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Abstract 

Increasing the Reliability of Software Systems on Small Satellites Using 

Software-Based Simulation of the Embedded System 

 

Matthew D. Grubb 

 The utility of Small Satellites (SmallSats) for technology demonstrations and scientific 

research has been proven over the past few decades by governments, universities, and private 

companies. While the research and technology demonstration objectives that can be provided by 

these SmallSats are becoming similar to larger spacecraft, their reliability still falls behind. This is 

in part due to the reduced cost of SmallSat missions in comparison to large spacecraft, which 

requires cheaper components, rapid development schedules, and accepted risk. In these missions, 

the importance of the flight software is often overlooked, and the software is rushed through 

development and not fully tested to provide the reliability required for on-orbit operations. 

 

This research aims to investigate the common causes of failures on SmallSats, and to 

provide a solution to the problem of developing and testing reliable flight software, through the 

use of software-based simulation of the full embedded satellite system. During this research, an 

open-source product was developed and released to the public to assist SmallSat missions, which 

is currently in use by public and private institutions across the country. The resulting product, the 

NASA Operational Simulator for Small Satellites, commonly referred to as NOS3, will be 

discussed in detail. The results of NOS3 will be viewed through a case study of the application of 

NOS3 to a SmallSat mission.  
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Chapter 1. Introduction 

1.1 Background 

The National Aeronautics and Space Administration (NASA) classifies Small Satellites, 

commonly referred to as SmallSats, as any spacecraft with a mass of 180kg or less [1]. The size, 

weight, power, and cost (SWaP-C) of these spacecraft vary drastically within the category, from 

femtosatellites as small as .001kg to minisatellites from 100kg to 180kg. Thanks to the 

standardization effort between Prof. Jordi Puig-Suari at California Polytechnic State University, 

San Luis Obispo, and Prof. Bob Twiggs at Stanford University's Space Systems Development 

Laboratory in 1999, the majority of SmallSats launched in the past decade have been CubeSats 

[2]. Puig-Suari and Twiggs realized that in order to increase access to launch opportunities, the 

form factor of the spacecraft needed to follow a strict standard, which would allow a common 

deployment mechanism to be used on numerous different launch vehicles. The original CubeSat 

Design Specification defined the spacecraft as a 10x10x10cm body, in addition to specific 

contacting points for the Poly Picosatellite Orbital Deployer (P-POD) [2]. Three of these CubeSats 

would fit into the P-POD, and multiple P-PODs could be affixed to a launch vehicle as a secondary 

payload [3]. As a secondary payload, the CubeSats take advantage of “ridesharing” where there is 

unused payload capacity in the launch vehicle, and the secondary payloads are determined to pose 

no risk to the primary mission. Launches were then able to deploy numerous CubeSats at one time, 

greatly increasing the number of missions able to access space.  

The CubeSat standard has continued to evolve, and the 10cm cube is no longer the only 

size recognized. The original standard is now referred to as a 1 Unit (1U) CubeSat, but developers 

can select a size that fits their mission requirements from 1, 1.5, 2, 3, 6, and 12U. While 1-3U 
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CubeSats are still the most common due to launch availability, 6 and 12U deployment canisters 

are available. With the expansion of the CubeSat Design Specification, and a growing number of 

rideshare, and dedicated launch opportunities, the number of CubeSats launched has grown rapidly 

since 1999 [4]. 

These use of CubeSats vary greatly from mission to mission, depending on the mission’s 

objectives. For small missions, such as the NASA Ames PhoneSat [5], the total hardware cost for 

a 1U CubeSat was limited to $3500. The purpose of the PhoneSat mission was to use a commercial 

cellular phone as the processing system on a CubeSat. This is referred to as a technology 

demonstration mission, where the objective is to prove the functionality of some technology, in 

this case, a Nexus cellular phone, when operating on-orbit. Technology demonstrations are a very 

common use of a CubeSat, however, it is not the only one. 

A much more complex mission, such as the NASA JPL MarCO pair of CubeSats, cost 

$18.5 million [6]. The MarCO CubeSats were the first interplanetary CubeSats to be launched, 

with the objective of relaying data from the Mars lander InSight back to Earth during InSight’s 

descent to the planet. The complexity of MarCO required more money than PhoneSat due to the 

size, weight and power restrictions imposed by a much more difficult to achieve objective. 

Although $3500 to $18.5 million seems like a major leap in cost, the MarCO mission was still just 

a fraction of a typical spacecraft’s cost. As an example, the NASA Mars Reconnaissance Orbiter 

mission cost $716.6 million, $90 million of which was for the launch alone [7]. With cost being 

an important factor in mission planning and development, more science-based missions are 

looking to CubeSats and SmallSats to accomplish their objectives. Launch opportunities are also 

available for qualified missions via the NASA CubeSat Launch Initiative (CSLI) at no cost to the 

missions [8]. 
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1.2 Problem Statement 

With a continuous increase in the number of SmallSats being launched, there remains a 

large number of these spacecraft that fail to meet their mission objectives [4]. The development 

cost and mission timelines of these spacecraft are a fraction of the typical flagship spacecraft, and 

it is typical for the mission to accept a certain amount of risk [9]. One of the areas commonly 

overlooked for SmallSats is the flight software (FSW). Flight software is a critical component in 

a successful mission, but it is routinely scheduled late, during spacecraft integration, in an already 

short development cycle [10]. This leads to limited testing of the FSW, which can hide the presence 

of errors and lead to workarounds on orbit, or at worst mission failure. 

Large missions, with longer development time and a much larger budget, utilize 

simulations to increase the amount of testing that can be performed and increase their FSW 

reliability. With more time and money, the FSW can be tested to near full coverage, and the 

resulting product expects to operate without a catastrophic failure when in orbit. However, 

SmallSats accept many risks, FSW only being one of which, and are known to fail. The time spent 

in development and the overall cost are low enough, that another attempt can, and commonly will 

occur [4]. 

The subject of this research is, can the implementation of simulations utilized during 

development and testing for large missions be tailored to fit the needs of SmallSats thus increasing 

the reliability of the resulting FSW? 
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1.3 Research Objectives 

This research will: 1.) Evaluate the root causes that lead to lower cost and rapidly developed 

FSW in SmallSat missions, such as short mission schedules, lack of hardware for flight software 

testing, and the complexity required for successful FSW. 2.) Evaluate potential solutions that 

already exist for simulation, such as commercial products like Wind River SIMICS, and open-

source software such as NASA’s 42 Spacecraft Simulation. 3.) Provide an open-source solution 

that allows missions to increase the reliability of their FSW.  

The resulting solution, a new suite of software that integrates multiple other open-source 

tools, named the NASA Operational Simulator for Small Satellites, or NOS3, has been released to 

the public and is in use by government agencies, universities, and private companies at the time of 

this writing. NOS3 combines multiple proven open-source software packages, such as NASA’s 42 

and NASA’s core Flight System (cFS), with newly a developed simulation framework for 

modeling SmallSat hardware in a software-only environment. 

 

1.4 Organization 

This section of Chapter 1 concludes the introduction of the research. Chapter 2 contains 

the literature review that will provide more details on SmallSat requirements, determine the 

success and failure rates of these SmallSats, and investigate potential solutions that may solve the 

problem of FSW reliability. Chapter 3 details the design of the developed solution, NOS3, starting 

with the requirements necessary to solve the problem, the initial proof-of-concept for the solution, 

then explaining the final solution and sub-components, and describing how it can be deployed and 

utilized. Chapter 4 will provide the results of the solution through a case study of an actual 
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SmallSat mission, testing performed to verify the solution, known limitations, and applications. 

Chapter 5 concludes the research with a summary and describes how the NOS3 can be enhanced 

through future work.  
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Chapter 2. Literature Review 

2.1 CubeSat Design Specification and CubeSat Launch Initiative 

While the CubeSat Design Specification (CDS) does not mention FSW explicitly, it does 

contain critical information that explains why FSW is an important component of the spacecraft. 

It also provides the spacecraft requirements that can lead to design decisions that affect the FSW 

development and design. The 13th edition of the CDS was released in February of 2014, and a new 

release is currently in the draft stage [2].  

The CDS provides a detailed specification of the dimensions of the spacecraft, the 

interfaces required on the spacecraft for the P-POD deployer, and a list of requirements “to ensure 

the safety of the CubeSat and protect the launch vehicle (LV), primary payload, and other 

CubeSats” [2]. SmallSats are typically launched as a secondary payload, meaning the SmallSat is 

not a requirement of either the primary payload or the launch vehicle itself. The secondary 

payloads take up unused payload capacity and space on the launch vehicle that has already been 

funded by the primary mission [3]. To make the interface between the secondary payload and the 

launch vehicle easier, the CDS contains a standard for the dimensions of their P-POD deployer.  

 

Figure 1 - CalPoly P-POD Deployer [2] 



 7  

 

There are an increasing number of dedicated launch vehicles for SmallSats, but these come 

with a cost that must be paid by the mission. The cost of a dedicated launch from the small launch 

provider Rocket Lab USA costs close to 5 million USD [11]. The Rocket Lab Electron dedicated 

launch vehicle, used in the NASA Educational Launch of Nanosatellites (ELaNa-19) mission, 

deployed 13 CubeSats to low Earth orbit (LEO) [12]. NASA CubeSat Launch Initiative provides 

zero-cost launch services for a select number of SmallSats each year. For the reason of cost alone, 

most US-based missions elect to launch via the CSLI. The CSLI launch services depend on the 

launch vehicle that is providing the rideshare, but one consistent requirement is to meet, and in 

certain cases exceed, the requirements outlined in the CDS [13]. As of May 2020, NASA CSLI 

has selected and prioritized 220 CubeSat missions from 102 unique organizations representing 41 

states and the District of Columbia, including one from West Virginia [8]. 

 

Figure 2 - NASA CSLI Launches by State [8] 
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The CDS definitions for the size and mass of 1-3U CubeSats are shown in the following 

table.  

Table 1 - CDS Definitions of CubeSat Unit Size 

U Definition Width (mm) Length (mm) Height (mm) Mass (kg) 

1U 100.0 100.0 113.5 1.33 

1.5U 100.0 100.0 170.2 2.00 

2U 100.0 100.0 227.0 2.66 

3U 100.0 100.0 340.5 4.00 

 

The dimensions and mass requirements above are limiting in terms of the size of the 

components that need to fit within the spacecraft. A typical spacecraft will need to have a command 

and data handling (C&DH) subsystem, an electrical power subsystem (EPS), a communications 

subsystem, an instrument or technology demonstration, and optionally an attitude determination 

and control subsystem (ADCS). The following figure shows the dimensions of a 1U CubeSat that 

would need to contain these subsystems.  

 

Figure 3 - 1U CubeSat Dimensions [2] 
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Fitting these subsystems into the small form factor poses a mechanical challenge, but it 

also poses a technology challenge. Smaller components need to be selected than are typical on 

large missions, and it is common for commercial components to be repurposed for SmallSats [14]. 

These commercial parts may have flight heritage from another mission using them in the past, but 

that does not reflect on the reliability for all missions. For this reason, the FSW must be robust 

enough to detect and correct issues that occur due to component failures. For example, if the 

communications and C&DH cannot pass commands and telemetry due to a failure in the 

microchips that control the data bus, then the mission will be over. It is up to the FSW to attempt 

to recover these subsystems and preserve functionality.  

The small form factor also routinely requires deployable components that will expand 

when the orbit is achieved. This poses two challenges to FSW, the first being that there are strict 

deployment requirements in the CDS that must be adhered to and verified via testing. The CDS 

specifies “All deployables such as booms, antennas, and solar panels shall wait to deploy a 

minimum of 30 minutes after the CubeSat's deployment switch(es) are activated from PPOD 

ejection” [2]. The second is that these deployments in most cases must occur for the mission to 

succeed. For example, if the antenna for the communications system is stowed inside or the solar 

arrays are stowed on the body of the spacecraft, then the spacecraft could lose either 

communications or power if a deployment is not achieved.  This adds FSW complexity to meet 

the CDS requirements for the deployments, and to ensure that the deployments occur in time to 

meet the mission requirements.  

The CSLI provides a useful document to guide first-time missions through the process of 

CubeSat development. The CubeSat 101: Basic Concepts and Processes for First-Time 

Developers, gives a new team information on the development process from Concept Development 
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to Mission Operations. One of the best things this document does is give a mission a timeline to 

follow while highlighting requirements along the way. “A CubeSat can be designed, built, tested, 

and delivered in as little as 9 months, but typically takes 18 to 24 months to complete” [9]. The 

following chart provided by CubeSat 101 shows this rapid development schedule.  

