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ABSTRACT

Robust Phase Sensitive Inversion Recovery Imaging. (August 2005)

Garach, Ravindra Mahendrakumar, B.E., Gujarat University

Chair of Advisory Committee: Dr. Jim Ji

Inversion Recovery (IR) is a powerful tool for contrast manipulation in Mag-

netic Resonance Imaging (MRI). IR can provide strong contrast between tissues with

different values of T1 relaxation times. The tissue magnetization stored at an IR

image pixel can take positive as well as negative values. The corresponding polarity

information is contained in the phase of the complex image. Due to numerous factors

associated with the Magnetic Resonance (MR) scanner and the associated acquisition

system, the acquired complex image is modulated by a spatially varying background

phase which makes the retrieval of polarity information non-trivial. Many commercial

MR scanners perform magnitude-only reconstruction which, due to loss of polarity

information, reduces the dynamic contrast range. Phase sensitive IR (PSIR) can

provide enhanced image contrast by estimating and removing the background phase

and retrieving the correct polarity information. In this thesis, the background phase

of complex MR image is modeled using a statistical model based on Markov Ran-

dom Fields (MRF). Two model optimization methods have been developed. The first

method is a computationally efficient algorithm for finding semi-optimal solutions

satisfying the proposed model. Using an adaptive model neighborhood, it can recon-

struct low SNR images with slow phase variations. The second method presents a

region growing approach which can handle images with rapid phase variations. Ex-

perimental results using computer simulations and in vivo experiments show that the

proposed method is robust and can perform successful reconstruction even in adverse

cases of low signal to noise ratios (SNRs) and high phase variations.
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CHAPTER I

INTRODUCTION

A. Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) uses a powerful magnetic field and precisely

programmed radio frequency (RF) pulses to visualize tissues without dissecting the

body. Human body has plenty of hydrogen in the form of water and fat. Hydrogen

nucleus contains an unpaired proton which plays a major role the in generation of

magnetic resonance (MR) signal. The proton being a charged particle spins around

its axis. The spins of protons in a body is randomly distributed resulting in a net

near-zero spin. When subjected to an external static magnetic field B0 in an MR

scanner, these spins align in the direction of the magnetic field to produce a non-zero

net spin. The alignment of spins remains in this equilibrium state till it is disturbed

by an another magnetic field B1. When B1 field is suddenly removed, the spins wobble

and go back to their equilibrium state. This can be compared to a compass needle

subjected to the field of a magnet. When the magnet is suddenly removed, the needle

wobbles and settles down in its equilibrium state of alignment with earth’s magnetic

field. This wobbling of the spins creates electromagnetic signals which are detected

as the MR signals.

MRI has established itself as an important diagnostic and visualization technique

for medical and research communities. MRI is considered ideal for diagnosing multiple

sclerosis, tendonitis, tumors of pituitary gland and brain, infections of spine, brain and

joints. It is a very useful technique in visualizing and evaluating torn ligaments, bone

tumors, herniated cysts in spine and masses of soft tissues. Research on diagnosis

The journal model is IEEE Transactions on Automatic Control.
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of strokes in early stages using MRI has also yielded promising results. The fact

that MRI systems do not use ionizing radiation or radioactive chemicals makes it

a much safer imaging technique as compared to computer axial tomography (CAT)

and positron emission tomography (PET) scans. Also, while CAT is limited to axial

plane, MRI can capture images in axial, sagitall as well as coronal plane without

moving the patient.

MR signals are acquired using precisely designed radio frequency pulse sequences.

Depending on the application, the imaging sequences can modulate the net magne-

tization of the imaged body to reveal important information like contrast between

tissues, flow of blood, etc. Inversion Recovery (IR) is one such pulse sequence that

can be used to enhance T1 contrast between the imaged tissues.

B. Inversion Recovery

Inversion recovery is a magnetization preparation technique in which a 1800 RF pulse

is used to invert the longitudinal magnetization before the 900 excitation pulse. An

interesting feature of IR is that it provides a T1 contrast enhanced by a factor of

two as compared to the conventional spin-echo sequence. An IR pulse sequence is

typically specified by three parameters:

1. Inversion Time (TI): The time between the 1800 inversion pulse and the 900

imaging pulse.

2. Repetition Time (TR): The time duration between two successive IR pulse

sequences.

3. Echo Time (TE): Echo is an MR signal generated when the transverse magne-

tization is refocused and results in a measurable signal due to re-alignment of spins.

The time between the 900 pulse and the peak of the echo signal is called the echo
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time.

IR pulse sequence is widely used for fluid or fat suppression in the imaged tissue.

A number of different variants of IR have been proposed for tissue suppression. Some

of these methods tweak the IR imaging parameters while others add additional pulses

to the IR sequence. In short tau (τ) inversion recovery (STIR), the TI is set to T1ln2,

where T1 is the spin-lattice relaxation time of the tissue component to be suppressed.

It is used to suppress water or fat in the resultant image [1]. Fluid attenuated inversion

recovery (FLAIR) uses long TI set to null the signal from fluid in the obtained images

and is used in cerebrospinal fluid suppression [2]. By saturating fat protons prior to

slice selection in IR, their signal can be made negligibly small in acquired images.

This technique is called Spectral Presaturation Inversion Recovery (SPIR) [3, 4].

Inversion pulses are also used in black blood magnetic resonance angiography (MRA)

for cardiovascular imaging. Here the inflowing blood signal is suppressed with respect

to myocardium for better cardiac-chamber segmentation. Double-inversion recovery

turbo spin echo is one such imaging sequence. IR has been found useful in numerous

applications like imaging bone tumors [5], pulmonary blood flow and perfusion [6],

detecting myocardial infarction [7], diagnosing acute appendicitis [8] and detection of

hemorrhage in atherosclerotic plaques [9] to name a few.

If the tissue magnetization at thermal equilibrium is M0, then the IR image

can have values from (−M0, +M0). Since the resultant image can contain negative

values, reconstruction of real part of the complex image is required in order to take

the advantage of the complete contrast range.
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C. Phase-Sensitive Inversion Recovery (PSIR)

Since IR image pixels can have both positive and negative values, they have associ-

ated magnitude and polarity information. These are stored in the magnitude and a

phase component of the complex IR image. The phase component that stores the

polarity information is called the intrinsic phase. The intrinsic phase is not readily

available due to the presence of another component called the background phase.

The background phase interference is a result of several factors like magnetic field

inhomogeneities, off-resonance phenomena and acquisition errors [10]. Conventional

magnitude reconstruction ignores the phase and hence the polarity information. As

a result, it fails to realize the potential T1 contrast increment offered by IR imaging.

Figure 1 shows how the longitudinal magnetization evolves in a typical spin-echo IR

pulse sequence. The 1800 inversion pulse inverts the equilibrium tissue magnetiza-

tion M0 to −M0. Thereafter the longitudinal magnetizations of various tissues start

returning to their equilibrium states at rates depending on their T1 relaxation times.

A snap-shot of different tissue mangnetizations is acquired using a 900 imaging pulse.

As indicated by magnetization relaxation profiles, while IR can provide a dynamic

contrast range of (−M0,M0), the magnitude reconstruction is able to utilize a range

of only (0, M0) due to loss of polarity information.

PSIR methods can provide enhanced T1 contrast by estimating and utilizing

this polarity information [10–20]. PSIR can be performed by estimating the intrinsic

phase component using multiple acquisitions. Here the phase errors are estimated by

acquiring another image without inversion [7, 14, 21] or with different inversion time

TI [12, 13]. These methods suffer from increased acquisition time and result in patient

discomfort. Moreover, they are susceptible to errors caused by spatial misregistration

due to patient motion. An alternative approach is to extract the intrinsic phase
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Fig. 1. Illustration of the inversion recovery pulse and the time evolution of the longi-

tudinal magnetization.
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from the available phase information from the acquired IR image [10, 11, 15, 17–20]

These algorithms exploit differing characteristics of intrinsic and background phase

to extract the desired information.

