva; Auburn, AL) images of the lymph nodes were collected to visualize particle 

deposition and extra-pulmonary accumulation in the liver and lymph nodes. 

 

4.5.11. In vitro Study Design 

 Primary normal human lung fibroblasts were exposed to either DM or one of one of the nine 

CNT/F at doses relevant to human occupational exposure to assess cytotoxicity and the potential 

mechanisms by which histopathological changes may be occurring. Additionally, this study aims to find 

correlations between in vivo and in vitro experimental findings to determine the degree to which in vitro 

methods may predict in vivo toxicity.   
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4.5.12. Cell culture 

Primary normal human lung fibroblasts (NHLFs) were acquired from Lonza (Walkersville, MD) and 

cultured at sub-confluent densities in fibroblast growth medium which contained FGM2 BulletKit growth 

supplements (FGM2, Lonza) and 100 U/ml penicillin/streptomycin as previously described [193]. Briefly, 

cells were passaged by washing with a HEPES-based buffer, suspension via 5% trypsin, and neutralization 

using trypsin neutralization buffer (Lonza) following manufacturer’s procedures. Cells maintained in a 37 

°C incubator in a humid, 5% CO2 atmosphere. 3rd to 7th passage NHLFs were used for all assays.  

 

4.5.13. MWCNT preparation and dispersion 

Dry MWCNT were weighed and placed into labeled, separate Eppendorf tubes. Dispersion medium (DM) 

containing 0.6 mg/ml albumin and 10 µg/ml DPPC in sterile phosphate-buffered saline (PBS) was freshly 

made for each assay. For each assay, DM was added to each dry MWCNT sample to achieve a 3 mg/ml 

stock solution. Next, MWCNTs were sonicated for 5 minutes using an external sonicator (Hielscher 

Ultrasound Technology) at 4 °C as an initial dispersion procedure. Then, each MWCNT was then hand 

sonicated for 20 seconds using a microtip sonicator (Fisher Scientific) at 4 °C three separate times and 

immediately serially diluted in FGM2 medium for cellular assays. 

 

4.5.14. WST-1 assay 

To screen MWCNT cytotoxicity and changes in cell metabolism, WST-1 assay was conducted as 

previously described with modifications [194]. Briefly, NHLFs were passaged and seeded into tissue 

culture-treated 96-well plates (Corning Inc., Corning, NY) at 5,000 cells per well overnight in 100 µl 

volume. Cells were then exposed to seven dilutions of each MWCNT in fresh medium ranging 0.02 – 20 

µg/cm2 in 200 µl volume along with unexposed cells and medium-only blanks for 24 hours. All treatment 

groups were run in triplicate. 1 hour prior to the assay time point, 1% Triton-X solution was added to a 
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subset of unexposed cells to serve as a 100% cytotoxicity control. Next, WST-1 reagent was added to each 

well and the plate was allowed to incubate for 2 hours in the culture incubator following manufacturer’s 

instructions (Roche LifeScience, Indianapolis, IN). Absorbance of metabolized WST-1 was read on a 

SpectraMax 250 microplate spectrophotometer (Molecular Devices, Sunnyvale, CA) at 462 nm while 650 

nm served as a background measure. Absorbance values were subtracted from mean blank values and 

means calculated. Three independent assays were run. Since high MWCNT concentrations in the wells 

increased baseline absorbance values, two separate assays with the same MWCNT dose scheme, but 

without cells, served as particle controls and were used to correct absorbance values for all cellular assays. 

Mean absorbance values were converted to percent viability. 

 

4.5.15. Collagen I, α-SMA, and TGFβ expression 

MWCNTs were screened for pro-fibrotic markers in exposed NHLFs as evidence for direct fibroblast 

stimulation ability as previously described [186, 195]. Briefly, suspended NHLFs were seeded into tissue 

culture-treated 6-well plates (Corning) at 3E5 cells per well overnight. NHLFs were then exposed to 0.02, 

0.06, and 0.2 µg/cm2 in 2 ml volume for 48 hours, which match a 10 µg, 30 µg, and 100 µg dose per 

mouse lung assuming 500 cm2 surface area [195]. Unexposed cells and 1 ng/ml human TGFβ served as 

negative and positive controls. Since the design was spread across four plates, one well of unexposed cells 

on each plate served as a plate control. Following exposure, digital phase contrast images of dispersed 

MWCNTs on NHLFs were acquired at 10X and 20X using a Revolve microscope (ECHO, San Diego, 

CA). Cell lysates were prepared for western blot analysis. Briefly, after plates were chilled on ice for 5 

minutes, conditioned medium was collected into Eppendorf tubes, centrifuged at 1000 rpm for 5 minutes 

to pellet cell debris, followed by the collection and storage of the supernatant at -80 °C for TGFβ assay. 

Collected conditioned medium was assessed in technical triplicate for secreted total TGFβ concentrations 

via DuoSet ELISA after latent TGFβ activation via acid incubation following manufacturer’s instructions 
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(RandD Biosystems, Minneapolis, MN) as previously described[186]. Absorbance was measured at 450 

nm on a 96-well microplate reader. 

 Next, exposed NHLFs were washed in cold PBS followed incubation in lysis buffer (Invitrogen, 

Carlsbad, CA) containing 0.1 mM PMSF and complete protease inhibitor cocktail. Lysate samples were 

scraped, collected into tubes, briefly homogenized using microtip sonication, and centrifuged at 12,500 

rpms for 15 min at 4 °C. Collected supernatants were assayed for total protein using a BCA kit following 

manufacturer instructions (Pierce, Rockford, IL). 30 µg protein samples were separated on 7% SDS-

PAGE gels followed by semi-dry transfer (Fisher Scientific, Hampton, NH) to nitrocellulose membranes. 

