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ABSTRACT

Identification and Compensation of Friction for a Dual Stage Positioning System. (August

2004)

Satish Thimmalapura, B.E., Bangalore University, India

Co–Chairs of Advisory Committee: Dr. Craig Smith
Dr. Reza Langari

Motion control systems are usually designed to track trajectories and/or regulate about

a desired point. Most of the other objectives, like minimizing the tracking time or mini-

mizing the energy expended, are secondary which quantify the above described objectives.

The control problem in hard disk drives is tracking and seeking the desired tracks. Re-

cent increase in the storage capacity demands higher accuracy of the read/write head. Dual

stage actuators as compared to conventional single actuator increases the accuracy of the

read/write head in hard disk drives. A scaled up version of the dual stage actuator is con-

sidered as the test bed for this thesis. Friction is present in all electromechanical systems.

This thesis deals with modelling of the dual stage actuator test bed. A linear model

predicts the behavior of the fine stage. Friction is significant in the coarse stage. Consid-

erable time has been spent to model the coarse stage as a friction based model. Initially,

static friction models were considered to model the friction. Dynamic models, which de-

scribe friction better when crossing zero velocity were considered. By analyzing several

experimental data it was concluded that the friction was dependent on position and veloc-

ity as compared to conventional friction models which are dependent on the direction of

motion. Static and Coulomb friction were modelled as functions of velocity and position.

This model was able to predict the behavior of the coarse stage satisfactorily for various
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initial conditions. A friction compensation scheme based on the modelled friction is used

to linearize the system based on feedback linearization techniques.
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CHAPTER I

INTRODUCTION

Motion control subsystems are critical components in many electromechanical systems

(automobiles, spacecrafts, disk drives, robotics). Typical control objectives are trajectory

tracking and/or regulation about a desired point or position. Secondary objectives for the

control system might be minimizing the tracking time, optimizing the energy expended for

tracking or regulating, etc. In this thesis, a dual stage positioning system is considered

to consist of a fine actuator and a coarse actuator. The two actuators work together in

trajectory tracking and/or regulating about a desired position. Dual stage actuators have

been introduced to improve the servo performance in disk drive control systems. As a

result of the dual stage actuator implementation, areal density (tracks per inch) of hard disk

drives has been improved. This increases the storage capacity of hard disk drive for the

same given area. A dual stage actuator with friction in the coarse stage is considered for

this thesis.

Backlash in gears, actuator limits, control signal saturation, exogenous inputs, etc may

affect the behavior of electromechanical systems. Mechanical friction has a pronounced

effect on the system behavior when controlling systems at low velocities and/or systems

which are changing directions. Friction compensation refers to cancelling the effect of

friction through some control action.

Friction compensation can be achieved based on the approximate model of friction.

A mathematical model of a system is developed based on observations. The model is

considered to be useful if it can predict the system behavior. System identification consists

of experimentally collecting system response to a particular input, choosing a structure for

The journal model is IEEE Transactions on Automatic Control.
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the system and then determining the parameters of the model based on the structure chosen.

Building an accurate model of the system and the friction will allow one to use the control

signal aggressively to achieve the performance objectives.

This thesis deals with system identification and friction compensation for a dual stage

positioning system. The system under consideration is a test bed in the laboratory which

will be used for experimental studies. The objectives of this thesis are:

1) Modelling the dual stage actuator system.

1.1) Modelling the fine stage

1.2) Validating the fine stage model

1.3) Modelling friction for the coarse stage actuator.

1.4) Validating the model by comparing simulation and experiment.

2) Designing friction compensation for the coarse stage using the developed friction model.



3

CHAPTER II

BACKGROUND

This chapter gives insight into why dual stage positioning systems are being used in hard

disk drives. It also delves into the control problem associated with the dual stage posi-

tioning system. This chapter also talks about various kinds of friction, the development of

friction models over the years and the effect of friction on dynamical systems.

A. Hard Disk Drives and Dual Stage Actuators

Magnetic hard disk storage capacity has grown at a tremendous rate in the recent years.

The capacity of the hard disk drives (HDDs) has increased from around 2GB in 1996 to

around 60GB in 2004. The areal density of the HDDs has been increasing by around 60%

every year [5]. With increasing storage capacity, the track density i.e. number of tracks

per inch (TPI) and the bit density i.e. number of bits per inch (BPI) is also increasing.

With increased TPI and BPI, the position accuracy of the HDD recording head has to be

increased to read/write data on to the HDD.

The hard disk drive assembly is shown in Figure 1. Several disks are mounted on the

spindle motor. There is a recording head corresponding to each disk surface. The recording

head at the tip of the carriage extending from the voice coil motor (VCM) reads/writes data

on to the disk. The recording head floats on the air bearing between the head and the disk.

The flexible printed circuit connects the wires from the head to motor control unit.

The VCM with it’s limited bandwidth is not able to achieve increased levels of accu-

racy. In order to achieve higher accuracies a second actuator with higher bandwidth is used

in conjunction with the VCM. The second actuator is mounted at the tip of the carriage.

The recording head is to be mounted on the second actuator. Piezoelectric, electromagnetic

and electrostatic actuators can be used as secondary actuator. In the dual stage system,
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Fig. 1. Hard disk drive assembly (Adapted from [1])

VCM is referred to as the coarse stage and the second actuator as the fine stage.

The dual actuator system is a dual input single output (DISO) system. This is a sub-

set of the multi-input/multi-output (MIMO) system. All the algorithms applicable to the

MIMO systems like the H2, H∞ and µ-synthesis can be applied. The above mentioned

methods often result in higher order controllers. In case of the Master-Slave method [6]

each stage is considered to be a single input single output (SISO) system with very little

interaction between the two SISO systems. The VCM stage does the coarse positioning

while the secondary actuator is used for fine positioning. In reality, there is cross dynam-

ics between the two stages. PQ method [6] takes into consideration the cross-dynamics

between the two systems while designing the controller.

