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Abstract. The aim of this study was to experimentally investigate the dependence of viscosity
coefficient of niosomal dispersion based on PEG-12 Dimethicone on the temperature and size of niosomes
vesicles. The experiments were carried out with niosomes, the average size of which varied from 85 to
125 nm. The temperature varied from 20 to 60 °C, the volume concentration varied from 1 to 10%.
The particle size was determined by scanning electron microscopy (SEM) with subsequent statistical
data processing. This study showed that the viscosity of niosomal dispersions significantly depends on
both the temperature and the size of niosomes vesicles. With increasing temperature, the viscosity of
niosomal dispersions decreases and with increasing particle size, the viscosity increases.
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1. Introduction
The study of the physicochemical properties of nioso-
mal dispersions is motivated by their wide application
in pharmacology, medicine, and cosmetology [1]. The
optimal size of niosome vesicles for drug delivery sys-
tems is in a range (10−400 nm). Drug delivery systems
often need nanoscale features, for example, less than
200 nm for parenteral and local transport into tissues,
less than 300 nm for the eye chamber and less than 10
nm for the circulating bloodstream [2–4].
Physicochemical characteristics of carrier particles

determine their size, charge, elastic properties, ability
to aggregate and deform, which affects biodistribution
in the tissues, lifespan and elimination rate [5–7].
In most cases, the efficiency of using niosomal dis-

persions will significantly depend on the viscosity co-
efficient, since this coefficient determines the external
energy required for organizing the flow and selecting
the optimal dosage of drugs.

Almost all classical theories of viscosity believe that
the viscosity coefficient is dependent only on the vol-
ume concentration, without taking into account its
dependence on temperature, although, even for homo-
geneous liquids, this dependence is very significant [8–
10].

Currently, there is a number of empirical and semi-
empirical formulas describing the changes in viscos-

ity caused by temperature, which are applicable to
determine the viscosity of dispersed systems. The
more exactly these equations define the viscosity-
temperature dependence, the more coefficients they
contain. However, the increased number of coefficients
complicates the practical application of these formu-
las due to the need to experimentally determine each
constant [11, 12].
The modified formula of Batschinsky formed the

basis of the Slotte formula, which can be used for a
quantitative description of the empirical dependence
of viscosity on temperature [13]:

c

η
= (t+A)n, (1)

where c, A and n are constants, t is temperature, η
is the coefficient of dynamic viscosity. The Bingham
and Stokei formula is also often used:

1
η

= aT + bT 2 (2)

where a and b are constants, T is the absolute tem-
perature.
There are other semi-empirical dependencies, but

qualitatively, the dependence of the viscosity coeffi-
cient on temperature can be represented, in general
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form, by the expression:

η = A · exp
Å
B

T

ã
(3)

where A, B are constants.
However, formula (3) is used for a narrow tem-

perature range. In the case of a sufficiently wide
temperature range, they resort to formulas of other
types, the most used of which is Vogel’s formula:

η = A · exp
Å

B

T − C

ã
(4)

where A, B, C – are constants.
All considered dependencies are not universal and

vary significantly depending on the concentration of
the niosomal dispersion, the size of the niosomal vesi-
cles, and the base fluid. The main contradictions
arise with studying the dependence of viscosity on
particle size. Many investigators assert that, as in
ordinary coarsely dispersed liquids, this dependence
is absent [14].

It is worthy to note, that there is no common point
of view regarding the dependence of the viscosity
coefficient on temperature. Most researchers note
a decrease in viscosity with increasing temperature.
The situation is complicated by the fact that the de-
pendence of the viscosity coefficient, even of ordinary
dispersed liquids, on temperature has also not been
properly studied.
The purpose of this work was to conduct an ex-

perimental study of the dependence of viscosity co-
efficient of a niosomal dispersion based on PEG-12
Dimethicone on particle size and temperature. The
viscosity of niosomal dispersion was measured in a
temperature interval (20 − 60 °C).