  

Figure 4 - CubeSat 101 Mission Development Schedule [9] 

 

Out of the entire document, the FSW for the spacecraft is only mentioned in two sections, 

and these references are surprisingly minimal. The first reference is when describing the use of 

Engineering Test Units (ETUs) of hardware. CubeSat 101 states “[An ETU] can be used to practice 

putting the components together, fit checks, hardware and software testing, and anything else that 

you don’t want to try for the first time on your valuable flight unit” [9]. This is a valuable statement 

for missions to remember for testing their spacecraft, in that ETUs are a very valuable resource for 

software testing. These ETUs however come with a price tag and most missions will have to 

determine where the budget can afford an ETU, and where the flight unit will have to suffice. Can 
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simulation of the spacecraft hardware act as another alternative to flight software testing on 

ETUs where they are either capitalized in integration testing or unavailable due to budget 

constraints? 

The second mention of FSW comes in the section describing the required “Day-in-the-

Life” (DITL) testing. “This test shows that your CubeSat’s electronics and flight software work 

as expected. The ICD will have requirements for when the CubeSat is allowed to release its 

deployables and when it can start transmitting after being ejected from the dispenser”. “This test 

must be run with the final flight software and in most cases will be required to be completed prior 

to environmental testing” [9]. As quoted above, the final FSW must be proven through a DITL 

test to meet the requirements for launch, and this should take place before environmental testing. 

This implies from the schedule provided in the guide, that the final FSW will need to be developed 

in 2-12 months during the “CubeSat hardware fabrication and testing” segment of the development 

cycle. A 12-month period for a first-time mission to develop working FSW is very short and could 

explain why many missions have inoperable CubeSats when deployed on orbit. CubeSat 101 gives 

missions no other guidance in the area of flight software, and missions using this document to get 

them to launch may find FSW is a much more difficult component of their spacecraft than is 

alluded to in this guide.   

 

2.2 Reliability and Failures 

“Despite the reduced size of these spacecrafts, their Flight Software (FSW) complexity is 

not proportional to the satellite volume, thus creating a great barrier for the entrance of new 



 12  

 

players on the nanosatellite market” [10]. Even though the SWaP-C of SmallSats is a fraction of 

that of their flagship counterparts, the flight software complexity does not scale accordingly. 

Over many years, Dr. Swartwout of St. Louis University has maintained an online database 

to document all CubeSats launched, as well as the status of each of the missions [4]. The database 

is openly available to the public, and mission status is provided either from publicly available 

information, or a contribution from an individual mission. The mission status of all CubeSats 

launched from 2000 to 2019, with the exclusion of constellations, is shown in the following chart.  

 

Figure 5 - CubeSat Mission Status 2000-2019 [4] 

 

Constellations are excluded from this data because “With Planet and Spire contributing 

more than 500 CubeSats between them, their missions dominate any chart that I could produce” 

[4]. Constellations are typically a suite of identical spacecraft that can be mass-produced, and as 

20%

22%

9%
19%

6%

24%

CubeSat Mission Status 2000-2019, No Constellations

Mission Achieved Mission in Progress Early Loss Dead on Arrival Launch Failure Unknown
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such their development process differs drastically from that of a university or first-time spacecraft 

builder. For this research, constellation spacecraft will also be excluded.  

The most glaring data from the chart is the percentage of CubeSats that are either dead-on-

arrival (DOA) or an early loss. Combining for over 27 percent of all missions are CubeSats that 

have been reported as failing to complete their mission. There is the possibility that that number is 

even higher given the over 23 percent of missions in which their status is currently unknown. In 

an investigation by Dr. Swartwout of “University-class satellites – that is, spacecraft built by 

university students for the express purpose of student training” the failure rate is even larger as 

shown in the following chart [15].  

 

Figure 6 – University-class Satellites Mission Status [15] 

 

12%

26%

13%

25%

21%

3%
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It would be impossible to determine the root cause of all of these failures because a 

spacecraft that is DOA could have had any number of failures, however, the author does state that 

“in [his] twenty years of experience with university-class missions, he has noted that student-led 

projects often fail because of a lack of time/resources given to systems-level testing” [15]. This is 

an important point that reflects on the rapid development and testing schedule that these missions 

typically follow. Can simulation of the spacecraft hardware allow more time and resources 

for systems-level testing? 

In another investigation into the failure rates of CubeSats titled “Reliability of CubeSats – 

Statistical Data, Developers’ Beliefs and the Way Forward”, the authors solicited feedback from 

developers of CubeSat missions that had failed. “Of the surveys sent out to 987 individuals, 113 

were returned fully completed” and “73% of the participants considered themselves not as a 

beginner or as without knowledge in risk and failure analysis” [16]. From these solicitations, “the 

experts also had to subjectively assess what reason might have caused the assumed critical failure 

of the satellite” [16]. This is perhaps the best data point that was found concerning software being 

a contributing factor to failures, and not surprisingly, “software design failure” was the highest 

percentage of assumed failure with “fault in electronics” being a close second. The following chart 

shows the responses for a percentage likelihood of the critical failure with “Software Design Error” 

being roughly 34% chance of likelihood. 
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Figure 7 – Percentage Chance of Software Causing Critical Failure [16] 

From this investigation, it is apparent that many missions did not have confidence that their 

software was operating reliably, even if other factors could have also caused the critical failure.  

 

2.3 Software Simulation Solutions 

2.3.1 SIMICS 

The SIMICS® product from Wind River [17] provides users with a means to create a 

digital twin of an embedded system for the purpose of testing. “By using virtual platforms and 

simulation, software developers can decouple their work from physical hardware and its 

limitations during development” [17]. SIMICS is a powerful solution for a simulation that allows 

the target system, in this case, a spacecraft, to be modeled such that the binaries built to run on the 

target will run directly in SIMICS. This is a true test-as-you-fly simulation, that can test the actual 

26%
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flight code as compiled for the target processor. A low-level emulator can run the processor 

instructions for a select set of supported processors, such as ARM, Intel, and PowerPC. Above the 

processor emulator sits code written in the Device Modeling Language (DML) to model the 

remained of the flight computer board such as memory, timers, etc. Commercial spacecraft flight 

computer models are available for purchase from Wind River, and custom models can be 

developed by the consumer.  

SIMICS allows step-by-step instruction running, in a synchronous environment. Debug 

tools are standard for viewing any location in memory, injecting faults, and running test scenarios. 

This resource is commonly used by the NASA Independent Verification and Validation Facility 

(IV&V) Jon McBride Software Testing and Research (JSTAR) team to model flagship missions. 

One example of a flagship NASA mission modeled by the JSTAR team using SIMICS is Global 

Precipitation Measurement (GPM), resulting in the GPM Operational Simulator (GO-SIM) [18].  

SIMICS is a great solution for large mission simulations, where budget and schedule time 

are adequate, however, the cost and time to deploy are prohibitive enough to make this option 

unreasonable for most SmallSats. SIMICS cost is not readily available online and must be 

requested from the vendor, but an estimate from one source is provided as $200,000 to $300,000 

for 10-15 developers [19]. The time to develop the board-level models of all the subsystems in the 

spacecraft would be more involved than writing the FSW itself and would require users to learn 

the DML. While commercial board models can be purchased from SIMICS, SmallSat flight 

computer boards vary drastically from mission to mission and are unlikely to be available. 
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2.3.2 QEMU 

QEMU is an open-source emulator meant to run target binaries as compiled, much like 

SIMICS. QEMU is commonly used as a test system for the LEON3 flight computer, “a 

synthesizable VHDL model of a 32-bit processor compliant with the SPARC V8 architecture” [20]. 

The RTEMS real-time operating system (OS), a common OS running on spacecraft, provides a 

LEON3 board support package and runs directly on a patched version of QEMU [21]. This allows 

developers to run their code targeted for a LEON3 with RTEMS on their laptop for debugging. 

QEMU uses the QEMU Object Model (QOM) framework for user-defined targets [22]. Users can 

model their flight computer board if one is not available from the open-source community, like the 

basic LEON3. 

QEMU is a useful solution for the emulation of the target flight computer, and it comes at 

no cost to the mission. Like SIMICS, the time to develop the board-level models of the spacecraft 

will be more involved than writing the flight software and makes this solution not ideal for a first-

time mission.  

 

2.3.3 Core Flight System 

“The core Flight Software System (cFS) has reduced the costly and time-consuming 

process of developing software for spaceflight missions. Its flexible, layered architecture creates 

a development environment where system integrators can rapidly assemble a significant portion 

of a software system for new missions, test platforms, and technology prototypes, resulting in 

reduced technical, schedule, and cost risks” [23]. 
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The Core Flight System, or cFS, is a NASA Goddard Space Flight Center (GSFC) 

developed flight software that is available open-source at www.github.com/nasa/cfs. The cFS has 

flight heritage on large NASA missions such as GPM, Magnetospheric Multiscale Mission, Parker 

Solar Probe, and SmallSat missions such as Lunar Atmosphere and Dust Environment Explorer, 

Dellingr, and Simulation-to-Flight 1 (STF-1).   

To overcome the issue of “clone-and-own” flight software from mission to mission, GSFC 

put together a team to analyze the heritage code from numerous missions and look for 

commonality. “The analysis concluded existence of commonality in the flight software amongst 

all the missions especially in the discipline of Command and Data Handling (C&DH) flight 

software systems.  The results of the analysis determined qualified C&DH flight software could be 

redesigned into a reusable, platform-independent software product line.  The reuse would not only 

include the software, but the artifacts such as requirements, design, test procedures and results, 

and documentation, saving projects and missions the cost and effort” [23]. 

The cFS is a platform-independent FSW, that runs in a layered architecture to provide 

abstraction from the target platform. At the first level is the Platform Support Package (PSP) that 

provides an API that interfaces with the board level memory, timers, etc. that can be utilized by 

the upper layers. Next in the stack is the Operating System Abstraction Layer (OSAL) that provides 

an operating system level API that can be used by the upper layers. On top of the OSAL and PSP 

is the Core Flight Executive (cFE), which provides commonly required software services 

including, time management, executive services, event services, table management, and a software 

communications bus. These five services can be called from the final layer of code which is the 

application layer of cFS. The application layer consists of modular and configurable “apps” which 

missions can use at their discretion. Common apps are a scheduler, house-keeping, command 
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ingest, telemetry output, and numerous others. The apps are configured via tables managed by the 

cFE that provide missions a way to tailor the cFS to their mission requirements. The layered 

architecture of the cFS can be seen in the following figure.  

 

Figure 8 - cFS Layered Architecture 

The cFS is built using the CMake build system and can compile for either the target system 

or for the Linux host. This capability allows a developer to cross-compile their code using the 

compiler for the flight computer, to run on the spacecraft, while also generating a version that can 

run on a personal computer or server. It is typical for a mission to write “simulated” applications 

that mimic the software bus communications of hardware interfacing applications for testing. This 

is a valuable test, but it is far from a test-as-you-fly configuration. The simulated apps do not model 

the behavior of the hardware but stub it out to allow the rest of the FSW to operate as if it were 
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available. cFS is an excellent option for SmallSat missions to base their FSW at no cost, with 

substantial flight heritage from NASA and external organizations.  

 

2.3.4  “42” Spacecraft Simulation 

42 is another tool from NASA GSFC, written by Eric Stoneking and provided to the open-

source community. “42 is a comprehensive general-purpose simulation of spacecraft attitude and 

orbit dynamics. Its primary purpose is to support design and validation of attitude control systems, 

from concept studies through integration and test. 42 accurately models multi-body spacecraft 

attitude dynamics” [24]. 42 is highly configurable through a series of ASCII-based text files that 

are easily read by the user. The orbit, spacecraft body, and external forces can all be accurately 

modeled to provide a simulation of the dynamic environment. In newer versions of 42, users can 

write and command their own “FSW” using the included attitude control module. FSW is in quotes 

because this tool is only modeling the commands from FSW to the actuators modeled in 42. These 

actuators can be reaction wheels, magnetic torquers, thrusters, or gimbals, all of which change the 

spacecraft dynamics. Sensors are also included in 42 and can be reported via strings either over a 

socket connection or through an included text file generator. 42 is a very capable tool for a dynamic 

simulation that is free to use, and easily configurable for SmallSats.  

 

Chapter 3. Design and Development 

3.1 Design Objectives 

The research performed to investigate the causes of mission failures point to FSW as a 

likely cause of critical mission failures and shows that even the development teams have low 
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confidence in the FSW they have deployed on their spacecraft. Simulation technologies are already 

used with success on many large missions but for rapidly developed and low-cost SmallSats the 

time and budget do not support the same paradigm. Numerous individual tools allow missions to 

perform some level of simulation, but a low-cost solution that closely resembles the spacecraft is 

not currently available.  