A complex IR image obtained after Fourier transformation of the k-space data

can be expressed as

I(x, y) = |I(x, y)|eiΦ(x,y) = |I(x, y)|ei(θ(x,y)+s(x,y)) (1.1)

where |I(x, y)| is the magnitude and Φ(x, y) is the phase [11]. The total phase Φ(x, y)

can be considered to be composed of two different components: θ(x, y), the smoothly

varying background phase and s(x, y), the intrinsic phase which is 0 or π and indicates

polarity information [17]. The intrinsic phase s(x, y) can be estimated using the

information provided by the total image phase Φ(x, y) and using the characteristic

differences between s(x, y) and θ(x, y). Using this principle, two different approaches

to enhance the T1 contrast range of IR images have been developed in this research.
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CHAPTER II

MARKOV RANDOM FIELD MODEL FOR PSIR

In the presented methods, a statistical model based on Markov Random Fields (MRF)

is used to model the smoothly varying component of the image phase. Reliable

reconstruction is provided using the model by adaptively incorporating the phase

correlations among many pixels.

A. Model

A random field is a stochastic process defined on a two-dimensional set and the

random fields possessing Markov property are known are Markov random fields. For

a Markov chain Xk satisfying first order neighborhood,

P (Xn = xn|Xk = xk, k 6= n) = P (Xn = xn|Xn−1 = xn−1, Xn+1 = xn+1) (2.1)

In other words, given the values at time points n − 1 and n + 1, the conditional

distribution of Xn is independent of values at all other time points. The points n− 1

and n + 1 are called neighbors of n. Thus, the conditional distribution in a Markov

chain is dependent on the values at the neighboring time points only. A MRF can be

thought of as an extension of a Markov chain in two dimensions. Let S be a finite

rectangular two-dimensional lattice of integer points. The points in S are called sites.

A MRF can be defined on S and neighbors can be defined satisfying the following

conditions:

1. A site must not be a neighbor of itself

2. Symmetry condition: If t is a neighbor of s, then s is a neighbor of t
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If s and t are neighbors, we write s ∼ t. Now, neighborhood Ns of s can be defined

as

Ns = t ∈ S : t ∼ s (2.2)

Figure 2 shows two different neighborhood structures.

For PSIR reconstruction, it is necessary to separate the background phase and the

intrinsic phase. This method achieves this by estimating the background phase mod-

eled using MRF [22]. MRF models have been successfully applied as a “smoothness”

constraint for solving many computer vision problems [22, 23, 24]. Background phase

encountered in IR imaging is a slow varying function and the MRF can be expected

to adequately model the spatial correlation among pixels in a chosen neighborhood.

Specifically, the background phase map Θ = θ(x, y) is estimated by maximizing the a

posteriori probability P (Θ|Φ), where Φ is the observed phase of the complex image.

We maximize this probability by minimizing a cost function, also called the

potential function. This potential function is defined in such a way that reliable

pixels, identified by high signal strength and low gradient, are given more weight in

making the decisions. This provides robustness to the algorithm against noise. We

define this potential function as

ε(Θ) =
∑

(x,y)

∑

(x̂,ŷ)∈N(x,y)

d(θ(x, y), θ(x̂, ŷ))
min{|I(x, y)|, |I(x̂, ŷ)|}
max{G(x, y), G(x̂, ŷ)} (2.3)

Here d(., .) measures the angular difference, N(x, y) is the neighborhood and

G(x, y) is the phase gradient at point. We propose to calculate the angular difference

using

d(θ1, θ2) = |mod(θ1 − θ2 + π, 2π)− π| (2.4)

This definition gives d(0, 2π) as 0 and not 2π. The gradient G(x, y) is calculated as

the angular difference in a 3× 3 local neighborhood of θ(x, y) and using d(., .) as the
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Fig. 2. Two different neighborhood structures. (a) Shows a neighborhood of four clos-

est points, (b) Shows configuration where eight closest points are neighbors.
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metric.

G(x, y) =
1∑

m=−1

1∑

n=−1

d(θ(x, y), θ(x−m, y − n)) (2.5)

The second term in 2.3 is a weighting factor which emphasizes pixels with large inten-

sity and small phase gradient. Such pixels usually have large SNR. Noisy pixels are

characterized by high phase gradient and usually have low intensity. Thus, the de-

scribed weighing gives more weight to pixels that are deemed reliable. The size of the

neighborhood N(x, y) should be chosen in accordance with the degree of smoothness

of the phase map.

B. Optimization

The problem of PSIR is that of finding polarities associated with each of the image

pixels. This polarity information is stored in the intrinsic phase component of the total

phase. The intrinsic phase takes the values 0 and π corresponding to the positive and

negative polarities respectively. The intrinsic phase can be determined by estimating

and subtracting the background phase from the total phase. Background phase,

being a slow varying phase component, has high correlation among pixels in a small

neighborhood. Consequently, adjacent pixels with opposite polarities will have very

similar background phase values and will have 1800 phase difference between their

intrinsic phases. As a result, the total phases of these pixels will exhibit about 1800

phase difference. The background phase of the two adjacent pixels can be extracted by

comparing the phase difference between the two pixels with and without adding 1800

to one of the pixel phases. The combination to give the minimum phase difference is

selected and in this state, phases of the pixels are their background phases. Thus, we

extract the background phase by eliminating the polarity information. With these

details in perspective, the optimization of a 2× 2 image block can be explained using
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fig. 3.

In this example, the cost is defined simply as the sum of the circular angular

differences between all the adjacent pixels. Since their are 2× 2 = 4 pixels, one may

tend to think that a total of 24 = 16 combinations need to be tested. But half of

these combinations being 1800 flipped versions of the other half, give the same costs.

Hence all the possible costs can be found by testing 8 combinations. In general, for

an N × N image, 2N2−1 combinations need to be tested. As indicated in the figure,

when the phases are aligned, they give minimum costs and represent the background

phase.

The solution obtained as described above by testing all the possibilities is known

as the global optimum. But obtaining global optimum is computationally prohibitive

even for a moderately sized image. Two different approaches have been proposed in

this thesis to efficiently obtain a sub-optimal solution which approximates the global

optimum. The first approach is a “divide-and-conquer” approach. The image is

divided into small regions and optimum solutions for these regions is obtained by

an exhaustive search. Thereafter, these optimum blocks are merged in such a way

that their optimality is preserved. The second approach obtains efficient solution by

region growing. The algorithm starts from the center and expands a growth region

towards the boundaries. The polarities of the newly added pixels are determined by

those of its neighboring pixels that have already been visited.

1. Block Merging

The basic idea of the block merging algorithm is to divide-and-conquer the optimiza-

tion problem. Specifically, the phase image is first divided into 2× 2 blocks and each

of these blocks are optimized by an exhaustive search. For an N × N image, this

results in N/2×N/2 blocks of size 2× 2 that are smooth inside their own boundaries
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Fig. 3. Obtaining global optimum in a 2 × 2 image block using exhaustive search.

The white boxes indicate phases close to 900 whereas the grey boxes indicate

phases closer to 2700. Here, the third configuration in the first row gives the

minimum cost and is selected as the background phase of the 2×2 block under

consideration.
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but may be 1800 out-of-phase with the adjacent blocks. In the next step, neighboring

blocks are combined to give 4 × 4 blocks, each with smooth phase variations and

hence containing extracted background phase. This procedure is repeated to give

8 × 8 blocks, 16 × 16 blocks, and so on, until the whole field of view (FOV) is com-

bined in a single block. Here every step combines four n×n sized blocks processed by

the previous step to generate a phase map with 2n× 2n sized smooth phase blocks.

Hence, 2l steps are required to extract the background phase in an image with N×N

pixels where l is the smallest integer such that 2l ≥ N . The procedure is explained is

fig. 4.

The key to the performance of the algorithm lies in the way the blocks are

combined in each stage. Suppose that each sub-block has n × n elements. Then

each sub-block in a four block cluster has n boundary pixels touching the horizontal

neighbor and n boundary pixels touching the vertical neighbor. Adjacent pixels at

the boundary of two touching blocks can be considered as neighbors in calculating the

potential defined in 2.3. The combination giving the minimum potential is selected

for combining the blocks. In this process, we flip the phases of all the pixels in

a particular sub-block, if required, for achieving the optimum. This maintains the

relative phase differences of the pixels inside a sub-block intact and thus preserves

the local optimum inside the sub-block.