2. Materials and methods
In our experiment, we used niosomes that consisted
of a shell in the form of a water-insoluble double layer
of a nonionic surfactant, which is a group of dime-
thiconecopolyol substances that are esters of polyethy-
lene glycol and polydimethylsiloxane (PDMS) back-
bone [15–17].

To obtain the silicone-based capsules, physicochem-
ical methods for the synthesis of molecules were used.
In the hydrophilic part of dimethicone, there are func-
tional groups of silicon oxide. The length of the Si-O
bond was 1.6Å, which is much longer than the C-C
bond of 1.4Å. Due to this, the functional groups of the
molecules are able to rotate with respect to each other.
This provided the niosomes with a greater elasticity
than that of liposomes made up of phospholipids. The
use of PEG-12 Dimethicone promoted the formation
of vesicles without requiring significant energy and
effort. The Si-O-Si bond angle was 130 degrees, in con-
trast to the 109 degrees C-C-C bond, which increased
the elasticity and stability [18].
The stage of formation of vesicles occurred with

intensive mechanical mixing of the mixture using an

Figure 1. Structure of a silicone-based noisome.

automatic reclosure homogenizer at a room tempera-
ture for 5 minutes. The dispersion was then placed
in a vessel for ultrasonic treatment. Ultrasonic sound-
ing was carried out at a frequency of 20 kHz, power –
200W, exposure – 10 minutes. Then, to stabilize the
concentration of hydrogen ions (pH) to 6.6 − 7.0 and
the formation of a homogeneous structure of niosomes,
emulsification was carried out on an APV homogenizer
APV Lab Series Homogenizers - 1000.

Monolamellar niosomes with a mean vesicle size of
80-150 nm were formed. The prepared niosomes were
spherical in shape. Then, the samples were diluted
with ultrapure water.

A VPZh-1 capillary viscometer with a capillary
diameter of 0.86mm was used to measure the viscosity.
To ensure measurements at a fixed temperature, the
experiments were carried out using a thermostat with
a fixation accuracy of 0.1 °C.

Since one of the tasks was to determine the depen-
dence of the viscosity coefficient on the particle size, a
high accuracy of determining the average size of nio-
somes and their size distribution was required. The
dispersion of nanoparticles was studied using the scan-
ning electron microscopic method (SEM Tescan Mira
3 Im). The sample preparation for SEM involved sam-
ple drying, mounting, and coating. Characteristics
of the sample surface are obtained from the electrons
emitted from the sample surface after the scanning
with a focused electron beam.

The particle size, determined by Image J, MS Excel
statistical package program, was used to perform the
analysis [19].

3. Results and discussion
Niosomal dispersions with volumetric concentrations
of 1, 5 or 10% were selected for the research. The
vesicle size analysis of the niosomal dispersion was
carried out using scanning electron microscopy. A
typical electron micrograph of niosomes vesicles with
an average size of 103 nm is shown in Fig. 2.
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Figure 2. Micrograph of niosomes obtained by Scan-
ning Electron Microscopy (SEM).

The microphotograph shows that niosomes, for the
most part, are spherical particles. This implies that
the projective diameter can be used for the equivalent
diameter determination of the particles. The area of
the project diameter will be equal to the area of the
particle projection image.

Area of the projection of a spherical particle is equal
to:

S =
πδ2

p

4 (5)

Then, the average projection diameter can be pre-
sented in the form:

δp =
…

4Sp

π
(6)

To determine the average particle size for each vol-
ume concentration and to plot the particle size dis-
tribution, various fractions with a total number of
particles of 500 were examined.
Particle probability density functions of the size

of niosomes obtained by processing an ensemble of
electron microphotographs are shown in Fig. 3.
The graphs in Fig. 3 confirmed that in all cases,

distributions are lognormal. A comparison of these val-
ues for different volume concentrations demonstrates
homogenization with respect to particle size of the
niosomes dispersion. Considering the interval of val-
ues of the vesicles diameter in the range from 85 nm
to 130 nm, it can be seen that higher volume con-
centration causes a decrease of particle size: from
123 nm at 1% to 92 nm at 10%. The reason behind
this phenomenon is, probably, the peculiarities of the
intermolecular interaction of the vesicle shells and
deformation of the vesicle membranes.