Following blocking in 0.5% or 5% non-fat dry milk in TBS buffer with 1% Tween20 (TBS-T), membranes 

were probed for rabbit Collagen I (Fitzgerald, Acton, MA), rabbit α-SMA (AbCam, Cambridge, MA), and 

mouse monoclonal β-actin (Sigma Aldrich) using primary antibodies either using MiniBlot 2.0 system at 

room temperature (Millipore, Burlington, MA) or overnight at 4 °C. After rinsing thrice with TBS-T, 

membranes were incubated with either rabbit or mouse HRP-conjugated secondary antibodies (Santa Cruz 

Biotechnology, Dallas, TX) for 1 hour at room temperature. Lastly, membranes were incubated with 

SuperSignal chemiluminescent substrate (ThermoFisher Scientific, Waltham, MA) for 5 minutes and then 

exposed to X-ray film. Films with bands were digitized and densitometry performed on ImageJ. Protein 

expression was calculated as fold change compared to unexposed controls following correction using β-

actin expression for each sample. All experiments were performed three independent times. 

 

4.5.16. Feature selection and principal component analysis 

To permit selection of the minimal number of features among all characterization and L-W 

properties that could potentially discriminate between each material investigated, feature selection was 

performed with a random forest-based approach [169] using the “Boruta” algorithm [170] in the R 

statistical environment [171]. The Boruta algorithm adds randomness to the variables in the dataset by 
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creating shuffled copies of all variables (“shadow features”). “Boruta” iteratively assesses if each variable 

has a higher Z-score than the maximum Z-score of its shadow features. At each iteration, variables with 

Z-scores lower than shadow features are deemed unimportant and removed subsequently by the algorithm 

to capture all the important, interesting features one might have in the dataset with respect to a dependent 

variable, in this case each material itself. Then, using traditional, L-W-AR, and combined variables 

retained after applying the “Boruta” algorithm, principal component analysis (PCA) was performed to 

identify significant patterns that explained the majority of the variations in the physicochemical properties 

among the different CNT/F materials investigated. PCA was performed using the prcomp command of 

the R statistical software (R Core Team, 2016). 

 

4.5.17. Statistics 

 Data are presented as mean with standard error or standard deviation as indicated in the figure 

legends. Figures were prepared using SigmaPlot software (Systat Software, INC). Statistical analysis used 

include one-way analysis of variance. Differences were considered significant at p < 0.05. This analysis 

was performed using SAS/STAT software, Version 9.4 of the SAS system for Windows (SAS Institute, 

Cary, NC).  
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CHAPTER 4 TABLES 

 

Table 1: Histopathology scores for distribution, severity, total score, and incidence at 84 days post-

exposure 
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CHAPTER 4 FIGURES 

 

 

Figure 4.1. Representative TEM images of particle dispersed in isopropanol. Scale bar represents 1 µm. 

Images A-I are of MW #1, 2, 3, 4, 5, 6, 7, and CNF #1, and 2 respectively. These images serve to illustrate 

differences in particle size and agglomeration patterns. Materials of small diameter and length (MW #1, 

3) tend to be more heavily agglomerated in tangled spherical agglomerates. MW #2 is a unique material 

that forms large and long rivers of agglomerates. As materials increase in diameter and length, the 

agglomeration becomes looser and singlets are more common. Some materials including MW #6 and #7 

have mixed populations of sizes with some small, moderate, and large diameter tubes present.  
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Figure 4.2. Representative micrographs at 84 d post-exposure of pathologies typically seen following 

MWCNT and CNF exposure. A) Representative trichrome stained image from the lung of a DM exposed 

mouse demonstrates healthy tissue and airways. B) Granulomatous Bronchopneumonia is an 

encapsulation of foreign material by inflammatory cells seen following exposure to all materials. 

Representative image is of MW #7 exposed lung tissue stained with H&E. Particles are frequently visible 

within these encapsulations. C) Bronchiolitis obliterans-like changes were seen following exposure to 

MW #2, 6, 7, and CNF #1 in areas of high of particle deposition in the bronchioles. Representative image 

is taken from MW #7 exposed lung section. D) Alveolar histiocytosis, hypertrophy, and hyperplasia is 

identifiable by a lesion of inflammatory cell concentration in the peribronchiolar and alveolar regions and 

as thickening of alveolar epithelium. This is common seen following exposure to most MWCNTs and 

CNFs in this study except MW #2. Representative image is of MW #7 exposed lung following H&E 

staining. E) Morphologic alterations in this section of mouse lung from a MW5-exposed mouse include 

alveolar epithelial cell hypertrophy and hyperplasia, alveolar histiocytosis, and interstitial fibrosis. MW5 

nanotubes are retained in this lung section, and because they block transmitted light, are demonstrable in 

this section as dark fiber-like structures in alveolar macrophages and the fibrotic interstitium. F) 

Bronchiolar epithelium hypertrophy is also commonly observed as a thickening of the epithelial layer of 

the bronchioles. Representative image is of CNF #1 exposed lung. G) Disruption of lymphatic flow can 

be seen following exposure to several materials including MW #7 as seen in the representative image.  

