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Abstract. Microcrystalline cellulose is an important derivative of cellulosic material obtained 
from wood and non-wood sources, and is used for pharmaceutical, food, cosmetics, and other 
industries. The aim of this study was to determine the effect of various hydrochloric acid 
concentrations on the characteristics of cellulose microcrystals isolated from terap wood 
(Artocarpus elasticus). The microcrystalline cellulose was hydrolyzed using hydrochloric acid, 
at concentrations of 1.5 N, 2.5 N, and 3.5 N for 15 minutes, and within a temperature range of 
100-105 oC. The samples were then analyzed for changes in color and functional groups with 
Fourier Transform Infrared spectroscopy (FTIR), while crystallinity index was evaluated 
through X-Ray Diffraction Analysis (XRD). The FTIR results showed similarity spectrum 
patterns between α-cellulose and microcrystalline cellulose, while X-Ray Diffraction confirmed 
the highest crystallinity index was from 2.5 N of cellulose I (69.395 %) and cellulose II (82.73 
%).  
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1. Introduction 

Cellulose is one of the biggest biopolymer in the world, with production rate of about 100 

billion ton per year (Hermawan, 2017). In addition, there have been wide applications in various 

industries, as seen with food, paint, and biopolymers (Naduparambath & Purushothaman, 2016). 

Cellulose can be hydrolyzed using acids to remove amorphous region and produce 

microcrystalline cellulose. Microcrystalline cellulose (MCC) is a white crystalline powder that is 

recognized as one of the widely used cellulose derivatives in cosmetics, food, pharmaceuticals, and 

filler industries. MCC is generally produced from cellulose by alkali treatment, although acid 
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hydrolysis method (Naduparambath & Purushothaman, 2016; Trache et al., 2016) is faster than 

other methods. Several studies have reported the results of acid hydrolysis method, such as from 

bagasse (Zulharmita et al., 2017) and palm oil fiber (Xiang et al., 2016) produce high crystallinity 

of MCC. The solution used in this process is hydrochloride acid (HCl), due to the low price and easy 

availability. The acid causes more reactive agent for removing amorphous part of cellulose 

compared to when HNO3 and H2SO4 are used (Nawangsari, 2019).  

Although cotton is the main source for the commercial production of MCC, other sources 

such as sago seed sheel, palm oil fiber, and bagasse have also been reported to produce MCC. The 

properties of MCC depend not only on the acid type, but also on the source where it is extracted 

from.  Terap wood (Artocarpus elasticus) is one of fast growing tree species that is naturally and 

abundantly distributed in the secondary forest of South Kalimantan, Indonesia (Istikowati et al., 

2014). To date, research attention has been mainly focused on physical, mechanical and 

anatomical characteristics of terap wood (Artocarpus elasticus) as a wood and no investigation has 

been carried out on terap wood (Artocarpus elasticus) as a cellulose source for advanced 

applications. From the previous research, the wood contains 78.0% holocellulose, 50.7% α-

cellulose, and 29.7% lignin (Istikowati et al., 2016). The high cellulose content is a potential source 

for MCC production.  Therefore, the main objective of this study is to evaluate the effect of HCl 

concentration on the properties of MCC produced through acid hydrolysis method. 

2. Material and Methods  

2.1. Materials 

Terap wood (Artocarpus elasticus Reinw. ex Blume) were collected from secondary forest in 

the Education Forest at Lambung Mangkurat University, Mandiangin, South Kalimantan, 

Indonesia. Hydrochloric acid, acetic acid, ethanol, sodium hydroxide, sodium chlorite were 

obtained from E. Merck, German, and used without further modification. 

2.2. Methods 

Terap wood (trunk part) were dried for 3 days, mashed to powder 40-82 mesh size and then 

dried in the oven at 100-105 oC until a constant weight was obtained. Holocellulose and α-cellulose 

components were isolated based on the ASTM D1107-96 and the ASTM D 1103-60 standards, 

respectively. MCC was obtained from the latter. A total of 0.5 grams α-cellulose was hydrolyzed 

using HCl 1.5; 2.5; and 3.5 N (12 mL) in beaker glasses, within a period of 15 minutes. After that, 

25 mL of cold water was added and stirred vigorously to stop the hydrolysis process, and then 

reserved for 1 night. The MCC obtained were then filtered, washed with distillated water to attain 

a neutral pH, and subsequently dried in the oven at 60 oC for 30 minutes. 

2.3. Characterization  

The MCC obtained was analyzed using colorimeter, Fourier Transform Infrared (FTIR), and 

X-Ray Diffraction Analysis (XRD). A total of 100 mg MCC was analyzed using colorimeter and the 

result was compared to the Avicel PH 102 standard, while the color was compared with the Ditjen 

POM 1979 standard. In addition, the sample pellet (2-5 mg) was combined with KBr (200-250 mg) 

and was measured with FTIR in the region of 4000-400 cm-1 wave numbers. The infrared spectra 

was used for estimation of the Total Crystallinity Index (TCI) (Nelson & O'Connor, 1964). MCC was 

also mashed into powder and was analyzed with XRD to determine the crystallinity index (Crl) 

from cellulose, based on the Segal formula (Segal et al., 1959). 
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3. Results and Discussion 

3.1. Holocellulose and α-Cellulose Isolation 

Terap (Artocarpus elasticus) is one of unutilized native tree species from South Kalimantan. 