The objective of this design is to provide missions with a zero-cost simulation tool that can 

be used to model their spacecraft, develop and test their FSW, and train spacecraft operators with 

the real command and telemetry interface. To meet this objective, heritage software such as cFS 

and 42 will be integrated with software to connect and model the components of the spacecraft. 

Commonly selected components will be modeled as a sample, or starting point for the missions to 

model their full spacecraft. An open-source ground software will be included to build and enact 

the command and telemetry database for communicating with the FSW. To reduce the time 

necessary for a new mission to utilize the simulation, it must be made easy to procure and deploy. 

 

3.2 Design Revision 1: CubeSat in a VM 

The first revision of the design was used as a proof-of-concept for the utility of such a 

simulator contained in a single Virtual Machine (VM) that could run on a standard laptop 

computer. cFS was built and configured for a generic SmallSat mission that included a minimal 

set of components including a C&DH, EPS, GPS, and communications subsystem. In the initial 

revision, the orbit of the International Space Station (ISS) was simulated via 42 in the VM, and 

telemetry reports were generated that included an Earth Centered Earth Fixed (ECEF) location for 

the GPS and a sunlight or eclipse indicator to simulate charging and discharging of the battery in 
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the EPS. The ISS was selected as it is a common deployment opportunity for secondary payloads 

such as SmallSats. cFS includes a python-based tool to command the FSW via the software bus, 

and this was the communications system. The following figure shows the architecture of the first 

revision of the design.  

 

Figure 9 - CubeSat in a VM Architecture 

  

This design proved that the concept would work, however, it was quickly constructed and 

does not meet the objectives laid forth. As visualized in the diagram, the information only flows 

into the cFS, and telemetry is not available outside of that process. Also, the hardware of the 

spacecraft itself was not modeled, only the resulting outputs of that hardware were mimicked by 
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the cFS apps. The telemetry reports generated by 42 were also generated before running the cFS 

and were loaded by the application at runtime. This constrained the entire system to the execution 

time of the reports from 42. The work performed on revision one was very valuable in the long 

run in showing how not to design the system, as opposed to providing the final solution.  

 

3.3 NASA Operational Simulator for Small Satellites 

Learning from the mistakes made in the first revision, and with better knowledge of how 

to utilize cFS and 42, the NASA Operational Simulator for Small Satellites was designed. To meet 

the objectives laid out in section 3.1 more components needed to be added to the system to 

complete the design.  

To model the spacecraft hardware, a “middleware” is needed to control communications 

and timing between the components of the simulation. NOS Engine, a heritage middleware 

developed by the JSTAR team at NASA IV&V was selected due to familiarity and ease of use. 

Using cFS as the FSW and 42 as the spacecraft dynamics simulator were both proven in revision 

one although the interfaces needed to be enhanced for the final design. The python-based ground 

software is useful but does not meet the objective, and as such the COSMOS Ground Software 

from Ball Aerospace was added.  

In revision one, cFS apps were written to stub-out the hardware, which is not close to the 

real configuration of a spacecraft. For this reason, a hardware modeling layer was required to 

model the real behavior and input/output (I/O) characteristics of any given piece of spacecraft 

hardware. This layer was written using a “factory model” in C++ that can inherit common 

characteristics needed for the modeling framework while allowing the developer to write a plug-
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in model of the spacecraft hardware component. Example hardware models were written based on 

commonly selected SmallSat components for an EPS and GPS subsystem.  

Finally, a low-level interface was necessary to connect cFS to the middleware. The FSW 

apps need to be written once and used in either the simulation or on the flight target. There should 

be no code changes in the application, so the simulation is as close to “test-as-you-fly” as possible. 

The following diagram shows the architecture of  NOS3.  

 

Figure 10 - NOS3 Architecture 

3.4 NOS3 Architecture and Components 

3.4.1 NOS Engine 

One of the primary components of NOS3 is the NOS Engine simulation middleware that 

abstracts the hardware interfaces, such as Inter-Integrated Circuit (I2C), Serial Peripheral Interface 
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(SPI), and Universal Asynchronous Receiver-Transmitter (UART), and connects the flight 

software with the simulated components. The NOS Engine is a JSTAR developed software suite 

that provides a library of functions to simulate the hardware communication protocols that are 

commonly utilized in spacecraft systems. NOS Engine also provides support for various 

underlying protocols such as TCP/IP, inter-process communication protocol (IPC), and shared 

memory to transport software bus messages that represent the actual hardware bus communication. 

This functionality provides several unique advantages: extremely fast communications; shared 

memory on a single computer running the flight software and the software simulators; and 

distributed processing such as TCP/IP on multiple computers.  

One of the challenges of simulated communications protocols (e.g., UART, I2C, SPI, etc.) 

is being able to represent their hardware time synchronization clocks within a software-only 

environment. To meet this requirement, the NOS Engine library contains methods to manipulate 

and distribute time between various components that are connected via software busses in place of 

what would normally be hardware busses. For example, within NOS3 the NOS Engine is used to 

control epochs and periodic clock signals between devices. Each of the hardware models, the cFS 

FSW, and 42 dynamics are driven synchronously using the NOS Engine timing system so that the 

simulation runs each component with consistent timing.   

 

3.4.2 NOS3 Hardware Model Framework 

A component simulator development framework for adding custom mission simulators was 

written for NOS3. This framework includes functionality for logging data from the simulators, 

XML file-based configuration of simulators, facilitates integrating custom spacecraft hardware, 

assists with integrating data providers such as the dynamic simulator 42 or file-based data that can 
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be recorded from hardware components, and provides the connections to the NOS Engine 

middleware for communications and timing.  

Several simulators have been developed for common hardware components, such as a GPS 

receiver, and the electrical power system. While these simulators have features that are specific to 

the hardware components in which they were modeled, they also present several elements useful 

to other developers with different components. For instance, they provide detailed, practical 

examples showing how simulators can be written for real-world hardware components, how to use 

the NOS Engine communication and timing busses, and how to receive dynamic data from 42. The 

framework allows the user to create software simulators of a hardware component early in the 

mission lifecycle, to support FSW development and testing. These simulators can be written by 

referencing hardware interface control documents (ICDs) or datasheets, and further augmented 

with characteristic data from the hardware, when available. The following figure shows the 

interfaces between the components of the hardware model framework. 

 

Figure 11 - NOS3 Hardware Model Framework 

 

The hardware model framework can be used to develop models that are highly complex or 

very simple, depending on the mission needs. For some hardware components, such as an on-board 

instrument that only passes data to a ground station or non-critical subsystem, the model can pass 

“hard-coded” values from the hardware model to the FSW if these values match the format of I/O 

from the actual hardware. For more critical components, such as a deployment mechanism or 
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electrical power system, it is useful to model the hardware in as much detail as possible so the 

FSW can be tested extensively. The hardware model framework makes the process of writing 

models of any complexity easy for new developers. The necessary functions to be implemented 

by a hardware model depend on the device itself, but will typically be a streaming data function, 

an I/O callback function, or a combination of both. The UART callback function from the sample 

simulator is shown in the following code example. In this example, the hardware model checks 

the header and trailer of the command for validity and sets a configuration register in the hardware 

for a valid command. If the command was valid, the hardware will echo the command to the FSW 

to verify a successful command receipt.  

    void SampleHardwareModel::uart_read_callback(const uint8_t *buf, size_t len) 
    { 
        // Retrieve data and log received data in man readable format 
        std::vector<uint8_t> in_data(buf, buf + len); 
        sim_logger->debug("SampleHardwareModel::uart_read_callback:  REQUEST %s", 
            SimIHardwareModel::uint8_vector_to_hex_string(in_data).c_str()); 
 
        // Check if message is incorrect size 
        if (in_data.size() != 9) 
        { 
            sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Invalid command size of %d received
!", in_data.size()); 
            return; 
        } 
 
        // Check header - 0xDEAD 
        if ((in_data[0] != 0xDE) || (in_data[1] !=0xAD)) 
        { 
            sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Header incorrect!"); 
            return; 
        } 
 
        // Check trailer - 0xBEEF 
        if ((in_data[7] != 0xBE) || (in_data[8] !=0xEF)) 
        { 
            sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Trailer incorrect!"); 
            return; 
        } 
 
        // Process command type 
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        switch (in_data[2]) 
        { 
            case 1: 
                sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Configuration command received!"); 
                _millisecond_stream_delay = (in_data[3] << 24) + 
                                            (in_data[4] << 16) + 
                                            (in_data[5] << 8 ) + 
                                            (in_data[6]); 
                sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  New millisecond stream delay of %d"
, _millisecond_stream_delay); 
                _second_stream_delay = double(_millisecond_stream_delay) / 1000; 
                break; 
 
            case 2: 
                sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Other command received!"); 
                break; 
 
            default: 
                sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Unused command received!"); 
                break; 
        } 
 
        // Prepare to echo back valid command 
        std::vector<uint8_t> out_data = in_data; 
 
        // Log reply data in man readable format and ship the message bytes off 
        sim_logger->debug("SampleHardwareModel::uart_read_callback:  REPLY %s", 
            SimIHardwareModel::uint8_vector_to_hex_string(out_data).c_str()); 
        _uart_connection->write(&out_data[0], out_data.size()); 
    } 
  

 

 

3.4.3 42 

As the spacecraft is in orbit, variables such as its position, velocity, orientation, solar 

radiation direction and intensity, and magnetic field direction and intensity change over time. 

While the actual hardware signals corresponding to dynamic inputs can be determined from 

hardware datasheets and user manuals, the dynamic inputs must also be identified for an accurate 

simulation. To connect 42 properly to the simulated hardware models, the 42 socket layer is 
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utilized versus the log files used in revision one. This allows the 42 simulator to send updated 

dynamic data synchronously to the simulated hardware model for packaging into the proper I/O 

format. As 42 executes its time-step all data relevant to the simulator, such as the ECEF position 

for the GPS, is sent over a socket to each simulator. The hardware model for the simulator must 

then parse the message from the socket to collect the value, and format its message to the FSW 

exactly as sent by the real piece of hardware.  

To keep time synchronized, a NOS Engine timing option needed to be added to the 42 

source code to drive its time-step at the same pace as the rest of the NOS3 components. This work 

was performed and contributed back to the open-source 42 repository where it was eventually 

added to the maintained release of 42. When a user wants to utilize the NOS Engine time 

synchronization functionality in 42, they can specify “NOS3” as the time option in the 42 

configuration files. An additional file is then required to configure the NOS Engine time bus, 

labeled Inp_NOS3.txt. An example of each of these configuration files is shown in the following 

code examples. 

/* Inp_Sim.txt */ 
<<<<<<<<<<<<<<<<<  42: The Mostly Harmless Simulator  >>>>>>>>>>>>>>>>> 
************************** Simulation Control ************************** 
NOS3                            !  Time Mode (FAST, REAL, EXTERNAL, or NOS3) 
10000.0   0.1                   !  Sim Duration, Step Size [sec] 
Figure 12 - 42 Inp_Sim.txt 

/* Inp_NOS3.txt */ 
<<<<<<<<<<<<<<<<  42 NOS3 Time Configuration File  >>>>>>>>>>>>>>>>>>> 
command                         !  NOS3 Time Bus 
tcp://127.0.0.1:12001           !  NOS3 Time Connection String 
Figure 13 - 42 Inp_NOS3.txt 

 

3.4.4 cFS and the Hardware Library 

Much like the cFS provides the OSAL and PSP layers to abstract the platform upon which 

the FSW will execute, a Hardware Library (HWLIB) was written to abstract the hardware I/O 
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drivers that communicate with either NOS3 or real hardware. To achieve this the drivers, such as 

I2C, UART, and SPI were written with a common API that can be called in the cFS applications. 

The source code for this API is then targeted at build time, and both the simulator and a cross-

compiled version for the flight computer are generated. The same cFS application code is applied 

to both targets, with only the low-level drivers abstracted. For example, the following code 

example shows the API function call to perform a transaction between the FSW and an I2C 

component, contained in libi2c.h and included by the cFS application, followed by the 

implementation of those calls for the NOS3 target, contained in libi2c.c and built at compile time. 

