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ABSTRACT

Parallel Magnetic Resonance Imaging:

Characterization and Comparison. (August 2005)

Swati Dnyandeo Rane, B.E., Pune University

Chair of Advisory Committee: Dr. Jim X. Ji

Magnetic Resonance Imaging (MRI) is now increasingly being used for fast imag-

ing applications such as real-time cardiac imaging, functional brain imaging, contrast

enhanced MRI, etc. Imaging speed in MRI is mainly limited by different imaging

parameters selected by the pulse sequences, the subject being imaged and the RF

hardware system in operation. New pulse sequences have been developed in order to

decrease the imaging time by a faster k -space scan. However, they may not be fast

enough to facilitate imaging in real time. Parallel MRI (pMRI), a technique initially

used for improving image SNR, has emerged as an effective complementary approach

to reduce image scan-time. Five methods, viz., SENSE [Pruesmann, 1999], PILS

[Griswold, 2000], SMASH [Sodickson, 1997], GRAPPA [Griswold, 2002] and SPACE

RIP [Kyriakos, 2000]; developed in the past decade have been studied, simulated

and compared in this research. Because of the dependence of the parallel imaging

methods on numerous factors such as receiver coil configuration, k -space subsampling

factor, k -space coverage in the imaging environment, there is a critical need to find

the method giving the best results under certain imaging conditions. The tools de-

veloped in this research help the selection of the optimal method for parallel imaging

depending on a particular imaging environment and scanning parameters. Simula-

tions on real MR phased-array data show that SENSE and GRAPPA provide better

image reconstructions when compared to the remaining techniques.
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CHAPTER I

INTRODUCTION TO MAGNETIC RESONANCE IMAGING

Magnetic Resonance Imaging is a non-invasive technique to image biological tissues

using the phenomenon of nuclear magnetic resonance. This phenomenon is based on

the fundamental property of charged particles like protons, electrons and neutrons to

posses a spin. Each individual charged particle possesses a spin or angular momentum

which contributes to the MRI signal. Two or more charged particles with opposite

spins tend to cancel out this signal. It is therefore, the uncancelled spins which are

of importance in MRI.

A. Nuclear Magnetic Resonance

The Nuclear Magnetic Resonance phenomenon is displayed by nuclei with a net spin.

Hydrogen is one such element with an unpaired (uncancelled) spin. Since hydrogen

is in abundance in the human body, hydrogen protons are usually imaged to study

biological tissue structure.

1. Spin Physics

Nucleus of every atom comprises of charged particles like protons. Such charged

particles inside a nucleus exhibit a net spin (Fig. 1), defined by the quantum number

I. Every rotating charged particle i.e. proton is associated with a magnetic moment

�m. The magnetic moment �m is related to the spin quantum number I by the following

relation

�m =
√

I × (I + 1) × h̄ (1.1)

The journal model is IEEE Transactions on Automatic Control.
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where h̄ is the Planck’s constant. Under equilibrium conditions, the net magnetic

moment of all the protons is nullified i.e.

�M =
∑

�m = 0 (1.2)

Fig. 1. Representation of proton with magnetic moment �m (left). Net magnetic mo-

ment is zero (right)

When a steady magnetic field �B0 is applied to these protons, the net magneti-

zation gets aligned in the direction of �B0 as shown in Fig. 2. The protons continue

their precession about �B0. The frequency of precession of the protons about �B0 is

called the Larmor frequency ω0 and defined as

ω0 = γB0 (1.3)

where γ is the gyromagnetic constant and is equal to 42.57 MHz for hydrogen. It is

clear from the above equation that the Larmor frequency is dependent on the static

field strength B0.
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Fig. 2. Effect of steady magnetic field �B0 on the protons and the net magnetization

2. Radio Frequency (RF) Field and Resonance

If the protons aligned in the direction of �B0 are subject to a second RF magnetic field

�B1 with frequency equal to the Larmor frequency ω0, the protons experience a force

at resonance (ω = ω0) which tips the net magnetization away from its equilibrium

position under the effect of B0. This field is applied only for a short duration and

hence often referred to as a RF pulse. The tipping process is shown in Fig. 3.

The tipping of the net magnetization �M depends on the energy of �B1. For e.g.,

if �B0 is applied along the Z direction and �B1 is applied along the X axis such that

�M tips completely onto the X-Y plane and the z-component of �M , Mz = 0, then the

�B1 pulse is called the 90◦ pulse. This is because �M is tipped away from its initial

position along �B0 in the z direction, by 90◦. Once tipped, the protons are all in phase

but they continue to precess. The protons start dephasing due to inhomogeneities in

the �B0 field, causing the net transverse magnetization in the X-Y plane to decrease.

As soon as the �B1 field is turned off, the protons relax back to equilibrium, i.e., they

realign along the �B0 field in the Z- direction. This change in �Mz and �Mxy components

is detected by the MRI receiver to obtain the magnetic resonance signal. The MR
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Fig. 3. The position of M before and after the application of the �B1 pulse

Fig. 4. Free Induction Decay

signal �Mxy is called the Free Induction Decay (FID) and is shown in Fig. 4 .

The MR signal is characterized by the Bloch equations:

dM

dt
= γM × B0 − Mx �ax + My �ay

T2
− Mz − M0

T1
(1.4)

where T1 and T2 are the relaxation times associated with the relaxation of the lon-

gitudinal and transverse component of �M . �Mx and �My are the components of �Mxy in

the X and Y directions respectively. M0 is the net magnetization at equilibrium. The

Bloch equation describes the behavior of the net magnetization vector �M . The solu-
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tion to this equation for �Mz and �Mxy signals, as shown in Fig. 4. Once the MR signal

is generated, it has to be detected, stored and processed for image reconstruction.

B. Signal Localization and Imaging

Each point of the image is encoded in MRI by differentiation of the spins using a

program which is known as pulse sequence. The pulse sequence determines how the

magnetic fields are manipulated in order to spatially encode every location on the

image. Additional fields called gradient fields are used for this purpose.

1. Gradient Fields

A gradient field is a linearly varying magnetic field. Therefore at a given point, the

protons experience a net magnetic field of

B = B0 + γGr (1.5)

Thus, if a gradient field is applied along the direction of �B0 (Z-direction), the Larmor

frequency at every point along the Z-direction will be given by

ω0 = γ(B0 + γGz) (1.6)

The protons can be differentiated in the Z-direction on the basis of gradient Gz. To

uniquely determine every point in an image, three gradients Gz, Gx and Gy are used

to spatially encode the spins in the Z, X and Y directions respectively.

2. Slice Selection

Slices for imaging can be selected in the sagittal, coronal and axial plane of a three

dimensional object using the slice selection gradient field as shown in the Fig. 5.
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Fig. 5. Slice selection

A slice is selected using the slice selection gradient and the RF field in conjunction.

Once the imaging plane is selected, every point in the image is encoded using the

frequency encoding and the phase encoding gradients. The slice selection gradient is

usually applied along the Z-direction.

