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ABSTRACT

New Advances in Symbol Timing Synchronization of Single-Carrier, Multi-Carrier

and Space-Time Multiple-Antenna Systems. (August 2005)

Yik Chung Wu, B.Eng.; M.S., The University of Hong Kong, Hong Kong

Chair of Advisory Committee: Dr. Erchin Serpedin

In this dissertation, the problem of symbol timing synchronization for the follow-

ing three different communication systems is studied: 1) conventional single-carrier

transmissions with single antenna in both transmitter and receiver; 2) single-carrier

transmissions with multiple antennas at both transmitter and receiver; and 3) or-

thogonal frequency division multiplexing (OFDM) based IEEE 802.11a wireless local

area networks (WLANs).

For conventional single-carrier, single-antenna systems, a general feedforward

symbol-timing estimation framework is developed based on the conditional maximum

likelihood principle. The proposed algorithm is applied to linear modulations and two

commonly used continuous phase modulations: MSK and GMSK. The performance

of the proposed estimator is analyzed analytically and via simulations.

Moreover, using the newly developed general estimation framework, all the previ-

ously proposed digital blind feedforward symbol timing estimators employing second-

order statistics are cast into a unified framework. The finite sample mean-square

error expression for this class of estimators is established and the best estimators are

determined. Simulation results are presented to corroborate the analytical results.

Moving on to single-carrier, multiple-antenna systems, we present two algo-

rithms. The first algorithm is based on a heuristic argument and it improves the

optimum sample selection algorithm by Naguib et al. so that accurate timing esti-
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mates can be obtained even if the oversampling ratio is small. The performance of

the proposed algorithm is analyzed both analytically and via simulations.

The second algorithm is based on the maximum likelihood principle. The data

aided (DA) and non-data aided (NDA) ML symbol timing estimators and their cor-

responding CCRB and MCRB in MIMO correlated flat-fading channels are derived.

It is shown that the improved algorithm developed based on the heuristic argument

is just a special case of the DA ML estimator. Simulation results under different

operating conditions are given to assess and compare the performances of the DA

and NDA ML estimators with respect to their corresponding CCRBs and MCRBs.

In the last part of this dissertation, the ML timing synchronizer for IEEE 802.11a

WLANs on frequency-selective fading channels is developed. The proposed algorithm

is compared with four of the most representative timing synchronization algorithms,

one specifically designed for IEEE 802.11a WLANs and three other algorithms de-

signed for general OFDM frame synchronization.
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CHAPTER I

INTRODUCTION

A. Motivations

Symbol timing synchronization is a fundamental component in any communication

system. Unfortunately, this is also the component that has received relatively less

attention in the research community. In this dissertation, the problem of symbol

timing synchronization for three different communication systems is studied. The

first system refers to the conventional linearly and nonlinearly modulated single-

carrier transmissions with single antenna in both the transmitter and receiver. The

second system assumes linearly modulated single-carrier transmissions with multiple

antennas at both the transmitter and receiver (examples are the space-time coding

system and the Vertical-Bell Labs Layered Space-Time (V-BLAST) system). The

third system under study is the orthogonal frequency division multiplexing (OFDM)

based IEEE 802.11a wireless local area network (WLAN) – a multi-carrier system.

The motivations and objectives behind each of these three main research topics

will be sketched separately in the following.

1. Symbol Timing Synchronization in Single-Carrier Systems with Single Antenna

In digital receivers, symbol timing synchronization can be implemented either in a

feedforward or feedback mode. Although feedback schemes exhibit good tracking

performance, they require a relatively long acquisition time. Therefore, for burst-

mode transmissions, feedforward timing recovery schemes are more suitable. An

all-digital feedforward symbol timing recovery scheme consists of first estimating the

The journal model is IEEE Transactions on Automatic Control.
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timing delay from the received samples, which is the focus of this study, and then

adjusting the timing using some sort of interpolation [1], [2].

Due to bandwidth efficiency considerations, non-data aided or blind symbol tim-

ing estimation schemes have attracted much attention during the last decade. Most

of the feedforward timing estimators proposed in the literature exploit the cyclosta-

tionarity induced by oversampling the received signal [3]-[8]. In [3], Oerder and Meyr

proposed the well-known square nonlinearity estimator. Several extensions of this

square nonlinearity estimator can be found in [5]-[7]. In [8], a low-SNR approxima-

tion was applied to the maximum likelihood function in order to derive a logarithmic

nonlinearity. Reference [4] reported for the first time a detailed performance analysis

of the estimators based on various types of nonlinearities.

Recently, the conditional maximum likelihood (CML) principle was introduced

for designing digital timing delay synchronizers by Riba, Sala and Vazquez [9], [10].

The CML solution is especially important for symbol timing synchronization because

it yields self-noise free timing estimates at medium and high SNRs. However, [9], [10]

concentrate on deriving a CML timing error detector (TED) so that the timing delay

can only be tracked using a feedback loop.

The objective of this first study is to develop and analyze the performance of

a new blind feedforwad symbol timing estimator based on the CML principle that

exhibits excellent performance for general linear modulations.

2. Symbol Timing Synchronization in Single-Carrier Systems with Multiple

Antennas

Apparently, this problem might seem closely related to symbol timing estimation in

single-antenna systems. However, in multiple-input multiple-output (MIMO) sys-

tems, signals from different transmit antennas are superimposed together, and the
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symbol timing estimation algorithms proposed in single antenna systems may not

work in the MIMO case. Furthermore, in some MIMO algorithms (e.g., space-time

coding), training sequences are used to estimate the channels. This opens up two

questions: how can we make use of the training sequences to perform symbol timing

estimation? What kind of training sequences is beneficial to symbol timing estima-

tion?

This problem was first studied in [11], where orthogonal training sequences are

transmitted at different transmit antennas to simplify the maximization of the over-

sampled approximated log-likelihood function. The sample having the largest mag-

nitude, so called the “optimal sample”, is assumed to be closest to the optimum

sampling instants. However, it can be shown that the mean square error (MSE) of

this algorithm is lower bounded by 1/(12Q2), where Q is the oversampling ratio. As

a result, the performance of this timing synchronization method highly depends on

the oversampling ratio. In fact, relatively high oversampling ratios are required for

accurate symbol-timing estimation.

There are two objectives in this study. The first one is to extend the algorithm

in [11] to increases its estimation accuracy. The second objective is to develop and

analyze the maximum likelihood (ML) symbol timing estimator for the MIMO com-

munication channels. The interest in deriving the ML timing estimator is due to its

statistical efficiency.

3. Symbol Timing Synchronization in IEEE 802.11a WLAN – A Multi-Carrier

System

IEEE 802.11a WLANs, which support high-speed data transmissions up to 54Mbps,

employ burst-mode transmission and OFDM as the transmission technique. Although

OFDM is well known for its ability to combat the intersymbol interference (ISI) in-
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troduced by multipath channels, incorrect positioning of the FFT window within an

OFDM symbol reintroduces ISI during data demodulation, causing serious perfor-

mance degradation [12], [13]. Symbol synchronization is therefore one of the most

important tasks performed at receivers in IEEE 802.11a WLANs.

A number of methods for OFDM symbol synchronization have been proposed

in the literature. Methods that exploit the periodic structure of cyclic prefixes in

OFDM symbols have been proposed in [13]-[15]. Algorithms based on the use of

repeated preambles have been reported in [16]-[21]. In [12] and [22], additional pilot

subcarriers are used to further improve the estimation accuracy after coarse timing

synchronization is established by correlation-based methods. Although the techniques

of [12]-[22] (which were originally developed for general OFDM systems) may be

applied to IEEE 802.11a WLANs, a higher synchronization accuracy can be obtained

by using optimized algorithms that take advantage of the known preamble structure

located at the beginning of a data packet.

Recently, symbol synchronization techniques that are specifically designed for

IEEE 802.11a WLANs have been reported in [23] and [24]. In [23], the received signal

is correlated with a known training-symbol sequence and the absence of the expected

correlation peak is detected. Despite the advantage that a simple correlator can be

easily implemented at the receiver, its performance is poor in dispersive channels

[23], indicating that more sophisticated synchronization algorithms are required. In

[24], the generalized Akaike information criterion (GAIC) is used to jointly estimate

the channel and timing information. Although the reported performance is good, its

complexity is extremely high.

The objective of this study is to develop the ML symbol synchronizer tailored

for the IEEE 802.11a standard.
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B. Outline and Contributions of This Dissertation

Chapters II-III

In Chapter II, a general feedforward symbol-timing estimation framework based

on the CML principle is developed. The proposed timing estimator presents reduced

implementation complexity and is obtained by performing an approximation on the

Fourier series expansion of the CML function. The proposed algorithm is applied

to linear modulations and two commonly used continuous phase modulations: MSK

and GMSK. The mean-square-error (MSE) performance of the proposed estimator is

analyzed both analytically and via simulations.

For the linear modulations, it is shown that the performance of the proposed

estimator is very close to the theoretical limit given by the conditional Cramer-Rao

bound (CCRB) and modified Cramer-Rao bound (MCRB) for signal-to-noise ratios

(SNR’s) in the range SNR≤30dB. Furthermore, the proposed estimator is shown to

be asymptotically equivalent to the classic square-law nonlinearity (SLN) estimator

[3] under certain conditions. In the case of MSK and GMSK modulations, although

the proposed algorithm reaches the CCRB at certain SNRs, however, the CCRB

is quite far away from the MCRB, and there exists an alternative algorithm whose

performance comes closer to the MCRB. Therefore, it is concluded that the proposed

estimator is more suitable for linear modulations rather than for MSK and GMSK

modulations. Most of the results in Chapter II have been published in [25] and [26].

In Chapter III, a unifying framework that subsumes a class of blind feedforward

symbol-timing estimators employing second-order statistics is proposed. The unifying

expression leads to a general-purpose finite-sample MSE expression for this class of

synchronizers, which is useful for systematic performance analysis and comparisons.

Simulation results are also presented to corroborate the analytical results. It is found
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that the feedforward CML estimator (proposed in Chapter II) and the SLN estimator

with a properly designed pre-filter perform the best and their performances coincide

with the asymptotic CCRB, which is the performance lower bound for the class of

estimators under consideration. Most of the material in Chapter III has been pub-

lished in [27].

Chapters IV-V

In Chapter IV, a new symbol-timing estimator for MIMO systems is proposed

based on a heuristic approach. It improves the optimum sample selection algorithm in

[11] so that accurate timing estimates can be obtained even if the oversampling ratio

is small. The increase in implementation complexity with respect to that of optimum

sample selection algorithm is minimal. Both analytical and simulation results show

that, for modest oversampling ratio (such asQ=4), the MSE of the proposed estimator

is significantly smaller than that of the optimum sample selection algorithm [11]. The

requirements and the design procedures of the training sequences are also discussed.

Most of the material in Chapter IV has been published in [28].

In Chapter V, the symbol-timing estimation problem in MIMO systems is tackled

using the ML method. In particular, the data aided (DA) and non-data aided (NDA)

ML symbol timing estimators and their corresponding CCRB and MCRB in MIMO

correlated flat-fading channels are derived. It is shown that the improved algorithm

developed in the Chapter IV is just a special case of the DA ML estimator. For the

DA case, the optimal orthogonal training sequences are also derived by minimizing

the MCRB. It is found that the optimal orthogonal sequences resemble the Walsh

sequences, but present different envelopes. Simulation results under different operat-

ing conditions (e.g., number of antennas and correlation between antennas) are given

to assess and compare the performances of the DA and NDA ML estimators with
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respect to their corresponding CCRBs and MCRBs. It is found that i) the MSE of

the DA ML estimator is close to the CCRB and MCRB, ii) the MSE of the NDA ML

estimator is close to the CCRB but not to the MCRB, iii) the MSEs of both DA and

NDA ML estimators are approximately independent of the number of transmit anten-

nas and are inversely proportional to the number of receive antennas, iv) correlation

between antennas has little effect on the MSEs of DA and NDA ML estimators, and

v) DA ML estimator performs better than NDA ML estimator at the cost of lower

transmission efficiency and higher implementation complexity. Most of the material

in this chapter has been published in [29].

Chapter VI

In Chapter VI, the ML symbol synchronizer for IEEE 802.11a WLANs in fre-

quency selective fading channels is developed. A realistic channel, which includes the

effects of filtering and sampling time offset in addition to the physical channel with

random path delays, is considered. Furthermore, the loss in system performance due

to synchronization error is used as the performance criterion [13], [30], as opposed to

the requirement that the estimated symbol timing has to be within certain limits with

respect to a fixed reference point. The proposed algorithm is compared with four of

the most representative symbol synchronization algorithms, one of which specifically

designed for IEEE 802.11a WLANs [24] and three other algorithms designed for gen-

eral OFDM frame synchronization [14], [20], [21]. Simulation results indicate that

in general, joint estimation of symbol position and channel (as is the case with the

proposed algorithm and the algorithm based on GAIC [24]) gives better performances

than the correlation based algorithms [14], [20], [21]. When compared to the GAIC

algorithm [24], the proposed algorithm exhibits comparable performances, but the

complexity of the proposed algorithm is much smaller than that of GAIC algorithm
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due to the smaller observation length. Most of the material in this chapter has been

published in [31].

C. Commonly Used Notations

The following are the commonly used notations in this dissertation. The symbols

x∗, xT , xH and ‖x‖ denote the conjugate, transpose, transpose conjugate and the

Euclidean norm of x, respectively. Notation ⊗ denotes Kronecker products, and

vec(H) denotes a vector formed by stacking the columns of H one on top of each

other. Notation ? stands for convolution. Notations Re(x), Im(x) and E[x] denote

the real part, imaginary part and expectation of x, respectively. Matrices IN and

0N are the identity and the all zero matrix, respectively, and both are of dimensions

N × N , while 0M×N is the the all zero matrix with dimension M × N . Notations

Zi,:, Z:,j and Zij denote the i
th row, jth column and (i, j)th element of Z, respectively.

The symbol δ(.) stands for the Kronecker’s delta. Notation j is defined as
√
−1.
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CHAPTER II

DESIGN AND ANALYSIS OF FEEDFORWARD SYMBOL TIMING

ESTIMATORS BASED ON THE CONDITIONAL MAXIMUM LIKELIHOOD

PRINCIPLE

A. Introduction

In digital receivers, symbol timing synchronization can be implemented either in a

feedforward or feedback mode. Although feedback schemes exhibit good tracking

performances, they require a relatively long acquisition time. Therefore, for burst-

mode transmissions, feedforward timing recovery schemes are more suitable. An

all-digital feedforward symbol timing recovery scheme consists of first estimating the

timing delay from the received samples, which is the focus of this chapter, and then

adjusting the timing using some sort of interpolation [1], [2].

Due to bandwidth efficiency considerations, non-data aided or blind symbol tim-

ing estimation schemes have attracted much attention during the last decade. Most

of the feedforward timing estimators proposed in the literature exploit the cyclosta-

tionarity induced by oversampling the received signal [3]-[8]. In [3], Oerder and Meyr

proposed the well-known square nonlinearity estimator. Several extensions of this

square nonlinearity estimator can be found in [5]-[7]. In [8], a low-SNR approxima-

tion was applied to the maximum likelihood function in order to derive a logarithmic

nonlinearity. Reference [4] reported for the first time a detailed performance analysis

of the estimators based on various types of nonlinearities.

Recently, the conditional maximum likelihood (CML) principle was introduced

for designing digital timing delay synchronizers by Riba, Sala and Vazquez [9], [10].

The CML solution is especially important for symbol timing synchronization because
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it yields self-noise free timing estimates at medium and high SNRs. However, [9], [10]

concentrate on deriving a CML timing error detector (TED) so that the timing delay

can only be tracked using a feedback loop. The purpose of this chapter is to develop

and analyze a feedforward timing estimator based on the CML principle. The main

design and performance characteristics of CML-based feedforward symbol timing de-

lay estimators are established for general linear modulations and two commonly used

continuous phase modulations, namely, minimum shift keying (MSK) and Gaussian

MSK (GMSK) [32], [33]. The performance of the timing estimators is analyzed an-

alytically and through simulations, and compared with the conditional Cramer-Rao

bound (CCRB) [9], [10], the modified Cramer-Rao bound (MCRB) [34] and other

existing state-of-the-art feedforward timing delay estimators [3], [34], [35], [36], and

[37].

In the proposed algorithm, an approximation is applied to the Fourier series

expansion of the CML function so that the complexity of the proposed estimator is

greatly reduced. Although the resulting estimator is not completely self-noise free

(due to the approximation), the performances of the proposed estimator (for both

linear and nonlinear modulations) are in general very close to the CCRB for signal-

to-noise ratios (SNR’s) smaller than 30 dB. For higher SNRs, mean square error

(MSE) floor occurs, but notice that at that high SNRs, the estimation MSE achieved

by the proposed estimator is already very small, so the effect of MSE floors becomes

relatively less critical.

For linear modulations, it is shown that the proposed estimator is asymptotically

equivalent to the well-known square nonlinearity estimator [3]. However, the proposed

estimator exhibits better performance (less self-noise/jitter) than [3] when a reduced

number of data samples are available. Furthermore, it is shown that the performances

of the proposed estimator for linear modulations are also very close to MCRB for
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SNR≤30dB. For MSK and GMSK modulations, although the performances of the

proposed estimator come very close to the CCRB at certain SNR ranges, however,

the CCRB is quite far away from the MCRB, and there exists an alternative algorithm

whose performance comes closer to the MCRB. Therefore, it is concluded that the

proposed estimator is more suitable for linear modulations than MSK and GMSK

modulations.

The rest of the chapter is organized as follows. The signal model and the CML

function are first described in Section B. The proposed feedforward timing estimator

is derived in Section C. The relationship between the proposed estimator and the

well-known square nonlinearity estimator [3] is addressed in Section D. The MSE

expressions are derived in Section E. Simulation results and discussions are then

presented in Section F, and finally conclusions are drawn in Section G.

B. Signal Model and the CML Function

1. Signal Model

The complex envelope of a received linear modulation is given by

r(t) = ejθo

√
Es

T

∑

i

dig(t− iT − εoT ) + η(t) , (2.1)

where θo is the unknown phase offset; Es is the symbol energy; di stands for the

zero-mean unit variance, independently and identically distributed (i.i.d.) complex

valued symbols being sent; g(t) is the transmit pulse with unit energy; T is the symbol

period; εo ∈ [0, 1) is the unknown symbol timing delay to be estimated and η(t) is the

complex-valued circularly distributed white Gaussian noise with power density No.

After passing through the anti-aliasing filter, the received signal is then sampled at

the rate 1/Ts, where Ts , T/Q. Note that the oversampling factor Q is determined by
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the frequency span of g(t); if g(t) is bandlimited to f = ±1/T (an example of which is

the square-root raised cosine pulse), Q = 2 is sufficient. The received vector r, which

consists of LoQ consecutive received samples (where Lo is the observation length),

can be expressed as (without loss of generality, we consider the received sequence

start at t = 0)

r = [r(0), r(Ts), ..., r((LoQ− 1)Ts)]
T = Aεo

do + η , (2.2)

where

Aε , [a−Lg
(ε), a−Lg+1(ε), ..., aLo+Lg−1(ε)] , (2.3)

ai(ε) , [g(−iT − εT ), g(Ts − iT − εT ), ..., g((LoQ− 1)Ts − iT − εT )]T ,(2.4)

do , ejθo

√
Es

T
[d−Lg

, d−Lg+1, ..., dLo+Lg−1]
T , (2.5)

η , [η(0), η(1), ..., η(LoQ− 1)]T , (2.6)

η(i) , η(iT/Q), and Lg denotes the number of symbols affected by the inter-symbol

interference (ISI) introduced by one side of g(t).

For MSK and GMSK modulations, the complex envelope of the received signal

is given by

r(t) =

√
Es

T
exp[jπ

∑

n

anq(t− nT − εoT ) + jθo] + η(t), (2.7)

where an stands for the i.i.d. binary transmitted symbols, and q(t) is the phase

response of the modulator with length L and satisfies

q(t) =





0 t ≤ 0

1/2 t ≥ LT.

(2.8)

The derivative of q(t) is referred to as the frequency response of the modulator, and
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takes the form of a rectangular pulse or a convolution between a rectangular pulse and

a Gaussian shaped pulse for MSK and GMSK modulations, respectively. According

to the Laurent’s expansion (LE) [38] and the fact that most of the energy of the

GMSK modulation is concentrated in the first component of the expansion [37]-[39]

(the MSK signal has only one component in the expansion), MSK and GMSK received

signals can be approximated by

r(t) ∼= ejθo

√
Es

T

∑

i

dig(t− iT − εoT ) + η(t) , (2.9)

where

di , exp[j
π

2

i∑

n=1

an], (2.10)

g(t) ,

L−1∏

n=0

p(t+ nT ), (2.11)

and

p(t) ,





sin[πq(t)] 0 ≤ t ≤ LT

p(2LT − t) LT < t ≤ 2LT

0 otherwise.

(2.12)

Therefore, the sampled MSK and GMSK modulations can also be expressed in a form

similar to (2.2). Since the pseudo-symbols (or equivalent data) di are zero mean, unit

variance, a single system model is sufficient to treat the linear modulations, MSK and

GMSK signals within a common framework.

Remark 1. Notice that another formulation for the GMSK signal is to express the

signal using all the 2L−1 terms of the LE as is done in [10]. However, there is a disad-

vantage for doing this: including more LE terms in the formulation would significantly

increase the number of pseudo-symbols. Since in CML method, the pseudo-symbols

and the unknown timing delay are jointly estimated from an observation vector of
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certain length, increasing the number of pseudo-symbols to be estimated would def-

initely degrade the overall estimation accuracy (of both pseudo-symbols and timing

delay). Of course, neglecting some small LE terms (as is done in this chapter) would

introduce interference and degrade the performance for the resulting estimator, but

from the simulation examples to be presented in Section F, the effect of the system

model approximation (2.9) is very small and occurs only at a very high SNR region

(at SNR≥50dB).

Remark 2. MSK and GMSK modulations belong to a broader class of modu-

lation, called MSK-type modulation [32], [33]. The system model, the subsequent

proposed estimator and the MSE analysis can also be applied to other members of

this MSK-type modulation as long as the approximation in (2.9) is tight (e.g., 1RC,

2RC modulations). However, in this chapter, we only concentrate on two commonly

used members: MSK and GMSK.

2. The CML Function

From (2.2), the joint maximum likelihood estimate of εo and do is given by maximizing

p(r|ε,d) = 1

(πNo)LoQ
exp

[
−(r−Aεd)

H(r−Aεd)

No

]
, (2.13)

or equivalently minimizing

J(r|ε,d) = (r−Aεd)
H(r−Aεd), (2.14)

where ε and d are the trial values for εo and do, respectively.

In the CML approach, the nuisance parameters do are modeled as deterministic

and estimated from the received vector r. From the linear signal model given in

(2.2), if no constraint is imposed on the possible value of do, the maximum likelihood
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estimate for do (when ε is fixed) is [65]

d̂ = (AH
ε Aε)

−1AH
ε r. (2.15)

Plugging (2.15) into (2.14), after some straightforward manipulations and dropping

the irrelevant terms, the timing delay is estimated by maximizing the following CML

function [9]

Λ(ε) = rHAε(A
H
ε Aε)

−1AH
ε r. (2.16)

In general, the maximum of the CML function can be found by plugging different

values of ε into (2.16). The value that provides the maximum value of Λ(ε) is the CML

estimate. Since ε is a continuous variable, this exhaustive search method requires a

lot of computations and is impractical. Alternatively, a timing error detector (TED)

[9] can be used in a feedback configuration. However, in burst mode transmissions,

feedforward timing delay estimators [3]-[8] are preferred since they avoid the relatively

long acquisition time and hang-up problem in feedback schemes. In the following, a

new method for optimizing (2.16) is proposed so that an efficient implementation of

the feedforward symbol-timing estimator results.

C. Proposed Estimator

Fig. 1 shows some realizations of the CML function calculated using (2.16), where the

true timing delay is εo = 0.25 (for the linear modulation, g(t) is a square-root raised

cosine filter with roll-off factor 0.5). It can be seen that the CML function has only

one maximum. Since the CML function is smooth, we expect that it is not necessary

to calculate the CML function for all the values of ε. It is possible that the CML

function is first calculated for some ε’s and the values in between can be found by

interpolation.



16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

105

110

115

120

125

130

Trial timing delay ε

C
M

L 
fu

nc
tio

ns

QPSK, Q=2
GMSK (BT=0.5), Q=2
MSK, Q=8

Fig. 1. Examples of CML function.

More specifically, suppose we calculated K uniformly spaced values of Λ(ε) using

(2.16) such that a sequence Λ(k) , Λ(k/K) for k = 0, 1, ..., K-1 is obtained (without

loss of generality, we consider K is even). Let construct a periodic sequence Λ̃(m)

by periodically extending Λ(k). Further, denotes Λ̃(ε) as the continuous and periodic

function with its samples given by Λ̃(m). According to the sampling theorem, as long

as the sampling frequency 1/K is higher than twice the highest frequency of Λ̃(ε),

then Λ̃(ε) can be represented by its samples Λ̃(m) without loss of information. The

relationship between Λ̃(ε) and Λ̃(m) is then given by

Λ̃(ε) =
∞∑

m=−∞
Λ̃(m)sinc (πK(ε−m/K)) (2.17)

where sinc(x) , sin(x)/x. Now, expand Λ̃(ε) into a Fourier series

Λ̃(ε) =
∞∑

`=−∞
A`e

j2π`ε , (2.18)
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where

A` =

∫ 1

0

Λ̃(ε)e−j2π`εdε. (2.19)

Substituting (2.17) into (2.19) yields

A` =
∞∑

m=−∞
Λ̃(m)

∫ 1

0

sinc (πK(ε−m/K)) e−j2π`εdε

=
K−1∑

k=0

Λ(k)
∞∑

l=−∞

∫ 1

0

sinc (πK(ε− l − k/K)) e−j2π`εdε

=
K−1∑

k=0

Λ(k)e−j2π`k/K
∫ ∞

−∞
sinc(πKε)e−j2π`εdε

=
K−1∑

k=0

Λ(k)e−j2π`k/K · 1
K

F{sinc(πε)}f=`/K , (2.20)

where F{} denote the Fourier transform. It is clear that,

A` =





1
K

∑K−1
k=0 Λ(k)e

−j2π`k/K , ` = −K
2
, ..., K

2

0 otherwise.

(2.21)

From (2.18), it can be seen that once the coefficients A` are determined, Λ̃(ε) can

be calculated for any ε ∈ [0, 1). Then the problem of maximizing (2.16) can now be

replaced by maximizing (2.18). For efficient implementation, the function Λ̃(ε) for

0 ≤ ε < 1 can be approximated by a K ′-point sequence (K ′ > K) as follow

Λ(k′) =

K′/2−1∑

`=−K′/2

A`e
j2π`k′/K′

for k′ = 0, 1, ..., K ′ − 1. (2.22)

This is equivalent to first calculating A` using (2.21), then zero padding the high

frequency coefficients (A`) and finally performing a K
′-point inverse discrete Fourier

transform (IDFT). For sufficiently large value of K ′, Λ(k′) becomes very close to Λ̃(ε)

for 0 ≤ ε < 1, and the index with the maximum amplitude can be viewed as an

estimate of the unknown timing parameter εo. Fig. 2a shows the block diagram for
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this algorithm when K=4. For the rest of the chapter, we refer to this estimator as

the IDFT-based CML estimator.