In noisy MR Images, incorrect optimum combinations may be found if the bound-

ary pixels of a sub-block are noisy. To improve the reliability of the algorithm, instead

of considering just the adjacent pixels on the boundaries of combining blocks, we

construct representative pixels to represent the phases at the sub-block boundaries.

The representative pixel values are calculated as the weighted mean of D pixels at the

boundaries, where D is the depth factor and depends on smoothness of the total phase.

Weighted averaging reduces the effect of noise when combining the blocks. Since the
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Fig. 4. Background phase extraction from an 8× 8 phase image using block merging:

Step1. 2×2 sized image blocks are obtained by exhaustive search. Step2. 4×4

sized blocks are obtained by merging four 2 × 2 blocks obtained in previous

step. Step3. The procedure is continued to extract the background phase from

the complete image.
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phase variation rates along the horizontal and vertical directions can be different,

different depths can be used when considering horizontal and vertical boundaries of

a sub-block. Figure 5 explains the basic concept of representative pixels formation.

The rates of total phase variation along horizontal and vertical directions may

vary with each row and column. The idea of weighted averaging is to minimize the

effect of noise so that the representative pixel at the boundary truly represents the

phase at sub-block boundary for a particular row or column. In low variation rate

regions, higher depth is preferable. However, in high variation rate regions, averaging

for a large depth may deviate the representative pixel value from the actual phase at

the boundary. Also, averaging pixels of opposite polarity or pixels completely in noise

regions may result in erroneous estimates. This necessitates the use of different depths

for each row and column in a sub-block. These depths are adaptively calculated by

estimating the phase variation rates near the boundaries of each sub-block. Figure 6

shows the adaptive depth estimation for a quarter of an inversion recovery brain

image. For adaptive depth estimation, first the horizontal and vertical gradient images

are calculated for the phase map using

GHori(x, y) = d(arg{I(x, y)}, arg{I(x + 1, y)}) (2.6)

GV ert(x, y) = d(arg{I(x, y)}, arg{I(x, y + 1)}) (2.7)

where d(., .) is the circular angular difference calculated as described in 2.4 and arg{.}
is the argument. The gradient images are then thresholded and converted to binary

maps. The threshold levels between π/6 and π/4 are found to give good results. The

idea is to avoid averaging when either of the following is encountered

• Noise pixels

• Pixels with different polarity information
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Fig. 5. Formation of representative pixel vectors. Here DH and DV represent hori-

zontal and vertical depths respectively. The horizontal and vertical vectors of

representative pixels RH1,RH2 and RV 1,RV 2 are formed by weighted means DH

and DV pixels respectively.
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Fig. 6. Adaptive depth estimates for horizontal and vertical depths for a quarter of a

brain image. The depths are indicated by opaque white color and are super-

imposed on the phase map of the inversion recovery image. (a) and (b) show

the horizontal and vertical depth estimates for the image respectively.
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• High phase gradients

Here noise pixels refer to the pixels located in noise areas outside the boundary of

the object of interest. Since these areas do not contribute much MR signal, they

are covered almost completely with random noise. The noise being random, the

phases of these pixels have no correlation with neighboring pixels and are marked

by very high phase gradients. Similarly, pixels of opposite polarity being 1800 out of

phase with considered pixels, are also marked by high gradients. Thus, all the above

mentioned cases can be detected by observing the phase gradient map. By choosing

an appropriate threshold, these cases can be isolated from noise affected areas in

the object of interest which require higher averaging depths to neutralize noise. The

horizontal and vertical depths are determined by scanning the thresholded horizontal

and vertical gradient images respectively. The depth values are set so as to keep the

noise or reverse polarity pixels from being averaged for representative pixel formation.

In my implementation, the maximum allowable depth is set to 16 and the minimum

depth is min{2, Sub-block size}. The effects of minimum and maximum depths can

be seen in fig. 6.

Once the depths are determined, the representative pixels are calculated by the

weighted averaging of the pixels at the sub-block boundaries. Weights assigned to

the pixels are directly proportional to their magnitudes |I(x, y)| and inversely propor-

tional to the gradients G(x, y). The weighted averaging ensures that the representa-

tive pixels represent the average phase value of the high SNR pixels near of boundary

of a considered sub-block.

The block merging method for PSIR is summarized in fig. 7 using a flow-chart.

The output of the block merging procedure is the estimated background phase of the

complex image. The intrinsic phase indicating polarity information is extracted by
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Fig. 7. Flow-chart indicating the steps involded in block merging method for PSIR.

Here l is the smallest integer such that 2l ≥ N where the size of the image is

N ×N .
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subtracting this background phase from the total image phase. The PSIR image is

obtained by combining this polarity information with the pixel magnitudes.

2. Region Growing

Region growing algorithms literally grow from a small number of image pixels and

expand to cover the whole field-of-view. Generally, the starting point is chosen in a

high SNR region. Since the proposed methods are developed with human brain images

in mind, center of image is found to be a good starting region. Alternatively, the region

can be grown from any high SNR region of the image with minor modifications in

the growth trajectory. The proposed approach is much simpler as compared to the

existing region growing scheme [11] and does not suffer from the limitations of the

existing method [11, 20]. Since there is no phase-coherence condition controlling the

region growth [11], the proposed method does not result in any information loss due

to lack of growth in the image areas with high phase gradients. This also eliminates

a considerable amount of manual intervention required for phase-coherence threshold

selection and the need for bridge-filtering [11].

In the proposed method, first the four center pixels of the phase image are op-

timally combined by considering all eight combinations as discussed in the block

merging method. Thereafter the region growing starts from the top left corner of the

image and follows the circular trajectory described in fig. 8. That is, the trajectory

goes from top left corner to top right corner, then through the bottom right, bottom

left, back to top left corner and then ascends to the top left corner of the next larger

loop. The new pixels are scanned according to the described trajectory. The sign of

the pixel under consideration is toggled depending on the values of the pixels in the

neighborhood which have already been visited. The idea is to extract the background

phase from the total phase. By the basic property of the phase of an inversion recov-
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Fig. 8. Circular growth trajectory for region growing. The optimally combined center

pixels serve as a reliable starting area from which the region is grown. The

numbers indicate the sequence in which the circular path is traversed.
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ery image, either a pixel phase is very similar to the phase of its neighboring pixel or

it is 1800 out-of-phase with its neighbor. Hence, in order to extract the background

phase, if the phase of pixel under consideration

- has a small phase difference with its already visited neighbors, its sign is left unal-

tered.

- is almost 1800 out-of-phase with its extracted neighbors, its sign is toggled.

By toggling the sign we are adding 1800 to the already existing phase at the pixel. The

coherence of a pixel phase with its neighbors can be measured by the dot product.

If the dot product between the complex values of two pixels is positive, the angle

between them is less than 900. In present context, these pixels can be said to be in

phase. Hence, to extract coherent phase, if the sum of the dot products of a pixel

and its neighbors is negative, its sign is altered. In the summation, the pixels with

higher reliability should be given more weight. This is accomplished by weighing the

contributions by different pixels with weights inversely proportional to their gradients.

Thus, the following decision factor is calculated for each pixel under consideration

D(x, y) =
∑

(xn,yn)∈Nv(x,y)

〈I(x, y), I(xn, yn)〉
|arg{I2(x, y)× I2∗(xn, yn)}| (2.8)

where Nv(x, y) is the set of already visited pixels in the neighborhood of the pixel at

location (x, y), 〈·, ·〉 represents the dot product, ∗ denotes the complex conjugation,

arg is the argument and | · | is the absolute value. The use of I2(x, y) instead of I(x, y)

in the denominator ensures that the phases with polarity difference are not wrongly

penalized.

I2(x, y) = {|I(x, y)|eiΦ(x,y)}2

= {|I(x, y)|ei(θ(x,y)+s(x,y))}2

= |I(x, y)|2ei(2θ(x,y)+2s(x,y))
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= |I(x, y)|2ei(2θ(x,y))

This is because s(x, y) = 0/π and hence 2s(x, y) = 2π = 0. Thus, the denominator

in 2.8 calculates the gradient due to variations that can be attributed to noise.

The sign of a pixel is decided as follows

- If D(x, y) ≥ 0, Ĩ(x, y) = I(x, y)

- If D(x, y) < 0, Ĩ(x, y) = −I(x, y)

where Ĩ is the image with phase equal to the extracted background phase.

