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ABSTRACT

Comparison of Motor-based versus Visual Sensory

Representations in Object Recognition Tasks. (August 2005)

Navendu Misra, B.S., The University of Texas at Austin

Chair of Advisory Committee: Dr. Yoonsuck Choe

Various works have demonstrated the usage of action as a critical component in allow-

ing autonomous agents to learn about objects in the environment. The importance

of memory becomes evident when these agents try to learn about complex objects.

This necessity primarily stems from the fact that simpler agents behave reactively to

stimuli in their attempt to learn about the nature of the object. However, complex

objects have the property of giving rise to temporally varying sensory data as the

agent interacts with the object. Therefore, reactive behavior becomes a hindrance in

learning these complex objects, thus, prompting the need for memory.

A straightforward approach to memory, visual memory, is where sensory data is

directly represented. Another mechanism is skill-based memory or habit formation.

In the latter mechanism the sequence of actions performed for a task is retained. The

main hypothesis of this thesis is that since action seems to play an important role in

simple perceptual understanding it may also serve as a good memory representation.

In order to test this hypothesis a series of comparative tests were carried out to

determine the merits of each of these representations. It turns out that skill memory

performs significantly better at recognition tasks than visual memory. Furthermore,

it was demonstrated in a related experiment that action forms a good intermediate

representation of the sensory data. This provides support to theories that propose

that various sensory modalities can ideally be represented in terms of action. This

thesis successfully extends action to the role of understanding of complex objects.
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CHAPTER I

INTRODUCTION

Earlier study on Sensory Invariance Driven Action (SIDA) [1] has demonstrated the

importance of actions for an agent trying to learn about the environment when it

is only able to access its internal sensory state. The internal sensory state is a rep-

resentation of the external environment that arises from the application of sensory

filters that extract meaningful properties from the environment. The SIDA agent

is designed to carry out actions having particular patterns that maintain invariance

in its internal sensory state. For the basic SIDA agent this invariance maintenance

required a direct comparison of the current internal state with the immediate past

sensory state. This immediate comparison allowed the SIDA agent to learn about

simple stimulus properties, where there are no variations in sensory property along

an object. However, this reactive behavior presented a hindrance in understanding

more complex objects, which may contain variations in the sensory state. How can we

address this problem? One possibility is to allow SIDA to use some form of memory.

There are several different forms of memory. The most straight-forward memory

is visual memory. Visual memory is a direct storage of the raw sensory state, thus

visual memory is based only on sensory representations. A different kind of mem-

ory system, skill memory, stores the action sequence that the agent performs while

investigating the object. Unlike visual memory, skill memory is based on motor rep-

resentation. The main hypothesis of this thesis is that since action seems to serve

a fundamental role in allowing the agent to learn about simple properties in its en-

vironment, it may also be a good medium for representing and understanding more

The journal model is IEEE Transactions on Neural Networks.
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complex object properties. That is, action may serve as a good basis for memory.

Memory system is a critical component in the building of autonomous agents

capable of complex behavior. One of the reasons for this is that studies of animals

have demonstrated that the development of memory has been crucial [2]. It has also

been demonstrated that animals routinely need the capacity for spatial navigation

and context-dependent learning that is provided by memory [3]. These are some of

the intelligent behaviors that one might expect from autonomous agents and thus the

study of memory (in general) and building systems that accomplish it is important.

The question that this all leads to is, is one of these forms of memory more suitable

for representing and understanding stimulus properties?

A. Problem overview

For a better understanding of the core problem addressed in this thesis, a brief re-

view is provided of the current studies that put an emphasis on action. Then their

limitations with regards to memory are detailed, followed by an introduction to the

approach taken in this thesis.

1. Role of action in perceptual systems

Action has been an essential element in the development of learning in agents. This

was demonstrated in the example of SIDA [1]. In SIDA it was shown how perception

and action can be bound together to provide a framework for learning while using a

simple yet powerful concept of sensory invariance. This important concept of linking

perception with action through invariance was also demonstrated in the experiments

conducted by Philiopona et al. [4] (although in their work invariance was used in a

different context) which built upon the theoretical framework of [5].
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Recently, a system for rhythm recognition was also developed by Buisson [6].

This system worked by producing anticipated notes that would be matched to what

was observed in the environment. Essentially, the system did the note matching by

having a population of internal rhythms that it maintained. The core contribution of

this work was that it showed how even complex sequence of notes can be recognized

by a relatively simple note-matching system. The generation of these notes can be

considered as an action. This is therefore another example of where action can be

a useful tool in learning. The approaches mentioned above will be covered in more

detail in the background chapter.

This thesis aims to further investigate the role of action in perceptual understand-

ing, when more complex action sequences can be retained (as in habit formation).

This work is expected to show that skill-based memory developed from an applica-

tion of SIDA can have several beneficial properties compared to those based on direct

sensory representations.

2. Use of memory to enhance perceptual understanding

SIDA performs actions that maintain invariance in its internal sensory state. This is

achieved by performing a direct comparison of its immediate past and present internal

sensory states. For a simple object (e.g., a straight line), this simplistic comparison

of current and past sensory states suffices. However, for a complex object the very

short term comparison may not be enough. A square is an example of such a complex

object. For a square, the agent needs to remember that it has seen lines in varying

orientations (horizontal and vertical) as the agent’s visual field traverses different

parts of the object. This is quite different from an environment where there is only a

straight line and when only the same sensory state is activated no matter which part

of the line is in the agent’s visual field. The current version of SIDA has no capacity
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for remembering these variations of sensory state over a longer stretch of time. As a

consequence, improving the SIDA agent to learn about complex objects may require

allowing it to remember a series of past internal states. In other words, it needs a

memory system.