To avoid the complexity in performing the K ′-point IDFT, an approximation is

applied to (2.18). More precisely, it can be seen from Fig. 1 that the CML function for

symbol timing estimation resembles a sine function with one period in the interval

0 ≤ ε < 1. It is expected that the Fourier coefficient A1 is much larger than the

Fourier coefficients associated with higher frequencies. Therefore, it is sufficient to

approximate (2.18) as follows

Λ̃(ε) ≈ A0 + 2Re{A1ej2πε} for 0 ≤ ε < 1, (2.23)

where Re{x} stands for real part of x. In order to maximize Λ̃(ε), the following

equation must hold

arg(A1) = −2πε, (2.24)

where arg(x) denotes the phase of x. Or equivalently,

ε̂ = − 1
2π
arg{

K−1∑

k=0

Λ(k)e−j2πk/K}. (2.25)

The estimated delay ε̂ is the normalized (with respect to T ) time difference between

the first sample of the received vector r and the nearest optimum sampling instant.

The calculation within the arg(.) operation is actually the first bin (i.e., 2nd output) of

a K-point discrete Fourier transform (DFT) of the sequence Λ(k) (or the Fourier co-

efficient at symbol rate f = 1/T ). Based on (2.24), it is not difficult to check that the

proposed estimator (2.25) is asymptotically unbiased, a result which is independent

of the approximation used in (2.23).

From a computational viewpoint, it is worth mentioning that the proposed esti-

mator only involves the calculation of K samples of the CML function using (2.16), a
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K-point DFT, and an arg(.) operation. From the results to be presented, it is found

that K = 4 is sufficient to yield good estimates in practical applications. Therefore,

the 4-point DFT in (2.25) can be computed easily without requiring any multipli-

cations. The main complexity comes from the calculation of the 4 samples of Λ(ε)

using (2.16). However, notice that the matrix Aε(A
H
ε Aε)

−1AH
ε can be pre-computed

for ε = k/4 with 0 ≤ k ≤ 3. This greatly reduces the arithmetic complexity of imple-

mentation. Complexity can be further reduced by approximating the pre-computed

Aε(A
H
ε Aε)

−1AH
ε using Sum-of-Power-of-Two (SOPOT) expressions [40], [41].

D. Relationship with the Square Nonlinearity Estimator

In this section, we will show that, if g(t) is a square-root raised cosine pulse, the

proposed estimator in (2.25) asymptotically reduces to the well-known square nonlin-

earity estimator [3]. First notice that when g(t) is a square-root raised cosine pulse and

in the asymptotic case (as Lo → ∞), [AH
ε Aε]ij ≈ δij [10], where δij = 1 if i = j and

zero otherwise. Notice that the matrix AH
ε Aε is of dimension (Lo+2Lg)×(Lo+2Lg).

The approximation [AH
ε Aε]ij ≈ δij holds very well for the central portion (of dimen-

sion Lo×Lo) of A
H
ε Aε. For the boundary of A

H
ε Aε, the values are smaller than 1. As

Lo →∞, the boundary of AH
ε Aε becomes insignificant and can be ignored. Putting

[AH
ε Aε]ij ≈ δij into (2.16), it follows that

Λ(ε) ≈ ‖AH
ε r‖2. (2.26)

Now consider the ith element of AH
ε r (i = −Lg,−Lg + 1, ..., Lo + Lg − 1),

[AH
ε r]i =

LoQ−1∑

n=0

g(nTs − iT − εT )r(nTs)

=
∞∑

n=−∞
g((i+ ε)T − nTs)r̃(nTs) (2.27)



20

Divide into
4 phases

Matched
filtering

1 2
0 | . |oL

i
−

=∑
1 2

0 | . |oL
i

−
=∑

1 2
0 | . |oL

i
−

=∑
1 2

0 | . |oL
i

−
=∑

4-point
FFT

-arg(.)/2 π

received
samples
with Q=4

Calculate
4 samples

of CML
function

4-point
FFT

-arg(.)/2 π

received
vector with

Q=2

Calculate
4 samples

of CML
function

4-point
FFT

received
vector with

Q=2

K'-point
IDFT

...
...

...
...

zeros padding
at high

frequencies

arg max

(a)

(b)

(c)

Timing
estimate

Timing
estimate

Timing
estimate

Fig. 2. Block diagrams for (a) the IDFT-based CML estimator (K=4), (b) the pro-

posed estimator (K=4) and (c) the squaring estimator.
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where r̃(t) , r(t)w(t), with w(t) is a rectangular window of length LoT . It is recog-

nized that the summation in (2.27) is just the filtering of r̃(t), through g(t), followed

then by sampling at t = (i + ε)T . Notice that since g(t) is a square-root raised

cosine filter, g(t) = g(−t) and (2.27) actually corresponds to the sampled matched

filter output. If we define x(t) , g(−t) ? r̃(t), where ? denotes convolution, we have

[AH
ε r]i = x((i+ε)T ). Plugging this result into (2.26) and noting that asymptotically,

the range of i can be approximated by i = 0, ..., Lo − 1, we have

Λ(k) ≈
Lo−1∑

i=0

|x(iT + kT/K)|2. (2.28)

The proposed CML feedforward timing delay estimator in (2.25) can then be rewritten

as

ε̂ = − 1
2π
arg{

K−1∑

k=0

(
Lo−1∑

i=0

|x(iT + kT/K)|2
)
e−j2πk/K}

= − 1
2π
arg{

KLo−1∑

l=0

|x(lT/K)|2e−j2πl/K}. (2.29)

Therefore, when Lo → ∞ and K=4, we have the well known squaring algorithm

[3]. Figs. 2b and 2c show the block diagrams for the proposed estimator (2.25) with

K = 4 and the squaring algorithm. It can be seen that the structures of the proposed

algorithm and the squaring algorithm are very alike. Note that both the proposed

algorithm and the squaring algorithm require four samples per symbol period to form

the timing estimate. For the proposed estimator, the received signal is first sam-

pled with minimum oversampling ratio Q=2 and then samples with K = 4 different

phases are generated by filtering (see (2.27)). For the squaring algorithm, the four

different samples per symbol period are directly obtained through sampling. Notice

that the squaring algorithm might work also by first sampling at Q = 2 and then

the intermediate (additional two) samples are computed by interpolation before sym-
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bol timing estimation. Although the proposed estimator and the squaring algorithm

have many characteristics in common, simulation results presented in Section F show

that the proposed estimator outperforms the squaring algorithm for reduced length

observation records.

E. Analytical Performance Analysis

In this section, we derive the mean square error (MSE) expressions for the proposed

estimator as a function of Es/No. First, express the true timing delay εo as follows

εo = −
1

2π
arg(e−j2πεo). (2.30)

From (2.25) and (2.30), the MSE for a specific delay is given by

E[(ε̂− εo)
2] =

(
1

2π

)2
E

[(
arctan

{
Im{φ}
Re{φ}

})2]
(2.31)

where

φ , ej2πεo

K−1∑

k=0

Λ(k)e−j2πk/K . (2.32)

Applying the approximation arctan(x) ≈ x for small x, we have

E[(ε̂− εo)
2] ≈

(
1

2π

)2
E

[(
φ− φ∗

j(φ+ φ∗)

)2]

≈ −
(
1

2π

)2
E[φ2]− 2E[φφ∗] + E[(φ∗)2]

E[φ2] + 2E[φφ∗] + E[(φ∗)2]

= −
(
1

2π

)2
Re{E[φ2]} − E[φφ∗]

Re{E[φ2]}+ E[φφ∗]
. (2.33)

The last equality in (2.33) comes from the fact that E[(φ∗)2] = (E[φ2])∗. The second

approximation in (2.33) can be justified using similar arguments as in [16]. A close

examination of the fraction (φ − φ∗)2/(φ + φ∗)2 in (2.33) illustrates that the mean

of its denominator is much larger than the mean of its numerator, and the standard
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Fig. 3. Plots of E[(φ− φ∗)2] and E[(φ+ φ∗)2] as a function of Es/No for εo = 0, 0.25,

0.5 and 0.75 (g(t) is a square-root raised cosine pulse with α = 0.5, Q = 2,

K = 4, Lo=100 and Lg = 3). Note that all curves for different values of εo

overlap.

deviations of its numerator and denominator are in general much smaller than the

mean of denominator. Fig. 3 plots E[(φ−φ∗)2] and E[(φ+φ∗)2] as a function of Es/No

when g(t) is a square-root raised cosine pulse with α = 0.5, Q = 2, K = 4, Lo=100

and Lg = 3 for εo = 0, 0.25, 0.5 and 0.75. Note that all curves for different values

of εo overlap. It can be seen that for Es/No ≥ 10dB, E[(φ − φ∗)2] is much smaller

than E[(φ + φ∗)2]. The same result can be obtained for different other pulse shapes

g(t). Also, one can check that at medium and high Es/No, the standard deviations

of (φ− φ∗)2 and (φ+ φ∗)2 are small relative to E[(φ+ φ∗)2]. All these considerations

justify the second approximation made in (2.33).
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From (2.32), we note that

E[φ2] = ej4πεo

K−1∑

k1=0

K−1∑

k2=0

E[Λ(k1)Λ(k2)]e
−j2πk1/Ke−j2πk2/K , (2.34)

E[φφ∗] =
K−1∑

k1=0

K−1∑

k2=0

E[Λ(k1)Λ
∗(k2)]e

−j2πk1/Kej2πk2/K . (2.35)

It is proved in Appendix A that

E[Λ(k1)Λ(k2)] = tr[B
T
k1
Rεo
]tr[BT

k2
Rεo
] + tr[BT

k1
Rεo

BT
k2
Rεo
] + c(k1, k2), (2.36)

E[Λ(k1)Λ
∗(k2)] = tr[B

T
k1
Rεo
]tr[Bk2

Rεo
] + tr[BT

k1
Rεo

Bk2
Rεo
] + c(k1, k2), (2.37)

where tr[.] denotes the trace of a matrix, Rε , Es

T
Gε+

NoQ
T
ILoQ. In (2.36) and (2.37),

Bk,Aε(A
H
ε Aε)

−1AH
ε |ε=k/K , (2.38)

Gε is an LoQ×LoQ matrix with the (i, j)
th element (i, j = 0, 1, ..., LoQ− 1) given by

[Gε]ij ,

∞∑

n=−∞
g∗(iT/Q− nT − εT )g(jT/Q− nT − εT ), (2.39)

and

c(k1, k2) ,





E2
s

T 2
(m4 − 2)

∞∑

n=−∞
[an(εo)

HBk1
an(εo)][an(εo)

HBk2
an(εo)]

for linear modulations

E2
s

T 2

∞∑

n1=−∞

∞∑

n2=−∞
(−1)|n1−n2|[an1

(εo)
HBk1

an2
(εo)][an1

(εo)
HBk2

an2
(εo)]

− 2
∞∑

n=−∞
[an(εo)

HBk1
an(εo)][an(εo)

HBk2
an(εo)]

for MSK and GMSK

(2.40)

where m4 = E[|di|4] is the fourth order moment of the transmitted symbols, which

is fixed for a specific constellation (e.g., m4 = 1 for PSK and m4 > 1 for QAM).
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Therefore, the MSE for a specific delay εo can be found by using (2.33)-(2.37). As

the symbol timing delay εo is assumed to be uniformly distributed in [0, 1), the average

MSE is calculated by numerical integration of (2.33).

Notice that the MSE expressions in this section can only be regarded as an ap-

proximated analysis for GMSK since only the principle component of LE is taken

into consideration. However, from the results to be presented in next section, excel-

lent agreement between analytical expressions and simulations can be observed (see

Fig. 9), only a small deviation occurs at very high SNRs.

F. Simulation Results and Discussions

In this section, the performance of the proposed algorithm and other existing symbol

timing estimators are assessed by Monte Carlo simulations and then compared with

the analytical results derived in the last section, the CCRB1 [10] and the MCRB

[34]. In all the simulations, the observation length is fixed to Lo=100, and εo is

uniformly distributed in the range [0, 1). θo is generated as a uniformly distributed

random variable in the range [−π, π) and is constant in each estimation. Each point is

obtained by averaging 104 simulation runs. In all figures, the CCRB and the MCRB

are plotted as references.

First consider the case of linear modulations. QPSK is chosen as the symbol

constellation. The oversampling ratio for the proposed estimator is Q=2, g(t) is the

square-root raised cosine pulse with roll-off factor α=0.5, the number of ISI symbols

introduced by one side of g(t) is assumed to be Lg=3. Figs. 4a and 4b show the

MSE against Es/No for the proposed algorithm and the IDFT-based CML estimator

for K = 4 and K = 8, respectively. It can be seen (from both Figs. 4a and 4b)

1Strictly speaking, this bound is the asymptotic CCRB. However, it is shown in
the simulation results that this bound can be reached for finite observation length.
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that the proposed algorithm has a performance similar to that of IDFT-based CML

estimator with K ′=2048. This further justifies the approximation in (2.23). Note

that, for K = 4, the self noise is not completely eliminated for both IDFT-based

CML estimator and the proposed estimator (as seen from the MSE departure from

CCRB at high SNR in Fig. 4a). This can be explained as follows. For the IDFT-

based CML estimator, the self-noise is due to the small value of K chosen, since in

the derivation, it is assumed that the CML function can be completely represented by

K samples. However, there is no guarantee that K = 4 is sufficient (although K = 4

results in pretty good performance). Increasing the value of K to 8 removes the self-

noise of the IDFT-based CML estimator (with K ′ = 2048) as shown in Fig. 4b. For

the proposed estimator, although it is also required that K should be large enough

such that Λ(ε) can be represented by its samples, the self-noise is due to another

more critical factor – the approximation (2.23) in the CML function. This can be

seen from the fact that the performance of the proposed estimator does not improve

by increasing K from 4 to 8 (compare Figs. 4a and 4b). As K = 4 is good enough

for the proposed estimator, K = 4 is used for the rest of the chapter.

Fig. 5 illustrates the very close match between the simulation and the analytical

results derived in the last section. It is also clear that, for the SNRs under consider-

ation, the performance of the proposed algorithm is very close to the CCRB, which

means that the proposed estimator almost reaches the ultimate performance of the

CML principle. Furthermore, the CCRB is close to the MCRB. Since MCRB is a

lower bound on the variance of any unbiased estimate, this shows that the proposed

algorithm is close to optimal for a wide range of Es/No. Notice that at Es/No around

30dB, an MSE floor begins to occur (due to the approximation (2.23) in the CML

function), but at that high SNR, the estimation MSE achieved by the proposed es-

timator is already very small (on the order of 10−6), so the effect of the MSE floor



27

0 5 10 15 20 25 30
10−6

10−5

10−4

10−3

10−2

E
s
/N

o
 (dB)

M
S

E
 o

f e
st

im
at

io
n

Proposed estimator
IDFT−based CML estimator K′=16
IDFT−based CML estimator K′=128
IDFT−based CML estimator K′=2048
CCRB
MCRB

(a)

0 5 10 15 20 25 30
10−6

10−5

10−4

10−3

10−2

E
s
/N

o
 (dB)

M
S

E
 o

f e
st

im
at

io
n

Proposed estimator
IDFT−based CML estimator K′=16
IDFT−based CML estimator K′=128
IDFT−based CML estimator K′=2048
CCRB
MCRB

(b)

Fig. 4. MSE of the proposed estimator and the IDFT-based CML estimator with (a)

K = 4, (b) K = 8 (QPSK, Q=2, α=0.5, Lo=100 and Lg=3).
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Fig. 5. Comparison between analytical MSE and simulations of the proposed estimator

(QPSK, Q=2, K=4, α=0.5, Lo=100 and Lg=3).

becomes relatively less critical.

Fig. 6 compares the performance of the proposed estimator with that of the

square nonlinearity estimator (with Q=4) [3]. It is apparent that the proposed esti-

mator outperforms the square nonlinearity estimator, especially at high Es/No. This

is because for finite observation length, AH
ε Aε 6= I, and the self-noise is better can-

celled by the matrix (AH
ε Aε)

−1 than I. Fig. 7 compares the performances of the

proposed algorithm with the existing state-of-the-art feedforward algorithms that re-

quire only two samples per symbol to operate: Mengali [34, pp.401], Zhu etal. [35]

and Lee [36]. It can be seen that while the performances for different algorithms are

similar at low Es/No, the proposed algorithm has the smallest MSE at high Es/No.

Next consider that MSK is the modulation format. Fig. 8 shows the perfor-

mances of the proposed estimator (with Q = 2, Q = 4 and Q = 8) and the low-SNR

approximated maximum likelihood (ML) algorithm [37] for MSK. The number of ISI
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Fig. 8. MSE of the proposed estimator (Q = 2, Q = 4 and Q = 8) and the low-SNR

approximated ML algorithm [37] for MSK (Lg = 1 and Lo=100).

symbols introduced by one side of g(t) is assumed to be 1. The following observations

can be inferred from Fig. 8. First, it can be seen that, for the proposed algorithm,

the higher the oversampling ratio, the better the performance. This is because the

pulse g(t) is time limited [38], so its frequency response is not bandlimited; a higher

oversampling ratio reduces the aliasing and thus provides better performance. Sec-

ond, the theoretical MSE analysis matches very well the simulation results. Third,

although a higher oversampling ratio increases the range of SNR’s over which the

performance of the proposed estimator comes close to the CCRB, MSE floors still

occur at high SNR’s due to the approximation (2.23) assumed in the derivation of

estimator. Furthermore, the CCRB is far away from the MCRB and the simula-

tion results show that the low-SNR approximated ML algorithm [37] approaches the

MCRB. Therefore, direct application of the CML principle is not suitable for the

MSK modulation.
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Now let consider the GMSK modulation. Fig. 9 show the performances of the

proposed estimator (with Q = 2 and Q = 4) and the low-SNR approximated ML

algorithm [37] for GMSK with pre-modulator bandwidth BT = 0.5. The number of

ISI symbols introduced by one side of g(t) is assumed to be 2. Notice that although

the proposed estimator is based on the approximated linear model (2.9), the GMSK

signal in the simulation is generated according to (2.7) without approximation. The

MCRB for GMSK is exact and its expression can be found in [34]. For the CCRB, it

is based on the approximated linear model (2.9). Although the resulting CCRB is not

exact, it is still a valid lower bound for the proposed estimator since when the proposed

estimator is applied to the true GMSK signal, the ignored components in LE would

become interferences and the performances would be poorer than that predicted by

the CCRB, which assumes no interference from other components of LE. Note that the

CCRB obtained by expressing the GMSK signal using all the LE components (as done

in [10]) is not applicable here, since in that case, the resultant CCRB is conditioned

on the fact that all the pseudo-symbols are being jointly estimated together with

the unknown timing offset, while in the proposed estimator, only the pseudo-symbols

related to the first LE component are estimated.

From Fig. 9, it can be seen that, for the proposed estimator, a higher oversam-

pling ratio also results in better performance due to the same reason as in the case

of MSK modulation. However, by comparing Figs. 8 and 9, if the same oversam-

pling ratio is used, it is found that the performance of the proposed estimator for

GMSK modulation is better than that corresponding to MSK. This is due to the

fact that the pulse g(t) is longer in GMSK than in MSK (although they both are

time-limited), therefore, with the same oversampling ratio, the aliasing introduced in

GMSK is smaller than that in MSK. Second, it is obvious that the analytical MSE

expressions derived in the last section match very well with the simulation results.
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Fig. 9. MSE of the proposed estimator (Q = 2 and Q = 4) and the low-SNR approxi-

mated ML algorithm [37] for GMSK with BT = 0.5 (Lg = 2 and Lo=100).

Only for the case of K = 4 and at SNR=50-60 dB, the analytical MSE expressions

predict a slightly better performance than simulations. Third, the performance of the

proposed estimator with Q = 4 comes very close to the CCRB for Es/No ≤40 dB. The

MSE floor, which is caused by the approximation (2.23) in the CML function, begins

to occur only for Es/No >40dB. Notice that the effect of the approximation (2.9) in

the system model (which results in the gap between analytical MSE and simulations)

is much smaller than that of approximation (2.23) in the CML function (which causes

the MSE floor). Compared to the low-SNR approximated ML algorithm [37], at low

SNR’s the proposed estimator exhibits poorer performance, but for medium and high

SNR’s, the proposed estimator performs much better.

Finally, notice that the CCRB is far away from the MCRB as in the case of MSK.

Since the CCRB is a valid bound only for estimators that rely on quadratic nonlinear-

ities [10], it is expected that algorithms exploiting higher-order (> 2) nonlinearities
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might exist with performances closer to the MCRB. An example of such an algorithm

is the low-SNR approximated ML algorithm [37], for which we already demonstrated

that its performance is closer to the MCRB at low SNRs. The next question is

whether there is an estimator whose performance comes close to the MCRB for a

larger range of SNRs. This is a subject open to future investigations.

G. Conclusions

A new feedforward symbol-timing estimator based on the conditional maximum like-

lihood principle was proposed. An approximation was applied in the Fourier series

expansion of the CML function so that the complexity of the proposed estimator

is greatly reduced. It was shown, analytically and via simulations, that the perfor-

mances of the proposed estimator for linear modulations are in general very close to

the CCRB and MCRB for SNR≤30dB. For higher SNRs, MSE floors occur, but no-

tice that at these high SNRs, the MSE achieved by the proposed estimator is already

very small, so the effect of MSE floors becomes relatively less critical. Furthermore,

for linear modulations with the transmit pulse being a square-root raised cosine pulse,

the proposed estimator was shown to be asymptotically equivalent to the well-known

square nonlinearity estimator [3]. However, in the presence of reduced number of

samples, the proposed estimator presents better performance than [3]. For MSK and

GMSK modulations, it was found that although the performances of the proposed

estimator come very close to the CCRB at certain SNR ranges, however, the CCRB is

quite far away from the MCRB, and there exists an alternative algorithm that come

closer to the MCRB. Therefore, it was concluded that the proposed estimator is more

suitable for linear modulations than MSK and GMSK modulations.
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CHAPTER III

UNIFIED ANALYSIS OF A CLASS OF BLIND FEEDFORWARD SYMBOL

TIMING ESTIMATORS EMPLOYING SECOND-ORDER STATISTICS

A. Introduction

The problem of digital blind feedforward symbol timing estimation assumes recovery

of the timing delay of the received signal based on the oversampled and unsynchro-

nized received samples. Many algorithms were proposed in the literature to solve

this problem. The earliest one is [3], in which the well-known square law nonlin-

earity (SLN) estimator is proposed. Several extensions of the SLN estimator were

later reported in [5], [6] and [42], in which they consider more general second-order

statistics than just squaring. Recently, the pre-filtering technique was applied to the

SLN estimator to improve its performances at medium and high signal-to-noise ra-

tios (SNRs) [43]. Other than square nonlinearity, estimators based on other types of

nonlinearities were also proposed. Reference [8] proposed a logarithmic nonlinearity

estimator, which is obtained by applying a low SNR approximation to the maximum

likelihood (ML) method; absolute value and fourth order nonlinearities-based estima-

tors were proposed in [4]; a combination of square and fourth order nonlinearities was

proposed in [7] to take advantage of the properties of both types of nonlinearities.

While all the above estimators require at least 3 samples per symbol, there are also

some estimators that require only two samples per symbol. Reference [36] proposed

such an estimator based on an ad-hoc argument. This estimator was later modified

to remove its asymptotic bias in [44], and the pre-filtering technique was also applied

to this estimator in [43] to improve its performance at medium and high SNRs. On

the other hand, in Chapter II, we have seen a new two samples per symbol estimator
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based on the conditional maximum likelihood (CML) principle.

With so many estimators, designed using different philosophies and their per-

formances analyzed independently under different assumptions, one would wonder

whether we can have a general framework to analyze the performances of these esti-

mators so that a fair and easy comparison can be made. This question was partially

answered in [4], in which a technique for evaluating the jitter performance of sym-

bol timing estimators employing a zero-memory, general type of nonlinearity was

presented. In this chapter, we analyze a different class of estimators (from that con-

sidered in [4]) by formulating all the blind feedforward symbol timing estimators

employing second-order statistics (which include the estimators in [3], [5], [6], [36],

[42], [43], [44] and Chapter II) into a single estimation framework, and then by de-

riving the finite sample (as opposed to the asymptotic performance reported in [7])

mean-square error (MSE) expression for this class of estimators. The MSE expression

for any individual estimator can be obtained from the general expression by setting

suitable parameters. The analytical results are compared with the computer simula-

tion results, and it is found that both sets of results match very well. Furthermore,

it is found that within the class of estimators employing second-order statistics, the

SLN estimator with a properly designed pre-filter and the feedforward CML estimator

perform the best and their performances coincide with the conditional Cramer-Rao

bound (CCRB) [9], which is the performance lower bound for the class of estimators

under consideration.
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B. Unified Formulation for the Class of Symbol Timing Estimators Employing the

Second-Order Statistics

For linear modulations transmitted through AWGN channels, the received signal can

be written as

r(n) , r(t)|t=nTs
= ejθo

√
Es/T

∑

i

dip(nTs − iT − εoT ) + η(nTs) , (3.1)

where θo is the unknown phase offset; Es is the symbol energy; di stands for the

zero-mean unit variance, independently and identically distributed (i.i.d.) complex

valued symbols being transmitted; p(t) , g(t) ? gr(t) is the combined response of the

unit energy transmit filter g(t) and the receiving filter gr(t); T is the symbol period;

Ts , T/Q with Q being the oversampling ratio; εo ∈ [0, 1) is the unknown symbol

timing delay to be estimated and η(nTs) stands for the samples of filtered noise. It

is assumed that the noise samples before receive filtering is complex-valued circularly

distributed Gaussian with power density No.

In this chapter, we consider the class of estimators taking the following general

form:

ε̂ = − 1
2π
arg

{
K−1∑

k=0

Λ(k)e−j2πk/K

}
, (3.2)

where Λ(k) = rHBkr with r , [r(0), r(1), ..., r(LoQ− 1)]T is the observation vector

of length Lo symbols and Bk is a fixed matrix of dimension LoQ × LoQ. The block

diagram of this general estimator is shown in Fig. 10. After the observation vector is

formed, K samples of Λ(k) are calculated, then a K-point discrete Fourier transform

(DFT) is taken, and the phase of the first bin (i.e., second output) of the DFT scaled

by a constant is the timing estimate. Let us now consider some special cases.
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Fig. 10. Block diagram of the general estimator.

1. Cyclic Correlation-Based Estimator

The cyclic correlation-based estimator [5], [7] is given by

ε̂ = − 1
2π
arg

{
LoQ−τ−1∑

n=0

r∗(n)r(n+ τ)e−jπτ/Qe−j2πn/Q

}
, (3.3)

for Q ≥ 3 and some integer lag τ ≥ 0. Note that different values of τ result in

different previously proposed estimators in the literature (τ = 0 corresponds to the

estimators proposed in [3] and [42], τ = Q corresponds to the estimator in [6]).

If we decompose the summation term in (3.3) into Q polyphase components and

define nu(k) , b(LoQ− τ − 1− k)/Qc, we have

ε̂ = − 1
2π
arg
{ Q−1∑

k=0

e−jπτ/Q
nu(k)∑

n=0

r∗(nQ+ k)r(nQ+ k + τ)e−j2π(nQ)/Q

︸ ︷︷ ︸
ΛCC(k)

e−j2πk/Q
}
.