Dark particles can be seen in a massive tangle forming an obstruction and subsequent back flow of the 

lymphatics. H) Pleural penetrations were seen following exposure to MW #5, 6, and CNF #1 and 2 in at 

least one occurrence. Representative image is a partially polarized image of H&E stained tissue from CNF 

#1 exposed mouse tissue. I) Bronchiolar fibrosis and J) alveolar interstitial fibrosis is a thickening of 

collagen deposition in the broncho-alveolar duct region and the alveolar interstitium respectively 

Representative images are of MW #7 and MW #5 exposed lungs, respectively, with Masson’s trichrome 
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stain. All materials induced this response with variable severity and distribution with correlation to the 

region of particle deposition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

184 
 

 

 

 

Figure 4.3. Bronchiolar Fibrosis at 84 days post-exposure to 40 µg dose of MWCNT or CNF. The total 

area of bronchial/bronchiolar fibrosis per mm of basement membrane was quantified in two regions, both 

the least affected and most affected regions for comparison. While all treatment groups had normal, 

unaffected bronchoalveolar duct regions, MW #2, 4-7, and CNF #1 had severely impacted 

bronchi/bronchioles. (*p<0.05) 
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Figure 4.4. Alveolar Fibrillary Collagen quantification. A) At 84 days post-exposure to the high dose of 

MWCNTs or CNFs, the thickness of alveolar fibrillary collagen was measured using morphometric point 

and intercept counting. Reference line is relative to DM. Statistically significant increases were seen 

following exposure to MW #1, #4-7, and CNF #1-2. MW #2 deposition is limited to the conducting 

airways due to particle agglomerate size. While MW #3 does reach the alveolar region, fibrosis is minimal 

overall. Representative micrographs of picrosirius red stained tissue are as follows: B) DM, C) MW #3, 

D) MW #6, and CNF #1. Particle is visibly present in the interstitial walls in D and E. (*p<0.05) 
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Figure 4.5. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) of different 

CNT/F materials comparing MWNCT/CNF and histopathology outcomes. 
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Figure 4.6. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) of different 

CNT/F materials and bronchi/bronchiolar histopathology outcomes (A) and alveolar histopathology 

outcomes (B). 
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Figure 4.7. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) of different 

CNT/F materials comparing length – diameter physical dimension (L-W binning) combined with all 

histopathology outcomes. 
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Figure 4.8. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) of different 

CNT/F materials comparing bronchial/bronchiolar histopathology outcomes (A) and alveolar pathology 

outcomes (B). 
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Figure 4.9. Human fibroblast in vitro cell viability (A), collagen-1 production (B), αsmooth muscle actin 

production (C), and TGFβ secretion (D) following exposure to MWCNT/CNF at 0-20 µg/cm3 for 24 

hours. Collagen-1 production was significantly increased following exposure to MW #7. No changes in 

αsmooth muscle actin were seen, and variable changes in TGFβ secretion were noted with significance. 

(*p<0.05) 
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Figure 4.10. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) of 

different CNT/F materials comparing in vitro fibroblast outcomes. 

 



 

192 
 

 

 

Figure 4.11. Representative Dark Field Micrographs of lungs at 1 Day post-exposure to 40 µg MWCNT 

or CNF. Images A-I are of MW #1, 2, 3, 4, 5, 6, 7, and CNF #1, and 2 respectively. MW #1 and 3 

deposition is common in the alveolar region, typically as small spherical agglomerates. MW#2 deposition 

is limited to conducting airways as large aggregates. MW #4-7 and CNF #1-2 are found as both bundled 

agglomerates and singlets in the alveolar region. Scale bar is 5 µm.  
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Figure 4.12. Lung singlet burden at 1 d post exposure predicts extra-pulmonary translocation at 84 d 

post-exposure. A) Lung singlet burden was quantified at 1 d post exposure and is presented as a 

percentage normalized to 100% MW #5. Reference bar indicates 100%. MW #1-3 were almost 

exclusively present as agglomerated material with minimal to no singlet present. MW #4 had the 

greatest lung singlet burden, followed by MW #5. MW #6, #7, and CNF #1 had notable singlet burden 

with CNF #2 having a moderate singlet burden. B) Extra-pulmonary translocation to the liver was 

quantified and is presented as percentage normalized to 100% MW #5. Reference bar indicates 100%. 

MW #1-3 had none to little translocation to the liver at 84 d post-exposure. MW #4 had the greatest, 

followed by MW #5. Some translocation of MW #6, #7, and CNF #1 was measured, with CNF #2 have 

minimal but notable translocation. C) Representative dark field micrograph of MW #4 singlet present in 

the liver at 84 d post-exposure. Scale bar is 10 µm. D) Relationship of lung singlet burden at 1 d post-

exposure to extra-pulmonary translocation at 84 d post exposure. Greater presence of singlets in the lung 
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at 1 d post-exposure correlates strongly to greater extra-pulmonary translocation. MW #4 has the 

greatest singlet lung burden and the greatest liver translocation followed by MW #5. Translocated 

particles in the liver were only observed as singlets. Particles with minimal singlet burden had none to 

minimal translocation with the moderate singlet burden materials having moderate translocation. 
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Figure 4.13. Representative Micrographs of Tracheobronchial Lymph Nodes at 84 Days post-exposure 

to 40 µg MWCNT or CNF. Images A-I are of MW #1, 2, 3, 4, 5, 6, 7, and CNF #1, and 2 respectively at 

60x magnification. Green counterstain was used to visualize black particle presence in the tissue. MW #1 

and MW #3 had the most prominent translocation, though all materials with the exception of MW #2 had 

notable translocation.  
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Figure 4.14. Representative Dark Field Micrographs of Tracheobronchial Lymph Nodes at 84 Days post-

exposure to 40 µg MWCNT or CNF. Images A-I are of MW #1, 2, 3, 4, 5, 6, 7, and CNF #1, and 2 

respectively. Dark field microscopy was used to visualize both agglomerates and singlets present in the 

tissue. The presence of singlets in MW #5-7, and CNF #1-2 can be more easily identified in addition to 

the presence of agglomerated or accumulated particle. Scale bars represent 10 µm.  
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Figure 4.15. Hierarchical clustering analysis (HCA) principal component analysis (PCA) of different 