3. Frequency Encoding

A gradient field applied along the X-direction will create a spatially varying Larmor

frequency distribution along the X-direction. Though the gradient field is applied

along the X-direction, the gradient direction is along the Z-axis as shown in Fig. 6.

As a result, all points along X-direction can be encoded on the basis of the Larmor

frequency. To encode the image data in the Y-direction, another gradient field is

applied along the Y-axis.

4. Phase Encoding

Unlike the frequency encoding gradient which is turned ON for a long time to cover

all data points in the X-direction, the phase encoding gradient is applied for a very

short time. Using the same principle as that of frequency encoding, a frequency
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Fig. 6. Frequency difference created by the frequency encoding gradient

Fig. 7. Phase difference created by phase encoding gradient

difference is introduced along the Y-direction by the phase encoding gradient. Again,

though the gradient is applied along the Y-axis, the direction of the gradient field

is along the Z-axis. The frequency difference in the neighboring protons results in a

time/phase difference in the precession of the protons. Even when the phase encoding

gradient is removed, the phase difference continues to persist. This phase difference at

a particular location is proportional to the gradient strength at that location. Hence

every point along the Y direction is encoded on the basis of the phase of the precession

as shown in Fig. 7. Thus every location on the image data is uniquely encoded by

frequency in the X-direction and by phase in the Y-direction. Note that the direction



8

Fig. 8. A typical pulse sequence acquires k -space data. The image and the k -space

data are related by the Fourier transform

of the frequency and phase encoding gradient can be interchanged. Signal localization

is thus achieved with three gradients along the Z, X and Y direction.

5. Pulse Sequence and k -space Data

One line is traversed per phase encoding. Data along this line is then spatially coded

and acquired during frequency encoding using a pulse sequence. A typical pulse

sequence is shown in Fig. 8.

Data collected by a pulse sequence is called k -space data and shares a Fourier

relation with the image required i.e., the image is the spectrum of the k -space data

collected. Conventionally, the image is in the spatial domain but in MRI, the image is

obtained in the frequency domain. This is because the image obtained is the Fourier

Transform of the data collected from the scanner. To avoid confusion, the scanner

data is said to be in k -space while the image is said to be in image domain or fourier

domain. The MR signal is called echo.The time required to generate echo is denoted

as the echo time TE. An echo is just a symmetrical FID obtained using the pulse

sequence. One echo forms one line in the k -space (Fig. 9). The time required to
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Fig. 9. One echo is one line in k -space

acquire one line of k -space is called as the repetition time TR. To acquire N lines in

k -space, the pulse sequence shown above has to be repeated N times. The total time

required to acquire the whole image data tacq is given by

tacq = N × TR (1.7)

Hence the total imaging time in MRI depends on TR and N .
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CHAPTER II

RAPID MAGNETIC RESONANCE IMAGING

Typically a MR scan takes at least 20 minutes and can go on for an hour or more.

Rapid imaging of biological structures gives a detailed understanding of the tissue

dynamics and an insight into the operating mechanism of different human systems.

For example, imaging of the heart in real-time can provide an insight into cardiac

dynamics, facilitating knowledge about its operation in normal conditions and in case

of an abnormality. Also of great importance is the imaging of blood flow through the

body and the study of brain function. The applications mentioned above demand

extremely fast imaging modalities.

Imaging has to be quicker than the fastest tissue velocity encountered. Any

tissue motion causes a blur in the resultant image. For image analysis to detect

abnormalities, temporal resolution has to be increased while maintaining the required

spatial resolution. This poses a big challenge for pulse-sequence design and gradient

system design.

A. Imaging Time Reduction Methods in MRI

As seen earlier, the total imaging time in MRI depends on the repetition time TR

and N . TR in turn depends on the tissue relaxation times T1 and T2. The protons

excited during the acquisition of one line have to completely relax back before the

second acquisition and excitation begins so that the MR signals generated, do not

mix. This wait period is also essential for higher signal strength.

Attempts are made to increase the imaging speed by reducing TR to an accept-

able limit or by reducing the acquisitions (or excitations) required for the entire image

data-set. New pulse sequences have been designed for this purpose.
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Fig. 10. The EPI pulse sequence (above) and EPI kspace coverage (below).

1. Pulse Sequences

Pulse sequences have been designed for rapid imaging since 1977 when a pulse se-

quence called Echo Planar Imaging (EPI) was developed for flow measurement[3].

a. Echo Planar Imaging (EPI)

EPI was used for real-time cardiac imaging in 1987 [17] bringing down the image

scan time to 40msec with a resolution of 4mm. TR as seen earlier, is time between

two acquisitions. This pulse sequence aims at reducing the time elapsed between two

simultaneous acquisitions. The pulse sequence and the k -space coverage for EPI is

shown in Fig. 10. Improvements such as segmented or interleaved EPI [7] have been

developed to improve the resolution to 2.6mm for 110msec of scan time. However,

an EPI sequence is extremely difficult to implement practically. It is limited by the

current hardware and the gradient switching speed. Some of the disadvantages of
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EPI are

1. Gradient systems: It is hard to get the correct gradient rise times for rapid

switching.

2. Eddy currents: The gradient switching generates eddy currents in the MR hard-

ware system and show up as artifacts in the image in the form of bright spots.

3. Field inhomogeneity: Any spurious gradients generated due to the inhomo-

geneities in the �B0 cause artifacts in the resultant image.

4. Chemical shift: This is the shift in the resonance frequency of the proton in two

different chemical environments. For instance, the hydrogen protons in water

and fat show a difference of around 3ppm due to the different molecules they

are surrounded by at 1Tesla. This effect becomes more pronounced with higher

gradients.

b. Fast Spin Echo (FSE)

Fast Spin Echo is another pulse sequence used to facilitate rapid imaging. This

sequence collects more lines per echo unlike the convention where only one line is

collected for every RF excitation. Out of N k -space lines to be collected, if M lines

are scanned per echo then the total acquisition time is reduced by N/M . The M lines

collected per excitation are selected far away from one another so that their signals

do not mix. The pulse sequence and the coverage is as shown in Fig. 11. FSE has

the following drawbacks:

1. Excess RF power: For acquiring multiple lines, multiple 180◦ pulses have to

be applied causing a lot of RF power to be accumulated on the subject being

imaged. The magnetization starts saturating and the signal strength decreases.
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Fig. 11. The FSE pulse sequence (left) and the FSE k -space coverage (right)(Figure

modified from [15]).
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2. Different TE problem: Since the M lines are acquired at different times, each

line in reality corresponds to a line from an image acquired at a different TE.

The reconstructed image therefore corresponds to an approximate TE and may

cause blurring.

3. T2 decay: As the phase encoding gradient applied for collection of each of the

M lines is after considerable time gap, the T2 decay effect becomes prominent

resulting in a blurring.

c. Other Pulse Sequences

Improvements over the above sequences like Interleaved EPI, Spiral EPI, RARE

(Rapid Acquisition and Relaxed Excitation) [7] have been developed which offer in-

crease in speed and increase in resolution. The image resolution can be improved to

about 1.2mm with the Interleaved EPI. Sequences like true Fast Imaging with Steady-

state Precession (FISP ) [10] have also emerged for fast imaging which enhance the

contrast of the image thus improving image quality.