3. Approach

This thesis investigates two types of memory representations that can be employed by

SIDA; sensory-based visual memory and motor-based skill memory. Visual memory

stores raw sensory states that are caused by immediate sensory activation which

captures the entire visual field. This is similar to the pattern of activity in the

retina in the eye. This form of memory stores the direct sensory mapping into the

memory space. A quick examination will yield that the memory space will look

exactly like the image that the agent had on its visual field, as demonstrated in

the left column of Fig. 1. Skill memory on the other hand, is the storage of action

sequences that the agent performed while interacting with the object through the

invariance maintenance criterion mentioned earlier. (The action sequence is hereafter

referred to as spatio-temporal pattern (STP).) The right column in Fig. 1 shows the

STP for the corresponding shape on the left.

For this thesis memory representations using skill and visual memory for a num-

ber of objects will be evaluated. A comparison will be made of how each of these

perform on recognition and mapping tasks using a feedforward neural network using

gradient descent backpropagation. The performance difference between the two mem-

ories will demonstrate whether more complex meanings can be learned more easily

when it was based on action-based representations.
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Fig. 1. The representations for circle and triangle. The gray arrow indicates the

starting point of the agent on the 2D object representation for skill memory

(left column). From this location the agent will start its movement around

the shape and store the sequence of actions performed to navigate the shape.

This generates the spatio-temporal pattern (STP) which is shown on the right

column of the figure.
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B. Outline of the thesis

Chapter II of the thesis provides the necessary background for comprehending the

importance of action in perceptual understanding. Chapter III deals with the actual

setup of the experiments for the test of the core differences between skill and visual

memory. Chapter IV will detail the results of the experiments performed. The fol-

lowing Chapter V, discussion, will provide interpretations and analyses of the results.

Finally, Chapter VI concludes the thesis with a brief outlook.
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CHAPTER II

BACKGROUND

In this chapter, methods that have used action as a fundamental component in percep-

tual/conceptual understanding will be reviewed. An influential paper by Aloimonos

et al. [7] claimed that vision does not exist independent of action, i.e., vision and

action may be intricately linked. This view leads to the establishment of frameworks

such as SIDA, where action and sensory invariance lead to the formation of a learning

system. In fact Karl Lashley, a prominent psychologist, had suggested, that vision

cannot be explained without using postural-kinaesthetic considerations and that vi-

sion is in fact linked to action and thus the correlation between action and perception

should be studied [8].

A. Sensory invariance driven action (SIDA)

SIDA was developed primarily to answer the question of how to associate meaning to

a spike of a sensory neuron without direct access to the environmental stimulus. A

spike is an electrochemical pulse that is generated upon the activation of a neuron.

In the case of the sensory neuron the spike is caused by the stimulus received by

the sensory neuron. Most of the other methods that tried to associate meaning to

spiking neuron had tried to come up with intricate correlations between the raw

sensory stimulus that caused the spike pattern and the spike pattern itself. This is

illustrated in Fig. 2. The figure on the left is the traditional approach where the

observer has access to both the input I and the spike pattern S. In this approach the

observer can find a correlation between the input and the spike pattern. However,

an important question at this point is, how can the brain do this? Let us take the

example of a brain composed of just a single neuron. This brain does not have direct
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Fig. 2. The difference between the external and internal observer models.

The diagram for external observer, on the left, demonstrates how the input I

creates a spike pattern S. Since the observer has access to both of these it can

try to come up with a model that explains their correlation. However, in the

internal observer model, on the right, the agent has no access to the outside

environment and as such can only monitor its internal sensory state or spike

pattern. [1]

access to the input. The right part of Fig. 2 shows this. From this we can see that

the traditional approach fails to explain how the brain may actually be associating

meaning to the spike pattern that it receives.

SIDA overcomes this problem by using action and the principle of sensory in-

variance to allow an agent to learn stimulus properties of the environment by just

monitoring its internal sensory state. This allowed the internal observer to correlate

the actions that it performed with the observed spike pattern. As a result, SIDA

grounds its internal sensory state on its actions.

The core features of SIDA are illustrated in Fig. 3. Here the agent sees a line at a

particular angle that activates the corresponding orientation filters which is tied to a

unique sensory state. The agent then performs actions by the usage of the invariance

criterion mentioned above. SIDA agent was designed to initially start off by trying

a large variation of actions. After a while, it will determine that a particular action

pattern maintains invariance in its internal state. From this, it will learn to associate
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Fig. 3. The different components of SIDA agent. The visual field receives stim-

ulus from a section of the visual environment. This is fed to the filter bank

that activates the sensor array (of orientation filters). The agent then performs

certain actions based on the sensory state, which may in turn affect the sensory

state. [1]

particular actions with specific sensory responses and thus infer properties of the

environment. Invariance is maintained by comparing the current sensory activation

with the immediate past sensory state. The agent will then perform an action that

will lead to the successful matching of the two, where the property of the resulting

action reflects that of the stimulus. In sum, SIDA allows an internal observer to

learn about external stimulus properties through action, when only internal state

information is available.