(3.4)

It can be seen that the cyclic correlation-based estimator takes the form of (3.2) with

K = Q. Expressing ΛCC(k) into matrix form, we have ΛCC(k) = rHBCC
k r, where

BCC
k is a LoQ×LoQ matrix with its (nQ+k, nQ+k+τ)

th element (n = 0, 1, ..., nu(k))

equal to e−jπτ/Q and other elements equal zero. In particular, for the well-known SLN

estimator [3] (i.e., τ = 0, Q = 4), we have (for i = 0, 1, 2, 3)

BSLN
i = ILo

⊗ E
(i)
4 (3.5)
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where ⊗ denotes the Kronecker product and E
(i)
k is a k × k matrix with the (i, i)th

element equals one and other elements equal zero.

2. Lee’s Estimator and the Modified Estimator

A two samples per symbol estimator was proposed by Lee in [36]. Later, this estima-

tor was modified to remove its asymptotic bias [44]. The modified version of Lee’s

estimator can be written as

ε̂ = − 1
2π
arg

{
γ

LoQ−1∑

n=0

|r(n)|2ejnπ +
LoQ−2∑

n=0

Re[r∗(n)r(n+ 1)]ej(n−0.5)π

}
, (3.6)

with Q = 2 and γ is a constant depending on the pulse shape p(t). If p(t) is a

raised cosine pulse with roll-off factor α, then γ = 8 sin(πα/2)/(απ(4−α2)) [44]. The

original Lee’s estimator can be obtained by setting γ = 1. Now rewrite the expression

in the arg{ } of (3.6) as follows:

γ
Lo−1∑

n=0

|r(nQ)|2

︸ ︷︷ ︸
ΛLee(0)

+
Lo−1∑

n=0

Re[r∗(nQ)r(nQ+ 1)]

︸ ︷︷ ︸
ΛLee(1)

e−jπ/2

+ γ
Lo−1∑

n=0

|r(nQ+ 1)|2

︸ ︷︷ ︸
ΛLee(2)

e−jπ +
Lo−2∑

n=0

Re[r∗(nQ+ 1)r(nQ+ 2)]

︸ ︷︷ ︸
ΛLee(3)

e−j3π/2 . (3.7)

Therefore, the estimator in (3.6) can also be expressed in the form of (3.2) with

K = 4. With the fact that Re(x) = (x + x∗)/2 and expressing ΛLee(k) in matrix

form, we have ΛLee(k) = rHBLee
k r, where

BLee
0 = γILo

⊗ E
(0)
2 , BLee

1 = 0.5ILo
⊗ J2, BLee

2 = γILo
⊗ E

(1)
2 ,

BLee
3 =




0 01×2(Lo−1) 0

02(Lo−1)×1 0.5ILo−1 ⊗ J2 02(Lo−1)×1

0 01×2(Lo−1) 0




(3.8)
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where J2 is the counter identity matrix, constructed by flipping I2 from left to right.

3. Feedforward CML Estimator

The feedforward symbol timing estimator based on the conditional ML principle was

proposed in Chapter II. Unfortunately, the results in Chapter II cannot be directly ap-

plied here since the original estimator was derived under the assumption that the noise

samples are independent of each other, but in the signal model (3.1), the noise sam-

ples are correlated due to the receiver filtering. Of course, one can always start from

the probability density function of r, taking into account the correlation of noise and

re-derive the estimator following the idea of Chapter II. However, a faster but equiva-

lent method is as follows. Since the correlations between noise samples are related to

the receiving filter (which is known), we can whiten the filtered noise samples by pre-

multiplying the observation vector r with (ϕ−1/2)H , where ϕ is the correlation matrix

of the noise vector (with its elements given by [ϕ]ij =
∫∞
−∞ g

∗
r(t)gr(t− (i− j)T/Q)dt )

and ϕ−1/2 denotes any square root of ϕ−1 (e.g., Cholesky decomposition) such that

ϕ−1/2(ϕ−1/2)H = ϕ−1. Then the results of Chapter II can be applied readily to this

transformed observation vector (ϕ−1/2)Hr. It turns out that the resultant feedforward

CML symbol timing estimator is given by ε̂ = − 1
2π
arg
{∑K−1

k=0 ΛCML(k)e
−j2πk/K

}
,

where K ≥ 3 and ΛCML(k) = rHBCML
k r with

BCML
k , ϕ−1Aε(A

H
ε ϕ

−1Aε)
−1AH

ε ϕ
−1
∣∣∣
ε=k/K

, (3.9)

Aε , [a−Lp
(ε), a−Lp+1(ε), ..., aLo+Lp−1(ε)], (3.10)

ai(ε) , [p(−iT − εT ), p(Ts − iT − εT ), ..., p((LoQ− 1)Ts − iT − εT )]T(3.11)

and Lp denotes the number of symbols affected by the inter-symbol interference (ISI)

introduced by one side of p(t). Notice that if gr(t) = δ(t), this estimator would reduce
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to the original proposed feedforward CML estimator in Chapter II.

4. Estimators with Pre-Filter

In [43], a properly designed pre-filter was applied to the SLN estimator and the

modified Lee’s estimator to improve their performances at medium and high SNRs.

In general, the pre-filtering technique can be applied to the general estimator (3.2).

In that case, the observation vector is composed of samples from the output of pre-

filter. That is, ΛPRE(k) = xHBkx with x , [x(0), x(1), ..., x(LoQ − 1)]T and

x(n) , r(n) ? h(n) is the further filtered (apart from the receiver filtering) received

signal samples through the pre-filter h(n). If h(n) is of finite length Lpre, then x = Hr̃

where

H ,




h(Lpre − 1) h(Lpre − 2) ... h(0)

h(Lpre − 1) h(Lpre − 2) ... h(0)

. . . ... ...
. . .

h(Lpre − 1) h(Lpre − 2) ... h(0)




(3.12)

and r̃ , [r(−Lpre + 1) r(−Lpre + 2) . . . r(LoQ − 1))]T . Therefore, the general

estimator with pre-filter is ε̂ = − 1
2π
arg
{∑K−1

k=0 ΛPRE(k)e
−j2πk/K

}
, where ΛPRE(k) =

r̃HHHBkHr̃ , r̃HBPRE
k r̃. For example, for the SLN estimator with pre-filter, we

have

BPRE
k = HHBSLN

k H. (3.13)

Notice that, due to pre-filtering, although the observation vector x is of length LoQ,

the length of effective observation r̃ (before pre-filtering) is LoQ+Lp−1. Also, BPRE
k

is of dimension (LoQ+Lp−1)×(LoQ+Lp−1), rather than (LoQ−1)×(LoQ−1). Of

course, if there is no pre-filter (i.e., h(n) = δ(n)), all the equations in this subsection
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would reduce to that of the original estimator.

C. Performance Analysis

1. Performance Bound

In [9], the asymptotic CCRB was introduced for symbol timing estimation problem.

The asymptotic CCRB is a lower bound tighter than the modified Cramer-Rao bound

(MCRB), but still a valid lower bound on the variance of any consistent estimator that

is quadratic with respect to the received signal (which is the class of estimators under

consideration). However, the asymptotic CCRB in [9] was derived assuming white

Gaussian noise samples, therefore, the whitening technique similar to that in Section

B3 of this chapter has to be applied in order to include the effect of the receiving

filter. Applying the results of [9] to the transformed observation vector (ϕ−1/2)Hr, it

can be shown that for fixed εo,

CCRBas(εo) =
1

2tr(D̃H
εo
Ωεo

D̃εo
)

(
Es

No

)−1
(3.14)

where D̃ε , 1√
Q
dAε/dε and Ωε , ϕ−1 − ϕ−1Aε(A

H
ε ϕ

−1Aε)
−1AH

ε ϕ
−1. Since the

symbol timing delay εo is assumed to be uniformly distributed in [0, 1), the average

asymptotic CCRB can be calculated by numerical integration of (3.14). Notice that

although the value of Q appears in the expression of the asymptotic CCRB, numerical

computations show that the asymptotic CCRB is independent of Q as long as Q ≥ 2.

This is reasonable, since the asymptotic CCRB is derived under the assumption of

white noise, oversampling the signal above Nyquist rate does not provide any new

information, thus the ultimate performance cannot be improved.
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2. MSE Expression

In this section, we present the MSE expression for the general estimator (3.2). The

derivation procedures follow closely to that in Chapter II. The only difference is that,

the MSE expression in Chapter II was derived under the assumption of white noise,

while in this chapter, the correlation of noise has to be taken into consideration. This

can be easily done by modifying just a few lines of the derivations in Appendix A,

and therefore only the results are presented here. It can be shown that for a true

timing delay εo, the MSE of the general estimator (3.2) is given by

MSE(εo) , E[(ε̂− εo)
2] ∼= −

(
1

2π

)2
Re(φ1)− φ2
Re(φ1) + φ2

, (3.15)

where

φ1 , ej4πεo

K−1∑

k1=0

K−1∑

k2=0

E[Λ(k1)Λ(k2)]e
−j2πk1/Ke−j2πk2/K , (3.16)

φ2 ,

K−1∑

k1=0

K−1∑

k2=0

E[Λ(k1)Λ
∗(k2)]e

−j2πk1/Kej2πk2/K . (3.17)

In the above equations,

E[Λ(k1)Λ(k2)] = tr[BT
k1
Rεo
]tr[BT

k2
Rεo
] + tr[BT

k1
Rεo

BT
k2
Rεo
] + c(k1, k2), (3.18)

E[Λ(k1)Λ
∗(k2)] = tr[BT

k1
Rεo
]tr[Bk2

Rεo
] + tr[BT

k1
Rεo

Bk2
Rεo
] + c(k1, k2), (3.19)

where tr[.] denotes the trace of a matrix, Rε , Es

T
Pε +

NoQ
T
ϕ,

[Pε]ij ,

∞∑

n=−∞
p∗(iT/Q− nT − εT )p(jT/Q− nT − εT ), (3.20)

c(k1, k2) ,
E2

s

T 2
(m4 − 2)

∞∑

n=−∞
[an(εo)

HBk1
an(εo)][an(εo)

HBk2
an(εo)], (3.21)

with an(εo) defined in (3.11), and m4 = E[|di|4] is the fourth order moment of the

transmitted symbols, which is fixed for a specific constellation (e.g., m4 = 1 for PSK
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and m4 > 1 for QAM). As the symbol timing delay εo is assumed to be uniformly

distributed in [0, 1), the average MSE is calculated by numerical integration of (3.15).

Notice that if we put gr(t) = δ(t), then we obtain the corresponding expressions given

in Chapter II.

D. Numerical Examples and Discussions

In this section, the general analytical MSE expression presented in the last section

will be plotted as a function of Es/No for different estimators. The analytic results

are compared with the corresponding simulation results and the asymptotic CCRB.

All the results are generated assuming i.i.d. QPSK data, Lo = 100, both g(t) and

gr(t) are square root raised cosine pulses with α = 0.3, Lp = 3, and εo is uniformly

distributed in the range [0, 1). The carrier phase θo is generated as a uniformly

distributed random variable in the range [−π, π), and assumed constant during each

estimation. Each simulation point is obtained by averaging 104 simulation runs. The

asymptotic CCRB is computed assuming Q = 2. In this chapter, the results of the

following representative estimators are presented:

1. Modified Lee’s estimator [44]. The Lee’s estimator is an algorithm obtained

from an ad-hoc argument. Its modified version is used since it has a better

performance than the original version.

2. Feedforward CML estimator in Chapter II. This is an algorithm derived from a

well-known statistical signal processing approach, namely the ML principle.

3. SLN estimator [3]. This estimator belongs to the class of cyclic correlation-

based estimator (3.3). It is chosen because it was shown in [42] and [7] that the

performance of (3.3) for τ = 0 appears to be the best.
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4. SLN estimator with pre-filter [43]. This estimator is included to demonstrate

the efficiency of pre-filter. The pre-filter used is h(n) = p(t) cos(2πt/T )|t=nT/Q

for n = −5Q, ..., 5Q (i.e., Lpre = 10Q+ 1) [43].

Notice that the first two estimators assume an oversampling ratioQ = 2, while the last

two estimators assume an oversampling ratio Q = 4. The parameters for these four

estimators when expressed in the form of the general estimator (3.2) are summarized

in Table I.

Table I. Parameters of different feedforward timing estimation algorithms when ex-

pressed in the form of the general estimator
Q Bk K remark

Modified Lee’s estimator [36] 2 eqn. (3.8) 4 –
Feedforward CML estimator 2 eqn. (3.9) 4 Lp = 3

SLN estimator [3] 4 eqn. (3.5) 4 –

SLN estimator with pre-filter [43] 4 eqn. (3.13) 4
h(n) = p(nT/Q) cos(2πn/Q)

for n = −5Q, ..., 5Q

For the computation of BCML
k and CCRBas(εo), there is a need to calculate ϕ

−1.

Unfortunately, numerical calculations show that, for the gr(t) under consideration, ϕ

is not full rank (at least to the accuracy of Matlab). A main reason for rank deficiency

is that, due to the nature of gr(t), when |i − j| is large, the values of [ϕ]ij are very

very small but not zero. A way to get around this is to replace ϕ−1 by ϕ̄−1, where

[ϕ̄]ij = [ϕ]ij if |i − j| < LϕQ and zero otherwise. In this way, the matrix ϕ̄ can be

made full rank, but at the same time, significant part of the correlation between noise

samples can still be represented accurately. Since most of the correlation induced

by gr(t) is confined to a duration of a few symbols, Lϕ = 4 is used for the rest of

the chapter. Notice that the matrix ϕ in Rε need not to be replaced by ϕ̄ since no

inversion is required.

Fig. 11 shows the results for the modified Lee’s estimator and the feedforward

CML estimator. It can be seen that the analytical and simulation results match
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Fig. 11. Analytic and simulated MSEs for modified Lee’s estimator and feedforward

CML estimator.

very well. Furthermore, the feedforward CML estimator performs much better than

the modified Lee’s estimator at high Es/No and its performance coincides with the

asymptotic CCRB, meaning that the feedforward CML estimator is the best (in terms

of MSE performance) within the class of symbol timing estimators employing second-

order statistics. Fig. 12 shows the results for the SLN estimator with and without pre-

filter. This figure also shows that the simulation results match the analytical results

very well. Moreover, the figure shows that the application of a properly designed pre-

filter removes the estimation error floor at high Es/No and makes the performance of

the resultant estimator reaches the asymptotic CCRB.
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Fig. 12. Analytic and simulated MSEs for SLN estimator with and without pre-filter.

E. Conclusions

In this Chapter, all the previously proposed feedforward symbol timing estimators

employing second-order statistics were formulated into a unified framework. The

finite sample mean square error (MSE) expression and the asymptotic conditional

Cramer-Rao bound (CCRB) for this class of estimators were established. It was

found that the analytical and simulation results match very well. Furthermore, it was

found that the feedforward CML estimator and the SLN estimator with a properly

designed pre-filter [43] perform the best and their performances coincide with the

asymptotic CCRB, which is the performance lower bound for the class of estimators

under consideration.
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CHAPTER IV

SYMBOL TIMING ESTIMATION IN MIMO FLAT-FADING CHANNELS – A

HEURISTIC APPROACH

A. Introduction

Communication over multiple-input-multiple-output (MIMO) channels has attracted

much attention recently [45]-[55] due to the huge capacity gain over single antenna sys-

tems. While many different techniques and algorithms have been proposed to explore

the potential capacity, synchronization in MIMO channels received comparatively less

attention.

Symbol timing synchronization in MIMO uncorrelated flat-fading channels was

first studied by Naguib et al. [11], where orthogonal training sequences are transmit-

ted at different transmit antennas to simplify the maximization of the oversampled

approximated log-likelihood function. The sample having the largest magnitude, so

called the “optimal sample”, is assumed to be closest to the optimum sampling in-

stants (it will be referred as the optimum sample selection algorithm in the sequel for

convenience). However, it is shown in this chapter that the mean square error (MSE)

of this algorithm is lower bounded by 1/(12Q2), where Q is the oversampling ratio.

As a result, the performance of this timing synchronization method highly depends on

the oversampling ratio. In fact, relatively high oversampling ratios might be required

for accurate symbol-timing estimation.

In this chapter, a new symbol-timing estimator for MIMO flat-fading channels

is proposed. It improves the optimum sample selection algorithm in [11] so that

accurate timing estimates can be obtained even if the oversampling ratio is small.

The increase in implementation complexity with respect to that of optimum sample



48

selection algorithm is very small. The requirements and the design procedures for

the training sequences are discussed. Analytical expression for MSE of the proposed

estimator is also derived. Both analytical and simulation results show that, for modest

oversampling ratio (such as Q=4), the MSE of the proposed estimator is significantly

smaller than that of the optimum sample selection algorithm. Furthermore, the

effects of the number of transmit and receive antennas, the oversampling ratio, and

the length of training sequence on the MSE are also examined.

This chapter is organized as follows. The system model of a MIMO commu-

nication system is first described in Section B. A brief overview of the optimum

sample selection algorithm for symbol-timing synchronization in MIMO communica-

tion systems is given in Section C. Requirements and design of training sequences are

discussed in Section D. The proposed symbol-timing estimator is then presented in

Section E. Analytical MSE expressions are derived in Section F. Simulation results

and discussions are then presented in Section G, and finally conclusions are drawn in

Section H.

B. Signal Model

Consider a MIMO communication system with N transmit and M receive antennas.

At each receiving antenna, a superposition of faded signals from all the transmit

antennas plus noise is received. It is assumed that the channel is frequency flat and

quasi-static. The complex envelope of the received signal at the j th receive antenna

can be written as

rj(t) =

√
Es

NT

N∑

i=1

hij

∑

n

di(n)g(t− nT − εoT ) + ηj(t), j = 1, 2, ...,M (4.1)
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where Es/N is the symbol energy; hij is the complex channel coefficient between the

ith transmit antenna and the jth receive antenna; di(n) is the zero-mean complex

valued symbol transmitted from the ith transmit antenna; g(t) is the transmit filter

with unit energy; T is the symbol duration; εo is the unknown timing offset, which is

assumed to be uniformly distributed in the range [−0.5, 0.5); and ηj(t) is the complex-

valued circularly distributed Gaussian white noise at the j th receive antenna, with

power density No. Notice that the timing offsets between all pairs of transmit and

receive antennas are assumed to be the same. This assumption holds when both the

transmit and receive antenna array sizes are small.

The received signal is filtered by the matched filter gr(t) and then sampled at a

rate Q times faster than the symbol rate 1/T . The sampled signal at the j th receive

antenna is given by

rj(m) =

√
Es

NT

N∑

i=1

hij

∑

n

di(n)p(mT/Q− nT − εoT ) + ηj(m), (4.2)

where rj(m) , rj(mT/Q), p(t) , g(t) ? gr(t), ηj(m) , nj(t) ? gr(t)|t=mT/Q. Through-

out this chapter, it is assumed that both g(t) and gr(t) are square root raised cosine

filter with roll-off factor α, and the channel coefficient hij’s are independent of each

other.

C. Timing Synchronization by Optimum Samples Selection

As proposed in [11], orthogonal training sequences can be periodically transmitted in

between data symbols (as shown in Fig. 13 for a two transmit antennas system) to

assist the timing synchronization. The idea is that at the receiver, if the position of

the orthogonal training sequences can be correctly located, signal from any one of the

transmit antennas can be extracted (and signals from other antennas are removed) by



50

c1
Data

LtLp

c2
Data
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Data

Data
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Fig. 13. Structure of the training sequence for symbol timing synchronization in a two

transmit antenna system.

multiplying the received signal with the orthogonal sequence transmitted from that

antenna. Note that the structure of training sequences in this chapter is different

from that presented in [11]. In this chapter, a cyclic prefix and cyclic suffix, each of

length Lp, are included in order to remove the inter-symbol interference (ISI) from the

random data transmitted before and after the orthogonal training sequences. Since

Lp is usually kept as a small number, the increase in length of training is very small,

especially when the length of the orthogonal training sequences is large.

Let ci = [ci(0) ci(1)...ci(Lt − 1)] be the ith (i = 1, ..., N) orthogonal training

sequence of length Lt to be transmitted from the i
th transmit antenna. The sampled

signal at the jth receive antenna can be obtained by replacing di(n) in (4.2) with

ci(n). Further, let m = lQ + k (l = 0, 1, ..., Lt − 1 and k = ko, ko + 1, ..., ko + Q − 1,

where ko = −b(1/2− εo)Qc and bxc denotes the nearest integer less than or equal to

x), so that each sample is indexed by the lth training bit and the kth phase. In order

to maintain the orthogonality between the received training sequences and the local

copies, the first phase is taken at −b(1/2 − εo)Qc such that all the Q samples for
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the lth training bit are taken from −T/2 ≤ t − lT ≤ T/2. Then the received signal

rj(lQ+ k) due to the orthogonal training sequences can be rewritten as

rj(lQ+ k) =

√
Es

NT

N∑

i=1

hij

∑

n

ci(n)p(kT/Q+ (l − n)T − εoT ) + ηj(lQ+ k) (4.3)

for l = 0, 1, ..., Lt − 1, and k = 0, 1, ..., Q− 1,

where εo , εo + ko/Q. Note that ko has been dropped from the index of ηj(lQ + k)

since a fixed time shift does not affect the noise statistics. In practice, it is sufficient

to estimate εo only as it represents the time difference between the first sample of the

training sequence and the next nearest optimum sampling instance. Grouping the

samples with the same phase, one can form the vector rj(k) as follows:

rj(k) , [rj(k) rj(Q+ k) rj(2Q+ k) ... rj((Lt − 1)Q+ k)]T (4.4)

=

√
Es

NT

N∑

i=1

hijCip(k) + ηj(k) (4.5)

where

Ci ,




ci(mod(−Lp, Lt)) ci(mod(−Lp + 1, Lt)) . . . ci(mod(Lp, Lt))

ci(mod(−Lp + 1, Lt)) ci(mod(−Lp + 2, Lt)) . . . ci(mod(Lp + 1, Lt))

...
...

...

ci(mod(−Lp + Lt − 1, Lt)) ci(mod(−Lp + Lt, Lt)) . . . ci(mod(Lp + Lt − 1, Lt))




(4.6)

p(k) , [p(kT/Q− LpT − εoT ) p(kT/Q− (Lp − 1)T − εoT )

... p(kT/Q+ LpT − εoT )]
T (4.7)

ηj(k) , [ηj(k) ηj(Q+ k) ... ηj((Lt − 1)Q+ k)]T . (4.8)

Define the sequence λij(k) , cHi rj(k), where c
H
i denotes the transpose conjugate
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of ci. Since ci’s are orthogonal to each other when the relative delay is zero, it follows

that

λij(k) =

√
Es

NT
hijp(

kT

Q
− εoT )‖ci‖2 +

√
Es

NT

N∑

i′=1

hi′jc
H
i C̃i′p̃(k) + cHi ηj(k), (4.9)

for k = 0, . . . , Q− 1, ‖ci‖ ,
√
cHi ci is the norm of ci, which is a constant; C̃i is the

same as Ci but with the (Lp+1)
th column removed and p̃(k) is the same as p(k) but

with the (Lp + 1)
th entry removed. The second term in (4.9) represents the ISI if the

training sequences are not orthogonal when the relative delay is not zero. The last

term in (4.9) is the noise term.

From (4.9), it can be observed that, if the second and third terms are very small

(a training sequence design procedure that make the second term zero is discussed in

the next section; the third term is small at high Signal-to-Noise Ratios (SNRs)), λij(k)

has the same shape as p(t) for −T/2 ≤ t ≤ T/2, except that it is scaled by a complex

channel gain and is corrupted by additive noise. In order to remove the effect of the

channel, consider the sequence Λij(k) , |λij(k)|2. Now, the sequence Λij(k) should

have a similar shape to the function |p(t)|2 for −T/2 ≤ t ≤ T/2. This is illustrated

in Fig. 14, where an example sequence of Λij(k) is shown (Q=8, Lt=32, Lp=3, and in

the absence of noise). Note that a scaled version of |p(t)|2 for −T/2 ≤ t ≤ T/2 is also

shown (in dotted line) for comparison. It can be seen that the optimum sampling

time is at t=0 and the sample with maximum amplitude is the one closest to the

optimum sampling instant than the remaining samples.

A simple symbol-timing synchronization algorithm is to choose a value of k closest

to the optimum sampling instants. That is, the optimum sampling phase k = k̂ is

selected such that it maximizes Λij(k). Since the channels for different antennas are

independent, the average of Λij(k) over all i and j is maximized (see (4.11), where
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Fig. 14. An example of Λij(k) with the scaled version of |p(t)|2 for −T/2 ≤ t ≤ T/2

(dotted line).

the scaling factor 1/MN is not included in order to preserve a simplified notation).

As mentioned in [11], this represents the samples of an approximated log likelihood

function for symbol-timing synchronization, when the ISI plus noise term in (4.9) is

assumed to be Gaussian. Therefore, the optimum sampling phase is selected as [11]

k̂ = max
k=0,1,...,Q−1

ΛML(k) (4.10)

with

ΛML(k) =
M∑

j=1

N∑

i=1

Λij(k). (4.11)

Under the optimistic assumption that the samples closest to the optimum sam-

pling positions are correctly estimated (at high SNRs), the estimation error, normal-

ized with respect to the symbol duration, is a uniformly distributed random variable

in the range [−1/2Q, 1/2Q]. Therefore, the MSE is 1/(12Q2). Thus, a relatively high
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oversampling ratio might be required in order to obtain a small MSE.

D. Design of Training Sequences

The performance of the proposed timing estimator is directly influenced by the pres-

ence of ISI and noise terms in (4.9). In order to minimize the contribution of the ISI

term in (4.9), the training sequences need to be designed such that

cHi C̃i′ = 0 , (4.12)

for all combinations of i and i′. Combining with the fact that sequences from different

antennas have to be orthogonal when the relative delay is zero, the problem of training

sequences design resumes to finding N sequences such that

CH
i Ci′ =




‖ci‖2I2Lp+1, if i = i′;

0, if i 6= i′.
(4.13)

This is exactly the problem of designing multiple (2Lp + 1)-perfect sequences [56]-

[58], with each of length Lt. Here, we just mention the procedures for designing the

training sequences, interested readers can refer to the original papers [56]-[58] for

details.

1. Construct a sequence s = [s(0) s(1) ... s(Lt− 1)] with length Lt such that all of

its out-of-phase periodic auto-correction terms are equal to zero. One example

of this kind of sequence is Chu sequence [59].

2. Construct another sequence s′ = [s′(0) s′(1) ... s′(Lt + 2NLp − 1)] of length

Lt + 2NLp as follows

s′ = [s(0) s(1) ...s(Lt − 1)︸ ︷︷ ︸
s

s(0) s(1) ... s(2NLp − 1)]. (4.14)
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Note that Lt ≥ 2NLp must be satisfied. That is, if the number of transmit

antenna N is large, we cannot use training sequences with short length.

3. The orthogonal training sequences are given by

ci = [s
′((2i− 1)Lp) ... s

′((2i− 1)Lp + Lt − 1)]. (4.15)

For example, let consider Lt=32, Lp=3, N=2. First we construct a Chu sequence

of length 32. Then cyclically extend the Chu sequence by copying the first 2 × 2 ×

3 = 12 bits and putting them at the back. Then, c1 = [s
′(3) s′(4) ... s′(34)] and

c2 = [s
′(9) s′(10) ... s′(40)].