B. Friction Models

Significant effort has gone into modelling friction. The earliest models described a static

relation between friction and velocity. A survey of methods to control systems with friction

has been conducted by Astrom [4]. Coulomb stated that once the body is in motion friction

force is dependent on the direction of velocity and is independent of the velocity magnitude
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[7]. Coulomb friction is defined as

F = Fcsgn(v) (2.1)

where F is the friction force, Fc > 0 is the Coulomb friction coefficient and v the

velocity. Systems also encounter viscous friction along with Coulomb friction. Viscous

friction varies linearly with the velocity. In equation 2.2, Fv is the coefficient of viscous

friction.

F = Fcsgn(v)+Fvv (2.2)

The above model does not describe the friction force when the velocity is zero, since

the signum function is not defined at zero. Stiction is the force resisting the movement

of the body, when the body is at rest. Friction model for a body with stiction, Coulomb

friction and viscous friction is defined as

F =























Ff i f v = 0 and |Ff | < Fs

Fssgn(Ff ) i f v = 0 and |Ff | > Fs

Fcsgn(v)+Fvv i f v 6= 0























(2.3)

where F is the friction force, F f is the forcing function, Fs is the stiction force. When

the magnitude of forcing function is less than the stiction force, the friction force is equal in

magnitude to the forcing function but opposing it. Stribeck proposed that friction force ini-

tially decreases as velocity increases from zero and then increases with increasing velocity

[8]. Stribeck velocity is the velocity at which friction force is least.
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Fig. 2. Static friction models

The various friction models are shown in the Figure 2. Figure 2a depicts a Coulomb

friction model. Figure 2b shows a Coulomb friction model along with viscous friction.

Figure 2c is a friction model with stiction and Coulomb friction. Figure 2d is the Stribeck

friction model.

Static friction models have shortcomings. Friction force computed with the static

friction models is discontinuous when the velocity crosses zero. This does not capture the

spring like effect due to friction. Also, these models are difficult to implement in simulation

due to the transition of friction at zero velocity. In order to overcome this problem, Karnopp

[9] proposed a model similar to (2.3). But the condition v = 0 is replaced by |v| < ε. This

is an improvement over static models. The simulation results vary depending on the choice

of ε. A better description of friction is necessary when crossing the zero velocity [2]. The

dependency of friction on the position and the acceleration is not considered. Dynamic

friction models are able to describe the friction phenomena better when crossing the zero

velocity and are also continuous.
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Dahl’s model described the friction using the stress-strain curve of the material [3].

The surface of solids have microscopic irregularities called as asperities which can be

thought of as bristles. Friction between the two surfaces is considered due to interac-

tion between the bristles. Figure 3 shows the interaction between the bristles of the two

surfaces. The lower surface, for simplicity sake, is considered to be rigid [2]. The bristles

undergo elastic deformation in the stiction region. The force applied is not sufficient for

the bristles to deflect completely. When the force applied overcomes stiction, the bristles

undergo plastic deformation and bristles deflect permanently. The transition from elastic

contact to sliding occurs when the applied force overcomes stiction [10]. According to

Dahl, Coulomb friction is related to the interface bond rupture stress between the two sur-

faces in contact and stiction is related to the ultimate stress of the interface bond. Stiction

and Coulomb friction at the interface is related to the elastic and plastic deformation of

the asperities respectively. Figure 4 shows the stress-strain curve for a solid material. The

region of ultimate stress corresponds to stiction and the ”tacky region” where the rupture

occurs corresponds to Coulomb friction. A graphical description of the Dahl model is

shown in figure 5. The stress-strain curve hass been transformed into a force-displacement

curve with force being analogous to the stress and displacement to strain [11]. Friction is

considered to be a function of position. Since friction is direction dependent it is a function

of both velocity and position. Dahl model can be considered to be a Coulomb friction with

a lag in the change of friction force when the direction of motion is changed [2].

Dahl’s model is given by

dF
dx

= σ(1−
F
Fs

sgn(v))α (2.4)

dF
dt

=
dF
dx

dx
dt

= σ(1−
F
Fs

sgn(v))α v (2.5)
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Fig. 3. Interaction between the bristles of two surfaces (Adapted from [2])

Fig. 4. Stress-strain curve (Adapted from [3])
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Fig. 5. Dahl model-friction vs position (Adapted from [4])

where F is the friction force, x is the displacement, σ is the stiffness coefficient, Fs is

the Coulomb friction force and α determines the shape of the stress-strain curve. The value

of α is typically assumed to be 1. A sharper stress-strain curve results, when a higher value

is assumed for α [4]. Bliman and Sorine incorporated Stribeck effect into the Dahl model

[2]. The time variable in the Dahl model was replaced by the space variable

s =
∫ t

0
|v(τ)|dτ (2.6)

The model is given by
dF
ds

= −σ0
F
Fc

+σ0sgn(v) (2.7)

The LuGre model [2] is also an extension of Dahl’s model. The friction force is

considered to be produced by the spring like behavior of the bristles/asperities. If the

applied force is sufficiently large the bristles deflect enough for the slip to occur [12]. It is

given by
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dz
dt

= v−σ0
|v|

g(v)
z (2.8)

F = σ0z+σ1
dz
dt

+σ2v (2.9)

where z denotes the average deflection of the bristles, v the relative velocity between

the two surfaces, σ0 is the stiffness, σ1 is the damping coefficient and σ2v accounts for

the viscous friction. Function g(v) is positive and depends on factors such as material

properties, lubrication, temperature, etc.

C. Effect of Friction on Dynamic Systems

Friction plays an important role in the performance of dynamic systems. The system per-

formance is greatly influenced by friction, more so near zero velocity.

The stick-slip motion of a dynamic system is attributed to stiction and Coulomb fric-

tion. In case of the stick-slip motion the system alternates between being stationary and

moving. The system is stationary when the forcing function is unable to overcome stiction.

The system starts slipping once the forcing function is able to overcome stiction. Coulomb

friction resists motion during slipping. This motion is akin to the jerky motion of a mass

with a spring attached to it. The mass starts moving when it overcomes the spring force

and stops momentarily when the spring is compressed. The stick-slip phenomena does not

occur if the forcing function is sufficiently larger than stiction force. Figure 6 depicts stick

slip motion of a mass subjected to a step input. The step input alternates between 1 Volt

and 2 Volt. At lower voltage the mass is unable to overcome stiction force. Sticking phe-

nomena is observed when lower voltage is applied and the mass slips when higher voltage

is applied.