In 2.8, the neighborhood used is the first order neighborhood. We make use of

first, second and third order neighborhoods in the algorithm which we define as shown

in fig. 9. Since first order neighborhood captures the coherence only between the pix-

els in a very small area, this may result in small locally smooth regions being extracted

from the phase map. The result may look like patches of disconnected smooth phase

regions. In order to extract a consistent smooth phase from the whole image, the pro-

cess of region growing is repeated with the neighborhood order increased by a factor

of one. This ‘knits’ the locally smooth regions to generate a consistent background

phase map. Figure 10 shows the extracted locally smooth regions and the consistent

background phase map obtained by neighborhood expansion.

Once the background phase is extracted, the intrinsic phase information can be

obtained by subtracting it from the total phase. The real part of the complex image

with just the intrinsic phase component is the desired PSIR image.

Since the region growing algorithm considers one pixel at a time in the growth

trajectory, the total number of possibilities to be tested for growing a region with a

defined neighborhood for an image with N ×N pixels is just 2×N ×N . Also, it does

not require estimation of adaptive depths for every combining block as in the block

merging scheme. Thus, region growing method considerably outperforms the block
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Fig. 9. (a) First order neighborhood, (b) Second order neighborhood, (c) Third order

neighborhood.
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Fig. 10. Region growing (a) Original phase map, (b) Locally smooth regions extracted

using region growing with first order neighborhood, (c) Consistent background

phase extracted after repeating region growing with second and third order

neighborhoods.
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merging algorithm in terms of computational efficiency. However, block merging is

more effective in neutralizing noise effects when high depths are allowable and hence,

should be preferred in cases with high noise with slow phase phase variations.

C. Combatting Noise

Separating intrinsic phase from the background phase is the most important compo-

nent of phase sensitive reconstruction. This process becomes difficult in presence of

noise and the PSIR may fail in case of extremely noisy images. Different approaches

have been considered to perform successful reconstruction in presence of noise. This

section discusses these approaches and the obtained results.

1. Low Pass Filtering

Low pass filtering is the one of the most elementary approaches to reduce noise.

We wish to reduce the noise on the phase image so as to facilitate the separation

of intrinsic phase from the background phase. As mentioned earlier, the intrinsic

phase is separable from the background phase due to its abrupt transitions between

0 and π which are not found in the smoothly varying background phase. A low pass

filtering directly on the phase image can result in more harm than good. Consider the

boundary between two regions of different polarity. For simplicity, assume that the

background phase in both the cases is zero. So one of the regions will have the total

phase = intrinsic phase = 0 whereas the other will have the total phase = intrinsic

phase = π. A direct averaging on this phase map would results in generation of

pixels with phase values approximately π/2. These π/2 values make it impossible to

decide whether the pixel belongs to the 0 region or the π region. This often results

in the failure of the PSIR algorithm. Moreover, the phase being cyclic the regions
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with −π follow the regions with phase π. An averaging in these regions also results

in erroneous resultant phase values. Hence, low pass filtering cannot be directly done

on the phase map.

Real and imaginary parts of a complex image, however, can be separately filtered

and combined to form the low pass filtered complex image, the phase of which has less

noise as compared to the unfiltered image. Since low pass filtering results in resolution

reduction, the resultant PSIR image shows a decrease in resolution. The resolution

reduction can be avoided if the phase is filtered using the above described method

and is then combined with the original image magnitudes before further processing.

If Î is the phase filtered image, it is obtained from original image I as follows

Î(x, y) = |I(x, y)|ei×arg{ 1
9

∑1

m=−1

∑1

n=−1
I(x+m,y+n)} (2.9)

Figure 11 presents the result of low pass filtering the input image before per-

forming the phase sensitive reconstruction. The figure demonstrates that while low

pass filtering is able to remove a reconstruction error on one side of the image, it fails

to do so on the other side. Low pass filtering is found to be useful in removing errors

caused due to noise in a region with consistent polarity. For removing errors due

to noise at boundaries of different polarity regions, a more sophisticated approach is

required.

2. Wavelet Denoising

Wavelet domain denoising has been used by image processing community since quite

some time. A recent denoising technique utilizing contextual hidden Markov models

(CHMM) in wavelet domain [25] has been used here. The failure of a PSIR algorithm

is a result of its inability to extract intrinsic phase due to either heavy noise or

high variation rates of background phase information. It has been experimentally
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Fig. 11. Low pass filtering before phase sensitive reconstruction (a) PSIR image with-

out low pass filtering, (b) PSIR image with low pass filtering. As seen, the

low pass filtering is not successful in removing all the errors due to noise.
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found using computer simulations that the wavelet denoising scheme [25] helps the

proposed PSIR methods handle much noise and background phase variation rates.

Thus, robustness of the proposed schemes is found to improve when this denoising

technique is used. Also, the increase in errors when the image SNR is reduced is much

lower when the denoising algorithm is used.

As explained in the previous section, due to cyclic nature of phase, denoising

cannot be applied directly on the phase image. Hence, the real and imaginary parts

are separately denoised. Doing so has a secondary benefit of providing a better

reconstructed image due to the fact that denoised MR image displays better SNR

and improved contrast-to-noise ratio (CNR) [26].

The denoising algorithm used here [25] captures the dependencies in wavelet co-

efficients through their hidden states using multidimentional mixture models in which

hidden states exhibit Markov dependency structure. Using an iterative Expectation

Minimization (EM) algorithm, the HMM model is first trained to adjust its param-

eters according to the observed wavelet coefficients. Context vectors are formed as

functions of wavelet or scaling coefficients. Contexts help incorporate dependencies

into HMMs efficiently. For denoising an image, the wavelet coefficients of the image

are modeled using a two zero-mean component Gaussian mixture. The CHMM is

trained on noisy wavelet data to estimate the hidden state probabilities of the signal

and the mixture variances. Once the estimates of the denoised wavelet coefficients

are calculated, an inverse wavelet transform gives the denoised image. The details of

the algorithm can be found in [25].

The PSIR with denoising is done in the following steps:

1. Denoised phase is generated from the complex image by separately denoising

the real and imaginary parts, generating a new denoised complex image and
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finding its phase.

2. PSIR is performed to extract polarity phase s(x,y) from the denoised phase

3. The polarity information is combined with the non-denoised magnitude image

to generate the PSIR image

Using non-denoised magnitude in the final step avoids the unnecessary side-

effect of resolution reduction when the denoising algorithm is used. In extremely

noisy images where noise effects surpass losses due to resolution reduction, denoised

magnitude can be used. This denoised magnitude should be obtained by taking

absolute value of denoised complex image obtained in step 1. This is because the

Gaussian noise assumption is valid only when denoising is done separately on real

and imaginary parts [27]

Figure 12 shows a typical comparative result with and without using denoising.

As shown, the failure of the PSIR algorithms in presence of heavy noise can be pre-

vented by the use of the discussed wavelet denoising scheme. Moreover, the resultant

PSIR image with denoising displays better SNR and contrast as compared to the non-

denoised image. An detailed account of the improvement obtained by using denoising

is presented in the results section.

3. Slope Filtering

Denoising phase using denoising performed on real and imaginary parts of an image

is an indirect approach to phase denoising. A much efficient and direct approach is

slope filtering. The idea is very similar to that of Borrello et al. [15]. However, it has

been modified to retrieve the polarity information lost during slope calculation [15].

This makes it useful for phase denoising applications without loss of polarity.
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Fig. 12. PSIR result generated with and without using wavelet denoising. (a) Dig-

itally generated phantom image without background phase modulation and

noise added to it, (b) Real part of complex image shows the effect of phase

modulation and noise, (c) PSIR using region growing algorithm without de-

noising shows two failure sites which appear in different shade due to wrongly

assigned polarity, (d) Phase sensitive reconstruction after wavelet denoising.
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The basic idea of slope filtering is based on the fact that in a small area of an

IR image, the slope of the pixels remains approximately constant. This is because

in a small area of an IR image, the slow varying background phase remains almost

constant. The only ambiguity lies in the polarity or the intrinsic phase which is either

0 or π. In both these cases, the slope remains the same. This concept is illustrated

in figure 13.