CNT/F materials comparing translocation outcomes alone (A), as well as length – diameter physical 

dimension (B; L-W binning) with extra-pulmonary translocation outcomes. 
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CHAPTER 4 SUPPLEMENTARY TABLES AND FIGURES 

Supplementary Table 4.1. Physical dimensions of CNT/F dispersed in isopropanol.   
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Supplementary Table 4.2. Hydrodynamic diameter, zeta potential, and two-dimensional sizing of 

CNT/F agglomerates dispersed in physiologic dosing media.
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Supplementary Table 4.3. Results of additional particle characterization of CNT/F. 
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Supplementary Figure 4.1. Distributions of CNT/F diameter.  
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Supplementary Figure 4.2. Distributions of CNT/F length.  
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Supplementary Figure 4.3. Bronchial/bronchiolar fibrosis as a percentage of the area of fibrosis over the 

total area of the field of view for least affected and most affected bronchoalveolar junctions 
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Supplementary Figure 4.4. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) of ‘All characterization’ and all histopathology outcomes 
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Supplementary Figure 4.5. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) of ‘All characterization’ and all bronchi-bronchiolar outcomes 
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Supplementary Figure 4.6. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) of ‘All characterization’ and alveolar outcomes 
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Supplementary Figure 4.7. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) of ‘means only’ and all histopathology outcomes 
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Supplementary Figure 4.8. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) of ‘means only’ and bronchi/bronchiolar outcomes 
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Supplementary Figure 4.9. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) of ‘means only’ and alveolar outcomes 
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Supplementary Figure 4.10. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) of ‘all characterization’ and in vitro fibroblast outcomes 
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Supplementary Figure 4.11. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) of ‘means only’ and (A) length-diameter binning (B) with in vitro fibroblast outcomes 
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Supplementary Figure 4.12. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) of ‘all characterization’ and extra-pulmonary translocation outcomes 
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Supplementary Figure 4.13. Hierarchical clustering analysis (HCA) and principal component analysis 

(PCA) of ‘means only’ and extra-pulmonary translocation outcomes 
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Supplementary Figure 4.14. Previously published image of extra pulmonary translocation and particle 

accumulation of MW #3 in the spleen 
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CHAPTER 5: 

 

General Discussion 
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5.1 General Discussion  

 The toxicities associated with pulmonary exposure to MWCNTs has been of concern for over a 

decade driving the demand for the development of exposure modeling systems, expansive toxicity testing, 

and translational research between in vivo, in vitro, and human studies. This study aimed to expand upon 

previous toxicity assessments of MWCNT and CNFs by being broadly inclusive of a wide range of 

particles. Four pillars of toxicity outcomes including genotoxicity, inflammation, histopathology, and 

extrapulmonary translocation were investigated using a combination of in vivo and in vitro models. Lastly, 

this study utilized a novel approach to modeling the relationships between these characteristics and 

toxicity outcomes to identify key drivers.  

 

5.2. Particles and Characterization 

 This study selected nine materials for comparison, including the well-studied Mitsiu-7 MWCNT 

as a benchmark. Mitsui-7 is a rod-like MWCNT that can be dispersed moderately well while still retaining 

minimal agglomeration. Averaging around 63 nm in diameter and 4 µm in length, this material generally 

can be considered to fall in the center of the spectrum of MWCNT and CNF sizes. Four materials of 

smaller company reported diameter, and four materials of greater company reported diameter were also 

selected for comparison in this study. Few studies have attempted to compare this large of a group of 

materials within the same study, and those that do often do not fully represent the full range of particle 

sizes, thus inadequately addressing important questions. The current study aimed to include this full 

spectrum of materials of various sizes, agglomeration states, and physicochemical characteristics. 

However, one noted limitation in this study was the utilization of as-produced materials only, no coatings 

or surface functionalization were included. While these characteristics are important to safety and are 

reported to alter to toxicity outcomes, the current study did not include these factors. Other studies 



 

218 
 

addressing these factors have been published, including Bishop et al. 2017, and may serve as an additional 

resource for addressing these concerns [19]. 

 The current study aimed to extensively characterize these materials to maximize the number of 

variables that may have been considered for their potential influence on toxicity outcomes. One notable 

advancement in this study compared to numerous previously published studies was the detailed reporting 

of the distributions and range of particle sizes and histogram presentation. Many studies consider the 

geometric or arithmetic mean sufficient as the sole reported value, but the conclusions of this study suggest 

the need for a complete size assessment. While many of the quantified characteristics, such as the anti-

oxidative capacity (FRAS), did not seem to be as potent of a driver as others, these findings are still 

relevant to the overall conclusions for the future of particle safety-by-design and for future particle toxicity 

assessments. 

 

5.3. Translational Considerations 

 For the in vivo studies in this project, two key doses were utilized, 4 and 40µg per mouse. The 

higher of these two doses was selected as previously published studies of the toxicities of MWCNTs have 

demonstrated that 40 µg of MWCNT, particularly Mitsui-7 was necessary to induce significant and 

notable histopathological changes in the mouse lung, including alveolar fibrosis and inflammation. Due 

to the previously published implications of this dose in the determination of toxicity outcomes, this dose 

was also included in the current study design for comparison to the findings of existing studies and to 

determine the relevance of this dose as a benchmark across all CNT/Fs. While this is a notably higher 

dose that may not translate efficiently for comparisons to human studies, this historically important dose 

was necessary for use in this study. 