Hysteresis occurs due to friction lag in motion control systems. Hysteresis can also
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Fig. 6. Stick slip motion of a mass subjected to the above input

be interpreted as system behavior being history dependent. In the Dahl model shown in

Figure 5, friction is a function of both position and velocity. In Figure 5, arrows indicate

the direction in which the particular segment is active. The direction is directly related to

the sign of the velocity. Thus, Dahl model is a function of position and velocity. During the

reversal hysteresis is more pronounced since friction force assists motion for a brief period

of time.

Friction is an undesirable but an unavoidable phenomena in dynamic systems. Several

friction compensation techniques have been developed over the years which try to negate

the effects of friction.

Dither is one of the proposed ideas for friction compensation. A fast and small os-
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Nonlinearity

d

+
 u         + y

Fig. 7. Schematic of the application of dither signal

cillating motion between bodies in contact eliminates the effect of friction between them

and makes the mean effective force zero between the surfaces [13]. The principle of dither

being a suitable high frequency signal to the input of the nonlinearity smoothes the non-

linearity [14]. Figure 7 shows a schematic of the application of dither. A high frequency

signal, d is added to the input signal, u so that the output, y is linear as regards to the input,

u. Dither can be introduced mechanically or electronically. Friction compensation can also

be achieved by acceleration feedback. By closing the feedback loop around the mass it is

possible to obtain a high gain loop that controls the acceleration of the mass directly [15].

This technique requires accelerometer. Furthermore, acceleration feedback in conjunction

with high gain might destabilize the system.

In case of model based friction compensation, a friction observer is used to estimate

the friction in the system [4]. The schematic of a model based friction compensation is

shown in Figure 8. The friction observer estimates the friction based on the velocity and

position measurements. Additional force equivalent to the estimated friction accounts for

friction in the system. Friction model has to be determined beforehand to use this tech-

nique, i.e. the model has to be determined offline.

Model based friction compensation is an example of feedback linearization. The cen-

tral idea of the approach is to algebraically transform a nonlinear system dynamics into

a (fully or partially) linear one, so that linear control techniques can be applied [16]. In

Figure 8, the loop consisting of friction compensator represents feedback linearization.
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Fig. 8. Model based friction compensation scheme

Feedback linearization does not guarantee robustness in the face of parameter uncertainty

or disturbances which have not been modelled.

D. System Identification and Modelling

System identification involves identifying the parameters of the system based on certain

available information. Usually, the available information is the input/output data set. Sys-

tem identification, in the purview of this thesis, refers to building a mathematical model of

the system which satisfactorily predicts the behavior of the system. The three basic entities

in system identification are

1. Recording data: Various experiments are to be conducted to obtain a rich input/output

data. A rich set of input/output data facilitates modelling of the system for a wide range of

conditions. Input signals have to be chosen so as to extract certain information about the

system.

2. Model selection and evaluation: Once rich set of input/ouput data is obtained, the next
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step involves choosing a model structure based on certain initial assumptions. The un-

known parameters of the chosen model have to be evaluated. In certain cases, standard

analysis tools are used to evaluate the model, without choosing any model structure. In

such cases, the tools are black boxes as the predict the model based on the input/output

data.

3. Validation: The final step of system identification involves validation of the model eval-

uated in the above step. The model is tested for certain performance criteria and also its

behavior is compared with that of the system. Model would be useful if it is able to predict

the system behavior with certain accuracy. In case the model fails to predict the system

behavior, step 1 and 2 have to be repeated until the model is able to predict the system

behavior within acceptable limits.

Parametric identification involves estimation of the parameters for a given model struc-

ture. It involves finding the parameters (by numerical search) that minimizes the error be-

tween the model output and the measured output. In case of non-parametric identification,

a model is predicted based on the input/output data without necessarily using a structured

model.
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CHAPTER III

EXPERIMENTAL SETUP

This chapter explains the dual stage actuator test bed in the laboratory. The dual stage

actuator test bed in the laboratory consists of a Voice Coil Motor (VCM) mounted on the

platform of a slider. The VCM was taken out of a old hard disk drive. The slider is made by

Macron Dynamics, Inc. Slider has a travel of 150mm/rev. The overall range of the slider is

0.5m. The slider moves along the rails and is driven by a belt-pulley drive. The dual stage

actuator setup is shown in Figure 9.

An arm extends from the VCM, supporting the readhead, which is a part of the linear

optical encoder. The linear optical encoder is made by Renishaw. The encoder consists of

a readhead, a scale and a interface unit. The readhead is mounted on the tip of the arm.

The scale, which is a thin flexible gold plated steel strip, is mounted parallel to the slider.

For accurate sensing the gap between the readhead and the scale should be 0.7mm-0.9mm.

The output of the interface unit, connected to the readhead by a cable, gives the position

information. The linear encoder has a least count of 0.5µm.

The linear range of the VCM arm is +/- 2.5mm. When the motion is imparted to the

slider, the arm should remain stationary and centered. In order to keep the arm centered,

springs are attached on either side of the arm. Screws are attached to the other end of the

springs, using which tension in the springs can be adjusted. There is a set screw on either

side of the arm which restricts the arm to operate in the linear range. The VCM along with

the arm, sensor, spring-screw attachment constitute the fine stage. The slider along with

the belt and pulley form the coarse stage. The motion of the slider is restricted on either

ends using contact limit switches.

The fine stage is driven by a servoamplifier, while the coarse stage is driven by a

servomotor which in turn is powered by a servodrive. The servomotor and the servodrive
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Fig. 9. Dual stage actuator test bed

are from Pacific Scientific and the servoamplifier is from Advanced Motion Controls. The

schematic of the dual stage test bed setup is shown in Figure 10. SIMULINK in MATLAB

is used for building the models. dSPACE interfaces the Real Time Workshop (RTW) in

SIMULINK with the test bed. The whole range of travel (0.5m) of the slider cannot be

used since this results in slider hitting the ends. Contact limit switches resist the motion of

the slider at either ends. The slider has gradations marked on its side for a span of 270mm.

