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Abstract 

This study reported a stereoselective synthesis of (+)/(+)-pentenomycin I in 4−5 steps through 

regioselective silylation, optical resolution and dihydroxylation, followed by an olefin formation, 

from a known racemic cyclopentenone prepared from 2-deoxy-D-glucose. We also accomplished 

the transformation of a common intermediate into a variety of analogs. In addition, the 

antimicrobial activities of the pentenomycin analogs were evaluated, which revealed important 

structural factors of pentenomycins for the antimicrobial activities. 

 

Introduction 

 In general, the molecules having a cyclopentenone framework also possess an important 

function as the Michael acceptors for a variety of cellular nucleophiles, due to their highly reactive 

α,β-unsaturated carbonyl centers.1 Thus, the cyclopentenone framework is usually used as a basic 

core to prepare natural and unnatural products.2,3 In addition, highly oxygenated cylopentenoids 

are known to exhibit promising antimicrobial activity.4 In particular, pentenomycins exhibit 

moderate activity against both Gram-positive and Gram-negative bacterial species (Figure 1).5–7 

Pentenomycin I (1) was isolated by Umino et al. in 1973 from a culture strain of Streptomyces 

eurythermus. The unique structures of pentenomycins having various reactive functional groups 

and quaternary chiral center are especially interesting for its synthesis. Furthermore, 

pentenomycins with biological properties have also attracted attention in recent years. Various 

methods have been reported for the total syntheses, both enantioselective and racemic, of 

pentenomycins.8–19 In recently, total synthesis of (−)-pentenomycin I (1), a natural product, from 

D-mannose, and (+)-1 from D-ribose were reported by Rao group.18 In later years, Pal group 
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reported the the syntheses of both enantio isomers of 1 from D-ribose as the single starting material, 

via stereoselective hydroxymethylation, Grignard reaction and ring-closing metathesis as key 

reactions.19 While the synthetic methods reported to date are very interesting, many of those 

require multiple steps, especially the ones that are stereo- and enantioselective. The shortest 

process for the synthesis of (+)-1 were reported by Elliott group.20 In this case, however, the 

required starting material was prepared from quinic acid in more than ten steps.21,22 In addition, 

pentenomycin analogs could not be efficiently synthesized from pentenomycin (1) because multi-

hydroxy groups inhibit selective modification of functional groups. Despite numerous efforts on 

the synthesis of 1, there are few reports of antimicrobial evaluation. Therefore, the development 

of synthetic routes of pentenomycin analogs and investigation of their antimicrobial activities 

would be beneficial. Herein, we report the enantioselective synthesis of (+)/(−)-pentenomycin I 

(1) and their analogs prepared from a key intermediate in a short overall process, and their 

antimicrobial evaluation.  

 

Results and discussion 

Recently, we reported a facile method for the preparation of cyclopentenone 4 from 2-

deoxy-D-glucose (2-DG) by a hydrothermal reaction under mild condition,23 and 4 could be 

replaced with the starting material used by Elliott et al. The synthetic plan of (+)/(−)-pentenomycin 

I (1) is shown in Scheme 1. At the beginning, the primary hydroxy group in 4 is protected 

regioselectively, then the optical resolution by enzymes results in the separation of the (+)/(−)-

enantiomers. After that, the basic pentenomycins skeleton is formed by dihydroxylation and 

formation of the olefin by E1cb elimination. Finally, protective group is removed to produce 1. 
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According to the synthetic plan, the synthesis of (+)/(−)-1 were achieved as follows (Scheme 2). 

The regioselective silylation of primary hydroxy group was carried out by a non-nucleophilic base 

under catalyst-free conditions.24 In this case, with the presence of the catalyst, 4-

dimethylaminopyridine (DMAP), the major product in which both hydroxy groups protected was 

produced and also, the regioselectivity was reduced when nucleophilic bases were used.25 

Subsequent optical resolution was succeeded by using Lipase amano series.26,27 When 5 was 

treated with vinyl acetate and Lipase AK amano, 6 and (S)-5 were obtained in equivalent yield. 

The absolute configuration of each compound was determined by comparing to the optical 

resolution of the chiral compounds prepared from the (R)-4 (99% ee) and (S)-4 (99% ee) (both 

were supplied by the FromSeeds Corporation). After that, the olefination and the subsequent 

dihydroxylation were proceeded in one-pot in which 6 was treated with osmium catalyst and N-

methylmorpholine oxide at room temperature. However, compound 6 has not consumed 

completely and recovered in 28% yield. In this case, we found that compound 7 decomposed and 

a lower yield was obtained when the reaction time exceeded 2 h. The pentenomycin skeleton could 

be constructed at once, however the enatiopurity of 7 was moderate (56% ee, determined by chiral-

phase high performance liquid chromatography (HPLC)). In addition, the enatiopurity of (–)-7 

prepared from (R)-4 (99% ee) was also moderate. Therefore, the stereoselective formation of the 

osmate ester intermediate was not completely controlled due to the less steric hindrance of the 

acetoxy group.20 Finally, desilylation through treatment with aqueous 3 M HCl produced (–)-

pentenomycin I (1). Under the same conditions, (+)-1 was produced from (S)-5. The spectroscopic 

properties of 1 were identical to those reported previously. The optical rotation of synthetic (+)-1, 

[α]D
23 = + 13.2 (c = 0.36, EtOH), matched with the literature value of [α]D = +30.1 (c 0.1, EtOH)19. 
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And also, the optical rotation of (–)-1, [α]D
23 = –19.6 (c = 0.35, EtOH) matched with a previous 

report of [α]D = −30.2 (c 0.29, EtOH)19.  