E. Timing Synchronization by Estimation

In optimum samples selection algorithm, symbol timing is estimated by maximization

of the oversampled approximated log-likelihood function. As the number of samples

becomes very large (which requires a large oversampling ratio), the estimate could

become accurate. However, noting that the approximated log likelihood function is

‘smooth’ (see Fig. 14), we expect that the maximization of the log-likelihood function

can be done by interpolation based on a few samples, thus keeping the oversampling

ratio at a small number.

More precisely, let us construct a periodic sequence Λ̃ML(m) by periodically

extending the approximated log likelihood sequence ΛML(k) in (4.11). Further, denote

Λ̃ML(ε) as the continuous and periodic approximated log likelihood function with its

samples given by Λ̃ML(m). According to sampling theorem, as long as the sampling

frequency Q/T is higher than twice the highest frequency of Λ̃ML(ε), then Λ̃ML(ε) can

be represented by its samples Λ̃ML(m) without loss of information. The relationship
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between Λ̃ML(ε) and Λ̃ML(m) is then given by

Λ̃ML(ε) =
∞∑

m=−∞
Λ̃ML(m)sinc

(
π
εT −mT/Q

T/Q

)
. (4.16)

Now, expand Λ̃ML(ε) into a Fourier series

Λ̃ML(ε) =
∞∑

`=−∞
A`e

j2π`ε (4.17)

where

A` =

∫ 1

0

Λ̃ML(ε)e
−j2π`εdε. (4.18)

Substituting (4.16) into (4.18) yields

A` =
∞∑

m=−∞
Λ̃ML(m)

∫ 1

0

sinc

(
π
εT −mT/Q

T/Q

)
e−j2π`εdε

=

Q−1∑

k=0

ΛML(k)
∞∑

l=−∞

∫ 1

0

sinc

(
π
εT − lT − kT/Q

T/Q

)
e−j2π`εdε

=

Q−1∑

k=0

ΛML(k)e
−j2π`k/Q 1

Q
F{sinc(πε)}f=`/Q, (4.19)

where F{} denotes the Fourier transform. It is clear that if Q is even,

A` =





1
Q

∑Q−1
k=0 ΛML(k)e

−j2π`k/Q for ` = −Q/2 + 1, ..., Q/2− 1
1
2Q

∑Q−1
k=0 ΛML(k)e

−j2π`k/Q for ` = −Q/2, Q/2

0 otherwise

, (4.20)

and if Q is odd,

A` =





1
Q

∑Q−1
k=0 ΛML(k)e

−j2π`k/Q for ` = −bQ/2c, ..., bQ/2c

0 otherwise
. (4.21)

From (4.17), it can be seen that once the coefficients A` are determined, the

timing delay εo can be estimated by maximizing Λ̃ML(ε) for 0 ≤ ε ≤ 1. Note that
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ΛML(k) only contains samples of the approximated log-likelihood function at certain

delays, while Λ̃ML(ε) is a continuous function of ε. Therefore, maximizing Λ̃ML(ε)

provides a more accurate estimate of the timing delay than maximizing ΛML(k).

For efficient implementation, the maximization can be performed by Discrete Fourier

Transform (DFT)-based interpolation. More specifically, Λ̃ML(ε) for 0 ≤ ε ≤ 1 can

be approximated by an K ′-point sequence, denoted as ΛML(k
′) for 0 ≤ k′ ≤ K ′ − 1,

by zero padding the high frequencies coefficients of A` and performing a K
′-point

inverse Discrete Fourier Transform (IDFT). For sufficiently large value of K ′, ΛML(k
′)

becomes very close to Λ̃ML(ε) for 0 ≤ ε ≤ 1, and the index with the maximum

amplitude can be viewed as an improved estimate of the timing parameter εo.

To avoid the complexity in performing the K ′-point IDFT, an approximation

is applied to (4.17). More precisely, extensive simulations show that A±1 are much

greater than A` for |`| > 1, therefore,

Λ̃ML(ε) ≈ A0 + 2Re{A1ej2πε} for 0 ≤ ε ≤ 1 . (4.22)

In order to maximize the approximated log likelihood function Λ̃ML(ε), we have

arg(A1) = −2πε, (4.23)

where arg(x) denotes the phase of x. Or equivalently,

ε̂ = − 1
2π
arg{

Q−1∑

k=0

ΛML(k)e
−j2πk/Q}. (4.24)

The estimated delay ε̂ is the time between the first sampling phase and the nearest

optimum sampling instant. The calculation within the arg-operation is actually the

2nd output of a Q-point DFT of the sequence (or the Fourier coefficient at symbol

rate f = 1/T ). Note that the increase in complexity of the proposed algorithm

in (4.24) with respect to that of optimum samples selection algorithm is only a Q-
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point DFT (which can be efficiently implemented using Goertzel’s algorithm) and

an arg-operation. From the simulation results to be presented at Section G, it is

found that an oversampling factor Q of 4 is sufficient to yield good estimates in

practical applications. Therefore, the 4-point DFT in (4.24) can be computed easily

without any multiplications since exp (−j2πk/4) ∈ {±1,±j}. This greatly reduces

the arithmetic complexity of implementation.

F. Performance Analysis

The MSE expression of the proposed estimator as a function of Es/No is derived in

this section. First, express the true delay as

εo = −
1

2π
arg(e−j2πεo). (4.25)

Taking the difference between (4.24) and (4.25), the MSE is given by

E[(ε̂− εo)
2] =

(
1

2π

)2
E

[(
arctan

{
Imφ

Reφ

})2]
(4.26)

where

φ , ej2πεo

Q−1∑

k=0

ΛML(k)e
−j2πk/Q. (4.27)

Applying the approximation arctan(x) ≈ x for small x, we have

E[(ε̂− εo)
2] ≈

(
1

2π

)2
E

[(
φ− φ∗

j(φ+ φ∗)

)2]

≈ −
(
1

2π

)2
E[φ2]− 2E[φφ∗] + E[(φ∗)2]

E[φ2] + 2E[φφ∗] + E[(φ∗)2]

= −
(
1

2π

)2
Re{E[φ2]} − E[φφ∗]

Re{E[φ2]}+ E[φφ∗]
. (4.28)

The second approximation is justified by the fact that the mean of the denominator

E[(φ + φ∗)2] is much larger than the mean of the numerator E[(φ − φ∗)2] (which is
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Fig. 15. Magnitude of E[(φ − φ∗)2] and E[(φ + φ∗)2] as a function of Es/No for

εo = −0.5, − 0.25, 0, 0.25 and 0.5 (N = 2, M = 4, α=0.3, Q=4, Lt=32,

Lp=4). Note that all curves for different values of εo overlap.

illustrated in Fig. 15 for εo = −0.5, − 0.25, 0, 0.25 and 0.5 with N = 2, M = 4,

α=0.3, Q=4, Lt=32 and Lp=4) and the variance of the numerator and denominator

are much smaller than the mean of the denominator (which is true for medium to high

SNRs). Some additional explanations regarding this approximation can be found in

[16]. The last equality of (4.28) is due to the that fact E[(φ∗)2] = (E[φ2])∗.

It is proved in Appendix B that

E[φ2] = E2
sL

2
tMNej4πεo (4.29)

·
[
L2t
(1 +MN)

N2T 2
Ξ2SS +

(
Es

No

)−1
2Lt

NT
ΞSN +

(
Es

No

)−2
ΞNN

]
,

E[φφ∗] = E2
sL

2
tMN (4.30)

·
[
L2t
(1 +MN)

N2T 2
|ΞSS|2 +

(
Es

No

)−1
2Lt

NT
Ξ̃SN +

(
Es

No

)−2
Ξ̃NN

]
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where

ΞSS ,

Q−1∑

k=0

p2(kT/Q− εoT )e
−j2πk/Q (4.31)

ΞSN ,

Q−1∑

k′=0

Q−1∑

k′′=0

p(k′T/Q− εoT )p(k
′′T/Q− εoT ) (4.32)

·ϕ((k′ − k′′)T/Q)e−j2πk
′′/Qe−j2πk

′/Q

ΞNN ,

Q−1∑

k′=0

Q−1∑

k′′=0

ϕ2((k′ − k′′)T/Q)e−j2πk
′′/Qe−j2πk

′/Q (4.33)

Ξ̃SN ,

Q−1∑

k′=0

Q−1∑

k′′=0

p(k′T/Q− εoT )p(k
′′T/Q− εoT ) (4.34)

·ϕ((k′ − k′′)T/Q)ej2πk
′′/Qe−j2πk

′/Q

Ξ̃NN ,

Q−1∑

k′=0

Q−1∑

k′′=0

ϕ2((k′ − k′′)T/Q)ej2πk
′′/Qe−j2πk

′/Q (4.35)

and

ϕ(τ) ,

∫ ∞

−∞
gr(t)g

∗
r(t+ τ)dt (4.36)

is the correlation between noise samples introduced by the matched filter.

Since the timing delay is assumed to be uniformly distributed, the average MSE

can be calculated by numerical integration of (4.28).

G. Simulation Results and Discussions

The performances of the synchronizers based on the optimum sample selection (4.10)

and the proposed algorithm (4.24) are evaluated in this section. The MSE of the

estimates are calculated using both the analytic expressions derived in the last section

and Monte Carlo simulations, where each MSE value is obtained by averaging over

105 estimates. The timing offset εo is generated to be uniformly distributed in the

interval [−0.5, 0.5). The channel coefficients hij are generated as complex Gaussian

random variables with zero mean and a variance of 0.5 per dimension. The pulse
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shape p(t) is a raised cosine pulse with excess bandwidth α = 0.3. The training

sequences are generated following the procedures in Section D with Lp = 4. Without

loss of generality, we assume T = 1. In all the figures, MSE of both the proposed

algorithm and the optimum sample selection algorithm are plotted against Es/No,

with the markers showing the simulation results, while the solid lines represent the

theoretical MSE derived in the last section.

1. Effect of Oversampling Ratio

In (4.16), it is assumed that the sampling frequency is at least twice the highest

frequency of Λ̃ML(ε). Since Λ̃ML(ε) has the same shape as |p(t)|2 for −T/2 ≤ t ≤ T/2,

where p(t) is a raised cosine pulse, it is natural to predict that the sampling frequency

Q/T has to be greater than 2× 2/T (i.e., Q ≥ 4). This prediction is corroborated by

Fig. 16, where the MSE are shown for Q=2, 4, 8 and 16 in a two-transmit, four-receive

antenna system with Lt=32. Several conclusions can be drawn from the figure:

1. Performances of the optimum sample selection algorithm are lower bounded by

1/(12Q2), and are poorer than that of the proposed algorithm, for all value of Q

(except Q=2, in which case the performances of both algorithms are the same).

2. It can be seen that for Q=2, the MSE of the proposed algorithm is much higher

than that corresponding to other oversampling ratios. This confirms the above

argument that Q has to be greater than 4 in order to represent Λ̃ML(ε) without

much loss of information. ForQ=8 andQ=16, the performance improves at high

Es/No. This can be explained by the fact that Λ̃ML(ε) is a truncated version

of |p(t)|2, so Λ̃ML(ε) is no longer bandlimited. Therefore, Λ̃ML(m) would, in

general, suffer from aliasing from the neighboring spectra. Increasing Q thus

reduces the aliasing and improves the performance.



62

-10
 -5
 0
 5
 10
 15
 20
 25
 30
 35
 40

10


-7


10

-6


10

-5


10

-4


10

-3


10

-2


10

-1


E
s
/
N
o
 (dB)


M

S

E




Q
=2


Q
=4


Q
=8


Q
=16


Proposed algorithm


Optimum sample selection


Both algorithms


Fig. 16. MSE performance for different oversampling ratios Q (N=2, M=4, Lt=32,

α=0.3).

3. The analytical MSEs (solid lines in the figure) match very well with the simula-

tion results for Q=4, 8 and 16. Note that for Q=2, the analytic MSE expression

does not hold and only the simulation results have been plotted in Fig. 16.

4. Strictly speaking, Q should be at least equal to 16 in order to represent Λ̃ML(ε)

using its samples Λ̃ML(m) without loss of information. However, for Q=4,

the MSE of the proposed algorithm reaches the order of 10−5 at medium and

high Es/No, which is a reasonably good performance in practical applications.

Because of this reason, Q = 4 is used to generate the simulation results for the

rest of this chapter.
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Fig. 17. MSE performance for different lengths of the training sequence (N=2, M=4,

Q=4, α=0.3).

2. Effect of Length of Training Sequences

Fig. 17 shows the MSE of a two-transmit, four-receive antenna system with different

lengths (Lt) of the training sequences. In this figure, it can be seen that increasing

the length of training sequences improves the performance at low Es/No. But at high

Es/No, the MSEs are the same for all Lt. Again, the performance of the proposed

algorithm is much better than that of optimum samples selection algorithm. It is also

notable that the analytic MSE expressions match the simulation results very well.

3. Effect of Number of Receive Antennas

Fig. 18 compares the MSE for different number of receive antennas when two transmit

antennas and Lt = 32 are used. We can see that increasing the number of receive

antennas reduces the MSE at low Es/No, but it does not help at high Es/No. The
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proposed algorithm exhibits much smaller MSE than the optimum sample selection

algorithm. When comparing the theoretical and simulation results of the proposed

algorithm, it can be seen that they match pretty well except for M = 1 case. This

is due to the fact that the arctan approximation in (4.28), in general, holds only for

AWGN channels1 but not for fading channels. In the presence of fading, the channel

output may assume a large range of values and the approximation does not hold

anymore. Of course, a better approximation, such as arctan(x) ≈ x − x3/3 + x5/5

may be used, but the analysis would become extremely complicated as higher order

moments are involved. Fortunately, as the number of transmit or receive antenna

increases, the equivalent averaged channel across all transmit/receive antennas tends

to behave like an AWGN channel and the approximation becomes valid again. This

can be seen from the cases M = 2 and M = 4, the theoretical and the simulation

results are closer when compared with the M = 1 case. For M = 8 and M = 16, the

theoretical and the simulation results match exactly.

4. Effect of Number of Transmit Antennas

Finally, we assess the MSE when different number of transmit antennas are used

with Lt = 64. The results shown in Fig. 19 illustrate that increasing the number

of transmit antennas does not change the MSE performances. The theoretical and

the simulation results for the proposed algorithm match very well. Once again, the

proposed algorithm performs much better.

1Note that this approximation has been applied in similar applications [3], [60] in
AWGN channels only.
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Fig. 18. MSE performance for different number of receive antennas M (N=2, Lt=32,

Q=4, α=0.3).
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Fig. 19. MSE performance for different number of transmit antennas N (Lt=64, Q=4,

α=0.3, M=2).
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H. Conclusions

A new symbol-timing delay estimator for MIMO flat-fading channels has been pro-

posed. It improves the optimum sample selection algorithm of Naguib et al. [11] such

that accurate timing estimates are obtained even if the oversampling ratio is small.

The increase in implementation complexity with respect to the optimum sample se-

lection algorithm is very small. The requirements and the design procedure for the

training sequences are discussed. Analytical expressions for MSE of the proposed

estimator are derived. It is shown that the MSE analytical expressions match very

well with the simulation results in most of the cases. Simulation results also show

that, for modest oversampling ratios (such as Q=4), the MSE of the proposed esti-

mator is significantly smaller than that of the optimum sample selection algorithm.

Furthermore, the performance of the proposed algorithm improves with the number

of receive antennas being employed or the length of training sequences.
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CHAPTER V

SYMBOL TIMING ESTIMATION IN MIMO FLAT-FADING CHANNELS –

MAXIMUM LIKELIHOOD APPROACH

A. Introduction

In Chapter IV, we extended the symbol timing estimation algorithm by Naguib et al.

[11] such that accurate timing estimates are obtained even if the oversampling ratio is

small. However, the algorithms in [11] and that in Chapter IV are derived in an ad hoc

fashion and there is no objective criteria for comparison. In this chapter, we approach

the same problem using the maximum likelihood (ML) technique. Furthermore, due

to a different system model employed in this chapter, the correlation between antennas

can be easily taken care of.

More specifically, in this chapter, the data aided (DA) and non-data aided (NDA)

maximum likelihood (ML) symbol timing estimators in MIMO correlated flat-fading

channels are derived. The technique of conditional ML [9], [10], in which the nuisance

parameters are treated as deterministic but unknown and are estimated together with

the parameter of interest, is employed. The advantage of conditional ML method is

that there is no need to know or assume the statistical properties of the nuisance

parameters. It is shown that the approximated ML algorithms in [11] and Chapter

IV are just a special case of the DA ML estimator; while the extended squaring

algorithm in [61] is just a special case of the NDA ML estimator. For the DA case, the

optimal orthogonal training sequences are also derived. It is found that the optimal

orthogonal training sequences resemble Walsh sequences, but with different envelopes.

Two performance bounds are derived for comparison. The first one is the conditional

Cramer-Rao bound (CCRB) [62], [63], which is the Cramer-Rao bound (CRB) for
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the symbol timing estimation conditioned that the nuisance parameters are treated

as deterministic and are jointly estimated together with the unknown symbol timing.

Therefore, the CCRB serves as a performance lower bound for the ML estimators

derived. The second one is the modified CRB (MCRB) [64], which is a lower bound

for any unbiased symbol timing estimator, irrespective of the underlaying assumption

about the nuisance parameters. Being easier to evaluate than CRB, MCRB serves as

the ultimate estimation accuracy that may be achieved.

Simulation results under different operating conditions (e.g., number of antennas

and correlation between antennas) are given to assess the performances of the DA

and NDA ML estimators and compared to the corresponding CCRBs and MCRBs. It

is found that i) the mean square error (MSE) of the DA ML estimator is close to the

CCRB and MCRB, meaning that the DA ML estimator is almost the best estimator

(in terms of the MSE performance) for the problem under consideration; ii) the MSE

of the NDA ML estimator is close to the CCRB but not MCRB, meaning that NDA

ML estimator is an efficient estimator conditioned that the nuisance parameters are

being jointly estimated, but there might exist other NDA estimators with better

performances; iii) the MSEs of both DA and NDA ML estimators are approximately

independent of the number of transmit antennas and are inversely proportional to

the number of receive antennas; iv) correlation between antennas has little effect on

the MSEs of DA and NDA ML estimators unless the correlation coefficient between

adjacent antennas is larger than 0.5, in which case small degradation errors occur,

and v) DA ML estimator performs better than NDA ML estimator at the cost of

lower transmission efficiency and higher implementation complexity.

The rest of the chapter is organized as follows. The signal model is first described

in Section B. The DA symbol timing estimation problem is addressed in Section C,

in which the ML estimator, the corresponding CCRB and MCRB and the optimal
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orthogonal training sequences are derived. The NDA ML symbol timing estimator

and the corresponding CCRB and MCRB are presented in Section D. Simulation

results are then presented in Section E, and finally conclusions are drawn in Section

F.

B. Signal Model

We start with the same signal model (4.1) in Chapter IV. There is only one small

difference here: the unknown timing offset εo is assumed to be uniformly distributed

in the range [0, 1) rather then [−0.5, 0.5), but this is only for notational convenience

and does not affect the nature of the problem.

After passing through the anti-aliasing filter1, the received signal is then sampled

at rate fs = 1/Ts, where Ts , T/Q. Note that the oversampling factor Q is deter-

mined by the frequency span of g(t); if g(t) is bandlimited to f = ±1/T (an example

of which is the root raised cosine (RRC) pulse), then Q = 2 is sufficient. The received

vector rj, which consists of LoQ consecutive received samples (Lo is the observation

length) from the jth receive antenna, can be expressed as (without loss of generality,

we consider the received sequence start at t = 0)

rj = ξAεo
ZHT

j,: + ηj, (5.1)

where ξ ,
√
Es/NT ,

rj , [rj(0) rj(Ts) ... rj((LoQ− 1)Ts)]
T , (5.2)

Aεo
, [a−Lg

(εo) a−Lg+1(εo) ... aLo+Lg−1(εo)] , (5.3)

ai(εo) , [g(−iT − εoT ) g(Ts − iT − εoT ) ... g((LoQ− 1)Ts − iT − εoT )]
T , (5.4)

1We assume there is no matched filter here. The effect of matched filter can be
taken care of using the pre-whitening technique in Chapter III Section 3.
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Z , [d1 d2 · · · dN ], (5.5)

di , [di(−Lg) di(−Lg + 1) · · · di(Lo + Lg − 1)]T , (5.6)

H ,




h11 h21 · · · hN1

h12 h22 · · · hN2

...
...

h1M h2M · · · hNM




, (5.7)

ηj , [ηj(0) ηj(1) ... ηj(LoQ− 1)]T , (5.8)

with ηj(i) , ηj(iT/Q), and Lg denotes the number of symbols affected by the inter-

symbol interference (ISI) introduced by one side of g(t). Stacking the received vectors

from all the M receive antennas gives

r = ξ(IM ⊗Aεo
)vec(ZHT ) + η , (5.9)

where r , [rT1 rT2 ... r
T
M ]

T and η , [ηT
1 ηT

2 ... η
T
M ]

T .

In order to include the correlation between channel coefficients, the channel trans-

fer function is expressed as:

H =
√
ΦRHi.i.d.

√
ΦT

T
, (5.10)

where ΦT and ΦR are the power correlation matrices [53] (normalized such that the

diagonal elements are ones) of transmit and receive antenna arrays (which are as-

sumed known), respectively; Hi.i.d. ∈ CM×N contains independently and identically

distributed (i.i.d.) zero-mean, unit-variance, circular symmetric complex Gaussian

entries and the matrix square roots denote Cholesky factors such that
√
Φ
√
Φ

H
= Φ.

Note that (5.10) models the correlation among transmit and receive antenna arrays

independently. This model is based on the assumption that only immediate surround-

ings of the antenna array impose the correlation between antenna array elements and
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have no impact on the correlations at the other end of the communication link. The

validity of this model for narrowband nonline-of-sight MIMO channels is verified by

recent measurements [50]-[53]. Substituting (5.10) into (5.9), we obtain:

r = ξ(IM ⊗Aεo
)vec(Z

√
ΦTH

T
i.i.d.

√
ΦR

T
) + η. (5.11)

C. Symbol Timing Estimation with Known Training Data

1. ML Estimator

In this case, the matrix Z contains the known training sequences and the only un-

known is Hi.i.d.. Noting the fact that vec(AYB) = (BT ⊗ A)vecY, then (5.11)

becomes

r = ξ(IM ⊗Aεo
)(
√
ΦR ⊗ Z

√
ΦT )vec(H

T
i.i.d.) + η

= ξ(
√
ΦR ⊗Aεo

Z
√
ΦT )vec(H

T
i.i.d.) + η, (5.12)

where the last line comes from the fact that (A⊗B)(C⊗D) = (AC)⊗ (BD).

From (5.12), the joint maximum likelihood estimate of εo and vec(H
T
i.i.d.) is ob-

tained by maximizing

p(r|ε,h) = 1

(πNo)LoQ
exp

[
−(r− Āεh)

H(r− Āεh)

No

]
, (5.13)

or equivalently minimizing

J1(r|ε,h) = (r− Āεh)
H(r− Āεh), (5.14)

where Āε , ξ(
√
ΦR ⊗ AεZ

√
ΦT ), and ε and h are the trial values for εo and

vec(HT
i.i.d.), respectively.

Setting the partial derivatives of J1(r|ε,h) with respect to h equal to zero, we
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obtain the ML estimate for vec(HT
i.i.d.) (when ε is fixed) as [65]

ĥ = (ĀH
ε Āε)

−1ĀH
ε r. (5.15)

Subsituting (5.15) into (5.14), after some straightforward manipulations and drop-

ping the irrelevant terms, the timing delay is estimated by maximizing the following

likelihood function

ΛDA(ε) = rHĀε(Ā
H
ε Āε)

−1ĀH
ε r. (5.16)

Using the well known properties of the Kronecker product (A⊗B)−1 = A−1 ⊗B−1

and (A⊗B)H = AH ⊗BH to expand Āε(Ā
H
ε Āε)

−1ĀH
ε , we have

Āε(Ā
H
ε Āε)

−1ĀH
ε = [

√
ΦR(

√
ΦR

H√
ΦR)

−1
√
ΦR

H
]

⊗[AεZ
√
ΦT (

√
ΦT

H
ZHAH

ε AεZ
√
ΦT )

−1
√
ΦT

H
ZHAH

ε ]

= IM ⊗AεZ(Z
HAH

ε AεZ)
−1ZHAH

ε , (5.17)

where in the second equality, we used the fact that
√
ΦR and

√
ΦT are both non-

singular square matrices. Substituting this result back into (5.16), the DA likelihood

function is given by

ΛDA(ε) = rH(IM ⊗AεZ(Z
HAH

ε AεZ)
−1ZHAH

ε )r

=
M∑

j=1

rHj AεZ(Z
HAH

ε AεZ)
−1ZHAH

ε rj, (5.18)

and the MLDA symbol timing estimator can be written as

ε̂ = argmax
ε
ΛDA(ε). (5.19)

We make the following remarks:

1. The maximization of the likelihood function usually involves a two-step ap-

proach. The first step (coarse search) computes ΛDA(ε) over a grid of timing
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delay εk , k/K for k = 0, 1, ..., K − 1, and then the εk that maximizes ΛDA(ε)

is selected. The second step (fine search) finds the global maximum by using ei-

ther the gradient method [63], dichotomous search [66], or interpolation [66]. In

this chapter, we employ the parabolic interpolation in the second step due to its

implementation simplicity. More specifically, assume that ΛDA(εk̂) is identified

as the maximum among all ΛDA(εk) in the first step. Define I1 , ΛDA(εk̂−1),

I2 , ΛDA(εk̂) and I3 , ΛDA(εk̂+1), then [66]

ε̂ = εk̂ +
I1 − I3

2K(I1 + I3 − 2I2)
. (5.20)

2. The low-complexity maximization technique introduced in Chapter II Section

C can be applied to maximize (5.18). However, since this low-complexity max-

imization technique involves an approximation in the Fourier series expansion,

it introduces estimation error floor at high SNRs. Therefore, we would use the

two-step maximization method in Remark 1 for the subsequent discussions.

3. The likelihood function at each receive antenna can be calculated independently

and then added together to obtain the overall likelihood function.

4. The correlations in the transmit and receive antenna arrays do not appear in the

estimator. That is, the MLDA symbol timing estimator is independent of the

antenna correlations. This is a reasonable result since another way of deriving

the DA likelihood function (5.18) is not separating
√
ΦR and

√
ΦT from Hi.i.d.

and treat vec(HT ) as deterministic unknown. Thus, ΦR and ΦT would not

appear in the estimator.

5. In order for the estimate of vec(HT
i.i.d.) to hold in (5.15), it is required that Āε is

full rank [65], or equivalently
√
ΦR, Aε, Z and

√
ΦT are all full rank. Note that
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√
ΦR and

√
ΦT are lower triangular matrices with positive diagonal elements

[67], so they are full rank. Furthermore, if g(t) being a RRC pulse (which is

the most frequently used pulse shape), numerical calculations show that Aε is

full rank. Finally, Z can be made full rank by properly designing the training

data. A sufficient condition is that parts of the training sequences from different

transmit antennas are orthogonal. That is, for i 6= j,

[di(a) · · · di(b)] · [dj(a) · · · dj(b)]H = 0 , (5.21)

for some a, b ∈ {−Lg,−Lg + 1, . . . , Lo + Lg − 1} with a < b.