/* libi2c.h */ 
int32_t i2c_master_transaction(int32_t handle, uint8_t addr, void * txbuf, uint8_t tx
len, void * rxbuf, uint8_t rxlen, uint16_t timeout); 
Figure 14 - NOS3 libi2c.h 

 

/* libi2c.c */ 
int32_t i2c_master_transaction(int32_t handle, uint8_t addr, void * txbuf, uint8_t tx
len, void * rxbuf, uint8_t rxlen, uint16_t timeout) 
{ 
    int32_t result = OS_ERROR; 
    if(handle < NUM_I2C_DEVICES) 
    { 
        OS_MutSemTake(nos_i2c_mutex); 
        /* get i2c device handle */ 
        NE_I2CHandle **dev = &i2c_device[handle]; 
        if(*dev == NULL) 
        { 
            /* get nos i2c connection params */ 
            const nos_connection_t *con = &nos_i2c_connection[handle]; 
            /* try to initialize master */ 
            *dev = NE_i2c_init_master3(hub, 10, con->uri, con->bus); 
            if(*dev == NULL) 
            { 
                OS_printf("nos i2c_init_master failed\n"); 
            } 
        } 
        /* i2c transaction */ 
        if(*dev) 
        { 
            if(NE_i2c_transaction(*dev, addr, txbuf, txlen, rxbuf, rxlen) == NE_I2C_S
UCCESS) 
            { 
                result = OS_SUCCESS; 
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            } 
        } 
        OS_MutSemGive(nos_i2c_mutex); 
    } 
    return result; 
} 
Figure 15 - NOS3 libi2c.c 

 

The application can utilize the i2c_master_transaction function, and the underlying 

implementation will send the data over the NOS Engine middleware to the component simulator. 

This HWLIB allows for the lowest level of simulation that can be achieved when running on the 

host OS, like Linux for NOS3.  

When a mission selects their flight computer, they will need to implement the I2C API, 

like shown in the code example for NOS3, for their specific device. The dual-target model, 

simulation and flight, is shown in the following diagram.  
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Figure 16 - NOS3 HWLIB Target Layers 

 

3.4.5 COSMOS 

COSMOS, an open-source command and control software package, was integrated into 

NOS3 to allow end-to-end testing of the FSW and to enable the “test as we fly” philosophy. 

COSMOS provides a sophisticated framework for the command and control of satellites and other 

embedded systems. COSMOS was integrated into NOS3 using a collection of text configuration 

files. A single text file provides the TCP/IP socket configuration information, while additional text 

files are autogenerated to define the byte patterns representing telemetry and command data sent 

from the spacecraft to the ground, and vice versa. It should be noted that despite COSMOS being 
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integrated into NOS3, it is not architecturally required, and could be replaced by a similar command 

and control software that supports UDP connection. If a mission selects ground software that is 

not COSMOS, such as the Jet Propulsion Laboratory’s AMMOS Instrument Toolkit, it can be used 

for the same purpose. The important takeaway for the mission is to use the same ground software 

that will be used for flight. This will allow the same command and telemetry definitions to be fully 

tested in NOS3. 

COSMOS is connected to NOS3 via a UDP connection to the cFS Command Ingest (CI) 

and Telemetry Output (TO) applications. The CI and TO apps have a “custom” interface to define 

the I/O characteristics of the communications system. As mentioned, this interface is currently 

UDP to make NOS3 generic, but when a mission selects their radio, they can generate a simulated 

hardware model and utilize the previously described HWLIB in this custom interface. This will 

allow a more accurate simulation of the communications system for the spacecraft. The following 

diagram shows how the final end-to-end system should be architected.  
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Figure 17 - NOS3 COSMOS Block Diagram 

 

 

3.4.6 Deployment and Virtual Environment 

To make NOS3 as easy to use as possible, an automated deployment solution was written 

using a combination of Vagrant and Ansible scripting to generate a virtual machine that runs in 

Oracle’s Virtual Box software. All three software products, Vagrant, Ansible, and Virtual Box are 

available at no cost to the user.  

This automated deployment solution allows a mission to generate as many copies of the 

NOS3 as they would like to support their development and testing. Each environment will be the 

same when the installation completes, and because the virtual environment is executed on Virtual 

Box, it can be used on any host operating system such as Windows, macOS, or Linux. This 
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provides maximum flexibility for the development team. Having an easily deployable solution, 

with no limit on the number of instances, reduces risk and increases the number of testing resources 

available to a mission.  

The NOS3 virtual environment comes with all of the previously described components 

installed and ready to run. Users can use the included ease-of-use scripts to build their FSW and 

simulated hardware models by calling make, configure and run the full NOS3 suite by calling make 

launch, and halt the simulation by calling make stop. Upon calling make launch each of the 

components will start execution and the view of the virtual environment will look similar to the 

following screenshot. 

 

Figure 18 - NOS3 Virtual Environment Display 
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Chapter 4. Results 

4.1 The Simulation-to-Flight 1 Mission 

The best way to prove the utility of NOS3 is the direct application of the simulator on a 

CubeSat mission. Simulation-to-Flight 1, or STF-1, is a CubeSat mission led by the NASA IV&V 

Facility’s JSTAR team, in partnership with West Virginia University (WVU), TMC Technologies, 

the West Virginia Space Grant Consortium, and the West Virginia High Tech Foundation. The 

picture below shows STF-1 integrated into the deployment canister in preparation for launch. 

 

Figure 19 - STF-1 Integrated in Deployment Canister 

As a result of the demonstrated successes of JSTAR software-only simulation 

environments and an opportunity to launch a spacecraft to demonstrate technologies that benefit 

NASA programs through the CSLI, the STF-1 team was formed. The primary purpose of STF-1 
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was to determine and demonstrate the value of developing, utilizing, and maintaining a software-

only simulation during the project lifecycle. A diverse set of science experiments, provided by 

WVU, allowed the project to expand the mission’s overall objective to include science experiments 

and technology demonstrations. The instruments include a cluster of Micro-Electro-Mechanical 

Systems (MEMS) Inertial Measurement Units (IMU) to produce attitude knowledge; a space-

weather experiment including a Geiger counter and Langmuir probe; a III-V Nitride-based 

materials optoelectronics experiment; and a Novatel OEM615 GPS coupled with advanced 

algorithms for precise orbit determination. The science experiments enhanced the mission 

capabilities, as well as providing a diverse set of instruments to assess how the simulator would 

support instrument development. The following figure shows the number of STF-1 components 

that were modeled in NOS3. 

Figure 20 - Anatomy of STF-1 
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The STF-1 spacecraft was launched on December 16th of 2018 and continues to operate 

nominally on orbit. The following subsections describe the complexity of the STF-1 FSW, and the 

major benefits of NOS3 realized through the STF-1 mission.  

 

4.1.1 STF-1 FSW Complexity 

As a metric to assess the overall software complexity, the Source-Lines-of-Code (SLOC) 

utility (SLOCCount) was executed against the STF-1 flight software [25]. This utility measures 

the size of a computer program by counting the number of lines in the program’s source code. 

Additionally, the results of the SLOC utility were used as an indicator of software size for the 

Constructive Cost Model, a procedural cost estimation model [26]. Table 2 lists the STF-1 SLOC 

count, with the RTOS and drivers not included because they were vendor-provided. Of the 132,000 

total SLOC, roughly 25% of the software was newly developed for the STF-1 mission.  

Table 2 - STF-1 SLOCCount 

 

Using the Constructive Cost Model, SLOC Count estimates that the STF-1 applications 

take 8.25 person-months for development, but this metric does not consider integration testing 

time, and access to flight hardware for testing, which as previously discussed are limiting factors 
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for SmallSats. The STF-1 flight software is not trivial, due to semi-autonomous on-orbit operations 

needed to perform science experiments, record science data, and transmit the data to the ground 

station during downlink periods of only a few minutes in duration. The flight software was required 

to simultaneously provide the following core functionalities: 1) operate without communications 

from the ground station; 2) monitor the power level of the EPS for safely executing time-lapse 

science experiments; 3) start, stop, and pause experiments; 4) communicate with various STF-1 

hardware components such as sensors, radio, camera, and the deployable antenna. This flight 

software complexity results in increased mission risk with respect to development and testing 

schedule. This type of embedded hardware testing is typically dependent upon either flight 

hardware or ETU availability. 

 

4.1.2 Reduced Reliance on Hardware Resources 

NOS3 enabled multiple STF-1 developers to work in parallel without monopolizing either 

a single simulator, ETU, or spacecraft flight computer, thus reducing the STF-1 mission’s reliance 

on hardware resources. For example, while one engineer was developing the EPS software, another 

engineer was developing the communications software. Neither engineer needed to use the 

hardware for their development and initial testing. NOS3 was used extensively by the STF-1 

software development team for all aspects of flight software development and testing. Throughout 

the three person-months in which the majority of STF-1 software development was accomplished, 

each team member maintained a copy of the NOS3 virtual environment. The virtual environment 

provided realistic inputs and feedback to the flight software while under development and testing. 

Additionally, NOS3 provided a suitable test environment to support STF-1 flight software 

integration testing. Like other SmallSat missions, the STF-1 spacecraft hardware was expensive, 
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limited in supply with few spares or ETUs, and it needed to be configured and set up quickly to 

support FSW development testing. NOS3 provided the ability to develop and test most FSW 

functionality without requiring a hardware-in-the-loop test configuration. Hardware is still needed 

to test certain performance and timing requirements, but this requirement is minimal in comparison 

to testing the full FSW stack. Without NOS3, STF-1 developers would not have been able to 

develop and test software applications in parallel to these activities.  

 

4.1.3 Risk Reduction and Comprehensive testing 

The effortless deployment process of the NOS3 software allowed the STF-1 team to set up 

and configure a large number of identical NOS3 environments to cross-train personnel and to 

support risk reduction testing during the STF-1 software development. For example, NOS3 was 

provided to multiple interns during the summer months to support mission understanding, perform 

static code analysis, and complete additional software testing of custom STF-1 software 

applications. The additional simulation resources allowed the team to test how the various STF-1 

software applications would respond to adverse conditions, thus ensuring STF-1 software 

robustness. One of the most critical STF-1 software applications, the manager application, which 

is responsible for semi-automating the spacecraft operations, was exhaustively tested using NOS3. 

The test engineer, who was unfamiliar with NOS3 and the STF-1 mission, was able to quickly and 

effectively test the entry and exit conditions and fault detection and mitigation logic contained in 

the manager application. This led to complete confidence in the semi-autonomous operations of 

STF-1 while on-orbit and has since been proven through over two years of nominal operations of 

the spacecraft.  
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NOS3 also allows the tester to introduce fault conditions that are too dangerous or 

expensive to test using hardware, which further reduced mission risk and raised confidence in the 

flight software. For example, the EPS subsystem is very expensive and had a lead-time of over 10 

months and as such is not able to be shorted or otherwise damaged during testing of the FSW. 

Through NOS3 individual faults were able to be injected into the simulation, such as a short in one 

of the power busses, to ensure the FSW would respond properly to save the health of the spacecraft.  

 

4.1.4 Software Development and Testing Schedule 

NOS3 was able to increase the STF-1 development team’s control of the software 

development schedule and to demonstrate how future software development effort schedules can 

be shifted ahead of the receipt of hardware components. By decoupling the software development 

schedule from the availability of flight hardware and ETUs, FSW development can occur very 

early in the already tight mission schedule.  Table 3 reports the lead times associated with the 

major STF-1 flight components as compared with the associated development time for the NOS3 

hardware simulator.  

Table 3 - STF-1 Component Lead Times 
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From this data, it is evident that the level of effort required to develop a hardware-

equivalent simulator for the STF-1 mission with NOS3 was rather minimal. Furthermore, a NOS3 

hardware simulator can be scoped, and planned (level of effort, required simulator fidelity, etc.), 

whereas hardware lead times from vendors change and are regularly delayed. NOS3 allowed STF-

1 software development to begin as scheduled, rather than after the hardware was delivered.  As a 

result, the FSW was developed and tested before environmental testing, and the team benefited 

from an additional 6 months of schedule time for operations training, and day-in-the-life testing 

before the spacecraft was required to be delivered to CSLI.  

 

 4.1.5 Results of NOS3 as Proven by STF-1 

From the direct application of NOS3 to a SmallSat mission, the primary questions of this 

research can be answered. The problem statement in Chapter 1 asks, can the implementation of 

simulations performed for large missions, be tailored to fit the needs of SmallSats, and increase 

the reliability of the resulting FSW. The results of the application of NOS3 to the STF-1 mission 

would mean yes, the same simulation techniques used for large missions can be made cost-

effective enough for a SmallSat and did increase the reliability of the STF-1 FSW. Two additional 

questions arose from the research into failures of SmallSats being 1.) can simulation of the 

spacecraft hardware act as another alternative to flight software testing on ETUs where they are 

either capitalized in integration testing or unavailable due to budget constraints; and 2.) can 

simulation of the spacecraft hardware allow more time and resources for systems-level testing. 

The answer to question 1, as laid out in section 4.2 is yes, and as laid out in section 4.4 the answer 

to question 2 is also yes. NOS3 has the proven capability to increase testing resources and allow 

more time for testing, while not being dependent on the availability of flight hardware or ETUs. 
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4.2 NOS3 Testing 

4.2.1 NOS3 Test Configuration 

Testing of the NOS3 simulation environment was performed using the NOS3 Sample 

application and simulator. As discussed in section 3.4.2, NOS3 includes a hardware modeling 

framework to write simulators of hardware components. To provide users with a proper example 

of a cFS application, and corresponding NOS3 hardware model, a sample application and simulator 

were written and provided in the open-source suite.  