The algorithm starts from the center of the image and expands towards the edges

following the trajectory defined in fig. 8. For every considered pixel, the phase-slope

is calculated in an appropriately sized window surrounding the pixel. The window

size is dependent on the the rate of background phase variation. Window sizes from

5× 5 to 10× 10 are found to give good results. For finding the phase-slope, a least-

squares routine is used to fit a line passing through the complex pixel values in the

considered window. As indicated in fig. 13, the line is constrained to pass through

the origin. The least-squares line fitting formula is derived as follows:

A line passing through the origin can be expressed as

y = bx

where b is the slope of the line. We wish to fit a line y = bx through the points (x1, y1)

through (xn, yn) in the complex plane. For least-square line fitting, we minimize the

vertical error between the line and the data points. The summation of square of the

vertical errors is given by

E =
n∑

i=1

(yi − bxi)
2

where b is the slope of the line.

∂E

∂b
=

∂

∂b

n∑

i=1

(yi − bxi)
2 = 0
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Fig. 13. Diagrammatic representation of phase-slope in a small area of a complex IR

image. (a) Portion of tissue with short T1 and hence positive polarity, (b)

Portion of area between tissues with short and long T1 values contains, (c)

Tissue with long T1 and hence negative polarity. Unlike the vector sum

is unpredictable at the interface due to cancelation of opposing phases, the

phase-slope value is consistent in all the cases. Source: [15].
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⇒ 2
n∑

i=1

(xiyi − bx2
i ) = 0

⇒ b =

∑n
i=1 xiyi∑n
i=1 x2

i

Once the slope is determined, the arctangent of the slope gives inclination angle

of the line. Since the arctangent values lie between −900 to 900, the 1800 difference

between pixels of opposite polarity is lost [15]. Hence, if the line representing the

phase-slope is converted to a vector, their is an ambiguity regarding its direction.

Here, choosing the direction closest to the vector under consideration retrieves the

correct direction and hence the embedded polarity information. We shall refer the

resulting vector as the phase-slope vector. By replacing the vector value at the pixel

under consideration by its projection on the phase-slope vector, random noise varia-

tions in the image phase can be directly removed. Figure 14 demonstrates this process

graphically.

Slope filtering has been found to be very effective in phase denoising. Improve-

ment using slope filtering is demonstrated using simulation results in the results

section.



35

Fig. 14. Slope filtering. Here the vector A is replaced by its projection Aproj on the

phase-slope vector. The result is a form of averaging on the phase to minimize

the effect of noise without disturbing the polarity information.



36

CHAPTER III

EXPERIMENTAL RESULTS

A. Method of Performance Evaluation

The proposed methods have been tested using computer simulations as well as in

vivo experiments. The performance of the PSIR methods presented here has been

characterized with respect to

• SNR

• Background phase variation rates

For evaluating the performance with respect to SNR, the background phase variation

is kept constant and the error in reconstruction is measured at different input image

SNRs. The ratio of average power of pixels in the area of interest to that of pixels

in the noise area is used for calculating SNR. Mathematically, the definition of image

SNR used here can be expressed as

SNR = 10log
1

Ns

∑
(x,y)∈SignalRegion |I(x, y)|2

1
Nn

∑
(x,y)∈NoiseRegion |I(x, y)|2 (3.1)

where Ns is the number of pixels in the area of interest or the signal region and Nn

is the number of pixels in the noise region.

Since the goal of a successful reconstruction is to successfully retrieve the polarity

information of the imaged object, the reconstruction error is defined as the percentage

of pixels in the area of interest which are reconstructed with incorrect polarities.

Mathematically, the reconstruction error e can be expressed as

e =
1

Ns

NE{IPSIR(x, y) | sign(IPSIR(x, y)) 6= sign(ITrue(x, y))} × 100% (3.2)
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where NE{·} denotes the number of elements in a set and Ns is the total number of

elements in the area of interest.

The error vs. SNR graphs for each method describe its performance with respect

to noise. Similarly, the performance of the methods is evaluated with respect to the

rate of background phase variations. Here, the spatial variation rate of background

phase modulation is increased keeping the SNR constant.

B. Computer Simulations

1. IR Phantom

In order to characterize the performance of the proposed algorithm, a digital phantom

image with characteristics similar to the human brain IR images was designed. The

digital phantom was designed with the following goals in mind

1. Simple structures that can be well discerned in the presence of reconstruction

abnormalities and noise thus allowing any abnormalities in reconstruction to be

quickly identified

2. Structures with different T1 values such that there are parts with positive as

well as negative polarities in the image

3. Control over the amount of noise added to the image so as to control the image

SNR

4. Control over the pattern, rate of variation and orientation of the background

phase modulation

Figure 15 shows the flow-chart of IR phantom generation where the phantom

template is taken and is converted to a complex IR image with background phase
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Fig. 15. Flow chart of complex IR phantom generation. The bubbled arrows indicate

the user controllable inputs.
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variation and noise. The phantom generation program allows generation of a variety

of background phase modulation patterns. Independently controllable variations in

horizontal and vertical directions are used for generating phase modulation patterns.

Linear, sinusoidal or linear+sinusoidal variations with different rates can be selected

for both horizontal as well as vertical directions. The combined effect can be as sim-

ple as single frequency diagonal phase variation to complex multi-spatial-frequency

pattern with different rates of variations in different image areas. The orientation

selection allows the background phase pattern to be rotated and the desired angle be-

fore superimposing it on the phantom image template. This allows user to determine

if the algorithm under test has any directional preference.

MR data is acquired in frequency domain, called the k-space domain and is

converted to the complex image using an inverse Fourier transform operation. Hence,

the noise in an actual MR image is introduced in the k-space domain. In order

to simulate realistic noise addition, we first convert the phantom image to k-space

domain, add zero mean complex Gaussian noise and then convert it back to the

complex domain. Figure 16 shows the phantom template, the background phase

modulation pattern, the magnitude and the real images. The effect of background

phase modulation can be seen in the real part of the complex image. Note that while

the magnitude image does not suffer from the effects of background phase modulation,

it fails to show contrast between objects of similar magnitude and opposite polarity.

2. Block Merging

The block merging algorithm is ideal for performing reconstruction of noisy images

having large structures with same polarities and moderate background phase variation

rates. Since the algorithm adaptively chooses optimum averaging depths depending

on the phase variation rates, it is better able to combat noise in images with slow
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Fig. 16. Phantom image. (a) Phantom template without background phase modula-

tion and noise, (b) Background phase modulation pattern. The pattern is

cropped at the corners due to rotation by 450, (c) Magnitude image. Notice

that the star and the square with different polarity appear in the same shade

in this image due to similar magnitude, (d) Real part of complex phantom

image displays the effect of background phase modulation.
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background phase variation rates. Figure 17 shows successful reconstruction in an

image with moderate background phase variation rate and low SNR. Here the image

SNR is 27 dB and the reconstruction error is 0.26%

Figure 18 shows the plot to error vs. SNR plot for the block merging algorithm.

As seen from the plot, the amount of error increases gradually with the decrease

in SNR which indicates that the PSIR algorithm does not suffer from an avalanche

breakdown. Also the error rate becomes negligible above 27 dB SNR. The actual IR

images in our database have an average SNR above 40 dB. Hence, the error vs. SNR

performance of the algorithm is satisfactory.

Block merging algorithm can also reconstruct high SNR images with rapid back-

ground phase variations. Figure 19 shows successful reconstruction of a phantom

image with very high background phase variation rate. IR images obtained in prac-

tice typically have about one to three cycles of background phase variation covering

the field-of-view. The phantom image showing in the fig. 19 has a little more than

eleven complete cycles of background phase variation covering the field-of-view. Thus

the proposed algorithm quite over-performs in the area of handling rapid phase modu-

lations on IR images. In fig. 19, the a regular background phase pattern in shown. In

more complicated patterns, the phase variation rate may be different in different areas

of the image. In such cases, the maximum variation rate is used as the parameter for

evaluation.