All pulse sequences collect all N lines in k -space but reduce TR. Further advances

in rapid imaging are made possible by parallel imaging where N is reduced.

2. Parallel Imaging

Parallel Imaging developed as a complementary technique for reducing the image scan

time, using locally sensitive multiple receivers. The total number of phase encodings

are reduced to decrease imaging time. The image is reconstructed using information

in the form of the coil sensitivity profiles to compensate for the lesser data collected in

k -space compared to the previously described techniques. This technique is explained

in detail in the next chapter.
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CHAPTER III

PARALLEL MAGNETIC RESONANCE IMAGING

Pulse sequences achieve considerable increase in the imaging speed. They mainly

aim at reducing the TR. Parallel imaging aims at accelerating the imaging speed by

reducing the number of k -space lines collected by the scanner.

From Fourier theory, most of the image information is stored at the center or

in the lower frequencies in the frequency domain. Collecting a few lines in center

of k -space can produce an image but it would not be useful for medical analysis.

Parallel imaging therefore suggests different ways in which lesser k -space lines can be

collected and yet a good image can be obtained for diagnosis. The number of lines

reduced is determined by the reduction factor or acceleration and denoted by R. A

reduction factor of 2 or an acceleration of 2 implies half the usual number of lines

were acquired.

A. Basic Concept

Unlike a conventional MRI scanner, parallel MRI requires an array of receivers to

collect data simultaneously. Thus each coil is only locally sensitive as shown in the

Fig. 12. In other words, with a receiver placed near a subject, the signal contributed

by the subject to the receiver varies according to the relative position of the subject

from the receiver. Thus, though every receiver collects the same k -space data, each

one contains different information about the image

In parallel MRI, data collected by each receiver element in k -space is subsampled

data. Therefore, individual aliased images are obtained for every coil. These images

are either unfolded in the image domain to yield the final image or the missed k -space

lines are reconstructed using apriori information in the form of the spatially varying
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Fig. 12. A: Body coil for conventional MRI scan, B: Coverage of body coil, C: Array of

receivers for parallel MRI, D: Coverage of the array, each acquired a fraction

of the total image. [1]

coil sensitivity distribution.

Consider for instance, two coils instead of the regular volume coil with sensi-

tivities as shown in Fig. 13. Then each coil acquires only half of the image since

it receives strong signal from areas it is closest to and low or no signal from points

away from it. This effectively reduces the coil field of view (FOV) to half that of the

image. If the individual coil data now were subsampled in k -space by a factor of 2,

two halves of the image can be obtained simultaneously from the two coils. Once

the two images are appropriately reconstructed after data acquisition, they can be

combined to get the entire image. Various algorithms have been developed for correct

image reconstruction and can be classified [11] as

• Image domain based reconstruction: Reconstruction is done by unfolding ev-

ery image using the coil maps. For e.g., SENsitivity Encoding (SENSE) [9],

Partially Parallel Imaging with Localized Sensitivities (PILS) [12].

• K-space based method: Reconstruction is done by regenerating the missed k -

space lines either for the ideal image or for individual coil images. For e.g.,
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Fig. 13. Basic concept of parallel MRI

SiMultaneous Acquisition of Spatial Harmonics (SMASH) [4], Autocalibrating

SMASH (AUTO-SMASH) [14], Variable density AUTO-SMASH (VD-AUTO-

SMASH) [16], GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA)

[13].

• Hybrid reconstruction: Reconstruction is done partly in the image domain and

partly in k -space. For e.g., Sensitivity Profiles from an array of Coils for En-

coding and Reconstruction In Parallel (SPACE RIP) [20].

B. SENSE

Reduced FOV images are obtained using Parallel MR scanning. Since the reduction

factor is already known, the overlap amongst the pixels in every coil image is known.

The sensitivities of the each individual coil are estimated or available as apriori infor-
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Fig. 14. Overlap of image pixels in SENSE

mation. A set of linear equations can be written down for every pixel in the reduced

FOV using these coil profiles and overlapped image intensities to solve for the re-

quired image pixel values. In Fig. 14, for 4 coil data with reduction factor 2, consider

aliased pixel ’a’ in the reduced FOV for every coil. This pixel is the sum of the pixels

at locations marked and weighted by the sensitivity of the coil at that location. If

the image intensity at the two locations is i1 and i2 and the sensitivities of the 4 coils

at the respective locations are s11, s21, s31, s41 and s12, s22, s32, s42, then

a1 = i1 × s11 + i2 × s12 (3.1)

a2 = i1 × s21 + i2 × s22 (3.2)

a3 = i1 × s31 + i2 × s32 (3.3)

a4 = i1 × s41 + i2 × s42 (3.4)

where a1, a2, a3 and a4 are the intensities of the aliased pixels in the 4 reduced FOV

individual coil images. Hence with a set of linear equations, the actual unfolded pixel

values can be estimated.
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C. Regularized SENSE

Reconstruction using SENSE gives a poor image due to inaccurate estimation of

the coil geometry causing the reconstruction matrix to be ill-conditioned[6]. SNR is

further reduced in SENSE due to this condition. Tikhnov regularization[21] is done

to make use of the low resolution coil maps as apriori information. Error due to noise

and ill conditioning is appropriately weighted using the regularization parameter λ.

Selection of correct λ is important for noise suppression in Regularized SENSE.

Ireg = Irec + (((SH × S + λH × λ)−1) × S) × (Iprior − S × Irec) (3.5)

where Ireg is the regularized image, Irec is the reconstructed image, S is the coil

sensitivity matrix and λ is the regularization parameter.

D. PILS

PILS is based on the underlying assumption that the coils are highly locally sensitive.

Therefore the coil FOV is very small as compared to the image FOV. No true aliasing

occurs when individual coil data is subsampled. Knowing the coil center and its FOV,

the exact location of the coil image can be determined, The unaliased image from

the aliased data is cut and pasted in the correct location in the image FOV. PILS

is sometimes also referred to as ‘Scissors Method’ for this reason. An illustration of

the PILS method is depicted in Fig. 15. To cut the aliased images correctly, the coil

sensitivities are approximated using a Gaussian function in order to determine the

coil location in the entire FOV.

The entire PILS reconstruction can be summarized as follows [12]. For a coil

with FOV Fc centered around c0, the k -space can be reduced to the equation shown.
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Fig. 15. PILS reconstruction

The integration is carried out only over Fc.

S(ky) =
∫

Fc

ρ(y)eikyydy (3.6)

.

Phase encoding direction is along Y-axis. ρ(y) is the proton density of the sample

being imaged. During reconstruction,the center of the coil c0 is estimated from the

sensitivity profiles. Hence the image can be reconstructed over a predefined area of

range Fc as

ˆρ(y) = FFT (φ(ky)S(ky)) (3.7)

where φ(ky) determines the shift in the k -space data corresponding to a shift in

the individual coil image according to the center of the coil. The point of maximum

sensitivity is assumed as the center of the coil.