B. Sensorimotor approach to vision

In the same line as SIDA, another work, the sensorimotor approach, has demonstrated

the importance of action in vision [5]. Traditional views on vision suggested that

vision consisted of creating an internal representation of the external world and the

challenge therefore was the creation of an appropriate mapping of the external world
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with the internal representation. The research of O’Regan and Noë suggests that

perception can only be understood in terms of action. The authors have proposed

that consciousness or understanding of objects in an environment comes about as

series of actions are performed as opposed to earlier methods that viewed this as a

simple mapping from sensory input to motor output.

Philipona et al. [4] take this idea further by demonstrating how the brain can

come to understand its environment if it does not have any a priori information

about its sensors. The paper demonstrates that the brain is able to conclude that

there is a distinction between the aspects that it can control, its body, and features

that it has no direct control over, its environment. Essentially, there is a class of

compensable actions. These compensable actions can compensate for changes in the

environment and as a result keep the sensory information constant. The core subject

of the paper is the determination of the dimensionality of space that an organism is

situated in. The main point is that by using action only (such as compensable actions)

the agent can determine these dimensions, thereby allowing the brain to understand

the environment by only performing actions and relating the changes in the sensory

states.

C. Rhythm recognition

Perception and action was again important in the research by Buisson [6]. He demon-

strated how the simple act of generating notes leads to the formation of a model that

can dynamically and closely recognize complex environmental input. Buisson argues

that the mental representation cannot simply be copies of the world, which as indi-

cated in the paper was initially pointed out by Piaget. (Note that Philipona et al.

also had similar views.) One of the core differences between rhythm recognition and
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the more traditional methods is that it is able to capture the core temporal qualities of

the environmental input, by the clever usage of its population of rhythm generators,

where sequence of notes are learned by attunement to the temporal pattern present

in the sound.

This theory is demonstrated by a Java-based program. The program does its

pattern matching in quite a straight forward way using what the paper calls the

sensory motor scheme (SMS). An SMS is just a sequence of notes that the system

is internally playing and determining if it is tuned to the observed environmental

stimulus. Initially, the system starts off with a default SMS. If it matches the observed

state of the environment, the particular SMS is deemed to be successful. Then more

SMSs with similar action sequences are produced. The production of an SMS is

controlled by a mutation factor that alters with the success of the particular SMS.

If the SMS fails then its mutation rate is increased and more deviations in its action

pattern are accepted. This dynamic system generates multiple SMSs running in

parallel at any given time.

In this experiment the internally playing notes can be thought of as internal,

virtual actions and the comparison of the action (notes) to the actual rhythm the

sensory feedback. In fact, its rhythm matching scheme not only uses action but

the sequence of actions actually forms a type of habit which allows the system to

predict future states of the environment. This form of action-based recognition was

a motivation toward the skill memory used in this thesis.
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CHAPTER III

METHODS

In order to compare the relative merits of the two memory representations, a set

of systematic tests was carried out. Objects (circles, square, and triangles) were

represented in each representation, STP (for skill-based memory) and 2D array of

pixels (for visual memory), of varying sizes and locations in an equal dimensional

space. One problem associated with skill-based representation is that the objects are

represented with varying length of STP depending on the size of the object. However,

the dimensionality that both representations (skill and visual) occupy should be the

same so as to allow for a fair comparison between the two. In order to overcome this

problem, resizing has to be done on each STP. Another issue with STP was that it had

fixed range of actions that produced discrete stairstep-like aliasing in the sequence

of action vectors. In order to overcome this problem, smoothing was applied on the

STP. This resulted in the neighboring action vectors having less dramatic changes

in their angles. In another attempt to have fair comparison between visual and skill

memory, the 2D array representing the visual memory was also made smoother (i.e.,

blurred).

Once the representations had been constructed for the various objects, the data

was partitioned into training and test sets. The training set was provided to a feed-

forward neural network trained by backpropagation and the performance measured

with regards to mean square error (MSE) as well as the time elapsed in the training

of the neural network until an asymptotic error level was reached. Then the test set

was presented and the degree of generalization measured as the average classification

rate.

In order to rigorously test the differences between the two memories, certain vari-
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ations were considered that had the potential of impacting the relative performance

of each of these memories. One of these variations was the random start points for

STP generation in skill memory. Without random start points what happens is that

the action sequences follow the same order for the same shapes. Random start points

allow for the action sequences to be out of order. This may be analogous to how

visual memory performs on translated objects. Another interesting variation came in

the form of noise in the trajectory. This had the effect of randomly perturbing action

vectors in a particular action sequence with a certain factor.

To test whether action can serve as a good intermediate representation, i.e.

whether action can serve as a canonical representational scheme when there are vary-

ing types of sensory input to deal with; vision, audition, touch, etc., I tested the

relative ease of mapping between two different kinds of representations (visual and

action-based). This involved testing the mapping from visual to action and action

to visual. This was done to test our theory that action may be a good intermediate

representation for sensory data.

The following sections provide details about this setup.

A. Input preparation

The input to the neural network was prepared by randomly generating the STP and

the 2D array representation for the three different shapes. It was ensured that each

of the representations was defined to have exactly the same number of dimensions.

1. Shape generation

The generation of the three types of shape was done by following a simple algorithm.

These algorithms were constructed using a LOGO-like language [9]. In this language
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instructions for navigating a space is provided by a fixed range of actions, i.e., ’turn

left’, ’move forward’, and so on that are then plotted. This language construct was

adapted for the formation of the shape generation algorithms in the following manner.