3. Region Growing

The region growing algorithm is efficient in handling noise under high background

phase variation rates. In these images, the block merging algorithm chooses lower

averaging depths due to high phase variations and hence is not able to minimize noise

effects. Figure 20 shows successful reconstruction in an image with high background
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Fig. 17. Image reconstruction using block merging algorithm. (a) True image, (b)

Real image displaying background phase modulation, (c) Magnitude recon-

struction, (d) PSIR image obtained using block merging algorithm.
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Fig. 18. Error vs. SNR plot for the block merging algorithm. The background phase

variation in all the cases was maintained constant with maximum variation

rate of 0.026 cycles per pixel.
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Fig. 19. Phase sensitive reconstruction of image with very high background phase vari-

ation rate using block merging algorithm. (a) True image, (b) Real image

displaying rapid background phase variations, (c) Magnitude reconstruction,

(d) PSIR Image obtained using block merging algorithm.
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phase variations and low moderately low SNR of 33.4 dB. The white box marks the

maximum phase variation regions where background phase goes through two complete

phase cycles in just 28 pixels ie. variation rate of 0.07 cycles per pixel.

Figure 21 shows the plot to error vs. SNR plot for the block merging algorithm.

The plot indicates that the reconstruction errors increase gradually with SNR and

hence, the region growing algorithm does not have an avalanche breakdown problem.

Figure 22 shows the plot of error vs. variation rate of background phase modu-

lation.

4. Wavelet Denoising

For the PSIR algorithms proposed in this research, the ability of withstanding rapid

background phase variations is found to more in case of high SNR images. Moreover,

by increasing the image SNR of the image input to the PSIR algorithm, the overall

capability of handling noise increases. This motivates the use of wavelet denoising

proposed in [25]. The idea is validated by the error vs. input image SNR plot shown in

fig. 23. As indicated by the plots, the percentage error is significantly reduced when

PSIR with denoising is carried out. Note that the percentage error with denoising

at about 12 dB image SNR is less than error without denoising at 20 dB SNR.

This highlights the primary advantage of using the wavelet denoising scheme. Also

note that the increase in error with the decrease in image SNR is much lower when

denoised phase is used. This pushes the algorithm’s breakdown SNR threshold to a

much lower value. We define this breakdown SNR as the SNR of the input image at

which the PSIR image has 25% reconstruction errors. It can also be observed from

Fig.23 that the improvement in error performance using proposed scheme increases

with decrease in SNR. Hence the computational power spent on denoising best pays

off when the image SNR is low. PSIR algorithms generally fail at two vulnerable
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Fig. 20. Image reconstruction of image with high background phase variation rate and

moderately low SNR using region growing algorithm. (a) True image, (b) Real

image displaying background phase modulation. The white box indicates the

maximum phase variation region with 2 phase cycles covered in 28 pixels,

(c) Magnitude reconstruction, (d) PSIR image obtained using block merging

algorithm.
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Fig. 21. Error vs. SNR plot for the region growing algorithm. The background phase

variation in all the cases was maintained constant with maximum variation

rate of 0.026 cycles per pixel.
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Fig. 22. Error vs. background phase variation rate plot for the region growing algo-

rithm. The image SNR in all the cases was maintained at a constant level of

40 dB.
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Fig. 23. Comparative error vs. SNR plots for region growing algorithm with and

without wavelet denoising. Here the background phase variation rate for each

case was set at 0.035 cycles per pixel.
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spots: The boundaries between object and space and at small portions of MR image

where phase image has low SNR. Thus, the denoising can be applied to only those

areas to save the computational power while taking the best advantage of denoising.

These areas being marked by high gradient in the magnitude image, can be isolated

using an automated algorithm. The approach, however, has not been tested yet.

Figure 24 shows a result set in which region growing algorithm fails without

denoising due to high background phase variation rate and moderately low SNR. The

failure shown is a characteristic failure found in cases where PSIR fails due to high

frequency background phase variations. The failure is non-sporadic and occurs at

multiple locations with high frequency variations. The image SNR in this case was

27.8 dB. Here successful reconstruction was performed when input data was wavelet

denoised prior to PSIR algorithm. Figure 25 shows the plot of percentage error vs.

maximum variation rate of background phase variation.

5. Slope Filtering

Slope filtering is an efficient and direct way of removing random errors in phase. By

choosing an appropriate window size according to rate of background phase variations,

a remarkable improvement in the performance of the proposed PSIR algorithms can

be obtained. Figure 26 shows the improvement in region growing algorithm using

slope filtering. Here the IR data has high background phase variation with more than

8 complete phase cycles in the field of view and poor SNR of just 17.9 dB. Successful

reconstruction was possible in this case because of slope filtering.

Slope filtering is not computationally intensive and gives an improved recon-

struction when it is used with the proposed PSIR algorithms. Hence, in most results

showing the in vivo experiments, slope filtering has been included as a preceding stage

of the PSIR reconstruction.
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Fig. 24. Comparative PSIR result sets generated with and without using denoising for

high rate of background phase variations. (a) Phantom image without phase

modulation and noise; (b) Real part of complex image shows different phase

variation rates at different locations; (c) PSIR using region growing without

denoising shows failure due to high frequency background phase; (d) PSIR

after denoising the phase image.
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Fig. 25. Plot of percentage error vs. maximum spatial variation measured in cycles per

pixel. Errors increase with frequency of background phase variations. Image

SNR of 27.5 dB was used for simulations.
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Fig. 26. Improvement in region growing algorithm using slope filtering. Here back-

ground phase variation rate is 0.065 cycles per pixel and the image SNR is

17.9 dB. (a) Phantom image without phase modulation and noise; (b) Real

part of complex image; (c) PSIR using region growing without slope filtering;

(d) PSIR with slope filtering.
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C. In vivo Results

The proposed algorithms have been tested on a variety of MR images acquired using

in vivo experiments. The tests were done on a number of data sets acquired using

different MR scanners with different magnet strengths. This section presents the

results of some of these tests.

Figures 27 to 30 show the phase sensitive reconstruction of inversion recovery

brain images. Figures 27 and 28 were reconstructed using block merging method

whereas figures 29 and 30 were reconstructed using the region growing algorithm. The

images are slices of a single brain taken at various depths. The inversion recovery

data set was collected using a fast spin-echo pulse sequence. The imaging parameters

used in collecting the data sets were TR/TE/TI/ETL= 4000/17/450/16ms.

Figure 31 demonstrates the utility of slope filtering algorithm. At the boundary

of the object of interest, the PSIR algorithm fails due to random noise in the phase

image. Here successful reconstruction could be carried out when the input image was

treated with slope filter before the PSIR reconstruction.

Figures 32 to 34 show results of tests done data sets acquired using a 15 Tesla

MR scanner. Here the data was acquired using a fast spin-echo imaging sequence.

The algorithms were also tested on data acquired using multiple coils. Fig-

ures 35 to 37 show results of tests done on 8 coil data. This is an example of successful

reconstruction of low SNR in vivo data.

Figure 38 demonstrates reconstruction of data with high rate of phase variation.
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Fig. 27. Phase sensitive reconstruction of IR brain image using block merging algo-

rithm (a) Real part of complex IR image; (b) Magnitude reconstruction; (c)

PSIR image.
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Fig. 28. Phase sensitive reconstruction of IR brain image using block merging algo-

rithm (a) Real part of complex IR image; (b) Magnitude reconstruction; (c)

PSIR image.
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Fig. 29. Phase sensitive reconstruction of IR brain image using region growing algo-

rithm (a) Real part of complex IR image; (b) Magnitude reconstruction; (c)

PSIR image.
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Fig. 30. Phase sensitive reconstruction of IR brain image using region growing algo-

rithm (a) Real part of complex IR image; (b) Magnitude reconstruction; (c)

PSIR image.
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Fig. 31. Use of slope filter to achieve successful reconstruction. (a) Real part of com-

plex IR image; (b) Magnitude reconstruction; (c) Phase sensitive reconstruc-

tion fails in a part of image due to noise; (d) Successful phase sensitive recon-

struction by treating the image data with slope filter before reconstruction.
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Fig. 32. Phase sensitive reconstruction of data acquired using a fast spin-echo sequence

on a 15 Tesla MR scanner (a) Real image; (b) Magnitude reconstruction; (c)

PSIR image.
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Fig. 33. Phase sensitive reconstruction of data acquired using a fast spin-echo sequence

on a 15 Tesla MR scanner (a) Real image; (b) Magnitude reconstruction; (c)

PSIR image. Note that the magnitude reconstruction in this case results in a

contrast inversion between ventricles and the surrounding structure.
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Fig. 34. Phase sensitive reconstruction of data acquired using a fast spin-echo sequence

on a 15 Tesla MR scanner (a) Real image; (b) Magnitude reconstruction; (c)

PSIR image reconstructed with inverted polarity. This example demonstrates

the problem of global polarity determination in the PSIR reconstruction.
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Fig. 35. Phase sensitive reconstruction of a low SNR MR data acquired using 8 coils

using a fast spin-echo sequence. (a) Real image; (b) Magnitude reconstruction;

(c) PSIR image.