The Sample hardware model is written for an arbitrary spacecraft sensor, that sends a single 

telemetry point as a float data type. To provide an example of receiving dynamic data from 42 the 

sun vector in the body frame is sent to the hardware model via the socket interface. The sample 

application interfaces to the simulator using the UART interface from the HWLIB, which then 

sends and receives bytes over the NOS Engine middleware. This sample sensor simulator takes a 

single command that configures the frequency of the telemetry point being output over the UART. 

Although this is an arbitrary device, it is based upon typical sensors such as an inertial 

measurement unit or a magnetometer. The end-to-end sample test setup is shown in the following 

diagram. 
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Figure 21 - NOS3 Sample Test Setup Diagram 

 

4.2.2 NOS3 Sample Test Results 

To perform the test, the output frequency was stepped from the default frequency of 1Hz, 

up to 1000Hz via commands from COSMOS, and the number of telemetry packets that are 

received in COSMOS from the Sample app was recorded. The following table shows the results 

of the test performed for 60 seconds. 

Table 4 - NOS Sample Test Results Initial 

Output Frequency Data Points from 42 Data Points from Sim Telemetry Points 

Received in COSMOS 

Throughput 

Percentage 

1Hz 60 60 60 100% 

10Hz 600 600 600 100% 

100Hz 6000 6000 5643 94.05% 

1000Hz 60000 60000 20520 34.20% 
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In the first attempt of the test, the results at 100 and 1000Hz showed a loss of roughly 6% 

at 100Hz and roughly 70% at 1000Hz. As there should be no packet loss in the system, and NOS 

Engine has been exhaustively tested, the code in the HWLIB was inspected for faults. The initial 

thought was the simulated UART buffer was overflowing due to the increased frequency of data, 

and the FSW was not able to process the data quickly enough before the next message is received. 

However, it was found that a mutex in the HWLIB was the cause of the issue. For I2C and SPI 

devices, where multiple devices can operate on a single bus, a mutex is necessary to protect the 

HWLIB in the cFS application from being interrupted by another application before it completes. 

For a UART device, the communications are point-to-point, from the flight computer to the device, 

and the mutex caused this issue because a single mutex was being used across multiple UART 

devices like required for I2C. Upon removing the mutex from the UART HWLIB throughput 

increased to the expected 100%. 

Table 5 - NOS3 Sample Test Results after Patch 

Output Frequency Data Points from 42 Data Points from Sim Telemetry Points 

Received in COSMOS 

Throughput 

Percentage 

1Hz 60 60 60 100% 

10Hz 600 600 600 100% 

100Hz 6000 6000 6000 100% 

1000Hz 60000 60000 60000 100% 
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4.3 NOS3 Known Limitations 

While NOS3 has been proven to be a solution for the problem presented in this research, 

there are known limitations that should be noted. The first, and most important to note is not a fault 

of NOS3, but a problem with the assumptions made in developing NOS3 hardware models and cFS 

applications. The assumption is when a hardware component is being modeled and the cFS 

application is being developed and tested, that the vendor-provided documentation accurately 

describes the behavior of the hardware. Through direct application on the STF-1 mission, this has 

proven to be false. It is typical for vendor documentation to either inaccurately describe the byte-

level communications or omit critical information from the interface. This requires the hardware 

models to be corrected to simulate the actual behavior of the device. These corrections would be 

required at integration and test time even if NOS3 is not used. In the case of NOS3 simple 

corrections can be made during integration and testing of the flight hardware or ETUs, whereas 

without NOS3 the FSW would be fully untested at the time of integration and testing of the 

hardware. 

The second limitation of NOS3 is modeling precise timing with the spacecraft hardware. 

Time is a critical component in NOS3; however, extremely small timing requirements cannot be 

met in a virtualized and simulated system. For example, a 10-microsecond timeout, between an 

I2C write and a subsequent I2C read to a device cannot be met in this simulation. NOS Engine and 

NOS3 were tested up to 1000Hz for throughput, as no common spacecraft component sends data 

at such a high frequency. As such the clocks in NOS3 are configured to operate at 100Hz, and a 

10-microsecond timeout cannot be guaranteed. This is in part due to the clock, but also from 

running NOS3 on Linux, as opposed to a real-time operating system. When building the NOS3 

target for simulation, and not for flight, the timeout settings in the I/O interface are ignored. 
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4.4 NOS3 Usage 

On August 3rd, 2018, the open-source release of NOS3 was approved by NASA and made 

available to the public on the internet hosting and Git version control website called GitHub. This 

open-source release can be viewed by anyone with a GitHub account and cloned or forked for their 

use. Since the open-source release, the code has been starred by 85 users and forked by 33. These 

users range from individuals to government agencies, to universities, to private companies. STF-

1 is the best example of NOS3 being applied directly to a SmallSat mission, and as such NOS3 won 

the prestigious award of runner-up for the NASA Software of the Year in 2019. This only 

represents the publicly available information on the open-source software. Being open-source, 

NOS3 could be cloned and in use by any number of projects or companies.    
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Chapter 5. Conclusions and Future Work 

5.1 Summary 

Small Satellites, or satellites with a mass of less than 180kg as defined by NASA, have 

been increasing in the number launched each year over the past few decades. SmallSats can meet 

many research and tech demonstration objectives and are lower-cost options than their large 

spacecraft counterparts. The number of missions has greatly increased since 1999 thanks to the 

release of the CubeSat standardized form-factor that allows SmallSats to fit into a standard 

deployment container and launch as secondary payloads. As the number of SmallSats launched 

increases, the number of missions that arrive on orbit Dead-on-Arrival or fail to meet their mission 

objective remains high. For first-time university-developed missions these failure rates are even 

higher.  

The causes of these failures were researched in detail and the majority of the failures point 

to a lack of development and testing of the spacecraft. Even in the NASA provided document for 

new missions, flight software receives very minimal attention. The flight software is a critical 

component of a spacecraft that must be developed for each mission and requires a substantial 

amount of testing to be reliable. Although the size, weight, power, cost, and development schedules 

of SmallSats are much less than a typical large satellite mission, the FSW does not scale 

accordingly. According to mission developers who were queried on the suspected cause of failure 

on their missions, the majority noted the FSW as the most likely cause. 

Due to the nature of SmallSats, being developed rapidly, at a low cost, and typically by a 

first-time team, the development and testing practices used on larger spacecraft are not possible to 

be employed. Large missions typically require a test to be run on a full simulation of the system, 
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including all subsystems and dynamics. The research performed looked into simulation products 

that are available that could help missions perform simulation of the spacecraft quickly and at a 

low cost. Although there are multiple open-source tools for simulation such as QEMU and 42, and 

an open-source FSW called cFS, an end-to-end spacecraft simulation did not exist. Over multiple 

revisions, the NASA Operational Simulator for Small Satellites was designed, implemented, and 

deployed. NOS3 combines numerous open-source tools including cFS, 42, and COSMOS into a 

Virtual Box environment. New software products were written to interface each of the individual 

components with the NASA developed NOS Engine middleware. The final solution is an easy to 

deploy, easy to configure, and free software suite that allows a mission to simulate their entire 

spacecraft to aid in the development and testing of their FSW.  

To show the utility of NOS3 it was applied directly in the development and testing process 

of the Simulation-to-Flight 1 missions. STF-1 is a NASA IV&V led mission with science and 

technology demonstration payloads from West Virginia University. Through the implementation 

of NOS3 in the mission development cycle, the development of FSW was decoupled from the 

availability of spacecraft hardware and engineering test units. This allowed the FSW to be written 

by numerous FSW developers in parallel and tested before attempting to deploy the FSW to the 

spacecraft hardware. Throughout the mission lifecycle, an additional 6 months of testing time was 

gained by using NOS3 for FSW development. STF-1 has been operating without FSW bugs or 

failures since December of 2018.  

There are some limitations to the NOS3 system that do not fully replace integration testing 

on spacecraft hardware. Notably, precise timeouts that would be handled by the real-time operating 

system on the flight computer, cannot be achieved when running on Linux in the simulated 
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environment. For this reason, NOS3 is not a 100% replacement for a typical development and 

testing process, but it greatly increases the number of testing resources.  

NOS3 was proven to be a solution for the problem of limited development and testing time 

available to SmallSats, especially through the results of the STF-1 mission. NOS3 is available 

open-source on GitHub at www.github.com/nasa/nos3 and has been used by government, 

universities, and public and private entities throughout the country. NOS3 was awarded the 

prestigious award of runner-up for the 2019 NASA Software of the Year. 

 

5.2 Future Work 

NOS3 is maintained by the JSTAR team at the NASA IV&V Facility. Although NOS3 was 

determined to be a solution to the questions proposed by this research, there is still room for 

improvement. In order to make NOS3 even simpler to use by first-time missions, sample 

applications and simulators for all subsystems on a spacecraft could be developed and included. 

While some missions may prefer to ignore the samples altogether to develop their apps and 

simulators for the real hardware, many missions and new users have requested more examples. A 

full simulated spacecraft would give teams an example of how the final NOS3 modeled spacecraft 

should look and operate. The list below shows the sample subsystems provided in the current 

release of NOS3.  

1. EPS/Battery 

2. GPS 

3. Reaction Wheels 

4. Camera (payload example) 

http://www.github.com/nasa/nos3
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The list below shows the rest of the component applications and simulators that could be 

added to model a full SmallSat. Not all these components will be included on every SmallSat. 

1. Radio 

2. Magnetorquer 

3. Magnetometer 

4. Inertial Measurement Unit or Gyro 

5. Sun Sensor 

6. Temperature Sensors 
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Appendix A. NOS3 Hardware Library 

/* Copyright (C) 2009 - 2016 National Aeronautics and Space Administration. All Forei
gn Rights are Reserved to the U.S. Government. 
 
This software is provided "as is" without any warranty of any, kind either express, i
mplied, or statutory, including, but not 
limited to, any warranty that the software will conform to, specifications any implie
d warranties of merchantability, fitness 
for a particular purpose, and freedom from infringement, and any warranty that the do
cumentation will conform to the program, or 
any warranty that the software will be error free. 
 
In no event shall NASA be liable for any damages, including, but not limited to direc
t, indirect, special or consequential damages, 
arising out of, resulting from, or in any way connected with the software or its docu
mentation.  Whether or not based upon warranty, 
contract, tort or otherwise, and whether or not loss was sustained from, or arose out
 of the results of, or use of, the software, 
documentation or services provided hereunder 
 
ITC Team 
NASA IV&V 
ivv-itc@lists.nasa.gov 
*/ 
 
#include "nos_link.h" 
#include <stdint.h> 
#include <stdlib.h> 
 
/* psp */ 
#include <cfe_psp.h> 
 
/* osal */ 
#include <osapi.h> 
 
/* nos */ 
#include <Can/Client/CInterface.h> 
 
#include "libcan.h" 
 
/* can device handles */ 
static NE_CanHandle *can_device[NUM_CAN_DEVICES] = {0}; 
 
/* can mutex */ 
static uint32 nos_can_mutex = 0; 
 
/* public prototypes */ 
void nos_init_can_link(void); 
void nos_destroy_can_link(void); 
 
/* get spi device */ 
static NE_CanHandle* nos_get_can_device(can_info_t* device) 
{ 
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    NE_CanHandle *dev = NULL; 
    if(!strcmp(device->handle, CW_CAN_HANDLE_STR)) 
    { 
        dev = can_device[CW_CAN_HANDLE]; 
        if(dev == NULL) 
        { 
            can_init_dev(device); 
            dev = can_device[CW_CAN_HANDLE]; 
        } 
    } 
    else 
    { 
        dev = can_device[1]; 
        if(dev == NULL) 
        { 
            can_init_dev(device); 
            dev = can_device[1]; 
        } 
    } 
     
    return dev; 
} 
 
/* initialize nos engine can link */ 
void nos_init_can_link(void) 
{ 
    /* create mutex */ 
    int32 result = OS_MutSemCreate(&nos_can_mutex, "nos_can", 0); 
 
} 
 
/* destroy nos engine can link */ 
void nos_destroy_can_link(void) 
{ 
    OS_MutSemTake(nos_can_mutex); 
 
    /* clean up can buses */ 
    int i; 
    for (i = 0; i < NUM_CAN_DEVICES; i++) 
    { 
        NE_CanHandle *dev = can_device[i]; 
        if (dev)  
            NE_can_close(&dev); 
    } 
     
    OS_MutSemGive(nos_can_mutex); 
 