Initially a starting point was chosen for each of the figures. Then a series of steps

were produced to allow for a full rendition of the entire shape. The algorithm was

parameterized so as to produce images that were scaled and translated. As different

coordinates were traversed the corresponding 2D array points were marked. The

benefit of the LOGO-like algorithm was that it allowed for the easy capture of the

STP for the particular shape. This was the case because the actions produced to

traverse the object could be captured as the direct representative STP for a figure.

Since each of the algorithms was parameterized, a sequence of random values for

scaling and translating the images were provided.

2. Visual memory – 2D array

Visual memory representation is a direct copy of the sensory data. As a result, when

the 2D array representation for the figure is visualized it appears like the figure itself.

All the shapes for the 2D arrays were generated using the algorithm described above.

The output was a two dimensional array with the pixels of the edge of the figure set

to be one and the rest of the figure to zeros. On this a Gaussian filter was applied.

This caused the values in the array to have more continuous values. The primary

reason for this last step was to have a more fair comparison between 2D array and

STP. The normalized range of values was between 0 and 1 and the resultant size of

the array was 30× 30.

Fig. 4, Fig. 5, and Fig. 6 provide examples of the different shapes in the 2D

array representation. Note that there is a less sharp transition between the edge of

the figure and the background. This is achieved from the smoothing effect of the
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Fig. 4. The visual representation of circles. This sequence of figures illustrates

the range of variations that are performed on the circle shape in the visual

memory (2D array) representation.
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Fig. 5. The visual representation of triangles. This sequence of figures illustrates

the range of variations that are performed on the triangle shape in the visual

memory (2D array) representation.
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Fig. 6. The visual representation of squares. This sequence of figures illustrates

the range of variations that are performed on the square shape in the visual

memory (2D array) representation.
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Gaussian filter mentioned above. Such a blurring enables better generalization.

3. Skill memory – spatio-temporal pattern (STP)

Skill memory representation, STP, involves the retention of actions that an agent may

perform while navigating the environment. As explained earlier the action sequence

was generated by utilizing an algorithm based on the LOGO language. (Note that

a similar action sequence is expected when SIDA is used to traverse the object.)

The produced output action sequence had four actions; motion north, motion south,

motion east, and motion west. This was represented by values 0, 90, 180, and 270

degrees. The values were subsequently normalized to lie between the range 0 to 1.

Before normalization the action vectors were smoothed. Smoothing was accomplished

by taking an average of values representing the neighboring action vectors, as specified

by the size of the smoothing window. This resulted in a less discrete change of action

vectors. This difference is illustrated in Fig. 7. In (a) the STP is not smoothed and

the sequence of actions constructed has stairstep-like variations. However, in (b) the

actions get averaged to form a new action that is formed by averaging the neighboring

action vectors. Fig. 8 shows the action vectors at the coordinates where these actions

were performed. Figs. 9 - 12 show the same smoothing effect but for triangles and

squares.

Another issue with the STP was that its length was not equal to the fixed di-

mension size, unlike the visual representation. This meant that resizing of the STP

had to be done to match the input dimension (30 × 30 = 900). A very simplistic

algorithm was devised to resize or stretch the STP. The end result was that each STP

size was of 900 dimensions.
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Fig. 7. The STP for a circle shape visualized along the diagonal (so as to

prevent overlapping of vectors). (a) This plot demonstrates a linear or-

dering of the spatio-temporal pattern for a circle shape before any smoothing

is applied. Note in this figure the discrete change in action vectors. (b) This

plot demonstrates a linear ordering of the spatio-temporal pattern for a circle

shape after smoothing is applied. Here the action vectors have been smoothed

to display a continuous variation in actions.
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Fig. 8. The STP for a circle shape visualized at the coordinate where these

actions were performed. (a) This plot demonstrates a 2 dimensional view of

the spatio-temporal pattern for a circle shape before any smoothing is applied.

Note in this figure the discrete change in action vectors in the stairstep-like

formation. (b) This plot demonstrates a 2 dimensional view of the spatio-tem-

poral pattern for a circle shape after smoothing is applied. The smoothed

action vectors show a more intuitive sequence of actions.
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Fig. 9. The STP for a triangle shape. These plots demonstrate the same effect of

smoothing as mentioned in Fig. 7, but for a triangle.



22

5 10 15 20
10

15

20

25

(a) No smoothing

5 10 15 20
12

14

16

18

20

22

24

26

(b) Smoothing applied

Fig. 10. The STP for a triangle shape plotted in 2D. These plots demonstrate

the same effect of smoothing as mentioned in Fig. 8, but for a triangle.
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Fig. 11. The STP for a square shape. These plots demonstrate the same effect of

smoothing as mentioned in Fig. 7, but for a square.
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Fig. 12. The STP for a square shape plotted in 2D. These plots demonstrate

the same effect of smoothing as mentioned in Fig. 8, but for a square.
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B. Neural network experiments

The experiments were formulated by creating one thousand randomly scaled and

randomly translated figures for each shape (triangle, circle, and square) with their

corresponding STP and 2D array representations. The patterns generated for the STP

and 2D array representations were stored in their respective data sets. A portion

of this data set (75 %) was used for training a neural network and the rest was

used for testing (25 %). Using the testing dataset, the performance of each of the

representations was recorded. A detailed explanation is given in the following sections.