φ(ky) = eikyc0 (3.8)

The knowledge of the coil centers gives the relative position of the coils and hence a

composite image can be formed.
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E. SMASH

In SMASH, every skipped line is considered as data shifted in frequency from the

nearest acquired line data. From Fourier Theory and the modulation property of

Fourier transform, a frequency shift by ω0 in the Fourier domain corresponds to

multiplication by a sinusoid of frequency ω0 in the image domain. For every missing

line in k -space, a complex sinusoid is generated for the reconstruction. The complex

sinusoids are generated by appropriate weighting of the coil profiles. The SMASH

reconstruction can be explained with the following set of equations [4]. For a sample

with proton density ρ(x, y), coil sensitivity C(x, y) and reduction along Y (phase

encoding direction), the k -space equation can be written as

S(kx, ky) =
∫ ∫

dxdyC(x, y)ρ(x, y)e−ikxx−ikyy (3.9)

A complex sinusoidal of spatial frequency Δkcomp
y can be constructed as

Ccomp(x, y) = cos Δkcomp
y y + i sin Δkcomp

y y = eiΔkcomp
y y (3.10)

If this were the coil sensitivity instead of C(x,y), then

S(kx, ky) =
∫ ∫

dxdyρ(x, y)e−ikxx−i(kyy−Δkcomp
y ) (3.11)

Hence the combined MR signal obtained from all the coils together is shifted in k -

space by Δkcomp
y . This shift can be interpreted as a shift of an acquired line to produce

a missed line offset by the same spatial frequency Δkcomp
y in the image domain.

F. Auto-calibrating SMASH (AUTO-SMASH)

SMASH required an accurate estimate of the coil sensitivity maps to generate the

weighting coefficients for every coil which usually is not possible. In addition, noise
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Fig. 16. Use of ACS lines in VD-AUTO-SMASH

in the k -space data causes error in the estimation of the weights. To avoid the process

of sensitivity estimation, a few extra lines are collected called the Auto-Calibration

Signal (ACS) lines. These lines are used to calculate the weighting coefficients re-

quired for image reconstruction. For a reduction factor of R, R-1 extra lines are

required for AUTO-SMASH reconstruction. This does not significantly increase the

imaging time. Besides eliminating sensitivity estimation, this approach also helps

reduce motion artifacts and reduce sensitivity to noise.

G. Variable Density AUTO-SMASH (VD-AUTO-SMASH)

For better robustness and noise insensitivity, the reconstruction coefficients for each

line are calculated using the ACS and acquired lines from all coils unlike AUTO-

SMASH where reconstruction coefficients for a coil are calculated from data of the

same coil. The process is illustrated in Fig. 16. VD-AUTO-SMASH results in

acquisition of more ACS lines since a set of linear equations is now required to be

solved.
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Fig. 17. Use of ACS lines in GRAPPA

Fig. 18. Sliding blocks in GRAPPA

H. GRAPPA

GRAPPA further extends VD-AUTO-SMASH by considering more acquired lines per

ACS line to determine the weighting factors as shown in Fig. 17.

This results in further immunity to noise and also makes the reconstruction less

susceptible to motion artifacts. GRAPPA in its basic form is VD-AUTO-SMASH. It

can be extended to reconstruct the image in different ways by using different acquired

lines to generate the same ACS lines. In this case, SNR is calculated for every image

and the weighting coefficients are weighted according to the SNR obtained. This

approach is called the sliding block approach (Fig. 18).
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I. SPACE RIP

SPACE RIP is a hybrid reconstruction method that first takes a inverse FFT along

the frequency encoding making the rows/columns along the phase encoding direction,

independent of each other. For every column, the k -space data is a FFT weighted

by the coil sensitivity matrix. The data obtained for every coil can be written as

(modified form [20]):

Sm(ky, x) =
∑

ρ(x, n)Wm(x, n)eikynτ (3.12)

where Wm(x, n) is the complex sensitivity profile of the mth receiver array element.

This expression is converted into matrix from combining the k -space data of all coils

and then solved to obtain the required image. If there are M coils and N lines are ac-

quired per coil then, to generate one column of the image, a size (M ×N)×P matrix

has to be inverted, making the reconstruction cumbersome. P is the number of total

phase encodings in case of a full FOV scan. But this method is not restricted by the

coil configuration of the k -space sampling. Matrix size reduces as reduction factor in-

creases and reconstruction becomes faster unlike other methods where reconstruction

time increases according to the acceleration.

J. Single Echo Acquisition (SEA)

SEA[19] is a different parallel imaging technique from those discussed above. In all

the previous methods, every coil collects the same k -space data. In SEA, every coil

collects different phase encodings which, when put together, form the complete k -

space data of the image. Only one excitation is required and each coil acquires one

echo line or one k -space line. Therefore, the image size for a C channel array and

N frequency encodings will be C × N . The required image is obtained by just a
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simple inverse Fourier transform. The current research focuses on parallel imaging

techniques in which all coils collect the same k -space lines.
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CHAPTER IV

CHARACTERIZATION AND COMPARISON OF PARALLEL MRI

TECHNIQUES

All parallel MRI techniques use similar k -space coverage but reconstruct the image

differently. The image acquired therefore, depends on a number of factors discussed

below.

A. Factors Affecting Parallel MR Reconstruction

The following factors affect the quality of the reconstructed image in parallel MRI:

Coil Configuration: Broadly, the coil arrays for parallel MRI are classified based

on their spatial sensitivity profiles as:

Linear Array: Individual array elements are arranged one after the other in a

plane. The phase encoding direction is fixed as the direction of differential sensitivi-

ties, i.e., the direction along which the coil sensitivities vary. Their sensitivity profiles

are ideal for all parallel imaging reconstruction algorithms since the sensitivities vary

spatially along one dimension and are uniform along the other.

Non-Linear Array: Array elements are arranged around the object to be im-

aged as if in a circle. The phase encoding direction can be arbitrarily chosen and may

depend on the subsampling factor.

Most techniques are independent of the coil configuration but the coil arrange-

ment has to satisfy different requirements for every reconstruction. For instance,

PILS requires coil sensitivities to be extremely localized. The localization becomes

an important criteria for this reconstruction since no true aliasing should occur even

in the reduced FOV images. Specific arrangements of the non-linear arrays can also

allow for PILS reconstruction. SMASH reconstructs the images by generating smooth
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spatial harmonics by weighting the coil sensitivities. The coil profiles must be suitable

to generate smooth sinusoids to generate a non-aliased image. Generally, linear arrays

elements have gaussian or bell like profiles which make them suitable for SMASH.

On the other hand, GRAPPA does not make use of the coil sensitivities directly. So

the coil array type does not matter in the reconstruction. However, the placement of

coils in a non-linear array may or may not cause aliasing artifacts to appear. SENSE

and SPACE RIP also are relatively independent of the configuration of the coils, but

depend on the correct estimation of the sensitivities. The noise varies from pixel to

pixel and adjacent pixels are correlated. Therefore, it does not have a common-square

root-dependence on the number of pixels [9].