This is the range in which the slider is going to be operated in most cases. The gradations

help in determining the absolute position since the position detected by the sensor is relative

to the initial(starting) position of the slider.
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dSPACE is an extremely powerful package designed for high-speed real-time simula-

tions. Both its hardware and software components are easy to install and ready to perform

from simple to complex and multivariable tasks. The hardware consists of a DSP Con-

troller Board based on Texas Instruments TMS320C31 floating-point processor built as a

standard PC/AT card that can be plugged into an ISA PC bus. The DS1102 is a stand-alone

controller board with various I/O units:

• 4 channels for A/D and D/A conversion,

• 10 digital I/O,

• 6 independent channels for PWM generation,

• one incremental encoder interface

• one hardware interrupt.

The dSPACE software include:

• CONTROLDESK, which is a graphical user interface managing the dSPACE board.

It provides the functions for loading, starting and stopping real-time applications on

the board.

• Real-Time Library (RTLib 1102), which includes all functions needed to program

the DS1102.
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Fig. 10. Block diagram of the dual stage positioning test bed
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CHAPTER IV

MODELLING

A. VCM Model (Fine Stage)

Input/Output data sets were collected for the VCM, so as to model the fine stage. Sinusoidal

inputs were used for the fine stage, since frequency response tools were used to identify the

fine stage. System identification toolbox in MATLAB was used to find the input/output

model for the fine stage. The prediction error method was used to determine the model.

The actual output and the simulated model output were compared. Figure 11 shows

the simulated and actual output for a normally distributed random input signal with a zero

mean, variance of 0.05 and a zero initial seed. There is an offset between the simulated

output and the actual output. When the response of the model and the fine stage were com-

pared for other classes of input, the offset still existed. This can be attributed to modelling

errors and also to the fact that the position sensed is not with respect to the absolute index

but relative to the starting position. Identified transfer function for the model is

Y (s)
U(s)

=
1.4s2 −4193s−9.577X105

s3 +40.78s2 +4015s+2.589X104 (4.1)

where Y(s) represents the output in millimeters and U(s) represents the input in Volts.

B. Coarse Stage

This section describes the modelling of the coarse stage of the dual stage actuator system.

One of the main issues in modelling the coarse stage is identification of friction. Various

approaches were used for modelling the coarse stage and identifying friction. The follow-

ing assumptions were made in modelling the coarse stage:

1) Servodirve in current mode acts like a gain.
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Fig. 11. Comparison of the actual output and the model output for the fine stage

2) Belt stiffness is neglected

3) No back lash in the gears

Several models were considered for identifying friction. Friction models can be clas-

sified as memoryless friction model and friction model with memory. The friction models

considered in this thesis for modelling can be broadly listed as

1) Coulomb friction model.

2) Coulomb friction and stiction model.

3) Coulomb friction model dependent on the position of the slider.

4) Dynamic model with memory (Dahl model).

5) Coulomb friction and Stiction are position and velocity dependent and symmetric with
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respect to direction.

6) Friction as a function of position and velocity and also asymmetric with respect to

position.

1. MATLAB Toolbox

The first step in modelling was to use the system identification toolbox in MATLAB. Pre-

diction error method in MATLAB uses input/output data to determine parameters of a linear

model. This method was used to model the fine stage. Neither the structure nor the order

of the system needs to be specified. Zero mean sinusoidal and other periodic input signals

were used to generate the Input/Output data. The linear model determined by the toolbox

did not satisfactorily predict the behavior of the slider.

2. Parametric Modelling

The next step was to try estimating the parameters of the model, assuming a structure. The

parameters were calculated using the least squares algorithm. The following structure was

used to determine the parameters.

m
d2x
dt2 + c

dx
dt

+Fcsgn(
dx
dt

) = Fapplied (4.2)

where m is the mass of the slider, c is the damping coefficient and Fc is the Coulomb

friction constant and x the displacement. Fapplied represents the lumped forcing function

acting on the slider. This model did not take into account the effect of stiction. The dynam-

ics of the servodrive and the servomotor were neglected. The lumped forcing function was

calculated assuming the servomotor actuator, driving the slider, along with the servodrive,

as a gain.

The unknown parameters are mass of the slider, damping coefficient and Coulomb
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friction coefficient. The known information from the experiments is the slider position and

the force at each time instance. The velocity and the acceleration are estimated by filtering

and numerically differentiating the position. The calculated acceleration and velocity are

denoted by â and v̂ respectively. The following set of equations represent the differential

equation.





















ˆa(t1) ˆv(t1) sgn(
ˆv(t1))

ˆa(t2) ˆv(t2) sgn(
ˆv(t2))

...
...

...

ˆa(tn) ˆv(tn) sgn(
ˆv(tn))

































m

c

Fc













=



















Fapplied(t1)

Fapplied(t2)
...

Fapplied(tn)



















(4.3)

The unknowns (m, c, Fc) which achieve the best possible fit to the above set of equa-

tions was determined. Mass (m) was estimated to be 3.4Kg, Coulomb friction coefficient

(Fc) to be 4.5N and the damping coefficient(c) to be 45Ns/m. The above structure was not

able to capture the behavior of the system satisfactorily in simulation. The forcing function

used to gather data was sinusoidal waves. Figure 12 shows the comparison of the actual

output and the simulated output, at steady state, for a sinusoidal input of amplitude 3V and

4Hz frequency. The amplitude of the response is comparable. This comparison is for a

particular initial condition of the slider. Comparing the responses for a more generic signal

will help validate the model better. Figure 13 shows the actual output vs the simulated

output for a zero mean, band limited, white, Gaussian noise. The amplitude of response in

simulation is much larger than that of the actual system.

While comparing the simulation response with the actual output, there is a phase dif-

ference between the two. This is due to the fact that the simulation and the experiment

were not conducted simultaneously. While conducting the experiments, the data capture

(and also the motion of the slider) does not begin at T = 0 since data capture settings have

to be configured before capturing the data. This leads to input signal being non-zero when
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Fig. 12. Comparison of the actual output and the model output, at steady state, for the
coarse stage considering Coulomb friction

the data capture (and motion of the slider) starts.