Furthermore, a lesser dose of 4µg per mouse was used due to its relevance of dosimetry to human 

outcomes. In exposure assessments completed to evaluate human exposures to MWCNT and CNFs in 
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U.S. primary and secondary manufacturing facilities, it was reported that workers were exposed to an 

inhalable elemental carbon mass concentration arithmetic mean of 10.6 µg/m3, or 4.07 µg/day [69, 164]. 

This dose is equal to 2 ng/day in a mouse of alveolar lung deposition from particle inhalation. Dosimetry 

calculations would suggest that a 4µg bolus dose would be equal to approximately 7.4 years spent working 

in a U.S. facility, which at the time of study development, was relevant to the current state and timeline 

of the industry and was therefore important to include in this study design. 

 One key goal of the current study was to bridge the translational gap between human exposure 

assessments and laboratory rodent studies. As the latency of adverse human health outcomes from 

exposure to CNT/F has not been reached, dosimetry studies were designed to monitor human exposure. 

These studies aim to identify biomarkers of exposure as well as early detection of adverse health outcomes 

to prevent the onset of toxicity outcomes that may occur. Additionally, these studies assist in the 

optimization of safety practices and the use of engineering controls and personal protective equipment to 

ensure safe worker handling.  

This study was completed with contributions of several collaborators who completed human 

exposure assessments, epidemiological studies, and dosimetry assessments to ensure that the rodent model 

system used in the current study were representative of human exposures. The materials used in this study, 

with the exception of the reference material, Mitsui-7, were produced in U.S. facilities that were also 

included in exposure assessments as well as investigations for potential human health effects [68, 69, 79, 

92, 164]. As previously mentioned, the doses in this study were selected in consideration of human 

exposures. Furthermore, the methodology of dispersion of the CNT/F in dispersion media were developed 

to ensure that the sizes of particles as well as the agglomeration shapes and sizes were similar to those 

particles observed during human studies. Several toxicity outcomes observed in the mouse model can be 

also be directly compared to those quantified in human studies such as cytokines, chemokines, and other 

markers of inflammation and toxicities.  
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 In vitro modeling systems were also incorporated into the current study in addition to in vivo 

aspects and human health effects collaborations to challenge the potential of mono-cell culture models 

and to begin to elucidate the potential mechanisms behind the observed toxicities in vivo. For genotoxicity, 

inflammation, and histopathology, a relevant cell type was selected and underwent similar toxicity testing.  

First, BEAS-2B cells are a human epithelial cell line commonly used in nanoparticle toxicity 

testing, including genotoxicity assessments. In this study, in vitro testing of genotoxicity was the primary 

model. In addition to standard testing of cell viability with dose, markers of oxidative stress, γH2AX, a 

marker of double stranded DNA damage, and micronucleus formation, another marker of DNA damage 

or disruption in cell replication, were assessed. While these assays are broad and cannot fully elucidate 

the extent of the mechanisms of genotoxicity, alone, they serve as a valuable screening tool for generating 

comparisons between particles to detect variability in their outcomes. This allows generalizations to be 

made regarding whether all MWCNT/CNF are equally genotoxic or if some particles act through variable 

mechanisms leading to genotoxicity outcomes.  

Second, for the assessment of inflammation, THP-1 cells, human macrophage cells, were used as 

a counterpart to the extensive in vivo assays. These cells are also a commonly used model in toxicity 

assessments as they are relatively easy to culture, can be differentiated to various states of activation, and 

are capable of phagocytosis. In addition to the dose-response cell viability assay, these cells were also 

used to assess potential activation of the inflammasome, changes in proteins relevant to cell signaling, 

cytokine and chemokine release, and tissue repair, as well as changes in phagocytic capacity to determine 

the potential mechanisms and alterations in cell functions that can occur as a result of particle exposure. 

These protein changes in particular were useful for direct comparisons between in vivo and in vitro 

findings as well as an initial screening for changes in basic macrophage activity suggestive of downstream 

effects of particle exposure.  
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 Human lung fibroblasts, CRL-1490s, were the third cell model used in this study. While mono-

cell cultures alone cannot be used as a representation of complex multi-cell histopathology changes and 

cannot be representative of extrapulmonary translocation, these cells were used to attempt to model 

pulmonary fibrosis and explore potential mechanisms driving the fibrotic response. The in vivo findings 

in this study revealed the complexities of fibrosis outcomes dependent upon physiological factors such as 

airway size, region of deposition, and time, that unfortunately, resulted in limited usefulness of fibroblast 

cultures alone. Two-dimensional monoculture cannot be accurately representative of the regional 

bronchial or alveolar fibrosis quantified in the in vivo study. Advances in cell culture models such as air-

liquid interface, lung-on-a-chip, three-dimensional, or co-culture models may be more useful to this 

application for future studies.  

Overall, this study was designed to exemplify human exposures to CNT/F to bridge laboratory and 

human research together to answer the yet unanswered questions in the field regarding human safety and 

risk. By including the findings of human exposure assessments in the design of the current study, our 

model was, to the best of our ability, able to accurately represent human occupational exposures via dose, 

agglomeration shape and size, and particle dispersion with consideration to assessing endpoints that are 

translational to human health outcomes.  

 

5.4. Toxicity Outcomes and Study Findings 

As one key goal of the current study was to identify the relationships between physicochemical 

characteristics and toxicity outcomes, the first step was to ensure complete and proper characterization for 

all nine materials. While information on particle sizes and surface chemistry are often reported by the 

company of production, it is necessary to independently characterize these materials to verify these reports 

and to expand upon characterization information not reported by manufacturers. In the current study the 

full panel of characterization included in depth size characterization of length, width, and aspect ratio, 
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providing both means and ranges, but a full histogram to identify critical subpopulations of sizes. The 

agglomeration states of these particles were also defined and measured, and we reported the percentage 

of tubes present as either spherical or bundled agglomerates and the sizes of those agglomerates. 