Reduction Factor: Theoretically, the reduction factor is limited by the number

of coils. Practically, reconstruction with reduction factor of above half the number

of coils is poor. Noise, inaccurate estimation of sensitivity profiles, ill-conditioned

reconstruction matrices, etc. restrict the reduction factor.

Coil Geometry Factor ‘g’: All reconstructions in parallel MRI depend on the

spatial coil weightings, especially SENSE. As mentioned above, noise in the sensitivity

information and correlation between pixels adversely affects image reconstruction.

The geometry factor describes the ability of the coil to separate the aliased pixels

accurately. A value of 1 indicates that the coils are ideal for reconstruction. Any

value above 1 indicates deterioration in the reconstruction. The ‘g’ factor for the ρth

pixel can be calculated as

gρ,ρ =
√

diag((SH × ψ × S)−1 × diag(SH × ψ × S)) (4.1)

where S is the sensitivity encoding matrix and ψ is the noise correlation matrix.

Ideally, the noise correlation matrix should be an identity matrix indicating no cor-

relation amongst adjacent channels.
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Fig. 19. Left: Image with usual SENSE reconstruction, R=4, 15 central lines, Right:

Image with iterative SOS reconstruction.

K-space coverage: The acquired k -space lines can be uniformly sampled or the

sampling density can be increased in the center of k -space. The extra lines can be

used for sensitivity estimation but not in the actual reconstruction. GRAPPA and

SPACE RIP make use of these lines in the reconstruction and can give a better image.

An iterative Sum-Of-Squares(SOS) reconstruction [8] can also be done to incorporate

the extra lines in the other methods after the main image is reconstructed. The

improvement is seen in Fig. 19.

B. Performance Analysis

No one method has been picked as the method giving the best image under all con-

ditions For a given imaging environment comprising of the factors mentioned above,

the quality of the reconstructed image can be evaluated on the basis of:

1. Signal to Noise Ratio (SNR)

SNR is calculated using three different methods. The first method, which is the most

convenient method to calculate, is a measure of how much the signal exceeds the
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background intensity.

SNR =
S

SD
(4.2)

S is the mean signal intensity in region of interest and SD = standard deviation in

region of noise.

In parallel imaging, signal and noise are treated differently by different tech-

niques. So the background noise cannot be assumed to be uniform and may lead to

erroneous calculations, off by even 60% of the actual value. This may cause misinter-

pretation of data. A better way of calculating SNR is pixel-wise [12]. The pixel-wise

SNR is calculated as:

Pixel-wise SNR = (
Sp,N

SDp,N

) (4.3)

Sp,N is the mean signal intensity at pixel ‘p’ over ‘N ’ acquisitions and SDp,N is the

standard deviation at pixel ‘p’ over ‘N ’ acquisitions Another way of calculating SNR

in the true sense is using two acquisitions [2] as follows:

SNR =
√

2
S1

SD1−2

(4.4)

S1 is the mean signal intensity in ROI of any one image and SD1−2 is the standard

deviation in the region obtained by the subtraction of the ROIs of the two images.

2. Artifact Power

The Artifact Power is a measure of how much signal power is spent in noise. Ide-

ally all the signal energy would be concentrated in the object being imaged with

the background being zero. Artifact power is the mean squared error between the

reconstructed and the reference image. Practically, noise surfaces in the background

and also in the region of interest, distorting the ideal values required. This error is
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Fig. 20. Resolution phantoms

measured in terms of artifact power [12] as

Artifact Power =

∑
[Ireconstructed(x, y) − Ireference(x, y)]2∑

Ireference(x, y)2
(4.5)

3. Resolution

Since MRI is a not a linear time invariant system, the resolution cannot be represented

by a simple convolution with a point spread function. Instead the point spread

function can be evaluated at every pixel by using a point image and reconstructing

the image using the parallel MRI reconstruction algorithms. For a typical 256 × 256

image, this procedure will be repeated 2562 times. Since the resolution degrades in

the direction of reduction or in the phase encoding direction, line spread functions

can be studied by using 256 line images for the image reconstruction. To avoid this

cumbersome procedure, a resolution phantom has been designed to take into account

all possible ways to check deterioration in resolution. The resolution phantoms are

as shown in Fig. 20.
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Table I. Computations for 128 × 128 image with reduction factor R, n ACS and C

coils (Additions and Multiplications are complex)

Method Additions Multiplications IFFTs Inverses

SENSE N2(N − 1) N3 C 1(N × N)

PILS CN2 C N2

R
C −

SMASH 2C(N − 1)+ C(2 + N
R

) 1 R(N × C)

N2

R
(C − 1)

GRAPPA nN2

R
+ (n − 1)(N2

R
+ nN) C N(n2 + 2or4)

n2N + CN2

SPACE RIP C N3

R
N3C

R
N2C

R
N(N2C

R
)

4. Computations

The computational complexity of the parallel MRI techniques under consideration,

can be evaluated on the basis of the number of IFFT operations performed, the matrix

size and number of inverses computed, complex additions and subtractions. Consider

an image of size N × N , reduction factor R and number of coils equal to C and n

calibration/ ACS lines, the computations are shown in table I. The computation time

mainly depends on the code written and its optimality. GRAPPA and SPACE RIP

are computationally intensive as compared to SENSE, PILS and SMASH. SMASH

takes longer for a non-linear array where it has to perform an optimization to estimate

the coil location.



32

CHAPTER V

SIMULATION AND EXPERIMENTAL RESULTS

A. Software Tool

In order to compare the parallel imaging techniques, all the algorithms and the per-

formance analysis metrics were implemented in MATLAB. A software tool has been

developed to incorporate all these parallel MR reconstruction techniques and their

evaluation. A part of the Graphical User Interface (GUI) is as shown in Fig. 21. The

Fig. 21. The GUI

use of the tool is through 6 major steps listed below.

Data Input: Simulated data or raw data acquired from the machine is input

to the software. Simulated data can be any image, not necessarily a medical image.
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Then coil sensitivities are generated as per the user specifications. To simulate the coil

sensitivity variation of a linear array, a 1D gaussian profile is generated. To simulate

the variation of sensitivities for a non-linear array of coils, 2D gaussian patterns,

covering the entire image FOV, are generated. K -space data are then simulated from

the image and coil maps. Reduced data-set is obtained by retrospectively decimating

the data by the user specified reduction factor. Care is taken to include the line

corresponding to DC while reducing k -space since it contains maximum information.

File Inputs: The file containing the data is entered next. Extra calibration data

required for sensitivity estimation is also entered. The files must be in the ‘*.mat’

format. For calibration data, the location of the lines must be known and entered. A

body coil image can also be used instead of the low resolution Sum-Of-Squares (SOS)

image to improve the estimation of sensitivities. If an image is input for simulation,

it may be a bitmap (*.bmp), portable network graphic (*.png), or JPEG image.

Sensitivity Estimation: The sensitivity estimation process can be effected using:

Divide by body coil image: Individual full FOV coil images are obtained.