1. Backpropagation

This thesis required a general purpose learning algorithm. One such algorithm is

the backpropagation algorithm for training artificial neural networks. These artifi-

cial neural networks are generally made up of several neurons and each neuron can

have weighted connections with other neurons. Each neuron can receive activation

(information) from other neurons that it is connected to. These neural networks are

also arranged in layers. There are primarily three types of layers; the input layer,

the output layer, and the hidden layer. The input layer is activated directly by the

sensory data. This activation is then fed to the hidden layer, which does its process-

ing. Then finally the output layer receives the activation, this is where the output

of the neural network is noticed. When the artificial neural network learns a partic-

ular input-output sequence, the connection weights between neurons are altered to

produce the desired output from the output layer. The backpropagation algorithm

works by enabling the weights to change in an efficient way for a given sequence of

input-output pairs.

The backpropagation algorithm works by performing a step-by-step updating of
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the weights. In order to do this the algorithm goes through the training data by

following the steps below [10]:

1. Initialize the network: The algorithm starts with a default configuration. Then

all the synaptic weights between the neurons and threshold levels of the network

are set to small randomly distributed numbers.

2. Provide the training examples: Provide the network with an epoch of training

examples. A sequence of forward and backward computations specified in steps

3 and 4 is repeated, until performance measures such as MSE level off.

3. Forward computation: The training example will be made of the input x(n)

and the desired output d(n), where n is the sequence number in a particular

epoch. The activation will be calculated by proceeding forward through the

network, layer by layer. The net internal activity v
(l)
j (n) for neuron j in layer l

is calculated as:

v
(l)
j (n) =

p∑
i=0

w
(l)
ji (n) y

(l−1)
i (n) , (3.1)

where y
(l−1)
i (n), refers to the function signal of the ith neuron in the previous

layer l − 1 in the nth iteration, and w
(l)
ji the synaptic weight to the neuron j

in layer l from neuron i in layer l − 1 and p refers to the number of neurons in

layer l − 1. The function y
(l)
i can be sigmoidal or tanh based [11]:

y
(l)
j (n) =

1

1 + exp
(
−v

(l)
j (n)

) , or (3.2)

y
(l)
j (n) = tanh

(
v

(l)
j (n) /2

)
. (3.3)
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If the jth neuron is in the first layer then its activation is the same as in the

input, where xj (n) is the corresponding jth element of the input; and same as

the output if it is the output layer, where oj (n) is the value at the corresponding

output neuron at the top layer L:

y
(0)
j (n) = xj (n) , (3.4)

y
(L)
j (n) = oj (n) . (3.5)

The error signal ej (n) is computed by

ej (n) = dj (n)− oj (n) , (3.6)

where dj (n) is the jth element of the desired response vector.

4. Backward computation: For this, the local gradients (δ) are computed for each

j (this is for the sigmoidal function).

δ
(L)
j (n) = e

(L)
j (n) oj (n) [1− oj (n)] , and (3.7)

δ
(l)
j (n) = y

(l)
i (n)

[
1− y

(l)
i (n)

] ∑
k

δ
(l+1)
k (n) w

(l+1)
kj (n) . (3.8)

The synaptic weights of the network in layer l are updated according to the

generalized delta rule:

w
(l)
ji (n + 1) = w

(l)
ji (n) + α

[
w

(l)
ji (n)− w

(l)
ji (n− 1)

]
+ ηδ

(l)
j (n) y

(l−1)
i (n) , (3.9)
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where η is the learning-rate parameter and α is the momentum constant.

2. Training and testing

Matlab’s Neural Network toolbox was used to run the backpropagation simulation

on the dataset for both visual and skill memory. There were a total of ten runs for

each experiment. For each of these trials the training set and the test set were chosen

at random from the dataset for each class (circle, square, and triangle). This was

composed of a thousand points for STP and 2D array for each of the three figures,

resulting in STP and 2D array dataset of three thousand each. For each run, at

random three quarters of the dataset was chosen as training data and the rest was

used as the test data. This was provided to the neural network, and trained using

backpropagation. The neural network had 900 input neurons, 10 hidden neurons in

the single hidden layer and 3 output neurons corresponding to the 3 classes. For

the last experiment the target vectors were modified to be the actual visual and skill

memory representations. In this case the number of output neurons was increased to

900.

Average classification rate was a measure that was used to gauge the relative

performance for both visual and skill memory for the test set. The classification rate

for each trial recorded the average number of times the actual output deviated from

the target vector of the three output neurons. A threshold of 0.5 was set so that if the

deviation of the output neuron activation was within this value then the particular

input was claimed to be properly classified. The average classification rate was then

acquired by running the experiments ten times and taking the mean and standard

deviation of the values. Student’s t-test was used to measure the significance of the

differences.

Another measure is the mean square error (MSE). This value represents the
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average of all the squared deviations of the output values from the exact target

values. MSE gives a general idea of how well the mapping was learned in case hard

classification is not possible. The other measure, number of epochs to reach an

asymptotic MSE, was gathered to determine the speed of learning for each of the

experiments.
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CHAPTER IV

RESULTS

In order to evaluate the effectiveness of each of the memory representations there

needs to be a comprehensive evaluation of each of the memory systems with respect

to the performance measures specified in the previous chapter. These performance

measures were used to primarily demonstrate the relative difference between the two

memory systems rather than provide a mechanism for absolute comparison with a

general pattern recognition approach that may seek to maximize the performance.