6. For a large observation interval Lo, the (i, j)
th element ofAH

ε Aε (i, j = −Lg, Lg+

1, ..., Lo + Lg − 1) can be approximated by

[AH
ε Aε]ij ≈

∞∑

n=−∞
g∗(nTs − iT − εT )g(nTs − jT − εT ) = Rgg((i− j)T ), (5.22)

where Rgg(τ) is the continuous autocorrelation function of g(t) and the last

equality is due to the fact that the sampling rate is at least at the Nyquist rate,

which guarantees the equivalence between the discrete and continuous autocor-

relation functions of g(t). Therefore, [AH
ε Aε]ij is approximately independent

of ε. Note that this approximation is very accurate for the central portion of

AH
ε Aε. If Rgg(τ) satisfies the Nyquist condition for zero ISI (e.g., g(t) being

a RRC pulse or the class of non-bandlimited pulse shapes with Rgg(τ) being

time-limited to [−T/2, T/2]), then [AH
ε Aε]ij ≈ δij. Furthermore, if the training

sequences from different transmit antennas are orthogonal and with the same

norm (i.e., ZHZ = cIN for some constant c), then

ΛDA(ε) ≈
1

c

M∑

j=1

rHj AεZZ
HAH

ε rj =
1

c

M∑

j=1

N∑

i=1

|dH
i A

H
ε rj|2. (5.23)
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Note thatAH
ε rj is the matched filtering of rj with one output sample per symbol

with delay ε [10]. If the function (5.23) is sampled uniformly with Q points,

this reduces to the approximated ML function in [11] and that of Chapter IV

(see (4.11)).

7. An interesting question is how large Lo is sufficient for the use of (5.23) in place

of (5.18) without a noticeable loss in performance. The answer depends on the

signal-to-noise ratio (SNR) where the estimators work. In general, the higher

the SNR, the larger the Lo is required. For example, Fig. 20 compares the MSE

performances of the true ML estimator and the approximated ML estimator

(the training sequences are the optimal orthogonal sequences derived later in

this chapter). It can be seen that for SNR≤ 20dB, Lo = 32 is enough for both

estimators to have similar performances. For SNR=30dB, Lo = 64 is required.

8. In some space-time processing algorithms, (e.g., space-time coding [46]-[48]), it

is required that the channel matrix be also estimated. It is clear that once the

timing estimate ε̂ has been found by maximizing (5.19), the channel estimate

can also be obtained readily by using (5.15). Putting ε = ε̂ into (5.15) and

expanding it gives

ĥ = ξ−1
(
(
√
ΦR)

−1 ⊗ (
√
ΦT )

−1(ZHAH
ε̂ Aε̂Z)

−1ZHAH
ε̂

)
r. (5.24)

If the channel coefficients are uncorrelated (i.e., ΦT = IN and ΦR = IM) and

the training sequences from different transmit antennas are orthogonal (i.e.,

ZHZ = cIN), it can be easily shown that (5.24) reduces to

ĥij ≈
1

cξ
d∗iA

H
ε̂ rj , (5.25)

which is the channel estimation method proposed in [11].



76

0 5 10 15 20 25 30
10−7

10−6

10−5

10−4

10−3

10−2

E
s
/N

o
 (dB)

M
S

E

True ML,  L
o
=16

App. ML,  L
o
=16

True ML,  L
o
=32

App. ML,  L
o
=32

True ML,  L
o
=64

App. ML,  L
o
=64

Fig. 20. MSE performances comparison between the true and approximated DA ML

estimators with different Lo (M = N = 4, Lg = 4, g(t) being a RRC pulse

with roll-off factor α = 0.3, ΦT = I4, Z = Zopt).

2. The CCRB and MCRB

For the model in (5.12), it is known that for a specific timing delay εo, the CCRBDA

is given by2 [9]

CCRBDA(εo) =
σ2

2tr(D̄H
εo
P⊥
Ā
D̄εo

Γh)
. (5.26)

In (5.26), σ2 = Nofs = NoQ/T is the noise variance, tr(.) denotes the trace of a

matrix,

D̄ε ,
dĀε

dε
= ξ
√
ΦR ⊗DεZ

√
ΦT , (5.27)

2Strictly speaking, the bound given is the asymptotic CCRB. However, it is shown
in [9] that the true CCRB tends to the asymptotic CCRB when M,N →∞
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with Dε , dAε/dε, P
⊥
Ā
is the orthogonal projector onto the null space of Āεo

and is

given by

P⊥
Ā

, IMLoQ − Āεo
(ĀH

εo
Āεo
)−1ĀH

εo

= IM ⊗ (ILoQ −Aεo
Z(ZHAH

εo
Aεo

Z)−1ZHAH
εo
)

= IM ⊗P⊥
AZ

, (5.28)

where P⊥
AZ

, ILoQ −Aεo
Z(ZHAH

εo
Aεo

Z)−1ZHAH
εo
, and

Γh , E[vec(HT
i.i.d.)vec(H

T
i.i.d.)

H ] = IMN = IM ⊗ IN . (5.29)

Subsituting (5.27), (5.28) and (5.29) into (5.26), we obtain:

CCRBDA(εo)

=
σ2

2ξ2tr
(
(
√
ΦR ⊗Dεo

Z
√
ΦT )H(IM ⊗P⊥

AZ
)(
√
ΦR ⊗Dεo

Z
√
ΦT )(IM ⊗ IN)

)

=
QN

2tr(
√
ΦR

H√
ΦR)tr(

√
ΦT

H
ZHDH

εo
P⊥
AZ

Dεo
Z
√
ΦT )

(Es

No

)−1

=
1

2Mtr(Z̃HD̃H
εo
P⊥
AZ

D̃εo
Z̃ΦT )

(Es

No

)−1
, (5.30)

where Z̃ , Z/
√
N and D̃ε , Dε/

√
Q. In passing from the second line to the third

line in (5.30), we used the fact that tr(AB) = tr(BA) and the diagonal elements of

ΦR are all one regardless of the specific value of the correlation matrix.

For a specific timing delay εo, MCRBDA is given by [9]

MCRBDA(εo) =
σ2

2tr(D̄H
εo
D̄εo

Γh)
, (5.31)

and based on similar calculations with those used for CCRBDA, it can be shown that

MCRBDA(εo) =
1

2Mtr(Z̃HD̃H
εo
D̃εo

Z̃ΦT )

(Es

No

)−1
. (5.32)
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The following remarks concerning the CCRBDA and MCRBDA are now in order:

1. Since the timing delay εo is assumed uniformly distributed, the average of

CCRBDA and MCRBDA can be calculated by numerical integration of (5.30)

and (5.32), respectively.

2. The CCRBDA and MCRBDA do not depend on the receive antenna array cor-

relation matrix ΦR. Furthermore, the CCRBDA and MCRBDA are inversely

proportional to the number of receive antennas M . Thus, the CCRBDA and

MCRBDA will be reduced by a factor of 2 whenever the number of receive

antennas M is doubled.

3. The expressions for CCRBDA and MCRBDA would still be given by (5.30) and

(5.32) respectively even if we treat vec(HT ) as deterministic unknown rather

than vec(HT
i.i.d.) in the system model.

3. Optimal Orthogonal Training Sequences

Since the CCRBDA can be reached asymptotically by the MLDA estimator (5.19) [65],

it is natural to search for optimal training sequences by minimizing the CCRBDA in

(5.30) with respect to Z. Unfortunately, since the denominator of (5.30) is a very

complicated function of Z, it is difficult, if not impossible, to obtain a simple solution.

On the other hand, the expression for the MCRBDA in (5.32) has a much simpler

dependence on Z. Moreover, it will be shown later in this section that for the derived

optimal training sequences, the corresponding CCRBDA is actually very close to that

of MCRBDA (see Fig. 22). Therefore, in the following the optimal training sequences

are derived by minimizing the MCRBDA with respect to Z.
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With the constraint that the columns of Z has to be orthogonal3 (i.e., ZHZ =

(Lo + 2Lg)IN), it is proved in Appendix C that the matrix Z that minimizes the

MCRBDA is given by

Z =
√
(Lo + 2Lg)Ũ(εo)U

H
T , (5.33)

where Ũ(εo) is the matrix containing the N eigenvectors corresponding to the N

largest eigenvalues of D̃H
εo
D̃εo

as columns and UT is the unitary matrix containing all

the eigenvectors of ΦT as columns.

In general, the optimal orthogonal training sequences depend on the unknown pa-

rameter εo. However, note that, following the same argument as in (5.22), [D̃
H
εo
D̃εo
]ij ≈

Rg′g′((i− j)T )T 2/Q, where g′(t) = dg(t)/dt. Therefore, D̃H
εo
D̃εo

is approximately in-

dependent of the parameter εo and in practice, we can fix a nominal timing delay,

say εt = 0 (actually other values do not make a large difference as we will show), for

designing the training sequences. This idea is verified by Fig. 21, where

β ,
1

tr(Z̃HD̃H
εo
D̃εo

Z̃ΦT )
(5.34)

is plotted against εo for εt = 0, 0.25, 0.5, 0.75 with N = 4, Lo = 32, Lg = 4, g(t)

being a RRC pulse with roll-off factor α = 0.3 and ΦT = I4. The case of εt = εo is also

shown for a reference. It is obvious that the mismatch of εt and εo does not increase

the value of β significantly. From Fig. 21, we note that the worst case increase of β

due to the mismatch of εt and εo is about 2×10−5 and when εt = εo, β ≈ 2.695×10−3.

Thus, the worst case relative error for the MCRBDA in this example is

MCRBDA(εo|εt 6= εo)−MCRBDA(εo|εt = εo)

MCRBDA(εo|εt = εo)
≈ 2× 10−5
2.695× 10−3 = 7.42×10

−3. (5.35)

3Notice that in this chapter, the search for optimal training sequences would be
confined to the class of orthogonal sequences. The question of whether there exists
any non-orthogonal training sequences with better performances and how to find them
is a subject open to future investigations.
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Fig. 21. Plots of β , 1/tr(Z̃HD̃H
εo
D̃εo

Z̃ΦT ) against εo for εt = 0, 0.25, 0.5, 0.75

(N = 4, Lo = 32, Lg = 4, g(t) being a RRC pulse with α = 0.3, ΦT = I4) .

The implication of the above calculation is that the worst case variation of the

MCRBDA(εo) due to the mismatch between εo and εt is at least 100 times smaller

than the value of the MCRBDA(εo) when εt = εo. Therefore, the optimality of the

orthogonal training sequences derived is approximately independent of εo and we can

write Zopt =
√
(Lo + 2Lg)Ũ(0)U

H
T .

With the optimal orthogonal training sequences Zopt, the ratios
CCRBDA(εo)
MCRBDA(εo)

are

plotted in Fig. 22 against the number of transmit antenna N for εo = 0, 0.25, 0.5, 0.75

with Lo = 32 and 128, Lg = 4, g(t) being a RRC pulse with α = 0.3 and ΦT = IN .

It can be seen that the ratios CCRBDA(εo)
MCRBDA(εo)

for different εo are close to 1 (this is true for

the case Lo = 128, and for moderate number of transmit antennas when Lo = 32).

Since MCRBDA(εo) ≤ CCRBDA(εo), even there are some other orthogonal sequences

actually minimize the CCRBDA(εo), the space for performance improvement is very
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Fig. 22. Plots of CCRBDA(εo)/MCRBDA(εo) against the number of transmit antennas

N for εo = 0, 0.25, 0.5 , 0.75 (Lo = 32 and 128, Lg = 4 and g(t) being a RRC

pulse with α = 0.3, ΦT = IN , Z = Zopt).

small (e.g., for Lo = 32 and N ≤ 4, the ratio CCRBDA(εo)
MCRBDA(εo)

is smaller than 1.1, the best

possible performance improvement is only 10 log10(1.1) ≈ 0.4dB), not mentioning that

these training sequences are difficult to find or may even do not exist. This justifies

the search for optimal orthogonal training sequences by minimizing the MCRBDA.

It is interesting to find that, when ΦT = IN and g(t) is a RRC pulse, the optimal

orthogonal training sequences resemble the Walsh sequences. Let wn be the Walsh

sequence with length 32 and with n sign changes. For comparison, Figs. 23 and 24

show [Zopt]:,1 and [Zopt]:,2 with Lo = 32, Lg = 4 and α = 0.3, together with w31

and −w30 plotted from the index 5 to 36. Note that the lines are drawn for easy

reading, there is no value defined in between integer indexes. It can be observed that,

the values of the optimal sequences at indices 1 to 4 and 37 to 40 are very small.
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Moreover, with the exception of the different envelope shapings, the sign-changing

patterns of the optimal orthogonal sequences follow that of Walsh sequences (for

indices 5 to 36). In general, the same relationship can be found between [Zopt]:,i and

w32−i. We remark also that the use of Walsh sequences with the largest number

of sign changes for symbol timing estimation in space-time coding system has been

initially proposed in [61].

Finally, Fig. 25 compares the performance of MLDA (5.19) with different kinds of

training sequences in a 4-transmit, 4-receive antenna system with Lo = 32, Lg = 4,

g(t) being a RRC pulse with α = 0.3. For simplicity, we set ΦT = ΦR = I4. Three

different kinds of training sequences are considered. The first one is the optimal

orthogonal training sequences derived above. The second one is the Walsh sequences

w31, w30, w29, w28 and extended to length 40 by adding a cyclic prefix and suffix,

each of length equal to 4. The final one is the perfect sequences proposed in Chapter

IV, where they were derived to minimize the contribution of the ISI term in the

approximated log-likelihood function (see Chapter IV Section D for detail). From

Fig. 25, it can be seen that the perfect sequences perform not as well as the Walsh

sequences and the optimal sequences. This is because the true ML estimator is used in

simulations and the perfect sequences (which were derived based on the approximated

log-likelihood function) may not have any optimality. Due to the resemblance of the

optimal orthogonal sequences and the Walsh sequences, the performance of the MLDA

by using these two kinds of sequences are close to each other, with the case of optimal

orthogonal sequences performing marginally better. For fair comparison, we mention

that the perfect sequences and the Walsh sequences are constant modulus sequences

while the optimal orthogonal sequences are not.



83

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

V
al

ue
s 

of
 th

e 
se

qu
en

ce
s

[ Z
opt

]
:,1

 w
31

Fig. 23. Plots of [Zopt]:,1 and w31 (g(t) being a RRC pulse with α = 0.3, Lo = 32,

Lg = 4).
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Fig. 25. Comparison of the MSE performances of MLDA with different training se-

quences (g(t) being a RRC pulse with α = 0.3, M = N = 4, Lo = 32, Lg = 4,

ΦT = ΦR = I4).

D. Non-Data Aided Symbol Timing Estimation

1. ML Estimator

In this case, no training sequence is used and Z contains real data. Now, the matrices

Z and Hi.i.d. in (5.11) are unknown and (5.11) can be rewritten in the following form

r = ξ(IM ⊗Aεo
)(
√
ΦR ⊗ ILo+2Lg

)vec(Z
√
ΦTH

T
i.i.d.) + η

= ξ(
√
ΦR ⊗Aεo

)vec(Z
√
ΦTH

T
i.i.d.) + η. (5.36)

Note that although ΦT is assumed to be known, it cannot be separated from Z and

Hi.i.d. because the correlation in transmit antennas can be translated into correlation

of unknown data or vice versa. Since the noise is white and Gaussian, the MLNDA
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estimator resumes to the minimization of

J2(r|ε,x) = (r− Ǎεx)
H(r− Ǎεx), (5.37)

where Ǎε , ξ(
√
ΦR ⊗Aε), ε and x are the trial values for εo and vec(Z

√
ΦTH

T
i.i.d.),

respectively.

With the linear model of (5.36), the ML estimate for vec(Z
√
ΦTH

T
i.i.d.) (when ε

is fixed) is given by

x̂ = (ǍH
ε Ǎε)

−1ǍH
ε r. (5.38)

Putting (5.38) into (5.37), after some straightforward calculations and dropping the

irrelevant terms, the MLNDA symbol timing estimator reduces to the maximization

of the following likelihood function:

ΛNDA(ε) = rHǍε(Ǎ
H
ε Ǎε)

−1ǍH
ε r. (5.39)

It can be easily shown that

Ǎε(Ǎ
H
ε Ǎε)

−1ǍH
ε = IM ⊗Aε(A

H
ε Aε)

−1AH
ε , (5.40)

which gives

ΛNDA(ε) =
M∑

j=1

rHj Aε(A
H
ε Aε)

−1AH
ε rj. (5.41)

The MLNDA symbol timing estimation can be stated as

ε̂ = argmax
ε
ΛNDA(ε) (5.42)

and can be implemented by the two-step approach as for the MLDA.

Note that the implementation of the MLNDA estimator does not requires the

knowledge of correlation among antennas. Note also that the likelihood function in

(5.41) is the sum of individual likelihood functions for each receive antenna, just
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as the case of training based likelihood function in (5.18). For each of the receive

antenna, the likelihood function is the same as the likelihood function for SISO sys-

tems (see (2.16)). Furthermore, applying the low-complexity maximization technique

introduced in Chapter II Section C to the likelihood function (5.41) and with the

approximation AH
ε Aε ≈ ILo+2Lg

for Nyquist zero-ISI pulse, it can be easily shown

that the MLNDA (5.42) reduces to the extension of squaring algorithm proposed in

[61].

2. The CCRB and MCRB

For the model in (5.36), the CCRB for a specific εo is given by [10]

CCRBNDA(εo) =
σ2

2tr(ĎH
εo
P⊥
Ǎ
Ďεo

Γx)
, (5.43)

where

Ďε ,
dǍε

dε
=
√
ΦR ⊗Dε, (5.44)

P⊥
Ǎ

, IMLoQ − Ǎεo(Ǎ
H
εoǍεo)

−1ǍH
εo = IM ⊗P⊥

A
, (5.45)

with P⊥
A

, ILoQ −Aεo
(AH

εo
Aεo
)−1AH

εo
, and

Γx , E[vec(Z
√
ΦTH

T
i.i.d.)vec(Z

√
ΦTH

T
i.i.d.)

H ]. (5.46)

It is shown in Appendix C that

Γx = IM ⊗Ψ, (5.47)

where Ψ is a Hermitian and Toeplitz matrix with elements [Ψ]ij , tr
(
Γz(j − i)ΦT

)

and Γz(j − i) , E[(Z∗)Tj,:(Z)i,:] is the average cross-correlation matrix of the symbols

transmitted with time index difference j − i.
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Substituting (5.44), (5.45) and (5.47) into (5.43), we obtain:

CCRBNDA(εo) =
σ2

2ξ2tr
(
(
√
ΦR ⊗Dεo

)H(IM ⊗P⊥
A
)(
√
ΦR ⊗Dεo

)(IM ⊗Ψ)

=
1

2Mtr(D̃H
εo
P⊥
A
D̃εo

Ψ/N)

(Es

No

)−1
. (5.48)

Following the same calculations as for the CCRBNDA, the MCRBNDA is given by

MCRBNDA(εo) =
σ2

2tr(ĎH
εo
Ďεo

Γx)

=
1

2Mtr(D̃H
εo
D̃εo

Ψ/N)

(Es

No

)−1
. (5.49)

Note that the average of CCRBNDA and MCRBNDA can be computed by numerical

integration of (5.48) and (5.49), respectively. In the following, we consider two special

cases.

Special Case 1 : The data is spatially and temporally white (e.g., Vertical-Bell

Labs Layered Space-Time (V-BLAST) system4 [55]). In this case, Γz(j − i) = INδij,

implying that [Ψ]ij = δijtr(ΦT ) = Nδij. Therefore, the corresponding CCRBNDA

and MCRBNDA are

CCRBNDA(εo) =
1

2Mtr(D̃H
εo
P⊥
A
D̃εo
)

(Es

No

)−1
(5.50)

and

MCRBNDA(εo) =
1

2Mtr(D̃H
εo
D̃εo
)

(Es

No

)−1
, (5.51)

respectively. Note that in this case, the CCRBNDA and MCRBNDA do not depend

on the number of transmit antennas and the correlations among antennas.

Special Case 2 : Space-Time Block Code (STBC) system. In general, a block of

4In its initial development, V-BLAST system does not employ any temporal error
control code. Although temporal error control code may be applied in V-BLAST
system, we assume the data is temporally white since from the point of view of the
symbol synchronizer, the data appears to be uncorrelated.
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space-time block coded symbols can be represented by a s×N matrix [49]

G =
rs∑

k=1

Re(bk)Xk + j

rs∑

k=1

Im(bk)Yk , (5.52)

where r is the rate of the STBC, s is the length of the STBC, bk’s are the i.i.d., complex

valued symbols to be encoded and Xk,Yk are the fixed, real-valued elementary code

matrices. Without loss of generality, we assume |bk| = 1. It is proved in Appendix C

that for the STBC system,

Γz(j − i)

=





0N for |j − i| ≥ s

1
2s

∑s−`
n=1(

∑rs
k=1[Xk]

T
n+`,:[Xk]n,: +

∑rs
k=1[Yk]

T
n+`,:[Yk]n,:) for |j − i| = `, ` < s.

(5.53)

For example, let us consider the half-rate orthogonal space-time block code with

four transmit antennas [48], in which case N = 4, s = 8, r = 1/2 and the matrix G

given by

G =




b1 b2 b3 b4

−b2 b1 −b4 b3

−b3 b4 b1 −b2
−b4 −b3 b2 b1

b∗1 b∗2 b∗3 b∗4

−b∗2 b∗1 −b∗4 b∗3

−b∗3 b∗4 b∗1 −b∗2
−b∗4 −b∗3 b∗2 b∗1




. (5.54)
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Decomposing G in terms of Xk and Yk and using (5.53), it is found that

Γz(j − i) =





I4 for i = j,

1
4

[
0 2 0 1
−2 0 1 0
0 −1 0 2
−1 0 −2 0

]
for |j − i| = 1,

1
4

[
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

]
for |j − i| = 3,

04 otherwise.

(5.55)

Then, Ψ can be computed according to [Ψ]ij = tr
(
Γz(j − i)ΦT

)
and the CCRBNDA

and MCRBNDA are given by (5.48) and (5.49), respectively.

E. Simulation Results and Discussions

In this section, the mean square error (MSE) performances of the proposed symbol

timing estimators MLDA (5.19) and MLNDA (5.42) are assessed by Monte Carlo sim-

ulations. In all the simulations, Lo = 32, Lg = 4 (i.e., the total length of training

data is 40), Q = 2, K = 16, εo is uniformly distributed in the range [0, 1) and g(t)

is a RRC filter with roll-off factor α = 0.3. Each point is obtained by averaging 104

Monte-Carlo simulation runs. For the DA case, the optimal orthogonal sequences Zopt

derived in Section 3 are used as training data. For the NDA case, the data format is

QPSK.

1. Effects of N and M

In this section, the effects of the number of transmit and receive antennas are ex-

amined. First, let assume ΦT = IN and ΦR = IM for the moment. Furthermore,

it is assumed there is no space-time coding in the NDA case. The effect of antenna

correlation and space-time coding will be examined later. The effect of the number

of transmit antennas N is shown in Figs. 26 and 27 for the DA and NDA cases,
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respectively, with M = 4. From both figures, it can be seen that different numbers

of transmit antennas result in similar estimation accuracies. Therefore, the MSEs

are approximately independent of N for both MLDA and MLNDA. Next, the effect

of the number of receive antennas M is shown in Figs. 28 and 29 for DA and NDA

case, respectively, with N = 4. It is clear that increasing M leads to considerable

MSE improvements. Since from (5.30) and (5.48), the CCRBDA and CCRBNDA are

inversely proportional to M and from Figs. 28 and 29, the performances of MLDA

and MLNDA are very close to their corresponding CCRBs, it can be concluded that

the MSEs of MLDA and MLNDA estimators are approximately inversely proportional

to M .

It is reasonable to have improved performances when the number of receive an-

tennas increases since more receive antennas provides diversity gain. It is tempted

to argue that using more transmit antennas should also improve the performances of

symbol timing estimation since from the experience of STBC [46], [48], more transmit

antennas also provides diversity gain. However, notice that the diversity gain of STBC

does not come automatically by just increasing the number of transmit antennas. In

STBC, the observation length for demodulating a symbol has to be increased with

the number of transmit antennas. For symbol timing estimation, irrespective of the

number of transmit antennas, the total transmit power and the observation length

are kept constant, it is not unreasonable to have MSE performances approximately

independent of N . For multiple receive antennas, although the observation length

(for each receive antenna) is kept constant, the observations from different receive

antennas are independent (similar to the situation of maximal-ratio receive combin-

ing scheme). These independent observations increase the effective observation length

and performance is improved due to the longer effective observation.
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Fig. 26. MSEs of the MLDA estimator and the corresponding CCRBs with different

number of transmit antennas (ΦT = IN , ΦR = IM , Z = Zopt).
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Fig. 27. MSEs of the MLNDA estimator and the corresponding CCRBs with different

number of transmit antennas (ΦT = IN , ΦR = IM and the data transmitted

is spatially and temporally white).
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Fig. 28. MSEs of the MLDA estimator and the corresponding CCRBs with different

number of receive antennas (ΦT = IN , ΦR = IM , Z = Zopt).
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Fig. 29. MSEs of the MLNDA estimator and the corresponding CCRBs with different

number of receive antennas (ΦT = IN , ΦR = IM and the data transmitted is

spatially and temporally white).
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2. Effects of Correlation Among Antennas

Figs. 30 and 31 show the MSE performances of MLDA and MLNDA of a 4× 4 system

under the effect of correlated fading among antennas. The measured correlation

matrices from Nokia [53] are used in simulations:

ΦT =




1 0.4154 0.2057 0.1997

0.4154 1 0.3336 0.3453

0.2057 0.3336 1 0.5226

0.1997 0.3453 0.5226 1




,ΦR =




1 0.3644 0.0685 0.3566

0.3644 1 0.3245 0.1848

0.0685 0.3245 1 0.3093

0.3566 0.1848 0.3093 1




.

(5.56)

Three cases are considered in Fig. 30 for the DA case. The first case assumes no

correlation among antenna arrays, and serves as a reference and is shown by the ‘+’

markers. The second one, which is shown by ‘o’ markers, assumes that correlations

exist among antennas and perfect knowledge of ΦT is available for designing optimal

training sequences. The last case, denoted by the ‘.’ markers, assumes that correla-

tions exist among antennas but no knowledge of correlations is assumed when design-

ing the training sequences. It can be seen that the fading correlations among antennas

do not change the MSE performance of the MLDA estimator or the CCRBDA. Fur-

thermore, surprisingly, the knowledge of ΦT for designing optimal training sequences

is not important as the results show that training sequences assuming no correlation

perform equally well in the presence of correlation among antennas.

For the NDA case (Fig. 31), three cases are considered, too. The first one is no

space-time coding and no fading correlation, which is shown using ‘+’ markers. The

second one is no space-time coding but with fading correlation, which is shown by ‘o’

markers. The final one is that the data is encoded with the half rate space-time block

code (5.54) and with correlated fading, which is shown by ‘.’ markers. It can be seen
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Fig. 30. MSEs of the MLDA estimator and the corresponding CCRBs with and without

fading correlation between antennas for a 4× 4 system.
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Fig. 31. MSEs of the MLNDA estimator and the corresponding CCRBs with and with-

out fading correlation between antennas for a 4× 4 system.
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that the presence of correlated fading and space-time coding do not affect the MSE

performances of the MLNDA estimator.