Each pixel in these coil image is divided by the corresponding pixel in the body coil

image.

Self-Calibration: The self-calibration technique makes use of a few more lines

acquired after the main scan called ACS. Coil profiles can be calculated by a simple

divide by sum-of-squares (SOS) image as in the previous method. Using the ACS

lines, low resolution full FOV images are obtained. Division of each low resolution

full FOV image by the SOS image gives the sensitivity maps. Coil spatial weightings

can also be calculated using the Walsh method using singular value decomposition

[5].

Noise Suppression: The toolbox incorporates noise filtering techniques to enable

suppression of the noise that appears while reconstructing the picture of the object
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using coil maps. For noise filtering, the toolbox provides variable order and variable

neighborhood polynomial filters. Median filtering can also be used. To avoid Gibb’s

ringing, windowing is done regardless of whether the filters are used or not.

Image Reconstruction: SENSE, Regularized SENSE, PILS, SMASH, AUTO-

SMASH, GRAPPA, SPACE RIP are implemented in the toolbox. The tool also

provides iterative SOS reconstruction, which makes use of the ACS line in the final

reconstructed image.

Evaluation of Reconstructed Image: The methods are evaluated on the basis of

parameters mentioned in Chapter 4. SNR and artifact power are primary in deter-

mining the performance of the reconstruction algorithm. The first method of SNR

calculation is used for the comparison since multiple acquisitions were not available.

Simulations for resolution, and pixel-wise SNR were done and the results are shown

later in this chapter. The block diagram of the tool-box showing the data flow is

illustrated in the Fig. 22 [18].

Fig. 22. Block diagram of the toolbox
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B. Results Based on Actual and Simulated Data

Reconstructions were performed using 3 coil stomach data, 8 coil linear array spine

data, 8 coil non-linear array head data and 64 coil phantom data. During the pro-

cess of testing and optimization, synthetic simulations were performed on the MRI

phantom available in MATLAB.

1. Three Coil Data

A dataset for three non-linear coils was reconstructed using the five basic methods

and compared for SNR (method 1) and for artifact power. Since multiple acquisitions

were not available, SNR by the other two methods cannot be evaluated. 16 lines in

the center of the k -space were collected, reducing the reduction factor to 1.7777. The

reference image is shown in Fig. 23. The actual reconstructions for SENSE, PILS,

GRAPPA and SPACE RIP are shown in Fig. 24. The comparison charts are shown

in Fig. 25.

Fig. 23. Reference image for the 3 coil data.

SMASH Reconstruction caused aliasing and hence was not used for comparison.

GRAPPA has the maximum SNR and the minimum artifact power for the three coil
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1 2 33
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Fig. 24. Image reconstruction for the 3 coil non-linear array data (1: SENSE, 2: PILS,

3: SMASH, 4: GRAPPA, 5: SPACE RIP).

data set. The PILS image looks better than the rest but careful observation reveals

that the image got cut in the center compressing the image a little. This error was

due to incorrect estimation of the coil centers. The artifact power is very high due to

this reason. In terms of overall image quality, GRAPPA is the best scheme, followed

by SENSE and SPACE RIP.

2. Eight Coil Data for a Linear Array

a. Reduction Factor of 2

For the 8 coil dataset with the elements arranged in a linear array, a reduction factor

of 2, 16 center lines were collected for self calibration. Since the coil arrangement is

such that only two out of the 8 coils span 70 percent of the total image FOV, SMASH

does not reconstruct the image properly as smooth harmonics cannot be generated.

SENSE , PILS and GRAPPA provide a valid reconstruction for reduction factors of
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Fig. 25. SNR and artifact power for 3 coil non-linear array data, R=2, 16 center lines

(X axis - 1: SENSE, 2: PILS, 3: SMASH, 4: GRAPPA, 5: SPACE RIP) .

2, 3, 4. The reference image is shown in Fig. 26 while results for a reduction factor

of 2 with 16 center lines are shown in Fig. 27 and Fig. 28.

Fig. 26. Sum-Of-Squares image obtained from the full k -space data for the 8 coil linear

array.

Increase in the number of self calibration lines may or may not lead to an im-

provement in SENSE and SPACE RIP but improve the GRAPPA reconstruction.

More ACS lines are available and hence the reconstruction coefficients are more accu-

rate resulting in a better image. The extra lines add to the imaging time and reduce

the acceleration factor (subsampling factor) from 2 to 1.8823 for 16 center lines and
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Fig. 27. Reconstructed images for 8 coil linear array, R = 2, 16 center lines (1: SENSE,

2: PILS, 3: GRAPPA, 4: SPACE RIP)

to 1.7777 for 32 center lines.

b. Reduction Factor of 3

Because of the non-uniform FOVs of the coil array elements, and noisy nature of the

images obtained from the middle two coils, PILS reconstruction fails for a reduction

factor of 3 (actual R = 2.4385). SENSE and SPACE RIP provide a better SNR

than GRAPPA. The SNR is marginally lower in GRAPPA but the artifact power in

GRAPPA is significantly less. The SNR calculation just provides a measure of the

difference in the signal intensity and noise and not the SNR in the true sense.

The artifact power measures the squared error between the SOS reconstruction

and the image obtained from parallel imaging. It is therefore, a better measure of

the quality of the reconstructed image. Since GRAPPA has the least artifacts, the

GRAPPA reconstruction is superior to the other reconstructions. The plot for the



39

1 2 3 4 5
0

5

10

15

20

25

30

35

40

Method

S
N

R
 (

d
B

)

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Method

A
rt

if
a
c
t 
P

o
w

e
r

Fig. 28. SNR and artifact power for 8 coil linear array data, R = 2, 16 center lines (X

axis - 1: SENSE, 2: PILS, 3: SMASH, 4: GRAPPA, 5: SPACE RIP).

SNR and the artifact power are shown in Fig. 29.

c. Reduction Factor of 4

For a reduction factor of 4 and 32 center lines (actual R = 2.9090) only SENSE and

SPACE RIP reconstructions are valid since the other reconstruction methods fail to

remove aliasing from the final image. For 48 center lines, GRAPPA reconstruction

shows a higher SNR than the corresponding SENSE image. But the reduction factor

then goes down to 2.6666. The reconstructed images are shown in Fig. 30.

We observe that, with 48 center lines as opposed to 32, the improvement in

the GRAPPA reconstruction is significantly higher than that in the SENSE and

SPACE RIP reconstructions. More lines in the center must improve the sensitivity

maps. Acquisition of more calibration data in this case did not improve the SENSE

image, indicating that the inherent coil data itself must be noisy. As can be seen

in the images, the central two coil images are extremely noisy causing failure in

reconstructing the image. GRAPPA smoothed out the noise effects. This is probably
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Fig. 29. SNR and artifact power for 8 coil linear array data, R = 3, 32 center lines (X

axis - 1: SENSE, 2: PILS, 3: SMASH, 4: GRAPPA, 5: SPACE RIP).

because at the extreme phase encoding, the missed lines cannot be estimated correctly.