3. Coulomb Friction and Stiction Model

The above structure tried to explain the non-linearity in the system by assuming Coulomb

friction. It did not consider the fact that the system also has to overcome stiction when

starting from rest. This model tries to capture stiction behavior of the system. In order

to determine stiction, a constant voltage signal, which translates to a constant force, was



24

0 1 2 3 4 5 6 7 8 9 10
−50

−40

−30

−20

−10

0

10

20

30

Time in seconds

P
os

iti
on

 in
 m

m

Actual
Simulation

Fig. 13. Comparison of the actual output and the model output, input being zero mean,
white Gaussian noise, for the coarse stage considering Coulomb friction

applied on the slider. The slider does not move until a threshold voltage, which overcomes

stiction, is applied. The voltage( correspondingly current too) was increased gradually

till the slider started moving. The current required to move the slider is around 1A. The

Coulomb friction coefficient is assumed to be half of the magnitude of stiction. Figure 14

denotes the comparison between the model output and the actual output at steady state.

Figure 15 depicts the actual output vs the simulated output for a zero mean, band limited,

white, Gaussian noise. The model output qualitatively matches the actual output better as

compared to the previous model.

While collecting sets of input/ouput data for further analysis several phenomena were

observed. They were:
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Fig. 14. Comparison of the actual output and the model output, at steady state, for the
coarse stage considering Coulomb friction and stiction

1) In the open loop, the slider drifts from its mean position towards the center when ex-

cited with zero mean periodic signals.

2) Slider moves by a certain magnitude when a constant amplitude signal is applied. When

the input signal is reversed, the slider moves by a larger magnitude.

The Coulomb and stiction model had shortcomings in predicting the drift of the system

in open loop, when excited with zero mean, periodic signals. The slider was excited with
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Fig. 15. Comparison of the actual output and the model output with zero mean, white Gaus-
sian noise as the input for the coarse stage, considering Coulomb friction and stic-
tion

sinusoidal input signals of varying frequency in order to capture the frequency response

behavior and the bandwidth of the slider. When operated in open loop, with zero-mean

sinusoidal input signal, the slider exhibited tendency to drift towards the center irrespective

of the initial position. Figure 16 shows the drift of the slider in the open loop for a zero

mean sinusoidal input signal, when the initial position was at the left end (10mm) of the

slider. Figure 17 shows the drift of the slider in the open loop for a zero mean sinusoidal

input signal, when the initial position was at the right end (205mm) of the slider.
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Fig. 18. Parabolic friction map

4. Position Dependent Friction Model

One of the observations made while trying to model friction was that the force required

to move the slider from rest at different locations along the slider, varies. This emphasizes

that the resistance to motion varies along the length of the slider. Open loop response of the

slider gives an insight into the behavior of the system. This phenomena was assumed to be

due to varying Coulomb friction along the length of the slider. To test the hypothesis, a po-

sition dependent Coulomb friction map was assumed. The Coulomb friction was assumed

to be lowest at the center and largest at the ends. The value of Coulomb friction at the ends

and at the center was assumed based on the input signal required to move the system from

rest at those locations. The parabolic friction map is shown in Figure 18. Karnopp model

[9] was used to describe the stiction at zero-crossing.

Using the above friction map, the open loop simulation results were verified against
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Fig. 19. Comparison of the actual and model output for a sinusoidal signal considering
Coulomb friction to be parabolic

the experimental data. Figure 19 shows the response of the system and the model for a

sinusoidal input signal. The drift in the simulation is opposite in direction to that of the

drift occurring in the system. An inverse parabolic function map (i.e. friction being largest

at the center and lowest at the ends) was considered since the drift in the model was in the

opposite direction. The open loop simulation results for the above case too did not capture

the correct nature of the drift of the slider.

5. Model Considering the Drive Train

Until now all the models considered did not take into account the dynamics of the motor,

servodrive or the belt drive system. Motor, servodrive and belt drive systems were treated
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as a simple gain. The behavior of the slider is influenced by the motor dynamics, stretching

of the belt, etc. The influence of the motor dynamics and other phenomena were considered

to be negligible. The new model takes into account all these elements. The Bond graph

methodology was used for modelling the complete system. This model included the belt

stiffness and the dynamics of the motor and the gears. The state space model is given by

the below set of equations.













θ̈

Ṫ

ẍ






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







S f (4.4)

where θ is the angular displacement of the rotor, T is the tension in the belt, x is the

displacement of the slider, Rb is the bearing friction, Jm is the inertia of the motor, Ig is the

inertia of the gear, r is the mean radius of the pulley, Kb is the belt stiffness, m is the mass

of the slider, Cv is the damping coefficient of the slider, Kt is the torque constant and S f is

the forcing function.

Nominal values were assumed for mass (m) and damping coefficient (Cv) of the slider

and the belt stiffness (Kb). The values of bearing friction (Rb), motor inertia (Jm), gear

inertia (Ig), mean radius of the pulley (r) and torque constant (Kt) were noted from the

specifications. Friction components are included in the first and the third equation. Friction

is assumed to be present both in the slider and the motor. Figure 20 shows the actual output

and the simulation output for a zero mean, sinusoidal input signal. The model is not able

to predict the drift in the system. In the above model, the friction force is not a function of

position. Friction is proved to be a function of position in the later part of the thesis. Also,

at zero crossing the friction force is assumed to be a linear function of velocity with a very

high slope.
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Fig. 20. Comparison of the simulation and the actual output for a zero mean sinusoidal
input signal considering drive train model

6. Dynamic Model with Memory

Memoryless friction models have shortcomings. Friction force computed with the memo-

ryless friction models is discontinuous when the velocity crosses zero. A better description

of friction is necessary when crossing the zero velocity. The dependency of friction on the

position and the acceleration is not considered. Dynamic friction models are able to better

describe the friction phenomena when crossing the zero velocity and are also continuous.

Dahl model is one of the dynamic models.

Dahl’s model is given by
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dF
dx

= σ(1−
F
Fs

sgn(v))α (4.5)

dF
dt

=
dF
dx

dx
dt

= σ(1−
F
Fs

sgn(v))α v (4.6)

where F is the friction force, x is the displacement, σ is the stiffness coefficient, Fs is

the Coulomb friction force and α determines the shape of the stress-strain curve. The value

of α is typically assumed to be 1. A sharper stress-strain curve results, when a higher value

is assumed for α .