Additionally, the dustiness, density, and anti-oxidative capacity were assessed, and the quantity of 

potential contaminants including metal catalysts, PAHs, and endotoxin levels were quantified.  

Following this characterization, principal component analysis was utilized to first determine if the 

physicochemical characteristics alone could be used to group similar materials. This initial analysis 

compared groupings that varied depending on which characteristic data was selected for input. Using the 

means alone for length, width, and aspect ratio resulted in a different grouping than including bins of 

particles sizes generated via histogram, which was also somewhat different from the groupings generated 

when all characterization data was included. L-W-AR and All Characterization analysis grouped MW #1-

4, MW #5-7, and CNF #1-2 together, while including size means alone produced less distinct groupings. 

Of note, L-W-AR PCA analysis also grouped CNF #1 as closer to MW #5-7 while beginning to segregate 

out CNF #2. This grouping would later come to relevance with the inclusion of toxicity outcomes in 

additional analysis. Overall, this grouping was of interest for first determining the variability between the 

materials used in this study and for laying the groundwork for elucidating which characteristics would 

play a larger role in subsequent assessments. 

 Genotoxicity was the first toxicity outcome assessed in the current study. Cell viability, the 

generation of reactive oxidative species, and the production of cytokines, chemokines, and growth factors 

were first assessed followed by assessing double stranded DNA breaks and micronuclei formation. These 

standard assessments provided a useful screening tool for detecting potential DNA damage, though the 

use of an in vitro model does not provide an accurate assessment of the full carcinogenicity of these 

materials. This study reported that a significant increase in ROS was found following exposure to high 

doses of MW #5-7 and CNF #1-2, and numerous significant increases in proteins including IL-6, IL-8, 
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IL-1β, and other markers of inflammation and cell injury were observed following exposure to both high 

doses of most materials and low doses some materials. Furthermore, it was reported that all materials were 

capable of inducing micronuclei formation, and all materials except MW #2 induced double stranded 

DNA damage at the higher dose. These findings alone are significant as they indicate that all the materials 

in the present study can induce genotoxicity regardless of physicochemical characteristics, though the 

mechanisms and pathways driving this outcome may be variable. 

 Once completed, these toxicity outcomes were included in the modeling parameters. Hierarchical 

clustering of the cellular outcomes was combined with the three physicochemical characteristics groups 

previously modeled. When ‘all characteristics’ and ‘L-W-AR’ parameters were included, only two 

clusters emerged, MW #1-4 were separated from the rest of the materials. When ‘means only’ were used, 

then MW#4 was switched to the second group containing MW #5-7 and CNF #1-2. This is the first 

suggestion that MW #4 may be a transitional material between these two groups displaying characteristics 

and subsequent outcomes that can shift between these two groups, as seen when variable parameters were 

included in the clustering.  

 Additionally, this modeling indicated that certain subpopulations of particle sizes, particularly 

lengths between 15 and 30 µm are more distinguishing regarding toxicity outcomes. This is the first 

notable size population to emerge in relation to toxicity outcomes. Overall, the initial modeling parameters 

included in part one of the current study have shown that key data points that may not have been previously 

investigated in regard to drivers of toxicity must be considered and that the average size of a whole 

population may not be efficient for predicting toxicity outcomes, rather the presence of a particular sub 

population of particles of a certain size, shape, or characteristic may be more pertinent.  

 Part two of this study addressed inflammation as a toxicity outcome. First, an in-depth in vivo 

study investigated outcomes including LDH, inflammatory cell infiltration, and changes in proteins 

including markers of inflammation, tissue repair, and growth factors at two key doses and four time points. 
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Initial observations of these findings suggested that materials of larger diameter were more likely to induce 

greater and more persistent inflammation. While all materials induced a bolus response and initial acute 

inflammation, beginning at 7 days post-exposure, several trends began to emerge. Materials of larger 

diameter and length were associated with more severe and more persistent inflammation. Computer 

modeling of these outcomes indicated that following a similar trend, MW #1-4 could be organized into a 

separate bin from MW #5-7, and CNF #1 with CNF #2 transitioning between the two bins.  

 In vitro outcomes for inflammation were assessed using human THP-1 macrophages. Almost all 

materials induced functional changes in the phagocytic capacity of macrophages except for MW #3. 

Additionally, all materials resulted in increased caspase-1 activity. All materials induced cell death, 

significant increases in markers of inflammation and membrane damage, though the dose at which 

significance was achieved was variable. Similar to in vivo outcomes, materials of larger nominal tube 

diameter and length were more potently inflammatory than smaller, more agglomerated materials.  

 Modeling of these outcomes further identified and elucidated these relationships between 

outcomes and physicochemical characteristics. Several bins of materials were segregated and when all 

traditional variables as well as length and width bins were considered, the materials were divided into 

groupings similarly identified with the consideration of genotoxicity outcomes.  MW #1-4 were 

distinguished from MW #5-7 and CNF #1-2.  This segregation was confirmation of the frequently 

observed descriptive trends noting differences between materials and their severity and persistence of 

inflammation.  

 The third toxicity outcomes assessed in this project was histopathology outcomes. This assessment 

was to observe chronic changes in the morphology of the lung as well as additional markers of tissue 

injury, inflammation, and other changes that may result or be suggestive of long-term functional changes. 