    /* destroy mutex */ 
    int32 result = OS_MutSemDelete(nos_can_mutex); 
} 
 
// Bring CAN network interface 
int32_t can_init_dev(can_info_t* device) 
{ 
    int32 result = OS_SUCCESS; 
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    NE_CanHandle **dev; 
    const nos_connection_t *con; 
 
    if(!strcmp(device->handle, CW_CAN_HANDLE_STR)) 
    { 
 
        dev = &can_device[CW_CAN_HANDLE]; 
        if (*dev == NULL) 
        { 
            /* get nos can connection params */ 
            con = &nos_can_connection[CW_CAN_HANDLE]; 
        } 
    } 
    else 
    { 
        // TODO - UPDATE with mission defined device strings 
        dev = &can_device[1]; 
        if (*dev == NULL) 
        { 
            /* get nos can connection params */ 
            con = &nos_can_connection[1]; 
        } 
    } 
 
    /* try to initialize master */ 
    *dev = NE_can_init_master3(hub, 10, con->uri, con->bus); 
    if (*dev == NULL) 
    { 
        result = OS_ERROR; 
        OS_printf("LIBCAN: %s:  FAILED TO INITIALIZE NOS CAN MASTER\n", __FUNCTION__)
; 
    } 
 
    OS_MutSemGive(nos_can_mutex); 
    return result;         
} 
 
// TODO: NOT IMPLEMENTED! 
int32_t can_set_modes(can_info_t* device)  
{ 
    return CAN_SUCCESS; 
} 
 
// Write out to CAN bus from CAN device specified by `device`. 
int32_t can_write(can_info_t* device, uint32_t can_id, uint8_t* buf, const uint32_t l
ength) 
{ 
    return can_master_transaction(CW_CAN_HANDLE, can_id, buf, length, NULL, 0, 0, 0); 
} 
 
// Read a can_frame from CAN interface specified by `device-
>handle`. Does a blocking read call. 
int32_t can_blocking_read(can_info_t* device, struct can_frame* readFrame, const uint
32_t length) 
{ 
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    return can_master_transaction(CW_CAN_HANDLE, readFrame-
>can_id << 3, NULL, 0, &(readFrame->data[0]), length, 0, 0); 
} 
 
// Read a can_frame from CAN interface specified by `device-
>handle`. Does a nonblocking read call. 
int32_t can_nonblocking_read(can_info_t* device, struct can_frame* readFrame, const u
int32_t length, uint32_t second_timeout, uint32_t microsecond_timeout)  
{ 
    return can_master_transaction(CW_CAN_HANDLE, readFrame-
>can_id << 3, NULL, 0, &(readFrame->data[0]), length, 0, 0); 
} 
 
//int32 can_master_transaction(int handle, uint32_t identifier, void * txbuf, uint8_t
 txlen, void * rxbuf, uint8_t rxlen, uint16_t timeout) 
int32_t can_master_transaction(can_info_t* device, uint32_t can_id, uint8_t* txbuf, c
onst uint32_t txlen, uint8_t* rxbuf, const uint32_t rxlen, uint32_t second_timeout, u
int32_t microsecond_timeout) 
{ 
    int result = OS_ERROR; 
     
    /* get can device handle */ 
    NE_CanHandle *dev = nos_get_can_device(device); 
 
    /* can transaction */ 
    OS_MutSemTake(nos_can_mutex); 
    if(dev) 
    { 
        if ( (can_id & 0xF) == CW_WHL1_MASK || (can_id & 0xF) == CW_WHL2_MASK || (can
_id & 0xF) == CW_WHL3_MASK ) 
        { 
            result = NE_can_transaction(dev, CW_ADDRESS, txbuf, txlen, rxbuf, rxlen);
                 
        }             
 
        else if (can_id == CW_ADDRESS) 
        { 
            result = NE_can_transaction(dev, CW_ADDRESS, txbuf, txlen, rxbuf, rxlen);
             
        } 
 
        else  
        { 
            //OS_printf("LIBCAN: %s:  CAN IDENTIFIER IS NOT CW_ADDRESS, NOR CONTAINS 
THE WHEEL CAN MASKS\n", __FUNCTION__); 
            result = NE_can_transaction(dev, can_id, txbuf, txlen, rxbuf, rxlen); 
        } 
    } 
 
    OS_MutSemGive(nos_can_mutex); 
 
    return result; 
} 
 
// Bring CAN network interface down 
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int32_t can_close_device(can_info_t* device) 
{ 
    OS_MutSemTake(nos_can_mutex); 
 
    /* clean up can device */ 
    NE_CanHandle *dev = can_device[CW_CAN_HANDLE]; 
    if(dev) NE_can_close(&dev); 
     
    OS_MutSemGive(nos_can_mutex); 
 
    /* destroy mutex */ 
    return NE_CAN_SUCCESS; 
} 

 

/* Copyright (C) 2009 - 2016 National Aeronautics and Space Administration. All Forei
gn Rights are Reserved to the U.S. Government. 
 
This software is provided "as is" without any warranty of any, kind either express, i
mplied, or statutory, including, but not 
limited to, any warranty that the software will conform to, specifications any implie
d warranties of merchantability, fitness 
for a particular purpose, and freedom from infringement, and any warranty that the do
cumentation will conform to the program, or 
any warranty that the software will be error free. 
 
In no event shall NASA be liable for any damages, including, but not limited to direc
t, indirect, special or consequential damages, 
arising out of, resulting from, or in any way connected with the software or its docu
mentation.  Whether or not based upon warranty, 
contract, tort or otherwise, and whether or not loss was sustained from, or arose out
 of the results of, or use of, the software, 
documentation or services provided hereunder 
 
ITC Team 
NASA IV&V 
ivv-itc@lists.nasa.gov 
*/ 
 
#include "nos_link.h" 
#include <stdint.h> 
#include <stdlib.h> 
 
/* psp */ 
#include <cfe_psp.h> 
 
/* osal */ 
#include <osapi.h> 
 
/* nos */ 
#include <I2C/Client/CInterface.h> 
 
/* hwlib API */ 
#include "libi2c.h" 
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/* i2c device handles */ 
static NE_I2CHandle *i2c_device[NUM_I2C_DEVICES] = {0}; 
 
/* i2c mutex */ 
static uint32 nos_i2c_mutex = 0; 
 
/* public prototypes */ 
void nos_init_i2c_link(void); 
void nos_destroy_i2c_link(void); 
 
/* initialize nos engine i2c link */ 
void nos_init_i2c_link(void) 
{ 
    /* create mutex */ 
    int32 result = OS_MutSemCreate(&nos_i2c_mutex, "nos_i2c", 0); 
 
} 
 
/* destroy nos engine i2c link */ 
void nos_destroy_i2c_link(void) 
{ 
    OS_MutSemTake(nos_i2c_mutex); 
 
    /* clean up i2c buses */ 
    int32_t i; 
    for(i = 0; i < NUM_I2C_DEVICES; i++) 
    { 
        NE_I2CHandle *dev = i2c_device[i]; 
        if(dev) NE_i2c_close(&dev); 
    } 
     
    OS_MutSemGive(nos_i2c_mutex); 
 
    /* destroy mutex */ 
    int32 result = OS_MutSemDelete(nos_i2c_mutex); 
} 
 
/* nos i2c transaction */ 
int32_t i2c_master_transaction(int32_t handle, uint8_t addr, void * txbuf, uint8_t tx
len, 
                               void * rxbuf, uint8_t rxlen, uint16_t timeout) 
{ 
    int32_t result = OS_ERROR; 
 
    if(handle < NUM_I2C_DEVICES) 
    { 
        OS_MutSemTake(nos_i2c_mutex); 
 
        /* get i2c device handle */ 
        NE_I2CHandle **dev = &i2c_device[handle]; 
        if(*dev == NULL) 
        { 
            /* get nos i2c connection params */ 
            const nos_connection_t *con = &nos_i2c_connection[handle]; 
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            /* try to initialize master */ 
            *dev = NE_i2c_init_master3(hub, 10, con->uri, con->bus); 
            if(*dev == NULL) 
            { 
                OS_printf("nos i2c_init_master failed\n"); 
            } 
        } 
 
        /* i2c transaction */ 
        if(*dev) 
        { 
            if(NE_i2c_transaction(*dev, addr, txbuf, txlen, rxbuf, rxlen) == NE_I2C_S
UCCESS) 
            { 
                result = OS_SUCCESS; 
            } 
        } 
 
        OS_MutSemGive(nos_i2c_mutex); 
    } 
 
    return result; 
} 

 

/* Copyright (C) 2009 - 2016 National Aeronautics and Space Administration. All Forei
gn Rights are Reserved to the U.S. Government. 
 
This software is provided "as is" without any warranty of any, kind either express, i
mplied, or statutory, including, but not 
limited to, any warranty that the software will conform to, specifications any implie
d warranties of merchantability, fitness 
for a particular purpose, and freedom from infringement, and any warranty that the do
cumentation will conform to the program, or 
any warranty that the software will be error free. 
 
In no event shall NASA be liable for any damages, including, but not limited to direc
t, indirect, special or consequential damages, 
arising out of, resulting from, or in any way connected with the software or its docu
mentation.  Whether or not based upon warranty, 
contract, tort or otherwise, and whether or not loss was sustained from, or arose out
 of the results of, or use of, the software, 
documentation or services provided hereunder 
 
ITC Team 
NASA IV&V 
ivv-itc@lists.nasa.gov 
*/ 
 
#include "nos_link.h" 
#include <stdint.h> 
#include <stdlib.h> 
 
/* psp */ 
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#include <cfe_psp.h> 
 
/* nos */ 
#include <Spi/Client/CInterface.h> 
 
/* hwlib API */ 
#include "libspi.h" 
 
/* spi bus mutex */ 
spi_mutex_t spi_bus_mutex[MAX_SPI_BUSES]; 
uint32_t handle_count = 0; 
 
/* spi device handles */ 
static NE_SpiHandle *spi_device[NUM_SPI_DEVICES] = {0}; 
 
/* public prototypes */ 
void nos_init_spi_link(void); 
void nos_destroy_spi_link(void); 
 
/* private prototypes */ 
static NE_SpiHandle* nos_get_spi_device(spi_info_t* device); 
 
/* initialize nos engine spi link */ 
void nos_init_spi_link(void) 
{ 
    // Do nothing 
} 
 
/* destroy nos engine spi link */ 
void nos_destroy_spi_link(void) 
{ 
    /* clean up spi buses */ 
    int i; 
    for(i = 0; i < NUM_SPI_DEVICES; i++) 
    { 
        NE_SpiHandle *dev = spi_device[i]; 
        if(dev) NE_spi_close(&dev); 
    } 
} 
 
/* nos spi init */ 
int32 spi_init_dev(spi_info_t* device) 
{ 
    int     status = SPI_SUCCESS; 
    char    buffer[16]; 
 
    // Initialize the bus mutex 
    if (device->bus < MAX_SPI_BUSES) 
    { 
        if (spi_bus_mutex[device->bus].users == 0) 
        { 
            snprintf(buffer, 16, "spi_%d_mutex", device->bus); 
            status = OS_MutSemCreate(&spi_bus_mutex[device-
>bus].spi_mutex, buffer, 0); 
            if (status != OS_SUCCESS) 
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            { 
                CFE_EVS_SendEvent(SPI_ERR_MUTEX_CREATE, CFE_EVS_ERROR, "HWLIB: Create
 spi mutex error %d", status); 
                return status; 
            } 
        } 
        spi_bus_mutex[device->bus].users++; 
    } 
    else 
    { 
        CFE_EVS_SendEvent(SPI_ERR_MUTEX_CREATE, CFE_EVS_ERROR, "HWLIB: Create spi mut
ex error %d, bus invalid!", status); 
        return status; 
    } 
 
    if (OS_MutSemTake(spi_bus_mutex[device->bus].spi_mutex) == OS_SUCCESS) 
    { 
        /* get spi device handle */ 
        NE_SpiHandle **dev = &spi_device[device->handle]; 
        if(*dev == NULL) 
        { 
            /* get nos spi connection params */ 
            const nos_connection_t *con = &nos_spi_connection[(device-
>bus * 10) + device->cs]; 
 
            /* try to initialize master */ 
            *dev = NE_spi_init_master3(hub, con->uri, con->bus); 
            if(*dev) 
            { 
                status = SPI_SUCCESS; 
            } 
            else 
            { 
                OS_MutSemGive(spi_bus_mutex[device->bus].spi_mutex); 
                CFE_EVS_SendEvent(SPI_ERR_FILE_OPEN, CFE_EVS_ERROR, "HWLIB: Open SPI 
device \"%s\" error %d", device->deviceString, status); 
                return status; 
            } 
        } 
    } 
    OS_MutSemGive(spi_bus_mutex[device->bus].spi_mutex); 
 