There are no lines before the first phase encoding and after the last phase encoding

line (See Fig. 17) and get set to nearly zero thus providing a kind of filtering to the

noise.

3. Eight Coil Data for a Non-linear Array

For the non-linear array, PILS and SMASH failed to reconstruct the image even at

a reduction factor of 2. Therefore, only SENSE, SPACE RIP and GRAPPA are

compared. Similar results are obtained for the non-linear array data set.

a. Reduction Factor of 2

SENSE reconstruction showed a higher SNR and a lower artifact power when com-

pared with the GRAPPA reconstruction with 2 blocks and the SPACE RIP re-

construction. With 4 blocks, SNR obtained in GRAPPA was still lower than in

SENSE but the artifact power is significantly lower than the usual reconstruction.
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4 5

Fig. 30. Reconstructed images for a 8 coil linear array data, R = 4 (1: SENSE (32

center lines), 2: SENSE (48 center lines), 3: GRAPPA (48 center lines), 4:

SPACE RIP (32 center lines), 5: SPACE RIP (48 center lines)).

For GRAPPA reconstruction, a 1D inverse FFT along the frequency encoding di-

rection provided better results. The reconstructions and the comparison charts are

shown in Fig. 31 and Fig. 32.

With 32 central lines , the artifact power reduced considerably in GRAPPA due

to the availability of more ACS lines. Comparison bars for an acceleration factor of 3

are in Fig. 33. SENSE and SPACE RIP perform better than GRAPPA in this case.

The aliasing artifacts may be eliminated by considering the correlation of samples

along the frequency encoding direction, in addition to that along the regular phase

encoding direction.
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Fig. 31. Reconstructed images for a 8 coil non-linear array data, R=2, 16 center lines

(1: SENSE, 2: GRAPPA, 3: SPACE RIP).
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Fig. 32. SNR and artifact power for 8 coil non-linear array data, R = 2, 16 center lines

(X axis - 1: SENSE, 2: PILS, 3: SMASH, 4: GRAPPA, 5: SPACERIP).

b. Reduction Factor of 3 and 4

With 32 center lines (actual R = 2.4380), SENSE, GRAPPA and SPACE RIP show

approximately the same SNR but the artifact power for GRAPPA is significantly

lower and hence GRAPPA can be regarded better than the remaining two methods.

The comparisons for are illustrated in Fig. 34.

For a reduction factor of 4, GRAPPA reconstruction required 48 lines for a valid

image. SENSE and SPACE RIP algorithms reconstructions were successful even for
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Fig. 33. SNR and artifact power for 8 coil non-linear array data, R = 2, 32 center lines

(X axis - 1:SENSE, 2:PILS, 3: SMASH, 4: GRAPPA, 5: SPACERIP).

32 center lines with a low artifact power value. The results are shown in Fig. 35.

4. Sixty-four Coil Data for a Linear Array

Simulations were also carried out for a 64 channel linear array data-set.The data

was reshaped to 256 240 to allow reconstruction with most of the reduction factors.

Reduced data was obtained by retrospectively decimating the data according to the

chosen reduction factor. Reduction factors as low as 2, 3, 4 and higher factors of 8 and

16 were tested. The coil-profiles of this data are designed to be extremely localized for

capturing only one line’s worth of information. The sensitivities overlap to acquire k

space lines very close to one another to improve the resolution of the resulting image.

In case of higher reduction factors, the number of center lines collected drastically

reduces the effective reduction factor, R as seen in case of an acceleration factor of 8

and 16.Full encoded data-set for a phantom was acquired using the SEA array on a

4.7T system. Data for every coil was 256 256. Careful study of the k-space showed

that the k-space data was not centered in the middle of k-space for all the coils. It

was offset by about 10 lines. The phantom is shown in Fig. 36.
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Fig. 34. SNR and artifact power for a 8 coil non-linear array data, R=3, 32 center lines

(X axis - 1: SENSE, 2: PILS, 3: SMASH, 4: GRAPPA, 5: SPACE RIP).

a. Reduction Factor of 2

Since the coils are extremely localized, PILS provides the best reconstruction as

expected. The comparison results for 16 center lines are shown in Fig. 37.

b. Reduction Factor of 3, 4 and Higher

Reduction factors of 3 and 4 are still small as compared to the number of coils used

and PILS proves to be much better than the other reconstruction methods. However

at higher reduction factors, aliasing artifacts become severe. SENSE and SPACE RIP

provide poor reconstructions and GRAPPA provides blurred/ low resolution images.

GRAPPA shows artifacts at low reduction factors but they are inherent in the coil

data obtained . Appropriate number of lines, reconstructions and full flexibility of

the reconstruction algorithm has to be tried out to get a good image. For a reduction

factor of 4, the comparison bar graphs are shown in Fig. 38.

For a reduction factor of 8, 32 center lines were acquired but the overall accel-

eration factor drops down to 4 in reality. The SENSE and SPACE RIP images are

similar. PILS and GRAPPA still provide a good reconstruction. The images are
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Fig. 35. SNR and artifact power for 8 coil non-linear array data, R = 4 (X axis -

1:SENSE (32 center lines), 2: SENSE (48 center lines), 3: GRAPPA (48

center lines), 4: SPACE RIP (32 center lines), 5: SPACE RIP(48 center

lines)).

Fig. 36. Phantom image from the 64 channel linear array data

shown in Fig. 39 and the corresponding comparison is available in Fig. 40.

5. Simulated Data

Pixel-wise SNR requires atleast 40 to 50 simulations for accurate measurements. Prac-

tically only one acquisition is available but multiple acquisitions can be easily sim-

ulated. Accurate SNR at every pixel location is obtained using this method. The

pixel-wise SNR maps for a reduction factor of 2 are shown in Fig. 41. The SNR maps
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Fig. 37. SNR and artifact power for 64 channel linear array, R = 2, 16 center lines (X

axis - 1: SENSE, 2: PILS, 3: SMASH, 4: GRAPPA, 5: SPACE RIP).

show the aliasing pattern and the fall in the SNR in the folded regions in SENSE

and SPACE RIP. The map of pixel-wise SNR for PILS show higher SNR in the entire

object FOV but shows the aliasing artifact in the total FOV of the image though it

is not visible in the actual reconstructed image. GRAPPA shows a very good SNR

map with no aliasing artifact and a higher SNR in the object FOV, again scoring over

the other methods. The results for the simulation for a 8 coil linear data, R=2 and

16 center lines are shown with comparisons for SNR by method 1 and 3 described in

the previous chapter in Fig. 42. The two-acquisition method (method 3) is a more

accurate method of calculating SNR than the two region method (method 1) and the

discrepancies in the two methods can be very well seen in Fig.42.