A. Visual memory vs. skill memory in recognition tasks

The overall speed of learning, measured using MSE, is illustrated in Fig. 13. MSE

values for each of the curves were calculated by taking an average of ten trials for

each of the two memory representations. The neural network was allowed to train for

one thousand epochs. As can be seen from Fig. 13, the error rate for skill memory is

consistently lower than that of skill memory. Also after about 200 epochs the MSE

comes close to zero for skill memory while visual memory can only reach an MSE

value of about 0.1 after the full period of one thousand epochs. The results clearly

demonstrate that the neural network can more easily learn the various STP sequences

in skill memory.

The differences between skill memory and visual memory are further emphasized

in Fig. 14. Here the average classification rate on the test sets is shown using the

bar chart with the error bars representing the 95 % confidence interval. The average

classification rate for visual memory was 0.28 while for skill memory it was almost

four times higher at close to 0.97. These differences were significant under t-test (p

= 0, n = 10). In sum, the action-based skill memory was significantly easier to learn
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Fig. 13. Learning curve for visual and skill memory. This plot shows the average

learning curve for both skill and visual memory (10 trials each). From this

plot we can see that skill memory is learned faster and approaches very close

to the zero MSE mark early. On the other hand visual memory still has a

higher MSE even after 1,000 epochs.



32

Visual memory Skill memory
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
ra

te
 (

+
/−

 9
5%

 C
I)

Fig. 14. The average classification rate of visual and skill memory. This bar

chart shows the average classification rate of skill and visual memory on the

test set (± 95 % CI). Skill memory has a smaller variance and higher aver-

age classification rate representing a more consistently good performance as

opposed to visual memory.

than the visual memory, both in terms of speed and accuracy.

B. Skill memory with variations

The performance of skill memory was measured under variations in the formation of

the STP for skill memory. These variations included; (1) changes in the smoothing

window size, (2) variations to the number of starting points for a particular STP, and

(3) noise in trajectory.

1. Smoothing window size

Smoothing was applied to all the STP that was generated. The effect of this has

already been illustrated in the previous chapter. Smoothing has an effect of reducing
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Fig. 15. The effect of smoothing on the classification rates for skill memory.

This bar chart shows the effect of varying window size on the average classifi-

cation rate (± 95 % CI). Window size 3 yielded the most optimal performance

with the lowest variation.

the average classification rate at a lower threshold, i.e. when the deviation from the

desired target is low. However, as the threshold is increased to 0.5, the average

classification rate increases slightly with an increase in the window size. However, a

further increase in widow size causes the average classification rate to decrease slightly.

As a result the default smoothing window size was chosen to be three. Fig. 15 shows

how smoothing affects the average classification rate for skill memory. These values

were averages taken by performing ten trials. All the differences were significant

under t-test (p < 0.04, n = 10).

2. Random starting points

Another variation was to test how the classification rate was impacted by starting

points chosen for the STP generation. This was implemented by varying the number
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Fig. 16. The 2D view of the STP for a square with smoothing. The two arrows

point to the two different locations where the STP sequences may have started.

of start locations for each STP. Having different start points is an important variation

because the way the memory representation system was originally setup, all the STPs

were generated by having the agent start at the same relative location on the shape

and as a consequence the STP generated would not have much variation. Fig. 16

shows a 2D view of the STP for a square and possible positions where the STP

sequence may start. Fig. 17 shows the corresponding 1D view.

The overall effect of adding different start points is that the average classification

rate decreased with increasing number of start points (shown in Fig. 18). However,

even with a high variation in the possible start points for starting STP the average

classification rate was still higher than visual memory. These values were averages

taken by performing ten trials with varying training and test data and a constant

smoothing window size of three. All differences were significant under t-test (p <

0.00015, n = 10). In sum, skill memory was significantly easier to learn than visual

memory, even when the task was made harder for STP. Note that the performance

would suffer greatly if STP generation can start from an arbitrary point on the shape.
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(b) The STP for a square shape with differing start point.

Fig. 17. The linear ordering of the spatio-temporal pattern for a square with

differing start points. The plot in (a) shows how the STP will appear if

the STP generation started from the original start point. The plot in (b)

shows how the STP will appear if the STP generation started from the new

start point (shown in Fig. 16). The dashed arrow in (b) points to the original

starting location. The only difference with the original version is that the

STP is shifted, but that is enough to affect the classification accuracy.
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Fig. 18. The effect of increasing start points on the classification rate for

skill memory. This bar chart shows the change in the average classification

rate as the number of start points is increased (± 95 % CI). As the number of

random start points is increased, the average classification rate steadily drops,

but clearly skill memory performs better than visual memory.

However, in practical applications the STPs can be aligned using crosscorrelation

analysis. Here, the purpose was mainly to show how skill-based memory performs

under the most basic setup.

3. Trajectory noise

The last variation tried was the introduction of noise in the motion trajectory. This

means that a random error at some point in time during the creation of the action

sequence occurred causing the trajectory to deviate from its normal course. The

action sequences were generated as before. However, at random an angle between 0

and 360 was added based on the magnitude of the noise factor. An example of noise

in the trajectory is shown in Fig. 19 and Fig. 20. In these figures a noise factor of 0.1
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Fig. 19. The STP with noise for a square shape. The plot shows a 1 dimen-

sional view of the spatio-temporal pattern for a square after the application

of random noise (noise factor 0.1) and after smoothing.

was used.