It should be noted that the complex nature of the
mutual influence of such factors as the zeta potential,
surface energy, and the distance between the shells
complicates the construction of a mathematical model
in a wide range of volume concentrations.
We assume that in more concentrated systems

(> 10 %), there will be a more intensive interaction
between the particles of the dispersed phase, which
may lead to the formation of temporary associates.

A further increase of concentration of the dispersed
phase will lead to the formation of stable aggregates
consisting of many particles. This will increase the
viscosity of the system.

Fig. 4 describes the character of the dependence of
viscosity on temperature for different volume concen-
trations.
Research results show that the dependence of the

kinematic viscosity coefficient of dispersions is close
to an exponential law with the coefficient increasing
proportionally with an increase in the specific surface
area of the dispersed phase.
A careful statistical analysis of experimental data

revealed an exponential correlation given by (7), which
fits the data with a correlation factor R2 > 0.99.

νAe−BT (7)

Here, ν is the kinematic viscosity, mm/s2; T is the
temperature, °C; A and B are the functions of particle
volume concentration (φ), the values of which are
given in Table 1.

The coefficient A is related to the volume percentage
given by

A = 37.75φ2 − 0.8605φ+ 1.3707 with R2 = 0.995
(8)

In the above expression, φ ranges from 1 to 10%.
The value of B did not change. However, this does
not exclude the possibility of its dependence on the
volume concentration outside the range from 1 to
10%.

Fig. 5 shows the experimental values of viscosity
plotted against the size of niosomes.

Viscosity coefficients dispersions with different vol-
ume concentrations differ and grow with an increase
in the diameter of niosomal vesicles. Presumably, this
may be due to a decrease in the resistance at the
phase “dispersion medium-niosome” interface due to
a reduction in surface area [20].
It can be concluded that the dependence of the

viscosity coefficient of niosomal dispersions on particle
size is rather complex and depends on the volume
concentration of the dispersed phase [21–23].

Results obtained showed that not only the tempera-
ture but also the structural properties and the nature
of intermolecular interactions have a noticeable effect
on the viscosity (fluidity) of niosomal dispersions.
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Figure 3. Probability density function of particle size distribution in niosomal dispersions for different volume
concentration.

Figure 4. Change in viscosity with rise in temperature.

Volume concentration (φ) 0.01 0.05 0.10
A 1.3658 1.4215 1.6601
B 0.0130 0.0130 0.0130

Table 1. Value of A and B with a correlation factor R2 > 0.99.
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Figure 5. Dependence of viscosity plotted against the size of niosomes vesicles.

4. Conclusion
Niosomes are versatile drug delivery devices and have
numerous therapeutic applications. Hence, this ver-
satility necessitates proper physicochemical charac-
terization techniques to suit the intended route of
administration. The viscosity of niosomes is an im-
portant indication to evaluate the biodistribution in
the tissues, lifespan and drug elimination rate.
This study shows that the viscosity of niosomes

dispersion depends on many parameters, such as base
fluid, particle volume fraction, particle size, temper-
ature, particle size distribution and particle aggrega-
tion.
In this article, we attempted to study and charac-

terise viscosity of a niosomal dispersion as the function
of temperature and vesicle size.

Obtained results may give a better understanding of
the residence time of drugs in the tissues and bioavail-
ability products. Drug diffusion out of the formulation
into the tissues may also be inhibited due to a high
product viscosity. Finally, the administration of high-
viscosity liquid products tends to be more difficult.
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