The species is naturally distributed and found abundantly in the secondary forest in South 

Kalimantan, Indonesia (Istikowati et al. 2014). Fig. 1 shows the photograph of terap (Artocarpus 

elasticus) tree species. 

 

Figure 1. Photograph of terap tree (Artocarpus elasticus) 

 

Figure 2. FTIR spectrum of (a) holocellulose and (b) α-cellulose of terap wood (Artocarpus elasticus) 
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Holocellulose and α-cellulose of terap wood (Artocarpus elasticus) were analyzed with FTIR 

to determine the functional group present (Fig. 2), and different absorption patterns were 

observed in wave number with a shift because the absence of hemicellulose. For example, the area 

of 3400-2900 cm-1 is typical for stretching O-H group and C-H. Table 1 shows the holocellulose 

absorption at a wave number of 1512.19 cm-1, which features the stretching vibration of C=C, 

indicating lignin compounds. In addition, wave number vibration 1735.93 cm-1 also appeared 

because of the amorphous parts (Sunardi et al., 2018).  

Table 1. Holocellulose dan α-cellulose specific peaks of FTIR of terap wood (Artocarpus elasticus) 

Wave number (cm-1) 
Functional group 

Holocellulose α-cellulose 

3425.58 3448.72 

3410.15 

stretching O-H 

2924.09 2916.37 stretching C-H  

1735.93 - hemicellulose stretching C-H  

1635.64 1635.64 Water absorption O-H bonding  

1512.19 - C=C in lignin  

1373.32 

1327.03 

1373.32  1319.31 -O-in cellulose  

894.97, 

1064.77 

1033.85 

894.97   

1064.71 

C-O stretching glycoside bonds  

 

3.2. MCC Isolation 

The percentage of MCC obtained from HCl hydrolysis of1.5 N, 2.5 N, and 3.5 N was 71.05%, 

57.64%, and 53.23%, respectively (Fig. 3). Based on Tukey test, significant differences were 

recognized at the three different formulations. According to Sumiati (Sumiati et al., 2016), higher 

HCl concentration in the hydrolysis process will remove not only amorphous phase, but also 

crystalline part of cellulose. This result also similar with the result from previous research 

(Sunardi et al., 2019). Also, there is an increase in glucose monomer formation, leading to 

improved dissolution in the washing process. 

 

Figure 3. MCC yield in various concentration of HCl (A) 1.5 N; (B) 2.5 N; (C) 3.5 N) 
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3.3. Characteristic of MCC  

3.3.1. MCC color analysis 

Table 2 shows that the color of MCC in 1.5 N HCl concentration has L* value which is similar 

with L* standard (87.01). Meanwhile the value of a*, b*, and ∆E increased with the increase of acid 

concentration. In addition, the indicators used to determine good MCC color was L* value or the 

brightness level, and significant differences were reported between each group in this study. 

 Table 2. MCC colour of terap wood (Artocarpus elasticus) 

No HCl Concentration L* a* b* ∆E 

1 Standard (white paper) 88.51 1.94 3.60  

2 1.5 N 87.01 5.16 16.24 4.76 

3 2.5 N 82.15 6.66 16.58 15.66 

4 3.5 N 80.83 6.76 17.39 16.95 

 

3.3.2. Fourier Transform Infrared Spectroscopy Analysis of MCC 

The infrared spectrum of α-cellulose and MCC obtained from terap wood (Artocarpus 

elasticus) in this study are shown in Fig. 3. The aim of the infrared spectroscopy analysis was to 

determine the functional groups of the α-cellulose and MCC as a α-cellulose derived. FTIR 

spectroscopy results of the α-cellulose and MCC with various HCl concentrations shows similarity 

in the main absorption pattern functional group area. This was indicated by a shift in the number 

and transmittance value of O-H stretching group, observed to be lower at 1.5 N and 2.5 N, followed 

by a subsequent increase at 3.5 N HCl (Fig. 4). 

 

Figure 4. FTIR spectrum of cellulose and MCC obtained from terap wood (Artocarpus elasticus) with 

various HCl concentration (a) α-cellulose; (b) 1.5 N; (c) 2.5 N; (d) 3.5 N 
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The wave number pattern of α-cellulose and MCC has similarities with commercial cellulose 

at 894.97, 1035-1060 cm-1 indicating the presence of C-O-C stretching (glycosidic bond).  Also, the 

region of 1374 cm-1 and 1373 cm-1 shows the presence if -O- group in cellulose (Naduparambath 

& Purushothaman, 2016). The O-H and C-H stretching on α-cellulose and MCC treated with 

different HCl concentrations denote a shift in wave number because of hydrolysis process. 