In order to investigate the performance of MLDA and MLNDA estimators un-

der different degree of fading correlation, we employ the following single parameter

correlation model:

[ΦT ]ij = [ΦR]ij = ρ|i−j| , (5.57)

where ρ ∈ [0, 1) is the correlation coefficient between adjacent antennas (note that

ρ = 0 means no correlation). Fig. 32 shows the MSEs of the MLDA estimator against

ρ for Es/No=10dB, 20dB and 30dB in a 4×4 system. Two cases are considered. The

first one assumes perfect knowledge of correlation for designing training sequences and

the second one assumes no correlation when designing training sequences. It can be

seen that for ρ ≤ 0.5, the performance degradation due to antenna correlation is ex-

tremely small. Only when ρ > 0.5, the performance start to degrade, but with limited

degree. Also, designing training sequences without knowledge of correlation results

only in a slight degradation with respect to the case which assumes perfect knowl-

edge of correlation, and this only happens when ρ > 0.5. This property facilitates

the practical implementation of the proposed scheme since in practice, the correlation

matrix may not be perfectly known. This also explains the results in Fig. 30 that the

MLDA estimator does not suffer any loss of performance since the largest measured

correlation coefficient between adjacent antennas in (5.56) is about 0.5. Fig. 33 shows

the MSEs of the MLNDA estimator against ρ for Es/No=10dB, 20dB and 30dB in a

4× 4 system. Two cases are simulated. The first case is no space-time coding, while

the second case is encoded by (5.54). It can be seen that, basically, the space-time

coding considered in this example does not have any effect on the MSE performances

of the MLNDA with respect to the no coding case. Furthermore, the degradation due
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Fig. 32. MSEs of the MLDA estimator against the correlation coefficient ρ between

adjacent antennas for Es/No=10dB, 20dB and 30dB in a 4× 4 system.
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to extreme antenna correlations is very small.

The small dependence of the MSEs on correlation between antennas is due to

the fact that, in this study, the nuisance parameters (i.e., vec(HT
i.i.d.) for DA case and

vec(Z
√
ΦTH

T
i.i.d.) for NDA case) are treated as deterministic unknown and are being

jointly estimated together with εo. The correlation between antennas, can always be

lumped into the nuisance parameters. Since this action does not change the dimension

of the nuisance parameters and there is no constraint on the value of the nuisance

parameters, the effect of correlation between antennas on the MSE of ε̂ would be very

small.

3. Comparison of DA and NDA Estimators

Here, we compare the performance of the MLDA and MLNDA estimators with their

corresponding CCRBs and MCRBs for a 4× 4 system. For simplicity, it is assumed

that there is no correlation among antennas and there is no space-time coding for NDA

case (since the effects of these are small as shown earlier). Fig. 34 shows the results.

Note that from Fig. 34, the MSE performances of MLDA and MLNDA estimators

are very close to their corresponding CCRBs. This means that MLDA and MLNDA

are efficient estimators conditioned that the nuisance parameters are being jointly

estimated together with the unknown timing delay. Also, note that the performance

of MLDA estimator is very close to the MCRBDA, which implies that MLDA is almost

the best possible estimator under the problem at hand, regardless of how we deal with

the nuisance parameters. For the NDA case, unfortunately, although the performance

of MLNDA estimator reaches the corresponding CCRBNDA, the CCRBNDA is quite

far away from the MCRBNDA. Notice that, according to [10], CCRB is a valid bound

only for estimators that rely on quadratic nonlinearity, there is a possibility that

some other NDA estimators employing higher order (>2) nonlinearities would have
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Fig. 34. Comparison of MSEs of the MLNDA and MLDA and their corresponding

CCRBs and MCRBs for a 4× 4 system.

performances closer to the MCRB. This is subject to further investigations.

Finally, as expected, MLDA estimator performs much better than the MLNDA

estimator. However, this comes with a price. The MLDA estimator requires training

sequences, resulting in lower transmission efficiency. Moreover, the estimation has to

be performed at specific times when the training data is available, while MLNDA can

be performed at any time during transmission. This also means that, for the DA case,

there is a need to synchronize the training sequences before timing estimation. This

requires extra implementation complexity. In addition, degradation may occur if the

positions of the training sequences are mislocated. Furthermore, the computation of

the DA likelihood function (5.18) is more complicated than that of the NDA likelihood

function (5.41). Therefore, MLDA and MLNDA provide a performance, transmission

efficiency and complexity tradeoff for symbol timing estimation in MIMO channels.
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F. Conclusions

The data aided (DA) and non-data aided (NDA) maximum likelihood (ML) symbol

timing estimators, their corresponding conditional CRB (CCRB) and modified CRB

(MCRB) for MIMO correlated flat-fading channels have been derived in this chapter.

For the DA case, the optimal orthogonal training sequences have also been derived.

It was shown that the approximated ML algorithm in [11] and that in Chapter IV is

just a special case of the DA ML algorithm; while the extended squaring algorithm in

[61] is just a special case of the NDA ML estimator. For the optimal orthogonal train-

ing sequences, it was found that they resemble Walsh sequences but with modified

envelopes. Simulation results under different operating conditions (e.g., number of

antennas and correlation between antennas) were given to assess the performances of

the DA and NDA ML estimators and compare them with the corresponding CCRBs

and MCRBs. It was found that i) the MSE of the DA ML estimator is close to the

CCRB and MCRB, meaning that the DA ML estimator is almost the best estimator

(in terms of MSE performance) for the problem under consideration; ii) the MSE of

the NDA ML estimator is close to the CCRB but not MCRB, meaning that NDA

ML estimator is an efficient estimator conditioned that the nuisance parameters are

being jointly estimated, but there might exist other NDA estimators with better per-

formances; iii) the MSEs of both DA and NDA ML estimators are approximately

independent of the number of transmit antennas and are inversely proportional to

the number of receive antennas; iv) correlation between antennas has little impact on

the MSEs of DA and NDA ML estimators unless the correlation coefficient between

adjacent antennas is larger than 0.5, in which case a small degradation occurs, and

vi) DA ML performs better than NDA ML estimator at the cost of lower transmission

efficiency and higher implementation complexity.



100

CHAPTER VI

MAXIMUM-LIKELIHOOD SYMBOL SYNCHRONIZATION FOR IEEE 802.11A

WLANS IN UNKNOWN FREQUENCY-SELECTIVE FADING CHANNELS

A. Introduction

IEEE 802.11a wireless local area networks (WLANs), which support high-speed data

transmissions up to 54Mbps [68], employ burst-mode transmission and orthogonal

frequency division multiplexing (OFDM) as the transmission technique. Although

OFDM is well known for its ability to combat the intersymbol interference (ISI) in-

troduced by multipath channels [69], [70], incorrect positioning of the FFT window

within an OFDM symbol reintroduces ISI during data demodulation, causing seri-

ous performance degradation [12], [13]. Symbol synchronization is therefore one of

important tasks performed at receivers in IEEE 802.11a WLANs.

A number of methods for OFDM symbol synchronization have been proposed

in the literature. Methods that exploit the periodic structure of cyclic prefixes in

OFDM symbols have been proposed in [13]-[15]. Algorithms based on the use of

repeated preambles have been reported in [16]-[21]. In [12] and [22], additional pilot

subcarriers are used to further improve the estimation accuracy after coarse timing

synchronization is established by correlation-based methods. Although the techniques

of [12]-[22] (which were originally developed for general OFDM systems) may be

applied to IEEE 802.11a WLANs, a higher synchronization accuracy can be obtained

by using optimized algorithms that take advantage of the known preamble structure

located at the beginning of a data packet.

Recently, symbol synchronization techniques that are specifically designed for

IEEE 802.11a WLANs have been reported in [23] and [24]. In [23], the received signal
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is correlated with a known training-symbol sequence and the absence of the expected

correlation peak is detected. Despite the advantage that a simple correlator can be

easily implemented at the receiver, its performance is poor in dispersive channels [23],

indicating that more sophisticated synchronization algorithms are required. In [24],

the generalized Akaike information criterion (GAIC) is used to jointly estimate the

channel and establish timing synchronization. Although the reported performance is

good, its complexity is extremely high.

In this chapter, we develop a maximum-likelihood (ML) symbol synchronizer for

IEEE 802.11a WLANs on frequency-selective fading channels. A realistic channel,

which includes the effects of filtering and sampling time offset in addition to the

physical channel with random path delays, is considered. Furthermore, the loss in

system performance due to synchronization error is used as the performance criterion

[13], [30], as opposed to the requirement that the estimated symbol timing has to

be within certain limits with respect to a fixed reference point. The proposed algo-

rithm is compared with four existing symbol synchronization algorithms, one of which

specifically designed for IEEE 802.11a WLANs [24] and three other algorithms for

general OFDM frame synchronization [14], [20], [21]. Simulation results indicate that

in general, joint estimation of symbol position and channel (as is the case with the

proposed algorithm and the algorithm based on GAIC [24]) gives better performances

than the correlation based algorithms [14], [20], [21]. When compared to the GAIC

algorithm [24], the proposed algorithm exhibits comparable performances, but the

complexity of the proposed algorithm is much smaller than that of GAIC algorithm

due to the smaller observation length.

We mention that there are also works on general frame synchronization for

packet-based transmission over frequency-selective channels (not limited to OFDM

systems) [71]-[73]. It will be shown later that part of the proposed synchronization
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algorithm in this chapter reduces to the same detector proposed in [71]-[73] under

certain conditions. Note also that the seemingly related synchronization technique

for pilot-symbol-assisted modulation (PSAM) [74] is not applicable to the problem

under consideration since the pilot-symbol insertion mechanism in PSAM is totally

different from the preamble structure of a data packet in IEEE 802.11a WLAN.

This chapter is organized as follows. Section B describes the received-signal

model. The symbol synchronization performance criterion is discussed in Section C.

Section D derives the ML synchronization algorithms for the IEEE 802.11a WLANs.

Simulation results on the synchronization performances and comparison with other

algorithms are presented in Section E. Finally, conclusions are drawn in Section F.

B. Received-Signal Model

1. Signal and Channel Models

Fig. 35 depicts the packet structure used in IEEE 802.11a WLANs. In each packet,

the data carrying OFDM symbols are preceded by a preamble, which is used for start

of packet detection, automatic gain control, symbol timing and frequency synchro-

nization, and channel estimation. The preamble itself consists of two parts. The

first part comprises 10 short training symbols, b(t), each of length Tb = 800ns. In

the second part, a cyclic prefix, g(t), of length Tg = 1.6µs is followed by two long

training symbols, c(t), each of length Tc = 3.2µs. The baseband-equivalent model of

the preamble is given by [68]

s(t) =
√
2P
{ 9∑

i=0

b(t− iTb) + g(t− 10Tb) +
1∑

i=0

c(t− 10Tb − Tg − iTc)
}

(6.1)
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g(t) : cyclic prefix of c(t)
c(t) : long training symbol

Fig. 35. Packet structure for IEEE 802.11a WLANs.

where P is the RF signal power,

b(t) , Π(
t

Tb

)× 1√
52

26∑

k=−26
Ske

j2πk∆f t (6.2)

g(t) , Π(
t

Tg

)× 1√
52

26∑

k=−26
Lke

j2πk∆f (t−Tg) (6.3)

c(t) , Π(
t

Tc

)× 1√
52

26∑

k=−26
Lke

j2πk∆f t . (6.4)

In (6.2)-(6.4), Π(x) is a rectangular function giving a value of 1 when 0 ≤ x < 1

and 0 otherwise, ∆f = 312.5kHz is the subcarrier separation, S−26:26 and L−26:26 are

two training-symbol sequences given by (6) and (8) of [68], respectively. The signal

model given by (6.1) is slightly different from the one specified in the standard [68]

in that a raised-cosine window should be used to mask the two parts of the preamble

for reducing the spectral side-lobes of transmitted signals. This windowing function

is not included in the model considered here in order to simplify derivation of the

synchronization algorithm. The raised-cosine window was included in the simulation

model during the assessment of synchronization performances.

The signal s(t) is passed through the transmission filter fT (t), up-converted to

high frequency and transmitted through a multipath frequency-selective fading chan-

nel. At the receiver, the signal is first passed through the RF filter and then down-
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converted into baseband signal, where additional filtering occurs. Assuming the chan-

nel is static over the duration of a packet, the complex envelope of the received and

filtered signal is given by

r(t) = ej2πvt
{
s(t) ? fT (t) ?

Lh−1∑

n=0

γnδ(t− τn) ? fR(t)
}
+ w(t) , (6.5)

where v is the carrier frequency offset, ? denotes continuous time convolution, γn is

the complex valued channel coefficients for the nth path with τn as the path delay,

Lh is the total number of physical paths of the multipath channel, fR(t) is the low-

pass equivalent response of the combined RF and baseband filter, and w(t) is the

filtered complex-Gaussian noise. It is assumed that the channel gain is unity (i.e.,

E[
∑Lh−1

n=0 |γn|2] = 1, where E[.] stands for expectation). Furthermore, without loss of

generality, it is assumed that τ0 = 0 since the delay of first path can be translated to

a delay in sampling. Expressing the convolution in the form of integral, the received

signal can be rewritten as

r(t) = ej2πvt
∫ ∞

−∞
s(t− u)

[
Lh−1∑

n=0

γnf(u− τn)

]
du+ w(t) , (6.6)

where f(t) , fT (t) ? fR(t).

Now, the received signal is sampled at t = kTsam + εoTsam, where 1/Tsam =

20MHz, which is the suggested sampling rate in the standard [68], and εo ∈ [0, 1) is

the unknown time offset induced by the combination of the delay of the first path of

the channel and the sampling phase offset. It follows that the sampled signal is given

by

rk = ej2πv(kTsam+εoTsam)

∫ ∞

−∞
s(kTsam + εoTsam − u)

[
Lh−1∑

n=0

γnf(u− τn)

]
du+ wk

= ej2πv(kTsam+εoTsam)
1

Tsam

∫ ∞

−∞
s(kTsam − u′)h(u′)du′ + wk , (6.7)
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where rk , r(kTsam + εoTsam), wk , w(kTsam + εoTsam) and h(t) is the equivalent

channel which includes the effects of the transmission filter, physical channel, RF and

baseband filtering at the receiver, the timing delay induced by the delay of the first

path of the channel and the sampling phase offset, and is defined as

h(t) , Tsam

Lh−1∑

n=0

γnf(t− τn + εoTsam) . (6.8)

Notice that the bandwidth (one-sided baseband) of s(t) is BWs = (26 + 1)∆f ≈

8.44MHz [68] (see also equation (6.2)-(6.4)), meaning thatBWs < 1/2Tsam = 10MHz
1.

According to [75], if the bandwidth of the equivalent channel h(t) (which is equal to

the bandwidth of f(t)) satisfies2

BWh < 1/Tsam −BWs , (6.9)

then by the equivalence of digital and analog filtering for band-limited signals, the

sampled received signal can be expressed as

rk = ej2πv(kTsam+εoTsam)

∞∑

i=−∞
s(kTsam − iTsam)h(iTsam) + wk . (6.10)

The meaning of (6.9) is that the filter f(t) can be designed such that its bandwidth

is larger than 1/2Tsam as long as the aliasing caused by sampling lies outside the

passband of signal s(t). A simple example of f(t) that makes (6.9) satisfied is the

1Strictly speaking, most of the signals in communications are not bandlimited,
however, notice that the frequency separation between two OFDM data channels is
only 20MHz [68]; taking into account of the guard bands, we can treat the one-sided
signal bandwidth to be strictly smaller than 10MHz (or at least the effect of signal
outside the ‘main’ bandwidth is so small that we can ignore it).

2For practical filters, they can always be designed to have attenuation at stop band
as high as possible (with the cost of complexity), therefore, we can also treat of h(t)
bandlimited.
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raised cosine filter

frc(t) =
1

Tsam

· sin(πt/Tsam)

πt/Tsam

cos(παt/Tsam)

1− 4α2t2/T 2sam
, (6.11)

with α < 0.156 since it is required that BWh = (1+α)/2Tsam < 1/Tsam−BWs. The

scaling factor 1/Tsam is included in (6.11) such that the frequency response Frc(ω) = 1

for |ω/2π| < (1 − α)/2Tsam. Without loss of generality, we employ both fT (t) and

fR(t) as square root raised cosine filters such that f(t) = fT (t) ? fR(t) is given by

(6.11) with roll-off factor α = 0.1 for the rest of the chapter. Because fR(t) is a

square root cosine filter, the filtered noise samples are uncorrelated with variance

σ2w = E[|w(t)|2].

Remark 1. For the special case if 1) the path delays are sample spaced (i.e.,

τn = nTsam), 2) the timing delay εo = 0 and 3) f(t) is a raised cosine pulse with

α < 0.156, then

h(iTsam) = Tsam

Lh−1∑

n=0

γnfrc(iTsam − nTsam)

=

Lh−1∑

n=0

γnδ(i− n) , (6.12)

since the values of the raised cosine pulse are zero at integer multiples of Tsam. There-

fore, (6.10) reduces to

rk = ej2πv(kTsam)

Lh−1∑

n=0

γns(kTsam − nTsam) + wk , (6.13)

which is the system model used in [24], where the physical channel is represented

by the commonly used tapped delay line model with equal tap spacing [76, p.795].

Therefore, the channel model considered in this chapter is more general than that in

[24].

Remark 2. Note that since there are ten identical short training symbols trans-
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mitted at the beginning of the preamble, the frequency offset v can be easily estimated

by the ML frequency estimator [77] and may be compensated before frame synchro-

nization. To simplify the development of the synchronization algorithms, v = 0 is

assumed in the following derivations. Performance of the developed algorithms in the

presence of residual frequency offset after compensation will be assessed by simula-

tions.

2. Matrix Algebraic Formulations

From (6.10), it is apparent that the received samples depend on h(iTsam) for −∞ ≤

i ≤ ∞. However, in practice, h(iTsam) will have significant values only for a finite

range of i since 1) the path delays occur in a finite interval and 2) the value of f(t)

becomes very small when |t| is large. An example of |h(iTsam)|2 is shown in Fig. 36 for

Lh = 6, the first tap of the physical channel has zero delay, other five taps have delay

uniformly distributed over the interval 0− 300ns, γn are independent and identically

distributed (i.i.d.), zero-mean, complex Gaussian random variables with variances

following the multipath intensity profile φ(τ) ∼ e−τ/τrms , where τrms = 100ns, εo

is a random variable uniformly distributed in [0, 1) and f(t) is given by (6.11) with

α = 0.1. It can be seen that h(iTsam) can be well represented by a sequence with finite

length. Therefore, (6.10) can be approximated by (ignoring the frequency offset)

rk ∼=
Le−L1−1∑

i=−L1

s(kTsam − iTsam)h(iTsam) + wk , (6.14)

where Le and L1 are the total number of taps and the number of taps for t < 0 in the

approximated equivalent channel, respectively. Note that the above approximation

can be made arbitrarily accurate by using large enough values of Le and L1.
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Fig. 36. An example of |h(iTsam)|2 for Lh = 6, the first tap of the physical channel has

zero delay, other five taps have delays uniformly distributed over the interval

0 − 300ns, γn are i.i.d., zero-mean, complex Gaussian random variables with
variances following the multipath intensity profile φ(τ) ∼ e−τ/τrms , where

τrms = 100ns, εo is a random variable uniformly distributed in [0, 1) and f(t)

is given by (6.11) with α = 0.1.
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Let rn be a received-signal vector with N received samples

rn = [rn rn+1 ... rn+N−1]
T , (6.15)

where N = Tb/Tsam = 16 is the number of samples over the span of a short training

symbol b(t). Let bn = b(nTsam) and gn = g(nTsam) be the n
th samples of the short

training symbol and of the cyclic prefix, respectively. For Le − L1 ≤ n ≤ 9N − L1,

rn is given by

rn =
√
2PB

(Le)
n+L1

ho +wn , (6.16)

where

B(L)
n ,




bmod(n,16) bmod(n−1,16) . . . bmod(n−L+1,16)

bmod(n+1,16) bmod(n,16) . . . bmod(n−L+2,16)

...
...

. . .
...

bmod(n+15,16) bmod(n+14,16) . . . bmod(n−L+16,16)




(6.17)

ho , [h(−L1Tsam) h((−L1 + 1)Tsam) . . . h((Le − L1 + 1)Tsam)]
T , (6.18)

and wn is a vector containing the noise samples with a covariance matrix σ
2
wIN .

Similarly, the first received-signal vector for the cyclic prefix is given by

rn =
√
2PG

(Le)
0 ho +wn for n = 10N − L1 (6.19)

where

G
(L)
0 ,




g0 b15 b14 . . . b16−L+1

g1 g0 b15 . . . b16−L+2

g2 g1 g0 . . . b16−L+3

...
...

...
. . .

...

g15 g14 g13 . . . g16−L




. (6.20)

For notational simplicity, we write B
(L)
n and G

(L)
0 as Bn and G0, respectively, in the
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subsequent derivations.

Remark 3. The equivalent channel, which includes the effect of filtering and

sampling offset in addition to physical channel, is in general non-causal and has

length longer than the span of the physical channel. For the channel example shown

in Fig. 36, the path delays of the physical channel lie within [0, 300ns], however, the

equivalent channel has non-zero taps before t=0 and has length longer than 300ns

(although the “head” and “tail” of the equivalent channel are very small).

C. Symbol Synchronization Performance Criterion

Having established the system model, the next question is how to define the “begin-

ning” of an OFDM symbol. For frequency flat fading channels, the starting position

is obvious and well defined. For Rician fading channels, it is reasonable to define

the symbol boundary with respect to the first path. However, in a Rayleigh mul-

tipath fading channel (e.g., the one shown in Fig. 36), the channel contains some

small taps at the beginning and the starting position of the channel is not clear. It

can be defined as the first non-zero tap of the channel, as the first tap with energy

larger than a certain threshold, as the position of the strongest path or any other

definition. Because of this, the symbol boundary of a received OFDM symbol is not

well defined. Even if we choose one of the above definitions as the reference position,

there is no guarantee that a certain synchronization algorithm giving estimates close

to the reference position would provide good performance in OFDM systems. More-

over, in OFDM systems, due to the existence of cyclic prefix, some timing offset can

be tolerated as long as the samples within the FFT window are influenced by only

one transmitted OFDM symbol. Therefore, the criterion that the synchronization

error has to be within certain limits of a fixed reference point is not an appropriate
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Fig. 37. OFDM symbol and FFT position.

performance measure for OFDM systems in frequency selective fading channels.

A more general and meaningful performance measure is the loss in system perfor-

mance due to the synchronization error. With reference to Fig. 37, if the fast Fourier

transform (FFT) window starts at position nε, the signal at the sub-carrier k after

the FFT operation, zk, can be described as [30]

zk = ej2π(k/NFFT )nεκ(nε)akHk + Ik + ηk , (6.21)

where ak, Hk and ηk are the data, channel transfer function and noise sample at

sub-carrier k, respectively, NFFT is the number of FFT points in the OFDM system,

which is 64 in IEEE 802.11a, κ(nε) is the attenuation caused by the synchronization

error, which can be well approximated by [30]

κ(nε) =
∑

i

|h(iTsam)|2
NFFT −∆εi

NFFT

, (6.22)

where

∆εi ,





nε − i nε > i

i−N − nε nε < −(N − i)

0 otherwise

, (6.23)

and Ik is the ISI plus inter-carrier interference (ICI) term at sub-carrier k caused by



112

the timing offset, which can be well approximated by Gaussian noise with power [30]

σ2ε(nε) =
∑

i

|h(iTsam)|2
(
2
∆εi
NFFT

−
(
∆εi
NFFT

)2)
. (6.24)

For a particular channel realization, the signal-to-interference-plus-noise ratio (SINR)

is given by

SINR(nε) =
κ2(nε)E[|akHk|2]
σ2ε(nε) + σ2w

. (6.25)

Notice that for the special case that the equivalent channel length is smaller than the

length of cyclic prefix (i.e., Le < N) and Le − N ≤ nε ≤ 0, then σ2ε = 0, implying

there is no ISI and ICI. On the other hand, if the length of the equivalent channel is

larger than the length of the cyclic prefix, then σ2ε > 0, therefore some ISI and ICI

occur. In this case, the best we can do is to find a value of nε which maximizes the

SINR. Noting that, due to (6.21), the SINR expression can be rewritten as

SINR(nε) =
E[|zk|2]− σ2ε(nε)− σ2w

σ2ε(nε) + σ2w
. (6.26)

Since the sum of average powers of the useful and the interference components in

(6.21) is a constant [78], it follows that E[|zk|2] is also a constant. Therefore, maxi-

mizing SINR is equivalent to minimizing σ2ε(nε) and the “ideal” symbol synchronizer

should select nε such that σ
2
ε(nε) in (6.24) is minimized.

In practice, the ideal symbol synchronizer is not realizable since it requires the

perfect knowledge of the channel realization. However, the ideal symbol synchronizer

can serve as a reference to other practical synchronization algorithms. For a particular

realization of channel, let nε be the start of FFT window estimated by a particular

symbol synchronization algorithm and nid be that from the ideal symbol synchronizer.

Then the loss of SINR, defined as the ratio of SINR obtained from the ideal symbol
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synchronizer to that from the non-ideal symbol synchronizer is given by

SINRloss(nε) ,
SINRid

SINR(nε)
=
κ2(nid)[σ

2
ε(nε) + σ

2
w]

κ2(nε)[σ2ε(nid) + σ2w]
. (6.27)

For a good symbol synchronization algorithm, the loss in SINR with respect to the

ideal synchronizer should be very small. Similar to [13], we define a synchroniza-

tion failure as the event that the loss in SINR is greater than a tolerable system

degradation. That is,

Pf (∆γ) , P (10 log10(SINRloss) > ∆γ) , (6.28)

where Pf (∆γ) is the probability of synchronization failure given that the tolerable

system degradation (in dB) is ∆γ, and P (.) denotes the probability of an event.

Remark 1. Plugging (6.23) into (6.24), the power of the ISI plus ICI term can

be written as

σ2ε(nε) =
nε−1∑

i=−∞
|h(iTsam)|2

(
2
nε − i

NFFT

−
(
nε − i

NFFT

)2)

+
∞∑

i=nε+N+1

|h(iTsam)|2
(
2
i−N − nε

NFFT

−
(
i−N − nε

NFFT

)2)
.

(6.29)

The meaning of minimizing (6.29) is to find a starting position nε for a rectangular

window of length N+1 points such that the weighted sum of the energy of the channel

taps outside this rectangular window is minimized. It is mentioned in [78] that, for

simplicity, minimizing (6.29) can be replaced by minimizing

σ̃2ε(nε) =
nε−1∑

i=−∞
|h(iTsam)|2 +

∞∑

i=nε+N+1

|h(iTsam)|2. (6.30)

Further notice that minimizing (6.30) is equivalent to maximizing

nε+N∑

i=nε

|h(iTsam)|2 (6.31)
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which is the optimal timing criterion proposed in [69, pp.90-92].