The outcomes scored in this study include granulomatous inflammation, bronchiolitis obliterans-like 

changes, alveolar histiocytosis, bronchiolar epithelial hypertrophy, alveolar hypertrophy and hyperplasia, 
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and fibrosis, both bronchial and bronchiolar fibrosis. Additional morphometric assessments were made to 

further quantify and delineate pulmonary fibrosis by region.  

Like previously assessed outcomes, these histopathology outcomes were added to the modeling 

system. When considering the physicochemical characteristics combined with the histopathology 

outcomes based on their region of effect, the materials can be binned into unique groupings not previously 

seen in this study, though when all outcomes are considered together, the same trends emerge 

distinguishing MW #1-4 from MW #5-7 and CNF #1-2, though when considerations were given to region 

of the lung affected (alveolar or bronchi/bronchiole) there may be some variations in binning. 

In addition to these in vivo assessments, human fibroblast cells were employed in vitro assessments 

to begin to elucidate mechanisms and pathways driving some of these in vivo outcomes. Findings from 

using a monoculture to represent the entirety of pulmonary fibrosis was limited. As a monoculture is not 

distinct to the regions of the lung and functionally cannot represent both alveolar and 

bronchial/bronchiolar regions of the lung, more advanced methods are necessary for a fully representative 

in vitro model. Incorporation of techniques and culture methods such as air-liquid interface or the “lung-

on-a-chip” may be necessary for future research.  

 Translocation was the fourth and final class of toxicity outcomes assessed. The current study was 

focused on respiratory exposures and respiratory outcomes, though it is well established that particles 

deposited in the lung may not stay within the lung. Either by diffusion or active transport via macrophages, 

lymphatics, or systemic circulation, particles may eventually be deposited in other extrapulmonary tissues 

including the lymph nodes, kidney, liver, spleen, and cardiovascular system. While previous studies of 

this translocation often suggest limited or very minimal extrapulmonary translocation, clearance from the 

lung remains a necessary question regarding respiratory toxicology. The current study investigated 

translocation to the tracheobronchial lymph nodes (TBLN) and the liver. While almost all particles were 

able to reach the TBLN, the mechanism of transport to the lymph nodes may vary depending on particle 
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physicochemical characteristics. Furthermore, translocation to the liver initially suggested three groups of 

particles, small particles with almost zero to minimal liver deposition, a second group of moderately sized 

particles with the most liver deposition, and a third group of larger particles that had some, but not 

extensive liver deposition. These outcomes were further investigated using the established modeling and 

clustering.  

 Linear regression modeling suggests that singlet lung burden at one day post-exposure may be 

useful for predicting liver extra-pulmonary transport at 84 days post-exposure. However, as translocation 

to other tissues such as the spleen were not assessed, this predictive model for extrapulmonary 

translocation to all other organ systems is limited. Modeling of translocation outcomes combined with 

physicochemical characteristics categorized the materials into two bins, similar to the binning previously 

made using other toxicity outcomes which does not fully match the binning trends made with translocation 

outcomes alone. This may be due to the computer model placing greater value in the physicochemical 

characteristics as a means to segregate materials, and prioritizing these differences over the contributions 

of the translocation outcomes to the overall model 

 

5.5. Relationships Between Toxicity Outcomes 

 The four key toxicity outcomes investigated in this study are not stand-alone considerations.  Each 

of these outcomes are interwoven with one another and influence the severity and progression of adverse 

health effects (Figure 1).  One example is the relationship between inflammation and carcinogenicity.  

Several biological processes have been identified as being hallmarks of cancer including more recently, 

inflammation [174, 175].  Weinberg and Hanahan published an update in 2011 suggesting the role of 

chronic inflammation as a driver of genotoxicity and cancer [174].  In the current study, several materials, 

including materials of larger nominal tube dimension were capable of inducing sustained and persistent 
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inflammation at 84 days post exposure.  This chronic inflammation may therefore be a contributor to the 

carcinogenicity of MWCNTs.  

 A second example also related to genotoxicity and cancer. One other hallmark of cancer is the 

ability of cancer cells to invade other tissues and metastasize [174, 175].  Activation of TGFβ through the 

SMAD signaling pathway is linked to the epithelial-mesenchymal transition of alveolar epithelial cells to 

a cell phenotype that is capable of tissue invasion and metastasis [187-189]. The current study highlighted 

increased production of TBFβ following CNT/F exposure.  TGFβ is also linked to increased collagen-1 

deposition and pulmonary fibrosis [116, 186]. These findings suggest that inflammation, pathology 

(fibrosis), and genotoxicity are heavily related.  

 A third example is the relationship between inflammation and extra-pulmonary translocation.  Two 

key mechanisms of translocation have been identified in the current study: macrophage dependent and 

macrophage independent translocation. Macrophages are an inflammatory cell that plays a role in the 

clearance of foreign material in the body.  In an attempt to clear CNT/F from the lung, macrophages 

transport particles to other tissues including the lymph nodes and spleen where the particles then are 

transferred to resident cells of the respective tissues resulting in particle accumulation in extra-pulmonary 

tissues where they have the potential to induce adverse systemic effects.   

 

5.6. Contributions of Computational Modeling 

 The inclusion of computational modeling was essential to elevate the conclusions of this study and 

apply quantitative analysis where merely descriptive conclusions would have been previously drawn. 

These outcomes together conclude that the parameters of nominal diameter, nominal length, and particle 

agglomeration are the primary divers of toxicity outcomes induced by MWCNT/CNF exposure, and the 

inclusion of tubes within key size subpopulations can result in more potent genotoxicity, inflammation, 

histopathology, and extrapulmonary translocation. While not all materials induced the same outcomes, all 
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materials induced significant lung injury and possible systemic effects. The physicochemical 

characteristics of MWCNT/CNF are often interconnected and dependent upon one another. While all 

characteristics may influence toxicity outcomes, only a few have been identified in this study to be the 

major contributors impacting the toxicity outcomes. A schematic illustrating this concept can be found in 

Figure 1. 