 Previously, Umino et al. reported that several pentenomycin analogs were produced from 

an isolated 1, however the overall yield was very low. On the other hand, we believe that the 

intermediate 7 is suitable to promote to analogs. We have also demonstrated the syntheses of 

several analogs of natural type from (−)-7, as shown in Scheme 3. Initially, the secondary hydroxyl 

group of (−)-7 was modified with benzoic ester 8 through treatment with benzoic anhydride under 

basic condition, pyridine and DMAP. The reaction was required longer time to reach completion 

when benzoyl chloride was used instead of benzoic anhydride. Benzoic pentenomycin 9 was 

prepared by treatment of 8 with 6 M HCl, because the starting material 9 was not completely 

consumed under 3 M HCl. I2 in the presence of pyridine provided the α-iodide derivatives 10 and 

11. Hydrogenation of 9 over Pd/C catalyst subjected compound 12.Compound 13 could be 

obtained in 64% yield from 11 in two steps: Suzuki-Miyaura coupling reaction which was carried 

out with PhB(OH)2, K2CO3, and a catalytic amount of Pd(PPh3)2Cl2, followed by desilylation.17 

We have succeeded in synthesizing several pentenomycin analogs, so as the next target, we 

attempted their antimicrobial evaluation. The synthesized analogs 9, 10, 12 and 13 were tested for 

their antimicrobial activity. Antimicrobial susceptibility was tested by broth microdilution method 

according to the Clinical and Laboratory Standards Institute (CLSI) recommendations. It was 

performed on seven bacterial species of the most common pathogens in the clinical settings, and 

the minimum inhibitory concentration (MIC) values are summarized in Table 1. Compound 9 and 

10 had moderate antimicrobial activities for either organisms. On the other hand, the activities of 

compound 11 and 13 were remarkably decreased. These results suggested that the cyclopentenone 

framework, α,β-unsaturated carbonyl, in pentenomycins would be responsible for the pronounced 
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antimicrobial activity. In addition, it was revealed that when there is bulky and non-liberating 

substituent, such as phenyl group, in α position of cyclopentenone, its antimicrobial activity was 

remarkably attenuated. To the best of our knowledge, the antimicrobial activity of compound 10, 

11 and 13 has not been previously reported in literature; while the MIC value of compound 9 was 

reported elsewhere.7 These findings provide new knowledge for designing new pentenomycin 

derivatives, more active synthetic antimicrobial compounds. 

 

Conclusion 

We have achieved the enantioselective synthesis of (+)/(−)-Pentenomycin I (1) in a liner 

sequence of four steps, starting from cyclopentenone 4 which could be prepared from 2-DG. In 

addition, the analogs could be obtained successfully in a less complicated method from 

intermediate 7. A preliminary antibiological activity of pentenomycin analogs 10, 11 and 13 was 

also investigated, which provided some structure-activity relationship insight. We believe that 

these findings will be useful for the design and development of new pentenomycins for 

antimacrobial agents. Now we are promoting the syntheses of the highly enantioselective 

pentenomycin analogs. 
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Figure 1. 
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Figure 1. Structures of pentenomcyins 
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Scheme 1. 

 

 

 
 

Scheme 1. Retrosynthesis of (+)/(−)‐pentenomycin I (1). PG: protective group. 

  



 12

Scheme 2. 

 

 

 
 

Scheme 2. Syntheses of (+)/(−)‐pentenomycin I (1). Reagents and conditions: (a) TBSCl (tert‐butyldimethylsilyl), 
Et3N, THF, room temperature (r.t.), overnight, 82%; (b) Lipase AK amano, vinlyacetate‐acetone (1:1), r.t., overnight, 
48%  for  6,  50%  for  (S)‐5;  (c)  Ac2O,  pyridine,  4‐Dimethylaminopyridine  (DMAP),  r.t.,  overnight,  72%;  (d) 
K2OsO2(OH)2, N‐methylmorpholine oxide (NMO), acetone‐H2O (2:1), r.t., 2 h, 61% for (−)‐7, 55% for (+)‐7; (e) 3 M 
HCl, THF, r. t., 0.5 h, 48 % for (−)‐1, 57% for (+)‐1. 
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Scheme 3. 

 

 

 

Scheme  3.  Syntheses  of  pentenomycin  analogs.  Reagents  and  Conditions:  (a)  (PhCO)2O,  pyridine,  4‐
Dimethylaminopyridine (DMAP), THF, room temperature (r.t.), 1 h, 95%; (b) 6 M HCl, THF, r.t., 1 h, 100 %; (c) I2, 
CH2Cl2‐pyridine (2:1),  1 h, r.t., 47%  for 10; (d) H2 (balloon), Pd/C, MeOH, r.t.,  1 h,  100 %; (e) K2CO3, PhB(OH)2, 

Pd(PPh3)2Cl2, THF‐H2O (2:1), 60 °C, overnight; (f) 3 M HCl, THF, r.t., 1 h, 64 % (2 steps from 11). 
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Table 1. 

 

 

Table 1. Antimicrobial evaluation of pentenomycin analogs 

 
 

 