64

Fig. 36. Phase sensitive reconstruction of 8 coil data acquired using fast spin-echo

sequence. The imaging time was 300ms. (a) Real image; (b) Magnitude

reconstruction; (c) PSIR image.
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Fig. 37. Phase sensitive reconstruction of 8 coil data acquired using fast spin-echo

sequence. The imaging time was 300ms. The input image SNR was 32dB. (a)

Real image; (b) Magnitude reconstruction; (c) PSIR image.
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Fig. 38. Phase sensitive reconstruction of IR brain image. (a) Real part of complex

image; (b) Magnitude reconstruction; (c) Phase sensitive reconstruction.
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D. Discussion

The global optimum solution to the background phase estimation problem requires

consideration of 2N2−1 possibilities. The optimization algorithms try to obtain a

sub-optimal background phase estimate approximating the global optimum in a com-

putationally efficient way. The block merging method requires a testing of about

2.7×N2 possibilities to extract the background phase. However, the adaptive depth

estimates for each block make it less computationally efficient as compared to the

region growing method. Block merging method should be preferred only in low SNR

images where higher averaging depths are allowable.

Both the reconstruction algorithms have an unsolved ambiguity of global polarity

determination. The block merging algorithm used the fact that if the phase of a

complete block is flipped by 1800, the optimum of the block remains unchanged. Thus,

an obtained optimum estimate of the background phase can be 1800 flipped version of

the actual background phase. As a result, the PSIR image produced may be polarity

reversed. A manual intervention is required at this stage to choose the correct global

polarity. A suggested approach to automate this process is to choose the solution

with net image intensity greater than zero [11]. For the images in our database, this

approach is not found to give consistently correct polarity. For brain images with

cerebrospinal fluid, the solution yielding positive moment of inertia evaluated at the

center of the image can be chosen [20].

An analysis of algorithm failures was carried out to help find ways to minimize

the failures. Reconstruction failures refer to cases where large portions of image

reconstructed with inconsistent polarities. When the randomly distributed gaussian

noise is gradually increased, the errors in reconstruction increase linearly with the

decrease in SNR. These errors are sporadic and as analyzed from the presented graphs,
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do not result in avalanche breakdown. Hence, decrease in SNR alone was not found to

cause algorithm failure. PSIR reconstruction failed when high rate of phase variations

were accompanied by low SNR. Typically, failures occurred when phase variations as

fast as one complete phase cycle per 17 or less pixels were accompanied by SNR of

about 25 dB or lower. PSIR algorithms assume that the background phase is almost

constant in a small neighborhood and hence in the defined neighborhood, either the

pixels are in phase with the neighbors or are 1800 out-of-phase with them. Considering

the region growing algorithm,

• If the summation of dot product of a pixel with its neighbors is greater than

zero, the pixel is considered in-phase with its neighbors. Hence, its phase is

stored as the extracted background phase.

• If the summation of the dot product is less than zero, 1800 is added to the pixel

phase and the result is stored as the extracted background phase.

Only the visited neighbors are considered in the above calculations. When the algo-

rithm starts from the top left corner of any loop (fig. 8), only one pixel in the first

order neighborhood (fig. 9) is visited previously. If this pixel is affected heavily by

noise, it may lead to error in the considered pixel. In some cases, these errors may

propagate leading to a large portion of image reconstructed with inconsistent polarity.

Figure 39 shows one such example.

Figure 40 shows the detailed analysis of the failure start and spread. For the

pixel (116, 116) under consideration, only one of its neighbors (117, 117) is an already

visited pixel. The phase of this pixel being about 1010 different from the considered

pixel, they are interpreted as anti-phase. As a result, the phase at (116, 116) is

wrongly toggled. Similarly, when decision of pixel at (115, 115) is made from pixel at

(116, 116), the error spreads.
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Fig. 39. Analysis of PSIR failure - 1. (a) Phase map of input image; (b) Extracted

background phase by PSIR algorithm. Though the polarity information has

been eliminated in the phase map as required for successful background phase

extraction, a large portion extracted background phase is inconsistent with

the rest of the phase map; (c) Zoomed-in failure location boxed using a black

square in (b). Note that here the failure starts at a single pixel (116, 116) and

spreads in a considerable portion of the phase map.
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Fig. 40. Analysis of PSIR failure - 2. (a) Phase of pixels in input image surrounding

pixel at location (116, 116). Pixel (116, 116) being the corner starting point

in the growth trajectory, its decision is made only from pixel (117, 117). The

arrows indicate the pixels used for making decision and the numbers indicate

the sequence in which the shown pixels phases are determined. Pixels with

similar angles are shown in similar shades; (b) Result of region growing.
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Ideally, adjacent pixels should either have a very small phase difference or should

be about 1800 out of phase. Errors occur when adjacent pixels have a phase difference

of about 900. In cases with fast background phase variations, adjacent pixels already

have significant difference in phases. If noise increases this phase difference in some

critical pixels like (117, 117) in the example, the PSIR algorithm fails. Wavelet fil-

tering and slope filtering are steps in direction of eliminating these 900 pixels. Using

these methods, isolated trouble-maker pixels can be removed to a large extent. But

in images with a large number of pixels with 900 phase difference packed in a small

area, reconstruction is not possible with the current implementations of the algorithm.

Figure 41 is one such image. Here the boundary regions have low intensity and the

phase in these regions is overwhelmed by noise.

The proposed algorithms do not work properly with most gradient echo data.

Due to extremely high phase variations in gradient echo images, the smooth phase

criterion requiring nearly constant background phase in a local neighborhood is not

satisfied. Figure 42 shows the PSIR algorithm performance on a gradient echo spine

image. A failure location of the PSIR algorithm is marked by a black arrow and the

neighboring region of the failure site is indicated by a white box in the phase image.

To investigate the cause of failure, angular difference between neighboring pixels of

the phase image was taken. This phase difference image was thresholded to indicate

the regions in which neighboring pixel phases differed by about 900 (interval used:

(750, 1050)). This thresholded image is shown in 42(c). As seen, there is an almost

continuous line of 900 pixels separating two opposite polarity regions. As a result,

the polarity change is not detected in these regions resulting in a PSIR failure.
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Fig. 41. Unsuccessful reconstruction of a gradient echo brain image acquired using

a 3 Tesla MR scanner. (a) Real image; (b) Failed phase sensitive recon-

struction. White box in the boundary region shows the failure location; (c)

Phase-map. The white box indicated the region surrounding the failure site;

(d) Thresholded phase difference between phases of neighboring pixels. The

regions with a difference between 750 and 105 between neighboring pixels are

indicated. The white box indicates the failure location crowded with pixels

having almost 900 phase difference between each other.
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Fig. 42. Phase sensitive reconstruction of gradient echo data. (a) Real part of complex

gradient echo image; (b) Unsuccessful phase sensitive reconstruction. The

black arrow shows the beginning of reconstruction failure at a failure site; (c)

Phase-map of the image. The white box indicated the region surrounding the

failure site; (d) Thresholded phase difference between phases of neighboring

pixels. The regions with a difference between 750 and 105 between neighboring

pixels are indicated. The white arrow indicates the failure site.
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CHAPTER IV

CONCLUSION AND FUTURE WORK

In this thesis, a new approach to phase sensitive inversion recovery (PSIR) image

reconstruction has been presented. The background phase of an inversion recovery

(IR) image is modeled as a Markov random field (MRF). Two different optimization

algorithms have been developed to obtain a sub-optimal estimate the background

phase from an IR image using the MRF model. The first algorithm, block merging,

takes advantage of slow varying nature of background phase and uses a multiple

resolution procedure. This imparts it robustness against noise in images with slow

varying background phase. The second algorithm, region growing, starts from a

single point and extracts an optimum solution along a spiral path. It is designed to

handle lower SNR images with high background phase variations. To enhance the

performance of these algorithms, a wavelet denoising algorithm and a modified slope-

filtering approach have been investigated. The proposed methods do not require any

modification in the MR hardware setup and are compatible with the existing MR

systems. The performance of these algorithms was demonstrated using results of

various computer simulations and in vivo experiments. The results show that (a)

The proposed methods can perform reconstruction under rapid background phase

variations with moderate SNR levels; (b) It works better for spin-echo images than

gradient-echo images (where very rapid phase variations exist). The presented work

is expected to be useful for a number of applications where enhanced T1 contrast is

desirable. High-field T1-weighted imaging and pediatric brain imaging are some of

these applications.