Simulations were run assuming the friction model to be Dahl model. The response

of the simulations to sinusoidal input signals was compared with the response of the slider

to the same signals. The simulated output didn’t match the experimental output qualita-

tively. Figure 21 shows the comparison of the actual output and the simulated output for

a sinusoidal input signal. The amplitude of response in simulation is less than the actual

magnitude. The simulated response does not show any drift characteristics. In case of Dahl

model, as shown in Figure 5, the friction force is direction dependent. As noted earlier,

Dahl model is considered to be a Coulomb friction model which captures the hysteretic

behavior while changing the direction of motion [2]. Friction in the coarse stage of the test

bed under consideration is asymmetric with respect to position, which is not captured by

the Dahl model.

7. Estimation of the Linear Parameters

The structure considered to model the coarse stage is shown in the equation below.

m
d2x
dt2 + c

dx
dt

+F = Fapplied (4.7)

where m is the mass of the system, c is the damping coefficient, F represents the non-
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Fig. 21. Comparison of the simulation and the actual output for a zero mean, sinusoidal
input signal, considering Dahl model

linear friction force and Fapplied is the input signal. The linear parameters in the above

equation are m and c. The linear parameters of the system can be estimated without esti-

mating the friction. If a square wave of a magnitude much greater than the friction force is

chosen to excite the system, system behavior is close to that of a linear system [17]. The

system equation can be approximated by

m
d2x
dt2 + c

dx
dt

' Fapplied (4.8)

This can also be written in the Laplace domain as

ms2X(s)+ csX(s) ' Fapplied (4.9)
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By using a stable filter λ(s) the above equation (4.9) becomes

ms2 X(s)
λ(s)

+ cs
X(s)
λ(s)

'
Fapplied

λ(s)
(4.10)

(
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(4.12)

where u1 = s2X(s)/λ(s), u2 = sX(s)/λ(s) and Ff ilter = Fapplied/λ(s). u1, u2 and Ff ilter

are known. The unknowns (m, c) which achieve the best possible fit for the above set of

equations was determined. This gives the estimate of the linear parameters. In order to

choose the magnitude of the signal, the system was excited with a set of square waves

of different magnitudes but same frequency. For a linear system, the gain of the system

remains constant at any particular frequency. Therefore the ratio of the outputs should be

equal to the ratio of inputs. The set of square waves which led to the closest match of

the ratio of inputs to the ratio of outputs was used to estimate the linear parameters of the

system. For the set of square waves with magnitude 6V and 6.5V and frequency 2Hz the

ratio of outputs and the ratio of inputs was 0.9231 and 0.9333, respectively. Using the

data captured with this set of square waves in equation (4.12), the value of the lumped

mass(m) of the coarse stage was determined to be 3.5Kg and the damping coefficient(c) to

be 30Ns/m.
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C. Summary of experiments

As mentioned earlier, data collection is an important aspect of identification of friction. A

rich set of input/output data encompassing various frequencies of input signal along with

the response of the system at various locations gives a good idea about the resistive forces.

Various experiments were designed to collect rich sets of input/output data. Each of these

experiments tried to capture a particular behavior of the slider.

1. Random Triangular Signal

In order to develop a position dependent friction model the input/output data had to be

collected for many different coarse actuator positions. To drive the system back and forth

along the axis, an intermittently non-zero input signal was used. The non-zero segment of

the input signal was a triangular wave with random amplitude and random period. Direction

of the forced motion changed once the slider touched the limit switches. Over a period of

time rich sets of input/output data was collected. The system started from rest for every

wave generated and had to overcome stiction in every cycle. An example of the triangular

random input signal is shown in Figure 22.

2. Hysteresis/Asymmetry

The slider has a limited range of motion. The operating range of the slider spans 270mm.

The forcing function changes its sign once the slider reaches the extreme ends. The change

in sign is achieved by setting software limits for the range of motion. In Figure 23, the

slider is excited with a constant amplitude (2.5V) triangular wave with a period of 3s. The

forcing function changes sign once the slider reaches 270mm or 0mm. Once the forcing

function changes direction, the magnitude of displacement is larger as compared to when

the slider was moving in the same direction. This difference in magnitude of displacement
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Fig. 22. Random triangular input signal

for a constant amplitude signal is due to hysteresis.

An experiment was designed to test the slider for hysteretic/drifting behavior. The

drifting was attributed to the asymmetrical, direction dependent, friction. The experiment

recorded the displacement of the slider from a fixed test point. The slider was made to

reach the test point from either side of the test point. After reaching the test point the slider

was made to move in either direction. The four test cases are

• The slider would reach the test point from the left side and continue moving in the same

direction.

• The slider would reach the test point from the left side and move in the opposite direc-
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Fig. 23. Displacement of the slider with the forcing function

tion.

• The slider would reach the test point from the right side and continue moving in the same

direction.

• The slider would reach the test point from the right side and move in the opposite direc-

tion.

The experiment was conducted at two test points roughly at quarter the length from the

ends.

Figure 24 depicts the displacement of the slider for various forcing conditions. Irre-

spective of how the slider reached the test point, the displacement was larger when moving
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towards center. Thus, it displays a predominant asymmetric behavior as compared to hys-

teretic behavior. When the above experiment was repeated with test point being on the

other side of the center, the displacement was still larger when slider moved towards the

center. This reiterates the drifting behavior of the slider.

3. Velocity Limit Experiment

Another experiment forced the slider to move between certain velocity limits. When the

slider reached a certain velocity, a lower voltage was applied to slow down the slider and

when the slider slowed down to a certain velocity, a higher voltage was applied to force it

move faster. The central idea was to force the system to move at constant velocity by bring-

ing the limits closer. Maintaining a constant velocity would eliminate the acceleration term

from the system equation (4.7). Thus, knowing the input signal, velocity and coefficient of

damping, friction force can be calculated. Figure 25 is an example of the velocity based

experiment. The upper limit is set at 40mm/s and the lower limit at 10mm/s. This made the

slider accelerate and decelerate, alternatingly. This could not be implemented to maintain

a constant velocity since tighter limits could not be imposed due to phase lag in estimation

of velocity.