D. Proposed Symbol Synchronization Algorithm

For the packet structure shown in Fig. 35, determining the FFT window position

for the OFDM data symbols actually involves two major steps. The first one is to

identify a reference position (e.g., the transition form the short training symbol to

the cyclic prefix of the long training symbol in the middle of the preamble) such

that all the subsequent transitions can be predicted. We refer to this step as frame

synchronization. The second step is to locate the FFT window position within an

OFDM symbol such that the ISI plus ICI introduced is minimized, which we refer to

it as symbol synchronization. Notice that in some cases, frame synchronization and

symbol synchronization are the same process. For example, if the channel is frequency

flat or the multipath channel is causal and with total length smaller than the cyclic

prefix of the OFDM symbols, then the optimum position for the FFT window is

at nε = 0 [78] and symbol synchronization follows naturally and immediately once

frame synchronization is achieved. However, for the channel shown in Fig. 36, which

is non-causal and the total length may be larger than the cyclic prefix of the OFDM

symbols, symbol synchronization is essential.

1. Frame Synchronization

Suppose that the arrival of the preamble can be identified by detecting the received-

signal energy (e.g., using the methods in [16] or [20]), the problem of detecting the

transition between the short training symbols and the cyclic prefix of the long training

symbols can be decomposed into two sub-problems. Let rn1
be a received-signal vector

within the short training interval. Since rn1
may not align with the beginning of a
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short training symbol, the first sub-problem is to determine the current time offset

with respect to the last short training symbol and hence predict the starting time of

the next (expected) short training symbol. Suppose this starting time is denoted by

the time index n2. After n2 is obtained, the second sub-problem is to examine the

incoming vectors rn2+qN , q = 0, 1, 2, ..., 10, and to determine if they belong to a short

training symbol or a cyclic prefix of the long training symbol. The transition point

is declared at the time instant that the first rn2+qN belongs to the cyclic prefix.

a. First stage

Assume that the received-signal vector rn1
is io samples (io ∈ {0, 1, ..., 15}) offset from

the beginning of the current short training symbol. The probability density function

(PDF) of the received-signal vector rn1
is

p(rn1
;θ, i, L) =

1

πNσ2N
exp

{
− 1

σ2
‖rn1

−Bi

√
2Ph‖2

}
, (6.32)

where θ , [Re(
√
2PhT ), Im(

√
2PhT ), σ2]T with h, σ2 and L being the trial values

of ho, σ
2
w and Le, respectively. Note that Bi depends on i and L (see (6.17)). It is

not possible to jointly estimate ho, σ
2
w, io and Le by directly maximizing p(rn1

;θ, i, L)

since (apart from the fact that the implementation complexity would be extremely

high) the largest possible L is always chosen [79, p.223]. One criterion that gets

around this problem is the generalized ML rule [79, p.223], in which we maximize

ψ(rn1
; i, L) = ln p(rn1

; θ̂, i, L)− 1
2
ln det(I(θ̂|i, L)) , (6.33)

where the second term is a penalty term that becomes more negative as L increases.

In the above expression, θ̂ is the ML estimate of θ (given i and L) with elements
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given by [65, p.186] [79, p.222]

√̂
2Ph = (BH

i Bi)
−1BH

i rn1
, (6.34)

σ̂2 =
1

N
‖rn1

−Bi(B
H
i Bi)

−1BH
i rn1

‖2 , (6.35)

and I(θ|i, L) is the Fisher information matrix of θ (given i and L) with elements

given by [65, p.525]

[I(θ|i, L)]mn =
1

σ4

[
∂σ2

∂θm

∂σ2

∂θn

]
+
2

σ2
Re

[
∂(Bi

√
2Ph)H

∂θm

∂(Bi

√
2Ph)

∂θn

]
, (6.36)

where θm is the m
th element of θ.

As discussed in Section C, since the starting position of a frame is not well defined

in multipath Rayleigh fading channels, it is necessary to clarify what is the meaning of

estimated offset by maximizing (6.33). Let {î, L̂} be the set of values that maximize

(6.33), then î is the number of offset samples from the beginning of the current short

training symbol conditioned that the number of paths of the channel is L̂ and the

offset is with respect to the first estimated path. Notice that the generalized ML

criterion (6.33) tends to ignore the channel paths of small energy, therefore, L̂ < Le.

For example, in the channel shown in Fig. 36, the estimated channel length from the

generalized ML criterion is L̂ = 8 (−2 ≤ i ≤ 5) at SNR = 30dB.

It is proved in Appendix D that, the generalized ML rule (6.33) can be simplified

to

ψ1(rn1
; i, L) = (−N + L+ 1) ln ‖rn1

−Bi(B
H
0 B0)

−1BH
i rn1

‖2 − ξ(L) , (6.37)

where ξ(L) , L ln 2+ln
(
det(BH

0 B0)
)
is a function of L only and can be pre-computed

and stored in a look-up table to reduce the real-time computational complexity. The

first-stage synchronization algorithm, which jointly estimates the effective channel
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order Le and the delay io from the received-signal vector rn1
, becomes

î, L̂ = arg max
i∈{0,1,...,15},

L∈{1,2,...,Lmax}

ψ1(rn1
; i, L) , (6.38)

where Lmax is the maximum possible value of the channel order. The starting position

of the next expected short training symbol is then given by n2 = n1 + 16− î.

b. Second stage

The second step is to determine the smallest value of q such that rn2+qN belongs to

the cyclic prefix. This problem can be handled by Neyman-Pearson (NP) detection

approach [79, ch.3]. Let Hg and Hb be the hypotheses that rn2+qN belongs to the

cyclic prefix and the short training symbol, respectively. In each test, the probability

that the received-signal vector belongs to the short training symbol is the same as the

probability that it belongs to the cyclic prefix. It follows that n2+ qN is the point of

transition if the condition

p(rn2+qN |Hg) > p(rn2+qN |Hb) (6.39)

occurs for the first time, where

p(rn2+qN |Hg) =
1

πNσ2N
exp

{
− 1

σ2
‖rn2+qN −G0

√
2Ph‖2

}]

L=L̂

(6.40)

p(rn2+qN |Hb) =
1

πNσ2N
exp

{
− 1

σ2
‖rn2+qN −B0

√
2Ph‖2

}]

L=L̂

. (6.41)

Taking logarithm on both sides of (6.39), putting
√̂
2Ph = (GH

0 G0)
−1GH

0 rn2+qN into

(6.40) and
√̂
2Ph = (BH

0 B0)
−1BH

0 rn2+qN into (6.41), we find that n2+qN is the point

of transition if

ψ2(rn2+qN |Hg) > ψ2(rn2+qN |Hb) , (6.42)
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where

ψ2(rn2+qN |Hg) = rHn2+qNG0(G
H
0 G0)

−1GH
0 rn2+qN

]
L=L̂

(6.43)

ψ2(rn2+qN |Hb) = rHn2+qNB0(B
H
0 B0)

−1BH
0 rn2+qN

]
L=L̂

. (6.44)

2. Position of FFT Window

After the transition between short training symbols and the cyclic prefix of the long

training symbols is detected, we can predict that the beginning of the first data

carrying OFDM symbol (the OFDM symbol for the signal field) is n3 , n2 + q̂N +

(32+2×64), where 32+2×64 is the number of samples for the long training symbols.

If the equivalent channel has exactly L̂ paths, then the allowable range for the starting

point of the FFT window is {n3 + L̂, ..., n3 +N}. However, in reality, it is expected

that there are some channel taps with small energy preceding and following the L̂

paths. With the observation that the “head” and “tail” of the equivalent channel

have energy die down more or less at the same rate, it is reasonable to set the start

of the FFT window at

n4 , n3 + L̂+ b(N − L̂)/2c. (6.45)

For subsequent OFDM symbols, the starting points of the FFT window are then

n4 + `(N +NFFT ) where ` is a positive integer.

3. Summary and Remarks

The proposed symbol synchronization procedure is summarized as follows.

Step 1) Take a received-signal vector rn1
of length N at any starting position

n1 after the signal is detected. Find estimated values of i and L such that
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ψ1(rn1
; i, L) is maximized over i ∈ {0, 1, ..., 15} and L ∈ {1, 2, ..., Lmax} where

ψ1(rn1
; i, L) is given by (6.37). Calculate n2 = n1 + 16− î.

Step 2) Examine rn2+qN , q = 0, 1, ..., 10. Find the smallest value of q such that

ψ2(rn2+qN |Hg) > ψ2(rn2+qN |Hb) where ψ2(rn2+qN |Hg) and ψ2(rn2+qN |Hb) are

given by (6.43) and (6.44), respectively. Declare n2 + q̂N as the time of transi-

tion.

Step 3) The FFT window for the first OFDM symbol should start at n4 , n2 +

q̂N + (32 + 2 × 64) + L̂ + b(N − L̂)/2c. For subsequent OFDM symbols, the

starting points of the FFT window are then n4 + `(N + NFFT ) where ` is a

positive integer.

We make the following remarks.

1. A knowledge of n1 is in general not available at the receiver, so that the best

knowledge that can be obtained after accomplishing Step 1 is the difference

n2−n1. Despite this, it is sufficient for the receiver to locate the next expected

short training symbol.

2. In practical implementation of Step 2, the receiver need not examine the entire

sequence of rn2+qN . The time of transition can be declared right after the

condition for test is met. The rest of the rn2+qN vectors can be ignored.

3. For (6.34) to hold, it is required that N > L and Bi be of full rank (i.e.,

rank(Bi) = L) [65, pp. 186]. Numerical calculation shows that the maximum

value of L that makes Bi full-rank is Lmax = 12 which corresponds to a time

duration of 600ns. As WLANs are mainly used inside buildings, and measure-

ments show that the maximum delay spreads of physical channels in different

indoor environments are only about 300ns [69, pp.18-19], together with the fact
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that the generalized ML criterion treats the channel taps with small energies as

noise, the proposed synchronizer can handle most practical situations.

4. It is interesting to note that the form of the generalized ML rule in (6.37)

is similar to the GAIC used in [24]. However, there are several differences

between the algorithm proposed here and the one in [24]. First, our proposed

algorithm uses the short training symbols and the cyclic prefix of the long

training symbol to achieve frame synchronization whereas the algorithm in [24]

uses only the long training symbol. Second, the observation-vector length used

in the proposed algorithm is 16 whereas it is 64 for the one in [24]. Third,

our proposed algorithm is developed based on a time-domain approach while a

frequency-domain analysis is employed in [24]. Lastly, our proposed algorithm

considers a more general channel model than the algorithm in [24] (see Remark

1 of Section B). Performance and complexity comparisons between the proposed

algorithm and the technique of [24] are provided in the next section.

5. If L is perfectly known, the metric in the first stage reduces to the same form

as the metric in the second stage. Furthermore, in this case, the proposed

first-stage detection algorithm coincides with the general frame synchronizer

for packet-based transmissions in frequency selective fading channels proposed

in [71]-[73] (with the frequency offset equal to zero).

E. Simulation Results and Discussions

1. Simulation Conditions

Simulations are run in order to investigate the synchronization performance of the

proposed algorithm. The received samples are generated according to (6.14) with
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L1 = 15 and Le = 36 so that the range of index i in (6.14) is {−15, ..., 20}. This

enables the equivalent channel to be accurately represented (see Fig. 36). The channel

gains γn, n = 0, 1, ..., Lh − 1, were modelled as mutually-independent, circularly-

symmetric, zero-mean complex-Gaussian random variables (i.e., Rayleigh fading was

considered). The number of physical paths is Lh = 6. The channel dispersion was

modelled by an exponential function with φ(τ) ∼ e−τ/τrms , where τrms = 100ns. The

combined transmit and receive filter f(t) is given by a raised cosine filter (6.11) with

α = 0.1. Two different models for the arrival time of the channel paths are considered.

The first one (referred to as the channel I) assumes that the path delays are sample

spaced (i.e., τn = nTsam, n = 0, 1, ..., 5) and there is no sampling phase offset (i.e.,

εo = 0). The second one (referred to as the channel II) is more realistic and assumes

the first tap has zero delay, the other five taps present delays uniformly distributed

over the interval [0−300ns], and the fractional timing delay εo is treated as a uniform

random variable over [0,1). Note that from the measurements performed in indoor

channels [69, pp.18-19], the parameters of channel II basically represent the worst

case channel in indoor environments. The channel is fixed during each packet but

independent from one packet to another.

As a working assumption, we follow a suggestion of the standard [68] that the last

three short training symbols are used for frame synchronization although in practice

it varies from one situation to another. Therefore, n1 was treated as a uniform

random variable over [5N +1, 6N ] in the simulation, and a value of n1 was randomly

generated in each run. For each simulation run, the loss of SINR is calculated using

(6.27), where the ideal symbol synchronizer selects a starting point for the FFT

window such that (6.30) is minimized (simulation results not shown in this chapter

show that minimizing (6.29) or (6.30) give the same results). The noise samples are

i.i.d., zero mean complex Gaussian random variable. The signal-to-noise ratio (SNR)



122

Table II. Probability of synchronization failure for the proposed algorithm in channel

II at SNR=25dB and different frequency offsets
v Pf (0.5dB) Pf (1dB)

-240kHz 3.1 ×10−3 1 ×10−4
-180kHz 3.2 ×10−3 2 ×10−4
-120kHz 2.9 ×10−3 1 ×10−4
-60kHz 2.3 ×10−3 1 ×10−4

0 3.2 ×10−3 0
60kHz 2.3 ×10−3 1 ×10−4
120kHz 3.5 ×10−3 0
180kHz 2.6 ×10−3 1 ×10−4
240kHz 4.2 ×10−3 1 ×10−4

was defined as

SNR ,

1
2
E[|r(t)− w(t)|2]
1
2
E[|w(t)|2] =

2P

σ2w
. (6.46)

Each simulation point is obtained by averaging over 104 Monte-Carlo runs.

2. Effect of Frequency Offset

We first examine the effect of non-zero frequency offset. It is required that the devi-

ation of the transmitted-signal center frequency is within ±20ppm [68]. Assume that

the receiver oscillator also has a frequency uncertainty of ±20ppm. Since the high-

est operating frequency of the WLAN is 5.8GHz [68], the worst-case frequency offset

in the receiver is ±232kHz. Table II lists the probability of synchronization failure,

Pf (0.5dB) and Pf (1dB), for the proposed algorithm in channel II against different

frequency offsets, under the condition of SNR = 25dB. The frequency offset is esti-

mated as v̂ = arg{rHn rn+N}/2πNTsam [77] for any Le−L1 ≤ n < n1 and compensated

before frame synchronization. For the case of v = 0, no frequency offset estimation

is performed and it serves as a reference. The results indicate that the presence of

frequency offset does not have significant effect on the probability of synchronization

failure. In generating the simulation results for the rest of this chapter, we set v = 0.
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3. Performances and Comparisons with Other Algorithms

In this section, the performance of the proposed algorithm will be compared to an

existing symbol synchronization algorithm for IEEE 802.11a WLANs [24] and three

other algorithms for general OFDM symbol synchronization [14], [20], [21]. The algo-

rithms in [14], [20] and [21] are selected for comparison since they represent different

types of techniques commonly used in symbol synchronization of OFDM systems. The

algorithm in [14] represents a class of techniques that exploit the periodic structure

of the received signal and requires no knowledge of the preamble pattern (autocorre-

lation technique); the algorithm in [20] represents a class of techniques that correlate

the received signal with the known training signal (cross-correlation technique) and

the algorithm in [21] stands for the technique that makes use of both the knowledge

of transmitted preamble and the periodic structure (double correlation technique).

The algorithm based on GAIC [24] is designed to detect the transition between

g(t) and c(t) in the preamble. Due to the fact that the GAIC algorithm provides

also an estimate of the channel length, the FFT window starting position for the first

OFDM data symbol can be calculated in a similar way to the proposed algorithm (see

(6.45)). That is, the FFT window starts at n̂GAIC+2×64+L̂GAIC+b(N−L̂GAIC)/2c

where n̂GAIC and L̂GAIC are the timing estimate and channel length estimate from

the GAIC algorithm, respectively. For the algorithms in [14], [20] and [21], since they

are not originally designed for the IEEE 802.11a standard, they have to be slightly

modified. Let r̄n , [rn rn+1 ... rn+63]
T and r̃n , [rn rn+1 ... rn+95]

T be the received-

signal vectors of lengths 64 and 96, respectively (an overbar or a tilde is added to

distinguish them from the received-signal vector of length 16, rn, defined in (6.15)).

Furthermore, let g , [g0 g1 ... g31 c0 c1 ... c31]
T , where cn , c(nTsam), be the known

training sequence of length 64, starting from the first sample of the cyclic prefix g(t).



124

Then the modifications are as follows.

1. For the autocorrelation technique, the repetition structure in the long training

symbols is being exploited. The transition between b(t) and g(t) is estimated

by [14]

n̂AC = argmax
n
{|̃rHn r̃n+64| − ρ1(‖r̃n‖2 + ‖r̃n+64‖2)/2} (6.47)

where ρ1 , SNR/(1+SNR). Due to the structure of the long training symbols,

an observation length of 96 is needed, otherwise, the cost function inside the

max operation would have a plateau, leading to uncertainty for the start of

the frame. Notice that similar algorithms have been proposed in [12], [13] and

[36]. Once the transition between b(t) and g(t) is identified, the FFT window

starting position for the first OFDM data symbol would be n̂AC + (32 + 2 ×

64) + 16− λ, where λ is the pre-advancement to account for the mean shift of

the estimated timing position caused by the channel dispersion [80]. As there is

no channel length information, the value of pre-advancement λ is chosen based

on the following intuitive argument. Since the length of the cyclic prefix for the

OFDM symbols is 800ns, and from the channel measurements, the maximum

delay spread of the indoor physical channel is smaller than 300ns [69, pp.18-19],

therefore, there will be about 500ns of cyclic prefix contains very small amount

of ISI and it is safest to start the FFT window in the middle of this 500ns

region. That is, λ = 500ns/2Tsam = 5.

2. Define Qn , gH r̄n as the correlation between the received vector and the known

training sequence vector. Since the periodic autocorrelation property of vector

g resembles that of a pseudo noise (PN) sequence (this can easily be shown by

numerical computations), correlation peaks are expected if the received vector

starts near the transition between b(t) and g(t). The cross-correlation based
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algorithm in [20] is used to detect this correlation peak and can be stated as

first finding the smallest value of n such that |Qn +Qn+1|2 − ρ2‖g‖2‖r̄n‖2 > 0,

then the frame position is given by

n̂CC = argmax
n
{|Qn|, |Qn+1|} , (6.48)

where ρ2 = 0.8 as suggested by [81]. Similar to the autocorrelation algorithm,

the FFT window starting position for the first OFDM data symbol would be

n̂CC + (32 + 2× 64) + 16− λ.

3. For the double correlation algorithm in [21], Qn is first generated and then the

conjugate of the correlation outputs 64 samples later (i.e., Q∗n+64) is multiplied

with Qn. According to [21], the correlation peaks of the product |QnQ
∗
n+64|

approximately correspond to the channel tap-power for each delay. Therefore,

based on the same rationale as the ideal synchronizer (see (6.31)), a sum of

|QnQ
∗
n+64| over a rectangular window of length N + 1 should be used to locate

the correct timing. Mathematically, it can be stated as

n̂DC = argmax
n

{
n+N∑

i=n

|QiQ
∗
i+64|

}
. (6.49)

Then the FFT window starting position for the first OFDM data symbol is

given by n̂DC + (32 + 2 × 64) + 16. No pre-advancement is needed since the

estimator (6.49) introduces the pre-advancement implicitly.

Let us first consider the performances of different algorithms in channel I. Fig. 38

plots the distributions of the estimated FFT window positions at SNR=30dB with

respect to nε = 0 (reference to Fig. 37). Notice that for channel I, as long as the

FFT window starts in the interval nε ∈ {−10, ..., 0}, there is no performance penalty.

From Fig. 38, it can be seen that the proposed algorithm and the algorithm based
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on GAIC have very high estimation accuracies and all the estimated positions lie

within the ISI-free region; while the other three correlation-based algorithms have

larger estimation variances and present some estimated positions outside the ISI-free

region (for the algorithm based on cross-correlation [20], since the threshold ρ2 is not

optimal in frequency selective fading channels, about 10% of estimated positions lie

outside the display of this figure). One may argue that the performance of the double

correlation algorithm can be improved if all the estimates are shifted by 5 samples

to the right (similarly, the results of the autocorrelation algorithm can be corrected

by shifting about 3 samples to the left). However, this cannot be done in practice

since the amount of mean shifts are not known in reality. Notice that the mean

shifts deduced from the simulated distributions are only available if i) a lot of trials

were run and ii) the optimal frame position with respect to the estimated position is

known. Unfortunately, these two conditions cannot be met in practice. Furthermore,

the amount of mean shifts would highly depend on the channel characteristics (delay

spread and the number of physical paths), which ultimately depend on the operating

environment. The amount of mean shift suitable for one environment may not be

suitable for another.

Fig. 39 plots the probability of synchronization failure Pf (0.5dB) as a function

of SNR. It can be observed that the proposed algorithm and the algorithm based on

GAIC have zero probability of synchronization failure for SNR ≥ 10dB. For other

correlation-based algorithms under consideration, although some perform pretty well

at certain SNR regions (e.g., autocorrelation algorithm at high SNRs and double

correlation algorithm at 5dB ≤ SNR ≤ 10dB), in general, they are not as reliable as

the proposed algorithm and the algorithm based on GAIC.

Now, let us consider the performances of different algorithms in channel II. Fig. 40

plots the distributions of the estimated FFT window positions at SNR=30dB with
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Fig. 38. Distributions of the detected FFT window starting position for the proposed

algorithm and algorithms based on autocorrelation [14], cross-correlation [20],

double correlation [21] and GAIC [24] with respect to the ideal FFT window

starting position in channel I.
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Fig. 39. Pf (0.5dB) for the proposed algorithm and algorithms based on autocorrelation

[14], cross-correlation [20], double correlation [21] and GAIC [24] as a function

of SNR in channel I.
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respect to the ideal position. Note that the ideal position is the starting point for

the FFT window such that (6.30) is minimized and is different for different channel

realizations. First, it can be seen that the distributions for all algorithms have larger

variances compared to the case of channel I. This is because the start of the channel

is not clear in channel II, small amount of noise can lead to a shift in the estimated

position. Secondly, from Fig. 40, it is obvious that the proposed algorithm and

the algorithm based on GAIC have estimated positions closer to the ideal position

compared with the estimates from other algorithms.

Fig. 41 shows the probability of synchronization failure Pf (0.5dB) as a function

of SNR for channel II. Notice that the curves of Pf in general show an “U shape”.

This is because at low SNRs, the estimation is not accurate due to the high level of

noise, while at high SNRs, although the estimated positions can be quite accurate,

a small amount of shift with respect to the ideal position leads to a large amount of

loss in SINR (see (6.27)). From Fig. 41, it is clear that the proposed algorithm and

the algorithm based on GAIC have similar performances and are the best compared

to others (at least for SNR ≥ 10dB).

The poor performances of the correlation-based algorithms are mainly due to the

fact that the signal filtered through a multipath channel would present a complicated

correlation output (as opposed to a single correlation peak in AWGN channel), mak-

ing the detection of the correlation peak more difficult. For the proposed algorithm

and the algorithm based on GAIC, although the same pilot signal is used, they also

incorporate the multipath structure of the channel into the system model, making it

more robust to multipath fading. Combining the results of Fig. 39 and 41, we can

conclude that at medium to high SNRs (SNR ≥ 10dB), joint estimation of the channel

and timing (the proposed algorithm and the algorithm based on GAIC) gives bet-

ter performance than the correlation-based algorithms, although the implementation
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Fig. 40. Distributions of the detected FFT window starting position for the proposed

algorithm and algorithms based on autocorrelation [14], cross-correlation [20],

double correlation [21] and GAIC [24] with respect to the ideal FFT window

starting position in channel II.
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Fig. 41. Pf (0.5dB) for the proposed algorithm and algorithms based on autocorrelation

[14], cross-correlation [20], double correlation [21] and GAIC [24] as a function

of SNR in channel II.
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complexity of the correlation-based algorithms are much smaller.

Finally, we want to mention that although the performances of the proposed

algorithm is comparable to that of GAIC algorithm, the complexity of the proposed

algorithm is much smaller. This can be explained as follows. Both algorithms involve

a least-squares fitting in the form of ‖r − Φr‖2, where r is an observation vector in

the time domain for the proposed algorithm and is an observation vector transformed

into the frequency domain using FFT for the algorithm based on GAIC, Φ is some

square matrix depending on the parameters to be estimated (compare (6.37) of this

chapter with (4) in [24]). Since the observation length is only 16 for the proposed

algorithm while it is 64 for the GAIC algorithm, the number of multiplications for

the proposed algorithm in each hypothesis test is 16 times less than that of GAIC

algorithm. Taking into account the fact that, for the proposed algorithm, the number

of hypothesis tests is smaller than that of the GAIC algorithm, and there is no need to

transform the observation vector into frequency domain before least-squares fitting,

the proposed algorithm is at least 16 times less complex than the GAIC algorithm.

F. Conclusions

In this chapter, based on the maximum-likelihood principle and the preamble struc-

ture of IEEE 802.11a standard, a new symbol synchronization algorithm for IEEE

802.11a WLANs over frequency-selective fading channels is proposed. A realistic

channel model was employed, which includes the effects of the physical channel, fil-

tering and unknown sampling phase offset. Loss in system performance due to syn-

chronization error was used as a performance criterion. Computer simulations showed

that the proposed algorithm exhibits better performance than the correlation based

algorithms. When compared to the algorithm based on generalized Akaike informa-



131

tion criterion (GAIC), the proposed algorithm has comparable performance, but with

significantly reduced complexity.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

A. Conclusions of This Dissertation

In this dissertation, the problem of symbol timing synchronization for three different

communication systems was studied.

For single carrier systems with single antenna, a general feedforward symbol-

timing estimation framework based on the CML principle was introduced. The

mean-square-error (MSE) performance of the proposed estimator was analyzed both

analytically and via simulations. Moreover, a unifying framework that subsumes a

class of blind feedforward symbol-timing estimators employing second-order statistics

was proposed and the best timing estimators were determined. Results showed that

the proposed feedforward CML estimator and the SLN estimator with a properly

designed pre-filter perform the best.

For single carrier systems with multiple antennas, two new symbol timing esti-

mation algorithms were proposed. Firstly, the optimum sample selection algorithm

by Naguib et al. was improved. Both analytical and simulation results showed that,

for modest oversampling ratio (such as Q=4), the MSE of the proposed estimator is

significantly smaller than that of the optimum sample selection algorithm. Secondly,

the symbol-timing estimation problem in MIMO systems was tackled using the ML

principle. The DA and NDA ML symbol timing estimators and their corresponding

CCRB and MCRB in MIMO correlated flat-fading channels were derived. Simulation

results under different operating conditions (e.g., number of antennas and correlation

between antennas) were given to assess and compare the performances of the DA and

NDA ML estimators with respect to their corresponding CCRBs and MCRBs.
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For the IEEE 802.11a WLANs system, the ML timing synchronizer was devel-

oped. A realistic channel, which includes the effects of filtering and sampling time

offset in addition to the physical channel with random path delays, was considered.

Furthermore, the loss in system performance due to synchronization error was used

as the performance criterion. Results showed that the proposed algorithm performs

better than correlation-based algorithms. Furthermore, the proposed algorithm per-

forms as good as the one based on GAIC principle but has at least 16 times smaller

complexity.

B. Suggestions for Future Work

By no means, this dissertation can cover all the aspects of symbol timing synchroniza-

tion. Based upon this dissertation, there are at least two directions for future research.