The algorithms are currently limited to two dimensional data. This work can be

extended to operate on three dimensional MR data.



75

REFERENCES

[1] Bydder G.M. and Young I.R., “MR imaging: clinical use of the inversion recovery

sequence,” J Comput Assist Tomogr, vol. 9, no. 4, pp. 841–844, August 1985.

[2] Hajnal J.V., Bryant D.J., Kasuboski L., Pattany P.M., De Coene B., Lewis P.D.,

Pennock J.M., Oatridge A., Young I.R. and Bydder G.M., “Use of fluid attenu-

ated inversion recovery (FLAIR) pulse sequences in MRI of the brain,” J Comput

Assist Tomogr, vol. 16, no. 6, pp. 841–844, November 1992.

[3] Zee C.S., Segall H.D., Terk M.R., Destian S., Ahmadi J., Gober J.R. and Col-

letti P.M., “SPIR MRI in spinal diseases,” J Comput Assist Tomogr, vol. 16,

no. 3, pp. 356–360, June 1992.

[4] Halligan S., Healy J.C. and Bartram C.I., “Magnetic resonance imaging of fistula-

in-ano: STIR or SPIR,” Br J Radiol, vol. 71, no. 842, pp. 141–145, Feb 1998.

[5] Tokunda O., Hayashi N., and Matsunga N., “MRI of bone tumors: Fast STIR

imaging as a substitute for T1-weighted contrast-enhanced fat-suppressed spin-

echo imaging,” J Mag Reson Imag, vol. 19, no. 4, pp. 475–481, April 2004.

[6] Mai V.M., Chen Q., Bankier A.A., Zhang M., Hagspiel K.D., Berr S.S., and Edel-

man R.R., “Imaging pulmonary blood flow and perfusion using phase-sensitive

selective inversion recovery,” Magn Reson Med, vol. 43, no. 6, pp. 793–795, June

2000.

[7] Kellman P., Arai A.E., McVeigh E.R., and Aletras A.H., “Phase sensitive in-

version recovery for detecting myocardial infarction using gadolinium delayed

hyperenhancement,” Magn Reson Med, vol. 47, no. 2, pp. 372–383, February

2002.



76

[8] Nitta N., Takahashi M., Furukawa A., Murata K., and Mori M., “MR imaging of

the normal appendix and acute appendicitis,” J Mag Reson Imag, vol. 21, no. 2,

pp. 156–163, February 2005.

[9] Cappendijk V.C., Cleutjens K.B., Heeneman S., Schurink G.W., Welten R.J.,

Kessels A.G., van Suylen R.J., Daemen M.J., van Engelshoven J.M., and

Kooi M.E., “In Vivo detection of hemorrhage in human atherosclerotic plaques

with magnetic resonance imaging,” J Mag Reson Imag, vol. 20, no. 1, pp. 105–

110, July 2004.

[10] McVeigh E.R., Bronskill M.J., and Henkelman R.M., “Phase and sensitivity of

receiver coils in magnetic resonance imaging,” Med Phys, vol. 13, no. 6, pp. 806–

814, 1986.

[11] Xiang Q.S., “Inversion recovery image reconstruction with multiseed region-

growing spin reversal,” J Mag Reson Imag, vol. 6, no. 5, pp. 775–782, September

1996.

[12] Bakker C.J.G., De Graaf C.N., and Van Dijk P., “Restoration of signal polarity

in a set of inversion recovery NMR images,” IEEE Trans Med Imaging, vol. 3,

no. 4, pp. 197–202, 1987.

[13] Gowland P.A. and Leach M.O., “A simple method for the restoration of signal

polarity in multi-image inversion recovery sequences for measuring T1,” Mag

Reson Med, vol. 18, no. 1, pp. 224–231, 1991.

[14] Park H.W., Cho M.H., and Cho Z.H., “Real value representation in inversion

recovery NMR imaging by use of a phase correction method,” Mag Reson Med,

vol. 3, no. 1, pp. 15–23, 1986.



77

[15] Borrello J.A., Chenevert T.L., and Aisen A.M., “Regional phase correction of

inversion-recovery MR images,” Mag Reson Med, vol. 14, no. 1, pp. 56–67, 1990.

[16] Ahn C.B., and Cho Z.H. “A new phase correction method in NMR imaging based

on autocorrelation and histogram analysis,” IEEE Trans Med Imag, vol. 6, no. 1,

pp. 32–36, 1987.

[17] Ji J.X., Ying L., Ma J., Munson D.C. and Liang Z.P. Jr, “Phase-sensitive inver-

sion recovery imaging using a Markov random field model,” in Proc 11th Ann

Meeting Intl Soc Mag Reson Med, pp. 1068–1068, July 2003.

[18] Garach R.M., Ji J.X., Ying L., and Ma J., “Robust phase sensitive inversion

recovery imaging using a Markov random field model,” in Proc. 26th IEEE EMBS

Engg. in Med. and Biology Soc., pp. 478–481, September 2004.

[19] Garach R.M. and Ji J.X., “An improved region-growing method for phase sen-

sitive reconstruction of inversion recovery magnetic resonance images,” in 22nd

Annual Houston Conference on Biomed. Engg. Research, pp. 89–89, February

2005.

[20] Ma J., “Multislice and multicoil phase-sensitive inversion-recovery imaging,”

Magn Reson Med, vol. 53, no. 4, pp. 904–910, April 2005.

[21] Noll D.C., Nishimura D.G. and Macovski A., “Homodyne detection in magnetic

resonance imaging,” IEEE Trans. on Medical Imaging, vol. 10, no. 2, pp. 154–

163, 1991.

[22] Geman S. and Geman D., “Stochastic relaxation, Gibbs distribution and the

Bayesian restoration of images,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 6, no. 6, pp. 721–741, 1984.



78

[23] Besag J., “On the statistical analysis of dirty pictures,” J. Royal Statist Soc B,

vol. 48, no. 3, pp. 259–302, 1986.

[24] Li S.Z., Markov Random Field Modeling and Computer Vision, New York:

Springer-Verlag, 1995.

[25] Crouse M.S. and Baraniuk R.G., “Contextual hidden Markov models for wavelet-

domain signal processing,” in Proceedings of 31st Asilomar Conference on Signal,

Systems, and Computers, pp. 95–100, November 1997.

[26] Pizurica A., Wink A.M., Vansteenkiste E., Philips W. and Jos B.T.M. Roerdink.,

“A review of wavelet denoising in MRI and ultrasound brain imaging,” Current

Medical Imaging Reviews, in press, 2005.

[27] Zaroubi S. and Goelman G., “Complex denoising of MR data via wavelet analysis:

application for functional MRI,” Mag Reson Imaging, vol. 18, no. 1, pp. 59-68,

Jan 2000.



79

VITA

Ravindra Garach was born on November 24, 1981 in Rajkot, India. He attended

M.K. High School, Gujarat from 1997 to 1999. In June of 2003, he received his

B.E. degree in Electronics and Communications Engineering from L.D. College of

Engineering, Gujarat University, India. Since then he has been pursuing his M.S.

in Electrical Engineering at Texas A&M University. After completing his M.S., he

intends to work in the exciting field of MRI and make further contributions to MRI

research.

The author can be contacted at his permanent address or email given below:

House Name: ‘Param Anand’

1/9A Ganesh Park,

Nr. Chandan Park,

Raiya Road,

Rajkot-360005

ravi.garach@gmail.com