The O-H stretching groups of α-cellulose identified in this study are formed at wave numbers 

of 3448.72 and 3410.15, while C-H was at 2916.37 cm-1. Furthermore, MCC treated with 1.5 N HCL 

showed O-H at 3441.01 and 3371.57 cm-1, while C-H was at 2900.94 cm-1. The samples with 2.5 N 

treatment exhibited stretching O-H groups at 3441.01 and 3363.86 cm-1, while C-H was at 2893.22 

cm-1. In addition, MCC with 3.5 N HCl showed O-H groups at 3441.01 and 3387.00 cm-1, while C-H 

was 2893.22 cm-1. 

The FTIR peak in MCC with wave number of 3441.01 – 3387 cm-1 indicates a decline in O-H 

stretching group, while the absorption pattern widens, using the 1.5 and 2.5 N HCl treatments. In 

addition, lower peak pattern cause an increase in the functional group absorbance, thus indicating 

the existence of intermolecular hydrogen bonds in the cellulose molecule.  

Nelson and O’Connor method was used to determine the Total Crystallinity Index (TCI). This 

refers to the ratio of absorbance in wave number of 1373-1375 cm-1 indicating -O- functional 

group, and also 2800-2900 cm-1 for C-H and CH2 (A1373/A2800) stretching (Nelson & O'Connor, 

1964; Sunardi et al., 2018). Table 3 shows the TCI value of MCC.  

Table 3. TCI MCC of terap (A. elasticus) wood 

HCl Concentration (N) TCI 

1.5 0.992 

2.5 0.993 

3.5 0.963 

 

The Total Crystallinity Index (TCI) estimates the influence of varied HCl concentrations, 

which increased from 1.5 to 2.5 N, followed by a decline at 3.5. The data obtained showed that the 

treatment with 2.5 N gave the highest TCl value. Thus, the treatment is concluded as the optimum 

parameter for hydrolysis, due to the adequate loss of amorphous cellulose (Klemm et al., 1998). 

3.3.3. X-Ray Diffraction Analysis 

Fig 5 shows the XRD analysis of MCC, and there are similarities in the patterns obtained from 

three different HCl concentrations. In addition, all samples showed two diffractogram peaks in the 

crystalline area in the (002) and (200) Miller index with an angle of (2θ) = 21-22o. These indicate 

the presence of two types of crystal cellulose, interpreted as cellulose I and II (Klemm et al., 1998; 

Xiang et al., 2016). Moreover, treatment with 1.5 N HCl shows the crystallinity index of cellulose I 

and II at (2θ) angle = 21.95 o and 20.05o with intensity value of 549 and 596, while the amorphous 

area appears at (2θ) angle 12.15o and 14.05o, with 170 and 119 intensity. Hence, the crystallinity 

indexes were computed as 69.03% and 80.03%, respectively. Conversely, 69.39% and 82.73% 

was recorded for MCC with 2.5 N treatment, which appeared at (2θ) angle = 21.895o and 20.03o 

with intensity value 549 and 608, while the amorphous area was at (2θ) angle = 12.26o and 14.05o 

with intensity of 168 and 105. In addition, the crystallinity index of 67.25% and 75.86% were 

recorded in 3.5 N treatments for cellulose I and II. This appeared at (2θ) angle = 22.57o and 20.00 
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o with intensity value of 455 and 414, while the amorphous area was at (2θ) angle 12.10o and 

14.05o with intensity of 149 and 100, respectively.  

 

Figure 5. Diffractogram of MCC from terap (A. elasticus) wood in various HCl concentration (a) 1.5 N; (b) 

2.5 N; and (c) 3.5 N 

 Table 4 shows the CrI of MCC where it can be seen that the value of cellulose II is higher 

than the value of cellulose I due to the relatively better stability. Furthermore, the CrI was reported 

to have increased from HCl concentration of 1.5 N to 2.5 N, followed by a decline at 3.5 N. This 

phenomenon occurs due to the cutting speed of amorphous areas in cellulose during hydrolysis 

(Steven et al., 2014). Based on the characterization result, 2.5 N was confirmed to be the optimum 

HCl concentration needed to isolate MCC from terap wood.  

Table 4. Crystallinity index of MCC obtained from terap wood (Artocarpus elasticus) 

No HCl concentration (N) 
Crystallinity index 

cellulose I (%) 

Crystallinity index 

cellulose II (%) 

1 1.5 69.03 80.03 

2 2.5 69.39 82.73 

3 3.5 67.25 75.86 

 

4. Conclusion 

FTIR analysis shows the similarity peak patterns between α-cellulose and MCC from terap 

wood. In addition, XRD identified the highest crystallinity index in cellulose I (69.395 %) and 

cellulose II (82.73 %), using 2.5 N HCl. This is further recommended as the optimum acid 

concentration to isolate MCC from terap wood through the hydrolysis process. 
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