The noise factor is the probability that affects the magnitude by which an action

vector’s angle in space may be affected. Hence, a larger noise factor will mean a

larger deformation of the shape that a particular STP may trace. This angular

change can range between 0 and 360. This range of angular change creates a problem

for normalization of the angles which have to lie between 0 and 360 and then they

have to be converted to lie between 0 and 1 by dividing all angles by 360 before being

fed to the neural network. Since the change is positive in the range of 0 to 360. The

angles larger than 360 were converted to lie between 0 and 360 by taking the modulus

360 of the angle. Fig. 21 shows how the classification rate decreases with the increase

in noise. However, as we can see in Fig. 21 even at larger noise levels skill memory is

still able to outperform visual memory. This demonstrates that skill-based memory

is resilient to noise. All differences were significant under t-test (p < 0.002, n = 10).
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Fig. 20. The STP with noise for a square shape. The plot shows a 2 dimen-

sional view of the spatio-temporal pattern for a square after the application

of random noise (noise factor 0.1) and after smoothing. Notice how the shape

traced out is still quite close to the original square.

C. Action as an intermediate representation

In order to test the hypothesis that action may serve as a good intermediate repre-

sentation of sensory information, the following test was devised. The visual represen-

tation would be mapped to action sequence as well as the action sequence to action

sequence mapping along with the visual representation to action. If the learning for

visual to action is easier with respect to sensory to sensory mapping (e.g. visual

to visual), then that would indicate that in fact sensory information can be easily

represented in terms of action. This idea coupled with the primary view that action-

based memory may perform better at object recognition tasks further supports the

idea that skill memory be a more ideal form of memory. The reason for this being

that if the sensory to action mapping was very difficult then the performance advan-

tage that skill memory holds may become less pronounced and there by limiting the

applicability of action-based memory.
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Fig. 21. The effect of noise on classification rate. This bar chart shows the effect

of increasing noise on the average classification rate of skill memory (± 95

% CI). Visual memory is shown here as a baseline. The detrimental effect of

noise can clearly be observed from this bar chart. However, notice that skill

memory is quite resilient to noise and outperforms visual memory at noise

factor of 0.5.
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To verify this tests involving the different mappings were run. The different

mappings were; action to action, visual to action, action to visual, and visual to

visual. This test was carried out on a neural network with 900 inputs and 900 outputs,

corresponding to the 900 dimensional input for each representation. Fig. 22 shows the

results of the experiment. The figure shows that the learning curve for visual to action

mapping is as low as action to action mapping (p = 0.37, n = 10). The figure also

shows that the action to visual memory is slightly easier to learn than visual to visual

mapping (however, t-test showed that p = 0.82, n = 10, indicating that the difference

was not significant). All other differences were significant under t-test (p < 0.026, n

= 10). This bolsters our idea that action may be a good intermediate representation

for sensory data. This support makes action-based memory more appealing.
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Fig. 22. The learning curve for the different mappings. This plot shows the

learning curve for each mapping. From the learning curves we can infer how

well each mapping performs with respect to other mappings. As expected the

visual to action mapping performs well. The visual to action mapping is also

relatively good.
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CHAPTER V

DISCUSSION

Analysis of the results in the previous chapter clearly indicates that skill-based mem-

ory representation performs better than visual memory in recognition tasks. It has

been additionally demonstrated that even under quite severe variations skill-based

memory is able to yield results which indicates its merits. It has been further demon-

strated that action may serve as a good intermediate representation for sensory in-

formation.

A. Properties of STP

The primary reason why skill memory yields such impressive results is because of its

ability to capture the core discriminating property of the respective shapes. This is the

case because aspects such as size and location of the figure do not cause variations in

the resized STP. Hence the STP for different sized shapes was similar in the end. This

makes it easy for the neural network to learn the skill-based representation. However,

variations introduced to the STP to compensate for the apparent advantage, i.e., using

noise and random start methods did not affect the results. Even large variations did

not cause visual memory to out perform skill-based memory.

The properties of the STP and the 2D array representations can be represented

as in Fig. 23. In this figure, the Principal Components Analysis (PCA) plots along

two principal component axes are shown for the data points in the STP and the visual

representations. Fig. 23(b) shows that the PCA plot of skill-based representation has

three distinct clusters for the three classes of input shapes. On the other hand, the

PCA plot for visual memory (Fig. 23(a)) has all the data points almost uniformly

scattered, indicating that making proper class distinctions may be difficult. Such
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an analysis provides some insight on why skill memory performs better than visual

memory in object recognition tasks.

Fig. 24 shows that with the introduction of noise the class boundaries become less

pronounced. With low noise the three distinct clusters for the corresponding classes

are maintained. As the noise factor is increased the clusters become less compact and

it becomes slightly harder to determine the class boundaries. However, even with

high noise the class boundaries can still more or less be determined. These plots help

us understand why the neural network was marginally less able to properly recognize

skill-based representations when the noise was high.

With the introduction of varying start points many more clusters appear in the

PCA plot, as illustrated in Fig. 25. However, it is interesting to note that the local

clusters are more compact as opposed to the broader clusters that emerge with the

addition of noise in Fig. 24. That is, data points from the same class are scattered

around but they locally form tight non-overlapping clusters.