    // Set open flag 
    device->isOpen = SPI_DEVICE_OPEN; 
 
    return status; 
} 
 
/* get spi device */ 
static NE_SpiHandle* nos_get_spi_device(spi_info_t* device) 
{ 
    NE_SpiHandle *dev = NULL; 
    if(device->handle < NUM_SPI_DEVICES) 
    { 
        dev = spi_device[device->handle]; 
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        if(dev == NULL) 
        { 
            spi_init_dev(device); 
            dev = spi_device[device->handle]; 
        } 
    } 
    return dev; 
} 
 
/* nos spi chip select */ 
int32 spi_select_chip(spi_info_t* device) 
{ 
    uint32_t status = SPI_SUCCESS; 
 
    status = OS_MutSemTake(spi_bus_mutex[device->bus].spi_mutex); 
 
    NE_SpiHandle *dev = nos_get_spi_device(device); 
    if(dev) 
    { 
        NE_spi_select_chip(dev, device->cs); 
    } 
 
    return status; 
} 
 
/* nos spi chip unselect */ 
int32 spi_unselect_chip(spi_info_t* device) 
{ 
    uint32_t status = SPI_SUCCESS; 
 
    status = OS_MutSemGive(spi_bus_mutex[device->bus].spi_mutex); 
 
    NE_SpiHandle *dev = nos_get_spi_device(device); 
    if(dev) 
    { 
        NE_spi_unselect_chip(dev); 
    } 
 
    return status; 
} 
 
/* nos spi write */ 
int32 spi_write(spi_info_t* device, uint8 data[], const uint32 numBytes) 
{ 
    int status = SPI_SUCCESS; 
 
    NE_SpiHandle *dev = nos_get_spi_device(device); 
    if(dev) 
    { 
        if(NE_spi_write(dev, data, numBytes) != NE_SPI_SUCCESS) 
        { 
            status = SPI_ERROR; 
        } 
    } 
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    return status; 
} 
 
/* nos spi read */ 
int32 spi_read(spi_info_t* device, uint8 data[], const uint32 numBytes) 
{ 
    int status = SPI_SUCCESS; 
 
    NE_SpiHandle *dev = nos_get_spi_device(device); 
    if(dev) 
    { 
        if(NE_spi_read(dev, data, numBytes) != NE_SPI_SUCCESS) 
        { 
            status = SPI_ERROR; 
        } 
    } 
 
    return status; 
} 
 
int32 spi_transaction(spi_info_t* device, uint8_t *txBuff, uint8_t * rxBuffer, uint32
_t length, uint16_t delay, uint8_t bits, uint8_t deselect) 
{ 
    int status = SPI_SUCCESS; 
 
    NE_SpiHandle *dev = nos_get_spi_device(device); 
    if(dev) 
    { 
        if(NE_spi_transaction(dev, txBuff, length, rxBuffer, length) != NE_SPI_SUCCES
S) 
        { 
            status = SPI_ERROR; 
        } 
    } 
 
    return status; 
} 

 

 
/* Copyright (C) 2009 - 2016 National Aeronautics and Space Administration. All Forei
gn Rights are Reserved to the U.S. Government. 
 
This software is provided "as is" without any warranty of any, kind either express, i
mplied, or statutory, including, but not 
limited to, any warranty that the software will conform to, specifications any implie
d warranties of merchantability, fitness 
for a particular purpose, and freedom from infringement, and any warranty that the do
cumentation will conform to the program, or 
any warranty that the software will be error free. 
 
In no event shall NASA be liable for any damages, including, but not limited to direc
t, indirect, special or consequential damages, 
arising out of, resulting from, or in any way connected with the software or its docu
mentation.  Whether or not based upon warranty, 
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contract, tort or otherwise, and whether or not loss was sustained from, or arose out
 of the results of, or use of, the software, 
documentation or services provided hereunder 
 
ITC Team 
NASA IV&V 
ivv-itc@lists.nasa.gov 
*/ 
 
#include "nos_link.h" 
#include <stdint.h> 
#include <stdlib.h> 
 
/* psp */ 
#include <cfe_psp.h> 
 
/* osal */ 
#include <osapi.h> 
 
/* nos */ 
#include <Uart/Client/CInterface.h> 
 
/* hwlib API */ 
#include "libuart.h" 
 
/* size of uart buffer */ 
#define USART_RX_BUF_SIZE    512 
 
/* usart device handles */ 
static NE_Uart *usart_device[NUM_USARTS] = {0}; 
 
/* usart mutex */ 
static uint32 nos_usart_mutex = 0; 
 
/* public prototypes */ 
void nos_init_usart_link(void); 
void nos_destroy_usart_link(void); 
 
/* private prototypes */ 
static NE_Uart* nos_get_usart_device(int handle); 
 
/* initialize nos engine usart link */ 
void nos_init_usart_link(void) 
{ 
    /* create mutex */ 
    int32 result = OS_MutSemCreate(&nos_usart_mutex, "nos_usart", 0); 
 
} 
 
/* destroy nos engine usart link */ 
void nos_destroy_usart_link(void) 
{ 
    int i; 
 
    OS_MutSemTake(nos_usart_mutex); 
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    /* clean up usart buses */ 
     
    for(i = 0; i <= NUM_USARTS; i++) 
    { 
        NE_Uart *dev = usart_device[i]; 
        if(dev) NE_uart_close(&dev); 
    } 
     
    OS_MutSemGive(nos_usart_mutex); 
 
    /* destroy mutex */ 
    int32 result = OS_MutSemDelete(nos_usart_mutex); 
} 
 
/* init usart */ 
int32 uart_init_port(uart_info_t* device) 
{ 
    int32_t status = OS_SUCCESS; 
    if(device->handle >= 0) 
    { 
        OS_MutSemTake(nos_usart_mutex); 
 
        /* get usart device handle */ 
        NE_Uart **dev = &usart_device[device->handle]; 
        if(*dev == NULL) 
        { 
            /* get nos usart connection params */ 
            const nos_connection_t *con = &nos_usart_connection[device->handle]; 
 
            /* try to initialize usart */ 
            *dev = NE_uart_open3(hub, "fsw", con->uri, con->bus, device->handle); 
 
            if(*dev) 
            { 
                /* set default queue size */ 
                NE_uart_set_queue_size(*dev, USART_RX_BUF_SIZE); 
 
                device->isOpen = PORT_OPEN;            
            } 
            else 
            { 
                OS_printf("nos uart_open failed\n"); 
                device->isOpen = PORT_CLOSED; 
                status = OS_ERR_FILE; 
            } 
        } 
        OS_MutSemGive(nos_usart_mutex); 
    } 
    else 
    { 
        OS_printf("Handle not found\n"); 
        device->isOpen = PORT_CLOSED; 
        status = OS_ERR_FILE; 
    } 
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    return status; 
} 
 
/* get usart device */ 
static NE_Uart* nos_get_usart_device(int handle) 
{ 
    NE_Uart *dev = NULL; 
    if(handle < NUM_USARTS) 
    { 
        dev = usart_device[handle]; 
    } 
    return dev; 
} 
 
/* usart write */ 
int32 uart_write_port(int32 handle, uint8 data[], const uint32 numBytes) 
{ 
    int32_t status = OS_ERR_FILE; 
    NE_Uart *dev = nos_get_usart_device((int)handle); 
    if(dev) 
    { 
        OS_MutSemTake(nos_usart_mutex); 
        status = NE_uart_write(dev, (const uint8_t*)data, numBytes); //Can this funct
ion return -1? 
        OS_MutSemGive(nos_usart_mutex); 
    } 
    return status; 
} 
 
/* usart read */ 
int32 uart_read_port(int32 handle, uint8 data[], const uint32 numBytes) 
{ 
    uint32 status = OS_ERR_FILE; 
 
    if (data != NULL) //Check that there is actually data to read 
    {  
        char c = 0xFF; 
        int  i; 
        int stat; 
        NE_Uart *dev = nos_get_usart_device((int)handle); 
        if(dev) 
        { 
            OS_MutSemTake(nos_usart_mutex); 
            for (i = 0; i < (int)numBytes; i++) //TODO: Add ability to switch between
 blocking and non-blocking? 
            { 
                /* 
                //NON BLOCKING MODE 
                stat = NE_uart_getc(dev, (uint8_t*)&c); //Returns 0 if byte read, 1 i
f no byte actually read 
                if(stat == 1) 
                { 
                    return i; //Causes app to immediately enter service mode 
                } 
                else { 
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                    data[i] = c; 
                } 
                */ 
                //BLOCKING MODE 
                do { 
                    stat = NE_uart_getc(dev, (uint8_t*)&c); 
                } while(stat);  
                data[i] = c; 
            } 
            OS_MutSemGive(nos_usart_mutex); 
            status = numBytes; 
             
            return status; 
        } 
 
        return status; //There is data, but can't read from device 
    } 
 
    return status; //Following arm_inux model 
} 
 
/* usart number bytes available */ 
int32 uart_bytes_available(int32 handle) 
{ 
    int bytes = 0; 
    NE_Uart *dev = nos_get_usart_device((int)handle); 
    if(dev) 
    { 
        OS_MutSemTake(nos_usart_mutex); 
        bytes = (int)NE_uart_available(dev); 
        OS_MutSemGive(nos_usart_mutex); 
    } 
    return bytes; 
} 
 
int32 uart_close_port(int32 handle)  
{ 
    NE_UartStatus status; 
    NE_Uart *dev = nos_get_usart_device((int)handle); 
    if (handle >= 0) 
    { 
        status = NE_uart_close(&dev); 
    } 
    if (status == NE_UART_SUCCESS) { 
        return OS_SUCCESS; 
    } 
    else 
    { 
        return OS_ERROR; 
    } 
     
} 
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Appendix B: NOS3 Sample Simulator 

#include <ItcLogger/Logger.hpp> 
#include <sim_config.hpp> 
 
namespace Nos3 
{ 
    ItcLogger::Logger *sim_logger; 
} 
 
int 
main(int argc, char *argv[]) 
{ 
    std::string simulator_name = "sample_sim"; // this is the ONLY simulator specific
 line! 
 
    // Determine the configuration and run the simulator 
    Nos3::SimConfig sc(argc, argv); 
    Nos3::sim_logger->info("main:  %s simulator starting", 
        simulator_name.c_str()); 
    sc.run_simulator(simulator_name); 
    Nos3::sim_logger->info("main:  %s simulator terminating", 
        simulator_name.c_str()); 
} 

 

 
#include <sample_hardware_model.hpp> 
 
namespace Nos3 
{ 
    REGISTER_HARDWARE_MODEL(SampleHardwareModel,"SAMPLE"); 
 
    extern ItcLogger::Logger *sim_logger; 
 
    SampleHardwareModel::SampleHardwareModel(const boost::property_tree::ptree& confi
g) : SimIHardwareModel(config), _keep_running(true) 
    { 
        // The sim logger prints to both the terminal and to a file 
        sim_logger-
>trace("SampleHardwareModel::SampleHardwareModel:  Constructor executing"); 
 
        // Initialize configuration values to hard coded defaults in case configurati
on file is incomplete 
        std::string time_bus_name = "command"; 
        std::string bus_name = "usart_29"; 
        int node_port = 29; 
        _counter = 0; 
        _init_time_seconds = 5.0; 
        _millisecond_stream_delay = 1000; 
        _second_stream_delay = 1.0; 
 
        // Get the time connection string 
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        std::string connection_string = config.get("common.nos-connection-
string", "tcp://127.0.0.1:12001"); 
 
        // Loop through the configuration file 
        if (config.get_child_optional("hardware-model.connections"))  
        { 
            BOOST_FOREACH(const boost::property_tree::ptree::value_type &v, config.ge
t_child("hardware-model.connections"))  
            { 
                // Find the time information 
                if (v.second.get("type", "").compare("time") == 0)  
                { 
                    time_bus_name = v.second.get("bus-name", "command"); 
                    sim_logger-
>info("SampleHardwareModel::SampleHardwareModel:  Found time info!"); 
                } 
            } 
        } 
 
        // Loop through the configuration file 
        if (config.get_child_optional("simulator.hardware-model.connections"))  
        { 
            BOOST_FOREACH(const boost::property_tree::ptree::value_type &v, config.ge
t_child("simulator.hardware-model.connections"))  
            { 
                // Find the uart information 
                if (v.second.get("type", "").compare("usart") == 0)  
                { 
                    bus_name = v.second.get("bus-name", bus_name); 
                    node_port = v.second.get("node-port", node_port); 
                    sim_logger-
>info("SampleHardwareModel::SampleHardwareModel:  Found uart info!"); 
                } 
 