One is to further improve the algorithms proposed in this dissertation. For exam-

ple, the proposed symbol timing estimator for single-carrier single-antenna systems

in Chapter II does not take into account the finite constellation of the symbols being

transmitted. If this information is incorporated into the design of the estimator, it is

expected that the resultant estimator would have a better performance. Another ex-

ample is the synchronization problem of MIMO OFDM (multi-carrier, multi-antenna)

systems. In this dissertation, the synchronization problems for MIMO and OFDM

systems have been studied separately, but not together. The synchronization prob-

lem of MIMO OFDM systems thus appears to be a natural extension of this research

work. The second direction is to look at the possibility of integrating the synchro-

nization algorithms in the physical layer with those in the higher layers of general

wireless communication network.
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APPENDIX A

PROOF OF (2.36) AND (2.37)

From the definition of Λ(ε) in (2.16), we have

E[Λ(k1)Λ(k2)] = E[rHBk1
rrHBk2

r]

=

LoQ−1∑

l1=0

LoQ−1∑

i1=0

LoQ−1∑

l2=0

LoQ−1∑

i2=0

b
(k1)
i1l1

b
(k2)
i2l2

E[r∗(i1)r(l1)r
∗(i2)r(l2)],

(A.1)

where b
(k)
ij is the (i, j)

th element in Bk. Now we concentrate on E[r∗(i1)r(l1)r
∗(i2)r(l2)]

which is given by

E[r∗(i1)r(l1)r
∗(i2)r(l2)]

= E

[(
e−jθo

√
Es

T

∑

n1

d∗n1
g∗(i1T/Q− n1T − εoT ) + η

∗(i1)

)

·
(
ejθo

√
Es

T

∑

n2

dn2
g(l1T/Q− n2T − εoT ) + η(l1)

)

·
(
e−jθo

√
Es

T
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n3

d∗n3
g∗(i2T/Q− n3T − εoT ) + η

∗(i2)

)

·
(
ejθo

√
Es

T

∑

n4

dn4
g(l2T/Q− n4T − εoT ) + η(l2)

)]
.

(A.2)
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First, let consider linear modulations, in which case we have

E[dn1
dn2
] = 0 , (A.3)

E[dn1
d∗n2
] = δ(n1, n2) , (A.4)

E[η(i1)η(i2)] = 0 , (A.5)

E[η∗(i1)η(i2)] =
NoQ

T
δ(i1, i2) , (A.6)

E[d∗n1
dn2

d∗n3
dn4
] =





1 for n1 = n2 6= n3 = n4

1 for n1 = n4 6= n2 = n3

m4 for n1 = n4 = n2 = n3

0 otherwise ,

(A.7)

and therefore, 10 out of the 16 terms which result from (A.2) vanish. With the

definitions

Gε(i, j) ,
∑

n

g∗(iT/Q− nT − εT )g(jT/Q− nT − εT ) , (A.8)

Zε(i, j, k, l) ,
∑

n

g∗(iT/Q− nT − εT )g(jT/Q− nT − εT )

·g∗(kT/Q− nT − εT )g(lT/Q− nT − εT ), (A.9)

the remaining terms can be expressed as

E[r∗(i1)r(l1)r
∗(i2)r(l2)] = S1 + S12 + S14 + S23 + S34 + S4, (A.10)
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where

S1 ,
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Plugging (A.10)-(A.16) back into (A.1) and expressing the summations using matri-

ces, some straightforward calculations lead to

E[Λ(k1)Λ(k2)] =
E2

s

T 2
{
tr[Bk1

GT
εo
]tr[Bk2

GT
εo
] + tr[Bk1

GT
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T 2
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]tr[Bk2
] + tr[Bk1
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]
}
. (A.17)

By expanding (2.36), it can be easily verified that (2.36) is equivalent to (A.17), thus

completed the proof. A similar procedure can be used to prove (2.37).

Now, let consider MSK and GMSK. Since the pseudo-symbols in (2.10) are not

circularly symmetric, (A.3) and (A.7) have to be modified accordingly. After some

lengthy but straightforward calculations, it is found that

E[dn1
dn2
] = (−1)n1δ(n1, n2) , (A.18)

E[d∗n1
dn2

d∗n3
dn4
] =





1 for n1 = n2 6= n3 = n4

1 for n1 = n4 6= n2 = n3

1 for n1 = n4 = n2 = n3

(−1)|n2−n1| for n1 = n3 6= n2 = n4

0 otherwise .

(A.19)

Due to (A.18), two more cross terms in the expansion of (A.2) have to be considered.

One of them is S13, which is given by

S13 ,

e−2jθo
Es

T

∑

n1

∑

n3

E[d∗n1
d∗n3
]E[η(l1)η(l2)]g

∗(i1T/Q− n1T − εoT )g
∗(i2T/Q− n3T − εoT ).

(A.20)
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But thanks to the correlation property of noise samples, S13 = 0. The other extra

term is also zero due to the same reason. For the fourth order moment in (A.19),

compared to the corresponding expression for linear modulations (A.7), we notice

that m4 = 1 and there is an extra non-zero fourth-order moment. Therefore, apart

from setting m4 = 1 in S1, an extra term has to be added to S1 in (A.11). The

modified S1, denoted as S1MSK , can be expressed as

S1MSK

= S1|m4=1 +
E2

s

T 2

∑

n1

n1 6=n2

∑

n2

(−1)|n2−n1|g∗(i1T/Q− n1T − εoT )g(l1T/Q− n2T − εoT )

·g∗(i2T/Q− n1T − εoT )g(l2T/Q− n2T − εoT ). (A.21)

Plugging (A.21) into (A.1), and then expressing the multiplications using matrix

notation, it can be proved that the only change is the definition of c(k1, k2), which is

given in (2.40).
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APPENDIX B

PROOF OF (4.29) AND (4.30)

Since we can construct orthogonal sequences such that (4.12) is satisfied, the ISI

term in (4.9) vanishes. Further with the fact that ‖ci‖2 = Lt , we have

ΛML(k) =
N∑

i=1

M∑

j=1

|λij(k)|2 = W 2hp2(kT/Q− εoT ) + v(k) (B.1)

where

W ,

√
Es

NT
Lt, (B.2)

h ,

N∑

i=1

M∑

j=1

|hij|2, (B.3)

v(k) ,

N∑

i=1

M∑

j=1

{|cHi ηj(k)|2 + 2Wp(kT/Q− εoT )Re[hij(c
H
i ηj(k))

∗]}. (B.4)

Then (4.27) can be rewritten as

φ = W 2hej2πεo

Q−1∑

k=0

p2(kT/Q− εoT )e
−j2πk/Q + ej2πεo

Q−1∑

k=0

v(k)e−j2πk/Q. (B.5)

Before we proceed to the calculation of E[φ2] and E[φφ∗], we first calculate the

mean and the second moment of v(k). Note the following facts

E[ηj(l1Q+ k
′)] = 0 ∀j, l1, k′ (B.6)

E[hijηj(l1Q+ k
′)] = 0 ∀i, j, l1, k′ (B.7)

E[ηj(l1Q+ k
′)ηj′(l2Q+ k

′′)] = 0 ∀j, j ′, l1, l2, k′, k′′ (B.8)
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E[ηj(l1Q+ k
′)η∗j′(l2Q+ k

′′)] = Noϕ(((l1 − l2)Q+ k
′ − k′′)T/Q)δjj′ (B.9)

E[hijhi′j′ ] = 0 ∀i, i′, j, j ′ (B.10)

E[hijh
∗
i′j′ ] = δii′δjj′ , (B.11)

where δii′ = 1 if i = i′ and zero otherwise. Since the matched filter is a root raised

cosine filter, we also have

ϕ(0) = 1 (B.12)

ϕ(τ) = ϕ(−τ) (B.13)

ϕ(lT ) = 0 for l 6= 0. (B.14)

Let

vij(k) = |cHi ηj(k)|2 + 2Wp(kT/Q− εoT )Re[hij(c
H
i ηj(k))

∗] (B.15)

such that v(k) =
∑N

i=1

∑M
j=1 vij(k). The mean of vij(k) is

E[vij(k)] =
Lt−1∑

l=0

Lt−1∑

l′=0

ci(l
′)c∗i (l)E[ηj(lQ+ k)η

∗
j (l

′Q+ k)]

=
Lt−1∑

l=0

|ci(l)|2E[|ηj(lQ+ k)|2]

= NoLt , (B.16)

where in the first equality, we applied (B.7) and in the second equality, we applied

(B.14). Therefore, E[v(k)] =MNNoLt is a constant and independent of k.

The second moment of vij(k) is given by

E[vij(k
′)vi′j′(k

′′)] = E
[
|cHi ηj(k

′)|2|cHi′ ηj′(k
′′)|2
]
+ 4W 2p(k′T/Q− εoT )p(k

′′T/Q− εoT )

·E
{
Re
[
hij

(
cHi ηj(k

′)
)∗]

Re
[
hi′j′

(
cHi′ ηj′(k

′′)
)∗]}

.

(B.17)
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Note that (B.7) makes the cross terms vanish. Considering the first term in (B.17),

E
[
|cHi ηj(k

′)|2|cHi′ ηj′(k
′′)|2
]
=

Lt−1∑

l1=0

Lt−1∑

l2=0

Lt−1∑

l3=0

Lt−1∑

l4=0

c∗i (l1)ci(l2)c
∗
i′(l3)ci′(l4)

· E[ηj(l1Q+ k′)η∗j (l2Q+ k′)ηj′(l3Q+ k′′)η∗j (l4Q+ k′′)].

(B.18)

Using the fact that if a, b, c, d are jointly Gaussian, then

E[abcd] = E[ab]E[cd] + E[ac]E[bd] + E[ad]E[bc] + E[a]E[b]E[c]E[d], (B.19)

and applying (B.6), (B.8) and (B.9), we have

E[ηj(l1Q+ k
′)η∗j (l2Q+ k

′)ηj′(l3Q+ k
′′)η∗j (l4Q+ k

′′)]

= N2
o [ϕ((l1 − l2)T )ϕ((l3 − l4)T )]

+N2
o [ϕ((l1 − l4)T + (k

′ − k′′)T/Q)ϕ((l2 − l3)T + (k
′ − k′′)T/Q)] δjj′ .

(B.20)

Plugging this result back into (B.18), we obtain

E
[
|cHi ηj(k

′)|2|cHi′ ηj′(k
′′)|2
]

= N2
oL

2
t +N

2
o

{
Lt−1∑

l1=0

Lt−1∑

l4=0

c∗i (l1)ci′(l4)ϕ((l1 − l4)T + (k
′ − k′′)T/Q)

·
Lt−1∑

l2=0

Lt−1∑

l3=0

c∗i (l2)ci′(l3)ϕ((l2 − l3)T + (k
′ − k′′)T/Q)

}
δjj′ .

(B.21)

Consider first i 6= i′. We note that the second term in (B.21) is approximately zero

since ϕ(τ) is a decaying function of τ . When l1 = l4 or |l1− l4| is small, ϕ((l1− l4)T +

(k′−k′′)T/Q) has significant values. But in these cases,∑Lt−1
l1=0

∑Lt−1
l4=0

c∗i (l1)ci′(l4) = 0

since the training sequences are designed such that they are orthogonal when the

relative delay is small. When |l1− l4| is large, ϕ((l1− l4)T + (k′− k′′)T/Q) ≈ 0. The

same argument applies to ϕ((l2− l3)T + (k′− k′′)T/Q). For i = i′, the only case that
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the second term in (B.21) is nonzero is when l1 = l4 and l2 = l3. Therefore, we have

E
[
|cHi ηj(k

′)|2|cHi′ ηj′(k
′′)|2
]
= N2

oL
2
t

(
1 + ϕ2((k′ − k′′)T/Q)δii′δjj′

)
. (B.22)

Now consider the second term of (B.17) (ignoring the non-random part at this

moment). Expanding it out and applying (B.10) and (B.11), we note that it is zero

except for the case i = i′ and j = j ′, in which case we have

4E
{
Re
[
hij

(
cHi ηj(k

′)
)∗]

Re
[
hij

(
cHi ηj(k

′′)
)∗]}

= E
[
hij

(
cHi ηj(k

′)
)∗
h∗ij
(
cHi ηj(k

′′)
)]
+ E

[
h∗ij
(
cHi ηj(k

′)
)
hij

(
cHi ηj(k

′′)
)∗]

= NoE[|hij|2]
Lt−1∑

l1=0

Lt−1∑

l2=0

ci(l1)c
∗
i (l2)ϕ((l2 − l1)T + (k

′′ − k′)T/Q)

+NoE[|hij|2]
Lt−1∑

l1=0

Lt−1∑

l2=0

c∗i (l1)ci(l2)ϕ((l1 − l2)T + (k
′ − k′′)T/Q)

= 2NoLtϕ((k
′ − k′′)T/Q). (B.23)

Plugging (B.22) and (B.23) back into (B.17), we obtain

E[vij(k
′)vi′j′(k

′′)] = N 2
oL

2
t +N

2
oL

2
tϕ

2((k′ − k′′)T/Q)δii′δjj′

+ 2NoLtW
2p(k′T/Q− εoT )p(k

′′T/Q− εoT )ϕ((k
′ − k′′)T/Q)δii′δjj′ .

(B.24)

Finally,

E[v(k′)v(k′′)]

=
M∑

j=1

N∑

i=1

E[vij(k
′)vij(k

′′)] +
M∑

j=1

N∑

i=1

M∑

j′=1
j′ 6=j

N∑

i′=1
i′ 6=i

E[vij(k
′)vi′j′(k

′′)]

= MN(MN + ϕ2((k′ − k′′)T/Q))N 2
oL

2
t

+2MNNoLtW
2p(k′T/Q− εoT )p(k

′′T/Q− εoT )ϕ((k
′ − k′′)T/Q). (B.25)
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Now, return to the calculation of E[φ2] and E[φφ∗]. From (B.5), we have

E[φ2] =W 4E[h2]ej4πεo

(
Q−1∑

k=0

p2(kT/Q− εoT )e
−j2πk/Q

)2

+ ej4πεoE



(

Q−1∑

k=0

v(k)e−j2πk/Q

)2
 .

(B.26)

The cross terms vanish since h and v(k) are uncorrelated and E[v(k)] is a constant

and independent of k. Note that h is a central chi-square random variable with 2MN

degree of freedom and variance in each dimension equals 0.5, so E[h2] =MN(1+MN).

Using (B.25), it can be easily shown that

E



(

Q−1∑

k=0

v(k)e−j2πk/Q

)2
 = 2MNNoLtW

2ΞSN +MNN 2
oL

2
tΞNN , (B.27)

where

ΞSN ,

Q−1∑

k′=0

Q−1∑

k′′=0

p(k′T/Q− εoT )p(k
′′T/Q− εoT )

·ϕ((k′ − k′′)T/Q)e−j2πk
′′/Qe−j2πk

′/Q (B.28)

ΞNN ,

Q−1∑

k′=0

Q−1∑

k′′=0

ϕ2((k′ − k′′)T/Q)e−j2πk
′′/Qe−j2πk

′/Q. (B.29)

Plugging (B.27) back into (B.26), the expression for E[φ2] can be obtained and is

given by (4.29). A similar procedure can be applied to obtain the expression for

E[φφ∗] in (4.30).
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APPENDIX C

PROOF OF (5.33), (5.47) AND (5.53)

Proof of (5.33)

From the expression of MCRBDA in (5.32), only the product inside the tr(.)

operator depends on Z, therefore the problem of finding optimal training sequence is

equivalent to maximizing tr(Z̃HD̃H
εo
D̃εo

Z̃ΦT ) with respect to Z with the constraints

that i) the columns of Z have to be independent of each other and ii) [ZHZ]ii =

Lo + 2Lg for i = 1, ..., N . The first constraint is for the MLDA to hold and has

been mentioned before. The second constraint is the power constraint and we assume

that the training sequence has average unit energy on each data bit. Now, consider

the eigenvector decomposition D̃H
εo
D̃εo

= UDΣDU
H
D , where ΣD is a diagonal matrix

with the eigenvalues of D̃H
εo
D̃εo

located on the diagonal and UD is the unitary matrix

containing all the corresponding eigenvectors as columns. Similarly, express ΦT =

UTΣTU
H
T . Then

tr(Z̃HD̃H
εo
D̃εo

Z̃ΦT ) = tr(Z̃
HUDΣDU

H
DZ̃UTΣTU

H
T )

= tr(
√
ΣT

H
UH

T Z̃
HUDΣDU

H
DZ̃UT

√
ΣT )

= tr(ΞHΣDΞ)

=
N∑

i=1

[Ξ:,i]
HΣDΞ:,i , (C.1)

where Ξ , UH
DZ̃UT

√
ΣT . Note that, if we set Z

HZ = (Lo+2Lg)IN (this is a sufficient

condition that make the two constraints mentioned earlier satisfied), then the columns

of Ξ are orthogonal to each other (since ΞHΞ =
√
ΣT

H
UH

T Z̃
HUDU

H
DZ̃UT

√
ΣT =

(Lo + 2Lg)ΣT/N). Therefore, by confining the training sequences to be orthogonal,
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the problem then becomes to maximize [Ξ:,i]
HΣDΞ:,i with respect to Ξ:,i for each

i with the constraints that [Ξ:,i]
HΞ:,i = (Lo + 2Lg)[ΣT ]ii/N and [Ξ:,i]

HΞ:,j = 0 for

j = 1, ..., i− 1.

It is well known that for a hermitian matrix R, the vector u that maximizes

uHRu subject to the constraints that ‖u‖ = 1 and uHui = 0 for i = 1, 2, ..., k − 1,

where ui is the eigenvector corresponding to the i
th largest eigenvalue of R, is uk

[67]. Setting R = ΣD and with the proper power constraints, it is not difficult to see

that Ξ:,i is the eigenvector corresponding to the i
th largest eigenvalue of ΣD scaled

by the energy factor
√
(Lo + 2Lg)[ΣT ]ii/N . Since ΣD is a diagonal matrix, the i

th

eigenvector is a vector of length Lo + 2Lg with a one at the i
th position and zero at

other positions. Therefore,

Ξ =
√
(Lo + 2Lg)/N




√
ΣT

0(Lo+2Lg−N)×N


 , (C.2)

where 0(Lo+2Lg−N)×N is an all zero matrix with dimensions (Lo+2Lg−N)×N . With

Ξ = UH
DZ̃UT

√
ΣT , we have

Z =
√
(Lo + 2Lg)UD




IN

0(Lo+2Lg−N)×N


UH

T =
√
(Lo + 2Lg)Ũ(εo)U

H
T , (C.3)

where Ũ(εo) is the matrix containing the N eigenvectors corresponding to the N

largest eigenvalues of D̃H
εo
D̃εo

as columns.
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Proof of (5.47)

First note that Γx can be rewritten in the following form

Γx , E[vec(Z
√
ΦTH

T
i.i.d.)vec(Z

√
ΦTH

T
i.i.d.)

H ]

= E[(Hi.i.d. ⊗ Z)vec(
√
ΦT )vec(

√
ΦT )

H(Hi.i.d. ⊗ Z)H ]

= E[(Hi.i.d. ⊗ Z)Υ(HH
i.i.d. ⊗ ZH)], (C.4)

where Υ , vec(
√
ΦT )vec(

√
ΦT )

H . The (i, j)th element of Γx is given by

[Γx]ij = E[(Hi.i.d. ⊗ Z)i,:Υ(H
H
i.i.d. ⊗ ZH):,j ]

= E[tr
(
Υ(HH

i.i.d. ⊗ ZH):,j(Hi.i.d. ⊗ Z)i,:
)
]

= tr
(
ΥE[(HH

i.i.d. ⊗ ZH):,j(Hi.i.d. ⊗ Z)i,:]
)

(C.5)

with i, j = 0, 1, ...,M(Lo + 2Lg).

Let i = iq(Lo+2Lg)+ir and j = jq(Lo+2Lg)+jr such that iq, jq ∈ {0, 1, ...,M−1}

and ir, jr ∈ {1, ..., Lo+2Lg} are the quotients and remainders of divisions i/(Lo+2Lg)

and j/(Lo + 2Lg), respectively. Also:

E[(HH
i.i.d. ⊗ ZH):,j(Hi.i.d. ⊗ Z)i,:] = E[

(
(HH

i.i.d.):,jq
⊗ (ZH):,jr

)(
(Hi.i.d.)iq ,: ⊗ (Z)ir,:

)
]

= E[(H∗
i.i.d.)

T
jq ,:(Hi.i.d.)iq ,:]⊗ E[(Z∗)Tjr,:(Z)ir ,:]

= INδiqjq
⊗ Γz(jr − ir), (C.6)

where Γz(jr − ir) , E[(Z∗)Tjr,:(Z)ir,:] is the average cross-correlation matrix of the

symbols transmitted with the time index difference jr− ir. Note that E[(Z∗)Tjr,:(Z)ir ,:]

depends only on the time index difference but not on the absolute time index since

in the NDA case we never know where the observation begins, the average cross-

correlation between time indices 1 and 3 would be the same as that for time indices
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5 and 7. Putting (C.6) into (C.5), we obtain:

[Γx]ij = δiqjq
tr
(
Υ(IN ⊗ Γz(jr − ir))

)
, (C.7)

implying that

Γx = IM ⊗Ψ , (C.8)

where Ψ is a Hermitian, Toeplitz matrix with [Ψ]ij = tr
(
Υ(IN ⊗ Γz(j − i))

)
. Note

that [Ψ]ij can be simplified as

[Ψ]ij = tr
(
vec(

√
ΦT )vec(

√
ΦT )

H(IN ⊗ Γz(j − i))
)

= tr
(
vec(

√
ΦT )

H(IN ⊗ Γz(j − i))vec(
√
ΦT )

)

= tr
(
(
√
ΦT )

HΓz(j − i)(
√
ΦT )

)

= tr
(
Γz(j − i)ΦT

)
. (C.9)

Proof of (5.53)

First note that the observation interval usually involves more than one indepen-

dent space-time encoded block, each given by the form (5.52), therefore Γz(j−i) = 0N

for |j− i| ≥ s. Furthermore, since Γz(j− i) = Γz
∗(i−j), it is sufficient to concentrate

on Γz(j − i), for j − i = ` with ` = 0, 1, ..., s− 1,

Γz(`) =
1

s

s−∑̀

n=1

E[(Gn+`,:)
H(Gn,:)] (C.10)

where the factor 1/s exists because in NDA estimation, the probability that the

observation start at a particular row of the matrix G is 1/s. Putting (5.52) into
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(C.10), we obtain:

Γz(`)

=
1

s

s−∑̀

n=1

E[(
rs∑

k=1

Re(bk)Xk + j

rs∑

k=1

Im(bk)Yk)
H
n+`,:(

rs∑

k′=1

Re(bk′)Xk′ + j

rs∑

k′=1

Im(bk′)Yk′)n,:]

=
1

s

s−∑̀

n=1

(
rs∑

k=1

E[Re(bk)Re(bk)][Xk]
T
n+`,:[Xk]n,: +

rs∑

k=1

E[Im(bk)Im(bk)][Yk]
T
n+`,:[Yk]n,:),

(C.11)

where we have used the i.i.d. property of bk, E[Re(bk)Re(bk′)] = 0, E[Im(bk)Im(bk′)]

= 0 for k 6= k′ and E[Re(bk)Im(bk′)] = 0 for all combination of k and k
′. Further

note that, E[Re(bk)Re(bk)] = E[Im(bk)Im(bk)] = 1/2, then we have for j− i = ` with

` = 0, 1, ..., s− 1,

Γz(j − i) =
1

2s

s−∑̀

n=1

(
rs∑

k=1

[Xk]
T
n+`,:[Xk]n,: +

rs∑

k=1

[Yk]
T
n+`,:[Yk]n,:). (C.12)

Finally, note that since Xk and Yk are real-valued, Γz(j − i) would also be real-

valued and Γz(j − i) = Γz(i− j). Therefore, it can be concluded that (C.12) is true

for |j − i| = ` (` = 0, 1, ..., s− 1).
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APPENDIX D

PROOF OF (6.37)

The first term of (6.33) can be easily obtained by plugging (6.34) and (6.35) into

(6.32) followed by taking logarithm, and it gives

ln p(rn1
; θ̂, i, L) = N lnN −N lnπ −N ln ‖rn1

−Bi(B
H
i Bi)

−1BH
i rn1

‖2 −N. (D.1)

Consider the second term of (6.33). Performing the differentiations in (6.36), we have

I(θ|i, L) = 1

σ2




2Re(BH
i Bi) −2Im(BH

i Bi) 0

2Im(BH
i Bi) 2Re(BH

i Bi) 0

0 0 1/σ2



. (D.2)

It follows that

det(I(θ|i, L)) = 22L

σ2(2L+2)
det







Re(BH
i Bi) −Im(BH

i Bi)

Im(BH
i Bi) Re(BH

i Bi)





 . (D.3)

Using the result

det






A11 A12

A21 A22





 = det(A11) det(A22 − A21A−111 A12), (D.4)

we note that for any square matrix Σ,

det







Re(Σ) −Im(Σ)

Im(Σ) Re(Σ)





 = det

(
Re(Σ)

)
det
(
Re(Σ) + Im(Σ)Re(Σ)−1Im(Σ)

)
.

(D.5)
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Since

Re(Σ) + Im(Σ)Re(Σ)−1Im(Σ)

=
(
Re(Σ)− jIm(Σ)

)
Re(Σ)−1

(
Re(Σ) + jIm(Σ)

)

= Σ∗Re(Σ)−1Σ, (D.6)

it follows that

det







Re(Σ) −Im(Σ)

Im(Σ) Re(Σ)





 =

det
(
Re(Σ)

)
det
(
Σ∗
)
det
(
Σ
)

det
(
Re(Σ)

) =
(
det(Σ)

)2
. (D.7)

Plugging (D.7) into (D.3), and then taking the logarithm, we have

ln det(I(θ̂|i, L)) = 2L ln 2− 2(L+ 1) ln σ̂2 + 2 ln
(
det(BH

i Bi)
)
. (D.8)

Combining the results of (D.1) and (D.8), and dropping the terms irrelevant to opti-

mization in (6.33), the generalized ML rule follows:

ψ1(rn1
; i, L) = (−N+L+1) ln ‖rn1

−Bi(B
H
i Bi)

−1BH
i rn1

‖2−L ln 2− ln
(
det(BH

i Bi)
)
.

(D.9)

Note that the columns of Bi are constructed by cyclically shifting the sequence b0 ,

[b0 b1 · · · b15]
T with different numbers of shifts. Denote Tm

lc (b0) as the cyclic left

shift of b0 by m places (e.g., Tlc(b0) = [b1 · · · b15 b0]T ). It follows that the (l, k)th

element of BH
i Bi is given by (l, k = 0, 1, ..., Le − 1)

[BH
i Bi]l,k = [T

i+l
lc (b0)]

H [T i+k
lc (b0)]

= bH
0 [T

k−l
lc (b0)]

, R(k − l) (D.10)
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where R(τ) is the periodic autocorrelation function of the sequence b0 with relative

offset τ and is independent of i. Therefore, the matrix BH
i Bi depends only on L and

we can set i = 0 in BH
i Bi. With this result, the generalized ML rule simplifies to

ψ1(rn1
; i, L) = (−N + L+ 1) ln ‖rn1

−Bi(B
H
0 B0)

−1BH
i rn1

‖2 − ξ(L) (D.11)

where ξ(L) , L ln 2 + ln
(
det(BH

0 B0)
)
.
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