 One key finding in this study was the pertinence of sub populations of particle sizes. The presence 

of materials greater than 15 µm length and 50 nm in diameter result in more potent and severe effects, 

even when this population is a minor component of the total particle population. The segregation of these 

subpopulations using histograms was essential to understanding the outcomes of this study, and due to the 

lack of this data presented in previously published toxicity assessments, data mining may be a minimally 

successful endeavor. 

 Furthermore, particle agglomeration was a notable driver for toxicity outcomes, particularly 

histopathology outcomes strictly dependent upon regional deposition in the lung. In this study, 

terminology to describe agglomeration as either “spherical” or “bundled” was created as there is no current 

standard verbiage to describe differences in CNT agglomeration. For comparisons between multiple 

studies in the future, shared language and standardized definitions for agglomeration are needed.  

 

5.7. Impact and Significance on Safety Recommendations 

 As the 2020-2024 Report of the Advisory Group to Recommended Priorities for the IARC 

Monographs has recommended MWCNT as a high priority to be ready for evaluation within five years 

[37], studies investigating these materials in a wholly inclusive and expansive study is necessary. In this 

study, it was found that all MWCNT/CNF were genotoxic. While there were differences in the extent and 

potency between materials, all materials can be assumed to present notable risk that can translate to risk 

in human exposures. Of note, many of the toxicity outcomes were induced by materials of the low dose, 
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which is the dose noted to be most relevant of the REL established by NIOSH.  These findings would 

suggest that the REL may be insufficient as a guideline for protecting facility employees, especially with 

considering that mouse modeling systems compared to rat models are less sensitive therefore amplifying 

the importance of adverse effects noted at the lower dose of the current study. Due to the safety factors 

within the calculations for establishing the REL, often a factor of 10, differences between particles noted 

int eh current study do not have enough variability between them to warrant specific RELs, one for the 

broad class as a whole will be sufficient.  Additionally, one major limitation to changing the REL is the 

limit of detection of CNT/F.  Currently, the lower limit of detection in air sampling methods is just below 

the current REL, making a shift to a more restrictive exposure limit unenforceable until advancements in 

air sampling techniques and technologies advance [57]. 

 Recently, CNTs were added to the “Substitute It Now” (SIN) list in the European union, a list of 

materials that are designated to be banned once a safer substitute can be identified [196]. However, this 

designation has been disputed due to the unclear evidence that all CNTs are equally toxic, therefore 

promoting the desire to ban some, but not all CNTs [197]. Proper understanding of the toxicities of this 

broad class of materials as a whole and the possibilities of designing safer materials is crucial for the future 

of the CNT industry and the potential applications for these materials.  

 

5.8. Future Directions 

The in vitro modeling with BEAS-2B human epithelial cells in the current study were useful as a 

screening tool for genotoxicity but cannot be used to complete a full assessment of the carcinogenic 

potential of these materials. Future studies will include an in vivo counterpart in mice to assess tumor 

promotion, progression, and carcinogenic risk induced by these same materials due to the limited nature 

of carcinogenicity and genotoxicity assessments using only in vitro modeling. Additionally, using more 

advanced cell culture systems such as air-liquid interface and other three-dimensional co-culture systems 
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may be useful to overcome the limitations of using only human fibroblast cells in monoculture for 

assessing changes such as pulmonary fibrosis. The application of cutting-edge techniques may improve 

the relationships elucidated through modeling and may improve the usefulness of in vitro systems in 

assessing nanotoxicological outcomes. 

This study emphasized the importance of modeling methodology and the necessity of inclusion of 

the most accurate parameters for effective predictions. Future goals and projects will further refine this 

modeling system and its prediction capabilities. This model may eventually expand to include other 

carbonaceous nanomaterials of various sizes, dimensions, and characteristics. Additionally, once a 

functional model has been accepted, software applications for future on-site industry applications and for 

safety-by-design may become possible. While human epidemiology studies are limited by the latency of 

time in the industry, efficiently pairing in vitro, in vivo, and in silico modeling in conjunction with human 

studies will enhance conclusions for future safety and risk assessments. Mechanism discovery as to why 

some materials induce certain outcomes and the variances in the potency of these outcomes may also be 

necessary in future studies. 

 

5.9. Conclusions 

 This study was a comprehensive toxicity assessment of MWCNTs and CNFs produced in U.S. 

facilities. Completion of this study resulted in the creation of an accurate safety profile for seven 

MWCNTs and two CNFs, and as per the originally stated hypothesis, was able to elucidate that while all 

materials in this family can be toxic, the toxicity outcomes induced are dependent upon physicochemical 

characteristics, importantly materials comprised of singlets and well dispersed fibers with notable 

subpopulations of tubes with larger nominal diameters and lengths have a greater likelihood of inducing 

greater and more persistent inflammation, histopathology changes in the bronchi and bronchioles 

including pulmonary fibrosis. Materials with subpopulations of lengths within a moderate length and 
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diameter have an increased likelihood of extra-pulmonary translocation to tissues such as the liver, though 

size may not be a critical determinant of the likelihood of a particle to induce genotoxicity. Overall, 

identification of these critical parameters is important to understanding the risks of human adverse health 

effects, for the future of industry safety practices, and the design of new, safer nanomaterials. 
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CHAPTER 5 FIGURES 

 

 

 

Figure 5.1. Schematic of the physicochemical characteristics, the four major toxicity outcomes, and the 

relationships between them. 
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