                // Find the initialization time information 
                if (v.second.get("type", "").compare("period") == 0)  
                { 
                    _init_time_seconds = v.second.get("init-time-
seconds", _init_time_seconds);                     
                    _millisecond_stream_delay = v.second.get("ms-
period", _millisecond_stream_delay); 
                    _second_stream_delay = double(_millisecond_stream_delay) / 1000; 
                    sim_logger-
>info("SampleHardwareModel::SampleHardwareModel:  Found period info!"); 
                } 
            } 
        } 
 
        // Reset time connection 
        _time_bus.reset(new NosEngine::Client::Bus(_hub, connection_string, time_bus_
name)); 
 
        // Reset and open uart 
        _uart_connection.reset(new NosEngine::Uart::Uart(_hub, config.get("simulator.
name", "sample_sim"), connection_string, bus_name)); 
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        _uart_connection->open(node_port); 
        _uart_connection-
>set_read_callback(std::bind(&SampleHardwareModel::uart_read_callback, this, std::pla
ceholders::_1, std::placeholders::_2)); 
 
        // Setup the data provider 
        std::string dp_name = config.get("simulator.hardware-model.data-
provider.type", "SAMPLE_PROVIDER"); 
        _sample_dp = SimDataProviderFactory::Instance().Create(dp_name, config); 
 
        // Calculate next time to send streaming data 
        _next_time = _absolute_start_time + _init_time_seconds; 
         
        // Prepare streaming data header - 0xDEAD 
        _streaming_data.push_back(0xDE); 
        _streaming_data.push_back(0xAD); 
        // Prepare streaming data counter 
        _streaming_data.push_back(0x00); 
        _streaming_data.push_back(0x00); 
        _streaming_data.push_back(0x00); 
        _streaming_data.push_back(0x00); 
        // Prepare streaming data payload 
        _streaming_data.push_back(0x00); 
        _streaming_data.push_back(0x00); 
        _streaming_data.push_back(0x00); 
        _streaming_data.push_back(0x00); 
        // Prepare streaming data trailer - 0xBEEF 
        _streaming_data.push_back(0xBE); 
        _streaming_data.push_back(0xEF); 
 
        // Add callback for streaming data 
        _time_bus-
>add_time_tick_callback(std::bind(&SampleHardwareModel::send_periodic_data, this, std
::placeholders::_1)); 
 
        sim_logger-
>trace("SampleHardwareModel::SampleHardwareModel:  Time node, UART node, data provide
r created; constructor exiting"); 
    } 
 
    SampleHardwareModel::~SampleHardwareModel(void) 
    { 
        sim_logger-
>trace("SampleHardwareModel::SampleHardwareModel:  Destructor executing"); 
         
        // Clean up the data provider we got 
        delete _sample_dp; 
 
        // Reset the time bus so the unique pointer does not try to delete the hub 
        _time_bus.reset();  
        //Do not destroy the time node, the bus will do it  
 
        // Close the uart 
        _uart_connection->close(); 
    } 
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    void SampleHardwareModel::run(void) 
    { 
        int i = 0; 
        while(_keep_running)  
        { 
            sim_logger-
>info("SampleHardwareModel::run:  Loop count %d, time %f", i++, 
                _absolute_start_time + (double(_time_bus-
>get_time() * _sim_microseconds_per_tick)) / 1000000.0); 
            sleep(5); 
        } 
    } 
 
    void SampleHardwareModel::command_callback(NosEngine::Common::Message msg) 
    { 
        // Here's how to get the data out of the message 
        NosEngine::Common::DataBufferOverlay dbf(const_cast<NosEngine::Utility::Buffe
r&>(msg.buffer)); 
        sim_logger-
>info("SampleHardwareModel::command_callback:  Received command: %s.", dbf.data); 
 
        // Do something with the data 
        std::string command = dbf.data; 
        std::string response = "SampleHardwareModel::command_callback:  INVALID COMMA
ND! (Try STOP SAMPLE)"; 
        boost::to_upper(command); 
        if (command.compare("STOP SAMPLE") == 0)  
        { 
            _keep_running = false; 
            response = "SampleHardwareModel::command_callback:  STOPPING SAMPLE"; 
        } 
 
        // Here's how to send a reply 
        _command_node-
>send_reply_message_async(msg, response.size(), response.c_str()); 
    } 
 
    void SampleHardwareModel::send_periodic_data(NosEngine::Common::SimTime time) 
    { 
        // Determine current simulator time 
        double sim_time = _absolute_start_time + (double(time * _sim_microseconds_per
_tick)) / 1000000.0; 
         
        // Check if time to send data 
        if (_next_time < sim_time) 
        { 
            sim_logger-
>trace("SampleHardwareModel::send_periodic_data:  Time to send more data!"); 
 
            // Get a new data point 
            const boost::shared_ptr<SampleDataPoint> data_point = boost::dynamic_poin
ter_cast<SampleDataPoint>(_sample_dp->get_data_point()); 
 
            // Call streaming data function 
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            stream_data(*data_point, _streaming_data); 
 
            // Determine next time 
            _next_time = _next_time + _second_stream_delay; 
        } 
    } 
 
    void SampleHardwareModel::stream_data(const SampleDataPoint& data_point, std::vec
tor<uint8_t>& out_data) 
    { 
        // Update Payload - Counter 
        _counter++; 
        out_data[2] = (_counter >> 24) & 0x000000FF;  
        out_data[3] = (_counter >> 16) & 0x000000FF;  
        out_data[4] = (_counter >>  8) & 0x000000FF;  
        out_data[5] = _counter & 0x000000FF; 
        // Update Payload - Data 
        float payload = static_cast<float>(data_point.get_sample_data()); 
        uint32_t* value = (uint32_t*) &payload; 
        out_data[6] = value[3]; 
        out_data[7] = value[2]; 
        out_data[8] = value[1]; 
        out_data[9] = value[0]; 
 
        // Log reply data in man readable format and ship the message bytes off 
        sim_logger->debug("SampleHardwareModel::stream_data:  %s", 
            SimIHardwareModel::uint8_vector_to_hex_string(out_data).c_str()); 
        _uart_connection->write(&out_data[0], out_data.size()); 
    } 
 
    void SampleHardwareModel::uart_read_callback(const uint8_t *buf, size_t len) 
    { 
        // Retrieve data and log received data in man readable format 
        std::vector<uint8_t> in_data(buf, buf + len); 
        sim_logger->debug("SampleHardwareModel::uart_read_callback:  REQUEST %s", 
            SimIHardwareModel::uint8_vector_to_hex_string(in_data).c_str()); 
 
        // Check if message is incorrect size 
        if (in_data.size() != 9) 
        { 
            sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Invalid command size of %d received
!", in_data.size()); 
            return; 
        } 
 
        // Check header - 0xDEAD 
        if ((in_data[0] != 0xDE) || (in_data[1] !=0xAD)) 
        { 
            sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Header incorrect!"); 
            return; 
        } 
 
        // Check trailer - 0xBEEF 
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        if ((in_data[7] != 0xBE) || (in_data[8] !=0xEF)) 
        { 
            sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Trailer incorrect!"); 
            return; 
        } 
 
        // Process command type 
        switch (in_data[2]) 
        { 
            case 1: 
                sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Configuration command received!"); 
                _millisecond_stream_delay = (in_data[3] << 24) + 
                                            (in_data[4] << 16) + 
                                            (in_data[5] << 8 ) + 
                                            (in_data[6]); 
                sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  New millisecond stream delay of %d"
, _millisecond_stream_delay); 
                _second_stream_delay = double(_millisecond_stream_delay) / 1000; 
                break; 
 
            case 2: 
                sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Other command received!"); 
                break; 
 
            default: 
                sim_logger-
>debug("SampleHardwareModel::uart_read_callback:  Unused command received!"); 
                break; 
        } 
 
        // Prepare to echo back valid command 
        std::vector<uint8_t> out_data = in_data; 
 
        // Log reply data in man readable format and ship the message bytes off 
        sim_logger->debug("SampleHardwareModel::uart_read_callback:  REPLY %s", 
            SimIHardwareModel::uint8_vector_to_hex_string(out_data).c_str()); 
        _uart_connection->write(&out_data[0], out_data.size()); 
    } 
} 

 

 
#include <sample_42_data_provider.hpp> 
 
namespace Nos3 
{ 
    REGISTER_DATA_PROVIDER(Sample42DataProvider,"SAMPLE_42_PROVIDER"); 
 
    extern ItcLogger::Logger *sim_logger; 
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    Sample42DataProvider::Sample42DataProvider(const boost::property_tree::ptree& con
fig) : SimData42SocketProvider(config) 
    { 
        sim_logger-
>trace("Sample42DataProvider::Sample42DataProvider:  Constructor executed"); 
 
        connect_reader_thread_as_42_socket_client( 
            config.get("simulator.hardware-model.data-
provider.hostname", "localhost"), 
            config.get("simulator.hardware-model.data-provider.port", 4242) ); 
 
        _sc = config.get("simulator.hardware-model.data-provider.spacecraft", 0); 
    } 
 
    Sample42DataProvider::~Sample42DataProvider(void) 
    { 
        sim_logger-
>trace("Sample42DataProvider::~Sample42DataProvider:  Destructor executed"); 
    } 
 
    boost::shared_ptr<SimIDataPoint> Sample42DataProvider::get_data_point(void) const 
    { 
        sim_logger->trace("Sample42DataProvider::get_data_point:  Executed"); 
 
        // Get the 42 data 
        const boost::shared_ptr<Sim42DataPoint> dp42 = 
            boost::dynamic_pointer_cast<Sim42DataPoint>(SimData42SocketProvider::get_
data_point()); 
 
        // Prepare the specific data 
        SimIDataPoint *dp = new SampleDataPoint(_sc, dp42); 
 
        return boost::shared_ptr<SimIDataPoint>(dp); 
    } 
} 

 

 
#include <sample_data_point.hpp> 
 
namespace Nos3 
{ 
    extern ItcLogger::Logger *sim_logger; 
 
    SampleDataPoint::SampleDataPoint(void) 
    { 
        sim_logger-
>trace("SampleDataPoint::SampleDataPoint:  Empty constructor executed"); 
    } 
 
    SampleDataPoint::SampleDataPoint(double data) 
    { 
        sim_logger-
>trace("SampleDataPoint::SampleDataPoint:  Defined constructor executed"); 
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        // Option to do calculations on provided data at this point 
        _sample_data.push_back(data * 2); 
    } 
 
    SampleDataPoint::SampleDataPoint(int16_t spacecraft, const boost::shared_ptr<Sim4
2DataPoint> dp) 
    { 
        sim_logger-
>trace("SampleDataPoint::SampleDataPoint:  42 Constructor executed"); 
 
        // Declare 42 telemetry string prefix 
        // 42 variables defined in `42/Include/42types.h` 
        // 42 data stream defined in `42/Source/IPC/SimWriteToSocket.c` 
        std::ostringstream MatchString; 
        MatchString << "SC[" << spacecraft << "].svb = "; 
        size_t MSsize = MatchString.str().size(); 
 
        // Parse 42 telemetry 
        std::vector<std::string> lines = dp->get_lines(); 
        try  
        { 
            for (int i = 0; i < lines.size(); i++)  
            { 
                // Compare prefix 
                if (lines[i].compare(0, MSsize, MatchString.str()) == 0)  
                { 
                    size_t found = lines[i].find_first_of("="); 
                    // Parse line 
                    std::istringstream iss(lines[i].substr(found+1, lines[i].size()-
found-1)); 
                    _sample_data.clear(); 
                    for (std::string s; iss >> s; ) 
                    { 
                        _sample_data.push_back(std::stod(s)); 
                    } 
                    sim_logger-
>trace("SampleDataPoint::SampleDataPoint:  Parsed svb = %f %f %f", _sample_data[0], _
sample_data[1], _sample_data[2]); 
                } 
            } 
        }  
        catch(const std::exception& e)  
        { 
            sim_logger-
>error("SampleDataPoint::SampleDataPoint:  Parsing exception %s", e.what()); 
        } 
    } 
 
    SampleDataPoint::~SampleDataPoint(void) 
    { 
        sim_logger->trace("SampleDataPoint::~SampleDataPoint:  Destructor executed"); 
    } 
 
    std::string SampleDataPoint::to_string(void) const 
    { 
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        sim_logger->trace("SampleDataPoint::to_string:  Executed"); 
         
        std::stringstream ss; 
 
        ss << std::fixed << std::setfill(' '); 
        ss << "Sample Data Point: "; 
        ss << std::setprecision(std::numeric_limits<double>::digits10); // Full doubl
e precision 
        ss << " Sample Data: " 
           << _sample_data[0]; 
 
        return ss.str(); 
    } 
} 
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