D. Position and Direction Dependent Models

The models considered until this point were either static friction models or dynamic model

which incorporated position dependency. A friction model which is dependent on posi-

tion and direction has not been considered. The drift of the slider, towards the center, in

open loop for zero mean periodic signals could be attributed to friction force which is di-

rection and position dependent. Friction force is assumed to be decreasing towards the

center. Based on this assumption a position and direction dependent friction model was
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constructed. Figure 26 shows stiction force as a function of position and direction. The

arrows indicate the direction in which the particular segment is considered. If the slider

is moving from left end towards the center friction force is considered to be lesser, than

when it is moving in the opposite direction. When the slider crosses the mid point and tries

to move away from the center friction force increases. The variation of Coulomb friction

force with respect to position and direction is assumed to be similar to the variation of stic-

tion force but lesser in magnitude. This assumption is based on the description of Coulomb

friction in static friction models.

The simulation output and the actual output were compared for a set of initial con-

ditions. The input signal was a zero mean sinusoidal signal of amplitude 2.1V and 1Hz
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frequency. The figure 27 shows the simulated response and the response of the coarse stage

to the above described input signal. The difference in the phase between the simulation

result and the actual output is due to the fact that the data capture of experiments do not

start at time T = 0 as explained at the start of this chapter. Author is more interested in

comparing the magnitude and the nature of response to input signals of equal magnitude.

The second part of Figure 27 shows the comparison of responses when the initial condi-

tion of the slider is 10mm. The third part of Figure 27 shows the comparison of responses

when the initial condition of the slider is 210mm. In both the cases drift predicted by the

model, although similar to drift of the slider, occurs faster in simulation as compared to the

response of the actual system. This is more true when the slider is drifting from the right

end towards the center. Although drift predicted by this model does not match drift of the

slider, the promising thing to be noted here is that the model is able to predict drift of the

slider in open loop when subjected to zero mean periodic signals.

In the stiction model mentioned above, input signal required to move the system from

rest was experimentally determined at a few salient locations (at the ends and at the cen-

ter). The profile of stiction in between regions was extrapolated assuming the variation of

stiction along position to be a smooth higher order function. Figure 28 shows the response

of the slider to a periodic input signal which is 4.75V for 0.05s and zero for the next 0.75s.

The slider traverses the entire range considered from 0-270mm and back. The slider tra-

verses by varying amplitude for the above applied constant signal. This suggests that force

opposing the motion varies along the length of the slider. In order to model friction better

as compared to the previous models, the variation of stiction force along the length of the

slider has to be better captured. This would also give an insight into the nature of opposing

force along the slider.

An experiment was designed to capture the force required to move the slider from rest

along the length of the slider. Stiction force would be captured as a function of position.
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Fig. 27. Comparing the response of the above described model with the actual response

The experiment was designed to capture the stiction behavior for every 10mm. In order

to capture stiction behavior, voltage of the input signal was increased from an initial value

of 0.8V in steps on 0.1V until the slider moved by 10mm. Once the slider moved by

10mm or more, the input signal was reduced by a magnitude of 0.5V from the previously

recorded value. The input signal was increased again in steps of 0.1V until the slider

moved. The above process was repeated until the slider had traversed the entire range

of travel in both the directions. Repeatability was ensured by conducting the experiment

multiple times. The above experiment was automated. A similar kind of experiment has
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also been suggested in [18]

Figure 29 shows the data captured for the above described experiment for three trials.

Table I details the voltage required to move the slider from rest against position data. A

10th order polynomial was used to fit the experimental data detailing the force required to

overcome stiction along the length of the slider. Figure 30 shows stiction force profile as a

function of the position of the slider and also the direction of motion. The region around

the points where the two polynomials cross each other are stable regions , i.e the slider

does not drift in these regions when excited by a zero mean periodic signal. The two stable

points of interest occur at around 112mm and at around 215mm. The Coulomb friction

profile is assumed to follow stiction profile. The magnitude of Coulomb friction force is

considered to be less than the stiction force by a magnitude of 0.4V across the entire range.

1. Results

The simulation results of the above considered model are compared with the response of

the system. The responses were compared for various combination of input signals and ini-

tial conditions. The input signals considered were zero mean sinusoidal and square waves.

The various initial conditions considered were a) slider starting from 10mm b) slider start-

ing from 205mm c) slider starting from 230mm and d) slider starting from 120mm. Figure

31 shows the comparison of the open loop response of the above described model and the

system for a zero mean sinusoidal signal of amplitude 2.1V and frequency 1Hz. The ini-

tial condition of the slider is 10mm. Figure 32 shows the comparison of the open loop

response of the above described model and the system for a zero mean sinusoidal signal

of amplitude 2.1V and frequency 1Hz. The initial condition of the slider is 205mm. The

nature of drift of the slider in open loop for a zero mean periodic signal is well predicted

by the model. There is a mismatch on the amplitude scale between the model output and

the actual response. This could be attributed to error in the estimation of the parametric
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Table I. Experimental Data
Moving left to right Moving right to left

Position(mm) Input Signal(volts) Position(mm) Input Signal(volts)
0 0.83 0 2.05

10.5 0.86 8 1.96
12 1.04 15.5 1.82
20 1.4 18.5 1.64
31 1.85 26 1.58
40 1.6 36.5 1.73

45.5 1.37 46.5 1.82
52 1.76 57 1.79
59 1.79 68.5 1.73
70 1.88 76.5 2
82 1.6 87 1.91
89 1.61 97 1.7
92 1.62 98 1.55