The resolution maps also show that the contrast decreases in SENSE. Resolution

could not be quantified but the degradation in terms of pixels can be found by the

user by looking at the resolution phantoms. This method therefore, may not give an

accurate answer. The reconstruction of ther esolution phantoms gives a good idea of

where the resolution is bad. At higher accelerations, the edges show a slight blur while

the features in the center of the FOV are easily discernible. The extremely localized
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Fig. 38. SNR and artifact power for 64 channel linear array, R = 4, 32 center lines (X

axis - 1: SENSE, 2: PILS, 3: SMASH, 4: GRAPPA 5: SPACE RIP).

Fig. 39. Reconstructed images for 64 channel linear array, R = 8, 32 center lines

(1:SENSE, 2: PILS, 3: GRAPPA).

nature of the coils in PILS provides a higher resolution than the other methods. In

addition, it can be observed that the overall signal intensity in GRAPPA decreases

but the contrast is maintained while in SENSE, contrast decreases.

The ‘g’ factor map are shown in Fig. 43. The bright areas show a value 1

meaning that pixels in these regions can be deciphered correctly. Other areas show

a ‘g’ factor greater than 1 indicating the error in unfolding or inability of the coil

to unfold the aliased pixels. (The map is inverted for better view). Regularized

SENSE, an improvement over SENSE which has been implemented in this software
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Fig. 40. SNR and artifact power for 64 channel linear array, R = 8, 32 center lines (X

axis - 1: SENSE, 2: PILS, 3: SMASH, 4: GRAPPA, 5: SPACE RIP)

Fig. 41. SNR maps for 1: SENSE, 2: SMASH, 3: GRAPPA, 4: SPACE RIP

tool reduced the ‘g’ factor thus improving the ability of SENSE to unfold the aliased

pixels correctly.

Extensive simulations on synthetic data and verification using acquired data was

done and the five basic methods of SENSE, PILS, SMASH, SPACE RIP, GRAPPA

were compared and analyzed for the same k -space data collected for every method.

The comparison follows in the next chapter.
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Fig. 42. SNR comparisons for method 1 and method 3(X axis - 1:SENSE, 2: PILS, 3:

SMASH, 4: GRAPPA, 5: SPACERIP)
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CHAPTER VI

CONCLUSION

A software tool has been developed to study and compare the quality of the image,

obtained using different reconstruction techniques in parallel MRI . Simulations were

carried out on real and synthetic MR data. The optimal technique for image recon-

struction depends heavily on the coil configuration, k -space coverage and reduction

factor. Following are the conclusions drawn from this simulation and study.

GRAPPA offers flexibility in the choice of blocks, number of iterations and coil

correlation to give valid results for any coil configuration. Reduction factors above 6

and sometimes even 4 are difficult to achieve practically, even with a large number of

array elements. The study shows that higher reduction factors can be achieved using

GRAPPA. Unless the specific constraints for a particular reconstruction technique are

known to be satisfied, GRAPPA can always be relied on for an image reconstruction.

For the 64 channel receiver, GRAPPA smoothed out the noise at high reduction

factors to achieve a minimum norm solution giving a low resolution image where a

least square solution failed to provide a valid reconstruction. This is true for the

particular coil geometry of the receiver array, and k -space coverage but cannot be

verified as a characteristic of GRAPPA. Signal intensity in GRAPPA decreases but

the contrast is maintained while in all the other methods, contrast reduces. The

acquired Auto-Calibration Signal (ACS) lines affect determination of the GRAPPA

reconstruction coefficients which in turn depends on the underlying phase of the coil

sensitivities. Using the simulation tool, various reconstructions for GRAPPA can be

tried and the best one suited for a particular application can be selected.

Availability of accurate reference maps makes SENSE and SPACE RIP a better

choice at lower reduction factors. They give a better resolution but lower contrast than
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GRAPPA. However if a localized linear array of coils is available, PILS reconstruction

may be preferred over all the other methods.

Computational complexity is one more way of evaluating the parallel MRI re-

construction techniques. It is important only in case of real-time applications like

intra-operative imaging. Otherwise computational complexity can be given a lower

priority. SPACE RIP and GRAPPA are computationally very intensive when com-

pared to SENSE, PILS and SPACE RIP. SENSE therefore, becomes the optimum

choice for applications requiring fast computational speed.

Image quality can be verified mainly on the basis of pixel-wise SNR and artifact

power. SNR calculated by method 3 (using two acquisitions) is also reliable and

hence priority must be given to these three performance parameters. Pixel wise SNR

should be the most important factor in deciding the optimality of any of the parallel

MRI reconstruction technique. The two-acquisition method and the artifact power

evaluation corroborate the result obtained from a given imaging method.

The inferences for the data-sets studied and compared for this work can be

summarised in the table II. The results are based on limited data available for this

study and may not hold true for any new data set. For the comparison, more the

stars better is the method. For sensitivity estimation, GRAPPa show a * since it

does not require the coil profiles and hence is better than the other methods. AUTO-

SMASH, the modified version of SMASH does not require sensitivity estimation but

this comparison includes the original SMASH reconstruction. Only SPACE RIP can

handle non-uniorm k -space and hence has a star while the others show a -. Non-

uniform sampling of the k -space and corresponding SPACE RIP reconstruction was

simulated and analyzed. The number of lines for non- uniform sampling were kept the

same as for the uniform sampling. The reconstruction depends on the relative postion

of the coils with respect to the object. For e.g., A set of 4 coils when placed two in
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the anterior and two in the posterior may result in perfect GRAPPA reconstructions.

The same 4 coils when positioned at 4 corners of the object FOV may cause aliasng

in a GRAPPA reconstruction. Coil placements though not discussed in this work

were tested using synthetis data. Results based on the simulation data are entered

in this table. No one method can be selected as the optimum method but PILS and

Table II. Comparison of the five parallel MRI methods for the 4 data-sets.

SENSE PILS SMASH GRAPPA SPACE RIP

SNR ** *** * **∗
2

**

Contrast * ** * ** *

Resolution ** *** * *∗
2

**

Computation * * *∗
2

*** ****

Artifact power ** *** *** * *

Low R ** * * ** **

High R * * * ** *

Linear Array ** ** * ** **

Non-linear Array ** * * ** **

Coil placement * *** *** ** *

Sensitivity estimation − − − * −
Non-uniform k -space − − − − *

Sensitivity to noise ** ** *** * **

Flexibility in reconstruction − − * ** *

SMASH fail to reconstruct the image under some imaging conditions. SENSE, SPACE

RIP and GRAPPA provide a non-aliased valid image under most imaging set-ups.
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The image quality generally varies greatly but as a thumb-rule, GRAPPA performs

better for linear arrays and SENSE and SPACERIP perform well for non-linear arrays.

GRAPPA seems to be comparatively unaffected by coil position. SENSE is completely

insensitive to coil position but resulting image is usually very noisy while GRAPPA

is insensitive to noise but computationally complex and so time consuming. Also as

mentioned above, SENSE has better resolution and GRAPPA has netter contrast. A

combination of these two techniques might improve the image quality. For instance,

the number of lines to be regenerated for GRAPPA can be reduced. A reduced data

for reduction factor of 4 can be acquired and areduced data for reduction factor 4,

can be obtained from it using GRAPPA. SENSE can then be used for reconstruction.
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