B. Potential limitations

One of the main assumptions of this research is that action can be represented along

a time series that are scaled to be of the same length. However, one may question the

validity of creating an action sequence and scaling such an action sequence. This also

leads one to question, at what intervals are the actions stored and should this interval

be long or short. All of these questions can be answered by the recent experiments

performed by Conditt et al. [12]. The result of their experiment suggests that when

humans are asked to perform a series of actions, the actions tend to be represented

as time invariant. This means that humans do not store the actions parameterized

by time. More precisely, humans do not have a timing mechanism that stores the
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(a) PCA plot for visual memory
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(b) PCA plot for skill memory

Fig. 23. The plot of PCA projection for visual and skill memory. (a) PCA

for 2D array representation (visual memory) of the input data along the first

two principal axes is shown. (b) PCA for STP representation (skill memory)

of the input data along the first two principal axes is shown.
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(a) PCA plot for skill memory with low noise
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(b) PCA plot for skill memory with high noise

Fig. 24. The projection on the two principal axes for skill memory with

varying noise factor. (a) PCA for skill memory with a lower noise factor

of 0.1 along the first two principal axes is shown. (b) PCA for skill memory

with a high noise factor of 0.5 along the first two principal axes is shown.
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(a) PCA plot for skill memory with few start points
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(b) PCA plot for skill memory with many start points

Fig. 25. The projection on the two principal axes for skill memory with

varying number of random start points. (a) PCA for skill memory with

two random start points for STP generation along the first two principal axes

is shown. (b) PCA for skill memory with four random start points for STP

generation along the first two principal axes is shown.
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exact time period between actions. This form of representation allows humans to

counteract disturbances in the environment. A disturbance can result in the delay in

the completion of an action for a given sequence. However, most humans are able to

go along and complete the rest of action. Such experimental evidence allows us to be

more confident about representing actions in a spatio-temporal pattern in the way I

did in this thesis.

The STPs produced in these experiments seem to be the same for each shape,

thus making the job of learning trivial and therefore it appears that skill memory

had an unfair advantage. Rather than this be a criticism against the validity of the

research, it points out the fact that STP is not affected by size and translation of

object. The similarity in STPs further point out the core thesis of the research,

that action sequence as represented in skill memory may be an inherently superior

representation scheme than the raw sensory information as in visual memory, because

of its ability to capture properties of the object when time can be scaled with ease.

C. Relation to memory in humans

The two memories, visual and skill, are analogous in many ways to the types of

memory employed by natural agents. Natural agents have episodic and procedural

memory [13]. Episodic memory is fact-based where certain information about events

is stored. It is currently believed that these events are temporarily stored in the

hippocampus [14] [3]. This may have similarities to visual memory described above.

On the other hand, skill memory can be thought of as being similar to procedural

memory. Procedural memory deals with the ability to recall sequential steps required

for a particular task that an agent may perform [15]. It may be interesting to investi-

gate if the main results derived in this thesis applies to the understanding of human
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memory and recognition.

Note, however, that I am not trying to claim that the results presented here

explain how the human memory works. Rather, what is presented here only suggests

that skill-based memory may have theoretical virtue regarding perceptual understand-

ing, as compared to sensory memory.

D. Future work

The future expansion of this research topic involves the actual implementation of

the skill-based memory system in an autonomous agent such as SIDA. Also other

variations to the STP format can be studied such as methods that retain only the

changes in the sequence of actions, i.e. only when there is a certain change in action,

rather than retaining the total sequence. The resultant STP for shapes like square

will have only four points, since in the traversal of a square the action vectors will

need to be only changed four times.

In order to see if visual memory can perform better at object recognition, it

might be a good idea to provide a mechanism that lowers the dimensionality of the

sensory data. This can be done by splitting the visual field into smaller patches and

capturing the activation in the smaller visual area. Since the number of dimensions is

reduced it might be slightly easier for the neural network to learn the visual memory.

E. Contributions

The primary contribution of this research is the demonstration that skill-based mem-

ory has beneficial properties that can aid in perceptual understanding. These proper-

ties are in line with other research that suggested that action is a fundamental compo-

nent for learning simple properties. However, in this thesis I was able to demonstrate
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that action plays an important role in learning complex objects when the system

was allowed to have memory. This research clearly demonstrates how action can be

incorporated into a powerful autonomous learning system.
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CHAPTER VI

CONCLUSION

This thesis, the study of memory systems, arose from the desire to develop a memory

system that would allow autonomous agents to learn about complex object properties.

The most basic memory system that an agent can have is the direct (raw) storage

of the sensory data (such as visual memory). Another system is skill-based memory,

which primarily involves the retaining of action sequences performed during a task.

Skill memory was anticipated to be a better representation because of the crucial

role action played in simple perceptual understanding [1]. To test this hypothesis,

I compared the two memory representations in object recognition tasks. The two

primary performance measures, average classification rate and MSE, revealed the

superior properties of skill memory in recognizing objects. Additionally, a related

experiment demonstrated convincingly that action can serve as a good intermediate

representation for sensory data. This result provides support for the idea that suggests

that various sensory modalities may be represented in terms of action.

Based on the above results, it can be concluded that the importance of action

in simple perceptual understanding of objects can successfully be extended to that of

more complex objects when some form of memory capability is included. In the future,

the understanding we gained here is expected to help us build memory systems that

are based on the dynamics of action that enable intrinsic perceptual understanding.
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