100 1.64 107 1.55
101 1.82 115.5 1.67
108 1.79 126 1.7
110 1.85 128 1.4

121.5 1.7 136 1.28
128.5 1.61 146.5 1.31
130 1.82 157 1.58

131.5 1.97 168 1.4
140 2 179 1.4

141.5 2.03 188.5 1.67
150 1.76 197 1.94
161 1.67 207 1.82

169.5 1.85 217.5 1.76
180 2.09 227 2.03

191.5 1.83 237 2.06
202 1.87 239.5 1.63

212.5 1.7 247 1.73
220 1.91 257 1.46

228.5 1.6 267 1.46
234 1.33 270 1.43
241 1.64
250 1.64
252 1.88
258 1.82
270 1.78
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values of the model. Figure 33 shows the response of the model and the system for the

above described sinusoidal input signal while starting at 115mm and 250mm. The reason

the response to these initial conditions are shown together is because these are stable re-

gions, i.e the slider does not drift in the open loop when excited by a zero mean periodic

signal. Until now the model response has been compared to the actual system’s response

mainly for sinusoidal input signals. Sinusoidal signals capture the behavior of the system

for a particular frequency. Square wave input signal contains all multiple harmonics of its

fundamental frequency. Therefore, a square wave input would be helpful in evaluating the

model response for a range of frequencies which are multiple harmonics of the fundamental

frequency. Figure 34 shows the response of the model and the actual system when the in-

put signal is a square wave of amplitude 3V and frequency 2Hz. The two initial conditions

considered are 0mm and 215mm.

2. Friction Compensation

Friction compensation in its simplest form cancels the non-linearities due to friction. The

various friction compensation techniques have been discussed in Chapter II. Model based

friction compensation scheme has been considered for this thesis. This scheme is an ex-

ample of feedback linearization technique. The friction observer estimates friction at any

instant based on the position and velocity of the slider and the input signal to the system.

Friction compensation in this case is also a tool to measure the validity of the friction

model. In order to validate the friction model, the output of the system with friction com-

pensation scheme is compared with the output of the system for an input signal of equal

magnitude (but friction compensation being turned off). Also by comparing the system

output when using friction compensation scheme with the output of an equivalent linear

model in simulation. This would give an idea of how well the model is able to estimate

and cancel friction. Furthermore, linear control system design techniques can be applied to
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achieve various objectives.

Figure 35 shows the response of the slider when friction compensation scheme is ac-

tive and without friction compensation. The open loop, zero mean, sinusoidal input signal

of amplitude 0.75V and frequency 1Hz was used along with the friction compensation

scheme. The effective signal to the system (with friction compensation) was of amplitude

2.25V and frequency 1Hz. The system was excited with a 2.25V (1Hz) signal without any

friction compensation and same initial conditions. In this case, the slider drifts to the cen-

ter while in the former case, where friction compensation was active, the slider does not

drift. Thus, friction compensation scheme is able to cancel out the drift characteristics of

the slider.

Figure 36 shows the comparison of the system(slider) output (with friction compensa-

tion) with the response of an equivalent linear system in simulation. The equivalent linear

system in simulation is a second order system whose mass and coefficient of damping is

equal to the mass and coefficient of damping of the slider as determined by the earlier

mentioned experiment. The comparison gives an idea how well the friction compensation

scheme is able to linearize the system. The solid black line at the center denotes the posi-

tion of the slider when friction compensation was not active (the slider was stationary). the

input signal was a zero mean sinusoidal signal of amplitude 0.75V and frequency 1Hz. The

peak to peak amplitude of the system (with friction compensation) is around 54mm while

the peak to peak amplitude of the linear system in simulation is 46mm. Thus, the identified

friction model slightly over predicts the friction in the system. This is also evident when

the system output in open loop is compared with the model output in simulation (Figures

31, 32, 33, 34). The amplitude of the output in simulation is less than the amplitude of the

response of the system.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

The main objectives of this thesis was to model the fine and the coarse stage of the dual

stage actuator test bed in the lab and also implement simple friction compensation scheme

for the coarse stage. The above mentioned objectives have been met. These objectives per-

tained to the specific set up in the laboratory. The more generic objective was to formulate

a generic set of guidelines to identify friction in electromechanical systems. The major

emphasis of this thesis was to identify friction in the coarse stage.

Friction in real time systems is usually a complex phenomena. Although static friction

models are easy to implement in simulation, they do not necessarily capture the true be-

havior of friction in electromechanical systems. This fact has been reiterated in this thesis.

Friction more than often is not just a function of velocity. The friction in the system con-

sidered is a function of position and velocity. Additionally, the friction is also dependent

on the direction i.e, it is asymmetric with respect to the direction.

Based on the methodology followed and experiments conducted to identify friction for

the coarse stage of the test bed, a generic guideline is being proposed to identify friction in

electromechanical systems.

1) Initially, static friction models should be tried to model friction i.e, Coulomb friction

model, Coulomb and stiction model, Coulomb, stiction and viscous friction model.

2) Using square waves of higher amplitudes, the effect of friction can be made negligible.

The magnitude of the input signal depends on the system under consideration. Linear

parameters of the model can be identified using the above scheme.

3) Capture the system response in open loop for various class of input signals. This gives

an insight into the behavior of friction. For e.g, in this thesis the drift of the slider was

observed for zero mean periodic signals.
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4) Map stiction as a function of position by estimating force required to move the system,

in small steps, from rest over the entire range of operation. The step size of motion is to be

chosen based on the range of operation. Also, the magnitude of increase of force should

be chosen such that it is able to capture stiction behavior as a function of position. If the

magnitude is too large, stiction as a function of position would be too simple and if the

magnitude is too small, stiction as a function of position would be too complex.

5) Coulomb friction can be assumed to follow the stiction profile.

In order to develop a better model of friction, Coulomb friction as a function of posi-

tion can be determined independent of the stiction force. Coulomb friction as a function of

position can be determined by ensuring the system moves at a constant velocity along the

entire range of motion and by measuring the input signal required to maintain the constant

velocity as a function of position [18] [19]. The above scheme could not be effectively in

the laboratory due to noise in estimation of velocity (mainly due to numerical differentia-

tion and partly sensor noise).

Future work could be estimation of Coulomb friction independent of the stiction force

as described above. Various adaptive control schemes can be tried for friction compensation

rather than just the model based compensation scheme. In the current compensation scheme

no robustness is ensured. The compensation scheme was considered as a tool to evaluate

the model. The initial objective when this thesis was started was to design a dual stage

controller to ensure that the fine stage and the coarse stage work in conjunction.
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